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Abstract

We summarize classical and recent results about two-player games played on graphs with ω-
regular objectives. These games have applications in the verification and synthesis of reactive
systems. Important distinctions are whether a graph game is turn-based or concurrent; deter-
ministic or stochastic; zero-sum or not. We cluster known results and open problems according
to these classifications.

1 Introduction

We consider nonterminating two-player perfect-information games played on graphs. A game pro-
ceeds for an infinite number of rounds. The state of a game is a vertex of a graph. In each round,
the state changes along an edge of the graph to a successor vertex. Thus, the outcome of the game
being played for an infinite number of rounds, is an infinite path through the graph. We consider
boolean objectives for the two players: for each player, the resulting infinite path is either winning
or losing. The winning sets of paths are assumed to be ω-regular [87]. Depending on how the
winning sets are specified, we distinguish between parity, Rabin, Streett, and Müller games, as well
as some subclasses thereof. Depending on whether or not the two players have complementary win-
ning sets, we distinguish between zero-sum and nonzero-sum games. Depending on the structure
of the graph, we distinguish between turn-based and concurrent games. In turn-based games, the
graph is partitioned into player-1 states and player-2 states: in player-1 states, player 1 chooses
the successor vertex; and in player-2 states, player 2 chooses the successor vertex. In concurrent
games, in every round both players choose simultaneously and independently from a set of available
moves, and the combination of both choices determines the successor vertex. Finally, we distinguish
between deterministic and stochastic games: in stochastic games, in every round the players’ moves
determine a probability distribution on the possible successor vertices, instead of determining a
unique successor vertex.

These games play a central role in several areas of computer science. One important applica-
tion arises when the vertices and edges of a graph represent the states and transitions of a reactive
system, and the two players represent controllable versus uncontrollable decisions during the ex-
ecution of the system. The synthesis problem (or control problem) for reactive systems asks for
the construction of a winning strategy in the corresponding graph game. This problem was first
posed independently by Alonzo Church [28] and Richard Büchi [8] in settings that can be reduced
to turn-based deterministic games with ω-regular objectives. The problem was solved indepen-
dently by Michael Rabin using logics on trees [81], and by Büchi and Lawrence Landweber using
a more game-theoretic approach [9]; it was later resolved using improved methods [53, 73] and in
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different application contexts [82, 79]. Game-theoretic formulations have proved useful not only for
synthesis, but also for the modeling [44, 1], refinement [56], verification [40, 2], testing [7], and com-
patibility checking [35, 36] of reactive systems. The use of ω-regular objectives is natural in these
application contexts. This is because the winning conditions of the games arise from requirements
specifications for reactive systems, and the ω-regular sets of infinite paths provide an important and
robust paradigm for such specifications [69]. However, both the restriction to deterministic games
and the restriction to turn-based games are limiting in some respects: probabilistic transitions are
useful to model uncertain behavior that is not strictly adversarial [88, 31], and concurrent choice is
useful to model certain forms of synchronous interaction between reactive systems [39, 41]. The re-
sulting concurrent stochastic games have long been familiar to game theorists and mathematicians,
sometimes under the name of competitive Markov decision processes [52]. But they have usually
been studied in nonalgorithmic contexts for very general kinds of objectives, such as Borel sets of
winning paths [70, 71]. Only recently has the algorithmic study of turn-based stochastic games and
of concurrent games, with the interesting and well-behaved class of ω-regular objectives, caught
the attention of computer scientists [29, 37, 34, 42, 15, 16]. We attempt to summarize the resulting
theory.

The central computational problem about a game is the question of whether a player has a
strategy for winning the game. However, in stochastic graph games there are several degrees of
“winning”: we may ask if a player has a strategy that ensures a winning outcome of the game, no
matter how the other player resolves her choices (this is called sure winning); or we may ask if a
player has a strategy that achieves a winning outcome of the game with probability 1 (almost-sure
winning); or we may ask if the maximal probability with which a player can win is 1 in the limit
(limit-sure winning), where the maximal probability in the limit is defined as the supremum over
all possible strategies of the infimum over all adversarial strategies. While all three notions of
winning coincide for turn-based deterministic games [70], and almost-sure winning coincides with
limit-sure winning for turn-based stochastic games [24], all three notions are different for concurrent
games, even in the deterministic case [37]. This is because for concurrent games, strategies that use
randomization are more powerful than pure (i.e., nonrandomized) strategies. The computation of
sure winning, almost-sure winning, and limit-sure winning states is called the qualitative analysis
of graph games. This is in contrast to the quantitative analysis, which asks for computing for each
state the maximal probability with which a player can win in the limit, even if that limit is less
than 1. For a fixed player, the limit probability is called the sup-inf value, or the optimal value, or
simply the value of the game at a state. A strategy that achieves the optimal value is an optimal
strategy, and a strategy that ensures one of the three ways of winning, is a sure (almost-sure;
limit-sure) winning strategy. Concurrent graph games are more difficult than turn-based graph
games for several reasons. In concurrent games, optimal strategies may not exist, but for every
real ε > 0, there may be a strategy that guarantees a winning outcome with a probability that lies
within ε of the optimal value. Moreover, ε-optimal and limit-sure winning strategies may require
infinite memory about the history of a game in order to prescribe the next move of a player. By
contrast, in certain special cases —for example, in the case of turn-based stochastic games with
parity objectives— optimal and winning strategies require neither randomization nor memory; such
pure memoryless strategies can be implemented by control maps from states to moves. We refer
to the randomization and memory requirements of strategies as the “structural complexity” of
strategies.

So far we have discussed the notion of “winning” for a fixed player. In zero-sum games, the
sets of winning paths for the two players are complementary. A zero-sum game that has a winning
strategy for one of the two players at every vertex is called determined. There are two kinds of
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determinacy results for graph games. First, the turn-based deterministic games have a qualitative
determinacy, namely, determinacy for sure winning : in every state of the game graph, one of
the two players has a sure winning strategy [70]. Second, the turn-based stochastic games and the
concurrent games have a quantitative determinacy, that is, determinacy for optimal values: in every
state, the optimal values for both players add up to 1 [71]. Both the sure-winning determinacy
result and the optimal-value determinacy results hold for all Borel objectives. The sure-winning
determinacy for turn-based deterministic games with Borel objectives was established by Donald
Martin [70]; the optimal-value determinacy for Borel objectives was established again by Martin [71]
for a very general class of games called Blackwell games, which include all games we consider in
this survey. For concurrent games, however, there is no determinacy for sure winning: even if a
concurrent game is deterministic (i.e., nonstochastic) and the objectives are simple (e.g., single-step
reachability), neither player may have a strategy for sure winning [37]. There is also no determinacy
for sure winning for turn-based probabilistic games, even with reachability objectives. Determinacy
is useful for solving zero-sum games: it allows us to switch, whenever convenient, between the dual
views of the two players while computing the sure winning states of a game, or the optimal values.

In nonzero-sum games, both players may be winning. In this case, the notion of rational
behavior of the players is captured by Nash equilibria: a pair of strategies for the two players is
a Nash equilibrium if neither player can increase her payoff by unilaterally switching her strategy
[61]. In our games, the payoff is the probability of winning. While for turn-based games, Nash
equilibria are known to exist for all Borel objectives [27], for concurrent games the situation is again
more complicated. A pair of strategies for the two players is an ε-Nash equilibrium, for ε > 0, if
neither player can increase her payoff by at least ε by switching strategy. Even in the simple case
of reachability objectives, no Nash equilibria, but only ε-Nash equilibria (for all ε > 0) may exist
for concurrent games [27]. Many of the questions in this area are still open.

Our survey is organized as follows. Sections 2–6 contain the pertinent definitions: game graphs,
strategies, objectives, winning, determinacy, and equilibria. The subsequent three sections summa-
rize results: Section 7 on turn-based zero-sum games; Section 8 on concurrent zero-sum games; and
Section 9 on nonzero-sum games. These three sections can be read independently. We focus on two
kinds of results: the algorithmic complexity of computing the winning states, the optimal values,
and the Nash equilibria of a game; and the structural complexity required of winning strategies, of
optimal strategies, and of equilibrium strategies. Of course, there are many types of closely related
results and related games that are not discussed in this survey. We had to make several more or
less arbitrary decisions where to draw the line about what material to include. In particular, the
survey is restricted to games played on finite graphs, with qualitative (i.e., boolean) objectives,
where both players have perfect information about the state of a game. Infinite-state games, games
with quantitative objectives (such as mean-payoff games), and partial-information games are not
treated in this survey, but a few pointers to the literature on these kinds of games are given in the
last section.

2 Game Graphs

We first define turn-based game graphs, and then the more general class of concurrent game graphs.
We start with some preliminary notation. For a finite set A, a probability distribution on A is a
function δ: A → [0, 1] such that

∑
a∈A δ(a) = 1. We write Supp(δ) = {a ∈ A | δ(a) > 0} for the

support set of δ. We denote the set of probability distributions on A by Dist(A).
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2.1 Turn-based probabilistic game graphs

We consider several classes of turn-based games, namely, two-player turn-based probabilistic games
(21/2-player games), two-player turn-based deterministic games (2-player games), and Markov de-
cision processes (11/2-player games).

A turn-based probabilistic game graph (or 21/2-player game graph) G = ((S,E), (S1, S2, SP ), δ)
consists of a directed graph (S,E), a partition of the vertex set S into three subsets S1, S2, SP ⊆ S,
and a probabilistic transition function δ: SP → Dist(S). The vertices in S are called states. The
state space S is finite. The states in S1 are player-1 states; the states in S2 are player-2 states; and
the states in SP are probabilistic states. For all states s ∈ S, we define E(s) = {t ∈ S | (s, t) ∈ E}
to be the set of possible successor states. We require that E(s) 6= ∅ for every nonprobabilistic state
s ∈ S1 ∪ S2, and that E(s) = Supp(δ(s)) for every probabilistic state s ∈ SP . At player-1 states
s ∈ S1, player 1 chooses a successor state from E(s); at player-2 states s ∈ S2, player 2 chooses a
successor state from E(s); and at probabilistic states s ∈ SP , a successor state is chosen according
to the probability distribution δ(s).

The turn-based deterministic game graphs (or 2-player game graphs) are the special case of
the 21/2-player game graphs with SP = ∅. The Markov decision processes (MDPs for short; or
11/2-player game graphs) are the special case of the 21/2-player game graphs with either S1 = ∅
or S2 = ∅. We refer to the MDPs with S2 = ∅ as player-1 MDPs, and to the MDPs with S1 = ∅
as player-2 MDPs. A game graph that is both deterministic and an MDP is called a transition
system (or 1-player game graph): a player-1 transition system has only player-1 states; a player-2
transition system has only player-2 states.

2.2 Concurrent game graphs

A concurrent game graph G = (S,A,Γ1,Γ2, δ) consists of the following components:

• A finite state space S.

• A finite set A of moves.

• Two move assignments Γ1,Γ2: S → 2A \ ∅. For i ∈ {1, 2}, the player-i move assignment Γi

associates with every state s ∈ S a nonempty set Γi(s) ⊆ A of moves available to player i at
state s.

• A probabilistic transition function δ: S × A × A → Dist(S). At every state s ∈ S,
player 1 chooses a move a1 ∈ Γ1(s), and simultaneously and independently player 2 chooses
a move a2 ∈ Γ2(s). A successor state is then chosen according to the probability distribu-
tion δ(s, a1, a2).

For all states s ∈ S and all moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s), we define Succ(s, a1, a2) =
Supp(δ(s, a1, a2)) to be the set of possible successor states of s when the moves a1 and a2 are chosen.
For a concurrent game graph, we define the set of edges as E = {(s, t) ∈ S×S | (∃a1 ∈ Γ1(s))(∃a2 ∈
Γ2(s))(t ∈ Succ(s, a1, a2))}, and as with turn-based game graphs, we write E(s) = {t | (s, t) ∈ E}
for the set of possible successors of a state s ∈ S.

We distinguish the following special classes of concurrent game graphs. The concurrent game
graph G is deterministic if |Succ(s, a1, a2)| = 1 for all states s ∈ S and all moves a1 ∈ Γ1(s) and
a2 ∈ Γ2(s). A state s ∈ S is a turn-based state if there exists a player i ∈ {1, 2} such that |Γi(s)| = 1;
that is, player i has no choice of moves at s. If |Γ2(s)| = 1, then s is a player-1 turn-based state; and
if |Γ1(s)| = 1, then s is a player-2 turn-based state. The concurrent game graph G is turn-based
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if every state in S is a turn-based state. Note that the turn-based concurrent game graphs are
equivalent to the turn-based probabilistic game graphs: to obtain a 21/2-player game graph from a
turn-based concurrent game graph G, for every player-i turn-based state s of G, where i ∈ {1, 2},
introduce |Γi(s)| many probabilistic successor states of s. Moreover, the concurrent game graphs
that are both turn-based and deterministic are equivalent to the 2-player game graphs.

To measure the complexity of algorithms and problems, we need to define the size of a game
graph. We do this for the case that all transition probabilities can be specified as rational numbers.
Then the size of a concurrent game graph G is equal to the size of the probabilistic transition func-
tion δ, that is, |G| =

∑
s∈S

∑
a1∈Γ1(s)

∑
a2∈Γ2(s)

∑
t∈S |δ(s, a1, a2)(t)|, where |δ(s, a1, a2)(t)| denotes

the space required to specify a rational probability value. The size of a turn-based probabilistic
game graph G is equal to the sum of its state space and edges, and the size of the probabilistic
transition function δ, that is, |G| = |S| + |E| +

∑
s∈SP

∑
t∈S |δ(s)(t)|, where |δ(s)(t)| denotes the

space required to specify a rational probability value.

3 Strategies

When choosing their moves, the players follow recipes that are called strategies. We define strategies
both for 21/2-player game graphs and for concurrent game graphs. On a concurrent game graph,
the players choose moves from a set A of moves, while on a 21/2-player game graph, they choose
successor states from a set S of states. Hence, for 21/2-player game graphs, we define the set of
moves as A = S. For 21/2-player game graphs, a player-1 strategy prescribes the moves that player 1
chooses at the player-1 states S1, and a player-2 strategy prescribes the moves that player 2 chooses
at the player-2 states S2. For concurrent game graphs, both players choose moves at every state,
and hence for concurrent game graphs, we define the sets of player-1 states and player-2 states as
S1 = S2 = S.

Consider a game graph G. A player-1 strategy on G is a function σ: S∗ · S1 → Dist(A) that
assigns to every nonempty finite sequence ~s ∈ S∗·S1 of states ending in a player-1 state, a probability
distribution σ(~s) over the moves A. By following the strategy σ, whenever the history of a game
played on G is ~s, then player 1 chooses the next move according to the probability distribution σ(~s).
A strategy must prescribe only available moves. Hence, for all state sequences ~s′ ∈ S∗ and all states
s ∈ S1, if σ(~s′ · s)(a) > 0, then the following condition must hold: a ∈ E(s) for 21/2-player game
graphs G, and a ∈ Γ1(s) for concurrent game graphs G. Symmetrically, a player-2 strategy on
G is a function π: S∗ · S2 → Dist(A) such that if π(~s′ · s)(a) > 0, then a ∈ E(s) for 21/2-player
game graphs G, and a ∈ Γ2(s) for concurrent game graphs G. We write Σ for the set of player-1
strategies, and Π for the player-2 strategies on G. Note that |Π| = 1 if G is a player-1 MDP, and
|Σ| = 1 if G is a player-2 MDP.

3.1 Types of strategies

We classify strategies according to their use of randomization and memory.

Use of randomization. Strategies that do not use randomization are called pure. A player-1
strategy σ is pure (or deterministic) if for all state sequences ~s ∈ S∗ ·S1, there exists a move a ∈ A
such that σ(~s)(a) = 1. The pure strategies for player 2 are defined analogously. We denote by ΣP

the set of pure player-1 strategies, and by ΠP the set of pure player-2 strategies. A strategy that
is not necessarily pure is called randomized.

Use of memory. Strategies in general require memory to remember the history of a game. The
following alternative definition of strategies makes this explicit. Let M be a set called memory. A
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player-1 strategy σ = (σu, σn) can be specified as a pair of functions: a memory-update function
σu: S ×M → M , which given the current state of the game and the memory, updates the memory
with information about the current state; and a next-move function σn: S1 ×M → Dist(A), which
given the current state and the memory, prescribes the next move of the player. The player-1
strategy σ is finite-memory if the memory M is a finite set; and the strategy σ is memoryless (or
positional) if the memory M is singleton, i.e., |M | = 1. A finite-memory strategy remembers only
a finite amount of information about the infinitely many different possible histories of the game;
a memoryless strategy is independent of the history of the game and depends only on the current
state of the game. Note that a memoryless player-1 strategy can be represented as a function σ:
S1 → Dist(A). We denote by ΣF the set of finite-memory player-1 strategies, and by ΣM the set
of memoryless player-1 strategies. The finite-memory player-2 strategies ΠF and the memoryless
player-2 strategies ΠM are defined analogously.

A pure finite-memory strategy is a pure strategy that is finite-memory; we write ΣPF = ΣP ∩ ΣF

for the pure finite-memory player-1 strategies, and ΠPF for the corresponding player-2 strategies.
A pure memoryless strategy is a pure strategy that is memoryless. The pure memoryless strategies
use neither randomization nor memory; they are the simplest strategies we consider. Note that
a pure memoryless player-1 strategy can be represented as a function σ: S1 → A. We write
ΣPM = ΣP ∩ΣM for the pure memoryless player-1 strategies, and ΠPM for the corresponding class
of simple player-2 strategies.

3.2 Probability space induced by a strategy profile

A path of the game graph G is an infinite sequence ω = 〈s0, s1, s2, . . .〉 of states in S such that
(sk, sk+1) ∈ E for all k ≥ 0. We denote the set of paths of G by Ω. We refer to a pair (σ, π) ∈ Σ×Π
of strategies, one for each player, as a strategy profile. Once a starting state s ∈ S and a strategy
profile (σ, π) are fixed, the result of the game is a random walk in G, denoted ρσ,π

s , which generates
a path in Ω.

Given a finite sequence ~s = 〈s0, s1, . . . , sk〉 of states in S, the cone defined by ~s is the set
Cone(~s) = {〈s′0, s

′
1, s

′
2, . . .〉 ∈ Ω | (∀0 ≤ i ≤ k)(si = s′i)} of paths with prefix ~s. Let C = {Cone(~s) |

~s ∈ S∗} be the set of all cones. The cones in C are the basic open sets in the Cantor topology on
the set Ω of paths. Let F be the Borel σ-field generated by C, that is, let F be the smallest set
such that (i) C ⊆ F and (ii) F is closed under complementation, countable union, and countable
intersection. Then (Ω,F) is a σ-algebra. Given a strategy profile (σ, π) ∈ Σ×Π and a state s ∈ S,
we define the function µσ,π

s : C → [0, 1] as follows: for all nonempty state sequences ~u = ~u′ · u ∈ S+

and all states t ∈ S,

µσ,π
s (Cone(ǫ)) = µσ,π

s (Ω) = 1;

µσ,π
s (Cone(t)) =

{
1 if t = s,

0 otherwise;

µσ,π
s (Cone(~u · t)) = µσ,π

s (~u) ·
∑

a1∈Γ1(u),a2∈Γ2(u) δ(u, a1, a2)(t) · σ(~u)(a1) · π(~u)(a2).

The function µσ,π
s is a measure on C, and hence there is a unique extension of µσ,π

s to a probability
measure on F . We denote this probability measure on F , which is induced by the strategies σ and
π and the starting state s, by Prσ,π

s . Then (Ω,F ,Prσ,π
s ) is a probability space. An event Φ in this

space is a measurable set of paths, that is, Φ ∈ F . The probability Prσ,π
s (Φ) of an event Φ ∈ F is

the probability that the random walk ρσ,π
s generates a path in Φ.

Possible outcomes of a strategy profile. Consider two strategies σ ∈ Σ and π ∈ Π on a
game graph G, and let ω = 〈s0, s1, s2, . . .〉 be a path of G. The path ω is (σ, π)-possible for a
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21/2-player game graph G if for every k ≥ 0 the following two conditions hold: if sk ∈ S1, then
σ(s0s1 . . . sk)(sk+1) > 0; and if sk ∈ S2, then π(s0s1 . . . sk)(sk+1) > 0. The path ω is (σ, π)-
possible for a concurrent game graph G if for every k ≥ 0, there exist moves a1 ∈ Γ1(sk) and
a2 ∈ Γ2(sk) for the two players such that σ(s0s1 . . . sk)(a1) > 0 and π(s0s1 . . . sk)(a2) > 0 and
sk+1 ∈ Succ(sk, a1, a2). Given a state s ∈ S and a strategy profile (σ, π) ∈ Σ × Π, we de-
note by Outcome(s, σ, π) ⊆ Ω the set of (σ, π)-possible paths whose first state is s. Note that
Outcome(s, σ, π) is a probability-1 event, that is, Prσ,π

s (Outcome(s, σ, π)) = 1.

Fixing a strategy. Given a game graph G and a player-1 strategy σ ∈ Σ, we write Gσ for the
game played on G under the constraint that player 1 follows the strategy σ. Analogously, given G
and a player-2 strategy π ∈ Π, we write Gπ for the game played on G under the constraint that
player 2 follows the strategy π. Observe that for a 21/2-player game graph G or a concurrent game
graph G, and a memoryless player-1 strategy σ ∈ Σ, the result Gσ is a player-2 MDP. Similarly,
for a player-2 MDP G and a memoryless player-2 strategy π ∈ Π, the result Gπ is a Markov chain.
Hence, if G is a 21/2-player game graph or a concurrent game graph, and the two players follow
memoryless strategies σ and π, then the result Gσ,π = (Gσ)π is a Markov chain. Also the following
observation will be used later. Given a game graph G and a strategy in Σ∪Π with finite memory M ,
the strategy can be interpreted as a memoryless strategy in the synchronous product G×M of the
game graph G with the memory M .

4 Objectives

An objective Φ for a game graph G is a set of paths, that is, Φ ⊆ Ω. A player-1 objective Φ ⊆ Ω
specifies the set of paths that are winning for player 1, and a player-2 objective Ψ ⊆ Ω specifies
the set of paths that are winning for player 2 : player 1 wins the game played on the graph G
with the objectives Φ and Ψ iff the path that results from playing the game lies in Φ, and player 2
wins if that path lies in Ψ. In the case of zero-sum games, the objectives of the two players are
strictly competitive, that is, Ψ = Ω \ Φ. A general class of objectives are the Borel objectives.
A Borel objective Φ ⊆ Ω is a Borel set in the Cantor topology on the set Ω of paths, that is,
Φ ∈ F for the Borel σ-field F defined in Subsection 3.2. Throughout this survey, we limit ourselves
to Borel objectives, often without explicitly using the adjective “Borel.” An important subclass
of the Borel objectives are the ω-regular objectives, which lie in the first 21/2 levels of the Borel
hierarchy (i.e., in the intersection of Σ3 and Π3). The ω-regular objectives are of special interest
for the verification and synthesis of reactive systems [69]. In particular, the following specifications
of winning conditions for the players define ω-regular objectives, and subclasses thereof [87].

Reachability and safety objectives. A reachability specification for the game graph G is a set
T ⊆ S of states, called target states. The reachability specification T requires that some state in T
be visited. Thus, the reachability specification T defines the set Reach(T ) = {〈s0, s1, s2, . . .〉 ∈ Ω |
(∃k ≥ 0)(sk ∈ T )} of winning paths; this set is called a reachability objective. A safety specification
for G is likewise a set U ⊆ S of states; they are called safe states. The safety specification U
requires that only states in U be visited. Formally, the safety objective defined by U is the set
Safe(U) = {〈s0, s1, . . .〉 ∈ Ω | (∀k ≥ 0)(sk ∈ U)} of winning paths. Note that reachability and
safety are dual objectives: Safe(U) = Ω \ Reach(S \ U).

Büchi and coBüchi objectives. A Büchi specification for G is a set B ⊆ S of states, which are
called Büchi states. The Büchi specification B requires that some state in B be visited infinitely
often. For a path ω = 〈s0, s1, s2, . . .〉, we write Inf(ω) = {s ∈ S | sk = s for infinitely many k ≥ 0}
for the set of states that occur infinitely often in ω. Thus, the Büchi objective defined by B is the
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set Büchi(B) = {ω ∈ Ω | Inf(ω) ∩ B 6= ∅} of winning paths. The dual of a Büchi specification
is a coBüchi specification C ⊆ S, which specifies a set of so-called coBüchi states. The coBüchi
specification C requires that the states outside C be visited only finitely often. Formally, the
coBüchi objective defined by C is the set coBüchi(C) = {ω ∈ Ω | Inf(ω) ⊆ C} of winning paths.
Note that coBüchi(C) = Ω \ Büchi(S \ C). It is also worth noting that reachability and safety
objectives can be turned into both Büchi and coBüchi objectives, by slightly modifying the game
graph. For example, if the graph G′ results from G by turning every target state s ∈ T into a sink
state (so that E(s) = {s}), then a game played on G with the reachability objective Reach(T ) is
equivalent to a game played on G′ with the Büchi objective Büchi(T ).

Rabin and Streett objectives. We now move to boolean combinations of Büchi and coBüchi
objectives. A Rabin specification for the game graph G is a finite set R = {(E1, F1), . . . , (Ed, Fd)}
of pairs of sets of states, that is, Ej ⊆ S and Fj ⊆ S for all 1 ≤ j ≤ d. The pairs in R are
called Rabin pairs. We assume without loss of generality that

⋃
1≤j≤d(Ej ∪ Fj) = S. The Rabin

specification R requires that for some Rabin pair 1 ≤ j ≤ d, all states in the left-hand set Ej be
visited finitely often, and some state in the right-hand set Fj be visited infinitely often. Thus,
the Rabin objective defined by R is the set Rabin(R) = {ω ∈ Ω | (∃1 ≤ j ≤ d)(Inf(ω) ∩ Ej =
∅ ∧ Inf(ω) ∩ Fj 6= ∅)} of winning paths. Note that the coBüchi objective coBüchi(C) is equal to
the single-pair Rabin objective Rabin({(C,S)}), and the Büchi objective Büchi(B) is equal to the
two-pair Rabin objective Rabin({(∅, B), (S, S)}). The complements of Rabin objectives are called
Streett objectives. A Streett specification for G is likewise a set W = {(E1, F1), . . . , (Ed, Fd)} of
pairs of set of states Ej ⊆ S and Fj ⊆ S such that

⋃
1≤j≤d(Ej ∪ Fj) = ∅. The pairs in W are

called Streett pairs. The Streett specification W requires that for every Streett pair 1 ≤ j ≤
d, if some state in the right-hand set Fj is visited infinitely often, then some state in the left-
hand set Ej is visited infinitely often. Formally, the Streett objective defined by W is the set
Streett(W ) = {ω ∈ Ω | (∀1 ≤ j ≤ d)(Inf(ω) ∩ Ej 6= ∅ ∨ Inf(ω) ∩ Fj = ∅)} of winning paths. Note
that Streett(W ) = Ω \ Rabin(W ).

Parity objectives. A parity specification for G consists of a nonnegative integer d and a function
p: S → {0, 1, 2, . . . , 2d}, which assigns to every state of G an integer between 0 and 2d. For a
state s ∈ S, the value p(s) is called the priority of S. We assume without loss of generality that
p−1(j) 6= ∅ for all 0 < j ≤ 2d; this implies that a parity specification is completely specified by the
priority function p (and d does not need to be specified explicitly). The positive integer 2d + 1 is
referred to as the number of priorities of p. The parity specification p requires that the minimum
priority of all states that are visited infinitely often, is even. Formally, the parity objective defined
by p is the set Parity(p) = {ω ∈ Ω | min{p(s) | s ∈ Inf(ω)} is even} of winning paths. Note that for
a parity objective Parity(p), the complementary objective Ω \Parity(p) is again a parity objective:
Ω\Parity(p) = Parity(p+1), where the priority function p+1 is defined by (p+1)(s) = p(s)+1 for
all states s ∈ S (if p−1(0) = ∅, then use p−1 instead of p+1). This self-duality of parity objectives
is often convenient when solving games. It is also worth noting that the Büchi objectives are parity
objectives with two priorities (let p−1(0) = B and p−1(1) = S \B), and the coBüchi objectives are
parity objectives with three priorities (let p−1(0) = ∅ and p−1(1) = S \ C and p−1(2) = C).

Parity objectives are also called Rabin-chain objectives, as they are a special case of Rabin
objectives [87]: if the sets of a Rabin specification R = {(E1, F1), . . . , (Ed, Fd)} form a chain
E1 ( F1 ( E2 ( F2 ( · · · ( Ed ( Fd, then Rabin(R) = Parity(p) for the priority function p:
S → {0, 1, . . . , 2d} that for every 1 ≤ j ≤ d assigns to each state in Ej \ Fj−1 the priority 2j − 1,
and to each state in Fj \ Ej the priority 2j, where F0 = ∅. Conversely, given a priority function p:
S → {0, 1, . . . , 2d}, we can construct a chain E1 ( F1 ( · · · ( Ed+1 ( Fd+1 of d + 1 Rabin pairs
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such that Parity(p) = Rabin({(E1, F1), . . . , (Ed+1, Fd+1)} as follows: let E1 = ∅ and F1 = p−1(0),
and for all 1 ≤ j ≤ d + 1, let and Ej = Fj−1 ∪ p−1(2j − 3) and Fj = Ej ∪ p−1(2j − 2). Hence, the
parity objectives are a subclass of the Rabin objectives that is closed under complementation. It
follows that every parity objective is both a Rabin objective and a Streett objective. The parity
objectives are of special interest, because every ω-regular objective can be turned into a parity
objective by modifying the game graph (take the synchronous product of the game graph with a
deterministic parity automaton that accepts the ω-regular objective) [75].

Müller objectives. The most general form for defining ω-regular objectives are Müller specifica-
tions. A Müller specification for the game graph G is a set M ⊆ 2S of sets of states. The sets in M
are called Müller sets. The Müller specification M requires that the set of states that are visited
infinitely often is one of the Müller sets. Formally, the Müller specification M defines the Müller
objective Müller(M) = {ω ∈ Ω | Inf(ω) ∈ M}. Note that Rabin and Streett objectives are special
cases of Müller objectives.

5 Game Values

For a state s and an objective Φ for player 1, the maximal probability with which player 1 can
ensure that Φ holds from s is the value of the game at s for player 1. Formally, given a game graph
G with objectives Φ for player 1 and Ψ for player 2, we define the value functions ValG1 and ValG2
for the players 1 and 2, respectively, as follows: for every state s ∈ S,

ValG1 (Φ)(s) = sup
σ∈Σ

inf
π∈Π

Prσ,π
s (Φ);

ValG2 (Ψ)(s) = sup
π∈Π

inf
σ∈Σ

Prσ,π
s (Ψ).

A player-1 strategy σ ∈ Σ is optimal from a state s ∈ S for the objective Φ if

ValG1 (Φ)(s) = inf
π∈Π

Prσ,π
s (Φ).

The player-1 strategy σ is ε-optimal, for ε ≥ 0, from the state s for the objective Φ if

ValG1 (Φ)(s) ≤ inf
π∈Π

Prσ,π
s (Φ) + ε.

Note that an optimal strategy is ε-optimal for ε = 0. We refer to player-1 strategies as (ε-)optimal
for Φ if they are (ε-)optimal from all states in S for the objective Φ. The optimal and ε-optimal
strategies for player 2 are defined analogously. Computing values, optimal, and ε-optimal strategies
is referred to as the quantitative analysis of games.

Sure, almost-sure, and limit-sure winning. Given a game graph G with an objective Φ for
player 1, a player-1 strategy σ ∈ Σ is a sure winning strategy from a state s ∈ S if for every player-2
strategy π ∈ Π, Outcome(s, σ, π) ⊆ Φ; that is, all possible outcomes lie in Φ when player 1 plays
according to the strategy σ. The player-1 strategy σ is an almost-sure winning strategy from the
state s for the objective Φ if for every player-2 strategy π ∈ Π, Prσ,π

s (Φ) = 1; that is, the path that
results from playing the game lies in Φ with probability 1 when player 1 plays according to the
strategy σ. A family ΣX ⊆ Σ of player-1 strategies is limit-sure winning from the state s for the
objective Φ if supσ∈ΣX infπ∈Π Prσ,π

s (Φ)(s) = 1; that is, for every ε > 0, the family ΣX contains a
player-1 strategy σ such that the path results from playing the game lies in Φ with probability at
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least 1−ε when player 1 plays according to the strategy σ. The sure winning, almost-sure winning,
and limit-sure winning strategies for player 2 are defined analogously.

For a game graph G and an objective Φ, the sure winning set SureG
1 (Φ) ⊆ S for player 1 is

the set of states from which player 1 has a sure winning strategy for Φ. Similarly, the almost-
sure winning set AlmostG

1 (Φ) ⊆ S for player 1 is the set of states from which player 1 has an
almost-sure winning strategy for Φ, and the limit-sure winning set LimitG

1 (Φ) ⊆ S for player 1 is
the set of states from which player 1 has a family of limit-sure winning strategies for Φ. We refer
to the states in SureG

1 (Φ) (AlmostG
1 (Φ); LimitG

1 (Φ)) as sure (almost-sure; limit-sure winning) for
player 1. The sure, almost-sure, and limit-sure winning sets SureG

2 (Ψ), AlmostG
2 (Ψ), and LimitG

2 (Ψ)
for player 2 with objective Ψ are defined analogously. It follows from the definitions that for all
21/2-player and concurrent game graphs, and all objectives Φ and Ψ for the two players, both
SureG

1 (Φ) ⊆ AlmostG
1 (Φ) ⊆ LimitG

1 (Φ) and SureG
2 (Ψ) ⊆ AlmostG

2 (Ψ) ⊆ LimitG
2 (Ψ). Computing

sure winning, almost-sure winning, and limit-sure winning states and strategies is referred to as
the qualitative analysis of games.

Sufficiency of a family of strategies for winning. Let X ∈ {P,M,F,PM ,PF}, and consider
the family ΣX ⊆ Σ of special strategies for player 1. The family ΣX of player-1 strategies suffices
with respect to an objective Φ on a class G of game graphs for

• sure winning, if for every game graph G ∈ G and every state s ∈ SureG
1 (Φ), there is a player-1

strategy σ ∈ ΣX such that for every player-2 strategy π ∈ Π, we have Outcome(s, σ, π) ⊆ Φ;

• almost-sure winning, if for every game graph G ∈ G and every state s ∈ AlmostG
1 (Φ), there is

a player-1 strategy σ ∈ ΣX such that for every player-2 strategy π ∈ Π, we have Prσ,π
s (Φ) = 1;

• limit-sure winning, if for every game graph G ∈ G and every state s ∈ LimitG
1 (Φ), we have

supσ∈ΣX infπ∈Π Prσ,π
s (Φ) = 1;

• optimality, if for every game graph G ∈ G and every state s ∈ S, there is a player-1 strategy
σ ∈ ΣX such that ValG1 (Φ)(s) = infπ∈Π Prσ,π

s (Φ);

• ε-optimality, for ε ≥ 0, if for every game graph G ∈ G and every state s ∈ S, there is a
player-1 strategy σ ∈ ΣX such that ValG1 (Φ)(s) ≤ infπ∈Π Prσ,π

s (Φ) + ε.

For sure winning, 11/2-player and 21/2-player games coincide with 2-player (turn-based deter-
ministic) games where the random player (who chooses the successor at the probabilistic states) is
interpreted as an adversary, i.e., as player 2. This is formalized in the following proposition.

Proposition 1 If a family ΣX of player-1 strategies suffices for sure winning with respect to an
objective Φ on all 2-player game graphs, then the family ΣX suffices for sure winning with respect
to Φ also on all 11/2-player and 21/2-player game graphs.

The following proposition states that randomized strategies are not necessary for sure winning.

Proposition 2 If a family ΣX of player-1 strategies suffices for sure winning with respect to an
objective Φ on all concurrent game graphs, then the family ΣX ∩ ΣP of pure strategies suffices for
sure winning with respect to Φ on all concurrent game graphs.
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6 Rational Behavior in Games

6.1 Zero-sum games and determinacy

A game (G,Φ,Ψ) consists of a game graph G, a player-1 objective Φ, and a player-2 objective Ψ.
The game is zero-sum if the two objectives are complementary, that is, Ψ = Ω \ Φ. Rational
behavior in zero-sum games is captured by the notions of optimal and ε-optimal strategies. The
key result, which establishes the existence of equilibria in zero-sum games, is determinacy: the
zero-sum game (G,Φ,Ψ) is determinate if at every state, the sum of the values for the two players
is 1; that is, ValG1 (Φ)(s)+ValG2 (Ψ)(s) = 1 for all s ∈ S. Determinacy implies the following equality:
for every state s ∈ S,

sup
σ∈Σ

inf
π∈Π

Prσ,π
s (Φ) = inf

π∈Π
sup
σ∈Σ

Prσ,π
s (Φ).

Determinacy also guarantees the existence of ε-optimal strategies, for all ε > 0, for both players
from every state. A deep result by Martin [71] established determinacy for all concurrent game
graphs with zero-sum Borel objectives; see Theorem 4.

A nonstochastic notion of determinacy is sure determinacy: the zero-sum game (G,Φ,Ψ) is
sure determinate if every state is in the sure-winning set of one of the players; that is, SureG

1 (Φ) ∪
SureG

2 (Ψ) = S. Since SureG
1 (Φ)∩ SureG

2 (Ψ) = ∅ for zero-sum games, if a game is sure determinate,
then the sure-winning sets of the two players partition the state space. Martin [70] established sure
determinacy for all turn-based deterministic game graphs with zero-sum Borel objectives. Sure
determinacy, however, does not hold for turn-based probabilistic game graphs (and thus not for
concurrent game graphs). In these graphs, there may be states from which neither player can win
surely even if one player has a reachability objective, and the other player the complementary safety
objective.

6.2 Nonzero-sum games and Nash equilibria

Rational behavior in nonzero-sum games is characterized by the notion of Nash equilibrium. Intu-
itively, a strategy profile is a Nash equilibrium if no player can gain by unilaterally deviating from
her strategy. Formally, for a game (G,Φ,Ψ) and ε ≥ 0, a strategy profile (σ∗, π∗) ∈ Σ × Π is an
ε-Nash equilibrium if the following two conditions hold:

sup
σ∈Σ

Prσ,π∗

s (Φ) ≤ Prσ∗,π∗

s (Φ) + ε;

sup
π∈Π

Prσ∗,π
s (Ψ) ≤ Prσ

∗,π∗

s (Ψ) + ε.

A Nash equilibrium is an ε-Nash equilibrium with ε = 0.

Sufficiency of a family of strategies for Nash equilibria. Let X ∈ {P,M,F,PM ,PF}, and
consider the families ΣX ⊆ Σ and ΠX ⊆ Π of special player-1 and player-2 strategies. Given ε ≥ 0,
the families ΣX and ΠX suffice for the existence of ε-Nash equilibria with respect to objectives
Φ and Ψ on a class G of game graphs, if for every game graph G ∈ G, there exists an ε-Nash
equilibrium (σ∗, π∗) for the game (G,Φ,Ψ) such that σ∗ ∈ ΣX and π∗ ∈ ΠX . The sufficiency
condition for the existence of Nash equilibria is obtained by taking ε = 0.

Multiplayer games. The notion of Nash equilibrium generalizes to more than two players. In
an n-player turn-based probabilistic game graph, the state space S is partitioned into n sets S1,
. . . , Sn —one for each of the players— and a set SP of probabilistic states (the special case of
21/2-player games is obtained for n = 2). An n-player concurrent game graph contains a move
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assignment Γi: S → 2A\∅ for each player i ∈ {1, . . . , n}, and the transition function has the type δ:
S × An → Dist(S). A n-player game (G,Φ1, . . . ,Φn) consists of an n-player game graph G and an
objective Φi for each player i ∈ {1, . . . , n}. In n-player games, a strategy profile σ = (σ1, . . . , σn)
is a tuple of strategies —one for each player. Given a strategy profile σ = (σ1, . . . , σn) and a
strategy σ′

i for player i, we write σ ↾ σ′
i for the strategy profile that results from σ by replacing the

i-component σi with σ′
i. For an n-player game (G,Φ1, . . . ,Φn) and ε ≥ 0, a strategy profile σ∗ is

an ε-Nash equilibrium if for all 1 ≤ i ≤ n,

sup
σ′

i
∈Σi

Pr
σ∗↾σ′

i

s (Φi) ≤ Prσ
∗

s (Φi) + ε.

As before, a Nash equilibrium is an ε-Nash equilibrium with ε = 0. The sufficiency of a family of
strategies for n-player Nash equilibria is defined as in the case of two players.

7 Turn-based Zero-sum Games

Reduction of games. A key method to obtain results in game theory is the principle of reduction.
Several results on complex games are obtained via reduction to simpler games: simpler in terms
of objectives, simpler in terms of game graphs (e.g., concurrent games to turn-based games), or
simpler in terms of winning criteria (e.g., quantitative to qualitative winning criteria). For example,
Martin [71] reduced concurrent games with Borel objectives to 2-player games with Borel objectives
(and larger state spaces). The reduction together with the Borel determinacy of 2-player games [70]
established the Borel determinacy of concurrent games. In this section, we present a reduction of
21/2-player games with Rabin objectives and almost-sure winning to 2-player games with Rabin
objectives (and sure winning) [15]. In Section 8, we will present a reduction of concurrent par-
ity games with quantitative winning criteria to solving multiple parity subgames with qualitative
winning criteria [16].

7.1 Strategy complexity

We determine the strategy complexity of turn-based zero-sum games with ω-regular objectives.

A local reduction of 21/2-player to 2-player Rabin games. Given a 21/2-player game graph
G = ((S,E), (S1, S2, SP ), δ), and a set R = {(E1, F1), . . . , (Ed, Fd)} of Rabin pairs, we construct a
2-player game graph G = ((S,E), (S1, S2), δ) together with an extended set R = R∪{(Ed+1, Fd+1)}
of Rabin pairs. For two states s, s′ ∈ S, we write s ≡R s′ to denote that for all 1 ≤ j ≤ d, both
s ∈ Ej iff s′ ∈ Ej , and s ∈ Fj iff s′ ∈ Fj . The construction of G is as follows. For every
nonprobabilistic state s ∈ (S1 ∪ S2), there is a corresponding state s ∈ S such that (1) s ∈ S1 iff
s ∈ S1, and (2) s ≡R s, and (3) (s, t) ∈ E iff (s, t) ∈ E. Every probabilistic state s ∈ SP is replaced
by the gadget shown in Fig. 1. In the figure, diamond-shaped states are player-2 states (in S2),
and square-shaped states are player-1 states (in S1). From the state s (with s ≡R s), the players
play the following three-step game in G. First, in state s player 2 chooses a successor (s̃, 2k), for
k ∈ {0, 1, . . . , d}. For every state (s̃, 2k), we have (s̃, 2k) ≡R s. Second, for k ≥ 1, in state (s̃, 2k)
player 1 chooses from two successors: state (ŝ, 2k − 1) with (ŝ, 2k − 1) ∈ Ek, or state (ŝ, 2k) with
(ŝ, 2k) ∈ Fk. The state (s̃, 0) has only one successor, (ŝ, 0). Third, in every state (ŝ, j) the choice
is between all states t such that (s, t) ∈ E, and it belongs to player 1 if k is odd, and to player 2 if
k is even. The set Ed+1 is empty; the set Fd+1 contains all states (ŝ, 0).

Given a set U ⊆ S of states in the 2-player game graph G, we denote by U = {s ∈ S | s ∈ U}
the set of corresponding states in the original 21/2-player game graph G. Similarly, given a pure
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Figure 1: Gadget for the reduction of 21/2-player Rabin games to 2-player Rabin games.

memoryless player-1 strategy σ on the 2-player game graph G, the corresponding (pure memoryless)
player-1 strategy σ on the 21/2-player game graph G is defined for all s ∈ S1 by σ(s) = t iff σ(s) = t.

Lemma 1 [15] For every 21/2-player game graph G and every set R of Rabin pairs, let U1 =

SureG
1 (Rabin(R)) and U2 = SureG

2 (Ω \ Rabin(R)). The following two assertions hold:

1. U1 = AlmostG
1 (Rabin(R)) = LimitG

1 (Rabin(R)) = S \ U2.

2. If σ is a pure memoryless sure winning strategy for player 1 from the states U1 in G, then σ
is an almost-sure winning strategy for player 1 from the states U1 in G.

Note that Lemma 1 states that for all 21/2-player game graphs G with Rabin objectives Φ, the
almost-sure winning set AlmostG

1 (Φ) and the limit-sure winning set LimitG
1 (Φ) coincide. Since all

Müller objectives can be reduced to Rabin objectives [75, 87], it follows that for all 21/2-player game
graphs with Müller objectives Φ, we also have AlmostG

1 (Φ) = LimitG
1 (Φ).

From almost-sure winning to optimal strategies. The analysis in [15] also showed that for
21/2-player games with Müller objectives, optimal strategies are no more complex than almost-sure
winning strategies. We sketch the idea behind the result.

A set U ⊆ S of states is δ-live if for every nonprobabilistic state u ∈ U ∩ (S1 ∪ S2), there exists
a state t ∈ U with (u, t) ∈ E. Let Bnd(U) = {s ∈ (U ∩ SP ) | (∃t ∈ E(s))(t 6∈ U)} be the set of
boundary probabilistic states of U , which have an edge out of U . We define the transformation
WinG

1
(U) of the game graph G as follows: all states outside U are removed, and every boundary

probabilistic state s ∈ Bnd(U) is converted into an absorbing state (i.e., E(s) = {s}) that is sure
winning for player 1. Observe that if U is δ-live, then WinG

1 (U) is a game graph. For a Müller
objective Φ and a real number r ∈ R, the value class VC (Φ, r) = {s ∈ S | ValG1 (Φ)(s) = r} is the
set of states with value r for player 1. For all 21/2-player game graphs, all Müller objectives Φ, and
all reals r > 0, the value class VC (Φ, r) is δ-live. The following lemma establishes a connection
between value classes, the transformation WinG

1 , and almost-sure winning.

Lemma 2 [15] For all 21/2-player game graphs, all Müller objectives Φ, and all reals r > 0, all
states of the game graph WinG

1
(VC (Φ, r)) are almost-sure winning for player 1 for the objective Φ.
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Table 1: The strategy complexity of turn-based zero-sum games with ω-regular objectives, where
ΣPM denotes the family of pure memoryless strategies, ΣPF denotes the family of pure finite-
memory strategies, and ΣM denotes the family of randomized memoryless strategies.

Objective 1-player 11/2-player 2-player 21/2-player

Reachability/ ΣPM ΣPM ΣPM ΣPM

Safety

Parity ΣPM ΣPM ΣPM ΣPM

Rabin ΣPM ΣPM ΣPM ΣPM

Streett ΣPF / ΣM ΣPF / ΣM ΣPF ΣPF

Müller ΣPF / ΣM ΣPF / ΣM ΣPF ΣPF

Lemma 3 [15] Consider a 21/2-player game graph G and a Müller objective Φ. Let σ be a player-1
strategy on G such that for all reals r > 0, the strategy σ is almost-sure winning on the game graph
WinG

1
(VC (Φ, r)) for the objective Φ. Then σ is an optimal strategy on G for Φ.

Lemmas 2 and 3 imply the following theorem.

Theorem 1 [15] If a family ΣC of player-1 strategies suffices for almost-sure winning with respect
to a Müller objective Φ on all 21/2-player game graphs, then ΣC suffices for optimality with respect
to Φ on all 21/2-player game graphs.

Summary of results. Martin [70] proved that for 2-player zero-sum games with Borel objectives,
the sure winning sets for the two players partition the state space. Moreover, the pure strategies
suffice for sure winning in 2-player games with Borel objectives; however, in general sure winning
strategies require infinite memory. Gurevich and Harrington [53] showed that for 2-player games
with ω-regular objectives, pure finite-memory strategies suffice for sure winning. They based the
construction of pure finite-memory sure winning strategies on a data structure, which is called
latest appearance record (LAR) and remembers the order of the latest appearances of the states
in a play. Emerson and Jutla [47] established that for 2-player games with Rabin objectives,
pure memoryless strategies suffice for sure winning. The results of Dziembowski et al. [45] give
precise memory requirements for pure strategies in 2-player games with ω-regular objectives: their
construction of strategies is based on a tree representation of a Müller objective, called the Zielonka
tree, which was introduced in [95].

Condon [29] showed that pure memoryless strategies suffice for optimality in 21/2-player games
with reachability and safety objectives. For 21/2-player games with parity objectives, the existence
of pure memoryless optimal strategies was proved in [25, 72, 94]. Lemma 1 and the result of
Emerson and Jutla [47] establish that pure memoryless strategies suffice for almost-sure winning in
21/2-player games with Rabin objectives. From Theorem 1 it follows that pure memoryless strategies
suffice for optimality in 21/2-player games with Rabin objectives. This implies the existence of pure
finite-memory optimal strategies for 21/2-player games with Streett or Müller objectives, because
every Müller and Streett objective can be specified as a parity objective [75, 87]. The precise
memory bound of [45] for pure strategies can be extended from 2-player game graphs to 21/2-player
game graphs [11]. In the special case of 11/2-player games (MDPs), randomized memoryless optimal
strategies exist for Müller and Streett objectives [14].

All results are summarized in Theorem 2 and also shown in Table 1.
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Theorem 2 The following assertions hold.

1. [70] The family ΣP of pure strategies suffices for sure winning with respect to Borel objectives
on all 2-player game graphs. Moreover, for all 2-player game graphs G and all Borel objectives
Φ, we have SureG

1 (Φ) = S \ SureG
2 (Ω \ Φ).

2. [53] The family ΣPF of pure finite-memory strategies suffices for sure winning with respect to
Streett and Müller objectives on all 2-player game graphs.

3. [47] The family ΣPM of pure memoryless strategies suffices for sure winning with respect to
reachability, safety, parity, and Rabin objectives on all 2-player game graphs.

4. [29, 25, 72, 94, 15] The family ΣPM of pure memoryless strategies suffices for optimality with
respect to reachability, safety, parity, and Rabin objectives on all 21/2-player game graphs.

5. [11] The family ΣPF of pure finite-memory strategies suffices for optimality with respect to
Streett and Müller objectives on all 21/2-player game graphs.

6. [14] The family ΣPF of pure finite-memory strategies and the family of ΣM of randomized
memoryless strategies each suffice for optimality with respect to Streett and Müller objectives
on all 11/2-player game graphs.

7.2 Computational complexity

We present complexity results for solving turn-based zero-sum games with ω-regular objectives.
The quantitative analysis of 11/2-player games with reachability and safety objectives can be

solved by linear programming [29]. For the quantitative analysis of 11/2-player games with Rabin
objectives, de Alfaro [32] gave a polynomial-time algorithm. The quantitative analysis of 11/2-player
games with Streett objectives can also be achieved in polynomial time [15, 13]. The results of [31]
characterize the complexity of solving 11/2-player games with ω-regular objectives that are specified
in various forms (e.g., as LTL formulae).

The analysis of 2-player games with reachability objectives is the And-Or graph reachability
problem, which is PTIME-complete [4, 60]. Emerson and Jutla [47] showed that the solution
problem for 2-player games with Rabin objectives is NP-complete, and dually, coNP-complete for
Streett objectives. It follows that 2-player games with parity objectives can be decided in NP ∩
coNP. Hunter and Dawar [59] proved that the solution problem for 2-player games with Müller
objectives is PSPACE-complete.

From Lemma 1 it follows that the qualitative analysis of 21/2-player games with Rabin objectives
can be reduced to the analysis of 2-player games with Rabin objectives. This, together with
Proposition 1, gives us results for qualitative analysis of 21/2-player games from the corresponding
results for 2-player games. The existence of pure memoryless optimal strategies for 21/2-player
games with reachability and safety objectives combined with a polynomial-time algorithm for the
quantitative analysis of MDPs establishes that the quantitative analysis of 21/2-player games with
reachability objectives lies in NP ∩ coNP [29]. Similarly, the existence of pure memoryless optimal
strategies for 21/2-player games with Rabin objectives combined with a polynomial-time algorithm
for solving MDPs with Streett objectives establishes that 21/2-player games with Rabin objectives
can be solved in NP. A lower bound of NP-hardness follows from the special case of 2-player
games, thus showing that the quantitative analysis of 21/2-player games with Rabin objectives is
NP-complete, and dually, coNP-complete for Streett objectives. The results of [12] prove that the
quantitative analysis of 21/2-player games with Müller objectives is PSPACE-complete.
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Table 2: The computational complexity of solving 21/2-player games with ω-regular objectives.

Objective 1-player 11/2-player 2-player 21/2-player game graph

qualitative quantitative qualitative qualitative quantitative
analysis analysis analysis analysis analysis

Reachability/ PTIME PTIME PTIME PTIME NP ∩ coNP
Safety

Parity PTIME PTIME NP ∩ coNP NP ∩ coNP NP ∩ coNP

Rabin PTIME PTIME NP-complete NP-complete NP-complete

Streett PTIME PTIME coNP-complete coNP-complete coNP-complete

Müller PTIME PTIME PSPACE-compl. PSPACE-compl. PSPACE-compl.

All results are summarized in Theorem 3 and shown in Table 2.

Theorem 3 The following assertions hold.

1. [52, 32, 13] Given a player-1 MDP G, the value function ValG1 (Φ) can be computed in poly-
nomial time for reachability, safety, parity, Rabin, Streett, and Müller objectives Φ.

2. [4, 60, 47, 59] Given a 2-player game graph G, the sure winning set SureG
1 (Φ) can be computed

in linear time for reachability and safety objectives Φ. Given a 2-player game graph G and a
state s, the decision problem whether s ∈ SureG

1 (Φ) is NP-complete if Φ is a Rabin objective;
coNP-complete if Φ is a Streett objective; PSPACE-complete if Φ is a Müller objective; and
can be decided in NP ∩ coNP if Φ is a parity objective.

3. [25, 15, 12] Given a 21/2-player game graph G, the sure winning set SureG
1 (Φ) can be computed

in linear time and the almost-sure winning set AlmostG
1 (Φ) can be computed in quadratic time

for reachability and safety objectives Φ. Given a 21/2-player game graph G and a state s, the
decision problems whether s ∈ SureG

1 (Φ) or s ∈ AlmostG
1 (Φ) are NP-complete if Φ is a

Rabin objective; coNP-complete if Φ is a Streett objective; PSPACE-complete if Φ is a Müller
objective; and can be decided in NP ∩ coNP if Φ is a parity objective.

4. [29, 25, 15, 12] Given a 21/2-player game graph G, a rational number r > 0, and a state
s, the decision problem whether ValG1 (Φ)(s) ≥ r is NP-complete if Φ is a Rabin objective;
coNP-complete if Φ is a Streett objective; PSPACE-complete if Φ is a Müller objective; and
can be decided in NP ∩ coNP if Φ is a reachability, safety or a parity objective.

7.3 Algorithms and open problems

Emerson and Jutla [48] established the equivalence of solving 2-player parity games and µ-calculus
model checking. This intriguing connection led to much research attempting to solve 2-player parity
games in polynomial time. Alas, the problem is still open.

Algorithms for 2-player parity games. The classical algorithm for solving parity games pro-
ceeds by a recursive decomposition of the problem and repeatedly solving games with reachability
objectives [73, 87]. The running time of the algorithm for games with n states, m edges, and e
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priorities is O(ne−1 · m). Jurdziński [63] gave an improved algorithm to solve parity games based
on a notion of ranking functions and progress measures. This algorithm, called the small-progress
measure algorithm, has a running time of O

(
(2n

e
)⌊

e

2
⌋ ·m

)
; moreover, there exists a family of games

on which the running time of the algorithm is exponential. Another notable algorithm for solving
parity games is the strategy improvement algorithm [91]. This algorithm iterates local optimiza-
tions of pure memoryless strategies which converge to a globally optimal strategy. Though the
best known bound for the running time of the strategy improvement algorithm is exponential, it
behaves well in practice. In fact, no family of games is known on which more than a polynomial
number of local strategy improvements is required. Based on the strategy improvement algorithm,
a randomized subexponential-time algorithm (with an expected running time of O

(
2
√

n·log n
)
) for

solving parity games was presented by Björklund et al. [5]. Recently, Jurdziński et al. [64] gave a
deterministic subexponential-time algorithm for solving 2-player games with parity objectives.

Algorithms for 21/2-player reachability games. It should be noted that computing sure win-
ning sets for 2-player parity games can be reduced to computing value functions for 21/2-player
reachability games. The reduction is obtained can be obtained in two steps: a simple reduction
of 2-player parity games to 2-player mean-payoff games was given by Puri [80, 62], and 2-player
mean-payoff games can be reduced to 21/2-player reachability games [96]. The notable algorithms
for the quantitative analysis of 21/2-player reachability games are a strategy improvement algorithm
by Condon [30], and based on Condon’s algorithm, a randomized subexponential-time algorithm
by Ludwig [67]. Ludwig’s original algorithm worked on binary game graphs (game graphs where
each state has at most two out going edges), but can be combined with the technique of [5] to
obtain a randomized subexponential-time algorithm for all 21/2-player games with reachability ob-
jectives [6]. The algorithm of [64] does not generalize in any obvious way to provide a deterministic
subexponential-time algorithm for 21/2-player reachability games.

Algorithms for 21/2-player parity games. The notable algorithms for 21/2-player parity games
are a strategy improvement algorithm [20] that combines the techniques used by the strategy
improvement algorithms for 2-player parity games and for 21/2-player reachability games; and based
on the strategy improvement algorithm, a randomized subexponential-time algorithm [20].

Algorithms for Rabin and Streett games. Notable algorithms for 2-player games with Rabin
and Streett objectives include the adaptation of the classical algorithm of Zielonka [95] for Müller
games specialized to Rabin and Streett games [58]; an algorithm that is based on a reduction to
the emptiness problem for weak-alternating automata [66]; a generalization of the small-progress
measure algorithm for parity games to Rabin and Streett games [78]; and a generalization of the
subexponential-time algorithm for parity games [64] to Rabin and Streett games [23]. The reduction
of 21/2-player games with Rabin and Streett objectives for qualitative analysis to 2-player games
(presented in Lemma 1) makes all algorithms of 2-player games with Rabin and Streett objectives
available for the qualitative analysis of 21/2-player Rabin and Streett games. An algorithm for
the quantitative analysis of 21/2-player Rabin and Streett games, which combines the strategy
improvement algorithm for 21/2-player reachability games with any algorithm for solving 2-player
Rabin and Streett games, is presented in [21].

Open problems. The most important open problems for turn-based zero-sum games are the
following:

1. a polynomial-time algorithm for computing the sure winning sets of 2-player game graphs
with parity objectives;
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2. a polynomial-time algorithm for computing the value functions of 21/2-player game graphs
with reachability and safety objectives;

3. a polynomial-time algorithm for computing the almost-sure winning sets and the value func-
tions of 21/2-player game graphs with parity objectives.

8 Concurrent Zero-sum Games

Concurrent games differ considerably from 21/2-player games. For example, in concurrent games
with reachability objectives, optimal strategies need not exist. Only ε-optimal strategies, for all
ε > 0, are guaranteed to exist [51], and in general they require randomization. In concurrent
games with Büchi objectives, in general ε-optimal strategies require both randomization and infinite
memory [34]. We start with several examples to illustrate these observations; the examples are
adapted from [37, 34].

Example 1 [Almost-sure winning] Consider the concurrent game graph shown in Fig. 2(a). At
the state s0, the sets of available moves for player 1 and player 2 are {a, b} and {c, d}, respectively.
The transition function at s0 is defined as follows:

δ(s0, a, c)(s0) = δ(s0, b, d)(s0) = 1; δ(s0, a, d)(s1) = δ(s0, b, c)(s1) = 1.

The state s1 is absorbing, where a state s of a concurrent game graph is absorbing if for all moves
a1 ∈ Γ1(s) and a2 ∈ Γ2(s), we have δ(s, a1, a2)(s) = 1. The objective for player 1 is to reach the
state s1; that is, player 1 has the reachability objective Reach({s1}).

Consider a pure strategy σ for player 1. Let π be the following strategy for player 2: each time
player 1 chooses move a, player 2 chooses move c; each time player 1 chooses move b, player 2
chooses move d. The path starting in s0 and resulting from the players following the strategy profile
(σ, π) stays in s0 forever, and never visits the target state s1. Hence for every pure strategy for
player 1, from s0 there is a winning counterstrategy for player 2.

Now consider the following randomized memoryless strategy σ0.5 for player 1: at the state s0,
player 1 chooses each of the moves a and b with probability 1/2. For every strategy π for player 2, the
random walk starting in s0 and resulting from the strategy profile (σ0.5, π) proceeds, in each round,
with probability 1/2 to s1, and stays with probability 1/2 in s0. Hence the target state s1 is reached
with probability 1. For every player-2 strategy π, there exists a path ω ∈ Outcome(s0, σ0.5, π) that
never visits s1; however, the set {ω} has measure 0. Thus, although player 1 cannot win this game
with certainty, she can win with probability 1: the state s0 is not sure winning, but almost-sure
winning for player 1.

Example 2 [Limit-sure winning] Consider the concurrent game graph shown in Fig. 2(b). The
transition function at the state s0 is defined as follows:

δ(s0, a, c)(s0) = 1; δ(s0, b, d)(s2) = 1; δ(s0, a, d)(s1) = δ(s0, b, c)(s1) = 1.

The states s1 and s2 are absorbing. The objective for player 1 is to reach s1; that is, player 1 has
the reachability objective Reach({s1}).

For any ε > 0, consider the following randomized memoryless strategy σε for player 1: at s0,
choose move a with probability 1− ε, and move b with probability ε. The game starts at s0. In each
round in which player 2 chooses move c, the game proceeds to s1 with probability ε, and stays in
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Figure 2: Examples of concurrent games.

s0 with probability 1− ε. In each round in which player 2 chooses move d, the game proceeds to s1

with probability 1 − ε, and to s2 with probability ε. Hence, against every strategy π for player 2,
given the strategy σε for player 1, the game reaches s1 with probability at least 1 − ε. It follows
that for all reals ε > 0, there exists a player-1 strategy σ such that for all player-2 strategies π,
Prσ,π

s0
(Reach({s1})) ≥ 1 − ε; that is, s0 ∈ LimitG

1 (Reach({s1})).

We now argue that s0 6∈ AlmostG
1 (Reach({s1})). To see this, given a strategy σ for player 1,

consider the following strategy π for player 2: for all k ≥ 0, in round k, if player 1 chooses move a
with probability 1, then player 2 chooses move c and ensures that s1 is reached with probability 0;
otherwise, in round k, if player 1 chooses move b with positive probability, then player 2 chooses
move d, and the game reaches s2 with positive probability.

Example 3 [Büchi objectives] Consider the concurrent game graph shown in Fig. 2(c). The tran-
sition function at s0 is same as in Fig 2(b). The state s2 is absorbing, and from state s1, the next
state is always s0. The objective for player 1 is to visit s1 infinitely often; that is, player 1 has the
Büchi objective Büchi({s1}).

For any ε > 0, we construct a strategy σε for player 1 as follows. Let 〈ε0, ε1, ε, . . .〉 be an infinite

sequence of reals εi > 0 such that
∏∞

i=0(1 − εi) ≥ 1− ε (e.g., let 1 − εi = (1 − ε)
1

2i+1 for all i ≥ 0).
At the state s0, between the i-th and (i+1)-st visit to s1, fix an εi-optimal player-1 strategy to reach
s1 as described for Fig. 2(b), i.e., a strategy that ensures that s1 is reached with probability 1 − εi.
The strategy ensures that against every player-2 strategy π, the state s1 is visited infinitely often
with probability 1 − ε. Hence s0 ∈ LimitG

1 (Büchi({s1})). Note that the strategy σε needs to count
the number of visits to s1 and therefore requires infinite memory. On the other hand, given any
finite-memory strategy for player 1, there is a strategy for player 2 that ensures with probability 1
that s1 is visited only finitely often. It follows that in general ε-optimal strategies for concurrent
games with Büchi objectives require infinite memory.

Characterization of values. Although infinite-memory strategies are required for almost-sure
and limit-sure winning of concurrent games with parity objectives, there exist polynomial witnesses
for such strategies [34]. This result was obtained by an analysis of certain µ-calculus formulas and
established that the qualitative analysis of concurrent parity games can be achieved in NP ∩ coNP.
In contrast to turn-based games, in concurrent games with reachability objectives, values can be
irrational even if all transition probabilities are rational [42]. The values of concurrent games
with parity objectives can be characterized by formulas of a quantitative µ-calculus [42]. As a
consequence, a 3EXPTIME algorithm was obtained for the quantitative analysis of concurrent
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parity games. This was later improved to PSPACE [16, 13], and we follow that line of reasoning
here. We present a reduction to obtain efficient witnesses for ε-optimal strategies in concurrent
games from witnesses for limit-sure winning strategies in subgames [16]. A key concept in the
reduction is the notion of so-called locally-optimal strategies.

Locally-optimal strategies. Consider a concurrent game graph G. A move selector ξ for player 1
at a state s ∈ S is a distribution ξ ∈ Dist(A) such that for all moves a ∈ A, if ξ(a) > 0, then
a ∈ Γ1(s). Given a parity objective Φ for player 1, the player-1 move selector ξ at s is locally
optimal if for all opponent moves a2 ∈ Γ2(s), we have

∑

t∈S

∑

a1∈Γ1(s)

ValG1 (Φ)(t) · δ(s, a1, a2)(t) · ξ(a1) ≥ ValG1 (Φ)(s);

that is, for all opponent moves, the expected value of the game at the next state is at least the
value of the game at the current state. We denote by Ξs the set of locally-optimal move selectors
for player 1 at state s. A player-1 strategy σ ∈ Σ is locally optimal if σ(~s′ · s) ∈ Ξs for all state
sequences ~s′ ∈ S∗ and states s ∈ S; that is, the strategy plays only locally-optimal move selectors.

From limit-sure winning to ε-optimal strategies. Let G = (S,A,Γ1,Γ2, δ) be a concurrent
game graph and let p be a priority function for G. For a state s ∈ S, we write OptSupp(s) =
{Supp(ξ) | ξ ∈ Ξs} for the set of support sets of locally-optimal move selectors for player 1 at s.
Consider the parity objective Φ = Parity(p) for player 1 and a value class VC (Φ, r), for some real

0 < r < 1. We construct a new concurrent game graph G̃r = (S̃r, Ã, Γ̃1, Γ̃2, δ̃) with a priority
function p̃ as follows:

1. State space.

S̃r = {s̃ | s ∈ VC (Φ, r)} ∪ {〈s, γ〉 | s ∈ VC (Φ, r) and γ ∈ OptSupp(s)} ∪ {w1, w2}.

2. Priority function.

(a) p̃(s̃) = p(s) for all s ∈ VC (Φ, r);

(b) p̃(〈s, γ〉) = p(s) for all s ∈ VC (Φ, r) and γ ∈ OptSupp(s);

(c) p̃(w1) = 0 and p̃(w2) = 1.

3. Move assignments.

(a) Γ̃1(s̃) = OptSupp(s) and Γ̃2(s̃) = {⋆}, where ⋆ 6∈ A is a new move; i.e., player 2 has no
choice of moves.

(b) Γ̃1(〈s, γ〉) = {γ} ∪ (Γ1(s) \ γ) and Γ̃2(〈s, γ〉) = Γ2(s); i.e., for player 1, all moves in γ are
collapsed into a single new move, and the moves not in γ are still available.

4. Transition function.

(a) δ̃(s̃, γ, ⋆)(〈s, γ〉) = 1; i.e., at state s̃, player 1 chooses an element of OptSupp(s).

(b) Transition function at state 〈s, γ〉:

i. For all moves a2 ∈ Γ2(s), if there exists a move a1 ∈ γ such that∑
t6∈VC (Φ,r) δ(s, a1, a2)(t) > 0, then δ̃(〈s, γ〉, γ, a2)(w1) = 1; i.e., if player 1 chooses

a move a1 ∈ γ and the original game on G proceeds with positive probability to
a different value class, then the new game on G̃r proceeds to w1. Note that since
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a1 ∈ γ and γ ∈ OptSupp(s), if the game on G proceeds with positive probability
to a different value class, then it proceeds with positive probability to a value class
VC (Φ, r′) with r′ > r.

ii. For all moves a2 ∈ Γ2(s), if
∑

t∈VC (Φ,r) δ(s, a1, a2)(t) = 1 for all moves a1 ∈ γ,

then for each state t ∈ VC (Φ, r), let δ̃(〈s, γ〉, γ, a2)(t̃) =
∑

a1∈γ ξ(a1) · δ(s, a1, a2)(t),
where ξ is a locally-optimal move selector for player 1 at state s with Supp(ξ) = γ.

iii. For all moves a1 ∈ (Γ1(s) \ γ) and a2 ∈ Γ2(s), let δ̃(〈s, γ〉, a1, a2)(t̃) = δ(s, a1, a2)(t)
for each state t ∈ VC (Φ, r), and let δ̃(〈s, γ〉, a1, a2)(w2) =

∑
t6∈VC (Φ,r) δ(s, a1, a2)(t).

(c) The states w1 and w2 are absorbing.

Observe that for the player-1 objective Φ̃ = Parity(p̃), the player-1 value at the state w1 is 1, and
the player-1 value at w2 is 0.

Lemma 4 [16] For all concurrent game graphs G, all parity objectives Φ, all reals 0 < r < 1, and
all states s ∈ VC (Φ, r), the state s̃ is limit-sure winning for player 1 for the objective Φ̃ in the
game graph G̃r.

Lemma 4 reduces the quantitative analysis of a concurrent game G with a parity objective to
the qualitative analysis of subgames of the form G̃r. Using Lemma 4, ε-optimal strategies on G
can be obtained from limit-sure winning strategies on G̃r and the approximation of locally-optimal
strategies [16]. Limit-sure winning strategies for concurrent parity games can be found using the
algorithm of [34], and the approximation of locally-optimal strategies can be defined by a formula
in the alternation-free fragment of the theory of real-closed fields. This shows that the quantitative
analysis of concurrent games with parity objectives can be performed in PSPACE.1

8.1 Strategy complexity

Concurrent games with sure winning criteria coincide with 2-player (turn-based) games with sure
winning criteria. Hence the results for the sure winning of concurrent games follow from the results
for winning 2-player games. The most restrictive families of strategies that suffice for the almost-
sure and limit-sure winning of concurrent games with parity objectives were characterized in [34].
Since concurrent games with Büchi objectives require randomized infinite-memory strategies for
limit-sure winning (recall Example 3), it follows that concurrent games with parity, Rabin, and
Streett objectives require infinite memory for limit-sure winning and for ε-optimality. The existence
of memoryless optimal strategies for concurrent games with safety objectives and the existence of
memoryless ε-optimal strategies, for all ε > 0, for concurrent games with reachability objectives, are
classical [52]. The existence of memoryless ε-optimal strategies, for all ε > 0, for concurrent games
with reachability objectives can be shown using an analysis of the limit behavior of discounted
games with the aid of Puisieux series [52]; an elementary proof is available in [17]. The existence
of memoryless ε-optimal strategies, for all ε > 0, for concurrent games with coBüchi objectives was
established in [16] using Lemma 4 as a key observation. The results are summarized in Theorem 4.

Theorem 4 For all concurrent game graphs G, all Borel objectives Φ, and all states s, we have
ValG1 (Φ)(s) + ValG2 (Ω \ Φ)(s) = 1 [71]. The most restrictive families of strategies that suffice for
sure winning, almost-sure winning, limit-sure winning, and ε-optimality on concurrent game graphs
with respect to different classes of ω-regular objectives are presented in Table 3 [34, 16].

1In [16] the complexity was wrongly claimed as NP ∩ coNP; the details of the corrected result is available in [13]
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Table 3: The strategy complexity of concurrent games with ω-regular objectives, where ΣPM de-
notes the family of pure memoryless strategies, ΣM denotes the family of randomized memoryless
strategies, and ΣHI denotes the family of randomized, history-dependent, infinite-memory strate-
gies.

Objectives Sure Almost-sure Limit-sure ε-optimal

Reachability ΣPM ΣM ΣM ΣM

Safety ΣPM ΣPM ΣPM ΣM

Büchi ΣPM ΣM ΣHI ΣHI

coBüchi ΣPM ΣM ΣM ΣM

Parity ΣPM ΣHI ΣHI ΣHI

Rabin ΣPM ΣHI ΣHI ΣHI

Streett ΣPF ΣHI ΣHI ΣHI

Müller ΣPF ΣHI ΣHI ΣHI

8.2 Computational complexity

The complexity results for the sure winning of concurrent games follow from the corresponding
results for 2-player games. Given a concurrent game graph of size n and a parity objective of
e priorities, the almost-sure and limit-sure winning sets can be computed in time O(ne+1), and
the almost-sure and limit-sure winning properties of a state can be decided in NP ∩ coNP [34].
The quantitative analysis of concurrent games with reachability objectives can be performed in
PSPACE [50]. From the results of [16] it follows that the quantitative analysis of concurrent games
with parity objectives can also be accomplished in PSPACE (see [13] for details). A concurrent
game with a Rabin or Streett objectives with d pairs can be transformed to a concurrent game with
a parity objective with O(d) priorities, where the size of the resulting game graph is exponentially
larger than the size of the original game graph; the reduction uses an index-appearance record
construction [86], which is an adaptation of the latest-appearance record construction of [53]. The
transformation together with the qualitative analysis of concurrent parity games shows that the
almost-sure and limit-sure winning sets of concurrent games with Rabin and Streett objectives can
be computed in EXPTIME. Moreover, the transformation together with the quantitative analysis
of concurrent parity games yields an EXPSPACE upper bound for the quantitative analysis of
concurrent games with Rabin and Streett objectives. The upper bounds for concurrent games
with Rabin and Streett objectives also hold for Müller objectives. The results are summarized in
Theorem 5 and also presented in Table 4.

Theorem 5 Given a concurrent game graph G, an objective Φ, a rational number r > 0, and a
state s, the following assertions hold:

1. [37, 34] whether s ∈ SureG
1 (Φ), s ∈ AlmostG

1 (Φ), or s ∈ LimitG
1 (Φ) can be decided in polyno-

mial time if Φ is a reachability, safety, Büchi, or coBüchi objective;

2. [34] whether s ∈ SureG
1 (Φ), s ∈ AlmostG

1 (Φ), or s ∈ LimitG
1 (Φ) can be decided in NP ∩ coNP

if Φ is a parity objective;

3. whether s ∈ SureG
1 (Φ) is NP-complete if Φ is a Rabin objective, coNP-complete if Φ is a

Streett objective, and PSPACE-complete if Φ is a Müller objective;
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Table 4: The computational complexity of solving concurrent games with ω-regular objectives.

Objectives Sure Almost-sure Limit-sure Values

Reachability PTIME PTIME PTIME PSPACE

Safety PTIME PTIME PTIME PSPACE

Büchi PTIME PTIME PTIME PSPACE

coBüchi PTIME PTIME PTIME PSPACE

Parity NP ∩ coNP NP ∩ coNP NP ∩ coNP PSPACE

Rabin NP-complete EXPTIME EXPTIME EXPSPACE

Streett coNP-complete EXPTIME EXPTIME EXPSPACE

Müller PSPACE-complete EXPTIME EXPTIME EXPSPACE

4. whether s ∈ AlmostG
1 (Φ) or s ∈ LimitG

1 (Φ) can be decided in EXPTIME if Φ is a Rabin,
Streett, or Müller objective;

5. [50, 16, 13] whether ValG1 (Φ)(s) ≥ r can be decided in PSPACE if Φ is a reachability, safety,
Büchi, coBüchi, or parity objective;

6. whether ValG1 (Φ)(s) ≥ r can be decided in EXPSPACE if Φ is a Rabin, Streett, or Müller
objective.

8.3 Algorithms and open problems

Given a concurrent game graph of size n and a parity objective Φ with e priorities, the winning
sets SureG

1 (Φ), AlmostG
1 (Φ), and LimitG

1 (Φ) can be computed in time O(ne+1) [34]. This result was
obtained by defining the three winning sets in the µ-calculus. The evaluation of the µ-calculus for-
mulas by iterative fixpoint approximation give algorithms for the qualitative analysis of concurrent
games with parity objectives [34]. Similarly, the value function of a concurrent game with a parity
objective can be defined using a quantitative µ-calculus [42], but iterative fixpoint iteration may
not terminate. From the fixpoint characterization of value functions, a 3EXPTIME algorithm for
the quantitative analysis of concurrent parity games can be obtained by a reduction to the theory
of the real-closed fields (a 2EXPTIME decision procedure is applied to an exponential-size formula
with addition and multiplication over the reals) [42].

The most interesting open problems for concurrent games are the following.

1. The best known lower bounds for computing the almost-sure and limit-sure winning sets for
concurrent games with Rabin and Streett objectives are NP-hard and coNP-hard, respectively
(this follows from the hardness of the corresponding 2-player games). The best known upper
bounds are EXPTIME. It is open if the problems are NP-complete and coNP-complete,
respectively.

2. The best known lower bounds for computing the values of concurrent games with Rabin and
Streett objectives are again NP-hard and coNP-hard, respectively. The best known upper
bounds are EXPSPACE. No PSPACE or EXPTIME algorithms are known for these problems.
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9 Nonzero-sum Games

9.1 Nash equilibria in turn-based games

A key technique to prove the existence of Nash equilibria in n-player turn-based probabilistic games
is a general construction from repeated games based on so-called “threat” strategies. The basic
idea is that each player plays an optimal strategy in the zero-sum game against all other players.
Any deviation of a player i from this strategy is punished indefinitely by the other players, who
will switch to optimal strategies in the zero-sum game against player i (see, e.g., [76, 89]). The
following lemma shows that such threat strategies can be effectively applied against pure strategies.

Lemma 5 [27] For all ε ≥ 0, if the family ΣP of pure player-1 strategies suffices for ε-optimality
on all 21/2-player game graphs with respect to a class O of player-1 objectives that is closed under
complementation, then ε-Nash equilibria exist in all n-player turn-based probabilistic games where
each player has an objective from O.

Proof. We prove the first part; the proof of the second part is similar. Let the objective of
player i be Φi, for i ∈ {1, . . . , n}. Consider the n zero-sum games played between player i and the
team {1, 2, . . . , n} \ {i} of players, with the objective Φi for player i and the objective Ω \ Φi for
the opposing team of players. By assumption, there is a pure ε-optimal strategy πi

i for player i in
the game with the objective Φi, and a pure ε-optimal strategy πi

j for each player j 6= i in the game

with the objective Ω \ Φi. Now consider the following strategy τ i for each player i ∈ {1, . . . , n}.
Player i plays according to the strategy πi

i as long as all other players j 6= i play according to πj
j ,

and player i switches to πi
j as soon as some player j deviates from πj

j . Since the strategies are pure,

any deviation is immediately noted. The strategies τ i, for i = 1, . . . , n, form an ε-Nash equilibrium.

Lemma 5 and the existence of pure optimal strategies for 2-player games with Borel objectives
and 21/2-player games with ω-regular objectives (Theorem 2) proves the existence of Nash equi-
libria in n-player turn-based deterministic games with Borel objectives and in n-player turn-based
probabilistic games with ω-regular objectives. The results are summarized in Theorem 6 and also
shown in Table 5.

Theorem 6 [27] The following assertions hold.

1. The family of pure strategies suffices for the existence of Nash equilibria on n-player turn-based
deterministic game graphs with respect to Borel objectives.

2. The family of pure finite-memory strategies suffices for the existence of Nash equilibria on
n-player turn-based probabilistic game graphs with respect to ω-regular objectives.

3. The family of pure strategies suffices for the existence of ε-Nash equilibria, for all ε > 0,
on n-player turn-based probabilistic game graphs with respect to Borel objectives. There are
2-player turn-based probabilistic games with objectives on the third level of the Borel hierarchy
(i.e., in Σ3) for both players for which no Nash equilibria exist.

In [22] a refined notion of Nash equilibrium is presented for the special case of 2-player (turn-
based deterministic) nonzero-sum games. The proof techniques of [22] also use the notion of threat
strategies.
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Table 5: Nash equilibria in n-player turn-based probabilistic games, where “NE” denotes the exis-
tence of Nash equilibria, “ε-NE” denotes the existence of ε-Nash equilibria for all ε > 0, ΣP denotes
the family of pure strategies, and ΣPF denotes the family of pure finite-memory strategies.

Game graph Objectives Existence Strategies

Turn-based deterministic n-player Borel NE ΣP

Turn-based probabilistic n-player ω-regular NE ΣPF

Turn-based probabilistic n-player Borel ε-NE ΣP

9.2 Nash equilibria in concurrent games

In the case of concurrent games, results about the existence of Nash equilibria are known only
for low levels of the Borel hierarchy. Seechi and Sudderth [84] established the existence of Nash
equilibria in n-player concurrent games where each player has a safety objective. The existence
of ε-Nash equilibria, for all ε > 0, in n-player concurrent games with reachability objectives for
all players was shown in [27]. In the special case of 2-player concurrent games, the existence of
ε-Nash equilibria, for all ε > 0, was proved for all ω-regular objectives [10]. The latter result
uses threat strategies and the reduction principle. First, [10] identifies sufficient conditions that
guarantee the existence of ε-Nash equilibria, and shows that if the conditions are not satisfied,
then the a nonzero-sum game with ω-regular objectives can be reduced to a nonzero-sum game
with reachability objectives. Then the existence of ε-Nash equilibria is established using threat
strategies; however, the construction of threat strategies is more involved as the strategies can be
randomized. The results are summarized in Theorem 7. The known results and open problems are
listed in Table 6.

Theorem 7 The following assertions hold.

1. [84] Nash equilibria exist for n-player concurrent games with safety objectives for all players.

2. [27] ε-Nash equilibria, for all ε > 0, exist for n-player concurrent games with reachability
objectives for all players.

3. [10] ε-Nash equilibria, for all ε > 0, exist for 2-player concurrent games with ω-regular objec-
tives.

10 Related Topics

In this survey we focused on two-player games played on graphs with finite state spaces, where
each player has perfect information about the state of the game, and the objectives of the players
are qualitative (i.e., for each player, every path is either winning or losing). We briefly discuss
several extensions of such games which have been studied in the literature, and give a few relevant
references (there is no attempt at being exhaustive).

Partial-information games. In partial-information games, the players choose their moves based
on incomplete information about the state of the game. Such games are harder to solve than the
corresponding perfect-information games. For example, turn-based deterministic (2-player) games
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Table 6: Nash equilibria in n-player concurrent games, where “NE” denotes the existence of Nash
equilibria and “ε-NE” denotes the existence of ε-Nash equilibria for all ε > 0.

Game graph Objective Existence

Concurrent 2-player ω-regular ε-NE

Concurrent 2-player Borel ??

Concurrent n-player safety NE

Concurrent n-player reachability ε-NE

Concurrent n-player ω-regular ??

Concurrent n-player Borel ??

with partial information and zero-sum reachability/safety objectives are 2EXPTIME-complete [83].
In the presence of more than two players, turn-based deterministic games with partial information
and reachability objectives (for one of the players) are even undecidable [83]. A key technique
to solve partial-information games (when possible) is by reduction to perfect-information games,
using a subset construction on the state space similar to the determinization of finite automata.
The results in [19] present a close connection between a subclass of partial-information turn-based
games and perfect-information concurrent games. The algorithmic analysis of partial-information
turn-based games with ω-regular objectives is studied in [18]; the complexity of partial-information
MDPs, in [77]. Another interesting variety of partial-information games is the class of games where
the starting state is unknown [55].

Infinite-state games. There are several extensions of games played on finite state spaces to games
played on infinite state spaces. Notable examples are pushdown games and timed games. In the
case of pushdown games, the state of a game encodes an unbounded amount of information in the
form of the contents of a stack. Deterministic pushdown games are solved in [92] (see [93] for a
survey); probabilistic pushdown games, in [49, 50]. In the case of timed games, the state of a game
encodes an unbounded amount of information in the form of real-numbered values for finitely many
clocks. Timed games are studied in [68, 33].

Quantitative objectives. Quantitative objectives, where each player tries to maximize a numer-
ical payoff, are standard in game theory and economics. In the case of graph games, the states or
edges of the game graph are labeled with numbers that represent rewards, and the rewards that
occur along a path determine each player’s payoff. Notable examples of quantitative objectives
on such labeled game graphs are discounted-reward objectives and limit-average (or mean-payoff )
objectives. Games with discounted rewards were introduced by Lloyd Shapley [85] and have been
extensively studied in economics, and recently also in systems theory [38]. They have several
pleasant mathematical properties, such as robustness with respect to slight perturbations in the
numerical labels of a game graph. For turn-based graph games with limit-average objectives, the
existence of pure memoryless optimal strategies was shown in [46]. The determinacy of concurrent
games with limit-average objectives was proved in [74]; see also [52] for a detailed analysis of these
games. The results of [89, 90] prove the existence of ε-Nash equilibria in two-player nonzero-sum
concurrent games with limit-average objectives, for all ε > 0. The complexity of turn-based deter-
ministic graph games with limit-average objectives is studied in [96]; the complexity of concurrent
graph games with limit-average objectives, in [26].

Logic and games. The connection between logical quantifiers and games is deep and well-
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established. Game theory also provides a useful framework for studying properties of sets. The
results of Martin [70, 71] establishing Borel determinacy for turn-based deterministic and concur-
rent games illuminate several key properties of sets. The close connection between logics on trees
and turn-based deterministic graph games is well-exposed in [87]. The µ-calculus is a logic of fixed
points which is expressive enough to capture all ω-regular objectives [65]. Allen Emerson and Cha-
ranjit Jutla [48] established the equivalence of µ-calculus model checking and solving turn-based
deterministic graph games with parity objectives. A quantitative µ-calculus in proposed in [42]
to solve concurrent graph games with parity objectives, and in [72] to solve turn-based probabilis-
tic graph games with parity objectives. The alternating-time temporal logic ATL requires game
solving to solve the model-checking problem [2].

Relationships between games. Establishing qualitative and quantitative relationships between
games is an intriguing area of research. The notions of abstractions for game graphs [57, 54],
refinement relations between game graphs [3], and distances between game graphs [38, 43] are
explored in the literature.
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pages 160–169. IEEE, 2004.

[23] K. Chatterjee, T.A. Henzinger, and N. Piterman. Generalized parity games. In FoSSaCS’07,
LNCS 4423, Springer, pages 153–167, 2007.
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