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Abstract

Given ordinal relations such as the object i is more similar to j than k is to l, ordinal em-
bedding is to embed these objects into a low-dimensional space with all ordinal constraints
preserved. Although existing approaches have preserved ordinal relations in Euclidean
space, whether Euclidean space is compatible with true data structure is largely ignored,
although it is essential to effective embedding. Since real data often exhibit hierarchical
structure, it is hard for Euclidean space approaches to achieve effective embeddings in low
dimensionality, which incurs high computational complexity or overfitting. In this paper we
propose a novel hyperbolic ordinal embedding (HOE) method to embed objects in hyper-
bolic space. Due to the hierarchy-friendly property of hyperbolic space, HOE can effectively
capture the hierarchy to achieve embeddings in an extremely low-dimensional space. We
have not only theoretically proved the superiority of hyperbolic space and the limitations
of Euclidean space for embedding hierarchical data, but also experimentally demonstrated
that HOE significantly outperforms Euclidean-based methods.
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1. Introduction

In this paper, we study the problem of ordinal embedding, a.k.a. non-metric multidimen-
sional scale (Shepard, 1962a,b; Kruskal, 1964a,b; Shepard, 1966). Given a set of objects
1, 2 . . . N , the weights of dissimilarity ξ(i, j) for all the object pairs i, j ∈ 1, 2, . . . , N are un-
known but some ordinal relations such as ξ(i, j) < ξ(k, l) can be derived. The aim of ordinal
embedding is then to obtain a set of embeddings x1,x2, . . . ,xN in a low-dimensional space,
so that ordinal relations are preserved. To a large extent, existing ordinal embeddings use
the D-dimensional Euclidean space RD to achieve

ξ(i, j) < ξ(k, l)⇒ ‖xi − xj‖ < ‖xk − xl‖. (1)

When i = k always holds, it is a special case in ordinal embedding, known as triplet
embedding (Van Der Maaten and Weinberger, 2012; Wang et al., 2018).

Existing ordinal embedding methods could be roughly divided into two categories: the
probabilistic-model-based (Tamuz et al., 2011; Van Der Maaten and Weinberger, 2012) and
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the margin-loss-based (Agarwal et al., 2007; Terada and Luxburg, 2014). The former mainly
focuses on constructing a parametric probabilistic model, where the maximum likelihood
estimator is used for embeddings. The latter achieves embeddings by optimizing a margin
loss function. These methods are effective on preserving ordinal structure in a space of
low dimension compared to original data size, but have largely ignored the optimality of a
space for embedding, which is essential to for embedding in a much lower-dimensional space.
Ideally, the chosen low-dimensional space should be compatible with true data structure, so
that embedding can be achieved in a much lower-dimensional space with low computational
cost and avoiding overfitting.

However, current ordinal embedding methods use Euclidean space as a primary choice,
mainly due to natural generalization of intuition-friendly and visual three-dimensional space
(Ganea et al., 2018a). These methods may not be able to reflect semantic dissimilarities
between objects or demand a substantial increases in model complexity and computational
cost, especially when data come from hierarchical structure, whereas the hierarchical struc-
ture is exhibited in reality by many types of complex data, such as datasets with power-law
distributions, in natural language area and scale-free networks (Krioukov et al., 2010; Nickel
and Kiela, 2017). Take a hierarchical structure given by a complete balanced binary tree
in Figure 1 as an example. The number of objects in each layer grows exponentially with
respect to h, which is given by 2h. However, the expanding speed of Euclidean space is
polynomial (slower than exponential) as the circumference C(R) of radius R is given by
C(R) = 2π sinhR ≈ π expR. This motivates us to seek a feasible non-Euclidean space
that expands exponentially so as to achieve effective ordinal embeddings by capturing the
hierarchical structure.

Inspired by the above, we focus on sectional curvature κ, which characterizes the expand-
ing speed of a space. According to Bertrand-Diguet-Puiseux theorem, which claims that
C(R) = 2π(R− 1

6κR
3) +O(R4) as R→ +0, achieving faster expanding speed than polyno-

mial requires lower curvature, i.e., negative curvature. On the other hand, in essence there
is no constant negative curvature space other than hyperbolic (Killing-Hopf theorem e.g., in
(Lee, 2006)). Fortunately, the hyperbolic space of two dimension or higher has exponential
expanding speed. Specifically, in the 2-dimensional hyperbolic space the circumference is
given by C(R) = 2π sinhR ≈ π expR. Such exponential expanding speed explicitly matches
hierarchical structure, as shown in Figure 1. Moreover, Sarkar (2011) has theoretically ex-
plained that given an arbitrary tree, we have embeddings of its vertices with arbitrary
small distance distortion in the 2-dimensional hyperbolic space. These facts demonstrate
hierarchy-friendly property of hyperbolic space in low-dimensional setting, which satisfies
our motivation. This preferable property of hyperbolic space in embedding has been sup-
ported by recent success of hyperbolic space in many embedding settings and applications
such as graph embedding (Shavitt and Tankel, 2008; Nickel and Kiela, 2017), embedding
from graph Laplacian (Alanis-Lobato et al., 2016), metric multi-dimensional scaling (Sala
et al., 2018), Internet graph embedding (Shavitt and Tankel, 2008), and visualization of
large taxonomies (Nickel and Kiela, 2017).

In this paper, we are the first to apply hyperbolic space into ordinal embedding and
propose a novel hyperbolic ordinal embedding (HOE) model to capture hierarchical struc-
ture and preserve ordinal relations simultaneously. Furthermore, we prove the suitability
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of hyperbolic space and limitations of Euclidean space for ordinal relation with hierarchical
structure in theory.

We summarize our main contributions as follows:

• A hyperbolic ordinal embedding (HOE) is proposed to embed hierarchical structure
data in an extremely low-dimensional hyperbolic space. We reformulate the ordinal
embedding problem into a general metric space setting with hyperbolic space setting
as a special case, and then propose two simple yet effective continuous loss functions
for probabilistic-model-based and margin-loss-based models, respectively.

• We give theoretical analyses to clarify advantages of using hyperbolic space against
Euclidean approach (in Section 6) in terms of ordinal embedding for hierarchical
structural data: (1) for Euclidean space of any dimension, there exist ordinal relations
that cannot be preserved in embeddings; (2) the use of hyperbolic space can achieve
effective embedding with ordinal relations preserved in a space of extremely low (e.g.,2)
dimensionality.

• Experiments on both artificial and real datasets have demonstrated that the proposed
method outperforms existing Euclidean-space-based baselines for embedding hierar-
chical structure data in a significantly low-dimensional (e.g., 2, 4, 8, 16) space.

⋯
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Figure 1: Exponential growth of objects in a hierarchical data and space expansion speed
of hyperbolic and Euclidean space.

2. Related Work

Various ordinal embedding approaches have been proposed. Under probabilistic-model-
based setting, CLK (Tamuz et al., 2011) was proposed to reduce the complexity of obtain-
ing high quality approximations of similarity triplets via an information theoretic adaptive
sampling approach. Considering that using similarity triplets is insufficient for obtain-
ing a truthful embedding of objects, t-STE (Van Der Maaten and Weinberger, 2012) was
then proposed to collapse similar points and repel dissimilar points in the embedding with-
out resulting in additional constraint violations. Under margin-loss-based setting, G-NMD
(Agarwal et al., 2007) aimed to embed data when ordinal relations can be contradictory

1067



Suzuki Wang Tian Nitanda Yamanishi

and need not be specified for all pairs of dissimilarities. Regarding that the similarities
of objects may not be mutually consistent according to different tasks, McFee and Lanck-
riet (2011) integrated heterogeneous data so as to optimally conform to measurements of
perceptual similarity. Later, LOE (Terada and Luxburg, 2014) was proposed to achieve
embedding that not only preserves the ordinal constraints, but also the density structure of
dataset. Though the effectiveness of existing ordinal embeddings has been demonstrated,
none of them pay attention to the compatibility of embedding space and achieve embedding
in hyperbolic space.

Recently, hyperbolic space has been extensively studied in many research areas (Alanis-
Lobato et al., 2016; Nickel and Kiela, 2017; Sala et al., 2018). For example, Shavitt and
Tankel (2008) embeded Internet data in hyperbolic space, since Internet structure has a
highly connected core and long stretched tendrils, where most of the routing paths between
nodes in the tendrils pass through the core. To enhance the efficiency of embedding of
big networks, Alanis-Lobato et al. (2016) then used a Laplacian-based model for geometric
analysis of big networks. Poincaré Embedding (Nickel and Kiela, 2017) aimed at learning
representations of symbolic data so that it simultaneously learns the similarity and the
hierarchy of objects. Later, Ganea et al. (2018b) bridged the gap between hyperbolic and
Euclidean geometry in the context of neural networks and deep learning by generalizing
deep neural models to the Poincaré model of the hyperbolic geometry. Balancing the trade-
off between precision and dimensionality of embedding, H-MDS (Sala et al., 2018) was
proposed as a general approach that can embed trees into hyperbolic space with arbitrarily
low distortion. Although these approaches can achieve effective embedding by capturing
hierarchy structure with hyperbolic space, the ordinal relations which often naturally exist
among data cannot be utilized by them.

3. Hyperbolic Geometry

In this section, we introduce basic notations and then briefly review hyperbolic geometry
with its real coordinate space representation.

Notations Let R, R≥0, Z, and Z>0 denote the real number set, non-negative real number
set, integer set, and positive integer set, respectively. We denote D-dimensional real coordi-
nate space and D ×D′ real matrix space by RD and RD×D′ , respectively. We let 0D ∈ RD
and ID ∈ RD×D denote the D-dimensional zero vector and D-dimensional identity matrix,
respectively. sgn : R→ {−1, 0, 1} denotes the sign function defined by

sgn(x) :=


−1 x < 0

0 x = 0

+1 x > 0 .

(2)

For N ∈ Z>0, we denote the set {1, 2, . . . , N} by [N ].

Hyperbolic Geometry in Coordinate Space Since there is unique hyperbolic space
up to similarity if the dimension is fixed, in the following, we fix the sectional curvature of
hyperbolic space to be -1, that is, κ = −1 for simplicity of discussion. For hyperbolic space,
there exist several models, i.e., representation ways in real coordinate space, such as the
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hyperboloid model, Klein disk model, Poincaré disk model and Poincaré upper plain model.
As these models are isometric to one another, the discussion on the distance structure of
hyperbolic space in one model is equivalent to that in another model. In the following, we
explain hyperbolic space using the hyperboloid model. The D-dimensional hyperbolic space
HD is a metric space

(
HD, dHD

)
, where HD and dHD : HD ×HD → R≥0 are defined by

HD :=
{
x ∈ RD+1

∣∣∣ x>GMx = −1, x0 > 0
}

dHD(x,y) := arcosh
(
−x>GMy

)
,

(3)

where arcosh denotes the area hyperbolic cosine function (the inverse function of the hy-
perbolic cosine function), and GM denotes

GM :=

[
−1 0>D
0D ID

]
∈ R(D+1)×(D+1). (4)

4. Euclidean Ordinal Embedding

We consider embedding problem of N ∈ Z>0 objects. In the following, we identify the N
objects with the integer set [N ]. Let the sequence S = (((is, js), (ks, ls)), ys)

S
s=1 be an ordinal

data set, in which is, js, ks, ls ∈ [N ] and ys ∈ {−1,+1} for s = 1, 2, . . . , S. Here, if ys = −1,
is and js are more similar to each other than ks and ls i.e., the dissimilarity between is and
js are larger than that between ks and ls, and otherwise if ys = +1. An ordinal data set
S = (((is, js), (ks, ls)), ys)

S
s=1 is called ordinal triplet set if is = ks is satisfied for all s ∈ [S].

The D-dimensional Euclidean space denoted by RD is a metric space
(
RD, dRD

)
, where

dRD : RD × RD → R≥0 is given by dRD(x,y) :=
√

(x− y)>(x− y).
Existing ordinal embedding using the D-dimensional Euclidean space RD is to obtain

embedding xn ∈ RD for n ∈ [N ] such that

sgn(dRD(xis , xjs)− dRD(xks , xls)) = ys (5)

is satisfied for as many s ∈ [S] as possible.
Denote the Probabilistic-model-based Ordinal Embedding and the Margin-loss-based

Ordinal Embedding as POE and MOE, respectively. In both Euclidean POE and MOE,
the loss function of (xn)n∈[N ] on ordinal data S = (((is, js), (ks, ls)), ys)

S
s=1 is given by

L
(
S; (xn)n∈[N ]

)
:=

1

S

∑
s∈[S]

`
(

((is, js), (ks, ls), ys); (xn)n∈[N ]

)
, (6)

with their own specific one point loss function ` of (xn)n∈[N ] on one point ordinal datum
(((i, j), (k, l)), y).

• Euclidean POE (EPOE) For the object quadruple ((i, j), (k, l)), the probability of
y = −1 is high if the distance dX(xi, xj) is shorter than dX(xk, xl) and the probability of
y = +1 is high otherwise. The dependency of the distribution of y on the distances is
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defined by a decreasing function f : R≥0 → R≥0. Then, we have the following probabilistic
model.

Pr
(
y|((i, j), (k, l)); (xn)n∈[N ]

)
:=


f(dRD(xi, xj))

f(dRD(xi, xj)) + f(dRD(xk, xl))
y = −1

f(dRD(xk, xl))

f(dRD(xi, xj)) + f(dRD(xk, xl))
y = +1

(7)

We call f a kernel function. The loss function `prb of (xn)n∈[N ] on one point ordinal datum
(((i, j), (k, l)), y) is given by

`prb

(
(((i, j), (k, l)), y); (xn)n∈[N ]

)
:= − log Pr

(
y|((i, j), (k, l)); (x)n∈[N ]

)
. (8)

Then, the loss function in EPOE of (xn)n∈[N ] on ordinal data S = (((is, js), (ks, ls)), ys)
S
s=1

is derived by substituting ` = `prb to (6). Take one of the most representative approaches,
stochastic triplet embedding (Van Der Maaten and Weinberger, 2012), as an example. The
probabilistic model given by (7) is reduced to that of the stochastic triplet embedding and
t-distributed stochastic triplet embedding in (Van Der Maaten and Weinberger, 2012) with

the Gaussian kernel f(d) = exp
(
−d2

)
and Student’s t-distribution kernel f(d) =

(
1 + d2

α

)α
,

respectively. Note that in (Van Der Maaten and Weinberger, 2012), only are ordinal triplet
data cases considered, while we above generalized it into general ordinal data cases.

• Euclidean MOE (EMOE) We define a soft margin loss for this approach (Agarwal
et al., 2007; Terada and Luxburg, 2014). The soft margin loss function `mgn of (xn)n∈[N ]

on one point ordinal datum (((i, j), (k, l)), y) is given by

`mgn

(
(((i, j), (k, l)), y); (xn)n∈[N ]

)
:=
{

[δ − (dRD(xis , xjs)− dRD(xks , xls)) · ys]+
}q
, (9)

where δ ∈ R≥0 is a margin hyperparameter and q ∈ R≥0 is a power index which adjusts the
loss. Then, the loss function in EMOE of (xn)n∈[N ] on ordinal data S = (((is, js), (ks, ls)), ys)

S
s=1

is derived by substituting ` = `mgn to (6). The loss function in (9) is reduced to that of the
soft margin model in (Terada and Luxburg, 2014) if q = 2, and is indirectly reduced to the
loss function in (Agarwal et al., 2007) if q = 1, whereas they obtain the distance matrix in
RD with D = N in (Agarwal et al., 2007), instead of directly obtaining embeddings in RD.

5. Hyperbolic Ordinal Embedding

Our motivation is ordinal embedding in hyperbolic space. The key idea is to generalize
existing methods into those in general metric spaces and obtain our hyperbolic ordinal
embedding as a special case.

5.1. General Ordinal Embedding

In this section, we obtain ordinal embedding in a general metric space X = (X, dX), where
X is a point set and dX : X× X→ R≥0 is the distance function defined in X.
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5.1.1. Problem Settings

Sharing the same motivation as the Euclidean case, the objective of embedding objects [N ]
in metric space X is to obtain embedding xn ∈ X for n ∈ [N ] such that

sgn(dX(xis , xjs)− dX(xks , xls)) = ys (10)

is satisfied for as many s ∈ [S] as possible. Therefore, the ordinal embedding is formulated
as minimizing the classification loss function, as defined below.

Definition 1 (Classification Loss Function) Let [N ] be objects and (xn)n∈[N ] be their
embeddings. The classification loss function of (xn)n∈[N ] on ordinal datum (((i, j), (k, l)), y),
in which i, j, k, l ∈ [N ] and y ∈ {±1}, is defined by

`cls

(
(((i, j), (k, l)), y); (xn)n∈[N ]

)
:=

{
0 sgn(dX(xis , xjs)− dX(xks , xls)) = ys

1 sgn(dX(xis , xjs)− dX(xks , xls)) 6= ys
(11)

The classification loss function of embedding (xn)n∈[N ] on ordinal data S = (((is, js), (ks, ls)), ys)
S
s=1,

in which is, js, ks, ls ∈ [N ] and ys ∈ {±1} for all s ∈ [N ], is defined by

Lcls
(
S; (xn)n∈[N ]

)
:=

1

S

∑
s∈S

`cls

(
(((is, js), (ks, ls)), y); (xn)n∈[N ]

)
. (12)

The embedding (xn)n∈[N ] is called non-contradictory to S if Lcls
(
S; (xn)n∈[N ]

)
= 0.

5.1.2. Loss Functions

The loss function in Definition 1 is a hard classification loss and not easy to optimize due
to the discontinuity of the sign function. We first consider general idea for relaxation of the
original loss function, and then introduce a probabilistic model and sort margin based loss
function for specific loss functions. The ideal conditions of the loss function are listed as
follows:

• The loss function should be continuous with respect to the embeddings (xn)n∈[N ].

• For ordinal data (((i, j), (k, l)),−1) in S, the loss function should be decreasing with
respect to the distance dX(xi, xj) and increasing with respect to dX(xk, xl), and vice
versa for (((i, j), (k, l)),+1).

Therefore, we consider the loss function L in the following form

L
(
S; (xn)n∈[N ]

)
:=

1

S

∑
s∈[S]

`
(

((is, js), (ks, ls), ys); (xn)n∈[N ]

)
, (13)

with one datum loss function ` given by

`
(

((i, j), (k, l), y); (xn)n∈[N ]

)
:= g(dX(xi, xj), dX(xk, xl); y), (14)

where g : R≥0 × R≥0 × {±1}, (d, d′, y) 7→ g(d, d′; y) satisfies the following:
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• g(d, d′;−1) is decreasing with respect to d and increasing with respect to d′.

• g(d, d′; +1) is increasing with respect to d and decreasing with respect to d′.

This general idea allows us to apply in hyperbolic space analogical ideas to EPOE and
EMOE. As a result, we obtain specific loss functions, GPOE and GMOE, as shown below.

• General POE (GPOE) One way to avoid the discontinuous loss function is to intro-
duce a probabilistic model, as in EPOE. We design a conditional probability distribution
model of y, as follows:

Pr
(
y|((i, j), (k, l)); (xn)n∈[N ]

)
:=


f(dX(xi, xj))

f(dX(xi, xj)) + f(dX(xk, xl))
y = −1

f(dX(xk, xl))

f(dX(xi, xj)) + f(dX(xk, xl))
y = +1 ,

(15)

where f : R≥0 → R≥0 is a kernel function. By the above probabilistic model, one point loss
function in GPOE `prb of (xn)n∈[N ] on one point ordinal datum (((i, j), (k, l)), y) is given
by

`prb

(
(((i, j), (k, l)), y); (xn)n∈[N ]

)
:= − log Pr

(
y|((i, j), (k, l)); (x)n∈[N ]

)
. (16)

Then, the loss function in GPOE of (xn)n∈[N ] on ordinal data S = (((is, js), (ks, ls)), ys)
S
s=1

is derived by substituting ` = `prb to (13). When X is the D-dimensional Euclidean space
RD, GPOE is reduced to EPOE.

• General MOE (GMOE) Another way to avoid the discontinuous loss function is to
replace it by a soft loss function, as in EMOE. We define a soft margin loss as follows.
The one point soft margin loss function `mgn of (xn)n∈[N ] on one point ordinal datum
(((i, j), (k, l)), y) is given by

`mgn

(
(((i, j), (k, l)), y); (xn)n∈[N ]

)
:=
{

[δ − (dX(xis , xjs)− dX(xks , xls)) · ys]+
}q
, (17)

where δ ∈ R≥0 is a margin hyperparameter and q ∈ R≥0 is a power index which adjusts the
loss. Then, the loss function in GMOE of (xn)n∈[N ] on ordinal data S = (((is, js), (ks, ls)), ys)

S
s=1

is derived by substituting ` = `mgn to (13). When X is the D-dimensional Euclidean space
RD, GMOE is reduced to EMOE.

5.2. Hyperbolic Ordinal Embedding

With the generalization in Section 5.1.2, Hyperbolic POE and MOE can be obtained by
substituting X = HD to (15) and (17), respectively, where x1,x2, . . . ,xN ∈ HD.

• Hyperbolic POE (HPOE) The probabilistic model of HPOE using theD-dimensional
hyperbolic space HD is derived by substituting X = HD to (15) as follows:

Pr
(
y|((i, j), (k, l)); (xn)n∈[N ]

)
:=


f(dHD(xi,xj))

f(dHD(xi,xj)) + f(dHD(xk,xl))
y = −1

f(dHD(xk,xl))

f(dHD(xi,xj)) + f(dHD(xk,xl))
y = +1

. (18)

By substituting (18) to (14), we have the one point loss function `prb of HPOE.
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• Hyperbolic MOE (HMOE) The one point loss function of HMOE using the D-
dimensional hyperbolic space HD is derived by substituting X = HD to (17) as follows:

`mgn

(
(((i, j), (k, l)), y); (xn)n∈[N ]

)
:=
{

[δ − (dHD(xis ,xjs)− dHD(xks ,xls)) · ys]+
}q
. (19)

Here, as in (17), δ ∈ R≥0 is a margin hyperparameter and q ∈ R≥0 is a power index which
adjusts the loss.

5.3. Optimization

Similar to (Van Der Maaten and Weinberger, 2012), the stochastic gradient method is
applied to optimize (13). Note that the following optimization method can be applied to
the loss function of HPOE and HMOE, because the loss functions of these methods are
special cases of that in (13). We uniformly at random choose a subsequence B of [S] and
substitute B for [S], then we have stochastic loss of the loss in (13) as follows:

L̃
(
S; (xn)n∈[N ]

)
:=

1

|B|
∑
s∈B

`
(

(((is, js); (ks, ls)), y), (xn)n∈[N ]

)
, (20)

where |B| denotes the number of elements in B. Then, we use the gradient of (20) as a
stochastic gradient of the loss function in (13) and then optimize the loss function in (13)
by stochastic Riemannian sub gradient method (Zhang and Sra, 2016). The update rule is
given by

xn ← expxn

(
πxn

(
G−1xn

∂

∂xn
L̃
))

, (21)

where Gxn denotes the metric matrix on xn, πx denotes the projection to the tangent space
on xn, and expx denotes the exponential map on xn. In the D-dimensional hyperbolic space,
the formulae for these operations appear in e.g., (Nickel and Kiela, 2018) as follows.

Gx = GM (in (4)),

πx
(
v′
)

= v′ +
(
x>GMx

)
x,

expx (v) = cosh
(√

v>GMv
)
x + sinhc

(√
v>GMv

)
v,

(22)

where sinhc denotes the hyperbolic sine cardinal function, which is given by

sinhcx =

{
sinhx
x x 6= 0

1 x = 0 .
(23)

Using these formulae, we can optimize the loss function of HPOE and HMOE. Note that
we can also apply the above optimization method in the Poincaré disk model of hyperbolic
space by the formulae that appears in e.g., (Ganea et al., 2018a), although the result is
isometric to the formulae for the hyperboloid model in this section.
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6. Hyperbolic vs. Euclidean

In this section, we discuss the theoretical advantages of using hyperbolic space against using
Euclidean space. Our interest is the situation in which the ordinal data comes from ground-
truth hierarchical structure. For formal discussion, we define such a situation as the case
when we have graphical ordinal data of a graph that is a tree, which intuitively gives a
hierarchical structure as in Figure 1. In this section, after defining graphical ordinal data
as a preliminary, we discuss hyperbolic and Euclidean space cases.

Preliminary: Graphical Ordinal Data

Definition 2 Let G = ([N ], E) be an undirected graph with vertex set [N ] and edge set E.
We denote the graph distance function by dG. A sequence S = (((is, js), (ks, ls)), ys)

S
s=1 is

called graphical ordinal data (GOD) of G when

sgn(dG(is, js)− dG(ks, ls)) = ys (24)

is satisfied for all s ∈ [S]. GOD are called graphical ordinal triplet data (GOTD) of G if
is = ks is satisfied for all s ∈ [S], and GOD are called complete if for all pairs ((i, j), (k, l))
of vertex pair such that dG(i, j) − dG(k, l) 6= 0, there exists s ∈ [S] such that either of the
following is satisfied.

• ((is, js), (ks, ls)) = ((i, j), (k, l)) and ys = sgn(dG(is, js)− dG(ks, ls))

• ((is, js), (ks, ls)) = ((k, l), (i, j)) and ys = sgn(dG(ks, ls)− dG(is, js))

GOTD are called complete if the condition above is satisfied for all pairs ((i, j), (k, l)) of
vertex pair such that i = k and dG(i, j)− dG(k, l) 6= 0.

We are interested in the case where G is a tree, which corresponds to a typical hierarchical
structure. We consider both the complete GOD case and complete GOTD case. Note
that, as the complete GOTD are a subset of the complete GOD, to find embedding that is
non-contradictory to the complete GOTD are easier than to find embedding that is non-
contradictory to the complete GOD.

Hyperbolic Space Case As shown in the following theorem, there is a non-contradictory
embedding in HD to complete GOD of a tree, even in D = 2.

Theorem 3 For any tree G and GOD S of G, there exists an embedding (xn)n∈[N ] in H2

that is non-contradictory to G.

Corollary 4 For any tree G and GOTD S of G, there exists an embedding (xn)n∈[N ] in H2

that is non-contradictory to G.

Theorem 3 is obtained from the result in Sarkar (2011), and it also gives a concrete con-
struction of the embedding. The complete proof of Theorem 3 is given in Supplementary
Materials. Corollary 4 follows Theorem 3, because the complete GOTD are included in the
complete GOD.

Remark 5 As the D-dimensional hyperbolic space HD (D ≥ 2) includes 2-dimensional
hyperbolic space H2, the results in Theorem 3 and Corollary 4 can be applied to HD (D ≥ 2).
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Euclidean Space Case Contrary to hyperbolic space, there is no non-contradictory
embedding in RD to complete GOTD of some trees. Before we show the results, we introduce
some definitions.

Definition 6 Let G = ([N ], E) be an undirected graph with vertex set [N ] and edge set
E. The degree deg (v) of v ∈ [N ] is defined by deg (v) := |{u ∈ [N ] | (u, v) ∈ E}|. We
denote the maximum degree of any vertex in G by deg (G), which is defined by deg (G) :=
max {deg(v) | v ∈ [N ]}.

Definition 7 Let the D-dimensional sphere and the distance function on it be denoted by
SD and dSD , respectively, which are given by

SD :=
{
x ∈ R(D+1)

∣∣∣ x>x = 1
}
, dSD(x,y) := arccos

(
x>y

)
. (25)

The π
3 packing number M

(
SD, dSD , π3

)
of
(
SD, dSD

)
is the maximal number of points that

can be π
3 -separated, which is defined by

M
(
SD, dSD ,

π

3

)
:= max

{
N ∈ Z≥0

∣∣∣ ∃x1,x2, . . . ,xN ∈ SD, ∀i, j ∈ [N ], dSD(xi,xj) >
π

3

}
.

(26)

Note that the packing number M
(
SD, dSD , π3

)
is finite for all D ∈ Z>0 and monotonous

increasing function with respect to D, because for any D,D′ ∈ Z>0 such that D < D′, SD
is a subspace of SD′ . The following theorem clarifies the limitation of Euclidean space in
ordinal embedding setting.

Theorem 8 For any dimensionality D, for all graph G that is tree, if deg (G) is larger
than M

(
SD−1, dSD−1 , π3

)
, then no embedding (xn)n∈[N ] in RD is non-contradictory to the

complete GOTD of G.

Corollary 9 For any dimensionality D, for all graph G that is tree, if deg (G) is larger
than M

(
SD−1, dSD−1 , π3

)
, then no embedding (xn)n∈[N ] in RD is non-contradictory to the

complete GOD of G.

The proof of Theorem 8 is given in Supplementary Materials. Corollary 9 follows Theorem 8,
because the complete GOTD are included in the complete GOD.

Remark 10 Theorem 8 and Corollary 9 give a limitation of Euclidean space in embedding
GOD of a tree. According to Theorem 3, 8, and Corollary 4, 9, two dimension is high enough
in hyperbolic space for embedding of GOD of tree, but not all tree graphs can be embedded
even in higher-dimensional Euclidean space. Hence, we can conclude that hyperbolic space
is more suitable than Euclidean space for embedding of hierarchical ordinal data.

Remark 11 (Technical contribution of Theorem 8) Although the advantage of hyper-
bolic space against Euclidean space for embedding trees has shown in graph embedding set-
tings (e.g., Sarkar (2011)), the limitation of Euclidean space in embedding from ordinal
triplet data given by Theorem 8 has not been clarified. Theorem 8 is not trivially derived
from the graph embedding setting’s results, because the requirements in the triplet ordinal
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Table 1: Classification errors (mean ± standard error) in artificial datasets.

CBT-4-6 D = 2 D = 4 D = 8 D = 16

1-EMOE 0.4441 ± 0.0012 0.4313 ± 0.0012 0.3994 ± 0.0014 0.3890 ± 0.0014
2-EMOE 0.4397 ± 0.0011 0.4189 ± 0.0008 0.3986 ± 0.0008 0.3941 ± 0.0015
G-EPOE 0.4342 ± 0.0010 0.4295 ± 0.0012 0.4045 ± 0.0011 0.3831 ± 0.0010
t-EPOE 0.4424 ± 0.0010 0.4234 ± 0.0007 0.4109 ± 0.0008 0.4024 ± 0.0012

1-HMOE 0.4358 ± 0.0011 0.4138 ± 0.0009 0.4044 ± 0.0010 0.3875 ± 0.0008
2-HMOE 0.4426 ± 0.0009 0.4157 ± 0.0007 0.4085 ± 0.0012 0.3875 ± 0.0010
G-HPOE 0.4368 ± 0.0014 0.4179 ± 0.0015 0.4015 ± 0.0012 0.3899 ± 0.0007
t-HPOE 0.4251 ± 0.0014 0.3848 ± 0.0009 0.3699 ± 0.0014 0.3659 ± 0.0008

CBT-8-4 D = 2 D = 4 D = 8 D = 16

1-EMOE 0.4196 ± 0.0010 0.3901 ± 0.0010 0.3593 ± 0.0019 0.3406 ± 0.0017
2-EMOE 0.4219 ± 0.0012 0.3925 ± 0.0014 0.3650 ± 0.0013 0.3419 ± 0.0011
G-EPOE 0.4097 ± 0.0017 0.3928 ± 0.0011 0.3679 ± 0.0014 0.3365 ± 0.0014
t-EPOE 0.4252 ± 0.0014 0.3902 ± 0.0010 0.3753 ± 0.0010 0.3636 ± 0.0010

1-HMOE 0.4117 ± 0.0011 0.3779 ± 0.0008 0.3559 ± 0.0008 0.3375 ± 0.0007
2-HMOE 0.4095 ± 0.0007 0.3751 ± 0.0008 0.3500 ± 0.0013 0.3388 ± 0.0011
G-HPOE 0.4054 ± 0.0007 0.3857 ± 0.0010 0.3642 ± 0.0008 0.3362 ± 0.0012
t-HPOE 0.3855 ± 0.0010 0.3299 ± 0.0012 0.3076 ± 0.0010 0.3101 ± 0.0012

CBT-16-3 D = 2 D = 4 D = 8 D = 16

1-EMOE 0.4034 ± 0.0009 0.3595 ± 0.0014 0.3364 ± 0.0008 0.3075 ± 0.0013
2-EMOE 0.4089 ± 0.0014 0.3655 ± 0.0012 0.3374 ± 0.0008 0.3127 ± 0.0015
G-EPOE 0.3904 ± 0.0010 0.3450 ± 0.0011 0.3228 ± 0.0013 0.2865 ± 0.0009
t-EPOE 0.4023 ± 0.0011 0.3629 ± 0.0011 0.3326 ± 0.0012 0.3099 ± 0.0010

1-HMOE 0.3830 ± 0.0010 0.3427 ± 0.0011 0.3038 ± 0.0012 0.2823 ± 0.0010
2-HMOE 0.3892 ± 0.0013 0.3377 ± 0.0007 0.3100 ± 0.0013 0.2918 ± 0.0011
G-HPOE 0.3792 ± 0.0012 0.3478 ± 0.0011 0.3048 ± 0.0006 0.2863 ± 0.0012
t-HPOE 0.3638 ± 0.0013 0.2869 ± 0.0010 0.2712 ± 0.0011 0.2680 ± 0.0007

data setting is weaker than the graph embedding setting. Specifically, the triplet ordinal
data setting only cares the distance comparison in triplets, in which i = k, while the graph
embedding setting cares uniform distortion, which corresponds to distance comparison in
quadruplets, where i 6= k is possible. Theorem 8 shows that Euclidean space cannot sat-
isfy even the requirements of the ordinal triplet data setting, which is easier than the graph
embedding setting.

7. Experiments

7.1. Experimental Settings

Methods To demonstrate the effectiveness of using hyperbolic space, we use the following
Euclidean-space-based methods as baselines.

q-EMOE The loss function is given by `mgn in (9) with power index q, where X = RD. In
the experiments, we used q = 1, 2.

f-EPOE The loss function is given by `prb in (8) with kernel function f , where X = RD.
In this experiment, EPOE with the Gaussian kernel f(d) = exp

(
−d2

)
and Student’s

t-distribution kernel f(d) =
(

1 + d2

α

)α
are used, which we call G-EPOE (Gaussian

EPOE) and t-EPOE (t-distributed EPOE).
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Table 2: Classification errors (mean ± standard error) in real datasets.

WN-mammal D = 2 D = 4 D = 8 D = 16

1-EMOE 0.1446 ± 0.0005 0.1120 ± 0.0004 0.0909 ± 0.0003 0.0747 ± 0.0004
2-EMOE 0.1396 ± 0.0004 0.1060 ± 0.0004 0.0842 ± 0.0004 0.0695 ± 0.0005
G-EPOE 0.1416 ± 0.0004 0.1281 ± 0.0008 0.1159 ± 0.0007 0.1058 ± 0.0004
t-EPOE 0.1598 ± 0.0007 0.1004 ± 0.0003 0.0738 ± 0.0005 0.0656 ± 0.0003

1-HMOE 0.1484 ± 0.0009 0.1022 ± 0.0009 0.0898 ± 0.0005 0.0798 ± 0.0003
2-HMOE 0.1205 ± 0.0005 0.0751 ± 0.0002 0.0567 ± 0.0002 0.0454 ± 0.0003
G-HPOE 0.1222 ± 0.0006 0.0992 ± 0.0005 0.1041 ± 0.0004 0.0909 ± 0.0005
t-HPOE 0.1438 ± 0.0010 0.1128 ± 0.0007 0.0915 ± 0.0004 0.0773 ± 0.0004

Cora D = 2 D = 4 D = 8 D = 16

1-EMOE 0.3513 ± 0.0002 0.3258 ± 0.0002 0.3131 ± 0.0002 0.2973 ± 0.0003
2-EMOE 0.3584 ± 0.0003 0.3311 ± 0.0004 0.3091 ± 0.0002 0.2947 ± 0.0002
G-EPOE 0.3695 ± 0.0003 0.3525 ± 0.0005 0.3348 ± 0.0004 0.3103 ± 0.0003
t-EPOE 0.3629 ± 0.0003 0.3367 ± 0.0002 0.3156 ± 0.0002 0.3007 ± 0.0002

1-HMOE 0.3481 ± 0.0003 0.3245 ± 0.0002 0.3074 ± 0.0004 0.2923 ± 0.0002
2-HMOE 0.3528 ± 0.0003 0.3276 ± 0.0003 0.3051 ± 0.0002 0.2889 ± 0.0002
G-HPOE 0.3593 ± 0.0004 0.3347 ± 0.0002 0.3124 ± 0.0003 0.2967 ± 0.0002
t-HPOE 0.3247 ± 0.0002 0.2900 ± 0.0003 0.2789 ± 0.0003 0.2743 ± 0.0003

For the proposed hyperbolic methods, we use the following methods:

q-HMOE The loss function is given by `mgn with power index q, where X = HD. In the
experiments, q = 1, 2.

f-HPOE The loss function is given by `prb in (16) with kernel function f , where X = HD.
Similar to G-EPOE and t-EPOE, we use the same Gaussian kernel and Student’s
t-distrubution kernel for HPOE, and name them G-HPOE and t-HPOE, respectively.

Evaluation Protocol We conducted experiments on ordinal triplet data sets and ran each
method 10 times to report their average classification errors along with standard errors. We
created GOTD of ground-truth graph and randomly split the data set into training data,
validation data, and test data. We trained each method on the training data, and selected
a hyperparameter that gives the lowest classification error in grid-search on validation data
as the best hyperparameter.

Optimization For optimization of all the methods, the stochastic Riemannian sub gra-
dient method (Zhang and Sra, 2016) was applied. Note that this optimization method is
reduced to the vanilla stochastic gradient descent method for the baselines, in which Eu-
clidean space is used. The specific algorithm for our hyperbolic methods is given in Section
5.3. For all the methods, the constant learning rate was selected by grid-search.

Parameter Settings The batch size and the number of epoch in stochastic gradient
descent are both fixed to 1000. In margin-loss-based methods, the margin hyperparameter
δ is fixed to 1.0. The learning rate was selected from {0.1, 1.0, 10.0} by grid-search. We
report the results in D = 2, 4, 8, 16.

7.2. Experiments on Artificial Datasets

To validate the effectiveness of embedding in hyperbolic space, we constructed a typical
hierarchical structure dataset, i.e., complete balanced tree (CBT).
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Datasets CBT Denoting the m-nary complete balanced tree with the depth h by CBT-
m-h, we use CBT-4-6, CBT-8-4 and CBT-16-3 for the experiments. Note that the
number of the leaves of which are all 4096. We randomly selected 10000, 1000, and 1000
triplets for training, validation, and test, respectively in the experiments.

Results Table 1 shows that t-HPOE achieves the best result in all cases, which vali-
date the effectiveness of using hyperbolic space. Moreover, both q-HMOE and f-HPOE
performs better than the corresponding Euclidean methods in most cases. Taken D = 2
as an example, t-HPOE achieves the lowest errors with 0.4281 in CBT-4-6, as well as
0.3855 and 0.3638 in CBT-8-4 and CBT-16-3, respectively. However, as the best per-
former among Euclidean methods, G-EPOE obtains the 0.4342, 0.4097, and 0.3904 only.
This is because the expanding speed of hyperbolic space matches hierarchical structure of
data, so that better embeddings can be achieved in very low dimensionality. Taking it
a step further, we find that t-HPOE outperforms G-EPOE with a larger margin with
lower dimensionality of space, such as 0.2865 when D = 2 and 0.0185 when D = 16 for
CBT-16-3 dataset. It is also interesting to note that superiority of t-HPOE decreases
with increasing m. For example, t-HPOE achieves low errors than G-EPOE with 0.0061
in CBT-4-6 and 0.0266 in CBT-16-3 when D = 2. These phenomena are in line with
theoretical analyses in Corollary 4 and Theorem 8.

7.3. Experiments on Real Datasets

We also compared the proposed methods to Euclidean-space-based methods on two real
datasets that are of hierarchy.

Datasets WN-mammal (Nickel and Kiela, 2017) is a subset in WordNet1, which consists
of more than 900 hyponyms of mammal. This dataset owns hierarchical structure, because
a hypernym often related to many hyponyms. Cora(Šubelj and Bajec, 2013) is a author
citation dataset (McCallum et al., 2000) that contains more than 20000 computer science
papers collected from web as vertices of graph. The references are parsed automatically and
regarded as edges. Since reputable papers always are cited by many other papers, there
should exist an underlying hierarchical structure.

The graph of each dataset is ground-truth and we derived triplets, i.e., GOTD (in
Definition 2), from these graphs. Following (Liu et al., 2017), to avoid overfitting, we
randomly selected 30000 triplets for training in WM-mammal, as well as 3000 triplets for
validation and test each. Since Cora has a larger number of objects, we used more triplets,
i.e., 100000, 10000, and 10000 for training, validation, and test, respectively.

Results The classification errors of hyperbolic methods against Euclidean baselines are
given in Table 2 We can see that when D = 2, 2-HMOE shows the lowest mean error
0.1205 in WN-mammal and t-HPOE shows the lowest error 0.3247 in Cora, whereas
the best results of Euclidean methods are 0.1396 and 0.3513 only. This again demonstrates
the effectiveness of the proposed hyperbolic methods for embedding hierarchical strurctural
data in a low-dimensional space.

1. https://wordnet.princeton.edu
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8. Conclusion

In this paper, we have proposed a novel hyperbolic ordinal embedding (HOE) method to
embed data that are of hierarchical structure in hyperbolic space. Due to the hierarchy-
friendly property of hyperbolic space, HOE has effectively achieved embedding by capturing
the hierarchy and preserving ordinal relations in an extremely low-dimensional space. By
using stochastic optimization method, HOE is also of high efficiency. Both theoretical
and experimental results have demonstrated the outperformance of HOE over Euclidean
methods.
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