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1. Abstract 

The oil and gas industry plays a key role in the world’s economy. Vast quantities of crude 

oil, their by-products and derivatives are produced, processed and distributed every day. 

Indeed, producing and processing significant volumes of crude oil requires connecting to 

wells in different fields that are usually spread across large geographical areas. This crude 

oil is then processed by Gas Oil Separation Plants (GOSPs). These facilities are often 

grouped into clusters that are within approximate distance from each other and then 

connected laterally via swing lines which allow shifting part or all of the production from 

one GOSP to another. Transfer lines also exist to allow processing intermediate products 

in neighbouring GOSPs, thereby increasing complexity and possible interactions. In 

return, this provides an opportunity to leverage mathematical optimization to improve 

network planning and load allocation. 

Similarly, in major oil producing countries, vast gas processing networks exist to process 

associated and non-associated gases. These gas plants are often located near major feed 

sources. Similar to GOSPs, they are also often connected through swing lines, which allow 

shifting feedstock from some plants to others.  

GOSPs and gas plants are often grouped as oil and gas midstream plants. These plants are 

operated on varied time horizons and plant boundaries. While plant operators are 

concerned with the day-to-day operation of their facility, network operators must ensure 

that the entire network is operated optimally and that product supply is balanced with 

demand. They are therefore in charge of allocating load to individual plants, while 

knowing each plants constraints and processing capabilities. Network planners are also in 

charge of producing production plans at varied time-scales, which vary from yearly to 

monthly and near-real time. 

 This work aims to establish a novel framework for optimizing Oil and Gas Midstream 

plants for near-real time network operation. This topic has not  been specifically addressed 

in the existing literature. It examines problems which involve operating networks of 

GOSPs and gas plants towards an optimal solution. It examines various modelling 

approaches which are suited for this specific application. It then focuses at this stage of 

the research on the GOSP optimization problem where it addresses optimizing the 

operation of a complex network of GOSPs. The goal is to operate this network such that 

oil production targets are met at minimum energy consumption, and therefore minimizing 

OpEx and Greenhouse Gas Emissions. Similarly, it is often required to operate the network 



6 
 

such that production is maximized. This thesis proposes a novel methodology to formulate 

and solve this problem. It describes the level of fidelity used to represent physical process 

units. A Mixed Integer Non-Linear Programming (MINLP) problem is then formulated 

and solved to optimize load allocation, swing line flowrates and equipment utilization. The 

model demonstrates advanced capabilities to systematically prescribe optimal operating 

points. This was then applied to an existing integrated network of GOSPs and tested at 

varying crude oil demand levels. The results demonstrate the ability to minimize energy 

consumption by up to 51% in the 50% throughput case while meeting oil production 

targets without added capital investment.  
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2. Introduction 

This section aims to introduce the subject of Oil & Gas Midstream plants optimization. It 

provides a background to the industry, its challenges and relates the work to Enterprise-

Wide Optimization. It also aims to describe in brief the industrial problem which is to be 

studied and briefly highlights currently dominant approaches to solve similar problems. 

While both oil processing and gas facilities are introduced, the thesis will focus on applying 

the techniques on the former. Nevertheless, it will also explore techniques that allow 

applying it to gas plants (e.g. through use of surrogates). This section also highlights the 

expected benefits of formulating a framework for the robust optimization of this network. 

The introduction concludes with establishing the research objectives which shall set the 

stage for next chapters. 

2.1 The Importance of the Oil & Gas Industry 

The oil & gas upstream industry plays a very important role in today’s global economy. 

The industry provides raw materials that are used in a vast array of other industries from 

refining, petrochemicals, automotive, pharmaceuticals and many others. Oil & Gas 

operators explore, produce, process, store and transport huge volumes of materials across 

the globe. These operations are often highly complex and are subject to a wide range of 

environmental, political, legal and economic pressures. Moreover, operators within this 

industry are often under significant pressure to optimize operations and cut cost to remain 

competitive throughout periods of highly volatile product prices (Clews, 2016).    

The economic growth around the world is placing an increasingly high demand on oil, gas 

and their derivatives. Despite growing importance of alternative fuels, the U.S. Energy 

Information Administration (EIA) still projects that oil & gas will constitute the largest 

share of the US energy mix through 2050. In fact, it is projected that in 2050, oil & gas 

contribution to the US energy mix will only be slightly lower than it was in 2017 (U.S. EIA, 

2018).    

In 2015, the World’s average consumption of oil was approximately 93 million barrels per 

day. One third of this consumption came from the U.S. and China (U.S. EIA, 2018). 

Additionally, the demand for oil has been steadily rising in many developing countries. In 

China, the demand for oil has been steadily increasing since 1965. In fact, it soared from 

7.9 million b/d in 2008 to an impressive 12.8 million b/d in 2017 (CEIC, 2018). This 

exceeds the all-time highest oil production from Saudi Arabia (Bloomberg, 2018). 
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2.2 The Oil & Gas Industry Segments 

Oil & Gas practitioners have traditionally segmented the industry in differing ways. In this 

thesis, the author shall adopt the convention of breaking the industry into 3 sectors, 

namely: Upstream, Midstream and Downstream.  

The following is a high-level description of what each sector constitutes. 

Upstream: 

This sector typically includes exploration and drilling activities which precedes the 

development of a field. It also includes activities relating to the development of fields and 

the production from oil wells (Devold, 2013).  

Midstream: 

Midstream typically includes the separation of oil and gas and the stabilization of oil. It 

also includes gas treatment and Natural Gas Liquids (NGL) production activities. This 

sector also includes the oil and gas pipeline system (Devold, 2013). 

Downstream: 

Downstream includes activities in which oil is processed to a range of marketable 

products. This sector includes refineries, which produce final products such as diesel and 

gasoline. Downstream also includes petrochemical plants, which mainly use a range of 

hydrocarbon feedstock to produce chemical products such as plastics (Devold, 2013).  

2.3 Midstream Network Operation Challenges 

Gathering and processing crude oil in oil-rich regions, such as the Arabian Peninsula, 

involves connecting to wells in different fields that are usually within vastly remote 

distances from each other. This crude can then be separated by Gas Oil Separation Plants 

(GOSPs) which are also located remotely from each other (Abdel-Aal et al., 2003). These 

facilities are often clustered into groups based on their proximity from each other. They 

are then connected laterally via swing and transfer lines which allow shifting part or all of 

the production from one GOSP to another. The purpose of those pipelines is to provide an 

added flexibility to the operation of the overall network. For example, when a bottleneck 

exists in one GOSP relating to water processing capacity, the production from wells with 

higher water-cut may be diverted to a GOSP which is not similarly bottlenecked. This 

allows processing higher total crude volumes and leads to improving the utilization of 

these assets. Also, this allows distributing crude oil more optimally to minimize energy 
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consumption for the overall network while meeting production quotas. Similarly, the 

availability of swing lines can allow shifting production from GOSPs experiencing planned 

or unplanned outages to operational ones (Liu et al., 2016). 

Processing significant volumes of gas from vastly spread-out sources is similarly complex 

and involves routing feed to different plants. Gas plants receive feed either from associated 

or non-associated gas fields. The former produce both oil and gas while the latter only 

produce gas. They also receive condensate, which is also known as wet gas 

(Senthamaraikkannan et al., 2014).  

Gas plants process the received feed in a number of stages based on its quality. Typically, 

the process starts with acid gas removal. This is followed by dehydration to remove water. 

The dehydrated gas is then sent to NGL recovery. This is often a cryogenic process that 

produces light gas (mostly methane) and a heavier stream (ethane+ or propane+) (Al-

Sobhi & Elkamel, 2015) 

Some oil majors operate vast networks of those Midstream plants. This study is inspired 

by a real case study of an oil company which operates networks of Upstream, Midstream 

and Downstream plants.  

The operation of those networks is done at multiple hierarchal levels, which will be 

discussed in the subsequent section. However, this study is concerned with the near-real 

time optimization of these networks. This is done centrally by planners who decide the 

allocation of raw materials to different plants. The aim is to operate those assets to meet 

supply quotas in the most optimal manner. Indeed, given the vast complexity of the 

networks and the number of controlled variables, the problem lends itself very well to 

mathematical optimization. 

2.4 Network Optimization Approaches 

The area of ‘near-real time optimization’ has not been studied extensively in the literature. 

Researchers have mostly followed the industry’s traditional approach of breaking the 

network’s management process into a hierarchal structure. The structure consists of a 

planning, a scheduling and a control layer (Grossmann, 2012). Figure 1 illustrates this 

hierarchy.  

The planning layer typically involves optimizing the process horizon for a period of few 

weeks to one year. The scheduling horizon, on the other hand, lasts for around a week. The 

control layer is used to optimize the process on real time basis. The last layer typically 
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interfaces directly with the plant’s (Model Based Controllers) MPCs. The size of the system 

being tackled traditionally decreases rapidly towards the bottom of the optimization 

hierarchy. For examples, planning models can cover full supply chains, which include 

multiple facilities and distribution networks. Scheduling models typically cover individual 

facilities or distribution schemes. The control layer typically covers individual units within 

plants (Grossmann & Biegler, 1995).  

 

 

Figure 1 Common Enterprise-Wide Optimization Hierarchy (Grossmann, 2012) 

Traditionally, tackling the optimization of large systems was mostly done using linear 

programming (LP) models. Those models are typically large and are used to answer high-

level questions relating to the operation of those plants and networks. The use of rigorous 

or nonlinear models was mostly reserved for subsystems of the supply chain. This is mostly 

due to the significant added complexity of optimizing larger systems using rigorous 

approaches (Grossmann & Biegler, 1995). 

More recently, nonlinear programming (NLP) models have started to gradually replace LP 

models. This is mainly attributed to the advancement of efficient optimization algorithms 

and computing power (Grossmann & Biegler, 1995). 

 NLP models can overcome several problems associated with LP models. NLPs allow 

delivering solutions that are more accurate and therefore implementable in the field. This 

is in contrast with the often-inaccurate solutions provided by LP models (Alhajri et al., 

2008).   

Planning

Scheduling

Control
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2.5 Case Study Brief 

In this section, a brief is provided to describe the assets being optimized in this work.  

Gas Oil Separation Plants 

Unlike many privately-owned oil majors, most state-owned oil companies have the 

leverage and complexity of operating convoluted supply chains. This starts from exploring 

and developing oil and gas fields. Oil is sent from wells to Gas Oil Separation Plants 

(GOSPs). The purpose of those plants is to separate the three-phase feed into gas, water 

and oil. Gas is compressed and sent to gas plants for further processing while oil is sent 

either to refineries or export terminals. Water is re-injected to the reservoir to maintain 

reservoir pressure and improve oil recovery.  

GOSPs are often constructed as networks that have swing lines interconnecting nearby 

plants. This is intended to allow for improved flexibility and better optimization capability. 

Such added flexibility makes the problem suitable for optimization. 

Gas Plants 

Gas is mainly received from two sources: either GOSPs or gas fields. Gas from the former 

source is termed ‘associated gas’ since it is produced as a by-product of oil production. Gas 

from the latter source is termed ‘non-associated gas’. These gases, in addition to 

condensate (often termed ‘wet gas’) are sent to a network of gas plants. The system allows 

a certain degree of flexibility to swing gas amongst nearby gas plants.  

A Gas plant (often termed ‘LNG plant’) consists of multiple units that aim to treat and 

maximize the value of the feed stream. Typically, gas is first received in slug catchers which 

mainly reduce slugging impact and separate heavy hydrocarbons using flash separators. 

Gas is then sent to acid gas recovery units (AGRs). These units consist of amine contactors 

which absorb acid gases. The rich amine is regenerated and the acid gas is sent for further 

processing. Based on its composition, the acid gas is either sent directly to Sulfur recovery 

units (SRUs), which are typically Claus based units, or sent to acid gas enrichment (AGE). 

Enrichment units are used for acid gases with high CO2 content. They utilize amine-based 

absorption to improve the quality of SRUs feed. This entails selectively absorbing H2S 

while slipping a CO2 rich stream. SRUs use a form of Claus based set-ups to recover 

sulphur. The aim here is to minimize SOx emissions, which have a high environmental 

impact. After sweetening in AGRs, gas is sent to dehydration units to strip out water. In 

gas plants where the feed is lean (containing a small C2+ fraction), the gas is sent directly 



12 
 

after dehydration to the sales gas network. This is a vast network which includes many 

supply and demand points. Gas in this network is supplied to power plants and industrial 

complexes and is mostly used for power generation. In gas plants with rich feed (high C2+ 

fraction), gas from dehydration is sent for NGL recovery. Using a variety of recovery 

technologies, which are chosen based on the expected C2+ content, a C2+ stream is 

recovered and sent to NGL fractionation plants, where it is separated to C2, C3, C4 and 

C5+. Light gases from the NGL recovery are compressed and sent to the sales gas network.    

The ability to swing feed to different gas plants, the differing feed gas composition based 

on its source, and the number of controlled variables within the gas plants lend this 

problem very well to optimization. Additionally, although there is no control on associated 

gas rates, it is possible to optimize the non-associated gas feed.  

Refineries 

Oil from GOSPs is sent for further stabilization then is either sent to export terminals or 

refineries for distillation and other operations that aim to maximize the value of the oil’s 

fractions. This includes hydrotreating, catalytic reforming, hydrocracking, visbreaking 

and other operations. Refining will not be discussed in detail as it is outside the scope of 

this thesis. 

As can be seen, there is a significant scope for optimizing Midstream networks owing to 

their flexibility, numerous controlled variables and operational constraints. The case study 

used for this thesis is inspired by a real-world network which provides an elaborate 

example of Midstream integrated plants, where the goal is to drive the entire network 

towards an optimal solution.  

2.6 Benefits of Optimizing an Elaborate Midstream Network 

on a Near-Real-Time Basis 

As previously stated, researchers have mostly adopted a hierarchy for Enterprise Wide 

Optimization that segments the optimization process based on its time horizon. This 

includes planning, scheduling and control (Shah, 1998), (Shah, 2004), (Grossmann, 

2009), (Grossmann, 2012), (Mokhatab et al., 2019). 

This thesis proposes to employ a strategy for near real time optimization (N-RTO). This 

layer is presented as having similarities of both scheduling and control. It is mostly 

applicable to the central real-time optimization of sizable networks.  
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 In N-RTO, central operators are tasked with re-optimizing the network’s operation to 

respond to plant disruptions, imbalances between supply and demand or to simply 

improve the network’s economics. Like control, the purpose here is to optimize real-time 

operation without significant considerations of a future horizon. However, unlike control, 

there is no need for dynamic modelling or communication with MPCs. There is also no 

need to ensure process steady state ahead of running an optimization, which is the case 

for control when no dynamic modelling is used. Due to the significant network size and 

multiple plants, ensuring a steady state may not be achievable.  

The nature of centralized N-RTO requires frameworks that strike a unique balance 

between solution accuracy and run-time. Operators expect to arrive at an answer in a short 

time to respond to operational requirements. Concurrently, they expect the answer to be 

sufficiently accurate and implementable. These requirements demand devising 

techniques and frameworks that allow meeting them. Such an approach may depend on 

the network’s size and the complexity of the underlying processes. Ideally, the modelling 

approach will involve as much fidelity as possible to meet accuracy requirements. Fidelity 

will only be reduced by using other techniques once run time is too long. The goal of this 

thesis is to address Midstream processes and devise a framework that would be fit-for-

purpose.  The benefits are expected to be as follows: 

• Meeting Demand: For state-owned companies, meeting local demand and 

export commitments is a top priority, which precedes profitability. The use of N-

RTOs is expected to allow meeting the demand of the different hydrocarbons 

within the given constraints (assuming the problem is feasible). This is more 

complex than it first appears. For example, assume a case when the network is 

required to meet the sales gas demand. There is little flexibility in producing above 

or under the requirement since the piping network is the only place for inventory. 

Now assume that there is an increased demand for propane. It is now important to 

meet this demand keeping in mind the demand for other products and the 

constrained logistics.  

• Maximizing Profitability: While meeting demand is essential, it is important 

to accomplish this while maximizing profitability. For example, it is easy to meet 

an increased demand for sales gas by relaxing NGL recovery and therefore slipping 

heavier fractions to the top of the demethanizer column at gas plants. However, 

this would lead to losing ethane, which is a key feed to petrochemical complexes. 
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In companies that own petrochemical plants, this is a detrimental operation since 

it would result in substantial loss of profitability.  

• Environmental Compliance: Midstream N-RTOs can be essential for reducing 

environmental impact. Running the network in a manner which ensures that feed 

is allocated appropriately and operational variables are set optimally can result in 

reducing damaging emissions. For example, this can be accomplished by 

improving AGE’s selectivity and therefore SRUs performance. A number of 

researchers have approached coupling environmental and economic mathematical 

modelling by designing elaborate schemes for multi-objective optimization 

(Martins & Costa, 2010), (Tautenhain et al., 2019). Others have also devised novel 

techniques to reduce the computational burden resulting from these formulations 

by systematically reducing the number of objectives (Guillén-Gosálbez, 2011), 

(Pozo et al., 2012). However, this is outside the scope of this thesis. In this work, a 

penalty associated with emissions shall be added to the objective function.  

 

2.7 Research Objectives 

To the best of the author’s knowledge, there is no work in the open literature which 

proposes a framework for the N-RTO of Oil & Gas Midstream processing networks. The 

objectives of this research are to fill this research gap.  

More specifically, this work shall address: 

1. Using data inspired from the real world to develop a framework for the 

optimization of Midstream networks. 

2. Exploring techniques and approaches that allow meeting the functional 

requirements of N-RTO. This includes exploring first principles modelling for 

simpler parts of the network. The use of surrogate-based modelling and semi-

parametric modelling will also be explored to meet functional and run-time 

requirements for complex parts of the network. 

3. Developing a mathematical formulation that enables maximizing profitability 

while meeting products demand.  

The initial results presented in this thesis shall focus on developing a framework for the 

rigorous optimization of a network of GOSPs using mixed integer nonlinear programming 

(MINLP).   
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2.8 Thesis Outline 

Having introduced the research topic at hand, Chapter 3 will provide a review of literature 

which is relevant to this work. This shall cover optimization techniques, modelling 

approaches and the state-of-the art around EWO.  

Chapter 4 shall describe the Midstream network, its technical details and challenges. 

Chapter 5 will provide a description of the proposed methodology. 

Chapter 6 is to illustrate initial results that were achieved after tackling a part of the 

problem. 
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3. Literature Review 

The near real time optimization (N-RTO) of Oil & Gas Midstream networks requires 

careful consideration of suitable modelling techniques and optimization approaches. 

These networks can vary in size and complexity and therefore demand varying 

mathematical structures.  

There is extensive literature covering the areas of supply chain and Enterprise-Wide 

Optimization (EWO). However, there is no research covering the specific optimization of 

Midstream networks on N-RTO basis. This area presents its own set of unique challenges 

with benefits that make it sufficiently attractive to address.  

This chapter shall tackle this problem by establishing three cornerstones in this review. 

Firstly, it will provide a background on optimization and the algorithms used for 

optimizing large systems. Then, it will address the possible modelling approaches, which 

shall be classified into parametric, non-parametric and semi-parametric. Finally, it will 

provide an overview of the major past efforts which tackled EWO problems.  

These cornerstones shall pave the road to systematically explore this topic and decide on 

suitable methods to address the associated challenges. 

3.1 Mathematical Optimization 

3.1.1 Introduction to Optimization 

An optimization problem can be generally formulated using mathematical relationships 

which consist of a set of equality and inequality constraints and an objective function. A 

set of variables are manipulated to serve the purpose of minimizing or maximizing the 

objective function. There are many variations to this formulation such as use of multiple 

objectives. The general form of the mathematical model is as below (Grossmann & Biegler, 

1995): 

 Minimize f(x) 

Over x ∈ ℝn; subject to: 

h (x) = 0 

g (x) ≤ 0 
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Where f(x) is the objective function. Additionally, h(x) and g(x) are the equality and 

inequality constraints, respectively. 

A maximization problem can also be converted into the general form of a minimization 

problem by minimizing its negative value. Moreover, based on its structure, an 

optimization model can be classified into various categories. Common categorization can 

be based on the factors below: 

• Variable Type: Variables can be either continuous or discrete. A problem belongs 

to discrete optimization even if some of the variables are in the form of integers 

(Biegler & Grossmann, 2004). 

• Variable Linearity: A problem can be classified as linear if the objective function 

and constraints are all linear. Nonlinear problems can be further classified into 

convex and nonconvex. In the former a local optimum is always a global optimum. 

In the latter, there might be several local optima (Biegler & Grossmann, 2004). 

• Constraint availability: A mathematical model can be either constrained or 

unconstrained. A varied design may be achieved by reformulating optimization 

problems to include some constraints as penalty functions in the objective function 

(Yeniay, 2005). 

• Number of objectives: An optimization problem can have zero, one or multiple 

objectives. A zero objective problem is intended to determine the problem’s 

feasibility given its constraints. Most optimization problems have a single 

objective. Problems with multiple objectives are often reformulated to have a 

single objective by weighing other objectives into the main one (Gennert & Yuille, 

1988) or by formulating additional constraints. A property which makes multi-

objective optimization unattractive to N-RTO is the Pareto-optimal solutions (Deb, 

2005), which provide infinite optimal equilibria, making this approach impractical 

for this field.  

• Parameter Certainty: An optimization problem can be either deterministic or 

stochastic. Stochastic optimization allows incorporating the uncertainty of some 

parameters into the optimization problems. This could represent the volatility in 

the price for products. This form allows finding solutions that are feasible for all or 

most of the expected variations (Diwekar, 2008). 

The subsequent section will address variables type and linearity. Addressing 

unconstrained, multi-objective or stochastic optimization is outside the scope of this work.  
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3.1.2 Optimization Approaches 

The size of the system being evaluated often dictates the type of appropriate formulation. 

System size can vary based on the number of variables and constraints. Variable type and 

linearity also have significant impact on formulation. For example, until recently, 

problems with 100 or more variables were considered large for NLP. Similarly, until 

recently MINLP problems used to be considered unsolvable (Grossmann & Biegler, 1995).  

Direct Search Optimization 

Optimization problems can be solved by employing direct search algorithms, without 

having to evaluate derivatives. These techniques are regarded as particularly effective in 

solving combinatorial optimization problems, such as the Traveling Salesman Problem 

(TSP) (Grefenstette et al., 1985). They typically involve performing many function 

evaluations to arrive at a solution. The overall strategy is based on exploitation, 

exploration or a combination of both. Popular direct search techniques include: 

• Hill Climbing: This algorithm is designed such that a random solution is picked. 

This is followed by making a local move and re-evaluating the function. If it is 

better, the new solution is accepted and a new move is made. If it is worse, the 

original solution is kept and a new local move is made. This is repeated until no 

better move is available (Talbi & Muntean, 1993).  

• Simulated Annealing: This algorithm is a modification on hill climbing. The 

modification is intended to improve the chance of arriving at or near a global 

optimum as opposed to being trapped in a local one. Initially, even if a move is 

found to be bad, it may be accepted based on an assigned probability that decreases 

exponentially with how bad this move is. As the ‘temperature’, of the system 

decreases, it becomes less likely to accept a bad move and therefore tries to focus 

the search (Talbi & Muntean, 1993). 

• Genetic Algorithm: This technique is inspired by Natural Selection. The process 

starts by creating an initial population. This is followed by evaluating its members 

and selecting fitter individuals while discarding others. Crossover is achieved by 

combining traits of selected parents. Mutation is performed to make small changes 

to the genome in order to add a level of randomness (Talbi & Muntean, 1993).  

These techniques are generally easy to apply. However, they are considered better suited 

for unconstrained optimization problems and are highly dependent on the algorithm 

parameters (Grossmann & Biegler, 1995). Their performance also degrades rapidly as the 
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number of variables increase and are rarely applied with more than a few dozen controlled 

variables (Biegler, 2004). 

Linear Optimization 

There several advantages to LP formulations, which facilitated their wide adoption by the 

industry, particularly in evaluating sizable models. Firstly, in LP a locally optimal solution 

is guaranteed to be a global one. This optimal solution also lies at a vertex within the 

solution space. These attractive properties allowed linear models to dominate operations 

problems, such as those concerned with planning, scheduling and supply chain 

optimization (Biegler & Grossmann, 2004). 

There are two main techniques to evaluate LP models, namely: the simplex and the 

interior point algorithms.  

The Simplex method was developed by George Dantzig in the 1940s and is the most widely 

used LP algorithm until today. It efficiently goes through a sequence of testing adjacent 

vertices within the feasible space. The algorithm moves to a new vertex only if the objective 

function is either improved or remains the same (Nocedal & Wright, 2006). Other than 

specially formulated examples, the method usually solves in polynomial time (Spielman 

et al., 2004). 

As opposed to the Simplex method, the interior point algorithms traverse the feasible 

region to find an optimal solution. John von Neumann first proposed this technique in the 

1960s. However, it was not until 1984 that this method was popularized through the 

modifications proposed by Karmarkar’s algorithm which made this technique efficient 

and solvable in polynomial time (Nocedal & Wright, 2006).  

These algorithms can be highly effective. Biegler et al. reported that recent solvers can 

efficiently solve problems with millions of variables and constraints. Indeed, using 

decomposition techniques, it is possible to solve problems that are even 3 order of 

magnitudes larger (Biegler & Grossmann, 2004). 

LP problems are mostly solved using the powerful CPLEX, XPRESS and GUROBI 

commercial codes (Meindl & Templ, 2012). 

Discrete Linear Optimization  

The inclusion of discrete or binary variables transforms LP problems into mixed integer 

linear programming (MILP) problems. This entails employing different techniques to 



20 
 

evaluate those functions, which greatly complicates the solution process. Grossmann et al. 

reported that it can be demonstrated that these problems are in fact NP-complete 

(Grossmann & Biegler, 1995).  

Branch and bound (Dakin, 1965) is the most common approach here. It successively 

breaks the optimization problem into a decision tree and solves a relaxed LP sub-problems 

at each node of the tree.   

Initially, the original optimization problem is solved as a relaxed LP. If fathomed, the 

process ends. Otherwise, for the unfathomed sub-problem, an integer branching variable 

is chosen, which does not have an integer value in the relaxed solution. Two branches are 

then created by adding an upper and lower constraints. For example, if the chosen integer 

x has a value of 4.6 in the relaxed LP, the two branches shall have restrictions where x ≤ 4 

in one branch and x ≥ 5 in the other. Then, for each branch, an LP relaxation is solved. 

The branch is considered fathomed if: 

• Its objective function is more than an existing feasible solution for a minimization 

problem (the opposite for maximization) 

• Its LP relaxation is infeasible 

• The solution has integer values for all integer variables 

The process is stopped when all sub-problems are fathomed and the lowest objective 

function (in a minimization problem) is then considered optimal. 

Several techniques have emerged in modern solvers to reduce the computational burden 

of evaluating mixed integer models. Presolve techniques often greatly tighten these 

formulation and therefore improve numerical stability or detect infeasibilities. For 

example given that variables x1 and x2 are integers, the constraint (x1 + x2 ≤ 0) can allow 

inferring by non-negativity that both x1 and x2 equal 0. On the other hand, the constraint 

(x1 + 3 ≥ 6) makes the problem infeasible and it can be determined as such prior to 

evaluating the objective function (Mahajan, 2010). 

The use of cutting planes has greatly reduce MILP solve time by iteratively adding 

constraints that move the algorithm towards the optimal solution.  

MILP problems are mostly solved using CPLEX, XPRESS, OSL and GUROBI commercial 

codes (Meindl & Templ, 2012). 
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Nonlinear Optimization  

In nonlinear programming problems (NLP), a locally optimal solution can be defined 

using the Karush-Kuhn-Tucker (KKT) conditions (Kuhn & Tucker, 1951).  

In convex optimization where both the objective function and constraints are convex, a 

local optimum corresponds to a global one. However, this is not the case when the problem 

is non-convex (i.e. the Hessian of its Lagrangian is negative definite). 

For the function described below: 

Minimize  f(x) 

Subject to:  

hi(x) = 0 

gi(x) ≤ 0 

assuming that the objective function f(x) and the constraints hi(x) and gi(x) are 

continuously differentiable at point x*, there exists parameters µi and λi if a point x* is a 

local minimum such that: 

A. Stationarity condition: 

  − ∇𝑓(𝑥∗) =  ∑ 𝜇𝑖∇𝑔𝑖(𝑥
∗) + ∑ 𝜆𝑗∇ℎ𝑗(𝑥

∗)𝑙
𝑗=1

𝑚
𝑖=1   

B. Primal feasibility 

𝑔𝑖(𝑥
∗) ≤ 0 , i =1, …, m 

ℎ𝑖(𝑥
∗) = 0, j = 1, ...., l 

C. Dual feasibility 

𝜇𝑖 ≥ 0, i = 1, …, m 

A. Complementary slackness 

𝜇𝑖𝑔𝑖(𝑥
∗) = 0, i = 1,…, m 

The major algorithms for solving constrained nonlinear optimization problems have been 

the reduced gradient and sequential quadratic programming (SQP) techniques. It was also 

reported that while reduced gradient is often suited for NLP problems with mostly linear 
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constraints, SQP is rather superior with highly nonlinear problems (Grossmann & Biegler, 

1995).  

SQP is based on iteratively modelling and solving NLPs using quadratic programming sub-

problems to approximate the objective function and the constraints. This is in addition to 

applying Newton’s method to the KKT conditions. It has been shown to be highly 

successful in solving NLPs as it requires the fewest function evaluations. This efficiently 

leads to fast convergence (Binder et al., 2001).  

By applying the newton method to the KKT conditions at an iterate point xk, the 

minimization objective function is replaced by the approximation: 

𝑓(𝑥𝑘) + ∇𝑓(𝑥𝑘)(𝑥 − 𝑥𝑘) +
1

2
(𝑥 − 𝑥𝑘)𝑇𝐻𝑓(𝑥𝑘)(𝑥 − 𝑥𝑘) 

Similarly, the constraints are replaced by their approximation: 

Inequality Constraint: 

𝑔(𝑥𝑘) + ∇𝑔(𝑥𝑘)(𝑥 − 𝑥𝑘) 

Equality Constraint: 

ℎ(𝑥𝑘) + ∇ℎ(𝑥𝑘)(𝑥 − 𝑥𝑘) 

by setting:      𝑑𝑥 = 𝑥 − 𝑥𝑘  

the below quadratic approximation of the original problem is deduced, noting that the 

term 𝑓(𝑥𝑘) may be removed since it is a constant. 

Min ∇𝑓(𝑥𝑘)𝑑𝑥 + 
1

2
𝑑𝑥𝑇𝐻𝑓(𝑥𝑘)𝑑𝑥 

Subject to:  

𝑔(𝑥𝑘) + ∇𝑔(𝑥𝑘)𝑑𝑥 ≤ 0 

    ℎ(𝑥𝑘) + ∇ℎ(𝑥𝑘)𝑑𝑥 = 0 

Much progress has been made in developing global optimization techniques for non-

convex models with special structures. However, proving convexity for this type of 
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problem is very challenging and often not possible. Practically, settling for local optimality 

is often considered a reasonable outcome (Grossmann & Biegler, 1995). 

The use of stochastic methods that are mainly based on direct search techniques have also 

been applied to this domain. However, these are typically applied to models that are of 

inexpensive nature and are not highly constrained (Grossmann & Biegler, 1995). 

As for deterministic global optimization approaches, Floudas (2013) reported that 

significant progress has been made in developing such techniques to solve important and 

challenging problems.  This includes addressing general classes of NLP and MINLP 

problems. He listed the approaches below as the main ones for deterministic global 

optimization (Floudas, 2013): 

• Branch and Bound methods 

• Cutting Plane methods 

• Primal-Dual Decomposition methods 

• Outer Approximation methods 

• Inner Approximation methods 

• Difference of Convex and Reverse Convex methods 

• Reformulation-Linearization methods 

• Lipschitzian methods 

• Trajectory and Homotopy methods 

• Interval Analysis methods 

Discrete Nonlinear Optimization  

Biegler & Grossmann (2004) reported that MINLP combines the difficulties associated 

with MILPs and NLPs as described above. This includes the combinatorial features of the 

mixed integer portion and the nonconvexities often associated with nonlinearities. These 

problem classes are most often solved by the general branch and bound methods. Similar 

to MILPs an alternating sequence of solving the master mixed integer and the sub 

nonlinear problems is employed. Similar to NLPs, a globally optimal solution can only be 

guaranteed in convex problems (Grossmann & Biegler, 1995), (Biegler & Grossmann, 

2004). 

The Outer Approximation Equality Relaxation Augmented Penalty (OAERAP) method is 

also a popular technique for solving MINLP problems. This technique is also employed by 

gPROMS, which is the software used for performing the modelling and optimization for 
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this problem. OAERAP is a modified version of the Outer Approximation/Equality 

Relaxation (OA/ER) method (Viswanathan & Grossmann, 1990). When the optimization 

problem is convex, this algorithm can guarantee global optimality.  

The OAERAP algorithm applies decomposition techniques to break the problem into a 

master MILP problem and a series of NLP sub-problems. It starts by solving a relaxed NLP 

problem of the integer or binary variables. At this stage binary or mixed integer variables 

can be assigned continuous values. This allows obtaining an initial iteration to move to the 

next problem. The MILP master problem then aims to find integer values which feature 

an augmented penalty function to reach the minimum over the convex linearized function. 

An NLP is then solved to find the optimum value of the continuous variables while fixing 

the discrete variables to their pre-determined values. Then, the gradient is calculated 

based on the linearized functions. The solver then determines if optimality was satisfied 

or whether an additional iteration is needed. 

A global optimum cannot be guaranteed because of the linearization being applied to non-

convex functions. Due to the high nonlinearity of the GOSP optimization problem, arising 

from various physical separation and compression equations, the solution may find 

difficulty arriving at a global optimum. This was often addressed by changing initial 

guesses. Indeed, a good initial guess substantially improves the solver’s chances of arriving 

at a global optimum.  

3.2 Process Modelling 

A process model can be classified in many different ways based on the purpose for which 

it was built. However, this section will focus on exploring the classification of models based 

on their generation methodology. This shall mainly address the extent to which a model is 

generated based on first principles versus being data-driven. This is a key component of 

this research since it will allow defining how a Midstream network model is to be built to 

meet the functional requirements of N-RTOs. 

Classifying models based on the above criteria allows identifying three categories, namely: 

parametric, non-parametric and semi-parametric models.  

Parametric models (PMs), otherwise known as first principles or white-box models, rely 

primarily on process mechanisms. They are based on the well-established principles of 

mass, energy and momentum conservation, in addition to thermodynamics, reaction 

kinetics, fluid flow, mass transfer and others. They can be mostly developed without 
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relying on plant or experimental data. As such, they incorporate a priori knowledge of the 

process, its performance and the interactions amongst its components. They perform in 

accordance with their embedded assumptions, which may at times be invalid. It is indeed 

often difficult to match these models to actual data due to their high dependency on such 

assumptions. Indeed, many such models are also dependent on empirical correlations 

which were generated using experimental work. This includes Fick’s law of chemical 

diffusion, Fourier’s law of heat conduction and Darcy’s law of flow in porous media 

(Zendehboudi et al., 2018). Indeed many laws that are perceived as first principles, rely 

significantly on experimentally deduced coefficients. However, these models still seek to 

establish a deep understanding of the process. It is also often possible to extrapolate well 

with these models and generalize them to different environments if their underlying 

assumptions remain valid.  

Non-parametric models (NPMs), otherwise known as data-driven or black-box models, 

rely principally on available data. They can be generated using a variety of techniques that 

map input with output data without incorporating a priori knowledge of the process. Due 

to their generally simpler nature, these models often lend themselves well to optimization 

and allow construction of computationally inexpensive models. Since these models require 

availability of data, they are typically used for process optimization and control rather than 

design or debottlenecking. This also makes them restricted to the range of data over which 

they were generated. This makes them suited for data interpolation but significantly 

impaired in extrapolation. The structure of NPMs is typically based on neural, radial basis, 

wavelet, hinging hyperplanes and fuzzy models (Sjöberg et al., 1995). 

Semi-parametric models (SPMs), otherwise known as grey-box or hybrid models, combine 

properties of both modelling approaches addressed above. They were first introduced in 

the 1990s by Psychogios et al., Thompson & Kramer and a few others (Psichogios & Ungar, 

1992),  (Thompson & Kramer, 1994). These models have been extensively used to model 

systems that exhibit parts which can be well defined by PMs and parts which are rather 

difficult to define using first principles. Accordingly, the combination of both modelling 

techniques often offers attractive properties. Indeed, some researchers recommended use 

of PMs as much as possible within SPMs structure to “impose rigor and discipline on 

purely data driven models” (Venkatasubramanian, 2019). This area has also grown in 

terms of maturity with 5-20 papers being published annually in peer-reviewed journals 

(Glassey & von Stosch, 2018).  
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Common NPM Models 

This section seeks to briefly review common NPM models found in the chemical 

engineering literature. These are also often used as submodels within SPMs. Their 

properties shall enhance identifying proper modelling techniques for N-RTOs. Popular 

NPMs which will be explored are Artificial Neural Networks (ANNs), Support Vector 

Machines (SVMs) and Fuzzy Logic (FL). 

Artificial Neural Networks (ANNs) 

ANNs were first described and studied by McCulloch and Pitts in the 1940s.Their idea was 

to mathematically model a perceptron which mimics biological neurons. It receives inputs 

and calculates output based on weights which are associated to those inputs. After 

multiplying the individual inputs by their weights, their summation is computed and 

passed to an activation function. This allows determining if a neuron should produce an 

output based on passing the activation function’s threshold (McCulloch & Pitts, 1943). 

An activation function can be a simple step formula, but is often modelled as a nonlinear 

sigmoid, tangent hyperbolic, or other functions. ANNs popularization was in part a result 

of Werbos PhD thesis in the 1970s, in which he proposed the backpropagation algorithm 

(Werbos, 1974).  

For a single neuron calculation, the input formula is shown below: 

𝑍 = ∑𝑤𝑗𝑥𝑗 + 𝑏

𝑛

𝑗=1

 

where xj is the input signal, wj is the assigned weight and b is the bias. 

The output signal is then: 

𝑦 = 𝑓(𝑧) 

Nowadays, most ANNs utilize the multilayer perceptron (MLP), which allow adding 

multiple hidden layers between the input and output. Indeed, as the number of hidden 

layers increase, the network is generally able to learn more complicated patterns.  

ANNs can be very effective for a variety of applications. After a network is trained, it can 

be used for function evaluation, prediction, clustering and classification. Moreover, their 

learning can be supervised, unsupervised or using a combination of both. (Jain & 
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Mohiuddin, 1996). Networks with recurrent features (RNNs) allow for adaptiveness and 

modelling sequential and time varying patterns, which lends them well to forecasting and 

dynamic systems. 

Challenges associated with ANNs include data bias, over-fitting to a particular dataset 

without being able to generalize to new situations, and hyperparameter optimization. The 

latter is related to choosing an optimal set of parameters to design the network such as the 

number of layers and type of activation function. Additionally, using such a black-box 

method makes it often difficult to interpret their behaviour and verify their performance 

(Gupta, 2018). 

Support Vector Machines (SVMs) 

SVMs were first introduced in the 1960s (Vapnik, 1963) although not popularized until 

the 1990s. They are based on supervised learning and have been shown to be often very 

effective for certain classes of classification, clustering and regression problems. SVMs are 

also reported to perform better in terms of not over-generalizing classification problems 

in comparison with ANNs (Mitchell, 1997) 

In its basic form of classifying two categories of data that are linearly separable, the 

concept is based on placing a hyperplane that divides the data with a maximum margin 

from both categories. Additionally, SVMs are highly impacted by the choice of support 

vectors which are lines that intersect chosen points within both categories. Support vectors 

are chosen, such that when the hyperplane is placed, it has the maximum margin from 

both categories. SVM classifiers can be more complex and can involve the use of soft 

margins and non-linear classifiers. (Jakkula, 2006). 

Considering the simple binary classification set with sample points (xi, yi), where i = 1, …, 

n, where xi represent the training input and yi represent the output. yi corresponds to +1 

when the result belongs to the first class and -1 when it belongs to the second. The SVM 

classifier is therefore defined as (Cortes & Vapnik, 1995): 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤. 𝑥 + 𝑏) 

Where w and b are the weight vector and bias, respectively. These values are determined 

by fitting the above equation to the training data. 

In cases where data is not linearly separable, SVMs can be used to classify data using 

functions in kernels to classify data in a higher dimensional space. Popular transformation 
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kernels use polynomial, sigmoid or Gaussian functions. The approach aims to reach a 

decision space with the least possible Vapnik-Chervonenkis (VC) dimension and training 

error such that the generalization performance is improved (Agrawal et al., 2003). 

Fuzzy Logic (FL) 

Fuzzy Logic theory enables taking account of inaccuracies and uncertainties by 

considering ‘degrees of truth’ to allow a condition to be specified in a ‘grey’ state other than 

the Boolean true or false. Introduced by Zadeh in 1965, it provides attractive properties to 

non-crisp classification. The idea behind it stems from human reasoning, which may be 

too difficult to model through binary algorithms.  

In Fuzzy Logic, crisp input data is first ‘fuzzified’ using membership functions which maps 

input to membership values that ranges from 0-1 based on its degree of truth. Fuzzy 

reasoning is then applied which uses a variety of fuzzy rules, operators and conditions. A 

process of defuzzification is then applied to output crisp values (Hellmann, 2001).  

Semi-Parametric Models 

The use of semi-parametric models is considered attractive since it balances the 

advantages and disadvantages of using full parametric or non-parametric models. In their 

pioneering work in this field, Psichogios and Ungar applied the first reported SPM to a 

fed-batch fermentation reactor. They reported that a semi-parametric structure of ANNs 

and first principles models resulted in a model which was more capable of predicting the 

process state. It was additionally capable of interpolating well and most importantly 

extrapolating. It also overcame the difficulty of interpreting models which are exclusively 

non-parametric. In addition, the model appeared to overcome the phenomena of 

overfitting, which is commonly associated with ANNs (Psichogios & Ungar, 1992).  

Engineering research, and in particular process systems engineering, benefited greatly 

from the application of SPMs, which was pioneered in the 1990s also by Su et al. (Su et al., 

1996), Kramer and Thompson (Thompson & Kramer, 1994) and Johansen and Foss 

(Johansen & Foss, 1992).  

There is little guidance in the open literature to establish techniques for modelling SPMs 

to serve the variety of possible purposes. Available work has been mostly based on the 

researchers’ expertise to design architectures that are fit for purpose. There are several 

techniques that were reported for the construction and arrangement of SPMs. These 

structures can broadly be classified into parallel and serial as shown below. 
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Parallel SPMs 

Parallel SPMs have received less attention in the literature than their counterparts. They 

have mostly been used in situations where the performance of the parametric model is not 

satisfactory for a subset of the outputs. Such errors can result from invalid assumptions, 

linearization or not representing certain impactful parameters. The PM’s output errors is 

then estimated using the NPM portion, which then acts to adjust the PMs estimations (von 

Stosch et al., 2014).  

This structure is mostly suited when it is possible to uncouple certain effects by a separate 

model. Those effects can then be adjusted in this architecture (Su et al., 1996). 

There are several techniques to capture the error compensation. A popular method is the 

pure superposition technique which adds a residual term to the PM’s output. This residual 

term represents the mismatch between the PM calculations and real data (von Stosch et 

al., 2014).  

Serial SPMs 

A more popular arrangement for SPMs is using a serial structure. These structures are 

typically used when a part of the first principles model is not available or is too complex to 

describe. Complexity can arise either from experimental or computational burden.  

In serial SPMs, certain parts which are well established or easily derived are modelled as 

parametric. This may include mass, momentum and energy conservation laws.  

On the other hand, the NPM portion includes parts that are not easy to capture accurately 

such as reaction kinetics, friction factor, thermodynamic and heat transfer parameters.  

The arrangement which is mostly popular in chemical engineering literature is the one 

tagged as Serial A above. The availability of sufficient process data allows the 

establishment of a non-parametric model, which estimates certain parameters and 

provide an input to the parametric model. A popular use is in employing NPMs to estimate 

reaction parameters then feeding those to PMs for further processing (Glassey & von 

Stosch, 2018).  
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The arrangement tagged as Serial B is less popular in the process systems engineering 

literature. It is often used where data is not sufficiently available to train NPMs 

(Zendehboudi et al., 2018). The author believes the structure may be well suited for 

situations where critical parameters are not directly measured in the field, such as oxygen 

concentration in amine regeneration reboilers. This parameter is impactful to the unit’s 

control and optimization since it is a corrosion precursor.  

Important to note is the fact that the efficacy of such modelling arrangements is dictated 

by the modelling approach and accuracy of the underlying models. In some cases, use of 

an NPM may be more effective than SPM if the parametric portion lacks reasonable 

performance (Zendehboudi et al., 2018). 

There are many other structures for SPMs reported in the literature. This includes building 

multiple NPMs, PMs or having a mixture of parallel and serial structures. An interesting 

use of SPMs is to employ multiple NPMs, where one NPM performs pretreatment and 

conditioning of data ahead of feeding them to subsequent models. Researchers identified 

significantly improved performance by using clustering, classifying and filtering 

techniques to address data noise and uncertainty (von Stosch et al., 2014).  

  Surrogate Modelling 

There are often many benefits associated with substituting a simulation model with its 

simplified surrogate. Oftentimes, the modeller aims to optimize a derivative free system 

with minimum black-box calls. In N-RTOs, this system can be a rigorous simulation model 

describing multiple plants. For this system, derivatives are often not available or are very 

expensive to estimate. Accordingly, it may be prohibitive to call such model iteratively 

during the optimization process. On the other hand, a surrogate model can provide a 

satisfactory accuracy with a significantly shorter run time. 

Surrogate modelling is a mature research area with a significant amount of literature. The 

aim in this review is to briefly describe popular techniques, which are enablers to this 

work. 

 Assuming the original model is represented by: 

𝑦 = 𝑓(𝑥) 

The surrogate model can be written as:  



31 
 

𝑦∗ = 𝑔(𝑥) 

such that 

𝑦 = 𝑦∗ + 𝜀 

where 𝜀 represents the error resulting from approximating the original function. 

Given the computational burden of running a vast number of simulations to generate 

surrogates, it is often necessary to optimize the generation process. This process starts 

with defining an efficient design of experiments (DOE). The design aims to identify a 

variable design space and a sampling plan to efficiently obtain sample points (Forrester et 

al., 2008). 

Firstly, the input and output variables are determined through multiple steps that involve 

variable analysis, classification, reduction and identification (Simpson et al., 2001). 

Optimizing the number of variables is essential due to the exponential increase of required 

sampling points when the problem increases in terms of dimensionality. A sampling 

method is then selected. A number of methods are available such as simple random 

sampling, Latin hypercube and orthogonal Latin hypercube (Forrester et al., 2008).  

A variety of techniques can then be utilized to construct the surrogate model. This includes 

polynomial regression, decision trees and random forests, symbolic regression, kriging 

and ANN (Bartz-Beielstein et al., 2016). It is then often necessary to improve weak areas 

of the surrogate design by methodically adding infill points (Forrester et al., 2008). 

Ibrahim, Jobson, Li and Gosalbez proposed the use of support vector machine (SVM) 

classifiers to optimize the design of heat-integrated crude oil distillation units. Their 

approach resulted in significantly reducing the computational expense by filtering 

infeasible designs from the search space. Their MINLP formulation was solved using a 

genetic algorithm to minimize annualized cost (Ibrahim et al., 2018). 

NPMs and SPMs in the Process Industry 

The process industry provides a rich set of challenges and opportunities for optimization. 

The literature is therefore mirroring these aspects by providing models of a wide variety 

of classes and categories. 

There are indeed many examples in the literature that used NPMs to model and optimize 

chemical processes. 
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(Al-Enzi and Elkamel, 2000) presented a feed-forward ANN framework to model the 

operation of a refinery’s Fluid Catalytic Cracking (FCC) Unit. The objective was to be able 

to predict product rates and qualities given limited feed properties, which included API, 

sulphur and Watson characterization factor. They reported better predictions than 

commercial rigorous simulators. 

(Zahedi et al., 2006) used an ANN model to simulate a refinery hydrotreater plant. They 

proposed a radial basis function (RBF) to predict hydrogen demand and product stream’s 

properties using a radial basis function. They tested their method with 7 different feed 

stocks and reported the superiority of their model in predicting product qualities against 

a conventional rigorous simulator.  

(Zahedi et al., 2008) utilized an ANN framework to predict the quality of the gasoline 

production from a Catalytic Reformer Unit. Their model was able to accurately capture the 

unit’s performance and led to a 2.38% increase in gasoline production. 

(Aminian & Shahhosseini, 2008) used an ANN to predict the fouling in the crude units 

preheat exchangers. Their technique sought to determine the effect of various parameters 

on fouling. 

(Alhajree et al., 2011) used an ANN to model and study the sensitivity of a refinery’s 

hydrocracker unit.  Their sensitivity analysis sought to determine the effect of various 

parameters on the unit’s performance. Finally, they used MATLAB to maximize the yield 

of gas oil, kerosene, heavy and light naphtha.  

There are also numerous examples of SPM models focusing on the process industry. 

In reaction engineering, SPMs are usually arranged such that the reaction kinetics are 

described by the NPMs submodel while conservation laws are described by PMs. 

(Bollas et al., 2003) compared the performance of pure ANN and hybrid models to scale 

up a pilot FCC plant into an industrial size plant. The ANN model performed well in 

predicting weight percent conversion and coke yield. Nevertheless, the hybrid model 

provided better extrapolation performance. 

(Bollas et al., 2004) studied the coupling of a rigorous and an ANN models to predict the 

performance of a refinery’s hydrodesulpharization reactor. The ANN model was used to 

describe kinetic parameters. The rigorous model, on the other hand, was used to study the 

reactor performance and hydrogen consumption. 
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(Zendehboudi et al., 2014) sought to compare the performance of a FPM against a SPM in 

modelling and optimizing a urea production plant. Using a rigorous FPM model, 

satisfactory matching with plant data was achieved, except with regard to CO2 conversion 

and outlet temperature. Both are important parameters in industrial urea production. 

They then constructed an SPM with an ANN as the NPM submodel. The ANN was used to 

estimate the conversion of CO2 as a function of temperature and the feed composition. 

They reported significant improvement in the SPMs capability of predicting the plant’s 

performance. They also reported a significant improvement in computational time. 

There are also various applications of SPMs to separation processes.  

(Safavi et al., 1999) developed a SPM with a series structure to model a distillation column. 

They sought to examine the prediction accuracy of the SPM against the rigorous model. 

Their results show an excellent agreement with the rigorous model while significantly 

reducing computational time. 

There are also many other applications of other domains within the chemical industry. 

This included predicting the friction factor of pipelines in turbulent flow regimes (Shayya 

& Sablani, 1998) and determining mass and heat transfer coefficients for a catalytic fixed 

bed reactor (Mjalli & Al-Mfargi, 2009). 

3.3 Supply Chains & Enterprise-Wide Optimization 

In his paper which addressed advances and challenges in the process industry’s supply 

chains, (Shah, 2005) anticipated that the industry will need to further evaluate, report and 

improve on its sustainability metrics. To achieve this, the industry must, in part, improve 

on its supply chain planning activities. He categorized the representation of the production 

process within the industry based on gross margin into ‘recipe-based’ and ‘property-

based’. The former, which typically operates on higher margins, is mostly related to the 

pharmaceutical and food processing industries. The latter generally includes businesses 

with slimmer margins such as refining and petrochemicals.  

(Shapiro, 2006) defines Enterprise-Wide Optimization (EWO) as coordinating the 

optimization of the various operations within a defined supply chain. This includes 

activities, such as R&D, receipt of raw materials, processing and distribution of products. 

The goal is often to minimize costs, inventories and environmental impact, while 

improving profitability, assets utilization and agility. Researchers have addressed the 

optimization of a variety of complex supply chains, ranging from pharmaceuticals (Shah, 
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2004; Papageorgiou, 2001) to refineries (Menezes et al., 2017) and integrated chemical 

sites (Wassick, 2009).  

Many EWO problems can be formulated as MILP models. Those models are often very 

large. Their size can also be several times larger when considering multiple periods. As 

most real-world problems involve non-linearities, these were often addressed by 

introducing new variables and equations to perform piecewise linear approximations or 

exact linearization. However, this can only be done in limited cases (Grossmann, 2012). 

On the other hand, there remains a class of problems which necessitates handling 

nonlinearities. This leads to MINLP formulations. As stated previously, these are typically 

solved using various techniques, such as branch and bound methods with NLP solvers at 

each node. As EWO problems are usually nonconvex, a local optimal solution is often 

accepted as sufficient outcome. Applying rigorous global optimization techniques, such as 

the one used in the Baron solver (Sahinidis, 1996) is often computationally expensive and 

is not practiced for sizable EWO problems (Grossmann, 2012).  

(Papageorgiou, 2009) presented an overview of the mathematical models used for the 

optimization of the process industries’ supply chain. This focused on the strategic and 

tactical level. He addressed the issue of modelling uncertainty using multi-stage stochastic 

models. He also highlighted the use of multi-objective formulations to address 

environmental impact. These aspects were also highlighted by (Sahebi et al., 2004) who 

presented a review of the existing work addressing crude oil supply chains. He also noted 

the importance of developing efficient algorithms and techniques to address the 

complexity of these problems. 

Researchers have employed various frameworks to optimize oil and gas planning and 

scheduling models. 

(Wassick, 2009) employed a Resource Task Network (RTN), initially described by 

(Pantelides, 1994) to optimize the scheduling of an integrated chemical site. He showed 

how an integrated site can be composed of various sub-systems, which perform different 

tasks. He then used the RTN to optimize the scheduling of the site’s waste water treatment. 

A framework for the optimization of petroleum supply chains was proposed by (Neiro & 

Pinto, 2004). It was mostly focused on oil & gas downstream assets including refineries, 

storage tanks and pipelines. They described a large scale multiperiod MINLP model to 

optimize the complex topology which consisted of connecting multiple nodes representing 
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each element of the network. Their manipulated variables included flow rates, operational 

parameters and inventory and facilities assignments. 

Several researchers have addressed the optimization of oil & gas midstream operations to 

various extents. 

In his PhD thesis, (Wang, 2003) reviewed oil & gas upstream optimization problems and 

categorized them into: lift gas and production allocation; processing plants design and 

operation optimization and reservoir development and planning optimization. He further 

divided optimization problems based on timescale into operational, tactical and strategic 

problems. 

(Al-Sobhi & Elkamel, 2015) simulated and optimized a natural gas processing network 

consisting of LNG, GTL and methanol plants. They used the commercial package Aspen 

Plus to perform the simulation then used an LP formulation to maximize the network 

profitability. 

(Li et al., 2017) proposed a stochastic model for the design and operation of natural gas 

networks under uncertainty. They applied a modified nonconvex generalized Benders 

decomposition (NGBD) method to solve it. They started from a network superstructure, 

with the objective of determining an optimal structure to maximize the system’s NPV over 

a period of 25 years. Using a multi-loop NGBD, they solved each primal subproblem using 

global optimization. This resulted in reducing the solution time by more than an order of 

magnitude. 

(Li et al., 2007) examined building a network planning tool. The presented network 

consisted of wellhead platforms to oil and gas export facilities. They used Aspen Hysys to 

perform process simulation and then inputted the results to a network optimization 

module. This allowed bypassing nonlinearities.  

Liu, Alhasan and Papageorgiou proposed a MILP model to optimize a network of gas-oil 

separation plants (GOSPs) in the Saudi Arabian Ghawar field. The objective was to 

ultimately minimize the network’s operating expenditure. Their model made use of 

transfer lines to swing production fully or partially from some plants to others. They 

represented the network using a state task network (STN), which was described by 

Kondili, Pantelides and Sargent in 1993, and employed piecewise linearization to handle 

nonlinear power consumption curves. They reported an average of 12.8% OPEX savings, 

resulting mainly from reduced power and chemicals consumption. They also noted that 
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due to the unconventional nature of GOSP networks, this problem class was given little 

attention in the literature (Liu et al., 2016).   

3.4 Research Gaps 

To the best of the author’s knowledge and as demonstrated in the literature review: 

• There is no proposed framework in the literature which addresses optimizing oil & 

gas midstream networks per the requirements of N-RTOs. 

• There is no modelling or optimization framework that address introducing NPMs 

or SPMs for general EWOs or specifically oil & gas midstream EWO. These are 

expected to be beneficial in improving convergence and minimizing computational 

cost. 

• There is no reported framework in the open literature which utilizes MINLP for 

optimizing the operation of integrated GOSPs or gas plants. 

The objective of this work is to address these gaps and present initial results, to quantify 

and demonstrate the benefits of the proposed methodology. 
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4. The Midstream Network 

This research examines two types of midstream networks, namely: GOSP and Gas 

Processing networks. The two networks will not be combined into one holistic network 

due to their segregated operating philosophies. GOSPs are generally operated to maximize 

oil production or optimally meet set targets. Gas produced from GOSPs is a by-product of 

oil production. On the other hand, in oil & gas midstream networks, gas plants are 

operated to meet set targets for sales gas, which is mostly composed of methane, while 

maximizing profitability by maximizing NGLs production and minimizing energy 

consumption. This work will primarily focus on GOSP networks. 

4.1 Gas Oil Separation Plants (GOSPs) 

As previously stated, GOSPs are often connected laterally via swing and transfer lines 

which would allow shifting part or all of the production from one GOSP to another. This 

provides for significant flexibility and room for optimization.  

GOSPs often contain equipment items which are highly energy-intensive. This mainly 

includes low- and high-pressure gas compressors and water injection pumps. Accordingly, 

optimizing the operation of such equipment can have a significant impact on improving 

energy efficiency, and consequently further minimizing processing cost and greenhouse 

gas emissions. It is therefore prudent to target minimizing energy consumption while 

meeting oil production targets and reservoir management strategies. 

Figure 2 shows a simplified block flow diagram representing a typical GOSP. Crude is 

received at one or multiple high-pressure production trap(s) (HPPT). This is a three-phase 

separator, which separates high pressure gas, crude and oily water. High pressure gas 

either free-flows to a nearby gas plant or is sufficiently compressed through a high-

pressure compressor to allow overcoming pipeline pressure drop and reaching gas plants 

that are remotely located from the GOSP at the desired pressure.  

Water from HPPTs flows to a water-oil separator (WOSEP). The water is separated and 

re-injected to the reservoir. This serves two purposes, namely: finding a suitable 

disposition for contaminated water and maintaining reservoir pressure. Separated oil 

flows to the LPPT.   

The Low-Pressure Production Trap (LPPT) receives feed from the HPPT and the WOSEP. 

A further pressure drop allows releasing more gases. Those gases are compressed at the 
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low-pressure compressor and then further compressed at the high pressure compressor 

which also receives feed from the HPPT.  

Oil from the LPPT is pumped to the de-salter and then the de-hydrator to remove salt and 

further remove water. Dry crude is then pumped out of the GOSP. 

The configuration of GOSPs can vary significantly. For example, some GOSPs may lack 

any compressors, while some may lack LP compressors. Similarly, some GOSPs may divert 

their oily water to other nearby GOSPs for separation and underground injection. GOSPs 

also vary significantly in terms of the capacity and efficiency of their equipment and the 

HPPT’s operating pressures. 

 

Figure 2 Generic GOSP Representation 

The presence of these numerous variables and differing constraints makes operating the 

network most profitably very difficult due to the thousands of options which are possible. 

This lends the problem very well to mathematical optimization. A mathematical solver is 

often able to highlight solutions which are not readily obvious to the network’s planner.   

Network optimization of GOSPs can also lead to opportunities whereby some production 

from GOSPs which are shutdown can be recouped by diverting their feed to nearby GOSPs 

while considering the various limitations such as gas compression and water processing 

capacities. 
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Within this work, 2 GOSP networks will be considered, namely Area B and C. Both 

networks are located within the same reservoir and produce Arabian Light crude. As such, 

they can be lumped in the same problem formulation towards a single objective function.  

Figure 3 shows Area B GOSP network which is connected by swing lines. Some groups of 

wells are considered swingable while others are not. Feed from a group of swingable wells 

is typically sent to the primary GOSP, but can be diverted to the secondary one. Feed from 

non-swingable wells can only be diverted to their primary GOSP. GOSP B-2 is a 

compression station. Its purpose is to compress the gas from GOSPs B-3 and B-6, both of 

which contain no compressors. 

 

Figure 3 Area B GOSP Network 

Figure 4 shows Area C GOSP network, where only a single swing line exists from GOSP C-

4 to C-3. This provides a more limited swinging capability. 
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Figure 4 Area C GOSPs Network 
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5. Methodology 

 

5.1 gPROMS ProcessBuilder 

The software which was used to build both the simulation models and the optimization 

formulations is gPROMS ProcessBuilder v1.3 provided by Process Systems Enterprise 

(“PSE”). This platform provides capabilities to build high-fidelity models for various 

applications within the process industry. ProcessBuilder is an Equation Oriented (EO) 

modelling platform which lends itself to be used for process optimization. Unlike 

sequential-modular (SM) simulators, EO does not require directionality of computation. 

Moreover, it allows for efficient handling of multiple recycles, which is essential for 

optimizing GOSPs, as they contain a variety of recycle streams, such as the water being 

recycled from dehydrators to WOSEPs. A disadvantage of EO simulators is that their 

numerical solvers require good initial guesses. Failing to provide those may lead to 

failures. gPROMS provides capabilities to initialize without the need to preset variables 

using homotopy-continuation techniques. Nevertheless, EO simulators remain less 

popular in the process industry due to the general difficulty of providing meaningful 

diagnostics on failure. This makes debugging difficult and therefore limit the use of those 

systems to experienced users.      

The equation system within a ProcessBuilder model involves parameters and variables. 

The former can hold an integer or real value. It can also be a foreign object, which allows 

capturing an external entity such as performance curves of pumps and compressors. On 

the other hand, for each variable, a variable type has to be created and assigned. Both 

bounds and default values have to be defined, as well. 

To allow running simulations, a Process is created and the remaining degrees of freedom 

are specified. In addition, a solver and solution parameters are selected. 

Similarly, to allow running optimization, an optimization entity is created. Within an 

optimization entity, the objective function, constraints and controlled variables are 

selected. For controlled variables, bounds and initial guesses are specified. Constraints can 

include both equality and inequality types.  

This section describes the methodology adopted for developing the multi-GOSP 

optimization model. 
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5.2 Model Development Workflow 

The model development workflow to set up a GOSP optimization application included the 

below key steps: 

1. Technical Specification Document 

In the first step, a thorough technical specification document was written and reviewed 

with the project’s proponent. This described the models’ functionality, level of fidelity, 

main inputs, main outputs, optimization problem formulation, assumptions and required 

data.  

 
 

2. Collecting & aggregating well data 

Each GOSP is connected to one or more groups of oil producing wells, through 

complicated pipeline network, trunkline and headers. A non-swingable group of wells can 

only feed a single GOSP. Swingable wells can feed either a primary or a secondary GOSP. 

In the model, each group is represented by a single feed stream with an averaged gas to oil 

ratio (GOR) and water cut (WC). At this stage, the models did not include a representation 

of individual wells as this was deemed outside the scope of this work. A future 

improvement can add and connect all individual wells to flowlines for added fidelity and 

higher accuracy in estimating flow conditions and capturing hydraulics. 

 
3. Constructing updated equipment curves 

One of the key objectives of this study is to minimize the power consumption. The major 

power consumers are the compressors and salt water injection pumps. It is therefore 

essential to construct and embed updated performance curves in the models to accurately 

estimate power consumption. The performance for the HP, LP compressors and multi-

stage salt water injections pumps was simulated and tuned to match current plant 

performance.  

 

Figure 5 demonstrates the adjustment of the flowrate-head curve for a SWI pump at GOSP 

B-3. Initially, a simulation model was constructed to match the performance of each 

equipment at design conditions. The rotating equipment inlet conditions were then 

adjusted per actual plant performance. This resulted in predicting an equipment 

performance which sometimes mismatches with expected design performance. A bias was 

then added to the full equipment curve. At this point, design conditions were used to 

simulate performance. Equipment performance at the design inlet conditions was then 
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recorded. Once all points were processed, the bias between actual and expected 

performance was calculated. This was then correlated to equipment flowrate. This residual 

term represents the mismatch between the PM calculations and real data as discussed in 

section 3.2. As described in parallel semi-parametric modelling, a pure superposition 

technique was used to add a residual term to the PM’s output. This allowed generating 

performance curves for the whole range of design data, although available plant data did 

not sufficiently cover this range. This is because those equipment are usually operated in 

narrower regions than originally designed. 

 

 

Figure 5 Adjusting flowrate-head curve for a SWI pump at GOSP B-3 

 
To take into consideration the anti-surge controls for the compressors, the compressors 

were modelled with a minimum flowrate at 80% of the compressor design flowrate. This 

was done by utilizing the recycle flows. Since the reservoir GOR and WC changes over 

time, the compressor’s suction conditions, such as the temperature and pressure, were 

adjusted to maintain the minimum flowrate while minimizing the recycle flowrate. The 

suction historical conditions were collected and utilized to accurately model power 

consumption.  

4. Building physics-based models 
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gPROMS ProcessBuilder was used to build unit operation models and gRPOMS Multiflash 

Properties were used to represent the process thermodynamics. Subsequent sections will 

provide more description on the models’ development process and its components. 

 

5. Validating simulation against plant data 

Model validation was carried out to validate the accuracy of the simulation against 

production data. The operating conditions in the model were tuned to match the actual 

operations. It was found that the model is able to accurately predict phase separation as 

well as power consumption as demonstrated in Table 1 and Table 2.  

Table 1 Comparing measured with modelled energy consumption at base case (75% Loading) 

GOSP 
Measured Energy 

Consumption 
Modelled Energy 

Consumption 
Relative 

Error 

ANDR-1 12.82 13.08 1.99% 

ANDR-2 11.97 11.75 -1.87% 

ANDR-3 8.24 8.57 3.85% 

ANDR-4 6.41 6.47 0.93% 

ANDR-6 0.17 0.18 5.56% 

SDGM-1 4.74 4.82 1.66% 

SDGM-2 9.21 8.91 -3.37% 

SDGM-3 4.61 4.39 -5.01% 

SDGM-4 5.72 5.36 -6.72% 

SDGM-5 3.5 3.44 -1.74% 

SDGM-6 2.78 2.67 -4.12% 

 

 

Table 2 Relative errors in gas, water and oil predictions at base case (75% Loading) 

GOSP 
Gas Flow Relative 

Error 
Water Flow Relative 

Error 
Oil Flow Relative 

Error 

ANDR-1 3.17% 2.47% -4.13% 

ANDR-2 -2.96% 0.46% 1.90% 

ANDR-3 1.07% 3.34% -2.82% 

ANDR-4 -2.67% -1.32% 3.80% 

ANDR-6 6.45% -4.46% -1.28% 

SDGM-1 0.56% 4.90% -2.66% 

SDGM-2 1.10% 5.70% -3.71% 

SDGM-3 1.58% 4.26% -4.88% 

SDGM-4 -1.90% 2.10% -0.87% 

SDGM-5 2.91% -2.65% -0.39% 

SDGM-6 -1.70% -2.98% 5.16% 
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6. Formulating the optimization problem 

Once the simulation model was validated, the optimization model was developed. The 

optimization model drives the simulation model towards minimizing or maximizing a 

defined objective function based on a set of constraints and controlled variables. Section 

5.6 will provide more details on the optimization formulation. 

 
7. Running case studies 

A variety of case studies were conducted. This mainly aimed to benchmark the model’s 

performance against past data and operating conditions. It was essential to highlight the 

model’s ability to produce reasonable solutions. It was also key to highlight variations 

between the base and optimized cases and to quantify the perceived benefits.   

 
 

5.3 Physical Properties 

The standard physical property package used in gPROMS ProcessBuilder is Infochem 

Multiflash, which is provided by KBC Advanced Technologies. This package is well suited 

for hydrocarbons modelling and the given application because of its ability to generate 

tight convergence of iterations and of partial derivatives with respect to composition, 

pressure and temperature. In addition, Phase equilibria is determined for a variety of PVT, 

enthalpy, entropy and internal energy combinations. The package also provides the 

composition of a given phase at a given pressure or temperature.  

Multiflash avails a variety of commonly-used models for equations of state, such as  Soave-

Redlich-Kwong (SRK) and Peng-Robinson (PR), which are classified as cubic equations of 

state. Moreover, a variety of non-cubic equations of state exist, such as Lee-Kesler and the 

Benedict-Wee-Rubin-Starling.  

For this work, the SRK equation of state was chosen since it is able to sufficiently account 

for fugacity calculations. It was also compared against other equations of state and 

demonstrated better capabilities in representing multiphase crude oil separation 

processes. This model is described by the below set of equations. 

𝑃 =  
𝑅𝑇

𝑉𝑚 − 𝑏𝑚𝑖𝑥𝑡𝑢𝑟𝑒
−

𝑎𝑚𝑖𝑥𝑡𝑢𝑟𝑒(𝑇)

𝑉𝑚(𝑉𝑚 + 𝑏𝑚𝑖𝑥𝑡𝑢𝑟𝑒)
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√𝑎𝑚𝑖𝑥𝑡𝑢𝑟𝑒(𝑇) =∑𝑦𝑖√𝑎𝑖(𝑇𝑖)

𝑁𝐶

𝑖

 

𝑏𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = ∑𝑦𝑖𝑏𝑖

𝑁𝐶

𝑖

 

𝑎𝑖(𝑇) =  
0.4275𝑅2𝑇𝑐𝑖

2

𝑃𝑐𝑖
𝑎𝑖(𝑇), i = 1, …, NC 

𝑎𝑖(𝑇) =  [1 + 𝑚𝑖(1 − √
𝑇

𝑇𝑐𝑖
)]
2

,  i = 1, …, NC 

𝑚𝑖 = 0.48 + 1.574𝑤𝑖 − 0.176𝑤𝑖
2, i = 1, …, NC 

𝑏𝑖 = 0.08644
𝑅𝑇𝑐𝑖

𝑃𝑐𝑖
,  i = 1, …, NC 

where R is the ideal gas constant and Vm is the molar volume. The parameters amixture and 

bmixture are calculated using ai and bi which are the pure components parameters that are 

determined from the critical pressure Pci, the critical temperature Tci and the acentric 

factor wi.  

 
Various activity coefficient models can be used, such as NRTL, UNIFAC and UNIQUAC. 

These are all available within the Multiflash package. For this work, the NRTL model was 

selected because it can be efficiently used for vapor-liquid equilibrium calculations.   

 

5.4 gPROMS gML Library 

The purpose of this section is to describe the physical meaning and functionality of the 

main model components used to build the Multi-GOSP high-fidelity models.  

 

The gML library contains a variety of models for steady state and dynamic processes. The 

gML library contains all the base components required to set-up the required models. 

 

5.4.1 Centrifugal Compressor 



47 
 

The centrifugal compressor model in gPROMS can be used to represent both single and 

multiple compression stages. However, in this study, only single stage compressors were 

used. 

Isentropic and polytropic efficiencies 

In a single stage compressor, the isentropic and polytropic efficiencies are described by 

the below relationships: 

 

𝜂𝑃 = 𝜂𝑖𝑠

{(
𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

)

𝑛−1
𝑛

− 1}
𝑛

𝑛 − 1
𝑘 − 1
𝑘

(
𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

)

𝑘−1
𝑘
− 1

 

 

 

𝑛 =  
𝑙𝑛 (

𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

)

𝑙𝑛 (
𝜌𝑜𝑢𝑡
𝜌𝑖𝑛

)
 

 
 

𝑘 =  
𝑙𝑛 (

𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

)

𝑙𝑛 (
𝜌𝑖𝑠
𝜌 )

 

 
Where ηP and ηis are the polytropic and isentropic efficiencies, respectively. Pout and Pin are 

the fluid outlet and inlet pressure, respectively. ρout and ρin are the fluid outlet and inlet 

density, respectively. Ρis is the outlet isentropic fluid density. n is the polytropic index and 

k is the isentropic index. 

 
The compressor’s polytropic or isentropic efficiencies can then be used to determine the 
power demand using the following equations: 
 

𝑊𝑖𝑠 = 𝐹(ℎ𝑖𝑠 − ℎ𝑖𝑛) 
 

𝑊𝑃 = 𝑊
𝜂𝑃
100
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𝑊𝑖𝑠 = 𝑊
𝜂𝑖𝑠
100

 

 
where F is the mass flow rate. hin and his are the inlet and outlet mass specific enthalpy for 
isentropic compression. WP and Wis are the power demand for polytropic and isentropic 
compression, respectively. W is then the compressor thermodynamic power demand. 
 
Similarly, the fluid’s enthalpy can be determined after calculating the power supply to the 
fluid and the fluid’s flow rate using the below equation. 
 

𝑊 =  𝐹(ℎ𝑜𝑢𝑡 − ℎ𝑖𝑛) 
 
where hout is the outlet mass specific enthalpy. 
 
It is then possible to account for the mechanical losses which lead to the mechanical power 
demand being larger than the power required to compress the fluid. Assuming steady state 
conditions, the mechanical losses can be determined as follows: 
 

𝑊𝑚𝑒𝑐ℎ

𝜂𝑚𝑒𝑐ℎ

100
= 𝑊 

 
 
where Wmech is the compressor mechanical power demand and ηmech is the mechanical 
efficiency. 
 
For the multi-GOSP optimization problem, performance maps were used to predict 
compressors’ outlet pressure based on the flow rate. These maps provide relationships 
between the volumetric flowrate, the compressor’s efficiency and the polytropic head. In 
gPROMS, performance maps can be either 1- or 2- dimensional. One-dimensional maps 
do not include a dimension for varying compressors speeds, while 2-dimensional maps 
allow varying performance at feasible compressor speeds. 
 
The compressor’s polytropic pressure head is given by: 
 

𝐻𝑃 = 1000 
𝑊𝑃

𝐹
 

 
where HP is the polytropic head. 
 
It is then possible to use the below equations to determine the head and efficiency from 
the volumetric flow rate: 
 

𝐻𝑃,0 = 𝑀ℎ𝑒𝑎𝑑(𝐹𝑣,0) 
 

𝜂𝑝 = 𝑀𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝐹𝑣,0) 
 
where Fv,0 is the inlet design volumetric flow rate. HP,0 is the design polytropic head. Mhead 
is the map head function and Mefficiency is the map efficiency function. 
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5.4.2 Centrifugal Pumps 

The centrifugal pump model in gPROMS can be used to represent both single and multiple 

stages. The power demand Wis for an ideal isentropic process is given by: 

𝑊𝑖𝑠 = 𝐹(ℎ𝑖𝑠 − ℎ𝑖𝑛)  ≈ 𝐹
102(𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛)

𝜌
 

 

Then, the actual power W supplied to the fluid can be determined by: 

𝑊
𝜂𝑖𝑠
100

=  𝑊𝑖𝑠 

 

The fluid’s outlet enthalpy and torque requirement can then be determined in a similar 

fashion to the centrifugal compressors as described in section 5.4.1. Similarly, the 

equations in section 5.4.1 concerning calculating head and efficiency from volumetric 

flowrate can be used here. 

 

5.4.3 Separators 

In separators, the mass balance for each component i is provided by the following 

equation: 

 

�̂�
𝑑𝑚 𝑖

𝑑𝑡
= 𝐹𝑖𝑛𝑤𝑖

𝑖𝑛 − 𝐹𝐿𝑥𝑖 − 𝐹𝑉𝑦𝑖   , i = 1, …, NC 

 
where V̂ is the characteristic volume, 𝑚 𝑖is the volumetric mass holdup, Fin, FL and FV are 

the inlet , outlet liquid and outlet vapour mass flowrates, respectively. Finally, xi and yi are 

the mass fractions of component i in the liquid and vapour phases, respectively. 

 

Since the models have an underlying assumption of a steady state, all terms involving the 

holdup are zero. 

On the other hand, the energy balance is expressed by the following equations: 

 

�̂�
𝑑ũ

𝑑𝑡
= 𝐹𝑖𝑛ℎ𝑖𝑛 + 𝑄𝑖𝑛 − 𝐹𝐿ℎ𝑙 − 𝐹𝑉ℎ𝑣 

ũ =  𝑚 𝑇ℎ − 10
2𝑃 
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where ũ is the volumetric energy holdup, hin is the inlet mass specific enthalpy and Qin is 

the energy rate for the heat supplied to the vessel. hL and hV are the outlet liquid and 

vapour mass specific enthalpy, respectively. 

 
Similarly, since the models have an underlying assumption of a steady state, all terms 

involving the holdup are zero. 

 

The physical property package is then used to calculate the fugacity coefficients. The phase 

equilibrium is then obtained as follows: 

𝑦𝑖∅𝑖,𝑣

∑
𝑦𝑖

𝑀𝑊𝑗
𝑗∈𝑁𝐶

= 
𝑥𝑖∅𝑖,𝐿

∑
𝑥𝑖

𝑀𝑊𝑗
𝑗∈𝑁𝐶

 , i = 1, …, NC 

 

∑ 𝑥𝑖
𝑖∈𝑁𝐶

= 1 

 

∑ 𝑦𝑖
𝑖∈𝑁𝐶

= 1 

 

where MWi is the molecular weight of component i. ∅𝑖,𝑣 and ∅𝑖,𝐿 are the fugacity 

coefficients of component i in the vapour and liquid phases.  

 

5.5 Flowsheet Implementation 

As was described in chapter 4, the multi-GOSP optimization process includes optimizing 

the operation of network-level and plant-level variables. Accordingly, a representation of 

the network took into account the multi-level nature of these plants.  

 

Initially, individual GOSP models were built using the gML Library components as 

described in section 5.4. This is in addition to other auxiliary components which are 

necessary for flowsheet construction. 
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Figure 6 Flowsheet implementation of GOSP C-1 in gPROMS ProcessBuilder 

 

A feed stream was added as a generic stream representing typical plant feed. This took no 

account of the possibility to swing feed streams as this was left to be a decision variable on 

the network level. 

Feed composition reflected the same on plant Process Flow Diagrams (PFDs). 

Additionally, two pseudo-components were generated in this model to represent actual 

properties. These are listed below: 

 
Table 3 Pseudo-components Properties 

Pseudo-

component 

Molecular 

Weight 

SPG Tc, °F Pc, psig Acentric 

Factor (ω) 

C7+ 221 0.8463 862 259 0.485 

C12+ 312 0.8824 988 193 0.778 
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Table 4 summarizes crudes composition used in the model. 

Table 4 Crude Composition (Mass Fraction) 

 Composition  

N2 0.0000 

H2S 0.0003 

CO2 0.0003 

METHANE 0.0001 

ETHANE 0.0006 

PROPANE 0.0021 

ISOBUTANE 0.0008 

N-BUTANE 0.0077 

PENTANE 0.0042 

C6 0.0036 

C7+ 0.1868 

C12+ 0.7747 

 
Coupled with the gas phase composition, GOR and WC, the feed to the GOSP is hence fully 

defined.  

 
PFDs of each GOSP were followed to model the process rigorously.  
 

The feed stream was connected to a separator model, which separates gas, water and liquid 

components. This separator represents the HPPT. The outlet gas stream was connected to 

a pressure changer, which is followed by a cooler and a separator. This separator 

represents the knock-out drum. The water stream was connected to a pressure changer 

then a component splitter, which represents the WOSEP. The goal of the pressure changer 

is to reflect the operating pressure of the WOSEP. The liquid hydrocarbon stream from 

the HPPT was connected to another pressure changer and then another separator. This 

separator represents the LPPT. The aim of the pressure changer is to represent the drop 

of pressure and allow flashing gases in the LPPT.  

 

From the knock-out drum, which is connected to the gas stream from the HPPT, the 

overhead stream was connected to a high-pressure compressor. The compressor was 

configured to operate based on performance maps as described in section 5.4.1. 

Additionally, the compressor was equipped with a recycle. This was configured as a split 
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stream from the compressor’s outlet, which goes through a pressure changer then a cooler 

before going to the inlet of the knock-out drum. The recycle is key since several 

compressors were operated below design limits and were operating on a recycle mode. The 

bottom of the knock-out drum wasn’t considered since it is a very small stream.  

 

From the LPPT, the gas stream was connected to a cooler, a pressure changer then a 

knock-out drum. From the knock-out drum the overhead is sent to the low-pressure 

compressor. This is followed by a cooler, a knock-out drum and then the outlet is 

connected to the high-pressure compressor.  

 

The liquid leaving the LPPT was connected to a charge pump with a multiplier. The goal 

of the multiplier is to allow for ease of controlling the number of parallel equipment. It is 

assumed that all parallel pumps operate similarly and use the same performance maps as 

described in section 5.4.2. The pump was connected to a recycle stream that can allow 

recycling product around it similar to the arrangement with the compressors.  

 

The WOSEP was configured such that it perfectly splits hydrocarbons from water. The 

former is sent to the inlet of the LPPT. The latter is sent to the Salt Water Injection Pumps 

(SWIs). Those pumps were equipped with performance curves similar to previously 

described rotating equipment. Water leaving SWIs is sent through a sink and leaves the 

model. 

 

The crude stream leaving LPPTs was connected to a dehydrator/desalter through the 

charge pump. Dehydrator/Desalters were modelled as a component splitter, which 

receives a wash water stream in addition to LPPT’s crude. The component splitter then 

perfectly split hydrocarbons and send this stream as the crude oil output. Water, on the 

other hand, is recycled to the WOSEP. 

 

As explained in chapter 4, GOSPs often differ in configuration. The above implementation 

process is therefore a generic one, which was adapted per actual plant set-up.   

 

After building individual plant models, those were integrated into a network model. 

gPROMS allows setting up an interface for each model, such that it is transferred into a 

sub-model with ports to connect inlet and outlet streams. 
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Figure 7 Hierarchal topology implementation for the network’s overall topology in gPROMS ProcessBuilder 

 

The network model was built to match the description in chapter 3. Feed streams were 

connected with the plants through a series of aggregators and routers. Aggregators allow 

combining multiple streams into a single stream. Routers allow specifying one or more 

possible outlets. Those are specified discretely, such that only one outlet stream can be 

selected at any time. 

 

Pressure changers were also used to allow for matching the pressure at each GOSP’s HPPT. 

This allows flashing feed streams at the right conditions. 
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5.6 Optimization Problem Formulation 

This section describes how the optimization problem was posed and presents details on 

how constraints and the objective function were formulated. 

 

The total power consumption (TPC) of GOSPg is defined as: 

𝑇𝑃𝐶𝑔 = ∑ 𝑃𝐶ℎ𝑝𝑐
ℎ𝑝𝑐 ∈𝐻𝑃𝐶

+ ∑ 𝑃𝐶𝑙𝑝𝑐
𝑙𝑝𝑐 ∈𝐿𝑃𝐶

+ ∑ 𝑃𝐶𝑤𝑖𝑝 + ∑ 𝑃𝐶𝑠𝑝
𝑠𝑝 ∈𝑆𝑃𝑤𝑖𝑝 ∈𝑊𝐼𝑃

 

Where PC is the power consumption, and hpc and lpc are the high and low pressure 

compressors, respectively, while  

wip and sp are the water injection and crude shipping pumps respectively. 

The total feed (TF) to a GOSP is described by the following equation: 

𝐶𝐴𝑃𝑔
𝑚𝑖𝑛. 𝑌𝑔 ≤ 𝑇𝐹 ≤ 𝐶𝐴𝑃𝑔

𝑚𝑎𝑥. 𝑌𝑔 
Where 𝐶𝐴𝑃𝑔

𝑚𝑖𝑛 and 𝐶𝐴𝑃𝑔
𝑚𝑎𝑥 are the minimum and maximum capacities of GOSP g, 

respectively.  

𝑌𝑔 is a binary variable. It equals 0 if the GOSP is off and 1 if the GOSP is on. 

The water handling capacity (WHC) of GOSP g is define as: 

𝑊𝐻𝐶𝑔 ≤ 𝑊𝐻𝐶𝑔
𝑚𝑎𝑥. 𝑌𝑔 

 
The capacity of the HP and LP compressors is defined as: 

0.8 . 𝐶𝑜𝑚𝑝𝐶𝐴𝑃ℎ𝑝𝑐,𝑔
𝑚𝑎𝑥 . 𝑌𝑔  ≤ 𝐶𝑜𝑚𝑝𝐶𝑎𝑝ℎ𝑝𝑐,𝑔 ≤ 𝐶𝑜𝑚𝑝𝐶𝐴𝑃ℎ𝑝𝑐,𝑔

𝑚𝑎𝑥 . 𝑌𝑔  

∀  ℎ𝑝𝑐 ∈ 𝐻𝑃𝐶 
 

0.8 . 𝐶𝑜𝑚𝑝𝐶𝐴𝑃𝑙𝑝𝑐,𝑔
𝑚𝑎𝑥 . 𝑌𝑔  ≤ 𝐶𝑜𝑚𝑝𝐶𝑎𝑝𝑙𝑝𝑐,𝑔 ≤ 𝐶𝑜𝑚𝑝𝐶𝐴𝑃𝑙𝑝𝑐,𝑔

𝑚𝑎𝑥 . 𝑌𝑔  

 ∀  𝑙𝑝𝑐 ∈ 𝐿𝑃𝐶 
 

Due to operational requirement, compressors were restricted to run at a minimum of 80% 

of their maximum capacity. 

Both LP and HP compressors are operated to deliver gas at a minimum head pressure. 

This is defined as: 
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𝐶𝑜𝑚𝑝𝐻𝑒𝑎𝑑ℎ𝑝𝑐,𝑔 ≤ 𝐶𝑜𝑚𝑝𝐻𝑒𝑎𝑑ℎ𝑝𝑐,𝑔
𝑚𝑎𝑥 . 𝑌𝑔  ∀  ℎ𝑝𝑐 ∈ 𝐻𝑃𝐶 

 
 𝐶𝑜𝑚𝑝𝐻𝑒𝑎𝑑𝑙𝑝𝑐,𝑔 ≤ 𝐶𝑜𝑚𝑝𝐻𝑒𝑎𝑑𝑙𝑝𝑐,𝑔

𝑚𝑎𝑥 . 𝑌𝑔  ∀  𝑙𝑝𝑐 ∈ 𝐿𝑃𝐶 

 
The total oil production, which is one of the main constraints is described as: 

𝑇𝑜𝑡𝑎𝑙𝑂𝑖𝑙 ≥ ∑𝑆𝑃𝑅𝑔  ∀  𝑔 ∈ 𝐺 
Where 𝑆𝑃𝑅𝑔 is the total rate leaving the shipping pump at each GOSP g. 

The minimum pressure of the water injection pumps was described by polynomials that 

define flow/pressure relationships. The polynomial was regressed as a best fit of historical 

data. The model is constrained to deliver a pressure which is at least equivalent to the 

minimum pressure at the water flowrate. This often mandates adding additional parallel 

pump(s) to meet the required pressure.  

Moreover, it was often necessary to add some mathematical equations that describe the 

relationship between various GOSPs. For example, if the gas leaving GOSP g is processed 

at GOSP g’, it is essential to maintain that the first GOSP cannot be operated while the 

second is shutdown. On the other hand, the second GOSP can still operate if the first is 

shutdown as long as it is able to meet the compressors’ flowrates. 

This is described through the following key equation. 

𝑌𝑔′  ≤  𝑌𝑔 
The objective function is simply defined as the minimization of the total power 

consumption of all the GOSPs. This is described below: 

𝑀𝑖𝑛      𝑇𝑃𝐶𝐺 = ∑𝑇𝑃𝐶𝑔  ∀  𝑔 ∈ 𝐺 
An alternate objective function was similarly formulated to solve the problem of 

maximizing oil production during the planned/unplanned shutdown of one or more 

GOSPs. 

The alternate objective function is described as: 

𝑀𝑎𝑥     𝑇𝑜𝑡𝑎𝑙𝑂𝑖𝑙 =  ∑ 𝑆𝑃𝑅𝑔  ∀  𝑔 ∈ 𝐺 
 
After formulating the problem, gPROMS was then used to perform steady-state 

optimization, where both continuous and discrete variables were optimized to minimize 

energy consumption while satisfying the given constraints. 
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Due to the nature of the described equation system, a nonlinear behaviour can be observed 

in addition to several binary variables. This makes this an MINLP problem, which follows 

the particularities described in section 3.1.2. 
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6. Case Studies & Results 

In this section, we apply the proposed model to solve an optimization problem for the 2 

integrated GOSP areas proposed in chapter 4. Both areas produce the same type of crude 

oil, Arab Light. It was therefore possible to combine both areas in one model, so that both 

are operated towards one objective function while increasing the flexibility by combining 

the controlled variables of both.  

The modelling and optimization runs were performed using a Microsoft Windows 10 

platform (64-bit operating system) with a 2.90 Ghz dual-core processor (AMD A6-5350M 

APU) and 8 GB RAM. 

Table 5 provides a summary of the main capacities for GOSPs in both areas under 

consideration. 

Table 5 Overall Crude, Water and Gas Handling Capabilities 

GOSP Maximum Crude 

Capacity (% of 

Total Area B & C) 

  

Design WOSEP 

Capacity (% of 

Crude Capacity) 

  

Number of 

Salt Water 

Injection 

Pumps 

Number of 

Low-

Pressure 

Compressors 

Number of 

High-

Pressure 

Compressors 

B-1 5.52% 86.8% 2 1 0 

B-2 N/A N/A N/A 1 2 

B-3 12.57% 49.5% 4 0 0 

B-4 12.57% 49.5% 4 1 2 

B-5 12.57% 49.5% 3 0 0 

B-6 6.48% 96.1% 2 0 0 

C-1 12.57% 75.8% 4 1 2 

C-2 12.57% 49.5% 4 1 2 

C-3 12.57% 49.5% 3 1 1 

C-4 6.29% 99.0% 4 1 1 

C-6 6.29% N/A N/A 0 0 

  

For the purpose of this case study, the feed rates to each GOSP were altered by the 

optimizer while being maintained within the provided avails. Avails present production 

capabilities as determined by Production Engineering and Reservoir Management. 

Typically, rates are controlled by adjusting the choke valves of the producing wells at the 
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well pads. Operators will aim to ensure that each GOSP receives the required production 

rates. 

It was assumed that the flowrates can be perfectly controlled to produce the required 

flowrates and averaged GORs and water cuts.  Well flowrates were aggregated and the 

model was provided with an initial guess, a minimum and a maximum rate for each feed 

stream. As previously described, feed streams comprise aggregates of both swingable and 

non-swingable wells. The minimum for each feed stream was set to zero. The initial guess 

was provided as the starting production target, which is between the minimum and the 

maximum.  The maximum is the avails flow rate. 

6.1 Energy Optimization 

In this section, the proposed model is applied with the objective to minimize energy 

consumption as set forth in the methodology section. The total oil production target was 

set as a percentage of the total avails. The goal is to allow studying the model’s response 

as oil production targets as altered. 

The base case in all scenarios assumed that all GOSPs are maintained operational as is the 

common practice. Moreover, in generating the base case, the optimizer was allowed to 

optimize the operation within individual GOSPs. However, swinglines were not utilized, 

since they’re not commonly used in current operation for energy optimization. On the 

other hand, the optimizer was provided the flexibility to recommend shutting down GOSPs 

and using swing lines if it is deemed optimal.  

6.1.1 Energy Optimization at 50% Throughput 

The case where the throughput is 50% of total availability is initially tackled. The model 

statistics and computational results for this case are presented in Table 6. As 

demonstrated in the below table, the CPU time of 248 seconds is sufficiently short to serve 

the requirements of N-RTOs. Accordingly, the models’ structure and level of fidelity are 

adequate and use of lower fidelity techniques are not needed. Indeed, it is expected that 

lower fidelity models would be required if the approach is to be used for gas plants. 

Table 6 Model Statistics for 50% Throughput Level Scenario 

Case 50% Throughput 
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Number of variables (discrete and 

continuous) 
2344 

Base Case Objective Function (MW) 66.06 

Optimized Case Objective Function 

(MW) 
32.52 

CPU (s) 248 

 

Figure 8 presents the power consumption comparison for each GOSP between the optimal 

and base solutions for the 50% production level. It shows that the optimal solution does 

not guarantee that all GOSPs in the optimal solution consume lower power than in the 

base solution. Indeed, it can be observed that 4 GOSPs consume more power in the optimal 

case. On the other hand, 7 GOSPs consume less power in the optimal case. This is because 

the optimization model considers the whole network at once and manipulates controlled 

variables amongst all GOSPs to achieve a better overall saving rather than optimizing each 

GOSP individually. This indeed demonstrates the value of optimizing the network as a 

single entity.  
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Figure 8 The power consumption comparison for each GOSP between the optimal and base solutions for the 
50% production level 

Figure 9 shows a schematic of optimal swing lines utilization between Area B and Area C 

GOSPs. It shows that only 2 swing lines were used. It also shows that the optimizer chooses 

to shut down a total of 6 GOSPs. This is an exceptional case due to the very low throughput 

level being tested. The case was devised purposely to test the algorithm’s performance and 

robustness. The model’s results are largely sensible since it elects to shutdown GOSPs with 

the higher power consumption. The optimizer recommends shutting down GOSPs B-3 and 

B-6 although their power consumption is relatively low, as both have no compressors. This 

is because they are linked with GOSP B-2, which receives their gases and consumes 

significant energy to compress it. 



62 
 

 

Figure 9 A schematic of optimal swing lines utilization between Area B and Area C GOSPs at 50% 
throughput 

The optimum objective function in this case is 32.52 MW, compared to a base energy 

consumption of 66.06 MW. 

6.1.2 Energy Optimization at 75% Throughput 

In this case, throughput level is increased to 75% of maximum availability, thus only 

changing the constraint relating to the minimum oil throughput. The objective function, 

other constraints and all variables are maintained to be the same. The model statistics and 

computational results for this case are presented in Table 7. 
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Table 7 Model Statistics for 75% Throughput Level Scenario 

Case 75% Throughput 

Number of variables (discrete and 

continuous) 
2344 

Base Case Objective Function (MW) 69.64 

Optimized Case Objective Function 

(MW) 
56.46 

CPU (s) 232 

 

Figure 10 presents the power consumption comparison for each GOSP between the 

optimal and base solutions for the 75% production level. Similar to the previous case, it 

shows that the optimal solution does not guarantee that all GOSPs in the optimal solution 

consume lower power than in the base solution. In this case, it can be observed that 4 

GOSPs consume more power in the optimal case. On the other hand, 7 GOSPs consume 

less power in the optimal case. This is because the optimization model considers the whole 

network at once and manipulates controlled variables amongst all GOSPs to achieve a 

better overall saving rather than optimizing each GOSP individually. This indeed 

demonstrates the value of optimizing the network as a single entity. 
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Figure 10 The power consumption comparison for each GOSP between the optimal and base solutions for 
the 75% production level 

Figure 11 shows a schematic of optimal swing lines utilization between Area B and Area C 

GOSPs. It shows that only 2 swing lines were used. It also shows that the optimizer is able 

to shut down 2 GOSPs only. This is a more realistic case and provides a more reasonable 

throughput level. The model’s results are largely sensible since it elects to shut down 2 

GOSPs (B4 and C1) with relatively high power consumption. Both GOSPs are equipped 

with low- and high-pressure compressors and sets of sour water injection pumps, making 

them sensible choices for shutdown. As opposed to the 50% production level case, the 

model is not able to shut down more GOSPs as it is constrained to meet oil production 

target. 
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Figure 11 A schematic of optimal swing lines utilization between Area B and Area C GOSPs at 75% 
throughput 

The optimum objective function in this case is 56.46 MW, compared to a base energy 

consumption of 69.64 MW. 
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6.1.3 Energy Optimization at Other Throughput Levels 

To evaluate the optimal solutions achieved for all cases under consideration, the results of 

the optimal cases are compared with those of the base case where GOSPs are not shut 

down and swing lines are not utilized. 

The power consumption comparison between the two solutions for all cases is 

demonstrated in Figure 12. It can be seen that the savings progressively decline as the 

throughput level is increased, which is sensible. As throughput levels increase, the 

optimization potential decreases and there is less room for substantial savings due to 

reduced optimization potential. The only thing that can be optimized in this case is the 

swing line utilization. This would also be limited to optimally distributing the load across 

rotating equipment while largely using the same number of them. The figure shows 

savings start at 51% corresponding to a throughput of 50% and reach 1% at a throughput 

of 100% of avails. 

 

 

Figure 12 The power consumption comparison between the base and optimal solutions for all cases 
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Figure 13 shows the number of rotating equipment being utilized in the base versus 

optimal solutions. It can be observed that as throughput levels increase, the optimal 

number of rotating equipment starts approaching the base solution’s scenario. Indeed, at 

the 100% case, both numbers are equal. This is sensible as increasing the throughput 

mandates using more rotating equipment, leaving little room for optimization. 

 

Figure 13 The number of rotating equipment being utilized in the base versus optimal case 

 

6.2 Maximizing Oil Production with GOSPs Under Shut Down 

Every year, each GOSP undergoes planned maintenance for eight days. Furthermore, 

these GOSPs undergo a major turnaround every 7 years, which last for 30 days. During 

this period, oil production is often reduced. Swing lines are often used but this is not done 

systematically. On the other hand, using the models developed in this work, it is possible 

to identify optimal solutions, such that oil production is maximized, while ensuring other 

constraints are met. On the other hand, while using heuristics it may be difficult to ensure 

that an optimal solution was achieved without violating equipment constraints. 
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To perform this analysis, the objective function is therefore changed to maximize crude 

production rather than minimizing energy consumption. 

Additionally, we assign a fixed value of zero for the binary variable relating to GOSP status. 

As described in the methodology section, the total feed (TF) to a GOSP is described as: 

𝐶𝐴𝑃𝑔
𝑚𝑖𝑛. 𝑌𝑔 ≤ 𝑇𝐹 ≤ 𝐶𝐴𝑃𝑔

𝑚𝑎𝑥. 𝑌𝑔 
Where 𝐶𝐴𝑃𝑔

𝑚𝑖𝑛 and 𝐶𝐴𝑃𝑔
𝑚𝑎𝑥 are the minimum and maximum capacities of GOSP g, 

respectively.  

Accordingly, we assign the binary variable 𝑌𝑔 a fixed value of zero. 

6.2.1 Maximizing Oil Production with GOSP B-1 and B-5 Under 

Shut Down 

In this case, we examine the scenario of shutting down both GOSP B-1 and B-5. Both 

GOSPs account for a total of 18.1% of the total production for Areas B and C as 

demonstrated in Table 5. Accordingly, we assign a fixed value to the binary variable 

relating to the status of both GOSPs. 

In the base case, all production assigned to these GOSPs is lost. On the other hand, the 

result of the optimized solution is demonstrated in Figure 14. 
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Figure 14 A schematic of optimal swing lines utilization between Area B and Area C GOSPs during shutdown 
of GOSPs B-1 and B-5 

As can be observed, the model sensibly swings production away from the shut down 

GOSPs. Production is transferred from GOSP B-1 to GOSPs B-3 and B-4. Similarly, 

production is shifted from GOSP B-5 to GOSP B-6.  

It is interesting to note that this is the only case where production is shifted away from 

GOSP B-5. This GOSP is typically used due to its low energy consumption. Therefore, it 

can be seen that it is usually fully loaded when the objective function aims to minimize 

energy consumption.  

In this case production loss is reduced by 35.7% from the base case. In fact, the optimizer 

is able to load nearby GOSPs until constraints are made active in both GOSPs. 

Interestingly, both GOSPs are limited by SWI pumps capacities. Indeed, it may be 

interesting to study the benefit of adding additional SWI pumps to both GOSPs and 

studying how this contributes towards further maximizing production in this case.  

6.2.2  Maximizing Oil Production with GOSP C-4 Under Shut Down 

In this case, we examine the scenario of shutting down GOSP C-4 which accounts for 

6.29% of the total production for Areas B and C as demonstrated in in Table 5. 



70 
 

Accordingly, we assign a fixed value to the binary variable relating to the status of this 

GOSP. 

In the base case, all production assigned to this GOSP is lost. On the other hand, the result 

of the optimized solution is demonstrated in Figure 15. 

 

Figure 15 A schematic of optimal swing lines utilization between Area B and Area C GOSPs during shutdown 
of GOSP C-4 

As can be observed, the model sensibly swings production away from the shutdown GOSP. 

Production is transferred from GOSP C-4 to GOSP C-3.  

In this case production loss is reduced by 40.2% from the base case. In fact, the optimizer 

is able to load GOSP C-3 with the entire quantity that can be shifted from GOSP C-4 using 

the swingable production line. 

As can be observed in this chapter, the proposed model offers good capabilities to 

consistently provide implementable and sensible solutions. It is also able to supersede the 

base-case solution in most scenarios. This is particularly the case when oil demand is lower 

than the maximum avails. It can also be noted that run time, which is a key consideration 

for N-RTOs, was acceptable in the presented cases. Moreover, it is noted that throughout 

the process of running all cases used within this work, run time ranged between 32 and 

3,788 seconds. As such, even considering the most extreme run time, the approach is 

considered suitable.  

 



71 
 

 

7. Conclusions and Future Work 

In this work, we examined elements which allow developing a novel framework for the 

near-real time optimization of oil and gas midstream networks. Modelling and 

optimization approaches were examined and their features as pertains to this problem 

were evaluated. We then applied the proposed techniques to optimize the operation of a 

complex GOSPs network.  

We built a rigorous model that aimed to optimize the operation of an integrated network 

of GOSPs. The rigorous physics-based simulation model was augmented with an MINLP 

model with an objective function that aimed to minimize power consumption at times and 

to maximize production at other situations. This is key to maintaining both profitability 

and sustainability through further reducing greenhouse gas emissions. We applied the 

model to data inspired from the real world and demonstrated the capability of this novel 

approach to propose optimized solutions which can lead to reducing energy consumption 

by up to 51% in the 50% throughput scenario.  

Future work includes expanding the scope to apply the examined techniques for the 

optimization of integrated gas plants networks. To meet the requirements, we set forth for 

N-RTO, we must apply surrogate-based modelling techniques as examined in chapter 3. 

This is due to the added complexity of optimizing these complexes. Indeed, the use of high-

fidelity optimization is expected to fall short with regard to meeting various requirements 

relating to run-time and convergence. Nevertheless, we also expect to apply MINLP 

techniques as the use of linear models is expected to fall short in terms of meeting the 

required level of accuracy, yielding unimplementable solutions.  

This novel work is expected to yield significant value and contribute towards Process 

Systems Engineering research and fill multiple gaps in the literature. 
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