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Fig. 1. The cubes in the leftmost image have all been rendered with the same aluminium material. Our similarity measure for material appearance can be used
to automatically generate alternative depictions of the same scene, where the similarity of the materials varies in a controlled manner. The next three images
show results with materials randomly chosen by progressively extending the search distance from the original aluminium, from similar in appearance to
farther away materials within the same dataset.

Wepresent amodel tomeasure the similarity in appearance between different

materials, which correlates with human similarity judgments. We first create

a database of 9,000 rendered images depicting objects with varying materials,

shape and illumination. We then gather data on perceived similarity from

crowdsourced experiments; our analysis of over 114,840 answers suggests

that indeed a shared perception of appearance similarity exists. We feed this

data to a deep learning architecture with a novel loss function, which learns

a feature space for materials that correlates with such perceived appearance

similarity. Our evaluation shows that ourmodel outperforms existingmetrics.

Last, we demonstrate several applications enabled by our metric, including

appearance-based search for material suggestions, database visualization,

clustering and summarization, and gamut mapping.
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1 INTRODUCTION
Humans are able to recognize materials, compare their appearance,

or even infer many of their key properties effortlessly, just by briefly

looking at them. Many works propose classification techniques,

although it seems clear that labels do not suffice to capture the rich-

ness of our subjective experience with real-world materials [Fleming

2017]. Unfortunately, the underlying perceptual process of mate-

rial recognition is complex, involving many distinct variables; such

process is not yet completely understood [Anderson 2011; Fleming

2014; Maloney and Brainard 2010].

Given the large number of parameters involved in our perception

of materials, manyworks have focused on individual attributes (such

as the perception of gloss [Pellacini et al. 2000; Wills et al. 2009], or

translucency [Gkioulekas et al. 2015]), while others have focused

on particular applications like material synthesis [Zsolnai-Fehér

et al. 2018], editing [Serrano et al. 2016], or filtering [Jarabo et al.

2014]. However, the fundamentally difficult problem of establishing

a similarity measure for material appearance remains an open prob-

lem. Material appearance can be defined as “the visual impression

we have of a material” [Dorsey et al. 2010]; as such, it depends not

only on the BRDF of the material, but also on external factors like

lighting or geometry, as well as human judgement [Adelson 2001;

Fleming 2014]. This is different from the common notion of image

similarity (devoted to finding detectable differences between images,

e.g., [Wang et al. 2004]), or from similarity in BRDF space (which has
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been shown to correlate poorly with human perception, e.g., [Ser-

rano et al. 2016]). Given the ubiquitous nature of photorealistic

computer-generated imagery, and emerging fields like computa-

tional materials, a similarity measure of material appearance could

be valuable for many applications.

Capturing a human notion of perceptual similarity in different

contexts has been an active area of research recently [Agarwal et al.

2007; Garces et al. 2014; Lun et al. 2015]. In this paper we develop a

novel image-based material appearance similarity measure derived

from a learned feature space. This is challenging, given the subjec-

tive nature of the task, and the interplay of confounding factors like

geometry or illumination in the final perception of appearance. Very

recent work suggests that perceptual similarity may be an emergent

property, and that deep learning features can be trained to learn a

representation of the world that correlates with perceptual judge-

ments [Zhang et al. 2018]. Inspired by this, we rely on a combination

of large amounts of images, crowdsourced data, and deep learning.

In particular, we create a diverse collection of 9,000 stimuli using

the measured, real-world materials in the MERL dataset [Matusik

et al. 2003], which covers a wide variety of isotropic appearances,

and a combination of different shapes and environment maps. Using

triplets of images, we gather information through Mechanical Turk,

where participants are asked which of two given examples has a

more similar appearance to a reference. Given our large stimuli

space, we employ an adaptive sampling scheme to keep the number

of triplets manageable. From this information, we learn a model of

material appearance similarity using a combined loss function that

enforces learning of the appearance similarity information collected

from humans, and the main features that describe a material in an

image; this allows us to learn the notion of material appearance

similarity explained above, dependent on both the visual impression

of the material, and the actual physical properties of it.

To evaluate our model, we first confirm that humans do provide

reliable answers, suggesting a shared perception of material ap-

pearance similarity, and further motivating our similarity measure.

We then compare the performance of our model against humans:

Despite the difficulty of our goal, our model performs on par with

human judgements, yielding results better aligned with human

perception than current metrics. Last, we demonstrate several ap-

plications that directly benefit from our metric, such as material

suggestions, database visualization, clustering and summarization,

or gamut mapping. In addition to the 9,000 rendered images, our

database also includes surface normals, depth, transparency, and

ambient occlusion maps for each one, while our collected data con-

tains 114,840 answers; we provide both, along with our pre-trained

deep learning framework, in order to help future studies on the

perception of material appearance
1
.

2 RELATED WORK

2.1 Material perception
There have been many works aiming to understand the perceptual

properties of BRDFs [Anderson 2011; Fleming 2014; Fleming et al.

2015; Maloney and Brainard 2010]; a comprehensive review can

be found in the work of Thompson and colleagues [2011]. Finding

1
http://webdiis.unizar.es/~mlagunas/publication/material-similarity/

a direct mapping between perceptual estimates and the physical

material parameters is a hard task involving many dimensions, not

necessarily correlated. Many researchers focus on the perception

of one particular property of a given material (such as glossiness

[Chadwick and Kentridge 2015; Pellacini et al. 2000;Wills et al. 2009],

translucency [Gkioulekas et al. 2015, 2013], or viscosity [Van Assen

et al. 2018]), or one particular application (such as filtering [Jarabo

et al. 2014], computational aesthetics [Cunningham et al. 2007],

or editing [Mylo et al. 2017; Serrano et al. 2016]). Leung and Ma-

lik [2001] study the appearance of flat surfaces based on textural

information. Other recent works analyze the influence on material

perception of external factors such as illumination [Ho et al. 2006;

Křivánek et al. 2010; Vangorp et al. 2017], motion [Doerschner et al.

2011], or shape [Havran et al. 2016; Vangorp et al. 2007].

A large body of work has been devoted to analyzing the relation-

ships between different materials, and deriving low-dimensional

perceptual embeddings [Matusik et al. 2003; Serrano et al. 2016;

Soler et al. 2018; Wills et al. 2009]. These embeddings can be used

to derive material similarity metrics, which are useful to determine

if two materials convey the same appearance, and thus benefit a

large number of applications (such as BRDF compression, fitting,

or gamut mapping). A number of works have proposed different

metrics, computed either directly over measured BRDFs [Fores et al.

2012; Ngan et al. 2005], in image space [Ngan et al. 2006; Pereira

and Rusinkiewicz 2012; Sun et al. 2017], or in reparametrizations

of BRDF spaces based on perceptual traits [Pellacini et al. 2000;

Serrano et al. 2016]. Our work is closer to the latter; however, rather

than analyzing perceptual traits in isolation, we focus on the over-

all appearance of materials, and derive a similarity measure that

correlates with the notion of material similarity as perceived by

humans.

2.2 Learning to recognize materials
Image patches have been shown to contain enough information

for material recognition [Schwartz and Nishino 2018], and several

works have leveraged this to derive learning techniques for material

recognition tasks. Bell et al. [2015] introduce a CNN-based approach

for local material recognition using a large annotated database,

while Schwartz and Nishino explicitly introduce global contextual

cues [2016]. Other works add more information such as known

illumination, depth, or motion. Georgoulis et al. [2017] use both

an object’s image and its geometry to create a full reflectance map,

which is later used as an input to a four-class coarse classifier (metal,

paint, plastic or fabric). For a comprehensive study on early material

recognition systems and latest advances, we refer to the reader to

the work of Fleming [2017]. These previous works focus mainly on

classification tasks, however mere labels do not capture the richness
of our subjective experience of materials in the real world [Fleming

2017].

Recent work has shown the extraordinary ability of deep features

to match human perception in the assessment of perceptual simi-

larity between two images [Zhang et al. 2018]. Together with the

success of the works mentioned above, this provides motivation for

the combination of user data and deep learning that we propose in

this work.

ACM Trans. Graph., Vol. 38, No. 4, Article 135. Publication date: July 2019.



A Similarity Measure for Material Appearance • 135:3

2.3 Existing datasets
Early image-based material datasets include CURet [Dana et al.

1999], KTH-TIPS [Hayman et al. 2004], or FMD [Sharan et al. 2009].

OpenSurfaces [Bell et al. 2013] includes over 20,000 real-world im-

ages, with surface properties annotated via crowdsourcing. This

dataset has served as a baseline to others, such as the Materials in

Context Database (MINC) [Bell et al. 2015], an order of magnitude

larger; SynBRDF [Kim et al. 2017], with 5,000 rendered materials ran-

domly sampled from OpenSurfaces; or MaxBRDF dataset [Vidaurre

et al. 2019], which includes synthetic anisotropic materials.

Databases with measured materials include MERL [Matusik et al.

2003] for isotropic materials, UTIA [Filip and Vávra 2014] for

anisotropic ones, the Objects under Natural Illumination Data-

base [Lombardi and Nishino 2012], which includes calibrated HDR

information, or the recent, on-going database by Dupuy and Jakob

which measures spectral reflectance [2018]. We choose as a starting

point the MERL dataset, since it contains a wider variety of isotropic

materials, and it is still being successfully used in many applications

such as gamut mapping [Sun et al. 2017], material editing [Serrano

et al. 2016; Sun et al. 2018], BRDF parameterization [Soler et al.

2018], or photometric light source estimation [Lu et al. 2018].

3 MATERIALS DATASET

3.1 Why a new materials dataset?
To obtain a meaningful similarity measure of material appearance

we require a large dataset with the following characteristics:

• Data for a wide variety of materials, shapes, and illumination

conditions.

• Samples featuring the same material rendered under different

illuminations and with different shapes.

• Materials represented by measured BRDFs, with reflectance

data captured from real materials.

• Real-world illumination, as given by captured environment

maps.

• A large number of samples, amenable to learning-based frame-

works.

These characteristics enable renditions of complex, realistic ap-

pearances and will be leveraged to train our model, explained in

Section 5. To our knowledge, none of the existing material datasets

features all these characteristics.

3.2 Description of the dataset
In the following, we briefly describe the characteristics of our dataset,

and refer the reader to the supplementary material for further de-

tails.

Materials. Our dataset includes all 100 materials from the MERL

BRDF database [Matusik et al. 2003]. This database was chosen as

starting point since it includes real-world, measured reflectance

functions covering a wide range of reflectance properties and types

of materials, including paints, metals, fabrics, or organic materials,

among others.

Illumination. We use six natural illumination environments, since

they are favored by humans in material perception tasks [Fleming

Fig. 2. Top: The six environment maps used in the dataset, and correspond-
ing rendered spheres with the black-phenolic material. Bottom: Sample
images of all 15 scenes with different materials and illumination conditions.
First row: pink-felt and Uffizi; second row: violet-acrylic and Grace; third
row: nickel and Pisa. The 3D models bunny, dragon, Lucy and statue belong
to The Stanford 3D Scanning Repository; waterpot (modelled by gykservy),
Suzzane (killzone75), Einstein (oliverlaric), and zenith (KuhnIndustries) were
obtained from TurboSquid.

et al. 2003]. They include a variety of scenes, ranging from indoor

scenarios to urban or natural landscapes, as high-quality HDR envi-

ronment maps
2
.

Scenes. Our database contains thirteen different 3D models, with

an additional camera viewpoint for two of them, defining our fifteen

scenes. It includes widely used 3D models, and objects that have

been specifically designed for material perception studies [Havran

et al. 2016; Vangorp et al. 2007]. The viewpoints have been chosen to

cover a wide range of features such as varying complexity, convexity,

curvature, and coverage of incoming and outgoing light directions.

By combining the aforementioned materials (100), illumination

conditions (6), and scenes (15), we generate a total of 9,000 dataset

samples using the Mitsuba physically-based renderer [Jakob 2010].

For each one we provide: The rendered HDR image, a corresponding

LDR image
3
, along with depth, surface normals, alpha channel, and

ambient occlusion maps. While not all these maps are used in the

present work, we make them available with the dataset should they

be useful for future research. Figure 2 shows sample images for all

fifteen scenes.

2
http://gl.ict.usc.edu/Data/HighResProbes/

3
Tone-mapped using the algorithm by Mantiuk et al. [2008], with the predefined lcd
office display, and color saturation and contrast enhancement set to 1.
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Fig. 3. Sample stimuli for our appearance similarity collection. They cor-
respond to the Havran-2 scene, with materials from the MERL database,
rendered with the Ennis environment map. In reading order: chrome, gold-
metallic-paint3, specular-green-phenolic, maroon-plastic, dark-blue-paint and
light-brown-fabric.

4 COLLECTING APPEARANCE SIMILARITY
INFORMATION

We describe here our methodology to gather crowdsourced infor-

mation about the perception of material appearance.

Stimuli. We use 100 different stimuli, covering all 100 materials in

the dataset, rendered with the Ennis environment map. We choose

the Havran-2 scene, since its shape has been designed to maximize

the information relevant for material appearance judgements by

optimizing the coverage of incoming and outgoing light directions

sampled [Havran et al. 2016]. Figure 3 shows some examples.

Participants. A total of 603 participants took part in the test

through the Mechanical Turk (MTurk) platform, with an average

age of 32, and 46.27% female. Users were not aware of the purpose

of the experiment.

Procedure. Our study deals with the perception of material ap-

pearance, which may not be possible to represent in a linear scale;

this advises against ranking methods [Kendall and Babington-Smith

1940]. We thus gather data in the form of relative comparisons, fol-

lowing a 2AFC scheme; the subject is presented with a triplet made

up of one reference material, and two candidate materials, and their

task is to answer the questionWhich of these two candidates has a
more similar appearance to the reference? by choosing one among the

two candidates. This approach has several additional advantages:

it is easier for humans than providing numerical distances [McFee

and Lanckriet 2011; Schultz and Joachims 2003], while it reduces

fatigue and avoids the need to reconcile different scales of similarity

among subjects [Kendall and Gibbons 1990].

However, given our 100 different stimuli, a naive 2AFC test would

require 495,000 comparisons, which is intractable even if not all

subjects see all comparisons. To ensure robust statistics, we aim to

obtain five answers for each comparison, which would mean testing

a total of 2,475,000 comparisons. Instead, we use an iterative adaptive
sampling scheme [Tamuz et al. 2011]: For any given reference, each

following triplet is chosen to maximize the information gain, given

the preceding responses (please refer to the supplementary material

for a more detailed description of the method). From an initial

random sampling, we perform 25 iterations as recommended by

Tamuz et al. for datasets our size; in each iteration we sample 10 new

pairs for every one of our 100 reference materials, creating 1,000 new

triplets. After this process, the mean information gain per iteration is

less than 10
−5
, confirming the convergence of the sampling scheme.

This scheme allows us to drastically reduce the number of required

comparisons, while providing a good approximation to sampling

the full set of triplets.

Each test (HIT in MTurk terminology) consisted of 110 triplets.

To minimize worker unreliability [Welinder et al. 2010], each HIT

was preceded by a short training session that included a few trial

comparisons with obvious answers [Garces et al. 2014; Rubinstein

et al. 2010]. In addition, ten control triplets were included in each

HIT, testing repeated-trial consistencywithin participants.We adopt

a conservative approach and reject participants with two or more

different answers. In the end, we obtained 114,840 valid answers,

yielding a participants’ consistency of 84.7%.

As a separate test, to validate how well our collected answers

generalize to other shapes and illuminations, we repeated the same

comparisons, this time with symmetric and asymmetric triplets

chosen randomly from our dataset, with the condition that they

do not contain the Havran-2 shape nor the Ennis illumination. For

symmetric triplets, the three items in the triplet differ only in the

material properties, while in asymmetric triplets geometry and

lighting also vary. We launched 2,500 symmetric triplets, and found

that participants’ majority matched the previous responses with

a 84.59% rate. When we added the same number of asymmetric

triplets to the test, participants’ answers held with a 80% match rate.

5 LEARNING PERCEIVED SIMILARITY
This section describes our approach to learn perceived similarity for

material appearance. Given an input imageψ , our model provides a

feature vector f (ψ ) that transforms the input image into a feature

space well aligned with human perception.

We use the ResNet architecture [He et al. 2016], based on its

generalization capabilities and its proven performance on image-

related tasks. The novelty of this architecture is a residual block

meant for learning a residual mapping between the layers, instead

of a direct mapping, which enables training very deep networks

(hundreds of layers) with outstanding performance. For training we

use image data from our materials dataset (Section 3), together with

human data on perceived similarity (Section 4). We first describe

our combined loss function, then our training procedure.

5.1 Loss function
We train our model using a loss function consisting of two terms,

equally weighted:

L = LT L + LP (1)

The two terms represent a perceptual triplet loss, and a similarity

term, respectively. The terms aim at learning appearance similarity

from the participants’ answers, while extracting the main features

defining the material depicted in an image. In the following, we

describe these terms and their contribution.

5.1.1 Triplet loss term LT L . This term allows to introduce the

collected MTurk information on appearance similarity. Let A =

{(ri ,ai ,bi )} be the set of answered relative comparisons, where r is
the reference image, a is the candidate image chosen by the major-

ity of users as being more similar to r , and b the other candidate; i
indexes over all the relative comparisons. Intuitively, r and a should

be closer together in the learned feature space than r and b. It is
not feasible to collect user answers for all possible comparisons (n

ACM Trans. Graph., Vol. 38, No. 4, Article 135. Publication date: July 2019.
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different images would lead to n
(n−1

2

)
tests); however, as we have

shown in Section 4, the collected answers for a triplet (r ,a,b) involv-

ing materialsmr
,ma

andmb
generalize well to other combinations

of shape and illumination from our dataset involving the same set

of materials. We thus define AM = {(mr
i ,m

a
i ,m

b
i )} as the set of

relative comparisons with collected answers (ma
represents the ma-

terial chosen by the majority of participants). We then formulate

the first term as a triplet loss [Cheng et al. 2016; Lagunas et al. 2018;

Schroff et al. 2015]:

LT L =
1

|BA |

∑
(r ,a,b)∈BA

[
| | f (r )− f (a)| |2

2
−|| f (r )− f (b)| |2

2
+µ

]
+

(2)

where f (ψ ) is the feature vector of image ψ , and the set BA
is

defined as:

BA =
[
(r ,a,b) | (mr ,ma,mb ) ∈ AM ∧ (r ,a,b) ∈ B

]
(3)

with B the current training batch. In Eq. 2, µ represents the margin,

which accounts for how much we aim to separate the samples in

the feature space.

5.1.2 Similarity term LP . We introduce a second loss term that

maximizes the log-likelihood of the model choosing the same mate-

rial as humans. We define this probability pra (and conversely prb )
as a quotient between similarity values sra and srb :

pra =
sra

srb + sra
, prb =

srb
srb + sra

These similarities are derived from the distances between r , a and

b in the feature space, where a similarity value of 1 means perfect

similarity and a value of 0 accounts for total dissimilarity:

sra =
1

1 + dra
, srb =

1

1 + drb
, where

dra = | | f (r ) − f (a)| |2
2
, drb = | | f (r ) − f (b)| |2

2

With this, we can formulate the similarity term as:

LP = −
1

|BA |

∑
(r ,a,b)∈BA

logpra (4)

5.2 Training details
For training, we remove the Havran-2 and Havran-3 scenes from the

dataset, leading to 7,800 images (13 (scenes) × 6 (env. maps) × 100

(materials)), augmented to 39,000 using crops, flips, and rotations.

These 39,000 images, together with the collected MTurk answers,

constitute our training data. We use the corrected Adam optimiza-

tion [Kingma and Ba 2014; Reddi et al. 2019] with a learning rate

that starts at 10
−3

to train the network. We train for 80 epochs and

the learning rate is reduced by a factor of 10 every 20 epochs. For

initialization, we use the weights of the pre-trained model [He et al.

2016] on ImageNet [Deng et al. 2009; Russakovsky et al. 2015]. To

adapt the network to our loss function, we remove the last layer of

the model and introduce a fully-connected (fc) layer that outputs a
128-dimensional feature vector f (ψ ). We use a margin µ = 0.3 for

the triplet loss term LT L . Figure 4 shows a scheme of the training

procedure.

Fig. 4. Scheme of the training process, using both image data from our
material dataset, and human data of perceived similarity. We train our
model so that, for an input image ψ , it yields a 128-dimensional feature
vector f (ψ ).

6 EVALUATION
We evaluate our model on the set of images of the material dataset

not used during training. We employ the accuracy metric, which

represents the percentage of triplet answers correctly predicted by

our model. It can be computed as raw, considering each of the five

answers independently as the correct one, or majority, considering
the majority opinion as correct [Garces et al. 2014; Wills et al. 2009].

Using our MTurk data from Section 4, the results are 73.10% and

77.53% respectively for human observers, indicating a significant

agreement across subjects. Our model performs better than human

accuracy, with 73.97% and 80.69% respectively. In other words, our

model predicts the majority’s perception of similarity almost 81% of

the time. We include an oracle predictor in Table 1, which has access

to all the human answers and returns the majority opinion; note

that its raw accuracy is not 100 due to human disagreement. Figure 5

shows examples from our 26,000 queries where our model agrees

with the majority response, while we discuss failure cases later in

this section. More examples of queries and our model’s answer are

included in the supplementary material.

6.1 Comparison with other metrics
We compare the performance of our model to six different metrics

used in the literature for material modeling and image similarity:

The three common metrics analyzed by Fores and colleagues [2012],

the perceptually-based metrics by Sun et al. [2017] and Pereira et

al. [2012], and SSIM [Wang et al. 2004], a well-known image similar-

ity metric. We analyze again accuracy, and we additionally analyze

perplexity, which is a standard measure of how well a probability

model predicts a sample, taking into account the uncertainty in the

model. Perplexity Q is given by:

Q = 2
− 1

|A|

∑
Ω log

2
pra

(5)

where Ω = (r ,a) ∈ A, |A| is the number of collected answers, and

pra is the probability of a being similar to r (Section 5.1). Perplexity

gives higher weight where the model yields higher confidence; its

value will be 1 for a model that gives perfect predictions, 2 for a

model with total uncertainty (random), and higher than 2 for amodel

that gives wrong predictions. As Table 1 shows, our model captures

the human perception of appearance similarity significantly better,

as indicated by the higher accuracy and lower perplexity values.

Note that perplexity cannot be computed for humans nor the oracle,

since they are not probability distributions.

ACM Trans. Graph., Vol. 38, No. 4, Article 135. Publication date: July 2019.
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3 2 5 0 5 0 4 1

5 0 5 0 4 1 3 2

Fig. 5. Examples from our 26,000 queries (reference, plus the two candidates) where our model agrees with the majority response (this is the case almost 81%
of the time). The numbers indicate the number of votes each image received from the participants. More examples are included in the supplementary material.

Table 1. Accuracy and perplexity of our model compared to human per-
formance, an oracle (which always returns the majority opinion), and six
other metrics from the literature: RMS, RMS-cos, Cube-root [Fores et al.
2012], L2-lab [Sun et al. 2017], L4-lab [Pereira and Rusinkiewicz 2012] and
SSIM [Wang et al. 2004]. For accuracy, higher values are better, while for
perplexity lower are better.

Evaluation of our model

Metric

Accuracy Perplexity

Raw Majority Raw Majority

Humans 73.10 77.53 - -

Oracle 83.79 100.0 - -

RMS 61.63 64.72 3.61 3.13

RMS-cos 61.60 64.67 3.86 3.33

Cube-root 63.71 67.40 1.96 1.86

L2-lab 63.76 67.21 2.16 2.07

L4-lab 60.60 62.93 15.36 11.66

SSIM 62.35 64.74 2.02 1.94

Our model 73.97 80.69 1.74 1.55

Additionally, we compute the mean error between distances de-

rived from human responses and our model’s predictions, across

all possible material pair combinations from the MERL dataset. To

obtain the derived distances from the collected human responses,

we use t-Distributed Stochastic Triplet Embedding (tSTE) [Van

Der Maaten and Weinberger 2012], which builds an n-dimensional

embedding that aims to correctly represent participants’ answers.

We use a value of α = 5 (degrees of freedom of the Student-t kernel),

which correctly models 87.36% of the participants’ answers. We

additionally compute the mean error for the six other metrics. As

shown in Figure 6, our metric yields the smallest error. Error bars

correspond to a 95% confidence interval.

6.2 Ablation study
We evaluate the contribution of each term in our loss function to

the overall performance via a series of ablation experiments (see

Table 2). We first evaluate performance using only one of the two

terms (LT L and LP ) in isolation. We also analyze the result of

incorporating two additional loss terms, which could in principle

apply to our problem: A cross-entropy term LCE , and a batch-

mining triplet loss term LBT L . The former aims at learning a soft
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Fig. 6. Left: Mean error for different metrics (each normalized by its maxi-
mum value) with respect to distances derived from human responses, across
all possible pair combinations from the MERL dataset (the LT L and LP
columns refer to the ablation studies in Table 2; please refer to the main text).
Error bars correspond to a 95% confidence interval. Right: Representative
example of the two most similar materials to a given reference, according to
(from top to bottom): Our model, and the two perceptually-based metrics
L2-lab [Sun et al. 2017], and L4-lab [Pereira and Rusinkiewicz 2012]. Our
model yields less error, and captures the notion of appearance similarity
better.

classification task by penalizing samples which do not belong to the

same class [Szegedy et al. 2016], while the latter has been proposed

in combination with the cross-entropy term to improve the model’s

generalization capabilities and accuracy [Gao and Nevatia 2018]

(more details about these two terms can be found in the appendix).

Last, we analyze performance using only these two terms (LCE
and LBT L ), without incorporating participants’ perceptual data. As

Table 2 shows, none of these alternatives outperforms our proposed

loss function. Although the single-term LP loss function yields

higher accuracy, it also outputs higher perplexity values; moreover,

as Figure 6 shows, the mean error is much higher, meaning that it

does not capture the notion of similarity as well as our model.

6.3 Alternative networks
We have tested two alternative architectures, VGG [Simonyan and

Zisserman 2014], which stacks convolutions with non-linearities;

and DenseNet [Huang et al. 2017], which introduces concatena-

tions between different layers. Both models have been trained using

our loss function. As shown in Table 2, both yield inferior results

compared to our model. DenseNet has a low number of learned

parameters, insufficient to capture the data distribution, hampering

convergence. VGG has a larger number of parameters; however, the
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Table 2. Accuracy and perplexity for other loss functions, as well as for two
alternative architectures (VGG and DenseNet).

Ablation study and alternative networks

Model

Accuracy Perplexity

Raw Majority Raw Majority

LT L 69.32 74.12 1.89 1.73

LP 75.22 82.31 3.16 2.13

LT L + LP + LCE 71.82 77.53 1.76 1.66

LT L + LP + LCE + LBT L 71.78 77.76 1.76 1.67

LCE + LBT L 56.88 58.44 1.96 1.93

VGG 70.70 76.40 2.25 1.89

DenseNet 60.90 63.49 2.66 2.46

Our model 73.97 80.69 1.74 1.55

Fig. 7. Two examples where humans’ majority disagrees with our metric.
For both, humans agreed that the middle stimulus is perceptually closer to
the reference on the left, while our metric scores the right stimuli as more
similar.

residual mapping learned by the residual blocks in the architecture

of our model yields the best overall performance.

6.4 Results by category
We additionally divide the materials into eight categories: acrylics,
fabrics, metals, organics, paints, phenolics, plastics, and other, and
analyze raw and majority accuracy in each. We can see in Table 3

how our model is reasonably able to predict human perception

also within each category. For instance, although the numbers are

relatively consistent across all the categories, humans perform on av-

erage slightly worse for phenolics or acrylics, and better for fabrics;

our metric mimics such behavior. The only significant difference oc-

curs within the organics category, where our metric performs worse

than humans. This may be due to the combination of a low number

of material samples and a large variety of appearances within such

category, which may hamper the learning process.

6.5 Failure cases
Being on par with human accuracy means that our similarity mea-

sure disagrees with the MTurk majority 19.31% of the time. Figure 7

shows two examples where humans were consistent in choosing

one stimuli as closer to the reference (5 votes out of 5), yet our metric

predicts that the second one is more similar. In the leftmost example,

the softness of shadows may have been a deciding factor for humans.

In the rightmost example, humans may have been overly influenced

by color, whilst our metric has factored in the presence of strong

highlights. These examples are interesting since they illustrate that

neither color nor reflectance are persistently the dominant factors

when humans judge appearance similarity between materials.

7 APPLICATIONS
We illustrate here several applications directly enabled by our simi-

larity measure.

7.1 Material suggestions
Assigning materials to a complex scene is a laborious process [Chen

et al. 2015; Zsolnai-Fehér et al. 2018]. We can leverage the fact that

the distances in our learned feature space correlate with human

perception of similarity to provide controllable material suggestions.

The artist provides the system with a reference material, and the

system delivers perceptually similar (or farther away) materials in

the available dataset, thus creating a controlled amount of variety

without the burden of manually selecting each material. Figure 1

illustrates this, where the search distance is progressively extended

from a chosen reference, and the materials are then assigned ran-

domly to each cube. Suggestions need not be automatically assigned

to the models in the scene, but may also serve as a palette for the

artist to choose from, facilitating browsing and navigation through

material databases. Figure 8 shows two MERL samples used as

queries, along with returned suggestions from the Extended MERL
dataset [Serrano et al. 2016]. The figure shows results at close, in-

termediate, and far distances from the query. Additional examples

can be seen in Figure 9, and in the supplementary material.

7.2 Visualizing material datasets
The feature space computed by our model can be used to visualize

material datasets in a meaningful way, using dimensionality reduc-

tion techniques. We illustrate this using UMAP (Uniform Manifold

Approximation and Projection [McInnes and Healy 2018]), which

helps visualization by preserving the global structure of the data.

Figure 10 shows two results for the MERL dataset, using images

not included in the training set. On the left, we can observe a clear

gradient in reflectance, increasing from left to right, with color as

a secondary, softer grouping factor. The right image shows a sim-

ilar visualization using only three categories: metals, fabrics, and
phenolics.

7.3 Database clustering
For unlabeled datasets like ExtendedMERL, our feature space allows

to obtain clusters of perceptually similar materials, as shown in

Figure 12 using UMAP. The close-ups highlight how materials with

similar appearance are correctly grouped together by our model.

To further analyze the clustering enabled by our perceptual feature

space, we rely on the Hopkins statistic, which estimates randomness

in a data set [Banerjee and Dave 2004]. A value of 0.5 indicates a

completely random distribution, lower values suggest regularly-

spaced data, and higher values (up to a maximum of 1) reveal the

presence of clusters. The Hopkins statistic computed over our 128-

dimensional feature vectors for the Extended MERL dataset yields

a value of 0.9585, suggesting that meaningful clusters exist in our

learned feature space
4
. For comparison purposes, using only metals

in MERL the Hopkins statistic drops to 0.6935, since their visual

features are less varied within that category. Figure 11 shows an

4
This is an averaged value over 100 iterations, since the computation of the Hopkins

statistic involves random sampling of the elements in the dataset.
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Table 3. Statistics per category. From left to right: Category, number of materials in each category, number of collected answers, humans’ accuracy (raw
and majority), accuracy of our model, and oracle raw accuracy.

Analysis per material category

Category Materials Answers

Humans Our model Oracle

Raw Majority Raw Majority Raw

Acrylics 4 4719 67.27 70.69 67.57 74.18 79.89

Fabrics 14 16019 79.65 83.70 83.03 90.44 87.87

Metals 26 32337 74.20 78.90 75.63 83.10 84.54

Organics 7 8370 69.28 73.08 60.46 62.43 81.28

Paints 14 15101 74.22 78.85 75.22 81.84 84.61

Phenolics 12 13025 66.49 70.53 67.62 74.36 79.72

Plastics 11 12031 70.53 74.70 69.25 74.06 82.05

Other 12 13198 74.80 79.38 78.21 86.11 84.89

Total 100 114800 73.10 77.53 73.97 80.69 83.79

Fig. 8. Two examples of material suggestions using our model. Queries from MERL (violet frame), and returned results for perceptually close, intermediate,
and far away materials from the Extended MERL dataset.

Fig. 9. Additional material suggestion results. Queries (violet frame) and results for the closest materials in the Extended MERL dataset.

example of material suggestions leveraging our perceptual clusters

in unlabeled datatsets.

7.4 Database summarization
Perceptually meaningful clustering leads in turn to the possibility of

database summarization. We can estimate the appropriate number

of clusters using the elbow method, taking the number of clusters

that explains the 95% of the variance in our feature vectors. In the

400-sample Extended MERL dataset, this results in seven clusters.

Taking the closest material to the centroid for each one leads to a

seven-sample database summarization that represents the variety

of material appearances in the dataset (Figure 14).

7.5 Gamut mapping
In general, our model can be used for tasks that involve minimizing

a distance. This is the case for instance of gamut mapping, where

the goal is to bring an out-of-gamut material into the available

gamut of a different medium, while preserving its visual appear-

ance; this is a common problem with current printing technology,

or in the emerging field of computational materials. We illustrate

the effectiveness of our technique in the former. Gamut mapping

can be formulated as a minimization on image space [Pereira and

Rusinkiewicz 2012; Sun et al. 2017]. We can use our feature vector

f (ψ ) to minimize the perceptual distance between two images as

minw | | f (o) − f (д ∗w)| |2
2
, where o is the out-of-gamut image, and

д ∗w represents the image in the printer’s gamut, defined as a linear
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Fig. 10. Visualization of the MERL dataset in a 2D space based on the
feature vectors provided by our model, using UMAP [McInnes and Healy
2018]. Left: The entire MERL dataset. Right:Materials from three different
categories (metals, fabrics, and phenolics).

combination of inks д [Matusik et al. 2009]). Figure 15 shows some

examples.

8 DISCUSSION
We have presented and validated a model of material appearance

similarity that correlates with the human perception of similarity.

Our results suggest that a shared perception of material appearance

does exist, and we have shown a number of applications using our

metric. Nevertheless, material perception poses many challenges;

as such there are many exciting topics not fully investigated in

this work. Several factors come into play that influence material

appearance, i.e., the visual impression of a material, in a highly

complex manner; fully identifying them and understanding their

complex interactions is an open, fundamental problem. As a conse-

quence of these interactions, the same material (e.g., plastic) may

have very diverse visual appearances, whereas two samples of the

same material may look very different under different illumination

conditions [Fleming et al. 2003; Vangorp et al. 2007]. In aiming

for material appearance similarity, we aim for a material similarity

metric that can predict human judgements. There is a distinction,

common in fields like psychology or vision science, between the

distal stimulus—the physical properties of the material—, and the

proximal stimulus—the image that is the input to perception—. The

key observation here is that human perceptual judgements usually

lie between these two, and our training framework and loss function

are designed to take both into account. We combine the informa-

tion about the physical properties of the material contained in the

images, by having the same material under different geometries and

illuminations, with the human answers on appearance similarity.

In other words, a pure image similarity metric would not be able

to generalize across shape, lighting or color, while a BRDF-based

metric would be unable to predict human similarity judgements.

We do not attempt to identify nor classify materials (Figure 16).

Our loss function could, however, incorporate additional terms (such

as the cross-entropy and batch-mining triplet loss term discussed in

the appendix) to help with classification tasks. We have carried out

some tests and found anecdotical evidence of this, but a thorough

analysis requires a separate study not covered in this work.

Despite having trained our model on isotropic materials, we

have found that it may also yield reasonable results with higher-

dimensional inputs. Figure 17 shows three examples from the Flickr

Material Database (FMD) [Sharan et al. 2009], which contains cap-

tured images of highly heterogeneous materials. We have gathered

all the materials from the fabrics, metals, and plastics categories in
the database; taking one reference from each, we show the three

closest results returned by our model, using an L2 norm distance

in feature space. Images were resized to match the model’s input

size, with no further preprocessing. Note that the search was not

performed within each category but across all three, yet our model

successfully finds similar materials for each reference. This is a

remarkable, promising result; however, a more comprehensive anal-

ysis of in-the-wild, heterogeneous materials is out of the scope of

this paper.

We have also tested the performance of our model on grayscale

images. In this case, we have repeated the evaluation conducted in

Table 1 for our model, using grayscale counterparts of the images.

Despite the removal of color information, we obtain results similar

to those of our model on color images: A raw accuracy of 72.55 (vs

73.97 on color images), a majority accuracy of 78.64 (vs 80.69), a

raw perplexity of 1.82 (vs 1.74), and a majority perplexity of 1.67

(vs 1.55). This further enforces the idea that we learn a measure of

appearance similarity, and not image similarity.

To collect similarity data for material appearance, we have fol-

lowed an adaptive sampling scheme [Tamuz et al. 2011]; following

a different sampling strategy may translate into additional discrim-

inative power and further improve our results. Our model could

potentially be used as a feature extractor, or as a baseline for transfer-

learning [Sharif Razavian et al. 2014; Yosinski et al. 2014] in other

material perception tasks. A larger database could translate into an

improvement of our model’s predictions; upcoming databases of

complex measured materials (e.g., Dupuy et al. [2018]) could be used

to expand our training data and lead to a richer and more accurate

analysis of appearance. Our methodology for data collection and

model training could be useful in these cases. Similarly, upcoming

network architectures that may outperform our ResNet choice could

be adopted within our framework. Finding hand-engineered fea-

tures could also be an option and may increase interpretability, but

it could also introduce bias in the estimation.

In addition to the applications we have shown, we hope that our

work can inspire additional research and different applications. For

instance, our model could be of use for designing computational

fabrication techniques that take into account perceived appearance.

It could also be used as a distance metric for fitting measured BRDFs

to analytical models, or even to derive new parametric models that

better convey the appearance of real world materials. We have made

our data available for further experimentation, in order to facilitate

the exploration of all these possibilities.
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A ADDITIONAL LOSS TERMS
We describe here the two additional loss terms that we evaluate in

our ablation study (refer to Section 6 for details).

A.1 Cross-entropy term LCE

This term accounts for the soft-label cross entropy [Szegedy et al.

2016]. It aims at learning a soft classification task by penalizing

samples which do not belong to the same class. In our case, each

material represented in the dataset can constitute a class, and the

set of classes in the dataset is K . Given an image r included in a

training batch B, the probability of r belonging to a certain class

k ∈ K is given by pk (r ). The cross-entropy loss term is given by:

LCE =
1

|B|

∑
r ∈B

s(r ) (6)

s(r ) = −
∑
k ∈K

[
(1 − ϵ) logpk (r )lk (r ) + ϵ logpk (r )u(k)

]
(7)

where l(r ) is the one-hot encoding of the ground truth label, and

lk (r ) is the value of the vector for label k (note that our training

image data can be labeled, since it comes from the materials dataset

presented in Section 3). The value of ϵ is set to 0.1, and we use the

uniform distribution u(k) = 1

|K |
. Both ϵ and u(k) work as regular-

ization parameters so that a wrong prediction does not penalize the

cost function aggressively, while preventing overfitting.

A.2 Batch-mining triplet loss term LBT L

In learned models for classification or recognition, a batch-mining

triplet loss has been proposed in combination with a soft-label

cross entropy term such as the one we use to improve the model’s

generalization capabilities and accuracy [Gao and Nevatia 2018]. It

is modeled as:

LBT L =
1

|B|

∑
r ∈B

[
argmax

x+i

(
| | f (r ) − f (x+i )| |

2

2

)
− argmin

x−
i

(
| | f (r ) − f (x−i )| |

2

2

)
+ µ

]
+

(8)

where x+i designates images of the training batchB belonging to the

same class as r , and x−i images belonging to a different class than r .
Intuitively, this loss mines and takes into consideration the hardest

examples within each batch, improving the learning process.
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