93 research outputs found

    Stochastic Non-convex Ordinal Embedding with Stabilized Barzilai-Borwein Step Size

    Full text link
    Learning representation from relative similarity comparisons, often called ordinal embedding, gains rising attention in recent years. Most of the existing methods are batch methods designed mainly based on the convex optimization, say, the projected gradient descent method. However, they are generally time-consuming due to that the singular value decomposition (SVD) is commonly adopted during the update, especially when the data size is very large. To overcome this challenge, we propose a stochastic algorithm called SVRG-SBB, which has the following features: (a) SVD-free via dropping convexity, with good scalability by the use of stochastic algorithm, i.e., stochastic variance reduced gradient (SVRG), and (b) adaptive step size choice via introducing a new stabilized Barzilai-Borwein (SBB) method as the original version for convex problems might fail for the considered stochastic \textit{non-convex} optimization problem. Moreover, we show that the proposed algorithm converges to a stationary point at a rate O(1T)\mathcal{O}(\frac{1}{T}) in our setting, where TT is the number of total iterations. Numerous simulations and real-world data experiments are conducted to show the effectiveness of the proposed algorithm via comparing with the state-of-the-art methods, particularly, much lower computational cost with good prediction performance.Comment: 11 pages, 3 figures, 2 tables, accepted by AAAI201

    A Similarity Measure for Material Appearance

    Get PDF
    We present a model to measure the similarity in appearance between different materials, which correlates with human similarity judgments. We first create a database of 9,000 rendered images depicting objects with varying materials, shape and illumination. We then gather data on perceived similarity from crowdsourced experiments; our analysis of over 114,840 answers suggests that indeed a shared perception of appearance similarity exists. We feed this data to a deep learning architecture with a novel loss function, which learns a feature space for materials that correlates with such perceived appearance similarity. Our evaluation shows that our model outperforms existing metrics. Last, we demonstrate several applications enabled by our metric, including appearance-based search for material suggestions, database visualization, clustering and summarization, and gamut mapping.Comment: 12 pages, 17 figure

    Relative Comparison Kernel Learning with Auxiliary Kernels

    Full text link
    In this work we consider the problem of learning a positive semidefinite kernel matrix from relative comparisons of the form: "object A is more similar to object B than it is to C", where comparisons are given by humans. Existing solutions to this problem assume many comparisons are provided to learn a high quality kernel. However, this can be considered unrealistic for many real-world tasks since relative assessments require human input, which is often costly or difficult to obtain. Because of this, only a limited number of these comparisons may be provided. In this work, we explore methods for aiding the process of learning a kernel with the help of auxiliary kernels built from more easily extractable information regarding the relationships among objects. We propose a new kernel learning approach in which the target kernel is defined as a conic combination of auxiliary kernels and a kernel whose elements are learned directly. We formulate a convex optimization to solve for this target kernel that adds only minor overhead to methods that use no auxiliary information. Empirical results show that in the presence of few training relative comparisons, our method can learn kernels that generalize to more out-of-sample comparisons than methods that do not utilize auxiliary information, as well as similar methods that learn metrics over objects
    corecore