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Abstract. 2.5 player parity games combine the challenges posed by 2.5 player
reachability games and the qualitative analysis of parity games. These two types
of problems are best approached with different types of algorithms: strategy im-
provement algorithms for 2.5 player reachability games and recursive algorithms
for the qualitative analysis of parity games. We present a method that—in con-
trast to existing techniques—tackles both aspects with the best suited approach
and works exclusively on the 2.5 player game itself. The resulting technique is
powerful enough to handle games with several million states.

1 Introduction

Parity games are non-terminating zero sum games between two players, Player 0 and
Player 1. The players move a token along the edges of a finite graph without sinks. The
vertices are coloured, i.e. labelled with a priority taken from the set of natural numbers.
The infinite sequence of vertices visited by the token is called the run of a graph, and
each run is coloured according to the minimum priority that appears infinitely often on
the run. A run is winning for a player if the parity of its colour agrees with the parity of
the player.

Parity games come in two flavours: games with random moves, also called 2.5
player games, and games without random moves, called 2 player games. For 2 player
games, the adversarial objectives of the two players are to ensure that the lowest priority
that occurs infinitely often is even (for Player 0) and odd (for Player 1), respectively.
For 2.5 player games, the adversarial objectives of the two players are to maximise the
likelihood that the lowest priority that occurs infinitely often is even resp. odd.

Solving parity games is the central and most expensive step in many model check-
ing [1,16,20,34,48], satisfiability checking [34,43,46,48], and synthesis [39,44] meth-
ods. As a result, efficient algorithms for 2 player parity games have been studied inten-
sively [3–5, 19, 21, 22, 31, 32, 34, 36–38, 40–42, 45, 47, 49].

Parity games with 2.5 players have recently attracted attention [6–10,17,18,26,50].
This attention, however, does not mean that results are similarly rich or similarly diverse
as for 2 player games. Results on the existence of pure strategies and on approximation
algorithms [17, 50] are decades younger than similar results for 2 player games, while
algorithmic solutions [7, 9] focus on strategy improvement techniques only.

The qualitative counterpart of 2.5 player games, where one of the players has the
goal to win almost surely while the other one wants to win with a non-zero chance,
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can be reduced to 2 player parity games, cf. [12] or attacked directly on the 2.5 player
game with recursive algorithm [30]. The more interesting quantitative analysis can be
approached through a reduction to 2.5 player reachability games [2], which can then
be attacked with strategy improvement algorithms [14, 22, 36, 40, 45]. Alternatively,
entangled strategy improvement algorithms can also run concurrently the 2.5 player
parity game directly (for the quantitative aspects) and on a reduction to 2 player parity
games (for the qualitative aspects) [7, 9]. (Or, likewise, run on the larger game with
an ordered quality measure that gives preference to the likelihood to win and uses the
progress measure from [4] or [47] as a tie-breaker.)

This raises the question if strategy improvement techniques can be directly applied
on 2.5 player parity games, especially as such games are memoryless determined and
therefore satisfy a main prerequisite for the use of strategy improvement algorithms.
The short answer is that strategy algorithms for 2.5 player parity games simply do not
work. Classical strategy improvement algorithms follow a joint pattern. They start with
an arbitrary strategy f for one of the players (say Player 0). This strategy f maps each
vertex of Player 0 to a successor, and thus resolves all moves of Player 0. This strategy
is then improved by changing the strategy f at positions, where it is profitable to do so.
The following steps are applied repeatedly until there is no improvement in Step 2.

1. Evaluate the simpler game resulting from fixing f .
2. Identify all changes to f that, when applied once1, lead to an improvement.
3. Obtain a new strategy f ′ from f by selecting some subset of these changes.

So where does this approach go wrong? The first step works fine. After fixing a
strategy for Player 0, we obtain a 1.5 player parity game, which can be solved efficiently
with standard techniques [15].

It is also not problematic to identify the profitable switches in the second step. The
winning probability for the respective successor vertex provides a natural measure for
the profitability of a switch. We will show in Section 5 that, as usual for strategy im-
provement, any combination of such profitable switches will lead to an improvement.

The problem arises with the optimality guarantees. Strategy improvement algo-
rithms guarantee that a strategy that cannot be improved is optimal. In the next para-
graph, we will see an example, where this is not the case. Moreover, we will see that
it can be necessary to change several decisions in a strategy f in order to obtain an
improvement, something which is against the principles of strategy improvement.

1.1 An illustrating example

Consider the example 2.5 player parity game Pe depicted in Figure 1. Square vertices
are controlled by Player 0, while triangular ones are controlled by Player 1. In circular
vertices, a random successor vertex is chosen with the given probability. In vw, Player 0
wins with certainty (and therefore in particular almost surely), while she loses with
certainty in vl. In v0.55 (or v0.95), Player 0 wins with probability 0.55 (or 0.95). For

1 In classic strategy improvement algorithms, the restriction to implementing a change once is
made to keep it easy to identify the improvements. Such changes will also lead to an improve-
ment when applied repeatedly.
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Fig. 1. A probabilistic parity game Pe.

the nodes v0 and v1, we can see that the mutually optimal strategy for Player 0 and
Player 1 are to play e0,2 and e1,1, respectively. Player 0 therefore wins with probability
0.95 when the game starts in v0 and both players play optimally.

1.2 Naive strategy iteration

Strategy iteration algorithms start with an arbitrary strategy, and use an update rule
to get profitable switches. These are edges, where the new target vertex has a higher
probability of reaching the winning region (when applied once) compared to the current
vertex. As usual with strategy improvement, any combination of profitable switches
leads to a strictly better strategy for Player 0. We illustrate that, if done naively, it may
lead to values that are only locally maximal. Assume that initially Player 0 chooses the
edge e0,1 from v0, then the best counter strategy of Player 1 is to choose e1,2 from v1.
The winning probability for Player 0 under these strategies is 0.55.

In strategy iteration, an update rule allows a player to switch actions only if the
switching offers some improvement. Since by switching to the edge e0,2 Player 0 would
obtain the same winning probability, no strategy iteration can be applied, and the algo-
rithm terminates with a sub-optimal solution.

Let us try to get some insights from this problem. Observe that Player 1 can entrap
the play in the left vertices v0 and v1 when Player 0 chooses the edge e0,2, such that
the almost sure winning region of Player 0 cannot be reached. However, this comes to
the cost of losing almost surely for Player 1, as the dominating colour on the resulting
run is 0. Broadly speaking, Player 0 must find a strategy that maximises her chance of
reaching her almost sure winning regions, but only under the constraint that the counter
strategy of Player 1 does not introduce new almost sure winning regions for Player 0.

1.3 Solutions from the literature

In the literature, two different solutions to this problem have been discussed. Neither of
these solutions works fully on the game graph of the 2.5 player parity game. Instead, one
of them uses a reduction to reachability games through a simple gadget construction [2],
while the other uses strategy improvement on two levels, for the qualitative update
described above, and for an update within subgames of states that have the same value
[7, 9]; this requires to keep a pair of entangled strategies.
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Fig. 2. Left: the gadget construction from [12] (Figure 2a). Right: The qualitative game resulting
from the game from Figure 1 when using the gadget construction from [12] (Figure 2b).

Gadget construction for a reduction to reachability games. In [2], it is shown that 2.5
player parity games can be solved by reducing them to 2.5 player reachability games
and solving them, e.g. by using a strategy improvement approach. For this reduction,
one can use the simple gadgets shown in Figure 2a. There, when a vertex is passed by,
the token goes to an accepting sink with probability wprob and to a losing sink with
probability lprob, both depending on the priority of the node (and continues otherwise
as in the parity game). For accordingly chosen wprob, lprob, any optimal strategy for
this game is an optimal strategy for the parity game. To get this guarantee, however, the
termination probabilities have to be very small indeed. In [2], they are constructed from
the expression (n!222n+3M2n2

)−1 where n is the number of vertices and M is an in-
teger depending on the probabilities occurring in the model. Unfortunately, these small
probabilities render this approach very inefficient and introduce numerical instability.

Classic strategy improvement for 2.5 player parity games. In [7, 9], the concept of
strategy improvement algorithms has been extended to 2.5 player parity games. To over-
come the problem that the natural quality measure—the likelihood of winning—is not
fine enough, this approach constructs classical 2 player games played on translations
of the value classes (the set of vertices with the same likelihood of winning). These
subgames are translated using a gadget construction similar to the one used for qualita-
tive solutions for 2.5 player to a solution to 2 player games from [12] (Figure 2a). This
results in the 2 player game shown in the right part of Figure 2 (Figure 2b).

The strategy improvement algorithm keeps track of ‘witnesses ω = (π, πQ)’, which
consists of a strategy π on the 2.5 player parity game, and a strategy πQ defined on the
2 player game Q obtained from this 2.5 player game using the gadget construction
from [12]. The strategies are entangled in that π is the translation2 of πQ. That is, the
strategies have to concur on the nodes of Player 0 from the 2.5 player game, and each

2 In the notation of [7, 9], π = Tralmost(πQ).
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update on π (resp. πQ) on the decisions from these vertices will translate to an update
on the strategy of πQ (resp. π) on the same vertices.

The valuation of one of these vertices is an ordered pair, consisting of the chance
of obtaining the parity objective as the primary measure, and the value obtained in
the quantitative game restricted to the individual value classes (vertices with the same
chance of obtaining the parity objective) as a secondary measure [7, 9].

1.4 Novel strategy iteration algorithm

We show that we can apply strategy improvement techniques with two different up-
date rules directly on the 2.5 player game. The first rule is a standard update rule for
increasing the chance of reaching the almost sure winning region. As we have seen in
the example, this rule would not necessarily find the optimum: it would not find the
improvement from edge e0,1 to e0,2. To overcome this problem, we introduce a second
rule that handles the problem that Player 1 can reduce the chances of reaching the al-
most sure winning region of Player 0 by playing a strategy that leads to a larger almost
sure winning region for Player 0. This step uses a reduction to the qualitative evalua-
tion of these games. Player 0 changes her strategy in a way that she would win on the
subgame that consists only of the edges of Player 0 and Player 1 that are neutral. For
both players, these are the edges that lead to successor states with the same chance of
winning under the current strategy. If this provides a larger almost sure winning region
for Player 0 than f , then update f in this new winning region accordingly leads to a
strictly better strategy f ′.

While the first rule alone is not powerful enough, the two rules together provide the
guarantee that a strategy that cannot be improved by either of them is optimal.

Note that the second rule is a non-standard rule for strategy improvement. Not only
does it not rely on an improvement that is obtained when a change is applied once, it also
requires to apply a fixed set of changes (in the new region) in one step for correctness.
This is quite unusual for strategy improvement algorithms, where the combination of
updates selected is irrelevant for correctness.

A further significant difference to the method from [7, 9] is that we do not have
to revert to solving transformed games. Instead, we use the new generalisation of Mc-
Naughton’s algorithm to the qualitative solution of 2.5 player parity games [30]. This
method seems to maintain the good practical performance known for classic recursive
techniques, which have proven to be much faster than strategy improvement for the
qualitative analysis of parity games [25]. A consequence of this choice is that we solve
the qualitative games completely when there is no progress through the naive update
step, which reduces the number of times that qualitative updates have to be considered.

This way, we use strategy improvement for the quantitative part of the analysis,
where it has its strengths, while leaning on a variation [30] of McNaughton’s algorithm
[21, 37, 49] for the qualitative part of the analysis, where prior research suggests that
recursive algorithms outperform strategy improvement [25].

Note that our quality measure strategy improvement is the same as the primary mea-
sure used in classical strategy improvement for 2.5 player parity games [7,9]. Different
from that approach, we do not need to resort to gadget constructions for progressing
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within value classes, but can overcome the lack of progress w.r.t. the primary mea-
sure through invoking a performant algorithm for solving 2.5 player games quantita-
tively [30].

1.5 Organisation of the Paper

We first introduce the standard terms and concepts in Section 2. We then recall the
strategy improvement algorithms in Section 3, describe our algorithm in Section 4,
show its correctness in Section 5, and offer an experimental evaluation in Section 6.

2 Terms and Concepts

A probability distribution over a finite set A is a function µ : A → [0, 1] ∩ Q with∑
a∈A µ(a) = 1. We denote by Distr(A) the set of probability distributions over A.

Definition 1. An arena is a tuple A = (V0, V1, Vr, E, prob), where

– V0, V1, and Vr are three finite disjoint sets of vertices owned by the three players:
Player 0, Player 1, and Player random, respectively. Let V def

= V0 ∪ V1 ∪ Vr;
– E ⊆ V × V is a set of edges such that (V,E) is a sinkless directed graph, i.e. for

each v ∈ V there exists v′ ∈ V such that (v, v′) ∈ E; for σ ∈ {0, 1, r} we let

Eσ
def
= E ∩ (Vσ × V ).

– prob : Vr → Distr(V ) is the successor distribution function. We require that for
each v ∈ Vr and each v′ ∈ V , prob(v)(v′) > 0 if and only if (v, v′) ∈ E.

If V0 = ∅ or V1 = ∅, we call A a Markov decision process (MDP) or 1.5 player
game. If both V0 = V1 = ∅, we call A a Markov chain (MC). Given an arena A =
(V0, V1, Vr, E, prob), we define the following concepts.

– A play is an infinite sequence π = v0v1v2v3 . . . such that (vi, vi+1) ∈ E for all
i ∈ N. We define π(i) def

= vi. We denote by Play(A) the set of all plays of A.
– For σ ∈ {0, 1}, a (pure memoryless) strategy fσ of Player σ is a mapping
fσ : Vσ → V from the vertices Vσ of Player σ to their successor states, i.e. for
each v ∈ Vσ , (v, fσ(v)) ∈ E. We denote the set of Player 0 and 1 strategies by
Strats0 and Strats1, respectively.

– Given a strategy f0 for Player 0, we define the induced MDP as Af0 = (∅, V1, Vr ∪
V0, Ef0 , probf0) with Ef0

def
= (E \ V0 × V ) ∪ { (v, f0(v)) | v ∈ V0 } and

probf0(v)(v
′)
def
=


prob(v)(v′) if v∈Vr,
1 if v∈V0 and v′=f0(v),
0 otherwise,

and similarly for Player 1.
– Given strategies f0, f1 for Player 0 and Player 1, respectively, we denote by
Af0,f1

def
= (Af0)f1 the induced MC of the strategies.
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– If A is a MC, we denote by PA(v) : ΣA → [0, 1] the uniquely induced [33] prob-
ability measure on ΣA, the σ-algebra on the cylinder sets of the plays of A, under
the condition that the initial node is v, where, for a finite prefix π′ = v0v1 . . . vn of
a play π, the probability of the cylinder set Cπ′ of π′ is defined as PA(v)(Cπ′) =∏n−1
i=0 prob(vi)(vi+1) if v0 = v, 0 otherwise. For a generic arena A and strategies

f0 and f1 of Player 0 and Player 1, respectively, we let PA
f0,f1

(v)
def
= PAf0,f1 (v).

Definition 2. A 2.5 player game, also referred to as Markov game (MG), is a tuple
P = (V0, V1, Vr, E, prob,win), where A = (V0, V1, Vr, E, prob) is an arena and win ⊆
Play(A) is the winning condition for Player 0, the set of plays for which Player 0 wins.

The notions of plays, strategies, induced 1.5 player games, etc. extend to 2.5 player
games by considering their underlying arena.

We consider two types of winning conditions, reachability and parity objectives.

Definition 3. A 2.5 player reachability game is a 2.5 player game P in which the win-
ning condition win is defined by a target set R ⊆ V . Then, we have win = {π ∈
Play(P) | ∃i ≥ 0 : π(i) ∈ R }. For 2.5 player reachability games, we also use the
notation P = (V0, V1, Vr, E, prob,R).

Definition 4. A 2.5 player parity game (MPG) is a 2.5 player game P in which the
winning condition win is defined by the priority function pri : V → N mapping each
vertex to a natural number. We call the image of pri the set of priorities (or: colours),
denoted by C. Note that, since V is finite, C is finite as well. We extend pri to plays, using
pri : π 7→ lim infi→∞ pri(π(i)). Then, we have win = {π ∈ Play(P) | pri(π) is even }.
For 2.5 player parity games, we also use the notation P = (V0, V1, Vr, E, prob, pri).
We denote with |P| the size of a 2.5 player parity game, referring to the space its overall
representation takes.

Note that in the above discussion we have defined strategies as mappings from ver-
tices of the respective player to successor vertices. More general definitions of strate-
gies exist that e.g. use randomised choices (imposing a probability distributions over the
edges chosen) or take the complete history of the game so far into account. However, it
is known that, for finite 2.5 player parity and reachability games, the simple pure mem-
oryless strategies we have introduced above suffice to obtain mutually optimal infima
and suprema [12].

We also use the common intersection and subtraction operations on directed graphs
for arenas and games: given an MG P with arena A = (V0, V1, Vr, E, prob),

– P ∩ V ′ denotes the MG P ′ we obtain when we restrict the arena A to A ∩ V ′ def=
(V0 ∩ V ′, V1 ∩ V ′, Vr ∩ V ′, E ∩ (V ′ × V ′), prob�V ′∩Vr ),

– for E′ ⊇ Er, we denote by P ∩ E′ the MG P ′ we obtain when restricting arena A

to A ∩ E′ def= (V0, V1, Vr, E ∩ E′, prob).

Note that the result of such an intersection may or may not be substochastic or contain
sinks. While we use these operations freely in intermediate constructions, we make sure
that, whenever they are treated as games, they have no sinks and are not substochastic.
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Definition 5. Let P = (V0, V1, Vr, E, prob,win) be a 2.5 player game, and let f0 and
f1 be two strategies for player 0 and 1, respectively. The value valPf0,f1 : V → [0, 1] is
defined as

valPf0,f1(v)
def
= PPf0,f1(v)({π ∈ Play(P) | π ∈ win }).

We also define

valPf0(v)
def
= inf

f ′
1∈Strats1

valPf0,f ′
1
(v),

valPf1(v)
def
= sup

f ′
0∈Strats0

valPf ′
0,f1

(v),

valP(v)
def
= sup

f ′
0∈Strats0

inf
f ′
1∈Strats1

valPf ′
0,f

′
1
(v).

We write valPf ′ ≥ valPf if, for all v ∈ V , valPf ′(v) ≥ valPf (v) holds, and valPf ′ > valPf
if valPf ′ ≥ valPf and valPf ′ 6= valPf hold.

Definition 6. Given a vertex v ∈ V , a strategy fσ for Player σ is called v-winning
if, starting from v, Player σ wins almost surely in the MDP defined by fσ (that is,
valPfσ (v) = 1−σ). For σ ∈ {0, 1}, a vertex v in V is v-winning for Player σ if Player σ
has a v-winning strategy fσ . We call the set of v-winning vertices for Player σ the
winning region of Player σ, denoted Wσ . Note for v ∈ W0, valP(v) = 1, whereas for
v ∈W1 we have valP(v) = 0.

3 Strategy Improvement

A strategy improvement algorithm takes a memoryless strategy f of one player, in our
case of Player 0, and either infers that the strategy is optimal, or offers a family If of
strategies, such that, for all strategies f ′ ∈ If , valPf ′ > valPf holds.

The family If is usually given through profitable switches. In such a case, If is
defined as follows.

Definition 7. Given a 2.5 player game P = (V0, V1, Vr, E, prob,win) and a strategy
f for Player 0, the profitable switches, denoted profit(P, f), for Player 0 are the edges
that offer a strictly higher chance of succeeding (under the given strategy). That is,
profit(P, f) = { (v, v′) ∈ E0 | valPf (v

′) > valPf (v) }. We also define the unprofitable
switches accordingly as loss(P, f) = { (v, v′) ∈ E0 | valPf (v

′) < valPf (v) }.
If is the set of strategies that can be obtained from f by applying one or more

profitable switches to f : If = { f ′ ∈ Strats0 | f ′ 6= f and ∀v ∈ V0 : f ′(v) =
f(v) or (v, f ′(v)) ∈ profit(P, f) }.

Strategy improvement methods can usually start with an arbitrary strategy f0, which
is then updated by selecting some fi+1 ∈ Ifi until Ifi is eventually empty. This fi is
then guaranteed to be optimal. The update policy with which the profitable switch or
switches are selected is not relevant for the correctness of the method, although it does
impact on the performance and complexity of the algorithms. In our implementation, we
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use a ‘greedy switch all’ update policy, that is we perform any switch we can perform
and change the strategy to the locally optimal switch.

For 2.5 player reachability games, strategy improvement algorithms provide optimal
strategies.

Theorem 1 (cf. [14]). For a 2.5 player reachability game P , a strategy improvement
algorithm with the profitable switches / improved strategies as defined in Definition 7
terminates with an optimal strategy for Player 0.

In the strategy improvement step, for all v ∈ V and all f ′ ∈ If , it holds that
valPf ′(v) = valPf ′

(
f ′(v)

)
≥ valPf

(
f(v)

)
= valPf

(
v
)
. Moreover, strict inequality is

obtained at some vertex in V . As we have seen in the introduction, this is not the
case for 2.5 player parity games: in the example from Figure 1, for a strategy f with
f(v0) = v0.55, the switch from edge e0,1 to e0,2 is not profitable. Note, however, that it
is not unprofitable either.

4 Algorithm

We observe that situations where the naive strategy improvement algorithm described
in the previous section gets stuck are tableaux: no profitable switches are available.
However, switches that are neutral in that applying them once would neither lead to an
increased nor to a decreased likelihood of winning can still lead to an improvement, and
can even happen that combinations of such neutral switches are required to obtain an
improvement. As usual with strategy improvement algorithms, neutral switches cannot
generally be added to the profitable switches: not only would one lose the guarantee to
improve, one can also reduce the likelihood of winning when applying such changes.

Overcoming this problem is the main reason why strategy improvement techniques
for MPG would currently have to use a reduction to 2.5 player reachability games (or
other reductions), with the disadvantages discussed in the introduction. We treat these
tableaux directly and avoid reductions. We first make formal what neutral edges are.

Definition 8. Given a 2.5 player game P = (V0, V1, Vr, E, prob,win) and a strategy f
for Player 0, we define the set of neutral edge neutral(P, f) as follows:

neutral(P, f) def
= Er ∪ { (v, v′) ∈ E0 ∪ E1 | valPf (v

′) = valPf (v) }.

Based on these neutral edges, we define an update policy on the subgame played
only on the neutral edges. The underlying idea is that, when Player 0 can win in case
the game only uses neutral edges, then Player 1 will have to try to break out. He can
only do this by changing his decision from one of his states in a way that is profitable
for Player 0.

Definition 9. Given a 2.5 player game P = (V0, V1, Vr, E, prob,win) and a strategy
f for Player 0, we define the neutral subgame of P for f as P ′ = P ∩ neutral(P, f).
Based on P ′ we define the set I ′f of additional strategy improvements as follows.
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Let W0 and W ′0 be the winning regions of Player 0 on P and P ′, respectively. If
W0 = W ′0, then I ′f = ∅. Otherwise, let W be the set of strategies that are v-winning
for Player 0 on P ′ for all vertices v ∈W ′0. Then we set

I ′′f =

{
f0 ∈ Strats0

∣∣∣∣ ∃fw ∈ W : ∀v ∈W ′0 : f0(v) = fw(v)
and ∀v /∈W ′0 : f0(v) = f(v)

}
,

I ′f = { f ′ ∈ I ′′f | ∀v ∈W0 : f ′(v) = f(v) }.

We remark that W0 ⊆ W ′0 always holds. Intuitively, we apply a qualitative analysis on
the neutral subgame, and if the winning region of Player 0 on the neutral subgame is
larger than her winning region on the full game, then we use the new winning strategy
on the new part of the winning region. Intuitively, this forces Player 1 to leave this area
eventually (or to lose almost surely). As he cannot do this through neutral edges, the
new strategy for Player 0 is superior over the old one.

Example 1. Consider again the example MPG Pe from Figure 1 and the strat-
egy such that f0(v0) = v0.55. Under this strategy, neutral(Pe, f0) = Er ∪
{(v0, v0.55), (v0, v1), (v1, v0)}; the resulting neutral subgame P ′e is the same as Pe ex-
cept for the edge e1,1. In P ′e, the winning region W ′0 is W ′0 = {v0, v1, vw}, while the
original region was W0 = {vw}. The two sets I ′f0 and I ′′f0 contain only the strategy f ′0
such that f ′0(v0) = v1. In order to avoid to lose almost surely in W ′0, Player 1 has to
change his strategy from f1(v1) = v0 to f ′1(v1) = v0.95 in Pe. Consequently, strategy
f ′0 is superior to f0: the resulting winning probability is not 0.55 but 0.95 for v0 and v1.

Note that using I ′f or I ′′f in the strategy iteration has the same effect. Once a run
has reached W0 in the neutral subgame, it cannot leave it. Thus, changing the strategy
f0 from I ′′f to a strategy f ′ with f ′(v) = f(v) for v ∈ W0 and f ′(v) = f0(v) for

v /∈ W0 will not change the chance of winning: valP
′

f0 = valP
′

f ′ and valPf0 = valPf ′ . This
also implies I ′′f 6= ∅ ⇒ I ′f 6= ∅, since I ′f contains all strategies that belong to I ′′f and
that agree with f only on the original winning regionW0. Using I ′f simplifies the proof
of Lemma 1, but it also emphasises that one does not need to re-calculate the strategy
on a region that is already winning.

Our extended strategy improvement algorithm applies updates from either of these
constructions until no further improvement is possible. That is, we can start with an
arbitrary Player 0 strategy f0 and then apply fi+1 ∈ Ifi ∪ I ′fi until Ifi = I ′fi = ∅. We
will show that therefore fi is an optimal Player 0 strategy.

For the algorithm, we need to calculate Ifi and I ′fi . Calculating Ifi requires only to
solve 1.5 player parity games [15], and we use ISCASMC [27,28] to do so. Calculating
I ′fi requires only qualitative solutions of neutral subgame P ′. For this, we apply the
algorithm from [30].

A more algorithmic representation of our algorithm with a number of minor design
decisions is provided in the arXiv version [29] of this paper. The main design decision
is to favour improvements from Ifi over those from I ′fi . This allows for calculating
I ′fi only if Ifi is empty. Starting with calculating Ifi first is a design decision, which
is slightly arbitrary. We have made it because solving 1.5 player games quantitatively
is cheaper than solving 2.5 player games qualitatively and we believe that the guidance
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for the search is, in practice, better in case of quantitative results. Likewise, we have im-
plemented a ‘greedy switch all’ improvement strategy, simply because this is believed
to behave well in practice. We have, however, not collected evidence for either decision
and acknowledge that finding a good update policy is an interesting future research.

5 Correctness

5.1 Correctness proof in a nutshell

The correctness proof combines two arguments: the correctness of all basic strategy
improvement algorithms for reachability games and a reduction from 2.5 player parity
games to 2.5 player reachability games with arbitrarily close winning probabilities for
similar strategy pairs. In a nutshell, if we approximate close enough, then three proper-
ties hold for a game P and a strategy f of Player 0:

1. all ‘normal’ strategy improvements of the parity game correspond to strategy im-
provements in the reachability game (Corollary 2);

2. if Player 0 has a larger winning region W ′0 in the neutral subgame (cf. Definition 9)
for P ∩ neutral(P, f) than for Pf , then replacing f by a winning strategy in I ′f
leads to an improved strategy in the reachability game (Lemma 1); and

3. if neither of these two types of strategy improvements are left, then a strategy im-
provement step on the related 2.5 player reachability game will not lead to a change
in the winning probability on the 2.5 player parity game (Lemma 2).

5.2 Two game transformations

In this subsection we discuss two game transformations that change the likelihood of
winning only marginally and preserve the probability of winning, respectively. The first
transformation turns 2.5 player parity games into 2.5 player reachability games such
that a strategy that is an optimal strategy for the reachability game is also optimal for
the parity game (cf. [2]).

Definition 10. Let P = (V0, V1, Vr, E, prob, pri), ε ∈ (0, 1), and n ∈ N. We define the
2.5 player reachability game Pε,n = (V0, V1, V

′′
r , E

′′, prob′, {won}) with

– V ′′r = Vr∪V ′∪{won, lost}, where (i) V ′ contains primed copies of the vertices; for
ease of notation, the copy of a vertex v is referred to as v′ in this construction; (ii)
won and lost are fresh vertices; they are a winning and a losing sink, respectively;

– E′ = { (v, w′) | (v, w) ∈ E } ∪ {(won,won), (lost, lost)};
– E′′ = E′ ∪ { (v′, v) | v ∈ V } ∪ { (v′,won) | v ∈ V } ∪ { (v′, lost) | v ∈ V };
– prob′(v)(w′) = prob(v)(w) for all v ∈ Vr and (v, w) ∈ E;
– prob′(v′)(won) = wprob

(
ε, n, pri(v)

)
,

– prob′(v′)(lost) = lprob
(
ε, n, pri(v)

)
,

– prob′(v′)(v) = 1− wprob
(
ε, n, pri(v)

)
− lprob

(
ε, n, pri(v)

)
for all v ∈ V , and

– prob′(won)(won) = prob′(lost)(lost) = 1.

where lprob,wprob : (0, 1) × N × N → [0, 1] are two functions with lprob(ε, n, c) +
wprob(ε, n, c) ≤ 1 for all ε ∈ (0, 1) and n, c ∈ N.
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Intuitively, this translation replaces all the vertices by the gadgets from Figure 2a.
Note that Pε,n and P have similar memoryless strategies. By a slight abuse of the

term, we say that a strategy fσ of Player σ on Pε,n is similar to her strategy f ′σ on P if
f ′σ : v 7→ fσ(v)

′ holds, i.e. when v is mapped to w by fσ , then v is mapped to w′ by f ′σ .

Theorem 2 (cf. [2]). Let P = (V0, V1, Vr, E, prob, pri) be a 2.5 player parity game.
Then, there exist ε ∈ (0, 1) and n ≥ |P| such that we can construct Pε,n and
the following holds: for all strategies f0 ∈ Strats0, f1 ∈ Strats1, and all vertices
v ∈ V , it holds that

∣∣valPf0,f1(v) − val
Pε,n
f ′
0,f

′
1
(v)
∣∣ < ε,

∣∣valPf0,f1(v) − val
Pε,n
f ′
0,f

′
1
(v′)
∣∣ < ε,∣∣valPf0(v)− val

Pε,n
f ′
0

(v)
∣∣ < ε,

∣∣valPf0(v)− val
Pε,n
f ′
0

(v′)
∣∣ < ε,

∣∣valPf1(v)− val
Pε,n
f ′
1

(v)
∣∣ < ε,

and
∣∣valPf1(v)− val

Pε,n
f ′
1

(v′)
∣∣ < ε, where f ′0 resp. f ′1 are similar to f0 resp. f1.

The results of [2] are stronger in that they show that the probabilities grow suffi-
ciently slow for the reduction to be polynomial, but we use this construction only for
correctness proofs and do not apply it in our algorithms. For this reason, existence is
enough for our purpose. As [2] does not contain a theorem that directly makes the state-
ment above, we have included a simple construction (without tractability claim) with a
correctness proof in the arXiv version [29] of this paper.

We will now introduce a second transformation that allows us to consider changes
in the strategies in many vertices at the same time.

Definition 11. Let P = (V0, V1, Vr, E, prob,win) and a region R ⊆ V . Let FR =
{ f : R ∩ V0 → V | ∀v ∈ R :

(
v, f(v)

)
∈ E } denote the set of memoryless

strategies for Player 0 restricted to R. The transformation results in a parity game
PR = (V ′0 , V

′
1 , V

′
r , E

′, prob′, pri′) such that

– V ′′0 = V0 ∪R, V ′′′0 = (V0 ∩R)×FR, and V ′0 = V ′′0 ∪ V ′′′0 ;
– V ′′1 = V1 \R, V ′′′1 = (V1 ∩R)×FR, and V ′1 = V ′′1 ∪ V ′′′1 ;
– V ′′r = Vr \R, V ′′′r = (Vr ∩R)×FR, and V ′r = V ′′r ∪ V ′′′r ;
– E′ = { (v, w) ∈ E | v ∈ V \ R } ∪ { (v, (v, f)) | v ∈ R and f ∈ FR } ∪
{ ((v, f), (w, f)) | v, w ∈ R, (v, w) ∈ E and either v /∈ V0 or f(v) = w } ∪
{ ((v, f), w) | v ∈ R, w /∈ R, (v, w) ∈ E and either v /∈ V0 or f(v) = w };

– prob′(v)(w) = prob(v)(w), prob′
(
(v, f)

)
(w) = prob(v)(w), and

prob′
(
(v, f)

)(
(w, f)

)
= prob(v)(w); and

– pri′(v) = pri(v) for all v ∈ V and pri′
(
(v, f)

)
= pri(v) otherwise.

Intuitively, the transformation changes the game so that, every time R is entered,
Player 0 has to fix her memoryless strategy in the game. The fact that in the result-
ing game the strategy f for Player 0 is fixed entering R is due to the jump from the
original vertex v to (v, f) whenever v ∈ R. Once in R, either the part v of (v, f) is
under the control of Player 1 or Player random, i.e. v /∈ V0, so it behaves as in P , or the
next state w (or (w, f) if w ∈ R) is the outcome of f , i.e. w = f(v).

It is quite obvious that this transformation does not impact on the likelihood of
winning. In fact, Player 0 can simulate every memoryless strategy f : V0 → V by
playing a strategy fR : V ′0 → V ′ that copies f outside of R (i.e. for each v ∈ V0 \ R,
fR(v) = f(v)) and moves to the f �R (i.e. f with a preimage restricted to R) copy

12



from states in R (i.e. for each v ∈ V0 ∩ R, fR(v) = (v, f �R)): there is a one-to-one
correspondence between playing in P with strategy f and playing in PR with strategy
fR when starting in V .

Theorem 3. For all v ∈ V , all R ⊆ V , and all memoryless Player 0 strategies f ,
valPf (v) = valP

R

fR

(
(v, f �R)

)
, valP(v) = sup

f∈Strats0(P)
valP

R(
(v, f �R)

)
, and valP(v) =

valP
R

(v) hold.

5.3 Correctness proof

For a given game P , we call an ε ∈ (0, 1) small if it is at most 1
5 of the smallest

difference between all probabilities of winning that can occur on any strategy pair for
any state in any game PR for any R ⊆ V . For every small ε, we get the following
corollary from Theorem 2.

Corollary 1 (preservation of profitable and unprofitable switches). Let n ≥ |P|, f
be a Player 0 strategy for P , f ′ be the corresponding strategy for Pε,n, ε ∈ (0, 1)

be small, v ∈ V , w = f(v), and (v, u) ∈ E. Then valPf (u) > valPf (w) implies

val
Pε,n
f ′ (u) > val

Pε,n
f ′ (w′), and valPf (u) < valPf (w) implies val

Pε,n
f ′ (u) < val

Pε,n
f ′ (w′).

It immediately follows that all combinations of profitable switches can be applied,
and will lead to an improved strategy: for small ε, a profitable switch for fi from fi(v) =
w to fi+1(v) = u implies valPfi(u) ≥ valPfi(w) + 5ε since by definition, we have that
valPfi(u) > valPfi(w) (as the switch is profitable); in particular, valPfi(u) = valPfi(w) + δ

with δ ∈ R>0; since ε ≤ 1
5δ, we have that valPfi(u) ≥ valPfi(w) + 5ε. The triangular

inequalities provided by Theorem 2 imply that val
Pε,n
f ′
i

(u′) ≥ val
Pε,n
f ′
i

(w′) + 3ε, since∣∣valPfi − val
Pε,n
f ′
i

∣∣ < ε. Consequently, since under f ′i+1 we have that val
Pε,n
f ′
i+1

(v′) =

val
Pε,n
f ′
i

(u′), it follows that val
Pε,n
f ′
i+1

(v) ≥ val
Pε,n
f ′
i

(v)+3ε, and, using triangulation again,

we get valPfi+1
(v) ≥ valPfi(v) + ε. Thus, we have the following corollary:

Corollary 2. Let P be a given 2.5 player parity game, and fi be a strategy with prof-
itable switches (profit(P, fi)6=∅). Then, Ifi 6= ∅, and for all fi+1 ∈ Ifi , valPfi+1

>valPfi .

We now turn to the case that there are no profitable switches for f in the game P .
Corollary 1 shows that, for the corresponding strategy f ′ in Pε,n, all profitable switches
lie within the neutral edges for f in P , provided f has no profitable switches.

We expand the game by fixing the strategy of Player 0 for the vertices in R∩ V0 for
a region R ⊆ V . The region we are interested in is the winning region of Player 0 in
the neutral subgame P ∩ neutral(P, f). The game is played as follows.

For every strategy fR : R ∩ V0 → V such that
(
r, fR(r)

)
∈ E holds for all r ∈ R,

the game has a copy of the original game intersected with R, where the choices of
Player 0 on the vertices in R are fixed to the single choice defined by the respective
strategy fR. We define ‖P‖ = max{ |PR| | R ⊆ V }.

We consider the case where the almost sure winning region of Player 0 in the neutral
subgame P ′ = P ∩ neutral(P, fi) is strictly larger than her winning region in Pfi .
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Lemma 1. Let P be a given 2.5 player parity game, and fi be a strategy such that the
winning regionW ′0 for Player 0 in the neutral subgameP ′=P∩neutral(P, fi) is strictly
larger than her winning region W0 in Pfi . Then I ′fi 6=∅ and, ∀fi+1∈I ′fi , valPfi+1

>valPfi .

Proof. The argument is an extension of the common argument for strategy improve-
ment made for the modified reachability game. We first recall that the strategies in I ′fi
differ from fi only on the winning region W ′0 of Player 0 in the neutral subgame P ′.
Assume that we apply the change once: the first time W ′0 is entered, we play the new
strategy, and after it is left, we play the old strategy. If the reaction of Player 1 is to stay
in W ′0, Player 0 will win almost surely in P . If he leaves it, the value is improved due
to the fact that Player 1 has to take a disadvantageous edge to leave it.

Consider the game PW ′
0 and fix fi+1 ∈ I ′fi . Using Theorem 3, this implies that,

when first in a state v ∈ W ′0, Player 0 moves to (v, fi+1) for some fi+1 ∈ I ′fi , then
the likelihood of winning is either improved or 1 for any counter strategy of Player 1.
For all v ∈ W ′0 \W0, this implies a strict improvement. For an n ≥ ‖P‖ and a small
ε, we can now follow the same arguments as for the Corollaries 1 and 2 on PW ′

0 to es-

tablish that valP
W ′

0

(fi+1)W ′
0

> valP
W ′

0

(fi)W ′
0

holds, where the inequality is obtained through the

same steps: valP
W ′

0

(fi)W ′
0

(
(v, fi+1|W0)

)
> valP

W ′
0

(fi)W ′
0

(v) implies valP
W ′

0

(fi)W ′
0

(
(v, fi+1|W0)

)
≥

valP
W ′

0

(fi)W ′
0

(v) + 5ε; this implies val
PW

′
0

ε,n

(fi)W ′
0

(
(v, fi+1|W0

)′
)
≥ val

PW
′
0

ε,n

(fi)W ′
0

(v) + 3ε; and this

implies val
PW

′
0

ε,n

(fi+1)W ′
0

(v) = val
PW

′
0

ε,n

(fi+1)W ′
0

(
(v, fi+1|W0)

′) ≥ val
PW

′
0

ε,n

(fi)W ′
0

(v) + 3ε and we fi-

nally get valP
W ′

0

(fi+1)W ′
0

(v) = valP
W ′

0

(fi+1)W ′
0

(
(v, fi+1|W0)

)
> valP

W ′
0

(fi)W ′
0

(v).

With Theorem 3, we obtain that valPfi+1
> valPfi holds. ut

Let us finally consider the case where there are no profitable switches for Player
0 in Pfi and her winning region on the neutral subgame P ∩ neutral(P, fi) coincides
with her winning region in Pfi .

Lemma 2. LetP be an MPG and fi be a strategy such that the set of profitable switches
is empty and the neutral subgame P ∩ neutral(P, fi) has the same winning region
for Player 0 as her winning region in Pfi (Ifi = I ′fi = ∅). Then, every individual
profitable switch in the reachability game Pε,n from fi to fi+1 implies valPfi+1

= valPfi
and neutral(P, fi+1) = neutral(P, fi).

Proof. When there are no profitable switches in the parity game P for fi, then all prof-
itable switches in the reachability game Pε,n for fi (if any) must be within the set of
neutral edges neutral(P, fi) in the parity game P . We apply one of these profitable
switches at a time. By our definitions, this profitable switch is neutral in the 2.5 player
parity game.

Taking this profitable (in the reachability game Pε,n for a small ε and some n ≥
‖P‖) switch will improve the likelihood of winning for Player 0 in the reachability
game. By our definition of ε, this implies that the likelihood of winning cannot be
decreased on any position in the parity game.
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To see that the quality of the resulting strategy cannot be higher for Player 0 in the
2.5 player parity game, recall that Player 1 can simply follow his optimal strategy on the
neutral subgame. The likelihood of winning for Player 0 is the likelihood of reaching
her winning region, and this winning region has not changed. Moreover, consider the
evaluation of the likelihood of reaching this winning region: since by fixing the strategy
for Player 1 the resulting game is an MDP, such an evaluation can be obtained by solving
a linear programming problem (cf. the arXiv version [29] for more details). The old
minimal non-negative solution to the resulting linear programming problem is a solution
to the new linear programming problem, as it satisfies all constraints.

Putting these arguments together, likelihood of winning in the parity game is not
altered in any vertex by this change. Hence, the set of neutral edges is not altered. ut

This lemma implies that none of the subsequently applied improvement steps ap-
plied on the 2.5 player reachability game has any effect on the quality of the resulting
strategy on the 2.5 player parity game. Together, the above lemmas and corollaries
therefore provide the correctness argument.

Theorem 4. The algorithm is correct.

Proof. Lemma 2 shows that, when Ifi and I ′fi are empty (i.e. when the algorithm
terminates), then the updates in the related 2.5 player reachability game will henceforth
(and thus until termination) not change the valuation for the 2.5 player parity game.
With Theorems 1 and 2 and our selection of small ε, it follows that fi is an optimal
strategy. The earlier lemmas and corollaries in this subsection show that every strategy
fi+1 ∈ Ifi ∪ I ′fi satisfies valPfi+1

> valPfi . Thus, the algorithm produces strategies with
strictly increasing quality in each step until it terminates. As the game is finite, then
also the set of strategies is finite, thus the algorithm will terminate after finitely many
improvement steps with an optimal strategy. ut

As usual with strategy improvement algorithms, we cannot provide good bounds on
the number of iterations. As reachability games are a special case of 2.5 player games,
all selection rules considered by Friedmann [23,24] will have exponential lower bounds.

6 Implementation and experimental results

We have written a prototypical implementation for the approach of this paper, which
accepts as input models in the same format as the probabilistic model checker PRISM-
GAMES [13], an extension of PRISM [35] to stochastic Markov games. As case study,
we consider an extension of the robot battlefield presented in [30], consisting of n× n
square tiles, surrounded by a solid wall; four marked zones zone1, . . . , zone4 at the
corners, each of size 3 × 3; and two robots, R0 and R1, acting in strict alternation.
Each tile can be occupied by at most one robot at a time. When it is the turn of a
robot, this robot can move as follows: decide a direction and move one tile forward;
decide a direction and attempt to move two tiles forward. In the latter case, the robot
moves two tiles forward with 50% probability, but only one tile forward with 50%
probability. If the robot would run into a wall or into the other robot, it stops at the tile
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Table 1. Robots analysis: different reachability properties

property n b
MPG pdestr = 0.1 pdestr = 0.3 pdestr = 0.5 pdestr = 0.7 pdestr = 0.9

vertices colours pmax tsol pmax tsol pmax tsol pmax tsol pmax tsol

Reachability
〈〈R0〉〉Pmax=?

[ Fzone1 ∧ Fzone2
∧ Fzone3 ∧ Fzone4]

7 1 663 409 2 0.9614711 33 0.8178044 22 0.6247858 22 0.3961410 21 0.1384328 23
7 2 1 090 537 2 0.9244309 56 0.6742610 66 0.4017138 57 0.1708971 58 0.0230085 52
7 3 1 517 665 2 0.8926820 89 0.5793073 87 0.2995397 77 0.0953904 86 0.0060025 68
7 4 1 944 793 2 0.8667039 112 0.5385632 109 0.2409219 96 0.0649772 107 0.0026513 85
7 5 2 371 921 2 0.8571299 147 0.5062357 144 0.2167625 127 0.0506530 140 0.0019157 112

Ordered
Reachability
〈〈R0〉〉Pmax=?

[F(zone1 ∧ F zone2)]

8 1 528 168 2 0.9613511 23 0.8176058 19 0.6246643 21 0.3962011 20 0.1384974 19
8 2 868 986 2 0.9243652 35 0.6999023 44 0.4522051 35 0.2083732 42 0.0320509 40
8 3 1 209 804 2 0.9091132 62 0.6538475 71 0.3643938 56 0.1352710 60 0.0131408 58
8 4 1 550 622 2 0.9013742 91 0.6200998 91 0.3316778 72 0.1168758 74 0.0097312 71
8 5 1 891 440 2 0.8977303 113 0.6031945 108 0.3207408 90 0.1138603 88 0.0093679 83

Reach-Avoid
〈〈R0〉〉Pmax=?

[ ¬zone1 U zone2
∧ ¬zone4 U zone2
∧ Fzone3]

9 1 833 245 4 0.9447793 46 0.8005413 31 0.6125397 35 0.3914531 25 0.1372075 24
9 2 1 370 827 4 0.9095579 81 0.6824329 52 0.4411181 61 0.2089446 49 0.0302023 45
9 3 1 908 409 4 0.8972146 108 0.6375883 68 0.3792906 84 0.1444959 71 0.0106721 66
9 4 2 445 991 4 0.8936231 148 0.6221536 93 0.3478172 117 0.1158094 103 0.0051508 89
9 5 2 983 573 4 0.8918034 172 0.6162166 109 0.3366050 136 0.1010400 120 0.0035468 105

Reachability
〈〈R0〉〉Pmax=?

[ Fzone1 ∧ Fzone2
∧ Fzone3 ∧ Fzone4]

10 1 3 307 249 2 0.9614711 186 0.8178044 141 0.6247858 142 0.3961410 142 0.1384328 141
10 2 5 440 429 2 0.9244267 296 0.6755372 414 0.4017718 374 0.1665626 732 0.0207851 615
10 3 7 573 609 2 0.8931881 570 0.5742127 572 0.2864117 509 0.0847474 1019 0.0043153 861
10 4 9 706 789 2 0.8676441 530 0.5239018 794 0.2248369 735 0.0479367 1396 0.0009959 1610
10 5 11 839 969 2 0.8503684 968 0.4885654 980 0.1866995 971 0.0305890 1708 —TO—

before the obstacle. Robot R1 can also shoot R0 instead of moving, which is destroyed
with probability pddestr where pdestr is the probability of destroying the robot and d
is the Euclidean distance between the two robots. Once destroyed, R0 cannot move
any more. We assume that we are in control of R0 but cannot control the behaviour
of R1. Our goal is to maximise, under any possible behaviour of R1, the probability
of fulfilling a certain objective depending on the zones, such as repeatedly visiting all
zones infinitely often, visiting the zones in a specific order, performing such visits with-
out entering other zones in the meanwhile, and so on. As an example, we can specify
that the robot eventually reaches each zone by means of the probabilistic LTL (PLTL)
formula 〈〈R0〉〉Pmax=?[

∧
i=1,...,4 F zonei] requiring to maximise the probability of sat-

isfying
∧
i=1,...,4 F zonei by controlling R0 only.

The machine we used for the experiments is a 3.6 GHz Intel Core i7-4790 with
16GB 1600 MHz DDR3 RAM of which 12GB assigned to the tool; the timeout has
been set to 30 minutes. We have applied our tool on a number of properties that require
the robot R0 to visit the different zones in a certain order. In Table 1 we report the
performance measurements for these properties. Column “property” shows the PLTL
formula we consider, column “n” the width of the battlefield instance, and column
“b” the number of bullets R1 can shoot. For the “MPG” part, we present the number of
“vertices” of the resulting MPG and the number of “colours”. In the remaining columns,
for each value of “pdestr”, we report the achieved maximum probability “pmax” and
the time “tsol” in seconds needed to solve the game. Note that we cannot compare to
PRISM-GAMES because it does not support general PLTL formulas, and we are not
aware of other tools to compare with.

As we can see, the algorithm performs quite well on MPGs with few million states.
It is worth mentioning that a large share of the time spent is due to the evaluation of the
1.5 player parity games in the construction of the profitable switches. For instance, such
an evaluation required 137 seconds out of 172 for the case n = 9, b = 5, and pdestr =
0.1. Since a large part of these 1.5 player games are similar, we are investigating how to
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avoid the repeated evaluation of similar parts to reduce the running time. Generally, all
improvements in the quantitative solution of 1.5 player parity games and the qualitative
solution of 2.5 player parity games will reduce the running time of our algorithm.

7 Discussion

We have combined a recursive algorithm for the quantitative solution of 2.5 player
parity games with a strategy improvement algorithm, which lifts these results to the
qualitative solution of 2.5 player parity games. This shift is motivated by the significant
acceleration in the qualitative solution of 2.5 player parity games: while [11] scaled to a
few thousand vertices, [30] scales to tens of millions of states. This changes the playing
field and makes qualitative synthesis a realistic target. It also raises the question if this
technique can be incorporated smoothly into a quantitative solver.

Previous approaches [7, 9] have focused on developing a progress measure that al-
lows for joining the two objective. This has been achieved in studying strategy im-
provement techniques that give preference to the likelihood of winning, and overcome
stalling by performing strategy improvement on the larger qualitative game from [12]
on the value classes.

This approach was reasonable at the time, where the updates benefited from mem-
orising the recently successful strategies on the qualitative game. Moreover, focussing
on value classes keeps the part of the qualitative game under consideration small, which
is a reasonable approach when the cost of qualitative strategy improvement is consid-
ered significant. Building on a fast solver for the qualitative analysis, we can afford to
progress in larger steps.

The main advancement, however, is as simple as it is effective. We use strategy
improvement where it has a simple direct meaning (the likelihood to win), and we do
not use it where the progress measure is indirect (progress measure within a value class).
This has allowed us to transfer the recent performance gains from qualitative solutions
of 2.5 player parity games [30] to their quantitative solution.

The difference in performance also explains the difference in the approach regarding
complexity. Just as the deterministic subexponential complexity of solving 2.5 player
games qualitatively is not very relevant in [30] (as this approach would be very slow
in practice), the expected subexponential complexity in [9] is bought by exploiting a
random facet method, which implies that only one edge is updated in every step. From
a theoretical angle, these complexity considerations are interesting. From a practical
angle, however, strategy improvement algorithms that use multiple switches in every
step are usually faster and therefore preferable.
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