1,933 research outputs found

    Strategic and Tactical Crude Oil Supply Chain: Mathematical Programming Models

    Get PDF
    Crude oil industry very fast became a strategic industry. Then, optimization of the Crude Oil Supply Chain (COSC) models has created new challenges. This fact motivated me to study the COSC mathematical programming models. We start with a systematic literature review to identify promising avenues. Afterwards, we elaborate three concert models to fill identified gaps in the COSC context, which are (i) joint venture formation, (ii) integrated upstream, and (iii) environmentally conscious design

    Analysis of Disruptions in the Gulf of Mexico Oil and Gas Industry Supply Chain and Related Economic Impacts

    Get PDF
    Catastrophic events are human and economic tragedies in collaboration. Oil spills have enormous impacts on the local economy of the area and for the local labor markets. The Deepwater Horizon oil spill was caused by an explosion on semisubmersible drilling rig (Macondo) on April 20, 2010. Another regional disaster, Hurricane Katrina as it ripped over the core of the Gulf of Mexico producing zone, one of the most important oil and gas production region. With Geological complexities, continued of drilling and production in GoM increases the risk of having leak/spill. Therefore, the Econometrics methods, and Modeling to forecast impacts of potential disasters are utilized and conduct optimization modeling to capture key components for building reasonable supply chain models of actual situations for petroleum industry in order to make the best possible choices consequences of disaster in this dissertation,. The dynamic response of a different of industrial sectors in Louisiana to oil and gas disasters is considered. The likely magnitude of the net economic impact of a major oil spill (Macondo) will be determined in terms of jobs and wages with Vector Autoregressive method. Forecast the potential impacts of future changes in employment after disaster on economy will be studied. In the second part, the offsetting economic injection due to BP expenditures in the economy, will estimate by economic impact analysis method, which is Input-output models. Then the gross economic damage, which is created by BP oil spill will be calculated. The final results provide beneficial knowledge on determining the potential economic impact of future large-scale catastrophes and helpful for companies to react better to the economic impact of events. At the end, a mathematical framework will be presented for optimal network design of oil and gas supply chain with application for Louisiana Offshore Oil Port (LOOP); due to determine the optimal oil flow through the mid-stream/ downstream networks and its profit even if it is experiencing natural/ man-made damages. The outcome of this work is a new distributed decision support framework which is intended to help optimize the profit for critical energy zone and to boost economy under unpredictable situations

    Strategic analysis and optimization of bioethanol supply chains

    Get PDF
    In modern times, the interest in renewable energy has been increasing considerably in response to the growing energy demand and to the simultaneous concern about global warming effects. The urgency of this issue is related to dissociation between the perspective of a steady growth in demand for fuel and its supply, which is projected to become ever more uncertain and expensive. The phenomenon of climate change is widely recognized as a consequence of the increased concentration of greenhouse gases (GHG) in the atmosphere caused by anthropogenic activity, and to which the transport sector is a significant contributor. Among biofuels, biomass-based ethanol has been in a leading position for substituting petroleum-based road-fuels. Even if its actual carbon footprint is still debated, it is generally acknowledged a reduction in net GHG emissions with respect to oil. The complexity of the context discussed previously, guides us to the transition towards a more sustainable transport system which requires the adoption of effective quantitative tools able to encompassing the problem to the whole production chain (supply chain), that may help defining a more comprehensive view of biofuels. In dealing with such problems involving high decisional level, the analytical modelling is recognized as the best optimization option, particularly in the initial phase of design of unknown infrastructures in order to cope with a comprehensive management of production systems taking into account all supply chain stages. Mixed Integer Linear Programming (MILP) in particular, emerges as one of the most suitable tools in determining the optimal solutions of complex supply chain design problems where multiple alternatives are to be taken into account. In this sense, the multi-objective MILP (moMILP) enables simultaneous consideration of conflicting criteria (i.e., financial, environmental) to assist the decisions of interested parties on biofuels industry at strategic and tactical levels. Moreover, this complex analysis is addressed effectively by incorporating the principles of Life Cycle Analysis (LCA) within supply chain analysis techniques aiming at a quantitative assessment of the environmental burdens of each supply chain stage. Accordingly, the main purpose of the research presented in this Thesis is to cover this gap of knowledge in the literature. In the context of the development and adoption of bioenergy systems, the overall objective of this work is to provide quantitative and deterministic tools to analyze and optimize the supply chain as whole, to thereby identify the most suitable and feasible strategies for the development of future road transport systems. In this sense, the research design for this Thesis begins with the development and analysis of a multi-period moMILP modelling framework for the design and the optimization of bioethanol supply chain where economics and environmental sustainability (GHG emissions reductions potential) for first generation ethanol is addressed, considering possibilities of several technologies integration (including biogas production). Then, the analysis is focused on the general interactions of market policies under the European Emission Trading System in order to enhance the bioethanol market development trends to boost sustainable production of bioethanol. Next, a comprehensive modelling analysis to predict commodity price evolution dynamics and to extend the price forecasts to other goods related to bioethanol production is addressed. An assessment of the impact on the supply chain design of the recent proposed by the European Commission to amend the existing Directive in terms of accountability technique for biofuels is analyzed and discussed. Besides, multi-criteria decision making tools to support strategic design and planning on biofuel supply chains including several Game Theory features are evaluated. Finally to close up, the main achievements of the Thesis are exposed as well as the main shortfalls and possible future research lines are outlined. Models capabilities in steering decisions on investments for bioenergy systems are evaluated in addressing real world case studies referring to the emerging bioethanol production in Northern Italy

    Integrating bio-hubs in biomass supply chains: Insights from a systematic literature review

    Get PDF
    Biomass sources are geographically scattered, and seasonal changes influence their availability. Variations in location, type, and feedstock quality impose logistical and storage challenges. Such a dispersion and variety of biomass sources, as well as the dispersion of demand points, may undermine the economies of scale and increase the risk of supply shortage. By consolidating biomass preprocessing and distribution activities in bio-hub facilities, they can contribute to the overall resilience of biomass supply chains (BSCs) and ensure a more sustainable and cost-efficient approach to bioenergy production. As such, investigating the advantages and challenges associated with bio-hub implementation can offer invaluable insights on the efficiency and sustainability of BSCs. Despite its critical role, a major part of the literature on BSCs is confined to the decision-making processes related to biomass suppliers and bioconversion facilities. To bridge this research gap, the current study conducts a systematic literature review on bio-hub implementation within BSCs in the period of the last ten years. Shortlisted papers are classified and analyzed meticulously to extract possible improvements from BSC and modeling perspectives. From the BSC viewpoint, one notable gap is the little attention to mid-term and short-term decisions of bio-hub operations such as inventory control, resource management and production planning. Furthermore, the results revealed that environmental and social aspects of bio-hub implementation require considerable attention. From the modeling perspective, findings illustrate the underutilization of integrated approaches to incorporate micro-level and macro-level information in decision-making. In this regard, a number of areas are suggested for further exploration

    Review of mathematical models for production planning under uncertainty due to lack of homogeneity: proposal of a conceptual model

    Full text link
    [EN] Lack of homogeneity in the product (LHP) appears in some production processes that confer heterogeneity in the characteristics of the products obtained. Supply chains with this issue have to classify the product in different homogeneous subsets, whose quantity is uncertain during the production planning process. This paper proposes a generic framework for reviewing in a unified way the literature about production planning models dealing with LHP uncertainty. This analysis allows the identification of similarities among sectors to transfer solutions between them and gaps existing in the literature for further research. The results of the review show: (1) sectors affected by LHP inherent uncertainty, (2) the inherent LHP uncertainty types modelled, and (3) the approaches for modelling LHP uncertainty most widely employed. Finally, we suggest a conceptual model reflecting the aspects to be considered when modelling the production planning in sectors with LHP in an uncertain environment.This research was initiated within the framework of the project funded by the Ministerio de Economía y Competitividad [Ref. DPI2011-23597] entitled ‘Methods and models for operations planning and order management in supply chains characterised by uncertainty in production due to the lack of product uniformity’ (PLANGES-FHP) already finished. After, the project leading to this application has received funding from the European Union’s research and innovation programme under the H2020 Marie Skłodowska-Curie Actions with the grant agreement No 691249, Project entitled ’Enhancing and implementing Knowledge based ICT solutions within high Riskand Uncertain Conditions for Agriculture Production Systems’ (RUC-APS).Mundi, I.; Alemany Díaz, MDM.; Poler, R.; Fuertes-Miquel, VS. (2019). Review of mathematical models for production planning under uncertainty due to lack of homogeneity: proposal of a conceptual model. International Journal of Production Research. 57(15-16):5239-5283. https://doi.org/10.1080/00207543.2019.1566665S523952835715-16Ahumada, O., Rene Villalobos, J., & Nicholas Mason, A. (2012). Tactical planning of the production and distribution of fresh agricultural products under uncertainty. Agricultural Systems, 112, 17-26. doi:10.1016/j.agsy.2012.06.002Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1-20. doi:10.1016/j.ejor.2008.02.014Alarcón, F., Alemany, M. M. E., Lario, F. C., & Oltra, R. F. (2011). La falta de homogeneidad del producto (FHP) en las empresas cerámicas y su impacto en la reasignación del inventario. Boletín de la Sociedad Española de Cerámica y Vidrio, 50(1), 49-58. doi:10.3989/cyv.072011Albornoz, V. M., M. González-Araya, M. C. Gripe, and S. V. Rodrıguez. 2014. “A Mixed Integer Linear Program for Operational Planning in a Meat Packing Plant.” Accessed January 15, 2015. http://www.researchgate.net/profile/Victor_Albornoz/publication/268687089_A_Mixed_Integer_Linear_Program_for_Operational_Planning_in_a_Meat_Packing_Plant/links/547382bf0cf29afed60f55c7.pdf.José Alem, D., & Morabito, R. (2012). Production planning in furniture settings via robust optimization. Computers & Operations Research, 39(2), 139-150. doi:10.1016/j.cor.2011.02.022Alemany, M. M. E., Lario, F.-C., Ortiz, A., & Gómez, F. (2013). Available-To-Promise modeling for multi-plant manufacturing characterized by lack of homogeneity in the product: An illustration of a ceramic case. Applied Mathematical Modelling, 37(5), 3380-3398. doi:10.1016/j.apm.2012.07.022Alemany, M., Ortiz, A., & Fuertes-Miquel, V. S. (2018). A decision support tool for the order promising process with product homogeneity requirements in hybrid Make-To-Stock and Make-To-Order environments. Application to a ceramic tile company. Computers & Industrial Engineering, 122, 219-234. doi:10.1016/j.cie.2018.05.040Alfalla-Luque, R., Medina-Lopez, C., & Dey, P. K. (2012). Supply chain integration framework using literature review. Production Planning & Control, 24(8-9), 800-817. doi:10.1080/09537287.2012.666870Al-Othman, W. B. E., Lababidi, H. M. S., Alatiqi, I. M., & Al-Shayji, K. (2008). Supply chain optimization of petroleum organization under uncertainty in market demands and prices. European Journal of Operational Research, 189(3), 822-840. doi:10.1016/j.ejor.2006.06.081Al-Shammari, A., & Ba-Shammakh, M. S. (2011). Uncertainty Analysis for Refinery Production Planning. Industrial & Engineering Chemistry Research, 50(11), 7065-7072. doi:10.1021/ie200313rAmaro, A. C. S., & Barbosa-Póvoa, A. P. F. D. (2009). The effect of uncertainty on the optimal closed-loop supply chain planning under different partnerships structure. Computers & Chemical Engineering, 33(12), 2144-2158. doi:10.1016/j.compchemeng.2009.06.003ARAS, N., BOYACI, T., & VERTER, V. (2004). The effect of categorizing returned products in remanufacturing. IIE Transactions, 36(4), 319-331. doi:10.1080/07408170490279561Aydin, R., Kwong, C. K., Geda, M. W., & Okudan Kremer, G. E. (2017). Determining the optimal quantity and quality levels of used product returns for remanufacturing under multi-period and uncertain quality of returns. The International Journal of Advanced Manufacturing Technology, 94(9-12), 4401-4414. doi:10.1007/s00170-017-1141-0Bakhrankova, K., Midthun, K. T., & Uggen, K. T. (2014). Stochastic optimization of operational production planning for fisheries. Fisheries Research, 157, 147-153. doi:10.1016/j.fishres.2014.03.018Banasik, A., Kanellopoulos, A., Claassen, G. D. H., Bloemhof-Ruwaard, J. M., & van der Vorst, J. G. A. J. (2017). Closing loops in agricultural supply chains using multi-objective optimization: A case study of an industrial mushroom supply chain. International Journal of Production Economics, 183, 409-420. doi:10.1016/j.ijpe.2016.08.012Beaudoin, D., LeBel, L., & Frayret, J.-M. (2007). Tactical supply chain planning in the forest products industry through optimization and scenario-based analysis. Canadian Journal of Forest Research, 37(1), 128-140. doi:10.1139/x06-223Begen, M. A., & Puterman, M. L. (2003). Development Of A Catch Allocation Tool Design For Production Planning At Js Mcmillan Fisheries. INFOR: Information Systems and Operational Research, 41(3), 235-244. doi:10.1080/03155986.2003.11732678Benedito, E., & Corominas, A. (2010). Optimal manufacturing and remanufacturing capacities of systems with reverse logistics and deterministic uniform demand. Journal of Industrial Engineering and Management, 3(1). doi:10.3926/jiem.2010.v3n1.p33-53Bertrand, J. W. ., & Rutten, W. G. M. . (1999). Evaluation of three production planning procedures for the use of recipe flexibility. European Journal of Operational Research, 115(1), 179-194. doi:10.1016/s0377-2217(98)00166-0Björheden, R., & Helstad, K. (2005). Raw Material Procurement in Sawmills’ Business Level Strategy-A Contingency Perspective. International Journal of Forest Engineering, 16(2), 47-56. doi:10.1080/14942119.2005.10702513Bohle, C., Maturana, S., & Vera, J. (2010). A robust optimization approach to wine grape harvesting scheduling. European Journal of Operational Research, 200(1), 245-252. doi:10.1016/j.ejor.2008.12.003Cai, X., Lai, M., Li, X., Li, Y., & Wu, X. (2014). Optimal acquisition and production policy in a hybrid manufacturing/remanufacturing system with core acquisition at different quality levels. European Journal of Operational Research, 233(2), 374-382. doi:10.1016/j.ejor.2013.07.017Carneiro, M. C., Ribas, G. P., & Hamacher, S. (2010). Risk Management in the Oil Supply Chain: A CVaR Approach. Industrial & Engineering Chemistry Research, 49(7), 3286-3294. doi:10.1021/ie901265nChakraborty, M., & Chandra, M. K. (2005). Multicriteria decision making for optimal blending for beneficiation of coal: a fuzzy programming approach. Omega, 33(5), 413-418. doi:10.1016/j.omega.2004.07.005LUO, C., & RONG, G. (2009). A Strategy for the Integration of Production Planning and Scheduling in Refineries under Uncertainty. Chinese Journal of Chemical Engineering, 17(1), 113-127. doi:10.1016/s1004-9541(09)60042-2Davoli, G., Gallo, S., Collins, M., & Melloni, R. (2011). A stochastic simulation approach for production scheduling and investment planning in the tile industry. International Journal of Engineering, Science and Technology, 2(9). doi:10.4314/ijest.v2i9.64006Denizel, M., Ferguson, M., & Souza, G. (2010). Multiperiod Remanufacturing Planning With Uncertain Quality of Inputs. IEEE Transactions on Engineering Management, 57(3), 394-404. doi:10.1109/tem.2009.2024506Dong, M., Lu, S., & Han, S. (2011). Production Planning for Hybrid Remanufacturing and Manufacturing System with Component Recovery. Advances in Electrical Engineering and Electrical Machines, 511-518. doi:10.1007/978-3-642-25905-0_66Dubois, D., Fargier, H., & Fortemps, P. (2003). Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge. European Journal of Operational Research, 147(2), 231-252. doi:10.1016/s0377-2217(02)00558-1DUENYAS, I., & TSAI, C.-Y. (2000). Control of a manufacturing system with random product yield and downward substitutability. IIE Transactions, 32(9), 785-795. doi:10.1080/07408170008967438Esteso, A., Alemany, M. M. E., & Ortiz, A. (2018). Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. International Journal of Production Research, 56(13), 4418-4446. doi:10.1080/00207543.2018.1447706French, M. L., & LaForge, R. L. (2005). Closed-loop supply chains in process industries: An empirical study of producer re-use issues. Journal of Operations Management, 24(3), 271-286. doi:10.1016/j.jom.2004.07.012Gallo, M., R. Grisi, G. Guizzi, and E. Romano. 2009. “A Comparison of Production Policies in Remanufacturing Systems,” Proceedings of the 8th WSEAS International Conference on System Science and Simulation in Engineering, ICOSSSE ‘09, pp. 334.Goodfellow, R., & Dimitrakopoulos, R. (2017). Simultaneous Stochastic Optimization of Mining Complexes and Mineral Value Chains. Mathematical Geosciences, 49(3), 341-360. doi:10.1007/s11004-017-9680-3Graves, S. C. (2010). Uncertainty and Production Planning. Planning Production and Inventories in the Extended Enterprise, 83-101. doi:10.1007/978-1-4419-6485-4_5Grillo, H., Alemany, M. M. E., Ortiz, A., & Fuertes-Miquel, V. S. (2017). Mathematical modelling of the order-promising process for fruit supply chains considering the perishability and subtypes of products. Applied Mathematical Modelling, 49, 255-278. doi:10.1016/j.apm.2017.04.037Guan, Z., & Philpott, A. B. (2011). A multistage stochastic programming model for the New Zealand dairy industry. International Journal of Production Economics, 134(2), 289-299. doi:10.1016/j.ijpe.2009.11.003Guide, V. D. R. (2000). Production planning and control for remanufacturing: industry practice and research needs. Journal of Operations Management, 18(4), 467-483. doi:10.1016/s0272-6963(00)00034-6Gupta, V., & Grossmann, I. E. (2011). Solution strategies for multistage stochastic programming with endogenous uncertainties. Computers & Chemical Engineering, 35(11), 2235-2247. doi:10.1016/j.compchemeng.2010.11.013Gupta, S., and Z. Nan. 2006. “‘Multiperiod Planning of Refinery Operations Under Market Uncertainty,’ AIChE Annual Meeting.” Conference Proceedings.Heckmann, I., Comes, T., & Nickel, S. (2015). A critical review on supply chain risk – Definition, measure and modeling. Omega, 52, 119-132. doi:10.1016/j.omega.2014.10.004Heydari, J., & Ghasemi, M. (2018). A revenue sharing contract for reverse supply chain coordination under stochastic quality of returned products and uncertain remanufacturing capacity. Journal of Cleaner Production, 197, 607-615. doi:10.1016/j.jclepro.2018.06.206Hovelaque, V., Duvaleix-Tréguer, S., & Cordier, J. (2009). Effects of constrained supply and price contracts on agricultural cooperatives. European Journal of Operational Research, 199(3), 769-780. doi:10.1016/j.ejor.2008.08.005Hsieh, S., & Chiang, C.-C. (2001). Manufacturing-to-Sale Planning Model for Fuel Oil Production. The International Journal of Advanced Manufacturing Technology, 18(4), 303-311. doi:10.1007/s001700170070Igarashi, M., de Boer, L., & Fet, A. M. (2013). What is required for greener supplier selection? A literature review and conceptual model development. Journal of Purchasing and Supply Management, 19(4), 247-263. doi:10.1016/j.pursup.2013.06.001Jamshidi, M., & Osanloo, M. (2019). Reliability analysis of production schedule in multi-element deposits under grade-tonnage uncertainty with multi-destinations for the run of mine material. International Journal of Mining Science and Technology, 29(3), 483-489. doi:10.1016/j.ijmst.2018.04.016Jin, X., Hu, S. J., Ni, J., & Xiao, G. (2013). Assembly Strategies for Remanufacturing Systems With Variable Quality Returns. IEEE Transactions on Automation Science and Engineering, 10(1), 76-85. doi:10.1109/tase.2012.2217741Jindal, A., & Sangwan, K. S. (2016). Multi-objective fuzzy mathematical modelling of closed-loop supply chain considering economical and environmental factors. Annals of Operations Research, 257(1-2), 95-120. doi:10.1007/s10479-016-2219-zJohnson, P., G. Evatt, P. Duck, and S. Howell. 2010. “The Derivation and Impact of an Optimal Cut-off Grade Regime Upon Mine Valuations,” Proceedings of the World Congress on Engineering 2010 Vol I.Junior, M. L., & Filho, M. G. (2011). Production planning and control for remanufacturing: literature review and analysis. Production Planning & Control, 23(6), 419-435. doi:10.1080/09537287.2011.561815Kamrad, B., & Ernst, R. (2001). An Economic Model for Evaluating Mining and Manufacturing Ventures with Output Yield Uncertainty. Operations Research, 49(5), 690-699. doi:10.1287/opre.49.5.690.10610Kannegiesser, M., Günther, H.-O., van Beek, P., Grunow, M., & Habla, C. (2008). Value chain management for commodities: a case study from the chemical industry. OR Spectrum, 31(1), 63-93. doi:10.1007/s00291-008-0124-9Karabuk, S. (2008). Production planning under uncertainty in textile manufacturing. Journal of the Operational Research Society, 59(4), 510-520. doi:10.1057/palgrave.jors.2602370Khor, C. S., Elkamel, A., & Douglas, P. L. (2008). Stochastic Refinery Planning with Risk Management. Petroleum Science and Technology, 26(14), 1726-1740. doi:10.1080/10916460701287813Kumral, M. (2004). Genetic algorithms for optimization of a mine system under uncertainty. Production Planning & Control, 15(1), 34-41. doi:10.1080/09537280310001654844Lalmazloumian, M., and K. Y. Wong. 2012. “A Review of Modelling Approaches for Supply Chain Planning Under Uncertainty,” Service Systems and Service Management (ICSSSM), 2012 9th International Conference on, pp. 197.Leiras, A., Ribas, G., Hamacher, S., & Elkamel, A. (2013). Tactical and Operational Planning of Multirefinery Networks under Uncertainty: An Iterative Integration Approach. Industrial & Engineering Chemistry Research, 52(25), 8507-8517. doi:10.1021/ie302835nLiao, H., Deng, Q., & Wang, Y. (2017). Optimal Acquisition and Production Policy for End-of-Life Engineering Machinery Recovering in a Joint Manufacturing/Remanufacturing System under Uncertainties in Procurement and Demand. Sustainability, 9(3), 338. doi:10.3390/su9030338Loomba, A. P. S., & Nakashima, K. (2011). Enhancing value in reverse supply chains by sorting before product recovery. Production Planning & Control, 23(2-3), 205-215. doi:10.1080/09537287.2011.591652Macedo, P. B., Alem, D., Santos, M., Junior, M. L., & Moreno, A. (2015). Hybrid manufacturing and remanufacturing lot-sizing problem with stochastic demand, return, and setup costs. The International Journal of Advanced Manufacturing Technology, 82(5-8), 1241-1257. doi:10.1007/s00170-015-7445-zMartinez, L. 2009. “Why Accounting for Uncertainty and Risk Can Improve Final Decision-Making in Strategic Open Pit Mine Evaluation.” Project Evaluation Conference, Melbourne, pp. 1.Matamoros, M. E. V., & Dimitrakopoulos, R. (2016). Stochastic short-term mine production schedule accounting for fleet allocation, operational considerations and blending restrictions. European Journal of Operational Research, 255(3), 911-921. doi:10.1016/j.ejor.2016.05.050Meredith, J. (1993). Theory Building through Conceptual Methods. International Journal of Operations & Production Management, 13(5), 3-11. doi:10.1108/01443579310028120Miller, W. A., Leung, L. C., Azhar, T. M., & Sargent, S. (1997). Fuzzy production planning model for fresh tomato packing. International Journal of Production Economics, 53(3), 227-238. doi:10.1016/s0925-5273(97)00110-2Mitra, K. (2009). Multiobjective optimization of an industrial grinding operation under uncertainty. Chemical Engineering Science, 64(23), 5043-5056. doi:10.1016/j.ces.2009.08.012Moghaddam, K. S. (2015). Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty. Expert Systems with Applications, 42(15-16), 6237-6254. doi:10.1016/j.eswa.2015.02.010Mula, J., Peidro, D., Díaz-Madroñero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research, 204(3), 377-390. doi:10.1016/j.ejor.2009.09.008Mula, J., Peidro, D., & Poler, R. (2010). The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. International Journal of Production Economics, 128(1), 136-143. doi:10.1016/j.ijpe.2010.06.007MUNDI, I., ALEMANY, M. M. E., BOZA, A., & POLER, R. (2013). A Model-Driven Decision Support System for the Master Planning of Ceramic Supply Chains with Non-uniformity of Finished Goods. Studies in Informatics and Control, 22(2). doi:10.24846/v22i2y201305Mundi, M. I., Alemany, M. M. E., Poler, R., & Fuertes-Miquel, V. S. (2016). Fuzzy sets to model master production effectively in Make to Stock companies with Lack of Homogeneity in the Product. Fuzzy Sets and Systems, 293, 95-112. doi:10.1016/j.fss.2015.06.009Munhoz, J. R., & Morabito, R. (2014). Optimization approaches to support decision making in the production planning of a citrus company: A Brazilian case study. Computers and Electronics in Agriculture, 107, 45-57. doi:10.1016/j.compag.2014.05.016Olivetti, E. A., Gaustad, G. G., Field, F. R., & Kirchain, R. E. (2011). Increasing Secondary and Renewable Material Use: A Chance Constrained Modeling Approach To Manage Feedstock Quality Variation. Environmental Science & Technology, 45(9), 4118-4126. doi:10.1021/es103486sOsmani, A., & Zhang, J. (2013). Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties. Energy, 59, 157-172. doi:10.1016/j.energy.2013.07.043Paksoy, T., Pehlivan, N. Y., & Özceylan, E. (2012). Application of fuzzy optimization to a supply chain network design: A case study of an edible vegetable oils manufacturer. Applied Mathematical Modelling, 36(6), 2762-2776. doi:10.1016/j.apm.2011.09.060Pauls-Worm, K. G. J., Hendrix, E. M. T., Haijema, R., & van der Vorst, J. G. A. J. (2014). An MILP approximation for ordering perishable products with non-stationary demand and service level constraints. International Journal of Production Economics, 157, 133-146. doi:10.1016/j.ijpe.2014.07.020Peidro, D., Mula, J., Alemany, M. M. E., & Lario, F.-C. (2012). Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. International Journal of Production Research, 50(11), 3011-3020. doi:10.1080/00207543.2011.588267Peidro, D., Mula, J., Jiménez, M., & del Mar Botella, M. (2010). A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment. European Journal of Operational Research, 205(1), 65-80. doi:10.1016/j.ejor.2009.11.031Peidro, D., Mula, J., Poler, R., & Lario, F.-C. (2008). Quantitative models for supply chain planning under uncertainty: a review. The International Journal of Advanced Manufacturing Technology, 43(3-4), 400-420. doi:10.1007/s00170-008-1715-yPendharkar, P. C. (1997). A fuzzy linear programming model for production planning in coal mines. Computers & Operations Research, 24(12), 1141-1149. doi:10.1016/s0305-0548(97)00024-5Pendharkar, P. C. (2013). Scatter search based interactive multi-criteria optimization of fuzzy objectives for coal production planning. Engineering Applications of Artificial Intelligence, 26(5-6), 1503-1511. doi:10.1016/j.engappai.2013.01.001Pieter van Donk, D. (2000). Customer‐driven manufacturing in the food processing industry. British Food Journal, 102(10), 739-747. doi:10.1108/00070700010362176Pitty, S. S., Li, W., Adhitya, A., Srinivasan, R., & Karimi, I. A. (2008). Decision support for integrated refinery supply chains. Computers & Chemical Engineering, 32(11), 2767-2786. doi:10.1016/j.compchemeng.2007.11.006Poles, R., and F. Cheong. 2009. “A System Dynamics Model for Reducing Uncertainty in Remanufacturing Systems,” PACIS 2009–13th Pacific Asia Conference on Information Systems: IT Services in a Global Environment.Pongsakdi, A., Rangsunvigit, P., Siemanond, K., & Bagajewicz, M. J. (2006). Financial risk management in the planning of refinery operations. International Journal of Production Economics, 103(1), 64-86. doi:10.1016/j.ijpe.2005.04.007Radulescu, M., G. Zbaganu, and C. Z. Radulescu. 2008. “Crop Planning in the Presence of Production Quotas (Invited Paper),” Computer Modeling and Simulation, 2008.UKSIM 2008. Tenth International Conference on, pp. 549.Rajaram, K., & Karmarkar, U. S. (2002). Product Cycling With Uncertain Yields: Analysis and Application to the Process Industry. Operations Research, 50(4), 680-691. doi:10.1287/opre.50.4.680.2867Ramasesh, R. V., &

    A mixed integer programming model to evaluate the impact of business factors on global manufacturing relocation decisions

    Get PDF
    In recent years, dramatic changes in business factors have triggered a trend of manufacturing relocation out of 'The World's Factory', which is the Pearl River Delta (PRO), China. Global manufacturers in PRO have been facing unprecedented operating cost pressure, due to RI1B currency appreciation, rising labor cost, highly volatile oil price, tax rebate adjustment and industry policy changes. This paper presents a Mixed Integer Programming (MIP) model, to evaluate the impact of business factors on global manufacturing relocation decisions. Objective function of the MIP model is to minimize Total Landed Cost (TLC) for international markets. Application of the MIP model is illustrated through a case study with a hypothetical footwear manufacturer. Managerial implications on supply chain dynamics and regional economy are derived from modeling results and analysis.published_or_final_versio

    A framework for the near-real-time optimization of integrated oil & gas midstream processing networks

    Get PDF
    The oil and gas industry plays a key role in the world’s economy. Vast quantities of crude oil, their by-products and derivatives are produced, processed and distributed every day. Indeed, producing and processing significant volumes of crude oil requires connecting to wells in different fields that are usually spread across large geographical areas. This crude oil is then processed by Gas Oil Separation Plants (GOSPs). These facilities are often grouped into clusters that are within approximate distance from each other and then connected laterally via swing lines which allow shifting part or all of the production from one GOSP to another. Transfer lines also exist to allow processing intermediate products in neighbouring GOSPs, thereby increasing complexity and possible interactions. In return, this provides an opportunity to leverage mathematical optimization to improve network planning and load allocation. Similarly, in major oil producing countries, vast gas processing networks exist to process associated and non-associated gases. These gas plants are often located near major feed sources. Similar to GOSPs, they are also often connected through swing lines, which allow shifting feedstock from some plants to others. GOSPs and gas plants are often grouped as oil and gas midstream plants. These plants are operated on varied time horizons and plant boundaries. While plant operators are concerned with the day-to-day operation of their facility, network operators must ensure that the entire network is operated optimally and that product supply is balanced with demand. They are therefore in charge of allocating load to individual plants, while knowing each plants constraints and processing capabilities. Network planners are also in charge of producing production plans at varied time-scales, which vary from yearly to monthly and near-real time. This work aims to establish a novel framework for optimizing Oil and Gas Midstream plants for near-real time network operation. This topic has not been specifically addressed in the existing literature. It examines problems which involve operating networks of GOSPs and gas plants towards an optimal solution. It examines various modelling approaches which are suited for this specific application. It then focuses at this stage of the research on the GOSP optimization problem where it addresses optimizing the operation of a complex network of GOSPs. The goal is to operate this network such that oil production targets are met at minimum energy consumption, and therefore minimizing OpEx and Greenhouse Gas Emissions. Similarly, it is often required to operate the network such that production is maximized. This thesis proposes a novel methodology to formulate and solve this problem. It describes the level of fidelity used to represent physical process units. A Mixed Integer Non-Linear Programming (MINLP) problem is then formulated and solved to optimize load allocation, swing line flowrates and equipment utilization. The model demonstrates advanced capabilities to systematically prescribe optimal operating points. This was then applied to an existing integrated network of GOSPs and tested at varying crude oil demand levels. The results demonstrate the ability to minimize energy consumption by up to 51% in the 50% throughput case while meeting oil production targets without added capital investment.Open Acces
    corecore