12 research outputs found

    An expanded square pattern technique in swarm of quadcopters for exploration algorithm

    Get PDF
    The exploration algorithm is one of the most important roles in the searching mechanism. In robotics field, the exploration algorithm deals with the implementation of the robot to enlarge the information over a particular environment. In other words, the implementation of exploration algorithm into a robot is intended to survey the situation or condition of a specific area. A variety of techniques has been developed, even the biological systems also become an inspiration to be reckoned. In this paper, we proposed a swarmbased exploration algorithm with expanded square pattern using a quadcopter to explore an unknown area. In this algorithm, the expanded square pattern is conducted by a series of distance around a fixed reference point. We simulate the swarm-based exploration algorithm with expanded square pattern using a VREP simulator. The existing exploration algorithms that have been identified are also simulated to be compared with the proposed algorithm. In order to analysed and evaluate the performance of all algorithms, the data of simulation is documented. Some comparisons are conducted such as the performance of all algorithms, the performance of a group of the quadcopter, the covered spaces and the cooperation among groups

    Exploration on continuous Gaussian process frontier maps

    Get PDF
    An information-driven autonomous robotic explo- ration method on a continuous representation of unknown envi- ronments is proposed in this paper. The approach conveniently handles sparse sensor measurements to build a continuous model of the environment that exploits structural dependencies without the need to resort to a fixed resolution grid map. A gradient field of occupancy probability distribution is regressed from sensor data as a Gaussian process providing frontier boundaries for further exploration. The resulting continuous global frontier surface completely describes unexplored regions and, inherently, provides an automatic stop criterion for a desired sensitivity. The performance of the proposed approach is evaluated through simulation results in the well-known Freiburg and Cave maps.Peer ReviewedPostprint (author’s final draft

    Rapid exploration with multi-rotors: A frontier selection method for high speed flight

    Get PDF
    Exploring and mapping previously unknown environments while avoiding collisions with obstacles is a fundamental task for autonomous robots. In scenarios where this needs to be done rapidly, multi-rotors are a good choice for the task, as they can cover ground at potentially very high velocities. Flying at high velocities, however, implies the ability to rapidly plan trajectories and to react to new information quickly. In this paper, we propose an extension to classical frontier -based exploration that facilitates exploration at high speeds. The extension consists of a reactive mode in which the multi-rotor rapidly selects a goal frontier from its field of view. The goal frontier is selected in a way that minimizes the change in velocity necessary to reach it. While this approach can increase the total path length, it significantly reduces the exploration time, since the multi-rotor can fly at consistently higher speeds

    Exponential Stabilisation of Continuous-time Periodic Stochastic Systems by Feedback Control Based on Periodic Discrete-time Observations

    Get PDF
    Since Mao in 2013 discretised the system observations for stabilisation problem of hybrid SDEs (stochastic differential equations with Markovian switching) by feedback control, the study of this topic using a constant observation frequency has been further developed. However, time-varying observation frequencies have not been considered. Particularly, an observational more efficient way is to consider the time-varying property of the system and observe a periodic SDE system at the periodic time-varying frequencies. This study investigates how to stabilise a periodic hybrid SDE by a periodic feedback control, based on periodic discrete-time observations. This study provides sufficient conditions under which the controlled system can achieve pth moment exponential stability for p > 1 and almost sure exponential stability. Lyapunov's method and inequalities are main tools for derivation and analysis. The existence of observation interval sequences is verified and one way of its calculation is provided. Finally, an example is given for illustration. Their new techniques not only reduce observational cost by reducing observation frequency dramatically but also offer flexibility on system observation settings. This study allows readers to set observation frequencies according to their needs to some extent

    A stochastic differential equation-based exploration algorithm for autonomous indoor 3d exploration with a micro-aerial vehicle

    No full text
    In this paper, we propose a stochastic differential equation-based exploration algorithm to enable exploration in three-dimensional indoor environments with a payload-constrained micro-aerial vehicle (MAV). We are able to address computation, memory, and sensor limitations by using a map representation which is dense for the known occupied space but sparse for the free space. We determine regions for further exploration based on the evolution of a stochastic differential equation that simulates the expansion of a system of particles with Newtonian dynamics. The regions of most significant particle expansion correlate to unexplored space. After identifying and processing these regions, the autonomous MAV navigates to these locations to enable fully autonomous exploration. The performance of the approach is demonstrated through numerical simulations and experimental results in single- and multi-floor indoor experiments

    Autonomous Exploration over Continuous Domains

    Get PDF
    Motion planning is an essential aspect of robot autonomy, and as such it has been studied for decades, producing a wide range of planning methodologies. Path planners are generally categorised as either trajectory optimisers or sampling-based planners. The latter is the predominant planning paradigm as it can resolve a path efficiently while explicitly reasoning about path safety. Yet, with a limited budget, the resulting paths are far from optimal. In contrast, state-of-the-art trajectory optimisers explicitly trade-off between path safety and efficiency to produce locally optimal paths. However, these planners cannot incorporate updates from a partially observed model such as an occupancy map and fail in planning around information gaps caused by incomplete sensor coverage. Autonomous exploration adds another twist to path planning. The objective of exploration is to safely and efficiently traverse through an unknown environment in order to map it. The desired output of such a process is a sequence of paths that efficiently and safely minimise the uncertainty of the map. However, optimising over the entire space of trajectories is computationally intractable. Therefore, most exploration algorithms relax the general formulation by optimising a simpler one, for example finding the single next best view, resulting in suboptimal performance. This thesis investigates methodologies for optimal and safe exploration over continuous paths. Contrary to existing exploration algorithms that break exploration into independent sub-problems of finding goal points and planning safe paths to these points, our holistic approach simultaneously optimises the coupled problems of where and how to explore. Thus, offering a shift in paradigm from next best view to next best path. With exploration defined as an optimisation problem over continuous paths, this thesis explores two different optimisation paradigms; Bayesian and functional
    corecore