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Abstract. Given a model and a specification, the fundamental model-
checking problem asks for algorithmic verification of whether the model
satisfies the specification. We consider graphs and Markov decision pro-
cesses (MDPs), which are fundamental models for reactive systems. One
of the very basic specifications that arise in verification of reactive sys-
tems is the strong fairness (aka Streett) objective. Given different types
of requests and corresponding grants, the objective requires that for each
type, if the request event happens infinitely often, then the corresponding
grant event must also happen infinitely often. All ω-regular objectives
can be expressed as Streett objectives and hence they are canonical in
verification. To handle the state-space explosion, symbolic algorithms are
required that operate on a succinct implicit representation of the system
rather than explicitly accessing the system. While explicit algorithms for
graphs and MDPs with Streett objectives have been widely studied, there
has been no improvement of the basic symbolic algorithms. The worst-
case numbers of symbolic steps required for the basic symbolic algorithms
are as follows: quadratic for graphs and cubic for MDPs. In this work
we present the first sub-quadratic symbolic algorithm for graphs with
Streett objectives, and our algorithm is sub-quadratic even for MDPs.
Based on our algorithmic insights we present an implementation of the
new symbolic approach and show that it improves the existing approach
on several academic benchmark examples.

1 Introduction

In this work we present faster symbolic algorithms for graphs and Markov deci-
sion processes (MDPs) with strong fairness objectives. For the fundamental
model-checking problem, the input consists of a model and a specification, and
the algorithmic verification problem is to check whether the model satisfies the
specification. We first describe the specific model-checking problem we consider
and then our contributions.
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Models: Graphs and MDPs. Two standard models for reactive systems are graphs
and Markov decision processes (MDPs). Vertices of a graph represent states
of a reactive system, edges represent transitions of the system, and infinite
paths of the graph represent non-terminating trajectories of the reactive sys-
tem. MDPs extend graphs with probabilistic transitions that represent reactive
systems with uncertainty. Thus graphs and MDPs are the de-facto model of reac-
tive systems with nondeterminism, and nondeterminism with stochastic aspects,
respectively [3,19].

Specification: Strong Fairness (aka Streett) Objectives. A basic and fundamental
property in the analysis of reactive systems is the strong fairness condition,
which informally requires that if events are enabled infinitely often, then they
must be executed infinitely often. More precisely, the strong fairness conditions
(aka Streett objectives) consist of k types of requests and corresponding grants,
and the objective requires that for each type if the request happens infinitely
often, then the corresponding grant must also happen infinitely often. After
safety, reachability, and liveness, the strong fairness condition is one of the most
standard properties that arise in the analysis of reactive systems, and chapters
of standard textbooks in verification are devoted to it (e.g., [19, Chap. 3.3], [32,
Chap. 3], [2, Chaps. 8, 10]). Moreover, all ω-regular objectives can be described
by Streett objectives, e.g., LTL formulas and non-deterministic ω-automata can
be translated to deterministic Streett automata [34] and efficient translation has
been an active research area [16,23,28]. Thus Streett objectives are a canonical
class of objectives that arise in verification.

Satisfaction. The basic notions of satisfaction for graphs and MDPs are as follows:
For graphs the notion of satisfaction requires that there is a trajectory (infinite
path) that belongs to the set of paths described by the Streett objective. For
MDPs the satisfaction requires that there is a policy to resolve the nondetermin-
ism such that the Streett objective is ensured almost-surely (with probability 1).
Thus the algorithmic model-checking problem of graphs and MDPs with Streett
objectives is a core problem in verification.

Explicit vs Symbolic Algorithms. The traditional algorithmic studies consider
explicit algorithms that operate on the explicit representation of the system. In
contrast, implicit or symbolic algorithms only use a set of predefined operations
and do not explicitly access the system [20]. The significance of symbolic algo-
rithms in verification is as follows: to combat the state-space explosion, large
systems must be succinctly represented implicitly and then symbolic algorithms
are scalable, whereas explicit algorithms do not scale as it is computationally
too expensive to even explicitly construct the system.

Relevance. In this work we study symbolic algorithms for graphs and MDPs
with Streett objectives. Symbolic algorithms for the analysis of graphs and
MDPs are at the heart of many state-of-the-art tools such as SPIN, NuSMV
for graphs [18,27] and PRISM, LiQuor, Storm for MDPs [17,22,29]. Our con-
tributions are related to the algorithmic complexity of graphs and MDPs with
Streett objectives for symbolic algorithms. We first present previous results and
then our contributions.
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Previous Results. The most basic algorithm for the problem for graphs is based
on repeated SCC (strongly connected component) computation, and informally
can be described as follows: for a given SCC, (a) if for every request type that
is present in the SCC the corresponding grant type is also present in the SCC,
then the SCC is identified as “good”, (b) else vertices of each request type that
has no corresponding grant type in the SCC are removed, and the algorithm
recursively proceeds on the remaining graph. Finally, reachability to good SCCs
is computed. The current best-known symbolic algorithm for SCC computation
requires O(n) symbolic steps, for graphs with n vertices [25], and moreover, the
algorithm is optimal [15]. For MDPs, the SCC computation has to be replaced
by MEC (maximal end-component) computation, and the current best-known
symbolic algorithm for MEC computation requires O(n2) symbolic steps. While
there have been several explicit algorithms for graphs with Streett objectives [12,
26], MEC computation [8–10], and MDPs with Streett objectives [7], as well
as symbolic algorithms for MDPs with Büchi objectives [11], the current best-
known bounds for symbolic algorithms with Streett objectives are obtained from
the basic algorithms, which are O(n ·min(n, k)) for graphs and O(n2 ·min(n, k))
for MDPs, where k is the number of types of request-grant pairs.

Our Contributions. In this work our main contributions are as follows:

– We present a symbolic algorithm that requires O(n ·√m log n) symbolic steps,
both for graphs and MDPs, where m is the number of edges. In the case
k = O(n), the previous worst-case bounds are quadratic (O(n2)) for graphs
and cubic (O(n3)) for MDPs. In contrast, we present the first sub-quadratic
symbolic algorithm both for graphs as well as MDPs. Moreover, in practice,
since most graphs are sparse (with m = O(n)), the worst-case bounds of our
symbolic algorithm in these cases are O(n · √

n log n). Another interesting
contribution of our work is that we also present an O(n · √m) symbolic steps
algorithm for MEC decomposition, which is relevant for our results as well
as of independent interest, as MEC decomposition is used in many other
algorithmic problems related to MDPs. Our results are summarized in Table 1.

– While our main contribution is theoretical, based on the algorithmic insights
we also present a new symbolic algorithm implementation for graphs and
MDPs with Streett objectives. We show that the new algorithm improves (by
around 30%) the basic algorithm on several academic benchmark examples
from the VLTS benchmark suite [21].

Technical Contributions. The two key technical contributions of our work are as
follows:

– Symbolic Lock Step Search: We search for newly emerged SCCs by a local
graph exploration around vertices that lost adjacent edges. In order to find
small new SCCs first, all searches are conducted “in parallel”, i.e., in lock-
step, and the searches stop as soon as the first one finishes successfully. This
approach has successfully been used to improve explicit algorithms [7,9,14,26].
Our contribution is a non-trivial symbolic variant (Sect. 3) which lies at the
core of the theoretical improvements.
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Table 1. Symbolic algorithms for Streett objectives and MEC decomposition.

Problem Symbolic operations

Basic algorithm Improved algorithm Reference

Graphs with Streett O(n · min(n, k)) O(n
√
m logn) Theorem 2

MDPs with Streett O(n2 · min(n, k)) O(n
√
m logn) Theorem 4

MEC decomposition O(n2) O(n
√
m) Theorem 3

– Symbolic Interleaved MEC Computation: For MDPs the identification of ver-
tices that have to be removed can be interleaved with the computation of
MECs such that in each iteration the computation of SCCs instead of MECs
is sufficient to make progress [7]. We present a symbolic variant of this inter-
leaved computation. This interleaved MEC computation is the basis for apply-
ing the lock-step search to MDPs.

2 Definitions

2.1 Basic Problem Definitions

Markov Decision Processes (MDPs) and Graphs. An MDP P = ((V,E), (V1, VR),
δ) consists of a finite directed graph G = (V,E) with a set of n vertices V and a
set of m edges E, a partition of the vertices into player 1 vertices V1 and random
vertices VR, and a probabilistic transition function δ. We call an edge (u, v) with
u ∈ V1 a player 1 edge and an edge (v, w) with v ∈ VR a random edge. For v ∈ V
we define In(v) = {w ∈ V | (w, v) ∈ E} and Out(v) = {w ∈ V | (v, w) ∈ E}. The
probabilistic transition function is a function from VR to D(V ), where D(V ) is
the set of probability distributions over V and a random edge (v, w) ∈ E if and
only if δ(v)[w] > 0. Graphs are a special case of MDPs with VR = ∅.

Plays and Strategies. A play or infinite path in P is an infinite sequence ω =
〈v0, v1, v2, . . .〉 such that (vi, vi+1) ∈ E for all i ∈ N; we denote by Ω the set
of all plays. A player 1 strategy σ : V ∗ · V1 → V is a function that assigns
to every finite prefix ω ∈ V ∗ · V1 of a play that ends in a player 1 vertex v a
successor vertex σ(ω) ∈ V such that (v, σ(ω)) ∈ E; we denote by Σ the set of
all player 1 strategies. A strategy is memoryless if we have σ(ω) = σ(ω′) for any
ω, ω′ ∈ V ∗ · V1 that end in the same vertex v ∈ V1.

Objectives. An objective φ is a subset of Ω said to be winning for player 1. We
say that a play ω ∈ Ω satisfies the objective if ω ∈ φ. For a vertex set T ⊆ V
the reachability objective is the set of infinite paths that contain a vertex of T ,
i.e., Reach(T ) = {〈v0, v1, v2, . . .〉 ∈ Ω | ∃j ≥ 0 : vj ∈ T}. Let Inf(ω) for ω ∈ Ω
denote the set of vertices that occur infinitely often in ω. Given a set TP of k
pairs (Li, Ui) of vertex sets Li, Ui ⊆ V with 1 ≤ i ≤ k, the Streett objective is
the set of infinite paths for which it holds for each 1 ≤ i ≤ k that whenever a
vertex of Li occurs infinitely often, then a vertex of Ui occurs infinitely often, i.e.,
Streett(TP) = {ω ∈ Ω | Li ∩ Inf(ω) = ∅ or Ui ∩ Inf(ω) = ∅ for all 1 ≤ i ≤ k}.
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Almost-Sure Winning Sets. For any measurable set of plays A ⊆ Ω we denote
by Prσ

v (A) the probability that a play starting at v ∈ V belongs to A when
player 1 plays strategy σ. A strategy σ is almost-sure (a.s.) winning from a
vertex v ∈ V for an objective φ if Prσ

v (φ) = 1. The almost-sure winning set
〈〈1〉〉as (P, φ) of player 1 is the set of vertices for which player 1 has an almost-
sure winning strategy. In graphs the existence of an almost-sure winning strategy
corresponds to the existence of a play in the objective, and the set of vertices
for which player 1 has an (almost-sure) winning strategy is called the winning
set 〈〈1〉〉 (P, φ) of player 1.

Symbolic Encoding of MDPs. Symbolic algorithms operate on sets of vertices,
which are usually described by Binary Decision Diagrams (bdds) [1,30]. In par-
ticular Ordered Binary Decision Diagrams [6] (Obdds) provide a canonical sym-
bolic representation of Boolean functions. For the computation of almost-sure
winning sets of MDPs it is sufficient to encode MDPs with Obdds and one
additional bit that denotes whether a vertex is in V1 or VR.

Symbolic Steps. One symbolic step corresponds to one primitive operation as
supported by standard symbolic packages like CuDD [35]. In this paper we only
allow the same basic set-based symbolic operations as in [5,11,24,33], namely set
operations and the following one-step symbolic operations for a set of vertices Z:
(a) the one-step predecessor operator Pre(Z) = {v ∈ V | Out(v)∩Z = ∅}; (b) the
one-step successor operator Post(Z) = {v ∈ V | In(v) ∩ Z = ∅}; and (c) the
one-step controllable predecessor operator CPreR(Z) = {v ∈ V1 | Out(v) ⊆ Z} ∪
{v ∈ VR | Out(v) ∩ Z = ∅} ; i.e., the CPreR operator computes all vertices such
that the successor belongs to Z with positive probability. This operator can be
defined using the Pre operator and basic set operations as follows: CPreR(Z) =
Pre(Z)\(V1 ∩ Pre(V \Z)) . We additionally allow cardinality computation and
picking an arbitrary vertex from a set as in [11].

Symbolic Model. Informally, a symbolic algorithm does not operate on explicit
representation of the transition function of a graph, but instead accesses it
through Pre and Post operations. For explicit algorithms, a Pre/Post operation
on a set of vertices (resp., a single vertex) requires O(m) (resp., the order of inde-
gree/outdegree of the vertex) time. In contrast, for symbolic algorithms Pre/Post
operations are considered unit-cost. Thus an interesting algorithmic question is
whether better algorithmic bounds can be obtained considering Pre/Post as unit
operations. Moreover, the basic set operations are computationally less expen-
sive (as they encode the relationship between the state variables) compared to
the Pre/Post symbolic operations (as they encode the transitions and thus the
relationship between the present and the next-state variables). In all presented
algorithms, the number of set operations is asymptotically at most the number
of Pre/Post operations. Hence in the sequel we focus on the number of Pre/Post
operations of algorithms.

Algorithmic Problem. Given an MDP P (resp. a graph G) and a set of
Streett pairs TP, the problem we consider asks for a symbolic algorithm to
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compute the almost-sure winning set 〈〈1〉〉as (P,Streett(TP)) (resp. the winning
set 〈〈1〉〉 (G,Streett(TP))), which is also called the qualitative analysis of MDPs
(resp. graphs).

2.2 Basic Concepts Related to Algorithmic Solution

Reachability. For a graph G = (V,E) and a set of vertices S ⊆ V the set
GraphReach(G,S) is the set of vertices of V that can reach a vertex of S
within G, and it can be identified with at most |GraphReach(G,S)\S| + 1
many Pre operations.

Strongly Connected Components. For a set of vertices S ⊆ V we denote by
G[S] = (S,E∩(S×S)) the subgraph of the graph G induced by the vertices of S.
An induced subgraph G[S] is strongly connected if there exists a path in G[S]
between every pair of vertices of S. A strongly connected component (SCC ) of G
is a set of vertices C ⊆ V such that the induced subgraph G[C] is strongly
connected and C is a maximal set in V with this property. We call an SCC
trivial if it only contains a single vertex and no edges; and non-trivial otherwise.
The SCCs of G partition its vertices and can be found in O(n) symbolic steps [25].
A bottom SCC C in a directed graph G is an SCC with no edges from vertices
of C to vertices of V \C, i.e., an SCC without outgoing edges. Analogously, a
top SCC C is an SCC with no incoming edges from V \C. For more intuition for
bottom and top SCCs, consider the graph in which each SCC is contracted into
a single vertex (ignoring edges within an SCC). In the resulting directed acyclic
graph the sinks represent the bottom SCCs and the sources represent the top
SCCs. Note that every graph has at least one bottom and at least one top SCC.
If the graph is not strongly connected, then there exist at least one top and at
least one bottom SCC that are disjoint and thus one of them contains at most
half of the vertices of G.

Random Attractors. In an MDP P the random attractor AttrR(P,W ) of a set
of vertices W is defined as AttrR(P,W ) =

⋃
j≥0 Zj where Z0 = W and Zj+1 =

Zj ∪ CPreR(Zj) for all j > 0. The attractor can be computed with at most
|AttrR(P,W )\W | + 1 many CPreR operations.

Maximal End-Components. Let X be a vertex set without outgoing random
edges, i.e., with Out(v) ⊆ X for all v ∈ X ∩ VR. A sub-MDP of an MDP P
induced by a vertex set X ⊆ V without outgoing random edges is defined as
P [X] = ((X,E∩(X ×X), (V1∩X,VR ∩X), δ). Note that the requirement that X
has no outgoing random edges is necessary in order to use the same probabilistic
transition function δ. An end-component (EC) of an MDP P is a set of vertices
X ⊆ V such that (a) X has no outgoing random edges, i.e., P [X] is a valid sub-
MDP, (b) the induced sub-MDP P [X] is strongly connected, and (c) P [X] con-
tains at least one edge. Intuitively, an end-component is a set of vertices for which
player 1 can ensure that the play stays within the set and almost-surely reaches
all the vertices in the set (infinitely often). An end-component is a maximal
end-component (MEC) if it is maximal under set inclusion. An end-component
is trivial if it consists of a single vertex (with a self-loop), otherwise it is non-
trivial. The MEC decomposition of an MDP consists of all MECs of the MDP.
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Good End-Components. All algorithms for MDPs with Streett objectives are
based on finding good end-components, defined below. Given the union of all
good end-components, the almost-sure winning set is obtained by computing the
almost-sure winning set for the reachability objective with the union of all good
end-components as the target set. The correctness of this approach is shown in
[7,31] (see also [3, Chap. 10.6.3]). For Streett objectives a good end-component is
defined as follows. In the special case of graphs they are called good components.

Definition 1 (Good end-component). Given an MDP P and a set TP =
{(Lj , Uj) | 1 ≤ j ≤ k} of target pairs, a good end-component is an end-
component X of P such that for each 1 ≤ j ≤ k either Lj ∩X = ∅ or Uj ∩X = ∅.
A maximal good end-component is a good end-component that is maximal with
respect to set inclusion.

Lemma 1 (Correctness of Computing Good End-Components [31,
Corollary 2.6.5, Proposition 2.6.9]). For an MDP P and a set TP of
target pairs, let X be the set of all maximal good end-components. Then
〈〈1〉〉as

(
P,Reach(

⋃
X∈X X)

)
is equal to 〈〈1〉〉as (P,Streett(TP)).

Iterative Vertex Removal. All the algorithms for Streett objectives maintain ver-
tex sets that are candidates for good end-components. For such a vertex set S
we (a) refine the maintained sets according to the SCC decomposition of P [S]
and (b) for a set of vertices W for which we know that it cannot be contained in
a good end-component, we remove its random attractor from S. The following
lemma shows the correctness of these operations.

Lemma 2 (Correctness of Vertex Removal [31, Lemma 2.6.10]). Given
an MDP P = ((V,E), (V1, VR), δ), let X be an end-component with X ⊆ S for
some S ⊆ V . Then

(a) X ⊆ C for one SCC C of P [S] and
(b) X ⊆ S\AttrR(P ′,W ) for each W ⊆ V \X and each sub-MDP P ′ contain-

ing X.

Let X be a good end-component. Then X is an end-component and for each
index j, X ∩Uj = ∅ implies X ∩Lj = ∅. Hence we obtain the following corollary.

Corollary 1 ([31, Corollary 4.2.2]). Given an MDP P , let X be a good end-
component with X ⊆ S for some S ⊆ V . For each i with S ∩Ui = ∅ it holds that
X ⊆ S\AttrR(P [S], Li ∩ S).

For an index j with S ∩ Uj = ∅ we call the vertices of S ∩ Lj bad vertices.
The set of all bad vertices Bad(S) =

⋃
1≤i≤k{v ∈ Li ∩ S | Ui ∩ S = ∅} can be

computed with 2k set operations.

3 Symbolic Divide-and-Conquer with Lock-Step Search

In this section we present a symbolic version of the lock-step search for strongly
connected subgraphs [26]. This symbolic version is used in all subsequent results,
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i.e., the sub-quadratic symbolic algorithms for graphs and MDPs with Streett
objectives, and for MEC decomposition.

Divide-and-Conquer. The common property of the algorithmic problems we con-
sider in this work is that the goal is to identify subgraphs of the input graph
G = (V,E) that are strongly connected and satisfy some additional proper-
ties. The difference between the problems lies in the required additional proper-
ties. We describe and analyze the Procedure Lock-Step-Search that we use
in all our improved algorithms to efficiently implement a divide-and-conquer
approach based on the requirement of strong connectivity, that is, we divide
a subgraph G[S], induced by a set of vertices S, into two parts that are not
strongly connected within G[S] or detect that G[S] is strongly connected.

Start Vertices of Searches. The input to Procedure Lock-Step-Search is a
set of vertices S ⊆ V and two subsets of S denoted by HS and TS . In the
algorithms that call the procedure as a subroutine, vertices contained in HS

have lost incoming edges (i.e., they were a “head” of a lost edge) and vertices
contained in TS have lost outgoing edges (i.e., they were a “tail” of a lost edge)
since the last time a superset of S was identified as being strongly connected. For
each vertex h of HS the procedure conducts a backward search (i.e., a sequence
of Pre operations) within G[S] to find the vertices of S that can reach h; and
analogously a forward search (i.e., a sequence of Post operations) from each
vertex t of TS is conducted.

Intuition for the Choice of Start Vertices. If the subgraph G[S] is not strongly
connected, then it contains at least one top SCC and at least one bottom SCC
that are disjoint. Further, if for a superset S′ ⊃ S the subgraph G[S′] was
strongly connected, then each top SCC of G[S] contains a vertex that had an
additional incoming edge in G[S′] compared to G[S], and analogously each bot-
tom SCC of G[S] contains a vertex that had an additional outgoing edge. Thus by
keeping track of the vertices that lost incoming or outgoing edges, the following
invariant will be maintained by all our improved algorithms.

Invariant 1 (Start Vertices Sufficient). We have HS , TS ⊆ S. Either (a)
HS ∪ TS = ∅ and G[S] is strongly connected or (b) at least one vertex of each
top SCC of G[S] is contained in HS and at least one vertex of each bottom SCC
of G[S] is contained in TS.

Lock-Step Search. The searches from the vertices of HS ∪ TS are performed in
lock-step, that is, (a) one step is performed in each of the searches before the
next step of any search is done and (b) all searches stop as soon as the first of
the searches finishes. This is implemented in Procedure Lock-Step-Search as
follows. A step in the search from a vertex t ∈ TS (and analogously for h ∈ HS)
corresponds to the execution of the iteration of the for-each loop for t ∈ TS . In
an iteration of a for-each loop we might discover that we do not need to consider
this search further (see the paragraph on ensuring strong connectivity below)
and update the set TS (via T ′

S) for future iterations accordingly. Otherwise the
set Ct is either strictly increasing in this step of the search or the search for t



186 K. Chatterjee et al.

Procedure. Lock-Step-Search(G, S, HS , TS)

/* Pre and Post defined w.r.t. to G */

1 foreach v ∈ HS ∪ TS do Cv ← {v}
2 while true do
3 H ′

S ← HS , T ′
S ← TS

4 foreach h ∈ HS do /* search for top SCC */

5 C′
h ← (Ch ∪ Pre(Ch)) ∩ S

6 if |C′
h ∩ H ′

S | > 1 then H ′
S ← H ′

S\{h}
7 else
8 if C′

h = Ch then return (Ch, H ′
S , T ′

S)
9 Ch ← C′

h

10 foreach t ∈ TS do /* search for bottom SCC */

11 C′
t ← (Ct ∪ Post(Ct)) ∩ S

12 if |C′
t ∩ T ′

S | > 1 then T ′
S ← T ′

S\{t}
13 else
14 if C′

t = Ct then return (Ct, H ′
S , T ′

S)
15 Ct ← C′

t

16 HS ← H ′
S , TS ← T ′

S

terminates and we return the set of vertices in G[S] that are reachable from t.
So the two for-each loops over the vertices of TS and HS that are executed in
an iteration of the while-loop perform one step of each of the searches and the
while-loop stops as soon as a search stops, i.e., a return statement is executed
and hence this implements properties (a) and (b) of lock-step search. Note that
the while-loop terminates, i.e., a return statement is executed eventually because
for all t ∈ TS (and resp. for all h ∈ HS) the sets Ct are monotonically increasing
over the iterations of the while-loop, we have Ct ⊆ S, and if some set Ct does
not increase in an iteration, then it is either removed from TS and thus not
considered further or a return statement is executed. Note that when a search
from a vertex t ∈ TS stops, it has discovered a maximal set of vertices C that can
be reached from t; and analogously for h ∈ HS . Figure 1 shows a small intuitive
example of a call to the procedure.

Comparison to Explicit Algorithm. In the explicit version of the algorithm [7,26]
the search from vertex t ∈ TS performs a depth-first search that terminates
exactly when every edge reachable from t is explored. Since any search that
starts outside of a bottom SCC but reaches the bottom SCC has to explore
more edges than the search started inside of the bottom SCC, the first search
from a vertex of TS that terminates has exactly explored (one of) the smallest
(in the number of edges) bottom SCC(s) of G[S]. Thus on explicit graphs the
explicit lock-step search from the vertices of HS ∪ TS finds (one of) the smallest
(in the number of edges) top or bottom SCC(s) of G[S] in time proportional
to the number of searches times the number of edges in the identified SCC. In
symbolically represented graphs it can happen (1) that a search started outside
of a bottom (resp. top) SCC terminates earlier than the search started within
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h1

t1

t2

h1

t1

t2

h1

t2

Fig. 1. An example of symbolic lock-step search showing the first three iterations of
the main while-loop. Note that during the second iteration, the search started from t1
is disregarded since it collides with t2. In the subsequent fourth iteration, the search
started from t2 is returned by the procedure.

the bottom (resp. top) SCC and (2) that a search started in a larger (in the
number of vertices) top or bottom SCC terminates before one in a smaller top
or bottom SCC. We discuss next how we address these two challenges.

Ensuring Strong Connectivity. First, we would like the set returned by Procedure
Lock-Step-Search to indeed be a top or bottom SCC of G[S]. For this we use
the following observation for bottom SCCs that can be applied to top SCCs
analogously. If a search starting from a vertex of t1 ∈ TS encounters another
vertex t2 ∈ TS , t1 = t2, there are two possibilities: either (1) both vertices are in
the same SSC or (2) t1 can reach t2 but not vice versa. In Case (1) the searches
from both vertices can explore all vertices in the SCC and thus it is sufficient
to only search from one of them. In Case (2) the SCC of t1 has an outgoing
edge and thus cannot be a bottom SCC. Hence in both cases we can remove the
vertex t1 from the set TS while still maintaining Invariant 1. By Invariant 1 we
further have that each search from a vertex of TS that is not in a bottom SCC
encounters another vertex of TS in its search and therefore is removed from the
set TS during Procedure Lock-Step-Search (if no top or bottom SCC is found
earlier). This ensures that the returned set is either a top or a bottom SCC.1

Bound on Symbolic Steps. Second, observe that we can still bound the number
of symbolic steps needed for the search that terminates first by the number
of vertices in the smallest top or bottom SCC of G[S], since this is an upper
bound on the symbolic steps needed for the search started in this SCC. Thus
provided Invariant 1, we can bound the number of symbolic steps in Procedure
Lock-Step-Search to identify a vertex set C � S such that C and S\C are
not strongly connected in G[S] by O((|HS | + |TS |) · min(|C|, |S\C|)). In the
algorithms that call Procedure Lock-Step-Search we charge the number of
symbolic steps in the procedure to the vertices in the smaller set of C and S\C;
this ensures that each vertex is charged at most O(log n) times over the whole
algorithm. We obtain the following result (proof in [13, Appendix A]).
1 To improve the practical performance, we return the updated sets HS and TS . By

the above argument this preserves Invariant 1.
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Theorem 1 (Lock-Step Search). Provided Invariant 1 holds, Procedure
Lock-Step-Search (G, S, HS, TS) returns a top or bottom SCC C of
G[S]. It uses O((|HS | + |TS |) · min(|C|, |S\C|)) symbolic steps if C = S and
O((|HS | + |TS |) · |C|) otherwise.

4 Graphs with Streett Objectives

Basic Symbolic Algorithm. Recall that for a given graph (with n vertices)
and a Streett objective (with k target pairs) each non-trivial strongly connected
subgraph without bad vertices is a good component. The basic symbolic algo-
rithm for graphs with Streett objectives repeatedly removes bad vertices from
each SCC and then recomputes the SCCs until all good components are found.
The winning set then consists of the vertices that can reach a good component.
We refer to this algorithm as StreettGraphBasic. For the pseudocode and
more details see [13, Appendix B].

Proposition 1. AlgorithmStreettGraphBasic correctly computes the win-
ning set in graphs with Streett objectives and requires O(n · min(n, k)) symbolic
steps.

Improved Symbolic Algorithm. In our improved symbolic algorithm we
replace the recomputation of all SCCs with the search for a new top or bottom
SCC with Procedure Lock-Step-Search from vertices that have lost adjacent
edges whenever there are not too many such vertices. We present the improved
symbolic algorithm for graphs with Streett objectives in more detail as it also
conveys important intuition for the MDP case. The pseudocode is given in Algo-
rithm StreettGraphImpr.

Iterative Refinement of Candidate Sets. The improved algorithm maintains a
set goodC of already identified good components that is initially empty and a
set X of candidates for good components that is initialized with the SCCs of the
input graph G. The difference to the basic algorithm lies in the properties of the
vertex sets maintained in X and the way we identify sets that can be separated
from each other without destroying a good component. In each iteration one
vertex set S is removed from X and, after the removal of bad vertices from the
set, either identified as a good component or split into several candidate sets. By
Lemma 2 and Corollary 1 the following invariant is maintained throughout the
algorithm for the sets in goodC and X .

Invariant 2 (Maintained Sets). The sets in X ∪ goodC are pairwise disjoint
and for every good component C of G there exists a set Y ⊇ C such that either
Y ∈ X or Y ∈ goodC.

Lost Adjacent Edges. In contrast to the basic algorithm, the subgraph induced
by a set S contained in X is not necessarily strongly connected. Instead, we
remember vertices of S that have lost adjacent edges since the last time a superset
of S was determined to induce a strongly connected subgraph; vertices that lost
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Algorithm. StreettGraphImpr. Improved Alg. for Graphs with Streett
Obj.

Input : graph G = (V, E) and Streett pairs TP = {(Li, Ui) | 1 ≤ i ≤ k}
Output : 〈〈1〉〉 (G, Streett(TP))

1 X ← allSCCs(G); goodC ← ∅
2 foreach C ∈ X do HC ← ∅; TC ← ∅
3 while X �= ∅ do
4 remove some S ∈ X from X
5 B ← ⋃

1≤i≤k:Ui∩S=∅(Li ∩ S)

6 while B �= ∅ do
7 S ← S\B
8 HS ← (HS ∪ Post(B)) ∩ S
9 TS ← (TS ∪ Pre(B)) ∩ S

10 B ← ⋃
1≤i≤k:Ui∩S=∅(Li ∩ S)

11 if Post(S) ∩ S �= ∅ then /* G[S] contains at least one edge */

12 if |HS | + |TS | = 0 then goodC ← goodC ∪ {S}
13 else if |HS | + |TS | ≥ √

m/ log n then
14 delete HS and TS

15 C ← allSCCs(G[S])
16 if |C| = 1 then goodC ← goodC ∪ {S}
17 else
18 foreach C ∈ C do HC ← ∅; TC ← ∅
19 X ← X ∪ C
20 else
21 (C, HS , TS) ← Lock-Step-Search (G, S, HS , TS)
22 if C = S then goodC ← goodC ∪ {S}
23 else /* separate C and S\C */

24 S ← S\C
25 HC ← ∅; TC ← ∅
26 HS ← (HS ∪ Post(C)) ∩ S
27 TS ← (TS ∪ Pre(C)) ∩ S
28 X ← X ∪ {S} ∪ {C}

29 return GraphReach(G,
⋃

C∈goodC C)

incoming edges are contained in HS and vertices that lost outgoing edges are
contained in TS . In this way we maintain Invariant 1 throughout the algorithm,
which enables us to use Procedure Lock-Step-Search with the running time
guarantee provided by Theorem1.

Identifying SCCs. Let S be the vertex set removed from X in a fixed iteration of
Algorithm StreettGraphImpr after the removal of bad vertices in the inner
while-loop. First note that if S is strongly connected and contains at least one
edge, then it is a good component. If the set S was already identified as strongly
connected in a previous iteration, i.e., HS and TS are empty, then S is identified
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as a good component in line 12. If many vertices of S have lost adjacent edges
since the last time a super-set of S was identified as a strongly connected sub-
graph, then the SCCs of G[S] are determined as in the basic algorithm. To
achieve the optimal asymptotic upper bound, we say that many vertices of S
have lost adjacent edges when we have |HS | + |TS | ≥ √

m/ log n, while lower
thresholds are used in our experimental results. Otherwise, if not too many ver-
tices of S lost adjacent edges, then we start a symbolic lock-step search for top
SCCs from the vertices of HS and for bottom SCCs from the vertices of TS using
Procedure Lock-Step-Search. The set returned by the procedure is either a
top or a bottom SCC C of G[S] (Theorem 1). Therefore we can from now on
consider C and S\C separately, maintaining Invariants 1 and 2.

Algorithm StreettGraphImpr. A succinct description of the pseudocode is as
follows: Lines 1–2 initialize the set of candidates for good components with the
SCCs of the input graph. In each iteration of the main while-loop one candidate is
considered and the following operations are performed: (a) lines 5–10 iteratively
remove all bad vertices; if afterwards the candidate is still strongly connected
(and contains at least one edge), it is identified as a good component in the next
step; otherwise it is partitioned into new candidates in one of the following ways:
(b) if many vertices lost adjacent edges, lines 13–17 partition the candidate into
its SCCs (this corresponds to an iteration of the basic algorithm); (c) otherwise,
lines 20–28 use symbolic lock-step search to partition the candidate into one of its
SCCs and the remaining vertices. The while-loop terminates when no candidates
are left. Finally, vertices that can reach some good component are returned. We
have the following result (proof in [13, Appendix B]).

Theorem 2 (Improved Algorithm for Graphs). Algorithm Streett-
GraphImpr correctly computes the winning set in graphs with Streett objectives
and requires O(n · √

m log n) symbolic steps.

5 Symbolic MEC Decomposition

In this section we present a succinct description of the basic symbolic algo-
rithm for MEC decomposition and then present the main ideas for the improved
algorithm.

Basic symbolic algorithm for MEC decomposition. The basic symbolic algorithm
for MEC decomposition maintains a set of identified MECs and a set of candi-
dates for MECs, initialized with the SCCs of the MDP. Whenever a candidate
is considered, either (a) it is identified as a MEC or (b) it contains vertices
with outgoing random edges, which are then removed together with their ran-
dom attractor from the candidate, and the SCCs of the remaining sub-MDP are
added to the set of candidates. We refer to the algorithm as MECBasic.

Proposition 2. AlgorithmMECBasic correctly computes the MEC decomposi-
tion of MDPs and requires O(n2) symbolic steps.
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Improved Symbolic Algorithm for MEC Decomposition. The improved symbolic
algorithm for MEC decomposition uses the ideas of symbolic lock-step search
presented in Sect. 3. Informally, when considering a candidate that lost a few
edges from the remaining graph, we use the symbolic lock-step search to identify
some bottom SCC. We refer to the algorithm as MECImpr. Since all the impor-
tant conceptual ideas regarding the symbolic lock-step search are described in
Sect. 3, we relegate the technical details to [13, Appendix C]. We summarize the
main result (proof in [13, Appendix C]).

Theorem 3 (Improved Algorithm for MEC). AlgorithmMECImpr cor-
rectly computes the MEC decomposition of MDPs and requires O(n · √

m) sym-
bolic steps.

6 MDPs with Streett Objectives

Basic Symbolic Algorithm. We refer to the basic symbolic algorithm for
MDPs with Streett objectives as StreettMDPbasic, which is similar to the
algorithm for graphs, with SCC computation replaced by MEC computation.
The pseudocode of Algorithm StreettMDPbasic together with its detailed
description is presented in [13, Appendix D].

Proposition 3. AlgorithmStreettMDPbasic correctly computes the almost-
sure winning set in MDPs with Streett objectives and requires O(n2 · min(n, k))
symbolic steps.

Remark. The above bound uses the basic symbolic MEC decomposition algo-
rithm. Using our improved symbolic MEC decomposition algorithm, the above
bound could be improved to O(n · √

m · min(n, k)).

Improved Symbolic Algorithm. We refer to the improved symbolic algorithm
for MDPs with Streett objectives as StreettMDPimpr. First we present the
main ideas for the improved symbolic algorithm. Then we explain the key dif-
ferences compared to the improved symbolic algorithm for graphs. A thorough
description with the technical details and proofs is presented in [13, Appendix D].

– First, we improve the algorithm by interleaving the symbolic MEC compu-
tation with the detection of bad vertices [7,31]. This allows to replace the
computation of MECs in each iteration of the while-loop with the computa-
tion of SCCs and an additional random attractor computation.

• Intuition of interleaved computation. Consider a candidate for a good end-
component S after a random attractor to some bad vertices is removed
from it. After the removal of the random attractor, the set S does not have
random vertices with outgoing edges. Consider that further Bad(S) = ∅
holds. If S is strongly connected and contains an edge, then it is a good
end-component. If S is not strongly connected, then P [S] contains at least
two SCCs and some of them might have random vertices with outgoing
edges. Since end-components are strongly connected and do not have
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random vertices with outgoing edges, we have that (1) every good end-
component is completely contained in one of the SCCs of P [S] and (2)
the random vertices of an SCC with outgoing edges and their random
attractor do not intersect with any good end-component (see Lemma 2).

• Modification from basic to improved algorithm. We use these observations
to modify the basic algorithm as follows: First, for the sets that are can-
didates for good end-components, we do not maintain the property that
they are end-components, but only that they do not have random ver-
tices with outgoing edges (it still holds that every maximal good end-
component is either already identified or contained in one of the candi-
date sets). Second, for a candidate set S, we repeat the removal of bad
vertices until Bad(S) = ∅ holds before we continue with the next step of
the algorithm. This allows us to make progress after the removal of bad
vertices by computing all SCCs (instead of MECs) of the remaining sub-
MDP. If there is only one SCC, then this is a good end-component (if it
contains at least one edge). Otherwise (a) we remove from each SCC the
set of random vertices with outgoing edges and their random attractor
and (b) add the remaining vertices of each SCC as a new candidate set.

– Second, as for the improved symbolic algorithm for graphs, we use the sym-
bolic lock-step search to quickly identify a top or bottom SCC every time a
candidate has lost a small number of edges since the last time its superset
was identified as being strongly connected. The symbolic lock-step search is
described in detail in Sect. 3.

Using interleaved MEC computation and lock-step search leads to a simi-
lar algorithmic structure for Algorithm StreettMDPimpr as for our improved
symbolic algorithm for graphs (Algorithm StreettGraphImpr). The key dif-
ferences are as follows: First, the set of candidates for good end-components
is initialized with the MECs of the input graph instead of the SCCs. Second,
whenever bad vertices are removed from a candidate, also their random attrac-
tor is removed. Further, whenever a candidate is partitioned into its SCCs, for
each SCC, the random attractor of the vertices with outgoing random edges
is removed. Finally, whenever a candidate S is separated into C and S\C via
symbolic lock-step search, the random attractor of the vertices with outgoing
random edges is removed from C, and the random attractor of C is removed
from S.

Theorem 4 (Improved Algorithm for MDPs). Algorithm Streett
MDP impr correctly computes the almost-sure winning set in MDPs with Streett
objectives and requires O(n · √

m log n) symbolic steps.

7 Experiments

We present a basic prototype implementation of our algorithm and com-
pare against the basic symbolic algorithm for graphs and MDPs with Streett
objectives.
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Models. We consider the academic benchmarks from the VLTS benchmark
suite [21], which gives representative examples of systems with nondeterminism,
and has been used in previous experimental evaluation (such as [4,11]).

Specifications. We consider random LTL formulae and use the tool Rabinizer [28]
to obtain deterministic Rabin automata. Then the negations of the formulae give
us Streett automata, which we consider as the specifications.

Graphs. For the models of the academic benchmarks, we first compute SCCs,
as all algorithms for Streett objectives compute SCCs as a preprocessing step.
For SCCs of the model benchmarks we consider products with the specification
Streett automata, to obtain graphs with Streett objectives, which are the bench-
mark examples for our experimental evaluation. The number of transitions in
the benchmarks ranges from 300K to 5Million.

MDPs. For MDPs, we consider the graphs obtained as above and consider a
fraction of the vertices of the graph as random vertices, which is chosen uniformly
at random. We consider 10%, 20%, and 50% of the vertices as random vertices
for different experimental evaluation.

Fig. 2. Results for graphs with Streett objectives.

Experimental Evaluation. In the experimental evaluation we compare the num-
ber of symbolic steps (i.e., the number of Pre/Post operations2) executed by
the algorithms, the comparison of running time yields similar results and is pro-
vided in [13, Appendix E]. As the initial preprocessing step is the same for all the
algorithms (computing all SCCs for graphs and all MECs for MDPs), the com-
parison presents the number of symbolic steps executed after the preprocessing.
The experimental results for graphs are shown in Fig. 2 and the experimental
results for MDPs are shown in Fig. 3 (in each figure the two lines represent
equality and an order-of-magnitude improvement, respectively).

Discussion. Note that the lock-step search is the key reason for theoretical
improvement, however, the improvement relies on a large number of Streett pairs.
2 Recall that the basic set operations are cheaper to compute, and asymptotically at

most the number of Pre/Post operations in all the presented algorithms.
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(a) 10% random vertices (b) 20% random vertices

(c) 50% random vertices

Fig. 3. Results for MDPs with Streett objectives.

In the experimental evaluation, the LTL formulae generate Streett automata
with small number of pairs, which after the product with the model accounts for
an even smaller fraction of pairs as compared to the size of the state space. This
has two effects:

– In the experiments the lock-step search is performed for a much smaller param-
eter value (O(log n) instead of the theoretically optimal bound of

√
m/ log n),

and leads to a small improvement.
– For large graphs, since the number of pairs is small as compared to the number

of states, the improvement over the basic algorithm is minimal.

In contrast to graphs, in MDPs even with small number of pairs as compared
to the state-space, the interleaved MEC computation has a notable effect on
practical performance, and we observe performance improvement even in large
MDPs.

8 Conclusion

In this work we consider symbolic algorithms for graphs and MDPs with Streett
objectives, as well as for MEC decomposition. Our algorithmic bounds match
for both graphs and MDPs. In contrast, while SCCs can be computed in linearly
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many symbolic steps no such algorithm is known for MEC decomposition. An
interesting direction of future work would be to explore further improved sym-
bolic algorithms for MEC decomposition. Moreover, further improved symbolic
algorithms for graphs and MDPs with Streett objectives is also an interesting
direction of future work.
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28. Komárková, Z., Křet́ınský, J.: Rabinizer 3: safraless translation of LTL to small
deterministic automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 235–241. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6 17

29. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

30. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Syst. Tech. J. 38(4), 985–999 (1959)

http://arxiv.org/abs/1804.00206
https://doi.org/10.1007/978-3-540-45220-1_11
https://doi.org/10.1007/978-3-642-39799-8_37
http://cadp.inria.fr/resources/vlts
http://cadp.inria.fr/resources/vlts
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-08867-9_13
https://doi.org/10.1007/3-540-61422-2_117
https://doi.org/10.1007/978-3-319-11936-6_17
https://doi.org/10.1007/978-3-319-11936-6_17
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47


Symbolic Algorithms for Graphs and MDPs with Fairness Objectives 197

31. Loitzenbauer, V.: Improved algorithms and conditional lower bounds for problems
in formal verification and reactive synthesis. Ph.D. thesis. University of Vienna
(2016)

32. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Progress (Draft)
(1996)

33. Ravi, K., Bloem, R., Somenzi, F.: A comparative study of symbolic algorithms
for the computation of fair cycles. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD
2000. LNCS, vol. 1954, pp. 162–179. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-40922-X 10

34. Safra, S.: On the complexity of ω-automata. In: FOCS, pp. 319–327 (1988)
35. Somenzi, F.: CUDD: CU decision diagram package release 3.0.0 (2015). http://vlsi.

colorado.edu/∼fabio/CUDD/

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-40922-X_10
https://doi.org/10.1007/3-540-40922-X_10
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://creativecommons.org/licenses/by/4.0/

	Symbolic Algorithms for Graphs and Markov Decision Processes with Fairness Objectives
	1 Introduction
	2 Definitions
	2.1 Basic Problem Definitions
	2.2 Basic Concepts Related to Algorithmic Solution

	3 Symbolic Divide-and-Conquer with Lock-Step Search
	4 Graphs with Streett Objectives
	5 Symbolic MEC Decomposition
	6 MDPs with Streett Objectives
	7 Experiments
	8 Conclusion
	References




