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Abstract. We analyse the computational complexity of finding Nash equilibria in sto-
chastic multiplayer games with ω-regular objectives. We show that restricting the search
space to equilibria whose payoffs fall into a certain interval may lead to undecidability. In
particular, we prove that the following problem is undecidable: Given a game G, does there
exist a pure-strategy Nash equilibrium of G where player 0 wins with probability 1. More-
over, this problem remains undecidable if it is restricted to strategies with (unbounded)
finite memory. However, if randomised strategies are allowed, decidability remains an
open problem; we can only prove NP-hardness in this case. One way to obtain a provably
decidable variant of the problem is to restrict the strategies to be positional or stationary.
For the complexity of these two problems, we obtain a common lower bound of NP and
upper bounds of NP and Pspace respectively. Finally, we single out a special case of the
general problem that, in many cases, admits an efficient solution. In particular, we prove
that deciding the existence of an equilibrium in which each player either wins or loses with
probability 1 can be done in polynomial time for games where, for instance, the objective
of each player is given by a parity condition with a bounded number of priorities.

1. Introduction

We study stochastic games [50] played by multiple players on a finite, directed graph.
Intuitively, a play of such a game evolves by moving a token along edges of the graph: Each
vertex of the graph is either controlled by one of the players, or it is stochastic. Whenever
the token arrives at a non-stochastic vertex, the player who controls this vertex must move
the token to a successor vertex; when the token arrives at a stochastic vertex, a fixed
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probability distribution determines the next vertex. A measurable function maps plays to
payoffs. In the simplest case, which we discuss here, the possible payoffs of a single play
are binary (i.e. each player either wins or loses a given play). However, due to the presence
of stochastic vertices, a player’s expected payoff (i.e. her probability of winning) can be an
arbitrary probability.

Stochastic games with ω-regular objectives have been successfully applied in the ver-
ification and synthesis of reactive systems under the influence of random events. Such a
system is usually modelled as a game between the system and its environment, where the
environment’s objective is the complement of the system’s objective: the environment is con-
sidered hostile. Therefore, the research in this area has traditionally focused on two-player
games where each play is won by precisely one of the two players, so-called two-player zero-
sum games. However, the system may comprise of several components with independent
objectives, a situation which is naturally modelled by a multiplayer game.

The most common interpretation of rational behaviour in multiplayer games is captured
by the notion of a Nash equilibrium [49]. In a Nash equilibrium, no player can improve
her payoff by unilaterally switching to a different strategy. Chatterjee et al. [13] gave an
algorithm for computing a Nash equilibrium in a stochastic multiplayer games with ω-
regular winning conditions. We argue that this is not satisfactory. Indeed, it can be shown
that their algorithm may compute an equilibrium where all players lose almost surely (i.e.
receive expected payoff 0), while there exist other equilibria where all players win almost
surely (i.e. receive expected payoff 1).

In applications, one might look for an equilibrium where as many players as possible
win almost surely or where it is guaranteed that the expected payoff of the equilibrium falls
into a certain interval. Formulated as a decision problem, we want to know, given a k-player
game G with initial vertex v0 and two thresholds x, y ∈ [0, 1]k, whether (G, v0) has a Nash
equilibrium with expected payoff at least x and at most y. This problem, which we call NE
for short, is a generalisation of the quantitative decision problem for two-player zero-sum
games, which asks whether in such a game player 0 has a strategy that ensures to win the
game with a probability that lies above a given threshold.

The problem NE comes in several variants, depending on the type of strategies one
considers: On the one hand, strategies may be randomised (allowing randomisation over
actions) or pure (not allowing such randomisation). On the other hand, one can restrict
to strategies that use (unbounded or bounded) finite memory or even to stationary ones
(strategies that do not use any memory at all). For the quantitative decision problem, this
distinction is often not meaningful since in a two-player, zero-sum simple stochastic game
with ω-regular objectives both players have optimal pure strategies with finite memory.
Moreover, in many games even positional (i.e. both pure and stationary) strategies suffice
for optimality. However, regarding NE this distinction leads to distinct decision problems,
which have to be analysed separately.

Our main result is that NE is undecidable if only pure strategies are considered. In fact,
even the following, presumably simpler, problem is undecidable: Given a game G, decide
whether there exists a pure Nash equilibrium where player 0 wins almost surely. Moreover,
the problem remains undecidable if one restricts to pure strategies that use (unbounded)
finite memory. However, for the general case of arbitrary randomised strategies, decidability
remains an open problem: in this case, we can only prove NP-hardness.
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If one restricts to simpler types of strategies like stationary ones, the problem becomes
provably decidable. In particular, for positional strategies the problem is typically NP-
complete, and for arbitrary stationary strategies it is NP-hard but typically contained in
Pspace. To get a better understanding of the latter problem, we also relate it to the Square
Root Sum Problem (SqrtSum) by providing a polynomial-time reduction from SqrtSum
to NE with the restriction to stationary strategies. It is a long-standing open problem
whether SqrtSum falls into the polynomial hierarchy; hence, showing that NE for stationary
strategies lies inside the polynomial hierarchy would imply a breakthrough in understanding
the complexity of numerical computations.

Although the decidability of NE with respect to arbitrary randomised strategies remains
open, we can prove decidability for an important restriction of NE, which we call the strictly
qualitative fragment. This fragment arises from NE by restricting the two thresholds to be
the same binary payoff. Hence, we are only interested in equilibria where each player either
wins or loses with probability 1. Formally, the task is to decide, given a k-player game G with
initial vertex v0 and a binary payoff x ∈ {0, 1}k, whether the game has a Nash equilibrium
with expected payoff x. Apart from proving decidability, we show that, depending on the
representation of the objective, this problem is typically complete for one of the complexity
classes P, NP, coNP and Pspace, and that the problem is invariant under restricting the
search space to equilibria in pure, finite-state strategies.

Outline. In Section 2, we introduce the model that underlies this work and survey earlier
work on stochastic two-player zero-sum games. In Section 3, we prove that every stochastic
multiplayer game has a Nash equilibrium, thereby addressing an inaccuracy in an earlier
proof by Chatterjee et al. [13]. In Section 4, we analyse the complexity of the problem NE
with respect to the six modes of strategies we consider in this work: positional strategies,
stationary strategies, pure finite-state strategies, randomised finite-state strategies, arbi-
trary pure strategies, and arbitrary randomised strategies. Finally, in Section 5, we prove
that the strictly qualitative fragment of NE is decidable and analyse its complexity.

Related Work. Determining the complexity of Nash equilibria has attracted much interest
in recent years. In particular, a series of papers culminated in the result that computing a
Nash equilibrium of a two-player game in strategic form is complete for the complexity class
PPAD [19, 15]. More in the spirit of our work, Conitzer and Sandholm [17] showed that
deciding whether there exists a Nash equilibrium in a two-player game in strategic form
where player 0 receives payoff at least x and related decision problems are all NP-hard. For
infinite games (without stochastic vertices), (a qualitative version of) the problem NE was
studied in [54]. In particular, it was shown that the problem is NP-complete for games with
parity winning conditions but in P for games with Büchi winning conditions.

For stochastic games, most results concern the computation of values and optimal
strategies; see Section 2 for a survey of the most important results. We are only aware of
two papers that are closely related to our problem: First, Etessami et al. [25] investigated
Markov decision processes with, e.g., multiple reachability objectives. Such a system can
be viewed as a stochastic multiplayer game where all non-stochastic vertices are controlled
by one single player. Under this interpretation, one of their results states that NE is
decidable for such games. Second, Chatterjee et al. [13] showed that the problem of deciding
whether a (concurrent) stochastic game with reachability objectives has a Nash equilibrium
in positional strategies with payoff at least x is NP-complete. We sharpen their hardness
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result by demonstrating that the problem remains NP-hard when it is restricted to games
with only three players (as opposed to an unbounded number of players) where, additionally,
payoffs are assigned at terminal vertices only (cf. Theorem 4.4).

2. Stochastic games

2.1. Basic definitions. Let us start by giving a formal definition of the game model that
underlies this paper. The games we are interested in are played by multiple players taken
from a finite set Π of players; we usually refer to them as player 0, player 1, player 2, and
so on.

The arena of the game is basically a directed, coloured graph. Intuitively, the players
take turns to form an infinite path through the arena, a play. Additionally, there is an
element of chance involved: at some vertices, it is not a player who decides how to proceed
but nature who chooses a successor vertex according to a probability distribution. To
model this scenario, we partition the set V of vertices into sets Vi of vertices controlled by
player i ∈ Π and a set of stochastic vertices, and we extend the edge relation to a transition
relation that takes probabilities into account. Formally, an arena for a game with players
in Π consists of:

– a countable, non-empty set V of vertices or states,
– for each player i a set Vi ⊆ V of vertices controlled by player i ,
– a transition relation ∆ ⊆ V × ([0, 1] ∪ {⊥})× V , and
– a colouring function χ : V → C into an arbitrary set C of colours.

We make the assumption that every vertex is controlled by at most one player: Vi∩Vj = ∅ if
i ̸= j; vertices that are not controlled by a player are stochastic. For the sake of simplicity,
we also assume that for each vertex v the set

v∆ := {w ∈ V : exists p ∈ (0, 1] ∪ {⊥} such that (v, p, w) ∈ ∆}
of possible successor vertices is not empty. Moreover, we require that probabilities appear
only on transitions originating in stochastic vertices, i.e. if v ∈

⋃
i∈Π Vi and (v, p, w) ∈ ∆

then p = ⊥, and that they are unique: for every pair of a stochastic vertex v and an
arbitrary vertex w there exists precisely one p ∈ [0, 1] such that (v, p, w) ∈ ∆; we denote
this probability by pvw. For computational purposes, we assume that these probabilities
are rational numbers. Finally, for each stochastic vertex the probabilities on outgoing
transitions must sum up to 1:

∑
w∈V pvw = 1.

The description of a game is completed by a specifying an objective for each player. On
an abstract level, these are just arbitrary sets of infinite sequences of colours, i.e. subsets
of Cω. Since we want to assign a probability to them, we assume that objectives are Borel
sets over the usual topology on infinite sequences, if not stated otherwise. Since objectives
specify which plays are winning for a player, they are also called winning conditions.

In principal, we will identify an objective Win ⊆ Cω over colours with the corresponding
objective χ−1(Win) := {π ∈ V ω : χ(π) ∈Win} ⊆ V ω over vertices (which is also Borel since
χ, as a mapping V ω → Cω, is continuous). The reason that we allow objectives to refer
to a colouring of the vertices is that the number of colours can be much smaller than the
number of vertices, and it is possible that an objective can be represented more succinctly
as an objective over colours rather than as an objective over vertices. In particular, this is
true for Muller objectives, which we are going to introduce in Section 2.2.
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If Π is a finite set of players, (V, (Vi)i∈Π,∆, χ) is an arena and (Wini)i∈Π is a collection
of objectives, we refer to the tuple G = (Π, V, (Vi)i∈Π,∆, χ, (Wini)i∈Π) as a stochastic mul-
tiplayer game (SMG). A play of G is an infinite path through the arena of G, i.e. an infinite
sequence π = π(0)π(1) . . . of vertices such that for each k ∈ N there exists p ∈ (0, 1] ∪ {⊥}
with (π(k), p, π(k+1)) ∈ ∆. Finite prefixes of plays are called histories. A play or a history
of (G, v0) is a play respectively a history of G that starts in v0. We say that a play π of G
is won by player i if the corresponding sequence of colours fulfils player i’s objective, i.e.
χ(π) ∈Wini; the payoff of a play π is the vector x ∈ {0, 1}Π defined by xi = 1 if and only
if χ(π) ∈Wini.

Often, it is convenient to designate an initial vertex v0 ∈ V ; we denote the pair (G, v0) an
initialised SMG. A play or a history of an initialised SMG (G, v0) is just a play respectively
a history of G that starts in v0. In the following, we will refer to both SMGs and initialised
SMGs as SMGs; it should always be clear from the context whether the game is initialised
or not.

SMGs generalise various stochastic models, each of them the subject of intensive re-
search. First, there are Markov chains, the basic model for stochastic processes, in which
no control is possible. These are just SMGs where the set Π of players is empty and (as
a consequence) there are only stochastic vertices. If we extend Markov chains by a single
controller, we arrive at the model of a Markov decision process (MDP), a model introduced
by Bellman [4] and heavily used in operations research. Formally, an MDP is an SMG
where there is only one player (and only one objective). Finally, in a (perfect-information)
stochastic 2-player zero-sum game (S2G), there are only two players, player 0 and player 1,
who have opposing objectives: one player wants to fulfil an objective while the other one
wants to prevent her from doing so. Hence, one player’s objective is the complement of the
other player’s objective. Due to their competitive nature, these games are also known as
competitive Markov decision processes (see [26]).

The SMG model also incorporates several non-stochastic models. In particular, we call
an SMG deterministic if it contains no stochastic vertices. In the 2-player zero-sum setting,
the resulting model has found applications in logic and controller synthesis, to name a few.

2.2. Objectives. We have introduced objectives as abstract sets of infinite sequences. In
order to be amenable for algorithmic solutions, we need to restrict to a class of objectives
representable by finite objects. The objectives we consider for this purpose are standard in
logic and verification (see [31]). In particular, whether an infinite sequence α fulfils such an
objective only depends on the set Occ(α) of colours occurring in α or on the set Inf(α) of
colours occurring infinitely often in α.

– A reachability objective is given by a set F ⊆ C of good colours, and the objective
requires to see a good colour at least once. The corresponding subset of Cω is
Reach(F ) := {α ∈ Cω : Occ(α) ∩ F ̸= ∅}.

– A Büchi objective is again given by a set F ⊆ C of good colours, but it requires to
see a good colour infinitely often. The corresponding subset of Cω is Büchi(F ) :=
{α ∈ Cω : Inf(α) ∩ F ̸= ∅}.

– A co-Büchi objective is also given by a set F ⊆ C of good colours; this time, the ob-
jective requires to see only good colours from some point onwards. The corresponding
subset of Cω is coBüchi(F ) = {α ∈ Cω : Inf(α) ⊆ F}.

– A parity objective is given by a priority function Ω : C → {0, . . . , d}, d ∈ N, which
assigns to each colour a certain priority. The objective requires that the least priority
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that occurs infinitely often is even. The corresponding subset of Cω is Parity(Ω) =
{α ∈ Cω : min(Inf(Ω(α))) is even}.

– A Streett objective is given by a set Ω of Streett pairs (F,G), F,G ⊆ C, and it requires
that if a colour on the left-hand side of a pair is seen infinitely often then the same
is true about a colour on the right-hand side. The corresponding subset of Cω is
Streett(Ω) = {α ∈ Cω : Inf(α) ∩ F = ∅ or Inf(α) ∩G ̸= ∅ for all (F,G) ∈ Ω}.

– A Rabin objective is given by a set Ω of Rabin pairs (F,G), F,G ⊆ C; it requires that
for some pair a colour on the left-hand side is seen infinitely often while all colours
on the right-hand side are seen only finitely often. The corresponding subset of Cω
is Rabin(Ω) = {α ∈ Cω : Inf(α) ∩ F ̸= ∅ and Inf(α) ∩G = ∅ for some (F,G) ∈ Ω}.

– A Muller objective is given by a family F of accepting sets F ⊆ C, and it requires
that the sets of colours seen infinitely often equals one of these accepting sets. The
corresponding subset of Cω is Muller(F) = {α ∈ Cω : Inf(α) ∈ F}.

Parity, Streett, Rabin and Muller objectives are of particular relevance because they provide
a standard form for arbitrary ω-regular objectives: any game with arbitrary ω-regular
objectives can be reduced to one with parity, Streett, Rabin or Muller objectives (over a
larger arena) by taking the product of its original arena with a suitable deterministic word
automaton for each player’s objective (see [52]).

In this work, for reasons that will become clear later, we are particularly attracted
to objectives that are invariant under adding and removing finite prefixes; we call such
objectives prefix-independent. More formally, an objective is prefix-independent if for each
α ∈ Cω and x ∈ C∗ the sequence α satisfies the objective if and only if the sequence x·α does.
From the objectives listed above, only reachability objectives are, in general, not prefix-
independent. However, many of our results (in particular, many of our lower bounds) apply
to games with a prefix-independent form of reachability, which we call simple reachability.
For these objectives, we assume that each vertex is coloured by itself, i.e. C = V , and χ is
the identity mapping. The simple reachability objective for a set F ⊆ V coincides with the
reachability objective for F , but we require that each v ∈ F is a terminal vertex: v∆ = {v}.
For any such set F , we have Occ(π) ∩ F ̸= ∅ if and only if Inf(π) ∩ F ̸= ∅ (or equivalently,
Inf(π) ⊆ F ) for every play π. Hence, simple reachability objectives can be regarded as
prefix-independent objectives.

For S2Gs, the distinction between reachability and simple reachability is not impor-
tant: every S2G with a reachability objective can easily be transformed into an equivalent
S2G with a simple reachability objective. For SMGs, we believe that any such transfor-
mation requires exponential time: Deciding whether in a deterministic game with simple
reachability objectives there exists a play that fulfils each of the objectives can be done in
polynomial time whereas the same problem is NP-complete for deterministic games with
standard reachability objectives [13, 53].

The resulting hierarchy of objectives is depicted in Figure 1: As explained above, a
simple reachability objective can be considered as a (co-)Büchi objective; a Büchi objective
can be translated to a parity objective with only two priorities, and any parity objective
can be translated to both a Streett and a Rabin objective; in fact, the intersection (union)
of any two parity objectives can be represented as a Streett (Rabin) objective. Moreover,
any Streett or Rabin objective can be represented as a Muller objective; however, the
translation from a set of Streett/Rabin pairs to an equivalent family of accepting sets is, in
general, exponential. Finally, note that the complement of a Büchi (Streett) objective is a
co-Büchi (Rabin) objective, and vice versa, whereas the class of parity objectives and the
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Simple reachability

Büchi co-Büchi

Parity

Streett Rabin

Muller

Figure 1. A hierarchy of prefix-independent objectives.

class of Muller objectives are closed under complementation. In fact, an objective can be
represented as both a Streett and a Rabin objective if and only if it can be represented as
a parity objective [59].

To denote the class of SMGs (S2Gs) with a certain type of objectives, we prefix the
name SMG (S2G) with the name(s) of the objective; for instance, we use the term Streett-
Rabin SMG to denote SMGs where each player has a Streett or a Rabin objective. For
S2Gs, we adopt the convention to name the objective of player 0 first; hence, in a Streett-
Rabin S2G player 0 has a Streett objective while player 1 has a Rabin objective. Inspired
by Condon [16], we will refer to SMGs with simple reachability objectives and S2Gs with a
(simple) reachability objective for player 0 as simple stochastic multiplayer games (SSMGs)
and simple stochastic 2-player zero-sum games (SS2Gs), respectively.

Drawing an SMG. When drawing an SMG as a graph, we will use the following conventions:
The initial vertex is marked by an incoming edge that has no source vertex. Vertices that
are controlled by a player are depicted as circles, where the player who controls a vertex
is given by the label next to it. Stochastic vertices are depicted as diamonds, where the
transition probabilities are given by the labels on its outgoing edges (the default being 1

2).
Finally, terminal vertices are generally represented by their associated payoff vector. In fact,
we allow arbitrary vectors of rational probabilities as payoffs. This does not increase the
power of the model since such a payoff vector can easily be realised by an SSMG consisting
of stochastic and terminal vertices only.

2.3. Strategies and strategy profiles.

2.3.1. Randomised and pure strategies. The notion of a strategy lies at the heart of game
theory. Formally, a (randomised) strategy of player i in an SMG G is a mapping σ :
V ∗Vi → D(V ) assigning to each possible sequence xv ∈ V ∗Vi of vertices ending in a vertex
controlled by player i a (discrete) probability distribution over V such that σ(xv)(w) > 0
only if (v,⊥, w) ∈ ∆. Instead of σ(xv)(w), we usually write σ(w | xv). We say that a
play π of G is consistent with a strategy σ of player i if σ(π(k + 1) | π(0) . . . π(k)) > 0
for all k ∈ N with π(k) ∈ Vi. Similarly, a history x = v0 . . . vn is consistent with σ if
σ(vk+1 | v0 . . . vk) > 0 for all 0 ≤ k < n.

A (randomised) strategy profile of G is a tuple σ = (σi)i∈Π where σi is a strategy of
player i in G. We say that a play or a history of G is consistent with a strategy profile σ



8 M. UMMELS AND D. WOJTCZAK

if it is consistent with each σi. Given a strategy profile σ = (σj)j∈Π and a strategy τ of
player i, we denote by (σ−i, τ) the strategy profile resulting from σ by replacing σi with τ .

A strategy σ of player i is called pure or deterministic if for each xv ∈ V ∗Vi there exists
w ∈ v∆ with σ(w | xv) = 1; note that a pure strategy of player i can be identified with a
function σ : V ∗Vi → V . A strategy profile σ = (σi)i∈Π is called pure if each σi is pure.

2.3.2. The probability space induced by a strategy profile. Given an initial vertex v0 and
a strategy profile σ = (σi)i∈Π, the conditional probability of w ∈ V given xv ∈ V ∗V is
the number σi(w | xv) if v ∈ Vi and the unique p ∈ [0, 1] such that (v, p, w) ∈ ∆ if
v is a stochastic vertex; let us denote this probability by σ(w | xv). The probabilities
σ(w | xv) induce a probability measure on the space V ω in the following way: The proba-
bility of a basic open set v1 . . . vk · V ω is 0 if v1 ̸= v0 and the product of the probabilities
σ(vj | v1 . . . vj−1) for j = 2, . . . , k otherwise. It is a classical result of measure theory that
this extends to a unique probability measure assigning a probability to every Borel subset
of V ω, which we denote by Prσv0 .

For a strategy profile σ, we are mainly interested in the probabilities pi := Prσv0(Wini)
of winning. We call pi the (expected) payoff of σ for player i (from v0) and the vector
(pi)i∈Π the (expected) payoff of σ (from v0). Note that, if σ is a pure strategy profile of a
deterministic game, then its payoff is just the payoff of the the unique play π of (G, v0) that
is consistent with σ.

In order to apply known results about Markov chains, we can also view the stochastic
process induced by a strategy profile σ as a countable Markov chain Gσ, defined as follows:
The set of vertices (states) of Gσ is the set V + of all non-empty sequences of vertices in G.
The only transitions from a state xv, x ∈ V ∗, v ∈ V , are to states of the form xvw, w ∈ V ,
and such a transition occurs with probability p > 0 if and only if either v is stochastic and
(v, p, w) ∈ ∆ or v ∈ Vi and σi(w | xv) = p. Finally, the colouring χ of vertices is extended
to a colouring of states by setting χ(xv) = χ(v) for all x ∈ V ∗, v ∈ V . With this definition,
we can recover the payoff of σ for player i as the probability of the event χ−1(Wini) in
(Gσ, v0).

For each player i, the Markov decision process Gσ−i is defined just as Gσ, but states
xv ∈ V ∗Vi are controlled by player i (the unique player in Gσ−i), and there is a transition
from such a state to any state of the form xvw, w ∈ V , such that (v,⊥, w) ∈ ∆; player i’s
objective is the same as in G.

2.3.3. Strategies with memory. A memory structure for a game G with vertices in V is a
triple M = (M, δ,m0) where M is a set of memory states, δ : M × V → M is the update
function, and m0 ∈ M is the initial memory. A (randomised) strategy with memory M of
player i is a function σ : M × Vi → D(V ) such that σ(m, v)(w) > 0 only if w ∈ vE. The
strategy σ is a pure strategy with memory M if additionally the following property holds:
for all m ∈M, v ∈ V there exists w ∈ V such that σ(m, v)(w) = 1. Hence, a pure strategy
with memory M can be described by a function σ : M × Vi → V . Finally, a (pure) strategy
profile with memory M is a tuple σ = (σi)i∈Π such that each σi is a (pure) strategy with
memory M of player i.

A (pure) strategy σ with memory M of player i defines a (pure) strategy of player i (in
the usual sense) as follows: Let δ∗(x) be the memory state after x ∈ V ∗, defined inductively
by δ∗(ε) = m0 and δ∗(xv) = δ(δ∗(x), v) for x ∈ V ∗, v ∈ V . If v ∈ Vi, then the distribution
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(successor vertex) chosen by the strategy σ for the sequence xv is σ(δ∗(x), v). Vice versa,
every strategy (profile) of G can be viewed as a strategy (profile) with memory M :=
(V ∗, ·, ε).

A finite-state strategy (profile) is a strategy (profile) with memory M for a finite memory
structure M. Note that a strategy profile is finite-state if and only if each of its strategies
is finite-state because if σi is a strategy with memory Mi of player i then σ := (σi)i∈Π can
be viewed as a strategy profile with memory

∏
i∈Π Mi.

If |M | = 1, we call a strategy (profile) with memory M stationary. Moreover, we call
a pure stationary strategy (profile) a positional strategy (profile). A stationary strategy of
player i can be described by a function σ : Vi → D(V ), and a positional strategy even by a
function σ : Vi → V .

If σ = (σi)i∈Π is a strategy profile with memory M, we refine the Markov chain Gσ
by taking M × V as its domain. The transition relation is defined as follows: There is
a transition from (m, v) to (n,w) with probability p > 0 if and only if δ(m, v) = n and
either v is a stochastic vertex of G and (v, p, w) ∈ ∆ or v ∈ Vi and σi(m, v)(w) = p.
Finally, a state (m, v) is coloured with the same colour as the vertex v in G. Analogously,
we can refine the Markov decision process Gσ−i by using M × V as its domain. In Gσ−i ,
vertices (m, v) ∈ M × Vi are controlled by player i, and there is a transition from such a
vertex (m, v) to (n,w) ∈ M × V if and only if n = δ(m, v) and (v,⊥, w) ∈ ∆. Note that
the arenas of both Gσ and Gσ−i are finite if the memory M and the original arena of G are
finite.

2.3.4. Residual games and strategies. Given an SMG G and a sequence x ∈ V ∗ (which
will usually be a history), the residual game G[x] has the same arena as G but different
objectives: if Wini ⊆ V ω is the objective of player i in G, then her objective in G[x]
is x−1Wini := {π ∈ V ω : xπ ∈ Wini}. In particular, if all objectives in G are prefix-
independent, then G[x] = G.

If player i plays according to a strategy σ in G, then the natural choice for her strategy
in G[x] is the residual strategy σ[x], defined by σ[x](yv) = σ(xyv). If σ = (σi)i∈Π is a
strategy profile, then the residual strategy profile σ[x] is just the profile of the residual
strategies σi[x]. The following lemma, taken from [58], shows how to compute probabilities
with respect to a residual strategy profile.

Lemma 2.1. Let σ be any strategy profile of G, xv ∈ V ∗V a history of G, and X ⊆ V ω a
Borel set. Then Prσv0(X ∩ xv · V

ω) = Prσv0(xv · V
ω) · Prσ[x]v (x−1X).

2.4. Subarenas and end components. Algorithms for stochastic games often employ a
divide-and-conquer approach and compute a solution for a complex game from the solution
of several smaller games. These smaller games are usually obtained from the original game
by restricting it to a subarena. Formally, given an SMG G, a set U ⊆ V a subarena if

– U ̸= ∅,
– v∆ ∩ U ̸= ∅ for each v ∈ U , and
– v∆ ⊆ U for each stochastic vertex v ∈ U .

Clearly, if U is a subarena, then the restriction of G to vertices in U is again an SMG, which
we denote by G � U . Formally,

G � U := (Π, U, (Vi ∩ U)i∈Π,∆ ∩ (U × ([0, 1] ∪ {⊥})× U), (Wini ∩ Uω)i∈Π).



10 M. UMMELS AND D. WOJTCZAK

Of particular interest are the strongly connected subarenas of a game because they
are the obvious candidates for the sets Inf(π) of vertices visited infinitely often in a play;
we call these sets end components. Formally, a set U ⊆ V is an end component if U is a
subarena and every vertex w ∈ U is reachable from every other vertex v ∈ U , i.e. there
exists a sequence v = v1, v2, . . . , vn = w, n ≥ 1, such that vi+1 ∈ vi∆ for each 0 < i < n.
An end component U is maximal in a set S ⊆ V if there is no end component U ′ such that
U ( U ′ ⊆ S. For any finite subset S ⊆ V , the set of all end components maximal in S can
be computed by standard graph algorithms in quadratic time (see [20]).

The theory of end components has been developed by de Alfaro [20] and Courcoubetis
and Yannakakis [18]. The central fact about end components in SMGs with finite arena is
that, under any strategy profile, the set of vertices visited infinitely often is almost surely
an end component.

Lemma 2.2. Let G be any SMG with finite arena, and let σ be any strategy profile of G.
Then Prσv ({α ∈ V ω : Inf(α) is an end component}) = 1 for every vertex v ∈ V .

Moreover, for any end component U , we can construct a stationary strategy profile, or
alternatively a pure finite-state strategy profile, that, when started in U , guarantees to visit
all (and only) vertices in U infinitely often. In fact, the stationary profile that ensures this
just chooses for each vertex in U a successor in U uniformly at random.

Lemma 2.3. Let G be any SMG with finite arena, and let U be any end component of G.
There exists both a stationary and a pure finite-state strategy profile σ of G � U such that
Prσv ({α ∈ V ω : Inf(α) = U}) = 1 for every vertex v ∈ U .

Given an SMG G with (objectives representable as) Muller objectives Fi ⊆ P(C), we
say that an end component C is winning for player i if χ(C) ∈ Fi; the payoff of C is the
the vector x ∈ {0, 1}Π, defined by xi = 1 if C is winning for player i.

2.5. Values, determinacy and optimal strategies. The notions of the value and an
optimal strategy are central for the theory of 2-player zero-sum games. However, they can
also be applied to SMGs.

Given a strategy τ of player i in G and a vertex v ∈ V , the value of τ from v is the number
valτ (v) := infσ Prσ−i,τv (Wini), where σ ranges over all strategy profiles of G. Moreover, the
value of G for player i from v is the supremum of these values: valGi (v) := supτ valτ (v),
where τ ranges over all strategies of player i in G. Intuitively, valGi (v) is the maximal payoff
that player i can ensure when the game starts from v.

Given an initial vertex v0 ∈ V , a strategy τ of player i in G is called (almost-surely)
winning if valτ (v0) = 1. More generally, τ is called optimal if valτ (v0) = valGi (v0). For ε > 0,
it is called ε-optimal if valτ (v0) ≥ valGi (v0)− ε. A globally (ε-)optimal strategy is a strategy
that is (ε-)optimal for every possible initial vertex v0 ∈ V . Note that optimal strategies do
not need to exist since the supremum in the definition of valGi is not necessarily attained;
in this case, only ε-optimal strategies do exist. However, if for every possible initial vertex
there exists an (ε-)optimal strategy, then there also exists a globally (ε-)optimal strategy.
Finally, we say that a strategy τ of player i in (G, v0) is residually optimal if the residual
strategy τ [x] is optimal in the residual game (G[x], v) for every history xv of (G, v0).

Determining values and finding optimal strategies in SMGs actually reduces to perform-
ing the same tasks in S2Gs. Formally, given an SMG G, define for each player i the coalition
game Gi to be the same game as G but with only two players, player i and player Π \ {i}:
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Player Π \ {i} controls all vertices that in G are controlled by some player j ̸= i, and
her objective is the complement of player i’s objective in G. Clearly, Gi is an S2G, and
valGi(v) = valGi (v) for every vertex v. Moreover, any (residually, ε-) optimal strategy for
player i in (Gi, v0) is (residually, ε-) optimal in (G, v0), and vice versa. Hence, when we
study values and optimal strategies, we can restrict to 2-player zero-sum games.

A celebrated theorem due to Martin [45] and Maitra and Sudderth [44] states that S2Gs
with Borel objectives are determined: valG0 = 1−valG1 (where the equality holds pointwise).1
The number valG(v) := valG0 (v) is consequently called the value of G from v. In fact, an
inspection of the proof shows that — for the kind of games we study in this paper — both
players do not only have randomised ε-optimal strategies but pure ones.

Theorem 2.4 ([45, 44]). Every stochastic 2-player zero-sum game with Borel objectives is
determined; for all ε > 0, both players have ε-optimal pure strategies.

For S2Gs with prefix-independent objectives played on finite arenas, Gimbert and Horn
[30] showed a stronger result than Theorem 2.4: in these games, both players not only have
ε-optimal pure strategies, but optimal ones [30]. In fact, their proof reveals not only the
existence of optimal strategies but the existence of residually optimal strategies [37].

Theorem 2.5 ([30]). In any S2G with finite arena and prefix-independent objectives, both
players have residually optimal pure strategies.

For S2Gs with ω-regular objectives played on finite arenas, even nicer strategies than
arbitrary pure strategies suffice for optimality. In particular, in any Rabin-Streett S2G
with finite arena there exists a globally optimal positional strategy for player 0, which is,
by definition, also residually optimal [42, 14].

Theorem 2.6 ([42, 14]). In any Rabin-Streett S2G with finite arena, player 0 has a globally
optimal positional strategy.

A consequence of Theorem 2.6 is that the values of any Rabin-Streett S2G with finite
arena are rational of bit complexity polynomial in the size of the arena: Given a positional
strategy profile σ of G, the finite MDP Gσ−1 is not larger than the game G. Moreover, if
σ0 is globally optimal, then for every vertex v the value of G from v and the value of Gσ−1

from v sum up to 1. But the values of any Streett MDP form the optimal solution of a
linear programme of polynomial size in the given MDP (see [20]) and are therefore rational
of small bit complexity.

Of course, it also follows from Theorem 2.6 that parity S2Gs with finite arena are po-
sitionally determined: both players have globally optimal positional strategies. This result
was first proven for deterministic games (even for games with infinite arena) independently
by Emerson and Jutla [23] and Mostowski [48]. For SS2Gs, the existence of optimal po-
sitional strategies follows from a result of Liggett and Lippman [43]. Finally, McIver and
Morgan [46], Chatterjee et al. [12] and Zielonka [58] extended both results to parity S2Gs.

Corollary 2.7. In any parity S2G with finite arena, both players have globally optimal
positional strategies.

Since any S2G with finite arena and ω-regular objectives can be reduced to one with
finite arena and parity objectives, we can conclude from Corollary 2.7 that both players

1Martin proved the theorem originally for Blackwell games; Maitra and Sudderth adapted his proof to
stochastic games.
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have residually optimal pure finite-state strategies in S2Gs with finite arena and arbitrary
ω-regular objectives.

Corollary 2.8. In any finite S2G with finite arena and ω-regular objectives, both players
have residually optimal pure finite-state strategies.

2.6. Algorithmic problems. For the rest of this section, we only consider 2-player zero-
sum games played on finite arenas. The main computational problems for these games are
computing the value and optimal strategies for one or both players, if they exist. Instead
of computing the value exactly, we can ask whether the value is greater than some given
rational probability p, a problem which we call the quantitative decision problem for S2Gs :

Given a S2G G, a vertex v and a rational number p ∈ [0, 1], decide whether
valG(v) ≥ p.

In many cases, it suffices to know whether the value is 1, i.e. whether player 0 has a strategy
to win the game almost surely (in the limit, at least). We call the resulting decision problem
the qualitative decision problem for S2Gs .

Clearly, if we can solve the quantitative decision problem, we can approximate the val-
ues valG(v) up to any desired precision by using binary search. In fact, for parity S2Gs it is
well-known that it suffices to solve the decision problems, since the other problems (com-
puting the values and optimal strategies) are polynomial-time equivalent to the quantitative
decision problem (with respect to Turing reductions).

For a Markov decision process whose objective can be represented as a Muller objec-
tive, we can compute the values by an analysis of its end components: For a given initial
vertex v, the value of the MDP from v is the maximal probability of reaching a winning
end component from v. Once the vertices that reside in winning end components have been
identified, these probabilities can be computed in polynomial time via linear programming.

For MDPs with Rabin or Muller objectives, it is easy to see that the union of all
winning end components can be computed in polynomial time (see [20]); for MDPs with
Streett objectives, Chatterjee et al. [14] gave a polynomial-time algorithm for computing
this set. Hence, for MDPs with any of these objectives, the quantitative decision problem
is solvable in polynomial time.

Theorem 2.9 ([20, 14]). The quantitative decision problem for Streett, Rabin or Muller
MDPs is in P.

It follows from Theorems 2.6 and 2.9 that the quantitative decision problem for Rabin-
Streett S2Gs is in NP: To decide whether valG(v) ≥ p, it suffices to guess a positional
strategy for player 0 and to check whether in the resulting Streett MDP the value from v is
≥ p. By determinacy, this result implies that the quantitative decision problem is in coNP
for Streett-Rabin S2Gs, and in NP ∩ coNP for parity S2Gs.

Corollary 2.10. The quantitative decision problem for S2Gs is in
– NP for Rabin-Streett S2Gs,
– coNP for Streett-Rabin S2Gs, and
– NP ∩ coNP for parity S2Gs.

A corresponding NP-hardness result for Rabin-Streett S2Gs has been established by
Emerson and Jutla [22], even for deterministic games. In particular, this hardness result
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Qualitative Quantitative
SS2Gs P-complete NP ∩ coNP
Parity[d] P-complete NP ∩ coNP
Parity NP ∩ coNP NP ∩ coNP
Rabin-Streett NP-complete NP-complete
Streett-Rabin coNP-complete coNP-complete
Muller Pspace-complete Pspace-complete

Table 1. The complexity of deciding the value in S2Gs.

also holds for the qualitative decision problem. Moreover, by determinacy, this result can
be turned into a coNP-hardness result for (deterministic) Streett-Rabin S2Gs.

For S2Gs with Muller objectives, Chatterjee [10] showed that the quantitative decision
problem falls into Pspace; for deterministic games, a polynomial-space algorithm had been
given earlier by McNaughton [47]. A matching lower bound was provided by Hunter and
Dawar [38], again even for deterministic games.

Theorem 2.11 ([10, 38]). The quantitative and the qualitative decision problem for Muller
S2Gs are Pspace-complete.

Theorem 2.11 does not hold if the Muller objectives are given by a family of subsets
of vertices: Horn [36, 35] showed that the qualitative decision problem for explicit Muller
S2Gs is in P, and that the quantitative problem is in NP ∩ coNP.

Another class of S2Gs for which the qualitative decision problem is in P is, for each
d ∈ N, the class Parity[d] of all parity S2Gs whose priority function refers to at most
d priorities [21]. In particular, the qualitative decision problem for SS2Gs as well as (co-)
Büchi S2Gs is in P.

Theorem 2.12 ([21]). For each d ∈ N, the qualitative decision problem for parity S2Gs
with at most d priorities is in P.

Table 1 summarises the results about the complexity of the quantitative and the qual-
itative decision problem for S2Gs: P-hardness (via Logspace-reductions) for all these
problems follows from the fact that and-or graph reachability is P-complete [39].

The results summarised in Table 1 leave open the possibility that at least one of the
following problems is decidable in polynomial time:

1. the qualitative decision problem for parity S2Gs,
2. the quantitative decision problem for SS2Gs,
3. the quantitative decision problem for parity S2Gs.

Note that, given that all of them are contained in both NP and coNP, it is unlikely that
one of them is NP- or coNP-hard (because if it were, then NP would equal coNP and the
polynomial hierarchy would collapse to its first level).

For the first problem, Chatterjee et al. [11] gave a polynomial-time reduction from the
qualitative decision problem for stochastic 2-player zero-sum parity games. Hence, solving
the qualitative decision problem for parity S2Gs is not harder than deciding which of the two
players has a winning strategy in a deterministic (2-player zero-sum) parity game. Whether
the latter problem is decidable in polynomial time is a long-standing open problem: Several
years after Emerson and Jutla [23] put the problem into NP∩coNP, Jurdziński [40] improved
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this bound slightly to UP ∩ coUP. Together with Paterson and Zwick [41], he also gave
an algorithm that solves these games in subexponential time; a randomised subexponential
algorithm had been given earlier by Björklund et al. [6]. On the other hand, Friedmann
[27] recently showed that the most promising candidate for a polynomial-time algorithm so
far, the discrete strategy improvement algorithm due to Vöge and Jurdziński [56], requires
exponential time in the worst case.

Regarding the second problem, only some progress towards a polynomial-time algorithm
has been made since Condon [16] showed that the problem falls into NP∩coNP: For example,
Björklund and Vorobyov [5] gave a randomised subexponential algorithm for solving SS2Gs,
and Gimbert and Horn [29] showed that the quantitative decision problem for SS2Gs is
fixed-parameter tractable with respect to the number of stochastic vertices as parameter.

For the third problem, Andersson and Miltersen [2] recently established a polynomial-
time Turing reduction to the second. Hence, there exists a polynomial-time algorithm for 2.
if and only if there exists one for 3. In particular, a polynomial-time algorithm for 2. would
also give a polynomial-time algorithm for 1. However, to the best of our knowledge, it is
plausible that the qualitative decision problem for parity S2Gs is in P while the quantitative
decision problem for SS2Gs is not.

3. Existence of Nash equilibria

To capture rational behaviour of (selfish) players, John Nash [49] introduced the notion
of, what is now called, a Nash equilibrium.

Definition 3.1. Given a strategy profile σ of a game (G, v0), a strategy τ of player i in G is
called a best response to σ if τ maximises the expected payoff of player i: Prσ−i,τ

′
v0 (Wini) ≤

Prσ−i,τv0 (Wini) for all strategies τ ′ of player i. A strategy profile σ = (σi)i∈Π is a Nash
equilibrium if each σi is a best response to σ.

In a Nash equilibrium, no player can improve her payoff by (unilaterally) switching to a
different strategy. In fact, it suffices if no player can gain from switching to a pure strategy.

Proposition 3.2. A strategy profile σ of a game (G, v0) is a Nash equilibrium if and only if,
for each player i and for each pure strategy τ of player i in G, Prσ−i,τv0 (Wini) ≤ Prσv0(Wini).

Proof. Clearly, if σ is a Nash equilibrium, then Prσ−i,τv0 (Wini) ≤ Prσv0(Wini) for each pure
strategy τ of player i in G. Now, assume that σ is not a Nash equilibrium. Hence, p :=
supτ Prσ−i,τv0 (Wini) = Prσv0(Wini)+ε for some player i and some ε > 0. Consider the Markov
decision process Gσ−i : Clearly, the value of Gσ−i from v0 equals p. By Theorem 2.4, there
exists an ε2 -optimal pure strategy τ in Gσ−i . Since the arena of Gσ−i is a forest, we can
assume that τ is a positional strategy, which can be viewed as a pure strategy in G. We
have: Prσ−i,τv0 (Wini) ≥ p− ε2 > p− ε = Prσv0(Wini).

For 2-player zero-sum games, a Nash equilibrium is nothing else than a pair of optimal
strategies.

Proposition 3.3. Let (G, v0) be a 2-player zero-sum game. A strategy profile (σ, τ) of
(G, v0) is a Nash equilibrium if and only if both σ and τ are optimal. In particular, every
Nash equilibrium of (G, v0) has payoff (valG(v0), 1− valG(v0)).
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Proof. (⇒) Assume that both σ and τ are optimal, but that (σ, τ) is not a Nash equilibrium.
Hence, one of the players, say player 1, can improve her payoff by playing some strategy τ ′.
Hence, valG(v0) = Prσ,τv0 (Win0) > Prσ,τ ′v0 (Win0). However, since σ is optimal, it must also
be the case that valG(v0) ≤ Prσ,τ ′v0 (Win0), a contradiction. The reasoning in the case that
player 0 can improve is analogous.

(⇐) Let (σ, τ) be a Nash equilibrium of (G, v0), and let us first assume that σ is not
optimal, i.e. valσ(v0) < valG(v0). By the definition of valG , there exists another strategy
σ′ of player 0 such that valσ(v0) < valσ′(v0) ≤ valG(v0). Moreover, since (σ, τ) is a Nash
equilibrium:

Prσ,τv0 (Win0) ≤ valσ(v0) < valσ′(v0) = infτ ′ Prσ′,τ ′v0 (Win0) ≤ Prσ′,τv0 (Win0).
Thus, player 0 can improve her payoff by playing σ′ instead of σ, a contradiction to the fact
that (σ, τ) is a Nash equilibrium. The argumentation in the case that τ is not optimal is
analogous.

It follows from Proposition 3.3 that every 2-player zero-sum stochastic game with prefix-
independent objectives has a Nash equilibrium in pure strategies. The question arises
whether this is still true if the 2-player zero-sum assumption is relaxed.

Clearly, a strategy profile σ can only be a Nash equilibrium if for no player i there exists
a history xv, consistent with σ, such that Prσv0(Wini | xv · V ∗) < valGi (v) because otherwise
player i could improve her payoff by switching to an optimal strategy after history xv. The
next lemma shows that the we can turn every strategy profile that fulfils this property into
a Nash equilibrium. The proof uses so-called threat (or trigger) strategies, which are added
on top of the given strategy profile: any player threatens to change her behaviour when
one of the other players deviates from the prescribed strategy. Before having been applied
to infinite-duration games, this concept has proven fruitful in the (related) area of repeated
games (see [51, Chapter 8] and [3]).
Lemma 3.4. Let (G, v0) be any SMG with finite arena and prefix-independent objectives.
If σ is a pure strategy profile such that Prσv0(Wini | xv · V ω) ≥ valGi (v) for each player i
and for each history xv of (G, v0) that is consistent with σ, then (G, v0) has a pure Nash
equilibrium σ∗ with Prσv0 = Prσ∗v0 .
Proof. Let G = (Π, V, (Vi)i∈Π,∆, χ, (Wini)i∈Π). By Theorem 2.5, for each player i we can fix
a globally optimal pure strategy τi of the coalition Π \ {i} in the coalition game Gi; denote
by τj,i the corresponding pure strategy of player j in G. To simplify notation, we also define
τi,i to be an arbitrary pure strategy of player i in G. Player i’s equilibrium strategy σ∗i is
defined as follows:

σ∗i (xv) =
{
σi(xv) if xv is consistent with σ,
τi,j(x2v) otherwise,

where, in the latter case, x = x1x2 with x1 being the longest prefix of xv such that
Prσv0(x1 · V ω) > 0 and j ∈ Π being the player who has deviated from σ, i.e. x1 ends
in Vj ; if x1 is empty or ends in a stochastic vertex, we set j = i. Intuitively, σ∗i behaves like
σi as long as no other player j deviates from playing σj , in which case σ∗i starts to behave
like τi,j .

Note that Prσ∗v0 = Prσv0 . We claim that, additionally, σ∗ is a Nash equilibrium of (G, v0).
Let ρ be any pure strategy of player i in G; by Proposition 3.2, it suffices to show that
Prσ

∗
−i,ρ
v0 (Wini) ≤ Prσ∗v0 (Wini).
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Let us call a history xv ∈ V ∗ · Vi a deviation history if xv is consistent with both σ
and (σ−i, ρ), but σi(xv) ̸= ρ(xv); we denote the set of all deviation histories by D. Clearly,
Prσv0(xv · V

ω) = Prσ∗v0 (xv · V ω) = Prσ
∗
−i,ρ
v0 (xv · V ω) for every xv ∈ D.

Claim. Prσ
∗
−i,ρ
v0 (X \D · V ω) = Prσv0(X \D · V

ω) for every Borel set X ⊆ V ω.

Proof. The claim is obviously true for the basic open sets X = x · V ω, x ∈ V ∗, and thus
also for finite, disjoint unions of such sets, which are precisely the clopen sets (i.e. sets
of the form W · V ω for finite W ⊆ V ∗). Since the class of clopen sets is closed under
complementation and taking finite unions, by the monotone class theorem [32], the closure
of the class of all clopen sets under taking limits of chains contains the smallest σ-algebra
containing all clopen sets, which is just the Borel σ-algebra. Hence, it suffices to show
that whenever we are given measurable sets X1, X2, . . . ⊆ V ω with X1 ⊆ X2 ⊆ . . . or
X1 ⊇ X2 ⊇ . . . such that the claim holds for each Xn, then the claim also holds for
limnXn, where limnXn =

⋃
n∈NXn or limnXn =

⋂
n∈NXn, respectively. So assume that

X1, X2, . . . ⊆ V ω is a chain such that Prσ
∗
−i,ρ
v0 (Xn \ D · V ω) = Prσv0(Xn \ D · V

ω) for each
n ∈ N. Clearly, (limnXn) \ D · V ω = limn(Xn \ D · V ω). Moreover, since measures are
continuous from above and below:

Prσ
∗
−i,ρ
v0 (lim

n
(Xn \D · V ω))

= lim
n

Prσ
∗
−i,ρ
v0 (Xn \D · V ω)

= lim
n

Prσv0(Xn \D · V
ω)

= Prσv0(limn (Xn \D · V ω)).

Claim. Prσ
∗
−i,ρ
v0 (Wini | xv · V ω) ≤ valGi (v) for every xv ∈ X.

Proof. By the definition of the strategies τj,i, we have that Pr(τj,i)j ̸=i,ρv (Wini) ≤ valGi (v) for
every vertex v ∈ V and every strategy ρ of player i. On the other hand, if xv is a deviation
history, then for each player j the residual strategy σ∗j [xv] is equal to τj,i on histories that
start in w := ρ(xv). Hence, by Lemma 2.1, and since Wini is prefix-independent, we get:

Prσ
∗
−i,ρ
v0 (Wini | xv · V ω)

= Prσ
∗
−i,ρ
v0 (Wini | xvw · V ω)

= Prσ
∗
−i,ρ
v0 (Wini ∩ xvw · V ω) / Prσ

∗
−i,ρ
v0 (xvw · V ω)

= Prσ
∗
−i[xv],ρ[xv]
w (Wini)

= Pr(τj,i)j ̸=i,ρ[xv]w (Wini)
≤ valGi (w)
≤ valGi (v).
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Using the previous two claims, we can prove that Prσ
∗
−i,ρ
v0 (Wini) ≤ Prσ∗v0 (Wini) as follows:

Prσ
∗
−i,ρ
v0 (Wini)

= Prσ
∗
−i,ρ
v0 (Wini \X · V ω) +

∑
xv∈X

Prσ
∗
−i,ρ
v0 (Wini ∩ xv · V ω)

= Prσv0(Wini \X · V ω) +
∑
xv∈X

Prσ
∗
−i,ρ
v0 (Wini ∩ xv · V ω)

= Prσv0(Wini \X · V ω) +
∑
xv∈X

Prσ
∗
−i,ρ
v0 (Wini | xv · V ω) · Prσ

∗
−i,ρ
v0 (xv · V ω)

= Prσv0(Wini \X · V ω) +
∑
xv∈X

Prσ
∗
−i,ρ
v0 (Wini | xv · V ω) · Prσv0(xv · V

ω)

≤ Prσv0(Wini \X · V ω) +
∑
xv∈X

valGi (v) · Prσv0(xv · V
ω)

≤ Prσv0(Wini \X · V ω) +
∑
xv∈X

Prσv0(Wini | xv · V ω) · Prσv0(xv · V
ω)

= Prσv0(Wini \X · V ω) +
∑
xv∈X

Prσv0(Wini ∩ xv · V ω)

= Prσv0(Wini)

= Prσ∗v0 (Wini).

A variant of Lemma 3.4 deals with games with ω-regular objectives and finite-state
strategies.

Lemma 3.5. Let (G, v0) be any SMG with finite arena and prefix-independent ω-regular
objectives. If σ is a pure finite-state strategy profile such that Prσv0(Wini | xv ·V ω) ≥ valGi (v)
for each player i and for each history xv consistent with σ, then there exists a pure finite-
state Nash equilibrium σ∗ with Prσv0 = Prσ∗v0 .

Proof. The proof is analogous to the proof of Lemma 3.4: Since, by Corollary 2.8, there
exist optimal pure finite-state strategies in every SMG with finite arena and ω-regular ob-
jectives, the strategies τj,i as defined there can be assumed to be pure finite-state strategies.
Consequently, the equilibrium profile σ∗ can be implemented using finite-state strategies as
well.

Using Lemma 3.4, we can now prove the existence of a pure Nash equilibrium in any
SMG with finite arena and prefix-independent objectives.

Theorem 3.6. There exists a pure Nash equilibrium in any SMG with finite arena and
prefix-independent objectives.

Proof. Let (G, v0) be any SMG with prefix-independent objectives whose arena is finite.
By Theorem 2.5, for each player i there exists a residually optimal strategy σi in G. Let
σ = (σi)i∈Π. For every history xv of (G, v0) that is consistent with σ and each player i, we
have Prσv0(Wini | xv · V ω) = Prσ[x]v (x−1Wini) ≥ valG[x]i (v) = valGi (v). By Lemma 3.4, this
implies that there exists a pure Nash equilibrium of (G, v0).
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v0
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1
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Figure 2. A 2-player game with a pair of optimal strategies that cannot
be extended to a Nash equilibrium.

For SMGs with ω-regular objectives played on a finite arena, we can even show the
existence of a pure finite-state equilibrium

Theorem 3.7. There exists a pure finite-state Nash equilibrium in any SMG with finite
arena and ω-regular objectives.

Proof. Since any SMG with ω-regular objectives can be reduced to one with parity objec-
tives, it suffices to consider parity SMGs. For these games, the claim follows from Corol-
lary 2.7 and Lemma 3.5 using the same argumentation as in the proof of Theorem 3.6.

Theorem 3.7 and a variant of Theorem 3.6 appeared originally in [13]. However, their
proof contains an inaccuracy: Essentially, they claim that any profile of optimal strategies
can be extended to a Nash equilibrium with the same payoff (by adding threat strategies
on top). This is, in general, not true, as the following example demonstrates.

Example 3.8. Consider the deterministic 2-player game (G, v0) depicted in Figure 2.
Clearly, the value valG0 (v0) for player 0 from v0 is 1, and player 0’s optimal strategy σ
is to play from v0 to v1. For player 1, the value from v0 is 0, and both of her positional
strategies are optimal (albeit not necessarily globally optimal). In particular, her strat-
egy τ of playing from v1 to the terminal vertex with payoff (1, 0) is optimal. The payoff of
the strategy profile (σ, τ) is (1, 0). However, there is no Nash equilibrium of (G, v0) with
payoff (1, 0): In any Nash equilibrium of (G, v0), player 0 will move from v0 to v1 with
probability 1. To have a Nash equilibrium, player 1 must play from v1 to the terminal
vertex with payoff (1, 1) with probability 1; hence, every Nash equilibrium of this game has
payoff (1, 1).

4. Complexity of Nash equilibria

For the rest of this paper, we will only deal with SMGs whose arena is finite. Previous
research on algorithms for finding Nash equilibria in such games has focused on computing
some Nash equilibrium [13]. However, a game may have several Nash equilibria with dif-
ferent payoffs, and one might not be interested in any Nash equilibrium but in one whose
payoff fulfils certain requirements. For example, one might look for a Nash equilibrium
where certain players win almost surely while certain others lose almost surely. This idea
leads us to the following decision problem, which we call NE:2

Given an SMG (G, v0) and thresholds x, y ∈ [0, 1]Π, decide whether there exists
a Nash equilibrium of (G, v0) with payoff ≥ x and ≤ y.

2In the definition of NE, the ordering ≤ is applied componentwise.
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For computational purposes, we assume that the thresholds x and y are vectors of rational
numbers and that all objectives are ω-regular. A variant of the problem which omits the
thresholds just asks about a Nash equilibrium where some distinguished player, say player 0,
wins with probability 1:

Given an SMG (G, v0), decide whether there exists a Nash equilibrium of (G, v0)
where player 0 wins almost surely.

Clearly, every instance of the threshold-free variant can easily be turned into an instance of
NE (by adding the thresholds x = (1, 0, . . . , 0) and y = (1, . . . , 1)). Hence, NE is, a priori,
more general than its threshold-free variant.

Our main concern in this paper are variants of NE where we restrict the type of strate-
gies that are allowed in the definition of the problem: Let PureNE, FinNE, StatNE and
PosNE be the problems that arise from NE by restricting the desired Nash equilibrium to
consist of pure strategies, finite-state strategies, stationary strategies, and positional strate-
gies, respectively. In the rest of this paper, we are going to prove upper and lower bounds
on the complexity of these problems, where all lower bounds hold for the threshold-free
variants as well.

Our first observation is that neither stationary nor pure strategies are sufficient to
implement any Nash equilibrium, even for SSMGs and even if we are only interested in
whether a player wins or loses almost surely in the equilibrium. Together with a later
result from this section (namely Proposition 4.10), this demonstrates that the problems
NE, PureNE, FinNE, StatNE, and PosNE are pairwise distinct problems, which have to
be analysed separately. This in sharp contract to the situation for SS2Gs where all these
problems coincide because these games admit globally optimal positional strategies.
Proposition 4.1. There exists an SSMG that has a finite-state Nash equilibrium where
player 0 wins almost surely but that has no stationary Nash equilibrium where player 0
wins with positive probability.
Proof. Consider the game G depicted in Figure 3 played by three players 0, 1 and 2 (with
payoffs in this order). Obviously, the following finite-state strategy profile is a Nash equi-
librium where player 0 wins almost surely: Player 1 plays from vertex v2 to vertex v3 at the
first visit of v2 but leaves the game immediately (by playing to the neighbouring terminal
vertex) at all subsequent visits to v2; from vertex v0 player 1 plays to v1; player 2 plays
from vertex v3 to vertex v4 at the first visit of v3 but leaves the game immediately at all
subsequent visits to v3; from vertex v1 player 2 plays to v2.

It remains to show that there is no stationary Nash equilibrium of (G, v0) where player 0
wins with positive probability. Any stationary Nash equilibrium of (G, v0) where player 0
wins with positive probability induces a stationary Nash equilibrium of (G, v2) where both
players 1 and 2 receive payoff at least 1

2 since otherwise one of these players could improve
her payoff by changing her strategy at v0 or v1. Hence, it suffices to show that (G, v2) has no
stationary Nash equilibrium where both players 1 and 2 receive payoff at least 1

2 . Assume
there exists such an equilibrium and denote by p the probability that player 2 plays from v3
to v4. Since player 1 wins with probability > 0, it must be the case that p > 0. But then,
to have a Nash equilibrium, player 1 must play from v2 to v3 with probability 1, giving
player 2 a payoff of 0, a contradiction.
Proposition 4.2. There exists an SSMG that has a stationary Nash equilibrium where
player 0 wins almost surely but that has no pure Nash equilibrium where player 0 wins with
positive probability.
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Figure 3. An SSMG that has a pure finite-state Nash equilibrium where
player 0 wins almost surely but no stationary Nash equilibrium where
player 0 wins with positive probability.
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Figure 4. An SSMG that has a stationary Nash equilibrium where player 0
wins almost surely but no pure Nash equilibrium where player 0 wins with
positive probability.

Proof. Consider the game depicted in Figure 4 played by three players 0, 1 and 2 (with
payoffs given in this order). Clearly, the stationary strategy profile where from vertex v2
player 0 selects both outgoing edges with probability 1

2 each, player 1 plays from v0 to v1
and player 2 plays from v1 to v2 is a Nash equilibrium where player 0 wins almost surely.
However, for any pure strategy profile where player 0 wins with positive probability (i.e.
with probability 1), either player 1 or player 1 receives payoff 0 and could improve her payoff
by switching her strategy at v0 or v1, respectively.

4.1. Positional equilibria. In this subsection, we analyse the complexity of the (presum-
ably) simplest of the decision problems introduced so far: PosNE. Not surprisingly, this
problem is decidable; in fact, it is NP-complete for all types of objectives we consider in this
paper. Let us start by proving membership to NP. Since simple reachability, (co-)Büchi
and parity objectives can easily be translated to Rabin or Streett objectives, it suffices to
consider Streett-Rabin and Muller SMGs.

Theorem 4.3. PosNE is in NP for SMGs with Streett-Rabin or Muller objectives.

Proof. To decide PosNE, on input G, v0, x, y we can guess a positional strategy profile σ, i.e.
a mapping

⋃
i∈Π Vi → V ; then, we verify whether σ is a Nash equilibrium with the desired

payoff. To do this, we first compute the payoff zi of σ for each player i by computing
the probability of the event Wini in the (finite) Markov chain (Gσ, v0). Once each zi is
computed, we can easily check whether xi ≤ zi ≤ yi. To verify that σ is a Nash equilibrium,
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we additionally compute, for each player i, the value ri of the (finite) MDP (Gσ−i , v0).
Clearly, σ is a Nash equilibrium if and only if ri ≤ zi for each player i. Since we can compute
the value of any MDP (and thus any Markov chain) with one of the above objectives in
polynomial time (Theorem 2.9), all these checks can be carried out in polynomial time.

To establish NP-completeness, it remains to prove NP-hardness. In fact, the reduction
we are going to present does not only work for PosNE, but also for StatNE, where we allow
arbitrary stationary equilibria.

Theorem 4.4. PosNE and StatNE are NP-hard, even for SSMGs with only two players
(three players for the threshold-free variant).

Proof. The proof is by reduction from SAT. Let ϕ = C1 ∧ . . . ∧ Cm, m ≥ 1, be a formula
in conjunctive normal form over propositional variables X1, . . . , Xn (where, without loss of
generality, each clause is non-empty). Our aim is to construct a 2-player SSMG (G, v0) such
that the following statements are equivalent:

1. ϕ is satisfiable.
2. (G, v0) has a positional Nash equilibrium with payoff (1, 1

2).
3. (G, v0) has a stationary Nash equilibrium with payoff (1, 1

2).
Provided that the game can be constructed in polynomial time, these equivalences establish
both reductions. The game G is depicted in Figure 5. The game proceeds from the initial
vertex v0 to Xi or Xi with probability 1

2i+1 each, and to vertex ϕ with probability 1
2n+1 ;

with the remaining probability of 1
2n+1 the game proceeds to a terminal vertex with pay-

off (1, 0). From ϕ, the game proceeds to vertex Cj with probability 1
m+1 each; with the

remaining probability of 1
m+1 , the game proceeds to a terminal vertex with payoff (1, 1).

From vertex Cj (controlled by player 1) there is an edge to vertex Xi or Xi if and only if
Xi respectively ¬Xi occurs inside the clause Cj . Obviously, the game G can be constructed
from ϕ in polynomial time. It remains to show that 1.–3. are equivalent.

(1.⇒ 2.) Assume that α : {X1, . . . , Xn} → {true, false} is a satisfying assignment of ϕ.
In the positional Nash equilibrium of (G, v0), player 0 moves from a literal L, L = Xi or
L = Xi, to the neighbouring ⊤-labelled vertex if and only if L is mapped to true by α, and
player 1 moves from vertex Cj to a (fixed) literal L that is contained in Cj and mapped
to true by α (which is possible since α is a satisfying assignment). At ⊤-labelled vertices,
player 1 never plays to a terminal vertex. Obviously, player 0 wins almost surely with this
strategy profile. For player 1, the payoff is

1
2n+1 +

n∑
i=1

1
2i+1 = 1

2n+1 + 1
2

( n∑
i=1

1
2i
)

= 1
2n+1 + 1

2

(
1− 1

2n
)

= 1
2
,

where the first summand is the probability of going from the initial vertex to ϕ, from where
player 1 wins almost surely since from every clause vertex she plays to a “true” literal.
Obviously, changing her strategy cannot give her a better payoff. Therefore, we have found
a Nash equilibrium.

(2.⇒ 3.) Trivial.
(3.⇒ 1.) Let σ = (σ0, σ1) be a stationary Nash equilibrium of (G, v0) with payoff (1, 1

2).
Our first aim is to show that σ0 is actually a positional strategy. Towards a contradiction,
assume that there exists a literal L such that σ0(L) assigns probability 0 < q < 1 to the
neighbouring ⊤-labelled vertex. Since player 0 wins almost surely, player 1 never plays to
a terminal vertex with payoff (0, 1). Hence, the expected payoff for player 1 from vertex L
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Figure 5. Reducing SAT to PosNE and StatNE.

(i.e. in the game (G, L)) is precisely q. However, by playing to a terminal vertex with
payoff (0, 1), she could receive payoff 2q

1+q > q. Therefore, σ is not a Nash equilibrium, a
contradiction.

Knowing that σ0 is a positional strategy, we can define a pseudo assignment α :
{X1,¬X1, . . . , Xn,¬Xn} → {true, false} by setting α(L) = true if σ1 prescribes to go from
vertex L to the neighbouring ⊤-labelled vertex. Our next aim is to show that α is actually
an assignment: α(Xi) = true if and only if α(¬Xi) = false. To see this, note that we can
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compute player 1’s expected payoff as follows:

1
2

= p

2n+1 +
n∑
i=1

ai
2i+1 , ai =


0 if α(Xi) = α(¬Xi) = false,
1 if α(Xi) ̸= α(¬Xi),
2 if α(Xi) = α(¬Xi) = true,

where p is the expected payoff for player 1 from vertex ϕ. By the construction of G, we
have p > 0, and the equality only holds if p = 1 and ai = 1 for all i = 1, . . . , n, which proves
that α is an assignment.

Finally, we claim that α satisfies ϕ. If this were not the case, there would exist a
clause C such that player 1’s expected payoff from vertex C is 0 and therefore p < 1. This
is a contradiction to the fact that p = 1, as we have shown above.

To show that the threshold-free variants of PosNE and StatNE are also NP-hard, it
suffices to modify the game G as follows: First, we add one new player, player 2, who wins
at precisely those terminal vertices where player 1 loses. Second, we add two new vertices
v1 and v2. At v1, player 1 has the choice to leave the game; if she decides to stay inside
the game, the play proceeds to v2, where player 2 has the choice to leave the game; if she
also decides to stay inside the game, the play proceeds to vertex v0 from where the game
continues as described above; if player 1 or player 2 decide to leave the game, then both
receive payoff 1

2 , but player 0 receives payoff 0. Let us denote the modified game by G′. It
is straightforward to see that the following statements are equivalent:

1. (G′, v1) has a stationary Nash equilibrium where player 0 wins almost surely.
2. (G, v0) has a stationary Nash equilibrium with payoff (1, 1

2).
3. ϕ is satisfiable.
4. (G, v0) has a positional Nash equilibrium with payoff (1, 1

2).
5. (G′, v1) has a positional Nash equilibrium where player 0 wins almost surely.

4.2. Stationary equilibria. To prove the decidability of StatNE, we appeal to results
established for the Existential Theory of the Reals, ∃Th(R), the set of all existential first-
order sentences (over the appropriate signature) that hold in the (ordered) field R :=
(R,+, ·, 0, 1,≤). The best known upper bound for the complexity of the associated decision
problem is Pspace [9], which leads to the following theorem.

Theorem 4.5. StatNE is in Pspace for SMGs with Streett-Rabin or Muller objectives.

Proof. Since Pspace = NPspace, it suffices to provide a nondeterministic algorithm with
polynomial space requirements for deciding StatNE. On input G, v0, x, y, where without
loss of generality G is an SMG with Muller objectives Fi ⊆ P(C), the algorithm starts by
guessing the support S ⊆ V × V of a stationary strategy profile σ of G, i.e.

S = {(v, w) ∈ V × V : σ(w | v) > 0}.
From the set S alone, by standard graph algorithms, one can compute (in polynomial time)
for each player i the following sets:

1. the union Fi of all end components (i.e. bottom SCCs) of the Markov chain Gσ that
are winning for player i;

2. the set Ri of vertices v such that Prσv (Reach(Fi)) > 0;
3. the union Ti of all end components of the MDP Gσ−i that are winning for player i.
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After computing all these sets, the algorithm evaluates an existential first-order sen-
tence ψ, which can be computed in polynomial time from G, v0, x, y, (Ri)i∈Π, (Fi)i∈Π and
(Ti)i∈Π over R and returns the answer to this query.

It remains to describe a suitable sentence ψ. Let α = (αvw)v,w∈V , r = (riv)i∈Π,v∈V and
z = (ziv)i∈Π,v∈V be three sets of variables. The formula

ϕ(α) :=
∧
v∈
⋃
Vi

( ∧
w∈v∆

αvw ≥ 0 ∧
∧

w∈V \v∆
αvw = 0 ∧

∑
w∈v∆

αvw = 1
)
∧

∧
v∈V \

⋃
Vi

w∈V

αvw = pvw ∧
∧

(v,w)∈S
αvw > 0 ∧

∧
(v,w)/∈S

αvw = 0,

where pvw is the unique number such that (v, pvw, w) ∈ ∆, states that the mapping σ : V →
D(V ) defined by σ(v)(w) = αvw constitutes a valid stationary strategy profile of G whose
support is S. Provided that ϕ(α) holds in R, the formula

ηi(α, z) :=
∧
v∈Fi

ziv = 1 ∧
∧

v∈V \Ri

ziv = 0 ∧
∧

v∈V \Fi

ziv =
∑
w∈v∆

αvwz
i
w

states that ziv = Prσv (Wini) for each v ∈ V , where σ is defined as above. This follows from
a well-known results about Markov chains, namely that the vector of the aforementioned
probabilities is the unique solution of the given system of equations. Finally, the formula

ϑi(α, r) :=
∧
v∈V

riv ≥ 0 ∧
∧
v∈Ti

riv = 1 ∧
∧
v∈Vi
w∈v∆

riv ≥ riw ∧
∧

v∈V \Vi

riv =
∑
w∈v∆

αvwr
i
w

states that r is a solution of the linear programme for computing the maximal payoff
that player i can achieve when playing against the strategy profile σ−i. In particular,
the formula is fulfilled if riv = supτ Pr(σ−i,τ)v (Reach(Ti)) = supτ Pr(σ−i,τ)v (Wini) (the latter
equality follows from Lemmas 2.2 and 2.3), and every other solution is greater than this
one (in each component).

The desired sentence ψ is the existential closure of the conjunction of ϕ and, for each
player i, the formulae ηi and ϑi combined with formulae stating that player i cannot improve
her payoff and that the expected payoff for player i lies in between the given thresholds:

ψ := ∃α ∃r ∃z
(
ϕ(α) ∧

∧
i∈Π

(ηi(α, z) ∧ ϑi(α, r) ∧ riv0 ≤ z
i
v0 ∧ xi ≤ z

i
v0 ≤ yi)

)
.

Clearly, ψ holds in R if and only if (G, v0) has a stationary Nash equilibrium with payoff at
least x and at most y whose support is S. Consequently, the algorithm is correct.

In the previous subsection, we showed that StatNE is NP-hard, leaving a considerable
gap to our upper bound of Pspace. Towards gaining a better understanding of the problem,
we relate StatNE to the square root sum problem (SqrtSum) of deciding, given numbers
d1, . . . , dn, k ∈ N, whether

∑n
i=1
√
di ≥ k.

Recently, Allender et al. [1] showed that SqrtSum belongs to the fourth level of the
counting hierarchy, which is a slight improvement over the previously known Pspace upper
bound. However, it is an open question since the 1970s whether SqrtSum falls into the poly-
nomial hierarchy [28, 24]. We identify a polynomial-time reduction from SqrtSum to StatNE
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Figure 6. Reducing SqrtSum to StatNE.

for SSMGs.3 Hence, StatNE is at least as hard as SqrtSum, and showing that StatNE re-
sides inside the polynomial hierarchy would imply a major breakthrough in understanding
the complexity of numerical computation.

Theorem 4.6. SqrtSum is polynomial-time reducible to StatNE, even for 4-player SSMGs.

Before we start with the proof of the theorem, let us first examine the game G(p),
p ∈ [12 , 1), which is depicted in Figure 6 (b).

Claim. The maximal payoff player 3 receives in a stationary Nash equilibrium of (G(p), s0)
is
√

2−2p−p+1
2p+2 .

Proof. Note that a stationary strategy profile σ can only be a Nash equilibrium where
player 3 receives payoff > 0 if player 1 plays from t1 to r1 with probability 1 and player 2
plays from t2 to r2 with probability 1 (or if t2 is not reachable with σ in which case player 3
receives payoff ≤ 1− p) because otherwise player 0 receives payoff < 1 and would prefer to
leave the game a v0 where she could get payoff 1. Moreover, the maximum payoff for player 3
can only be attained when player 0 plays with probability 1 from s0 to t1 because, if player 0
plays from s0 to t1 with probability 0 < x < 1, then setting x to 1 yields a Nash equilibrium
with a better payoff for player 3. Hence, the only variable quantities are the probabilities x1
and x2 that player 0 plays from s1 to t2 respectively from s2 to t1. Given x1 and x2, we can
compute the probabilities p1(x1, x2) := Prσt1(Win1) and p2(x1, x2) := Prσt2(Win2) as follows:
p1(x1, x2) = p(1−x1)

1−x1x2p2
, and p2(x1, x2) = p(1−x2)

1−x1x2p2
. To have a Nash equilibrium, it must be

the case that p1(x1, x2), p2(x1, x2) ≥ 1
2 since otherwise player 1 or player 2 would prefer

to leave the game at t1 or t2, respectively, where they could obtain payoff 1
2 immediately.

Vice versa, if p1(x1, x2), p2(x1, x2) ≥ 1
2 then σ is a Nash equilibrium with expected payoff

1−p
1−x1x2p2

≥ 1− p for player 3.

3Some authors define SqrtSum with ≤ instead of ≥. With this definition, we would reduce from the
complement of SqrtSum instead.
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Hence, to determine the maximum payoff for player 3 in a stationary Nash equilibrium,
we have to maximise 1−p

1−x1x2p2
, the expected payoff for player 3, under the constraints

p1(x1, x2), p2(x1, x2) ≥ 1
2 and 0 ≤ x1, x2 ≤ 1. We claim that the maximum is reached only

if x1 = x2; if, for example, x1 > x2 then we can achieve a higher payoff for player 3 by
setting x′2 := x1, and the constraints are still satisfied:

p(1− x′2)
1− x1x′2p

2 = p(1− x1)
1− x2

1p
2 ≥

p(1− x1)
1− x1x2p2 ≥

1
2
.

Thus, in fact, we have to maximise 1−p
1−x2p2 under the constraints p(1−x)1−x2p2 ≥

1
2 and 0 ≤ x ≤ 1.

Since p ∈ [12 , 1), this is equivalent to maximising 1−p
1−x2p2 subject to the constraints

p2x2 − 2px+ 2p− 1 ≥ 0,
0 ≤ x ≤ 1.

The roots of the former polynomial are (1 ±
√

2− 2p) / p, but (1 +
√

2− 2p) / p > 1 for
p ∈ [12 , 1). Therefore, any solution must be less than (or be equal to) x0 := (1−

√
2− 2p)/p.

In fact, we always have 0 ≤ x0 < 1 for p ∈ (1
2 , 1). Therefore, x0 is the optimal solution, and

the maximal payoff for player 3 is indeed
1− p

1− x2
0p

2 = 1− p
1− (1−

√
2− 2p)2

=
√

2− 2p− p+ 1
2p+ 2

.

Proof of Theorem 4.6. To prove the theorem, we show how to construct from an instance
(d1, . . . , dn, k) of SqrtSum a 4-player SSMG (G, v0) such that

∑n
i=1
√
di ≥ k if and only if

(G, v0) has a stationary Nash equilibrium where player 0 wins almost surely.
Let (d1, . . . , dn, k) be an instance of SqrtSum where, without loss of generality, n > 0,

di > 0 for each i = 1, . . . , n, and k ≤ d :=
∑n
i=1 di. Define pi := 1 − di

2d2 for i = 1, . . . , n.
Note that pi ∈ [12 , 1) since 0 < di ≤ d ≤ d2. For the reduction, we use n copies of the game
G(p), where in the ith copy we set p to pi. The complete game G is depicted in Figure 6 (a).
Clearly, G can be constructed in polynomial time from (d1, . . . , dn, k).

By the above claim, the maximal payoff player 3 receives in a stationary Nash equilib-
rium of (G(pi), s0) is

√
2− 2pi − pi + 1

2pi + 2
=

1
d

√
di − (1− di

2d2 ) + 1
4− di

d2

=
d
√
di + di2

4d2 − di
.

Consequently, the maximal payoff player 3 receives in a stationary Nash equilibrium of
(G, v1) is

n∑
i=1

4d2 − di
4d2n

·
d
√
di + di2

4d2 − di
=
n∑
i=1

√
di

4dn
+
n∑
i=1

di
8d2n

=
n∑
i=1

√
di

4dn
+ 1

8dn
.

To prove the theorem, it remains to be shown that
∑n
i=1
√
di ≥ k if and only if (G, v0)

has a stationary Nash equilibrium where player 0 wins almost surely.
(⇒) Assume that

∑n
i=1
√
di ≥ k. Then also

∑n
i=1

√
di

4dn + 1
8dn ≥

2k+1
8dn , and any stationary

Nash equilibrium σ of (G, v1) with this payoff for player 3 can be extended to a Nash
equilibrium of (G, v0) where player 0 wins almost surely by setting σ(v1 | v0) = 1.
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(⇐) Assume that (G, v0) has a stationary Nash equilibrium where player 0 wins almost
surely, but

∑n
i=1
√
di < k. Then also

∑n
i=1

√
di

4dn + 1
8dn <

2k+1
8dn , and in every stationary Nash

equilibrium of (G, v0) player 3 leaves the game at v0, which gives payoff 0 to player 0, a
contradiction.

4.3. Pure equilibria. In this section, we show that the problem PureNE is undecidable by
exhibiting a reduction from an undecidable problem about two-counter machines. Our con-
struction is inspired by a construction used by Brázdil et al. [7] to prove the undecidability
of stochastic games with branching-time objectives; see Remark 4.9 below.

A two-counter machine M is given by a list of instructions ι1, . . . , ιm where each in-
struction is one of the following:

– “inc(j); goto k” (increment counter j by 1 and go to instruction number k);
– “zero(j) ? goto k : dec(j); goto l” (if the value of counter j is 0, go to instruction

number k; otherwise, decrement counter j by 1 and go to instruction number l);
– “halt” (stop the computation).

Here j ranges over 1, 2 (the two counters), and k ̸= l range over 1, . . . ,m. A configuration
of M is a triple C = (i, c1, c2) ∈ {1, . . . ,m} × N × N, where i denotes the number of
the current instruction and cj denotes the current value of counter j. A configuration C ′

is the successor of configuration C, denoted by C ⊢ C ′, if it results from C by executing
instruction ιi; a configuration C = (i, c1, c2) with ιi = “halt” has no successor configuration.
Finally, the computation of M is the unique maximal sequence ρ = ρ(0)ρ(1) . . . such that
ρ(0) ⊢ ρ(1) ⊢ . . . and ρ(0) = (1, 0, 0) (the initial configuration). Note that ρ is either infinite
or finite, in which case it ends in a configuration C = (i, c1, c2) such that ιi = “halt”.

The halting problem is to decide, given a machineM, whether the computation ofM
is finite. It is well-known that two-counter machines are Turing powerful, which makes the
halting problem and its dual, the non-halting problem, undecidable.

Theorem 4.7. PureNE is undecidable, even for 9-player SSMGs.

In order to prove Theorem 4.7, we show that one can compute from a two-counter
machine M an SSMG (G, v0) with 9 players such that the computation of M is infinite if
and only if (G, v0) has a pure Nash equilibrium where player 0 wins almost surely, which
establishes a reduction from the non-halting problem to PureNE.

The game G is played by player 0 and eight other players Atj and Btj , indexed by
j ∈ {1, 2} and t ∈ {0, 1}. Intuitively, player 0 builds up the computation of M, and the
other players make sure that player 0 updates the counters correctly: If player 0 cheats or
the computation stops, one of them will prefer to play a strategy that gives a bad payoff to
player 0. More precisely, in every step of the computation, the players A0

j and A1
j make sure

that the value of counter j is not too high, and the players B0
j and B1

j make sure that the
value of counter j is not too low. Hereby, they alternate: The first step of the computation
is monitored by the players A0

j and B0
j , the second step by the players A1

j and B1
j , the third

step again by the players A0
j and B0

j , and so on.
Let Γ = {init, inc(j),dec(j), zero(j) : j = 1, 2}. If M has instructions ι1, . . . , ιm, then

for each i ∈ {1, . . . ,m}, each γ ∈ Γ, each j ∈ {1, 2} and each t ∈ {0, 1}, the game G contains
the gadgets Sti,γ , Iti and Ctj,γ , which are depicted in Figure 7. For better readability, terminal
vertices are depicted as squares, where the label indicates which players win. Note that the
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Sti,γ :

vti,γAt1

At1

Bt1

Bt1

At2

At2

Bt2

Bt2

Ct1,γ

Ct2,γ
Iti

1
3

2
3

1
6

5
6

1
3

2
3

1
6

5
6

1
2

1
4

1
4

Ctj,γ :

0

0, Atj , B
1−t
j

0, Atj , A
1−t
j

0, Atj , B
1−t
j

0, Atj , B
1−t
j

0, Btj , B
1−t
j

if γ = inc(j);

0

0, Atj , B
1−t
j

0, Atj , B
1−t
j

0, Atj , B
1−t
j

0, Atj , A
1−t
j

0, Btj , B
1−t
j

if γ = dec(j);

0

0, Atj , B
1−t
j

0, Atj , B
1−t
j

0, Atj , A
1−t
j

0, Atj , B
1−t
j

0, Btj , B
1−t
j

if γ /∈ {inc(j), dec(j)}.

* only present if γ /∈ {init(j), zero(j)}

*

Iti :
0

S1−t
k,inc(j)

if ιi = “inc(j); goto k”;

0 S1−t
k,zero(j)

S1−t
l,dec(j)

if ιi = “zero(j) ? goto k : dec(j); goto l”;

if ιi = “halt”.

Figure 7. Simulating a two-counter machine.

dashed edge inside Ctj,γ is present if and only if γ /∈ {init, zero(j)}. The initial vertex of G
is the initial vertex of the gadget S0

1,init.
For any pure strategy profile σ of G where player 0 wins almost surely, let x0v0 ≺

x1v1 ≺ x2v2 ≺ . . . (xi ∈ V ∗, v ∈ V , x0 = ε) be the (unique) sequence of all consecutive
histories, consistent with σ, such that, for each n ∈ N, vn = vti,γ for suitable i, γ, t; this
sequence is infinite because player 0 wins almost surely. Additionally, let γ0, γ1, . . . be the
corresponding sequence of instructions, i.e. vn = vti,γn . For each j ∈ {1, 2} and n ∈ N, we
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define two conditional probabilities anj and pnj as follows:

anj := Prσv0(player An mod 2
j wins | xnvn · V ω),

and
pnj := Prσv0(player An mod 2

j wins | xnvn · V ω \ xn+2vn+2 · V ω).
Finally, for each j ∈ {1, 2} and n ∈ N, we define an ordinal number cnj ≤ ω as follows: After
the history xnvn, with probability 1

4 the play proceeds to the vertex controlled by player 0 in
the counter gadget Ctj,γn (where t = n mod 2). The number cnj is defined to be the maximal
number of subsequent visits to the grey vertex inside this gadget (where cnj = ω if, on one
path, the grey vertex is visited infinitely often). Note that, by the construction of Ctj,γ , it
holds that cnj = 0 if γn = zero(j) or γn = init.

Lemma 4.8. Let σ be a pure strategy profile of (G, v0) where player 0 wins almost surely.
Then σ is a Nash equilibrium if and only if

cn+1
j =


1 + cnj if γn+1 = inc(j),
cnj − 1 if γn+1 = dec(j),
cnj = 0 if γn+1 = zero(j),
cnj otherwise,

(4.1)

for each j ∈ {1, 2} and all n ∈ N.

Here, + and − denote the usual addition and subtraction of ordinal numbers, respec-
tively (satisfying 1 +ω = ω− 1 = ω). The proof of Lemma 4.8 goes through several claims.
In the following, let σ be a pure strategy profile of (G, v0) where player 0 wins almost surely.
The first claim gives a necessary and sufficient condition on the probabilities anj for σ to be
a Nash equilibrium.

Claim. The profile σ is a Nash equilibrium if and only if anj = 1
3 for each j ∈ {1, 2} and all

n ∈ N.

Proof. (⇒) Assume that σ is a Nash equilibrium. Clearly, this implies that anj ≥ 1
3 for

all n ∈ N since otherwise some player Atj could improve her payoff by leaving one of the
gadgets Sti,γ . Let

bnj := Prσv0(player Bn mod 2
j wins | xnvn · V ω).

We have bnj ≥ 1
6 for all n ∈ N since otherwise some player Btj could improve her payoff by

leaving one of the gadgets Sti,γ . Note that at every terminal vertex of the counter gadgets
Ctj,γ and C1−t

j,γ either player Atj or player Btj wins. The conditional probability that, given
the history xnvn, we reach one of those gadgets is

∑
k∈N

1
2k ·

1
4 = 1

2 for all n ∈ N; so,
anj = 1

2 − b
n
j for all n ∈ N. Since bnj ≥ 1

6 , we arrive at anj ≤ 1
2 −

1
6 = 1

3 , which proves the
claim.

(⇐) Assume that anj = 1
3 for all n ∈ N. Clearly, this implies that none of the players Atj

can improve her payoff. To show that none of the players Btj can improve her payoff, it
suffices to show that bnj ≥ 1

6 for all n ∈ N. But with the same argumentation as above, we
have bnj = 1

2 − a
n
j and thus bnj = 1

6 for all n ∈ N, which proves the claim.
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The second claim relates the probabilities anj and pnj .

Claim. Let j ∈ {1, 2}. Then anj = 1
3 for all n ∈ N if and only if pnj = 1

4 for all n ∈ N.

Proof. (⇒) Assume that anj = 1
3 for all n ∈ N. We have anj = pnj + 1

4 · a
n+2
j and therefore

1
3 = pnj + 1

12 for all n ∈ N. Hence, pnj = 1
4 for all n ∈ N.

(⇐) Assume that pnj = 1
4 for all n ∈ N. Since anj = pnj + 1

4 · a
n+2
j for all n ∈ N, the

numbers anj must satisfy the following recurrence: an+2
j = 4anj −1. Since all the numbers anj

are probabilities, we have 0 ≤ anj ≤ 1 for all n ∈ N. It is easy to see that the only values for
a0
j and a1

j such that 0 ≤ anj ≤ 1 for all n ∈ N are a0
j = a1

j = 1
3 . But this implies that anj = 1

3
for all n ∈ N.

Finally, the last claim relates the numbers pnj to (4.1).

Claim. Let j ∈ {1, 2}. Then pnj = 1
4 for all n ∈ N if and only if (4.1) holds for all n ∈ N.

Proof. Let n ∈ N, and let t = n mod 2. The probability pnj can be expressed as the sum
of the probability that the play reaches a terminal vertex that is winning for player Atj
inside Ctj,γn and the probability that the play reaches such a vertex inside C1−t

j,γn+1
. The first

probability does not depend on γn, but the second depends on γn+1. Let us consider the
case that γn+1 = inc(j). In this case, the aforementioned sum is equal to

1
4
·
(

1−
(1

2

)cnj +3
)

+ 1
8
·
(1

2

)cn+1
j +1

= 1
4
− 1

16
·
(1

2

)cnj +1
+ 1

16
·
(1

2

)cn+1
j

.

Obviously, this sum is equal to 1
4 if and only if cn+1

j = 1 + cnj . For any other value of γn+1,
the argumentation is similar, and we omit it here.

Proof of Lemma 4.8. By the first claim, the profile σ is a Nash equilibrium if and only if
anj = 1

3 for all j ∈ {1, 2} and n ∈ N. By the second claim, the latter is true if pnj = 1
4 for all

j ∈ {1, 2} and n ∈ N. Finally, by the last claim, this is the case if and only if (4.1) holds
for all j ∈ {1, 2} and n ∈ N.

To establish our reduction, it remains to show that the computation ofM is infinite if
and only if (G, v0) has a pure Nash equilibrium where player 0 wins almost surely.

(⇒) Assume that the computation ρ = ρ(0)ρ(1) . . . of M is infinite. We define a
pure strategy σ0 for player 0 as follows: For a history that ends in one of the instruction
gadgets Iti,γ after visiting a black vertex exactly n times, player 0 tries to move to the neigh-
bouring gadget S1−t

k,γ′ such that ρ(n) refers to instruction number k (which is always possible
if ρ(n−1) refers to instruction number i; in any other case, σ0 might be defined arbitrarily).
In particular, if ρ(n− 1) refers to instruction ιi = “zero(j) ? goto k : dec(j); goto l”, then
player 0 will move to the gadget S1−t

k,zero(j) if the value of the counter in configuration ρ(n−1)
is 0 and to the gadget S1−t

l,dec(j) otherwise. For a history that ends in one of the gadgets Ctj,γ
after visiting a black vertex exactly n times and a grey vertex exactly m times, player 0 will
move to the grey vertex again if and only if m is strictly less than the value of counter j in
configuration ρ(n−1). So after entering Ctj,γ , player 0’s strategy is to loop through the grey
vertex exactly as many times as given by the value of counter j in configuration ρ(n − 1).
Any other player’s pure strategy is to “move down” at any time. We claim that the resulting
strategy profile σ is a Nash equilibrium of (G, v0) where player 0 wins almost surely.
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Since, according to her strategy, player 0 follows the computation ofM, no vertex inside
an instruction gadget Iti,γ where ιi is the halt instruction is ever reached in the Markov
chain (Gσ, v0). Hence, and because all other players never leave the game, a terminal vertex
in one of the counter gadgets is reached with probability 1. Since player 0 wins at any such
vertex, we can conclude that she wins almost surely with σ.

It remains to show that σ is a Nash equilibrium. By the definition of σ, we have the
following for all n ∈ N: 1. cnj is the value of counter j in configuration ρ(n); 2. cn+1

j is the
value of counter j in configuration ρ(n+ 1); 3. γn+1 is the instruction corresponding to the
counter update from configuration ρ(n) to ρ(n + 1). Hence, (4.1) holds, and σ is a Nash
equilibrium by Lemma 4.8.

(⇐) Assume that σ is a pure Nash equilibrium of (G, v0) where player 0 wins almost
surely. We define an infinite sequence ρ = ρ(0)ρ(1) . . . of pseudo configurations (where the
counters may take the value ω) ofM as follows. Let n ∈ N, and assume that vn lies inside
the gadget Sti,γn (where t = n mod 2); then ρ(n) := (i, cn1 , cn2 ).

We claim that ρ is, in fact, the (infinite) computation of M. It suffices to verify the
following two properties:

– ρ(0) = (1, 0, 0);
– ρ(n) ⊢ ρ(n+ 1) for all n ∈ N.

Note that we do not have to show explicitly that each ρ(n) is a configuration of M since
this follows easily by induction. Verifying the first property is easy: v0 lies inside S0

1,init
(and we are at instruction 1), which is linked to the counter gadgets C0

1,init and C0
2,init. The

edge leading to the grey vertex is missing in these gadgets. Hence, both c01 and c02 equal 0.
For the second property, let ρ(n) = (i, c1, c2) and ρ(n + 1) = (i′, c′1, c′2). Hence, vn lies

inside Sti,γ , and vn+1 lies inside S1−t
i′,γ′ for suitable γ, γ′ and t = n mod 2. We only prove

the claim for ιi = “zero(2) ? goto k : dec(2); goto l”; the other cases are straightforward.
Note that, by the construction of the gadget Iti,γ , it must be the case that either i′ = k and
γ′ = zero(2), or i′ = l and γ′ = dec(2). By Lemma 4.8, if γ′ = zero(2), then c′2 = c2 = 0 and
c′1 = c1, and if γ′ = dec(2), then c′2 = c2 − 1 and c′1 = c1. This implies ρ(n) ⊢ ρ(n+ 1): On
the one hand, if c2 = 0, then c′2 ̸= c2 − 1, which implies γ′ ̸= dec(2) and thus γ′ = zero(2),
i′ = k and c′2 = c2 = 0. On the other hand, if c2 > 0, then γ′ ̸= zero(2) and thus γ′ = dec(2),
i′ = l and c′2 = c2 − 1.

Remark 4.9. The proof of Theorem 4.7 can also be viewed as a proof for the undecidability
of the following problem: Given a labelled Markov decision process (G, v0) and a formula
ϕ of the logic PCTL [33], decide whether the controller has a strategy σ such that the
Markov chain (Gσ, v0) is a model of ϕ. Undecidability for this problem was first proven by
Brázdil et al. [7] with a similar reduction than ours. However, we can derive a stronger
result from our reduction, namely that there exists a fixed formula ϕ for which the problem
is undecidable. To prove this, it suffices to modify our construction as follows:

1. For each player A ∈ {A0
1, A

1
1, A

0
2, A

1
2}, we add one proposition A that holds at precisely

those terminal vertices that are winning for player A.
2. For each t = 0, 1, we add one proposition Zt that holds at each vertex of the form
vti,γ .

3. We modify the gadget Sti,γ in such a way that all non-stochastic vertices are controlled
by player 0.
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4. We add two more propositions P and Q where P holds at all vertices controlled by
player 0 and Q holds at precisely one successor of any such vertex.

Finally, the PCTL formula for which undecidability is proven is given by4

ϕ :=
∧
t=0,1

G=1(Zt → F=1/3At1 ∧ F=1/3At2) ∧G=1(P → X=1Q ∨X=1¬Q).

4.4. Finite-state equilibria. We can use the construction in the proof of Theorem 4.7 to
show that Nash equilibria may require infinite memory (even for SSMGs and if we are only
interested in whether a player wins with probability 0 or 1).

Proposition 4.10. There exists an SSMG that has a pure Nash equilibrium where player 0
wins almost surely but that has no finite-state Nash equilibrium where player 0 wins with
positive probability.

Proof. Consider the game (G, v0) constructed in the proof of Theorem 4.7 for the machineM
consisting of the single instruction “inc(1); goto 1”. We modify this game by adding a new
initial vertex v1 which is controlled by a new player, player 1, and from where she can either
move to v0 or to a new terminal vertex where she receives payoff 1 and every other player
receives payoff 0. Additionally, player 1 wins at every terminal vertex of the game G that
is winning for player 0. Let us denote the modified game by G′.

Since the computation of M is infinite, the game (G, v0) has a pure Nash equilib-
rium where player 0 wins almost surely. This equilibrium induces a pure Nash equilibrium
of (G′, v1) where both player 0 and player 1 win almost surely. Now assume that there ex-
ists a finite-state Nash equilibrium of (G′, v1) where player 0 wins with positive probability.
Such an equilibrium induces a finite-state Nash equilibrium σ of (G, v0) where player 1, and
thus also player 0, wins almost surely: otherwise, player 1 would prefer to play to v0 with
probability 1. Using the same notation as in the proof of Theorem 4.7, it is easy to see that

Prσv0(player Bn mod 2
1 wins | xnvn · V ω \ xn+1vn+1 · V ω) = 1

2n+5

for each n ∈ N. But this is impossible if σ uses only finite memory.

It follows from Proposition 4.10 (together with Proposition 4.2) that the decision prob-
lems NE, FinNE, PureNE and PureFinNE are pairwise distinct. Another way to see that
PureNE and PureFinNE are distinct is to observe that that PureFinNE is recursively enu-
merable: To decide whether an SSMG (G, v0) has a pure finite-state Nash equilibrium with
payoff ≥ x and ≤ y, one can just enumerate all possible pure finite-state profiles σ and check
for each of them whether it constitutes a Nash equilibrium with the desired properties by
analysing the finite Markov chain Gσ. Hence, to prove the undecidability of PureFinNE, we
cannot reduce from the non-halting problem; instead, we give a reduction from the halting
problem (which is recursively enumerable itself).

Theorem 4.11. PureFinNE is undecidable, even for 13-player SSMGs.

Proof. The construction is similar to the one for proving undecidability of PureNE. Given a
two-counter machineM, we modify the SSMG G constructed in the proof of Theorem 4.7 by
adding another “counter” (together with four more players for checking whether the counter
is updated correctly) that has to be incremented in each step. Moreover, additionally to

4The last conjunct forces player 0 to use a pure strategy.
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the terminal vertices in the gadgets Ctj,γ , we let player 0 win at the terminal vertex in
each of the gadgets Ii,γ where ιi = “halt”. Let us denote the new game by G′. Now, if
M does not halt, any pure Nash equilibrium of (G′, v0) where player 0 wins almost surely
needs infinite memory: to win with probability 1, player 0 must follow the computation
ofM and increment the new counter at each step. On the other hand, ifM halts, we can
easily construct a pure finite-state Nash equilibrium of (G′, v0) where player 0 wins almost
surely (see the proof of Theorem 4.7; sinceM halts, the equilibrium described there can be
implemented with finite memory). Hence, (G′, v0) has a pure finite-state Nash equilibrium
where player 0 wins almost surely if and only if the machineM halts.

4.5. Randomised equilibria. The decidability of NE and FinNE (with respect to arbi-
trary randomised strategies) remains an open question: We do not even know whether the
SqrtSum-hardness result for StatNE can be adapted to NE. What we can show, however,
is that NE and FinNE are NP-hard, even for SSMGs. Arguably, this indicates that these
problems are intractable.

Theorem 4.12. NE and FinNE are NP-hard for SSMGs.

Proof. The proof is by a reduction from SAT: Given a Boolean formula ϕ in conjunctive
normal form with clauses C1, . . . , Cm, m ≥ 1, over variables X1, . . . , Xn (where, without loss
of generality, each clause is non-empty), we build an SSMG G played by players 0, 1, . . . , n
as follows: G has vertices C1, . . . , Cm controlled by player 0, and for each clause C and each
literal L, L = Xi or L = ¬Xi, that occurs in C, a vertex (C,L), controlled by player i,
and a stochastic vertex (C,L, 1). Additionally, there are terminal vertices ⊥,⊤, X1, . . . , Xn.
There are edges from a clause Cj to each vertex (Cj , L) such that L occurs as a literal in Cj
and from there to (Cj , L, 1). From (Cj , L, 1) there are two outgoing edges, each taken with
probability 1

2 , one to L or ⊤ if L is a positive or a negative literal, respectively, and one to
C(j mod m)+1. Payoffs are assigned to terminal vertices as follows:

– Player 0 wins at every terminal vertex except ⊥;
– Player i ̸= 0 wins at every terminal vertex except Xi.

For the (satisfiable) formula ϕ = (X1 ∨ X2 ∨ X3) ∧ (¬X2 ∨ X3) ∧ ¬X3 the game G is
schematically depicted in Figure 8; terminal vertices are again shown as squares.

Clearly, G can be constructed from ϕ in polynomial time. To establish both reductions,
it suffices to show that the following three statements are equivalent:

1. ϕ is satisfiable.
2. (G, C1) has a finite-state Nash equilibrium where player 0 wins almost surely.
3. (G, C1) has a Nash equilibrium where player 0 wins almost surely.
(1.⇒ 2.) Assume that α : {X1, . . . , Xk} → {true, false} is a satisfying assignment of ϕ.

We show that the positional strategy profile σ where at any time player 0 plays from a
clause C to a (fixed) vertex (C,L) such that α(L) = true and each player i ̸= 0 never plays
to ⊥ is a Nash equilibrium of (G, C1) where player 0 wins almost surely. First note that
⊥ is reached with probability 0 when playing σ; hence player 0 wins almost surely. Now
consider any player i ̸= 0 who wins with probability less than 1. This can only happen if
the probability that the play ends at vertex Xi is > 0. But, as player 0 plays according to
the satisfying assignment, this means that each vertex of the form (C,¬Xi) is visited with
probability 0; hence, player i has no chance to improve her payoff by playing to ⊥.

(2.⇒ 3.) Trivial.
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C1

0

X2 2 X3 3 X1 1

C2 0

X2 2 X3 3

C3 0

X3 3

X1

0, 2, 3

X2

0, 1, 3

X3

0, 1, 2

⊥

1, 2, 3

⊤

0, 1, 2, 3

Figure 8. Reducing SAT to NE.

(3.⇒ 1.) Assume that (G, C1) has a Nash equilibrium σ where player 0 wins almost
surely. Thus, ⊥ is visited with probability 0 when playing σ. Hence, by the construction
of G, there exists an infinite play π of (G, C1) that is consistent with σ. We claim that
it is not possible that both a vertex (C,Xi) and a vertex (C ′,¬Xi) are visited infinitely
often in π. Towards a contradiction, assume that both (C,Xi) and (C ′,¬Xi) are visited
infinitely often. Let π|n := π(0) . . . π(n− 1) be any prefix of π ending in (C ′,¬Xi). By the
construction of π, the history π|n appears with positive probability when σ is played, and
the conditional probability that player i wins given the history π|n is less than 1, since (by
the construction of π) with positive probability the vertex (C,Xi, 1) is visited later on, from
where we move to vertex Xi with probability 1

2 . Consider the strategy σ′ of player i that
behaves like σi but moves to ⊥ with probability 1 after history π|n. With this strategy,
the conditional probability that player 1 wins given the history π|n equals 1 while the
conditional probability that player i wins given that π|n is not a history remains the same.
Hence, player i can improve her payoff by switching to σ′, a contradiction to the fact that
σ is a Nash equilibrium.

Now consider the variable assignment that maps Xi to true if some vertex (C,Xi) is
visited infinitely often in π. We claim that this assignment satisfies the formula. To see
this, consider any clause C. By the construction of G, there exists a literal L in C such that
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the vertex (C,L) is visited infinitely often in π. In both cases, the defined assignment maps
the literal to true and satisfies C.

5. The strictly qualitative fragment

In this section, we prove that the fragment of NE that arises from restricting the
thresholds to be the same binary payoff (i.e., each entry is either 0 or 1) is decidable for
games with ω-regular objectives; we denote this problem by QualNE. Formally, QualNE is
defined as follows:

Given an SMG (G, v0) and x ∈ {0, 1}Π, decide whether there exists a Nash
equilibrium of (G, v0) with payoff x.

To prove the decidability of QualNE, we first characterise the existence of a Nash equilibrium
with a binary payoff in any game with prefix-independent objectives.

5.1. Characterisation of existence. Given an SMG G and a player i, we denote by W>0
i

the set of all vertices v ∈ V such that valGi (v) > 0.

Proposition 5.1. Let (G, v0) be any SMG with prefix-independent objectives, and let
x ∈ {0, 1}Π. Then the following statements are equivalent:

1. There exists a Nash equilibrium with payoff x.
2. There exists a strategy profile σ with payoff x such that Prσv0(Reach(W>0

i )) = 0 for
each player i with xi = 0.

3. There exists a pure strategy profile σ with payoff x such that Prσv0(Reach(W>0
i )) = 0

for each player i with xi = 0.
4. There exists a pure Nash equilibrium with payoff x.

If additionally all objectives are ω-regular, then each of the above statements is equivalent
to each of the following statements:

5. There exists a pure finite-state strategy profile σ with payoff x such that
Prσv0(Reach(W>0

i )) = 0 for each player i with xi = 0.
6. There exists a pure finite-state Nash equilibrium with payoff x.

Proof. (1.⇒ 2.) Let σ be a Nash equilibrium with payoff x. We claim that σ is already the
strategy profile we are looking for: Prσv0(Reach(W>0

i )) = 0 for each player i with xi = 0.
Towards a contradiction, assume that Prσv0(Reach(W>0

i )) > 0 for some player i with xi = 0.
Since V is finite, there exists a history xv, v ∈W>0

i , such that Prσv0(xv · V
ω) > 0. Let τ be

an optimal strategy for player i in the game (G, v), and consider the strategy σ′ of player i
defined by

σ′(yw) =
{
σ(yw) if xv � yw,
τ(y1w) otherwise,
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where, in the latter case, y = xy1. Clearly, Prσv0(xv · V
ω) = Pr(σ−i,σ

′)
v0 (xv · V ω). Using

Lemma 2.1, we can infer that Prσ−i,σ
′

v0 (Wini) > 0 as follows:

Prσ−i,σ′v0 (Wini)

≥ Prσ−i,σ′v0 (Wini ∩ xv · V ω)

= Prσ−i,σ′v0 (xv · V ω) · Pr(σ−i,σ′)[x]v (Wini)

= Prσv0(xv · V
ω) · Prσ−i[x],τv (Wini)

≥ Prσv0(xv · V
ω) · valGi (v)

> 0.
Hence, player i can improve her payoff by playing σ′ instead of σi, a contradiction to the
fact that σ is a Nash equilibrium.

(2.⇒ 3.) Let σ be a strategy profile of (G, v0) with payoff x such that
Prσv0(Reach(W>0

i )) = 0 for each player i with xi = 0. Consider the MDP M that is
obtained from G by removing all vertices v ∈ V such that v ∈ W>0

i for some player i with
xi = 0, merging all players into one, and imposing the objective

Win =
∧
i∈Π
xi=1

Wini ∧
∧
i∈Π
xi=0

¬Wini.

The MDP M is well-defined since its domain is a subarena of G. Moreover, the value
valM(v0) of M is equal to 1 because the strategy profile σ induces a strategy σ in M
satisfying Prσv0(Win) = 1. Since each Wini is prefix-independent, so is the set Win. Hence,
by Theorem 2.5, (M, v0) admits an optimal pure strategy τ . Since valM(v0) = 1, we have
Prτv0(Win) = 1, and τ induces a pure strategy profile of G with the desired properties.

(3.⇒ 4.) Let σ be a pure strategy profile of (G, v0) with payoff x such that
Prσv0(Reach(W>0

i )) = 0 for each player i with xi = 0. We show that the requirements
of Lemma 3.4 are fulfilled: Prσv0(Wini | xv · V ω) ≥ valGi (v) for each player i and each his-
tory xv of (G, v0) that is consistent with σ. Let xv be such a history, and let i ∈ Π. By the
assumption on σ, we have valGi (v) = 0 or xi = 1. In the first case, there is nothing to show.
In the second case, we claim that p := Prσv0(Wini | xv ·V ω) = 1 (and therefore p ≥ valGi (v)).
Towards a contradiction, assume that p < 1. Then

xi = Prσv0(Wini)
= Prσv0(xv · V

ω) · p+ Prσv0(Wini \ xv · V ω)
< Prσv0(xv · V

ω) + Prσv0(V
ω \ xv · V ω)

= 1,
a contradiction. Hence, Lemma 3.4 is applicable, and there exists a pure Nash equilibrium σ∗

of (G, v0) with Prσv0 = Prσ∗v0 . In particular, σ∗ has payoff x.
(4.⇒ 1.) Trivial.
Under the additional assumption that all objectives are ω-regular, the implications

(2.⇒ 5.) and (5.⇒ 6.) are proven analogously (using Lemma 3.5 instead of Lemma 3.4);
the implication (6.⇒ 1.) is trivial.
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As an immediate consequence of Proposition 5.1, we can conclude that pure finite-state
strategies are as powerful as arbitrary randomised strategies as far as the existence of a
Nash equilibrium with a binary payoff in SMGs with ω-regular objectives is concerned.

Corollary 5.2. Let (G, v0) be any SMG with ω-regular objectives, and let x ∈ {0, 1}Π.
There exists a Nash equilibrium of (G, v0) with payoff x if and only if there exists a pure
finite-state Nash equilibrium of (G, v0) with payoff x.

Proof. The claim follows from Proposition 5.1 and the fact that every SMG with ω-regular
objectives can be reduced to one with parity objectives.

5.2. Computational Complexity. We can now give an algorithm that decides QualNE
for SMGs with Muller objectives. The algorithm relies on the characterisation we gave in
Proposition 5.1, which allows to reduce the problem to a problem about a certain MDP.

Formally, given a Muller SMG G = (Π, V, (Vi)i∈Π,∆, χ, (Fi)i∈Π) and a binary payoff
x ∈ {0, 1}Π, we define the Markov decision process G(x) as follows: Let Z ⊆ V be the set
of all v such that valGi (v) = 0 for each player i with xi = 0; the set of vertices of G(x) is
precisely the set Z, with the set of vertices controlled by player 0 being Z0 :=

⋃
i∈Π(Vi∩Z);

if Z = ∅, we define G(x) to be a trivial MDP with the empty set as its objective. The
transition relation of G(x) is the restriction of ∆ to transitions between Z-states. Note that
the transition relation of G(x) is well-defined since Z is a subarena of G. Finally, the single
objective in G(x) is Reach(T ) where T ⊆ Z is the union of all end components U ⊆ Z with
payoff x.

Lemma 5.3. Let (G, v0) be any Muller SMG, and let x ∈ {0, 1}Π. Then (G, v0) has a Nash
equilibrium with payoff x if and only if valG(x)(v0) = 1.

Proof. (⇒) Assume that (G, v0) has a Nash equilibrium with payoff x. By Proposition 5.1,
this implies that there exists a strategy profile σ of (G, v0) with payoff x such that
Prσv0(Reach(V \ Z)) = 0. We claim that Prσv0(Reach(T )) = 1. Otherwise, by Lemma 2.2,
there would exist an end component U ⊆ Z such that Prσv0({α ∈ V

ω : Inf(α) = U}) > 0,
and U is either not winning for some player i with xi = 1 or it is winning for some
player i with xi = 0. But then, σ cannot have payoff x, a contradiction. Now, since
Prσv0(Reach(V \ Z)) = 0, σ induces a strategy σ in G(x) such that Prσv0(X) = Prσv0(X) for
every Borel set X ⊆ Zω. In particular, Prσv0(Reach(T )) = 1 and hence valG(x)(v0) = 1.

(⇐) Assume that valG(x)(v0) = 1 (in particular, v0 ∈ Z), and let σ be an optimal
strategy in (G(x), v0). From σ, using Lemma 2.3, we can devise a strategy σ′ such that
Prσ′v0({α ∈ V

ω : Inf(α) has payoff x}) = 1. Finally, σ′ can can be extended to a strategy
profile σ of G with payoff x such that Prσv0(Reach(V \ Z)) = 0. By Proposition 5.1, this
implies that (G, v0) has a Nash equilibrium with payoff x.

Since the value of an MDP with reachability objectives can be computed in polynomial
time, the difficult part lies in computing the MDP G(x) from G and x (i.e. its domain Z
and the target set T ).

Theorem 5.4. QualNE is in Pspace for Muller SMGs.

Proof. We describe a polynomial-space algorithm for solving QualNE on Muller SMGs: On
input G, v0, x, the algorithm starts by computing for each player i with xi = 0 the set of
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vertices v such that valGi (v) = 0, which can be done in polynomial space by Theorem 2.11.
The intersection of these sets is the domain Z of the Markov decision process G(x). If
v0 is not contained in this intersection, the algorithm immediately rejects. Otherwise, the
algorithm determines the union T of all end components with payoff x contained in Z by
enumerating all subsets of Z one after another and checking which ones are end components
with payoff x. Finally, the algorithm computes (in polynomial time) the value valG(x)(v0)
of the MDP G(x) and accepts if the value is 1. In all other cases, the algorithm rejects. The
correctness of the algorithm follows immediately from Lemma 5.3.

Since the qualitative decision problem for Muller S2Gs is already Pspace-hard, it fol-
lows from Theorem 5.4 that QualNE is, in fact, Pspace-complete for Muller games. By
contrast, for SMGs with Streett objectives, the problem becomes NP-complete. First, we
prove the upper bound.

Theorem 5.5. QualNE is in NP for Streett SMGs.

Proof. We describe a nondeterministic polynomial-time algorithm for solving QualNE: On
input G, v0, x, the algorithm starts by guessing a subarena Z ′ ⊆ V and, for each player i
with xi = 0, a positional strategy τi of the coalition Π \ {i} in the S2G Gi. In the next
step, the algorithm checks (in polynomial time) whether valτiΠ\{i}(v) = 1 for each vertex
v ∈ Z ′ and each player i with xi = 0. If not, the algorithm rejects immediately. Other-
wise, the algorithm proceeds by guessing (at most) n := |V | subsets U1, . . . , Un ⊆ Z ′ and
checks whether they are end components with payoff x (which can be done in polynomial
time). If yes, the algorithm sets T ′ :=

⋃n
j=1 Uj and computes (in polynomial time) the

value valG(x)(v0) of the MDP G(x) with Z ′ substituted for Z and T ′ substituted for T . If
this value is 1, the algorithm accepts; otherwise, it rejects.

It remains to show that the algorithm is correct: On the one hand, if (G, v0) has a Nash
equilibrium with payoff x, then the run of the algorithm where it guesses Z ′ = Z, globally
optimal positional strategies τi (which exist by Theorem 2.6) and end components Ui such
that T ′ = T will be accepting since then, by Lemma 5.3, valG(x)(v0) = 1. On the other
hand, in any accepting run of the algorithm we have Z ′ ⊆ Z and T ′ ⊆ T , and the value
that the algorithm computes cannot be higher than valG(x)(v0); hence, valG(x)(v0) = 1, and
Lemma 5.3 guarantees the existence of a Nash equilibrium with payoff x.

The matching lower bound does even hold for deterministic 2-player Streett games and
was established in [54].

Theorem 5.6. QualNE is NP-hard for deterministic 2-player Streett games.

Proof. The proof is a variant of the proof for NP-hardness of the qualitative decision problem
for deterministic 2-player zero-sum Rabin–Streett games [22] and by a reduction from SAT.
Given a Boolean formula ϕ = C1 ∧ . . . ∧ Cm, m ≥ 1, in conjunctive normal form (where,
without loss of generality, each clause is non-empty), we construct a deterministic 2-player
Streett game G as follows: For each clause C the game G has a vertex C, which is controlled
by player 0, and for each literal L occurring in ϕ there is a vertex L, which is controlled by
player 1. There are edges from a clause to each literal that occurs in this clause, and from
a literal to each clause occurring in ϕ. (Without loss of generality, we assume that there
is at least one clause and that all clauses are non-empty.) The structure of the game is
depicted in Figure 9. Player 0’s objective is given by the single Streett pair (∅, V ), i.e. she
wins every play of the game, whereas player 1’s objective consists of all Streett pairs of the
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Figure 9. Reducing SAT to QualNE for games with Streett objectives.

form ({X}, {¬X}) or ({¬X}, {X}), i.e. she wins if, for each variable X, either X and ¬X
are both visited infinitely often or neither of them is.

Clearly, G can be constructed from ϕ in polynomial time. We claim that ϕ is satisfiable
if and only if (G, C1) has a Nash equilibrium with payoff (1, 0).

(⇒) Assume that ϕ is satisfiable, and consider the following positional strategy σ0 of
player 0: Whenever the play reaches a clause, then σ0 plays to a literal that is mapped to
true by the satisfying assignment. This strategy ensures that, for each variable X, at most
one of the literals X or ¬X is visited infinitely often. Hence, (σ0, σ1) is a Nash equilibrium
of (G, C1) with payoff (1, 0) for every (positional) strategy σ1 of player 1.

(⇐) Let (σ0, σ1) be a Nash equilibrium of (G, C1) with payoff (1, 0), and assume that
ϕ is not satisfiable. Consider the coalition game (G1, C1), a Rabin-Streett game. We claim
that player 1 does have a winning strategy in this game, which she could use to improve
her payoff in (G, C1), a contradiction to the fact that (σ0, σ1) is a Nash equilibrium. By
determinacy, it suffices to show that player 0 does not have a winning strategy. Let τ be
an optimal positional strategy of player 0 (which exists by Theorem 2.6). If player 0 has a
winning strategy, then τ must be winning as well. Since ϕ is unsatisfiable, there must exist
a variable X and clauses C and C ′ such that τ(C) = X and τ(C ′) = ¬X. But player 1 can
counter this strategy by playing from X to C ′ and from any other literal to C. Hence, τ is
not a winning strategy.

For games with Rabin objective, the situation is more delicate. One might think that,
because of the duality of Rabin and Streett objectives, QualNE would be in coNP for SMGs
with Rabin objectives.5 However, as we will see later, this is rather unlikely, and we can
only show that the problem lies in the class PNP[log] of problems solvable by a deterministic
polynomial-time algorithm that may perform at most O(logn) queries to an oracle for any
problem in NP. In fact, the same upper bound holds for games with a Streett or a Rabin
objective for each player.

Theorem 5.7. QualNE is in PNP[log] for Streett-Rabin SMGs.

Proof. Let us describe a polynomial-time algorithm performing a logarithmic number of
queries to an NP oracle for the problem. On input G, v0, x, the algorithm starts by deter-
mining for each vertex v and each player i with xi = 0 who has a Rabin objective whether
valGi (v) = 0. Naively implemented, this requires a super-logarithmic number of queries to

5In fact, in [55] we claimed that the problem is in coNP.
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the oracle. To reduce the number of queries, we use a neat trick, due to Hemachandra [34].
Let us denote by R and S the set of players i ∈ Π with xi = 0 that have a Rabin and a
Streett objective, respectively. Instead of looping through all pairs of a vertex and a player,
we begin by determining the number p of all pairs (v, i) such that i ∈ R and valGi (v) = 0. It
is not difficult to see that this number can be computed using binary search by performing
only O(logn) queries to an NP oracle, which we can use for deciding whether valGi (v) > 0
(by Corollary 2.10). Then we perform one more query: We ask whether there exist sets
(Zi)i∈R∪S , Zi ⊆ V , U1, . . . , Un ⊆ V , n = |V |, and positional strategies (σi)i∈R and (τi)i∈S ,
where σi is a strategy of player i and τi is a strategy of the coalition Π \ {i}, such that

1.
∑
i∈R |Zi| = p,

2. valσi(v) > 0 for each player i ∈ R and each v ∈ V \ Zi,
3. valτi(v) = 1 for each player i ∈ S and each v ∈ Zi,
4. each Uj is an end component of G with payoff x, and
5. the value of the MDP that results from G by restricting to vertices inside

⋂
i∈R∪S Zi

and imposing the objective Reach(
⋃n
j=1 Uj) is 1.

This query can be decided by an NP oracle by guessing suitable sets and strategies and
verifying 1.–5. in polynomial time. If the answer to the query is yes, the algorithm accepts,
otherwise it rejects.

Obviously, the algorithm runs in polynomial time. To see that the algorithm is correct,
first note that for each player i ∈ R the set Zi is precisely the set of all v ∈ V such that
valGi (v) = 0. Otherwise, there would exist a vertex v ∈ Zi such that valGi (v) > 0. But
then the number of pairs (v, i) with i ∈ R and valGi (v) = 0 would be strictly less than p, a
contradiction. Now, the correctness of the algorithm follows with the same reasoning as in
the proof of Theorem 5.5.

Remark 5.8. For a bounded number of players, QualNE is in coNP for SMGs with Rabin
objectives.

Regarding lower bounds for QualNE in SMGs with Rabin objectives, we start by proving
that the problem is coNP-hard, even for deterministic 2-player games. In particular, unless
NP = coNP, QualNE cannot lie in NP for SMGs with Rabin objectives.

Theorem 5.9. QualNE is coNP-hard for deterministic 2-player Rabin games.

Proof. The proof is similar to the proof of Theorem 5.6 and by a reduction from the unsat-
isfiability problem for Boolean formulae in conjunctive normal form.

Given a Boolean formula ϕ = C1∧ . . .∧Cm, m ≥ 1, in conjunctive normal form (where,
without loss of generality, each clause is non-empty), we construct a deterministic 2-player
Rabin game G as follows: The arena of G is the same as in the proof of Theorem 5.6,
depicted in Figure 9: For each clause C there is a vertex C, which is controlled by player 0,
and for each literal L occurring in ϕ there is a vertex L, which is controlled by player 1.
There are edges from a clause to each literal that occurs in this clause, and from a literal
to each clause occurring in ϕ. Player 1 wins every play of the game, whereas player 0’s
objective consists of all Rabin pairs of the form ({X}, {¬X}) or ({¬X}, {X}).

Clearly, G can be constructed from ϕ in polynomial time. We claim that ϕ is unsatis-
fiable if and only if (G, C1) has a Nash equilibrium with payoff (0, 1).

(⇒) Assume that ϕ is unsatisfiable, and consider the 2-player zero-sum game G0 where
player 1’s objective is the complement of player 0’s objective. Let σ1 be a globally optimal
strategy for player 1 in this game. We claim that σ1 is winning in (G0, C1). Consequently,
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(σ0, σ1) is a Nash equilibrium of (G, C1) for every strategy σ0 of player 0. Otherwise, let τ
be a globally optimal positional strategy for player 0 in G0 (which exists by Theorem 2.6).
By determinacy, τ would be winning in (G0, C1). But a positional strategy τ of player 0
picks for each clause a literal contained in this clause. Since ϕ is unsatisfiable, there must
exist a variable X and clauses C and C ′ such that τ(C) = X and τ(C ′) = ¬X. Player 1
could counter this strategy by playing from X to C ′ and from any other literal to C, a
contradiction.

(⇐) Let (σ0, σ1) be a Nash equilibrium of (G, C1) with payoff (0, 1), and assume that
ϕ is satisfiable. Consider the following positional strategy τ of player 0: Whenever the
play reaches a clause, then τ plays to a literal that is mapped to true by the satisfying
assignment. This strategy ensures that for each variable X at most one of the literals X
or ¬X is visited infinitely often. Since the construction of G ensures that, under any strategy
profile, at least one literal is visited infinitely often, τ ensures a winning play for player 0.
Hence, player 0 can improve her payoff by playing τ instead of σ0, a contradiction to the
fact that (σ0, σ1) is a Nash equilibrium.

Theorem 5.9 leaves open the possibility that QualNE is not only coNP-hard for SMGs
with Rabin objectives, but also coNP-complete, even if the numbers of players is unbounded.
However, unless NP = coNP, this is not the case because QualNE is also NP-hard for SMGs
with Rabin objectives. In fact, it is even NP-hard to decide whether in a deterministic Rabin
game there exists a play that fulfils the objective of each player.
Proposition 5.10. The problem of deciding, given a deterministic Rabin game, whether
there exists a play that is won by each player is NP-hard.
Proof. We reduce from SAT: Given a Boolean formula ϕ = C1 ∧ . . . ∧ Cm, m ≥ 1, in
conjunctive normal form over propositional variables X1, . . . , Xn (where, without loss of
generality, every clause is non-empty), we show how to construct (in polynomial time) a
deterministic (n + 1)-player Rabin game G such that ϕ is satisfiable if and only if there
exists a play of G that is won by each player. The game has vertices C1, . . . , Cm and, for
each clause C and each literal X or ¬X that occurs in C, a vertex (C,X) or (C,¬X),
respectively. All vertices are controlled by player 0. There are edges from a clause Cj to
each vertex (Cj , L) such that L occurs in Cj and from there to C(j mod m)+1. The arena
of G is schematically depicted in Figure 10. The Rabin objectives are defined as follows:

– Player 0 wins every play of G.
– Player i ̸= 0 wins if each vertex of the form (C,Xi) is visited only finitely often or

each vertex of the from (C,¬Xi) is visited only finitely often (two Rabin pairs).
Clearly, G can be constructed from ϕ in polynomial time. To establish the reduction,

it remains to show that ϕ is satisfiable if and only if there exists a play of G that is won by
each player.

(⇒) Assume that α : {X1, . . . , Xn} → {true, false} is a satisfying assignment of ϕ.
Clearly, the positional strategy of player 0 where, from each clause C, she plays to a fixed
vertex (C,L) such that L is mapped to true by α induces a play that is won by each player

(⇐) Assume that there exists a play π of G that is won by each player. Obviously, it
is not possible that both a vertex (C,Xi) and a vertex (C ′,¬Xi) are visited infinitely often
in π since this would mean that player i loses π. Now consider the variable assignment
that maps X to true if some vertex (C,X) is visited infinitely often in π. This assignment
satisfies the formula because, by the construction of G, for each clause C there exists a
literal L in C such that the vertex (C,L) is visited infinitely often in π.
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Figure 10. Reducing SAT to deciding the existence of a play winning for
all players in a deterministic Rabin game.

It follows from Theorem 5.9 and Proposition 5.10 that, unless NP = coNP, QualNE
is not contained in NP ∪ coNP, even for deterministic Rabin games. For stochastic Rabin
games, we can show a completeness result: for these games, QualNE is also hard for PNP[log].

Theorem 5.11. QualNE is PNP[log]-hard for Rabin SMGs.

Proof. Wagner [57] and, independently, Buss and Hay [8] showed that PNP[log] equals the
closure of NP with respect to polynomial-time Boolean formula reducibility. The canonical
complete problem for this class is to decide, given a Boolean combination α of statements of
the form “ϕ is satisfiable” (where ϕ ranges over all Boolean formulae) whether α evaluates
to true. We claim that for every such statement α we can construct (in polynomial time) a
Rabin SMG (G, v0) such that α evaluates to true if and only if (G, v0) has a Nash equilibrium
with payoff (0, 1, . . . , 1). The game G is constructed by induction on the complexity of α,
where we assume without loss of generality that negations are only applied to atoms. If
α is of the form “ϕ is satisfiable” or “ϕ is not satisfiable”, then the existence of a suitable
game G follows from Proposition 5.10 or Theorem 5.9, respectively.

Now, let α = α1 ∧ α2, and assume that we already have constructed suitable games
(G1, v1) and (G2, v2) (without loss of generality played by the same players 0, 1, . . . , n). The
game G is the disjoint union of G1 and G2 combined with one new stochastic vertex v0.
From v0, the game moves with probability 1

2 each to v1 and v2. Obviously, (G, v0) has a
Nash equilibrium with payoff (0, 1, . . . , 1) if and only if both (G1, v1) and (G2, v2) have such
an equilibrium.

Finally, let α = α1 ∨ α2, and assume that we already have constructed suitable games
(G1, v1) and (G2, v2) (again without loss of generality played by the same players 0, 1, . . . , k,
k ≥ 1). As in the previous case, the game G is the disjoint union of G1 and G2 combined
with one new vertex v0, which has transitions to both v1 and v2. However, this time v0 is
controlled by player 1. Obviously, (G, v0) has a Nash equilibrium with payoff (0, 1, . . . , 1) if
and only if at least one of the games (G1, v1) and (G2, v2) has such an equilibrium.

To solve QualNE for parity SMGs, we will employ Algorithm 5.1, which computes for
a game G with parity objectives Ωi, i ∈ Π, S ⊆ V , and x ∈ {0, 1}Π the union of all end
components with payoff x that are contained in S. The algorithm is a straightforward
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Algorithm 5.1. Computing the union of all end components with payoff x contained in U .

input parity SMG G = (Π, V, (Vi)i∈Π,∆, χ, (Ωi)i∈Π), S ⊆ V , x ∈ {0, 1}Π
return FindEC(S)

procedure FindEC(X)
Z := ∅
Compute all end components of G maximal in X

for each such end component U do
P := {i ∈ Π : min Ωi(χ(U)) ≡ xi mod 2}
if P = ∅ then

(∗ U is an end component with payoff x ∗)
Z := Z ∪ U

else
(∗ U has the wrong payoff ∗)
Y :=

⋂
i∈P {v ∈ U : Ωi(χ(v)) > min Ωi(χ(U))}

Z := Z ∪ FindEC(Y )
end if

end for
return Z

end procedure

adaptation of the algorithm for computing the union of all winning end components in a
Streett MDP [14].

Note that on input X, FindEC calls itself at most |X| times. Since, additionally, the
set of all end components maximal in a set X can be computed in polynomial time, this
proves that Algorithm 5.1 runs in polynomial time (all other operations are simple).

Theorem 5.12. QualNE is in NP ∩ coNP for parity SMGs.

Proof. Since any parity objective can be translated into an equivalent Streett objective
in polynomial time, membership in NP follows from Theorem 5.5. To prove membership
in coNP, we describe a nondeterministic polynomial-time algorithm for the complement of
QualNE. On input G, v0, x, the algorithm starts by guessing a subarena Z ′ ⊆ V and, for each
player i with xi = 0, a positional strategy σi of player i in G. In the next step, the algorithm
checks whether for each vertex v ∈ Z ′ there exists some player i with xi = 0 and valσii (v) > 0.
If not, the algorithm rejects immediately. Otherwise, the algorithm uses Algorithm 5.1 to
determine the union T ′ of all end components with payoff x that are contained in V \ Z ′.
Finally, the algorithm computes (in polynomial time) the value valG(x)(v0) of the MDP G(x)
with V \Z ′ substituted for Z and T ′ substituted for T . If this value is not 1, the algorithm
accepts; otherwise, it rejects. The correctness of the algorithm is proven in a similar fashion
as in the proof of Theorem 5.5.

Recall from Section 2.6 that it is a major open problem whether the qualitative decision
problem for S2Gs with parity objectives is in P. This would imply that QualNE is decidable
in polynomial time for games with parity objectives since this would allow us to compute
the domain of the MDP G(x) in polynomial time. For each d ∈ N, a class of games where the
qualitative decision problem is provably in P is the class of all parity S2Gs with a bounded
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number of priorities (Theorem 2.12). Hence, we can solve QualNE for parity SMGs with a
bounded number of priorities (and thus also for (co-)Büchi SMGs) in polynomial time as
well.

Theorem 5.13. For each d ∈ N, QualNE is in P for parity SMGs whose objectives refer
to at most d priorities.
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