
Autonomous Exploration over
Continuous Domains

Gilad Francis

A thesis submitted in fulfillment
of the requirements for the degree of

Doctor of Philosophy

Faculty of Engineering and Information Technologies
University of Sydney

2019

Declaration

I hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by
another person nor material which to a substantial extent has been accepted for
the award of any other degree or diploma of the University or other institute of
higher learning, except where due acknowledgement has been made in the text.

Gilad Francis

17 April 2019

i

Abstract

Motion planning is an essential aspect of robot autonomy, and as such it has been
studied for decades, producing a wide range of planning methodologies. Path
planners are generally categorised as either trajectory optimisers or sampling-
based planners. The latter is the predominant planning paradigm as it can resolve
a path efficiently while explicitly reasoning about path safety. Yet, with a limited
sampling budget, the resulting paths are far from optimal, even in the local sense.
In contrast, state-of-the-art trajectory optimisers explicitly trade-off between path
safety and efficiency to produce locally optimal paths. However, these planners
cannot incorporate updates from a partially observed model such as an occupancy
map and fail in planning around information gaps caused by incomplete sensor
coverage of the map.
Autonomous exploration adds another twist to path planning. The objective of

exploration is to safely and efficiently traverse through an unknown environment
in order to map it. The desired output of such a process is a sequence of paths
that efficiently and safely minimise the uncertainty of the map. However, optimis-
ing over the entire space of trajectories is computationally intractable. Therefore,
most exploration algorithms relax the general formulation by optimising a sim-
pler one, for example finding the single next best view, resulting in suboptimal
performance, as the gains and risks along the entire path are only considered over
a limited set of points.
This thesis investigates methodologies for optimal and safe exploration over

continuous paths. Contrary to existing exploration algorithms that break explo-
ration into independent sub-problems of finding goal points and planning safe
paths to these points, our holistic approach simultaneously optimises the coupled
problems of where and how to explore. Thus, offering a shift in paradigm from
next best view to next best path. With exploration defined as an optimisation
problem over continuous paths, this thesis explores two different optimisation
paradigms; Bayesian and functional.
The contributions of this thesis are as follows: First, we introduce an explo-

ration method based on constrained Bayesian optimisation. This method finds
optimal paths that inherently satisfy motion and safety constraints. As evaluating
both the objective and constraint functions requires costly forward simulations,
the Bayesian optimiser only proposes paths which are likely to yield optimal re-

ii

sults and satisfy the constraints with high confidence, thus minimising the number
of expensive function evaluations in search of the global optimum.
Second, we develop a stochastic functional gradient path planner for trajectory

optimisation in occupancy maps. We show that drawing samples at random, in-
stead of using a fixed resolution sampling, is crucial in order to circumvent the
"information-gap" traps that render existing trajectory optimisation algorithms
ineffective. Consequently, we extend the expressiveness of state-of-the-art func-
tional planners by applying stochastic gradient update rule to optimise a path
represented by a Gaussian process or kernel approximating features, resulting in
an efficient trajectory optimisation methodology which is no longer limited by
the path representation.
Third, we formulate exploration as a variational problem which allows us to

directly optimise the search for exploration paths in the space of trajectories using
functional gradient methods. We develop a mutual information (MI) variational
objective for continuous occupancy maps, which replaces the common and expen-
sive approach of computing MI explicitly over the entire map for each evaluated
path with a simpler gradient update rule. We embed the MI objective in our
stochastic functional gradient path planner to optimise safe paths with infinite
expressivity.

iii

Acknowledgements

I would like to gratefully thank my supervisor Fabio Ramos for his guidance.
With great patience and understanding, he provided all the support and encour-
agements for me to become an independent thinker.
I am also grateful to the University of Sydney and NICTA for the scholarship

which allowed me to undertake this studies and to Lionel Ott, Rafael Dos Santos
De Oliveira and Roman Marchant for their unfailing support from day one.
A very special gratitude goes out to my parents, Rahamim and Levana, for

their faith, love and continuous support. For my children, Jonathan, Itamar,
Avinoam and Elay, I thank for being there when I needed (and sometimes when
I didn’t).
Finally, and most importantly, I would like to thank my wife, Keren, for being

my driving force. Without you, none of that would have happened.

iv

Nomenclature

Notation

The following is a listing of the notation used throughout this thesis.

General

R the real numbers
x vector
xi i-th element of vector x
xT transpose of vector x
I The identity matrix
K matrix
K(i,j) matrix element
K−1 Matrix inversion
|K| Matrix determinant
N number of points in a dataset
N (µ,Σ) normal distribution with mean µ and covariance Σ
ΦG(x) standard normal cdf at x, assuming µ = 0, and Σ = 1)
φG(x) standard normal pdf at x, assuming µ = 0, and Σ = 1)

Gaussian Process

GP Gaussian process
X Training set input locations
Y Training set target values
D Training dataset D = X, Y

X∗ Query/test locations
k(x,x′) Covariance function evaluated between x and x′

m(x) Mean function evaluated at x
θ, υ Process hyperparameters
σ2
n Process noise variance
σ2
f Covariance function signal variance
` Covariance function lengthscale
K(X ′, X ′′) Covariance matrix between of all pairs of inputs from X ′ and X ′′

v

Hilbert Maps

Φ Feature, defined by kernel k
Φ̂ Feature, approximating kernel matrix K
w LR weights vector
zL Linear projection
zNL Nonlinear projection
σ Sigmoid function

Functional optimisation

ξ function
Ξ space of functions
U ,F objective functional
Uobs Obstacles proximity (safety) functional
Udyn Trajectory properties penalty functional
∇ξ Functional gradient
∇x Euclidean gradient
C Configuration space, C ∈ RD

W Robot workspace, C ∈ R2 or R3

Υ Approximating (inner product) features
T Finite set of samples
Q Proposal sampling distribution

Functional Exploration

ẑf a set of unoccupied simulated observations
H Entropy of map model
M |ẑf modified Hilbert map conditioned on the expected observations
H(M |ẑf) Conditional entropy of map model
UMI Mutual information functional

vi

Abbreviations

BO Bayesian optimisation
CBE Constrained Bayesian exploration
CDF Cumulative distribution function
CV Cross-validation
EI Expected improvement
GP Gaussian process
GPC Gaussian process classification
GPOM Gaussian process occupancy maps
GPR Gaussian process regression
IG Information gain
KL Kullback-Leibler (KL) divergence
LCB Lower confidence bound
LR Logistic regression
MAP Maximum a posteriori
MI Mutual information
ML Maximum likelihood
NBV Next best view
NLL Negative log likelihood
NLML Negative log marginal likelihood
OM Occupancy map
OGM Occupancy grid map
PDF Probability density function
RKHS Reproducing kernel Hilbert space
SDF Signed Distance Field
SGD Stochastic Gradient Descent
TSDF Truncated Signed Distance Field
UCB Upper confidence bound
UT Unscented transform

vii

Contents

Declaration i

Abstract ii

Acknowledgements iv

Nomenclature v

List of Figures xi

List of Tables xiii

List of Algorithms xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Contributions . 3

1.3.1 Formulation of Autonomous Exploration as an Optimisa-
tion over Continuous Paths 4

1.3.2 Constrained Bayesian Exploration 4
1.3.3 Trajectory Optimiser for Continuous Occupancy Maps . . 4
1.3.4 Stochastic Trajectory Optimisation over an Expressive and

Tractable Path Model based on Kernel Approximations . . 5
1.3.5 Developing a Mutual Information Variational Objective for

Continuous Occupancy Maps 5
1.3.6 Next Best Path Exploration Method 5

1.4 Outline . 6
1.5 List of Publications . 7

2 Background 8
2.1 Gaussian Processes . 8

2.1.1 Gaussian Process Regression 8
2.1.2 Gaussian Process Classification 10
2.1.3 Covariance Functions . 13
2.1.4 Parameter Learning . 15

viii

2.2 Bayesian Optimisation . 17
2.2.1 Unconstrained optimisation 18
2.2.2 Constrained BO . 22

2.3 Functional Gradient Descent Optimisation 25
2.4 Occupancy Maps . 26

2.4.1 Grid Maps . 26
2.4.2 Hilbert Maps . 28

2.5 Summary . 30

3 Bayesian Autonomous Exploration 31
3.1 Introduction . 31
3.2 Related work . 32
3.3 Exploration as an Optimisation Problem 36
3.4 Constrained Bayesian Exploration 38

3.4.1 Path Candidate Validity Assessment 39
3.4.2 Reward calculation . 40
3.4.3 CBE Algorithm . 43
3.4.4 Incorporating Uncertainty in CBE 48

3.5 Experiments . 52
3.5.1 Simulations . 52
3.5.2 Real Environments . 63

3.6 Summary . 67

4 Stochastic Path Planning in Continuous Occupancy Maps 69
4.1 Introduction . 69
4.2 Related Work . 70
4.3 Functional Gradient Path Planning 71
4.4 FGD Using Hilbert Maps . 72

4.4.1 Occupancy Gradient in Hilbert Maps 74
4.4.2 GP Paths using Hilbert maps 74
4.4.3 Stochastic Gradient . 76
4.4.4 Planning on Hilbert Maps Algorithm 77

4.5 Experiments . 80
4.5.1 Simulations . 80
4.5.2 Real Laser-scan Data . 88

4.6 Summary . 91

5 Stochastic Scalable Path Planning 92
5.1 Introduction . 92

ix

5.2 Scalable Functional Regression . 93
5.2.1 Stochastic Functional Regression 93
5.2.2 Approximate Kernel Update Rule 96
5.2.3 Targeted Sampling . 97
5.2.4 Approximate Kernel Path Planning Algorithm 99

5.3 Experiments . 100
5.3.1 Simulations . 101
5.3.2 Real Data . 105
5.3.3 Targeted Sampling . 107

5.4 Summary . 111

6 Functional Exploration 112
6.1 Introduction . 112
6.2 Related work . 113
6.3 Exploration Functional . 114

6.3.1 Notation . 114
6.3.2 Exploration Functional Objective 115
6.3.3 Mutual Information Functional UMI(ξ) 116
6.3.4 Functional Exploration Algorithm 121

6.4 Experimental Results . 123
6.4.1 Simulations . 123
6.4.2 Real World Scenario . 126

6.5 Summary . 128

7 Conclusions 130
7.1 Summary of contributions . 130

7.1.1 Constrained Bayesian Exploration 130
7.1.2 Stochastic Path Planning using Continuous Occupancy Maps131
7.1.3 Scalable Stochastic Path Planner 131
7.1.4 Functional Exploration . 132

7.2 Future work . 133
7.2.1 Stochastic Variational Inference GPC 133
7.2.2 Latent Variable Functional Path Planning 133
7.2.3 Generative Adversarial Functional Path Planning 133

Bibliography 134

x

List of Figures

1.1 Autonomous agents employed in various tasks 1
1.2 Path planning example . 2

2.1 GP prior and posterior distributions 10
2.2 A GP binary classifier example 14
2.3 Stationary covariance functions 16
2.4 One dimensional example of BO 21
2.5 One dimensional example of BO with an unknown constraint . . . 24
2.6 Occupancy maps generated using the Intel-Lab dataset 27

3.1 A schematic overview of the constrained BO exploration process . 39
3.2 CBE path length penalty term . 42
3.3 Demonstration of CBE path optimisation 44
3.4 Cross sectional view of the various components of CBE 45
3.5 Uncertainty in path execution . 51
3.6 Randomly generated unstructured worlds 53
3.7 Comparison of simulation results 54
3.8 Comparison of the reduction in map entropy 57
3.9 Repeatability tests . 58
3.10 Comparison of simulation results of map building in Venice 60
3.11 Comparison of simulation results of map building in Jerusalem old

city . 61
3.12 Venice - Comparison of reduction in map entropy 62
3.13 Jerusalem - Comparison of reduction in map entropy 62
3.14 The Wombot . 64
3.15 Map building comparison in a real environment 65
3.16 Autonomous exploration with a real robot - entropy reduction . . 66

4.1 Comparison of cost maps used in path planning 79
4.2 RKHS motion planning in a precomputed cost field 81
4.3 Continuous occupancy Hilbert map for the environment shown in

Fig 4.2 . 82
4.4 RKHS motion planning failure in planning using Hilbert maps . . 83
4.5 Stochastic functional gradient motion planner results 84

xi

4.6 Comparison of path planning methods on a continuous occupancy
map of randomly generated scenarios 86

4.7 Runtime comparison . 87
4.8 Comparison of path planning methods on a continuous occupancy

map of Intel-Lab . 89

5.1 Comparison of motion planning in cost maps vs. occupancy maps 102
5.2 Path planning example . 104
5.3 Planning in a 3D map . 104
5.4 Comparison of path planning methods on a continuous occupancy

map of the Intel-Lab . 106
5.5 Planning using adaptive sampling 109
5.6 Convergence comparison between a dynamic proposal distribution

and fixed uniform sampling distribution 110
5.7 Indicting convergence using the entropy of Q 110

6.1 Functional exploration - schematic overview 116
6.2 MI Functional gradient . 117
6.3 Difference in MI calculation . 119
6.4 A functional planning iteration 123
6.5 Comparison of exploration methods using continuous occupancy

maps. 125
6.6 Comparison of exploration methods 126
6.7 Intel-Lab - Ground truth . 127
6.8 Functional exploration in the Intel-Lab 128

xii

List of Tables

3.1 Comparison of exploration time 56
3.2 Repeatability - quantitative comparison of exploration paths orig-

inating from various starting poses 59
3.3 Comparison of the average planning and execution time 66

4.1 Comparison of path length and safety time 85
4.2 Performance comparison . 90

5.1 Simulation comparison . 103
5.2 Intel dataset comparison . 106
5.3 Adaptive sampling - Performance comparison 108

6.1 Exploration performance comparison 124

xiii

List of Algorithms

1 Bayesian Optimisation . 19
2 Constrained Bayesian Optimisation 23

3 CBE Path assessment . 46
4 CBE . 46
5 CBE Path assessment assuming partially observable pose 51

6 Functional gradient path planning using Hilbert maps 78

7 Sampling from proposal distribution Q 98
8 Updating the proposal distribution Q 99
9 Stochastic approximate kernel FGD path planner 100

10 Stochastic Functional Exploration 122

xiv

Chapter 1

Introduction

1.1 Motivation

The biologically inspired notion of autonomy is a common thread running through
the various research disciplines in robotics. The prerequisite for autonomous
robots is the ability to make decisions without explicit human intervention. Au-
tonomous agents take various forms with varying levels of autonomy. Fig. 1.1
presents several examples; Roomba, the humble vacuum cleaning robot, Waymo,
Google’s self-driving car, and the elaborate Mars Rover.
An essential aspect of autonomy is motion planning. It is a prolific branch of

robotics that has been studied for decades, producing a wide range of planning
methods, typically adapted to the system’s task and configuration. The goals of a
planner are derived from the task the robot in undertaking. As an example, goals
for a vacuum cleaning robot could be to the cover as much space as possible or to
maximise dust collection. While the robot’s task defines a context for planning,
any path planning decision must also be feasible. A basic requirement from
any path planner is safety, which encapsulates a variety of planning constraints,
which can include obstacles, joint limits or time and energy budgets. Figure
1.2 schematically illustrates a path planning problem where a robot must avoid
obstacles while traversing to its goal.

(a) iRobot’s Roomba (b) Waymo (c) Mars Rover

Figure 1.1: Autonomous agents employed in various tasks: (a) iRobot’s Roomba,
the home cleaning robot (Courtesy of Wikimedia Commons), (b)
Waymo, Google’s self-driving car (Courtesy of Wikimedia Commons),
(c) The Curiosity Mars Rover (courtesy NASA/JPL/Cornell Univer-
sity).

1

Figure 1.2: Path planning example. The robot must avoid obstacles on its way
to its goal.

Autonomous path planning presents several challenges. Discrete motion plan-
ning problems can be solved using search algorithms such as Breadth first search
or Dijkstra’s algorithm (LaValle, 2006). However, in its broadest form, a path is
represented by a continuous high-dimensional trajectory. This abstract represen-
tation transforms path planning into a complex optimisation problem, where the
objective is non-convex and constraints are convoluted.
Another challenge in planning stems from the partial observability of the state

of the robot and environment. A robot interacts with the environment using
its sensors and actuators. For example, a laser range finder measures the angle
and distance to the obstacles or an actuator moves a joint in a robotic arm to a
desired angle. However, the robot’s ability to understand and interact with its
environment is corrupted by noise. Noise may result in incorrect estimation of
the location of obstacles or may lead to an inappropriate positioning of a robotic
arm. Hence, a robust planner must incorporate the noise in the robot’s sensors
and actuators in its decision-making process.
Autonomous exploration adds another layer of complexity to motion planning.

The goal of exploration is to build a coherent representation of an unknown en-
vironment and thus is used in various remote sensing applications. But can a
robot safely and efficiently explore an unknown environment? The inherent dif-
ficulty with exploration is the partially known model of the environment. Since
this model does not have a closed-form, planning over it relies on samples. For

2

example, checking whether a trajectory is safe or not will require finitely-many
samples along the trajectory. Greater confidence in the result of this process can
be achieved by increasing the number of samples, albeit with dearer computa-
tional costs.
Evaluating the usefulness of a path also relies on samples. These evaluations

produce a score based on the expected change in the environment model given
a trajectory. However, can such a score be used in optimising path selection?
Can both safety and optimality be incorporated in this process? Most explo-
ration planners relax the general exploration problem by solving two simpler
sub-problems. Instead of optimising the overall performance over the entire path,
these methods optimise the selection of a finite set of goal points. With the choice
of goal points, a safe path can be planned using sampling-based techniques. How-
ever, it is clear from the construction of such a solution, that this approach does
not consider the usefulness of the entire trajectory.

1.2 Problem Statement

The general problem addressed in this thesis is: how to autonomously explore an
unknown environment in a safe and efficient manner.
Exploration is a high level path planning problem that solves together two

problems, where to go next and which way to take. Furthermore, any plan must
also consider time or energy budgets and constraints, such as safety or the limits
of actuators, which might be unknown.
Pragmatically, these two problems can be solved separately, deciding where

to go followed by path planning to that point. However, solving both problems
together, while more challenging, provides a solution which is more robust. A
combined solution considers the overall gains, budget and constraints along the
entire path. However, is such an abstraction of the exploration process computa-
tionally feasible? In this thesis, we will address the general exploration problem
and suggest efficient optimisation methodologies to enable a tractable online au-
tonomous exploration process.

1.3 Contributions

This thesis addresses the challenges of exploration, but also makes contributions
to path planning in general. In the following we detail each of the contributions.

3

1.3.1 Formulation of Autonomous Exploration as an Optimisation
over Continuous Paths

Exploration is an active sensing decision-making process that defines the paths a
robot should traverse in order to build a high fidelity model of the environment.
Optimal exploration decisions must consider not only where to go next, but also
how to get there. These decisions encapsulate the gains and risks along the
entire path. However, as this is a computationally intensive process, exploration
is formulated as an optimisation over continuous paths. In this formulation,
both the objective and constraints are considered expensive-to-evaluate black-
box functions that are learned during optimisation.

1.3.2 Constrained Bayesian Exploration

Constrained Bayesian Exploration (CBE) is an innovative method to solve the ex-
ploration problem, i.e., optimise path decisions whilst keeping the robot safe and
within its dynamic constraints. CBE provides a principled and robust approach
for optimising exploration using Bayesian optimisation. As such, CBE guarantees
convergence to a local solution and follows well known Bayesian optimisation’s
regret bounds (Srinivas et al., 2010).

1.3.3 Trajectory Optimiser for Continuous Occupancy Maps

Constrained Bayesian exploration offers a principled optimisation paradigm. How-
ever, it is effective only for low dimensional path representations, resulting in
limited expressivity of the optimised trajectories. In comparison, path planners,
which resolve a path between a start and goal points, can produce paths where
the representation is only limited by the planning budget of the planner. Path
planning using occupancy map is predominately performed by sampling-based
planners such as Rapidly exploring Random Trees (RRT). While these planners
are highly successful in finding safe paths, path optimisation is limited to the
path’s geometric properties, such as length or execution time. Therefore these
planners can not optimise other objectives such as mutual information. Trajec-
tory optimisers, on the other hand, directly optimise an objective function such
as control cost or safety margins. However, these methods require a fully defined
and precomputed cost map and cannot work with a partially observed model,
such as occupancy maps, where parts of the model are unknown as they were
never observed. The method presented in Chapter 4 provides a novel path op-
timisation approach for continuous occupancy maps. Effectively, this method
extends previous work done on discrete precomputed cost maps to a continuous
environment representation built from observations.

4

Unlike other functional gradient path planning techniques (e.g. (Marinho et al.,
2016), (Zucker et al., 2013)), the stochastic functional gradient planner does not
commit to a predetermined resolution, whether spatial or parametric. The optimi-
sation update rule is replaced by a stochastic gradient approach. The stochastic
samples allow flexible support for the path, which is maintained using a novel
non-parametric path representation based on Gaussian processes.

1.3.4 Stochastic Trajectory Optimisation over an Expressive and
Tractable Path Model based on Kernel Approximations

A non-parametric path representation offers great flexibility which works well
with the stochastic updates required by path planning over occupancy map. The
main disadvantage of such a representation is its high computational cost. Kernel
approximation techniques, on the other hand, form an expressive and tractable
non-linear model for path representation which uses fixed cost for updating and
querying. Furthermore, a path model based on kernel approximation can be
efficiently optimised using randomly drawn samples, which does not commit to a
predetermined fixed sampling resolution.

1.3.5 Developing a Mutual Information Variational Objective for
Continuous Occupancy Maps

Optimising exploration paths requires expensive forward-simulations to estimate
MI over the entire map for each evaluated path. Hence, existing exploration
optimisation algorithms optimise the selection of a discrete set of waypoints. We
propose instead a mutual information (MI) variational objective which replaces
the common and expensive approach of computing MI explicitly over the entire
map for each evaluated path. This variational exploration method modifies the
path using MI functional gradients without the need to compute MI explicitly.
The MI gradients are obtained from local perturbations on the continuous map
model which are derived in closed-form.

1.3.6 Next Best Path Exploration Method

An information-driven variational framework for safe autonomous exploration in
continuous occupancy maps. Path optimisation is performed directly in the space
of trajectories using a combined objective; which considers safety, efficiency and
information. The method is invariant to the choice of path representation as it
uses stochastic functional gradient descent to optimise the objective along the
entire path.

5

1.4 Outline

This chapter reviewed challenging aspects in path planning that affect robotic
autonomy, and presented the problem addressed in this thesis of safe and efficient
exploration.
Chapter 2 provides the background necessary for understanding this thesis.

Gaussian process regression, classification and model selection are reviewed in
Section 2.1 before describing the unconstrained and constrained Bayesian opti-
misation framework in Section 2.2. Section 2.3 provides an overview of functional
gradient descent optimisation methods for path planning. Discrete and continu-
ous occupancy map representations are detailed in Section 2.4.
Chapter 3 presents the constrained Bayesian exploration method, where Bayesian

optimisation is employed to optimise safe information collection over continuous
paths. The problem is introduced in Section 3.1 and Section 3.2 reviews related
work. Section 3.3 formally describes the problem of safe autonomous exploration
for building occupancy maps, and Section 3.4 introduces the basic building blocks
of constrained Bayesian exploration and details the algorithms behind it. Evalu-
ation of the performance of constrained Bayesian exploration, in simulation and
with a real robot, are described in Section 3.5, which demonstrate the advantages
of this method over other exploration techniques.
Chapter 4 introduces the stochastic path planner which optimises trajectory

selection using continuous occupancy maps. Section 4.1 provide motivation for a
stochastic trajectory optimiser for occupancy maps. Section 4.2 reviews related
work in path planning in occupancy maps. The functionals used in path planning
and the required modifications for Hilbert maps are described in Section 4.3 and
Section 4.4, respectively. Experiments in Section 4.5 demonstrate the necessity
of stochastic samples to ensure convergence of path optimisation.
In Chapter 5 a scalable form of the stochastic path planner is introduced. Sec-

tion 5.1 reviews the motivation for such a planner, which is an improvement of
the stochastic path planner of Chapter 4. Section 5.2 derives the optimisation
update rule and presents the stochastic functional algorithm under a kernel ap-
proximation paradigm. Section 5.2 also reviews a targeted sampling method that
accelerate optimisation and provide a measure for functional optimisation conver-
gence. Section 4.5 compares the performance of the approximate kernel planner,
using different kernel approximation techniques, with other planning method for
occupancy map. It also demonstrates the effectiveness of the targeted sampling
schedule.
Chapter 6 derives a functional exploration algorithm for continuous occupancy

maps that enables optimisation of an information functional over continuous

6

paths. Literature on autonomous exploration in continuous occupancy maps
is surveyed in Section 6.2. Section 6.3 describes in detail the functional explo-
ration algorithm, and the mutual information gradient derived from perturbation
on the continuous map. In Section 6.4, the functional exploration algorithm is
benchmarked against other exploration methods for continuous occupancy maps.
The thesis concludes in Chapter 7 with a summary of the work presented in

Section 7.1 and directions for future research in Section 7.2.

1.5 List of Publications

The following is the list of publications contributing to this thesis and the corre-
sponding chapters.

• G. Francis, L. Ott, R. Marchant and F. Ramos. Occupancy Map Building
through Bayesian Exploration. In accepted for publication in the Interna-
tional Journal of Robotics Research, 2019. Publication summarises research
presented in Chapter 3.

• G. Francis, L. Ott and F. Ramos. Stochastic Functional Gradient for Mo-
tion Planning in Continuous Occupancy Maps. In Proceedings of IEEE
International Conference on Robotics and Automation, 2017. Appears in
Chapter 4.

• G. Francis, L. Ott and F. Ramos. Stochastic Functional Gradient for Mo-
tion Planning in Continuous Occupancy Maps. In Proceedings of the Third
Machine Learning in Planning and Control of Robot Motion Workshop,
IEEE International Conference on Robotics and Automation, 2018. Ap-
pears in Chapter 5.

• G. Francis, L. Ott and F. Ramos. Fast Stochastic Functional Path Planning
in Occupancy Maps. In to appears in IEEE International Conference on
Robotics and Automation, 2019. Appears in Chapter 5.

• G. Francis, L. Ott and F. Ramos. Functional Path Optimisation for Explo-
ration in Continuous Occupancy Maps. In Proceedings of the International
Symposium on Robotics Research , 2017. Appears in Chapter 6

7

Chapter 2

Background

In this chapter we present the theoretical background and notation required to
establish the planning algorithms presented in this thesis. As exploration, in its
general form, is an optimisation problem over continuous domains, we introduce
two global optimisation methods which we extend in subsequent chapters for path
planning and safe autonomous exploration. In addition, we briefly introduce the
occupancy mapping methods that are used in the various planning algorithms.

2.1 Gaussian Processes

A Gaussian process (GP) is a Bayesian non-parametric method used for regres-
sion and classification. GPs provide a structured mechanism that extends the
Gaussian probability distribution, which is defined over a finite set of random
variables, to a distribution over functions, i.e. an infinite set. GPs generate a
non-parametric, non-linear tractable regression model that can produce proba-
bilistic predictions anywhere in the model’s domain. This trait is especially useful
in autonomous planning problems, as will be shown throughout this dissertation.
The following section briefly reviews the theory of non-linear regression and

classification using GPs. It then presents the covariance functions used in the
various motion planning algorithms used in this work followed by a short de-
scription of how to learn the hyper-parameters of these functions. For extensive
discussions on the various aspects of GPs, we refer the reader to the work of
Rasmussen and Williams (2006).

2.1.1 Gaussian Process Regression

GPs generate a regression model of a function f based on observations. The model
can be queried at any location x to produce a random variable f(x). The GP
model is completely defined by a mean function m(x) and a covariance function
k(x,x′) and is notated as follows;

f(x) ∼ GP(m(x), k(x,x′)|θ), (2.1)

8

where θ is a set of hyper-parameters of the mean and covariance functions.
The GP regression model is updated by function observations. Each obser-

vation is defined by a location xi ∈ RD and the observed, potentially corrupted
by noise, function value yi ∈ R. A GP maintains a dataset of N observations
D = {X, Y }, where X = {xi}Ni=1 and Y = {yi}Ni=1, which is used during inference.
The observed target values y are typically considered to be corrupted with noise,
most commonly assumed Gaussian with zero mean and variance σ2

n:

y = f(x) + ε ε ∼ N (0, σ2
n) (2.2)

The key concept behind GP inference is that any finite set of function values,
i.e. the likelihood, has a joint Gaussian distribution. Therefore the predicted
function values f(X∗) at locations X∗ and previous function observations f(x∗)
follow the prior GP distribution Y

f(X∗)

 ∼ N
 m(X)

m(X∗)

 ,
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

+ σ2
nI

 , (2.3)

where m(X) and m(X∗) are the mean function values at X and X∗, respectively.
I is the identity matrix and K is the covariance matrix, which is computed
between two sets of inputs. Generally, K(X,X∗) denotes a matrix holding the
covariance values of all pairs of inputs from X and X∗:

K(X,X∗)(i,j) = k(xi, x∗j) ∀xi ∈ X, x∗j ∈ X∗. (2.4)

Equation (2.3) implies that any finite set of function values is jointly Gaussian.
This trait enables tractable queries of the GP model. Given observations D,
the predicted function values at locations X∗ can be tractably computed from
observations by the conditional distribution, f ∗|X∗, X, Y ∼ N (µ∗,Σ∗), where the
predictive mean is:

µ∗ = m(X∗) +K(X∗, X)[K(X,X) + σ2
nI]−1(Y −m(X)), (2.5)

and the predictive variance is:

Σ∗ = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗)). (2.6)

Figure 2.1 depicts the covariance matrices of the GP prior and posterior and
function samples from these distributions. Before data was observed, the prior
covariance, Fig. 2.1a, which is based on an RBF kernel dictates smooth function
samples around a zero mean, Fig. 2.1c. When data is incorporated in the GP,

9

0.0

0.2

0.4

0.6

0.8

1.0

(a) Prior covariance matrix

0.1

0.0

0.1

0.2

0.3

(b) Posterior covariance matrix

x

f

Real
Predictive mean
Samples

(c) Function samples from prior

x

f

Real
Observations
Predictive mean
Samples

(d) Function samples from posterior

Figure 2.1: GP prior and posterior distributions: (a) prior covariance matrix, (b)
posterior covariance matrix, (c) function samples from prior, and (d)
samples from posterior.

the covariance, Fig. 2.1b, decreases around the observed locations. In effect, the
observed data impose constraints on the GP resulting in function samples, Fig.
2.1d, that must comply with these observations.

2.1.2 Gaussian Process Classification

The GP regression paradigm explicitly assumes a Gaussian likelihood model.
Given a Gaussian prior, inference has an analytic and tractable form. However,
this model is unsuitable for classification, as the outputs of the classifier are
categorical. Applying a non-Gaussian likelihood model, on the other hand, breaks
the tractability of the GP framework. Consequently, GP classifiers employ one
of several approximation methods (Rasmussen and Williams, 2006).
GP classifiers use a discriminative classification model. Given a set of possible

classes y = C1, ..., CC , the classifier is defined by the conditional distribution
p(y|x). Modelling p(y|x) follows the same approach taken by logistic regression.
Meaning p(y|x) = σ

(
f(x)

)
), where f(x) ∈ (−∞,∞) is a latent model and σ(f) is

10

a "squashing" function which constrains the classifier output to a valid probability
distribution [0, 1] range. This two-step process for a binary classifier is depicted
in Fig. 2.2. First, the categorical data is fitted into a latent regression model as
shown in Fig. 2.2a. In a binary case, observations can be defined as C−1 = −1
and C1 = 1. The latent function, in black, follows standard GP regression,
producing p(f ∗|X, y,x∗). Class label prediction, shown in Fig. 2.2b, is then
obtained by squashing the latent GP output to a [0, 1] range using a deterministic
function, σ(f). A common choice for σ(f) is the normal cumulative distribution
function, ΦG(f) which is also known as the probit model, or the logit function,
σ(f) =

(
1 + exp(−f)

)−1
.

The squashing function σ(f) constrains the output of the GP into a valid [0, 1]
range. However, σ(f) is a deterministic point estimate of class label, which does
not consider the GP’s model probability distribution. A full Bayesian treatment
of the two-step classification requires to marginalise over the GP’s latent function
distribution. We starts by defining the distribution of the latent function at a
query location x∗ as:

p(f ∗|X, y,x∗) =
∫
p(f ∗|X,x∗, f)p(f |X, y)df. (2.7)

Equation (2.7) is the latent-function interpretation for GP inference (Rasmussen
and Williams, 2006). In GP regression, p(f |X, y) is the posterior distribution of
latent function given data D, which is assumed Gaussian. However in classifica-
tion, p(f |X, y) is no longer Gaussian. Given a distribution on the latent function
values, class prediction is obtained through the expectation:

π∗ ≡ p(y∗ = C1|X, y,x∗) =
∫
σ(f ∗)p(f ∗|X, y,x∗)df ∗. (2.8)

Since p(f |X, y) and σ(f) are non-Gaussian, Eqs. (2.7) and (2.8) lose the an-
alytical tractability of the GP regression model, and as a result, these integrals
must be approximated. The most straightforward approach relies on Monte-Carlo
numerical approximation (Neal, 1998), although such methods incur a cubic com-
putational complexity. To reduce complexity, GP classification typically relies on
one of the following approximation methods.

The Laplace Approximation

The Laplace approximation (Rasmussen and Williams, 2006) fits a Gaussian ap-
proximation q(f |X, y) to the non-Gaussian posterior p(f |X, y) of Eq. (2.7). This
approximation takes advantage of the fact that a second order Taylor expansion

11

of the log posterior log
(
p(f |X, y)

)
is a Gaussian:

q(f |X, y) ∼ N (f |f̂ , A−1). (2.9)

Here, f̂ = argminf p(f |X, y) is obtained iteratively by maximising the poste-
rior. A−1 is the Hessian term of the posterior and can be derived from the
un-normalised posterior p(f |X, y) ≈ p(y|f)p(f |X):

A = ∇∇ log
(
q(f |X, y)

)
= ∇∇ log

(
p(y|f)

)
−K−1, (2.10)

where the likelihood term p(y|f) depends on the choice of "squashing" function.

Expectation Propagation

The expectation propagation (EP) method (Minka, 2001) is a general sequential
moment matching approximation method. To apply EP to GP classification, the
posterior of the latent function f is approximated by a Gaussian distribution. In
order to maintain tractability, EP perform a sequential approximation based on
a single observation at a time. Using Bayes’ rule the posterior distribution over
f is as follows:

p(f |X, y) = 1
Z
p(f |X)p(y|f), (2.11)

where Z is a normalisation term. Since p(y|f) is a non-Gaussian likelihood func-
tion, the posterior is approximated using a Gaussian distribution, q(f |x, y) =
N (µ,Σ). The parameters µ and Σ can be found by minimising the Kullback-
Leibler (KL) divergence KL

(
p(f |X, y)||q(f |X, y)

)
. However, since this is also an

intractable computation EP factorises the posterior and approximates each factor
qi using a Gaussian:

q(f |X, y) ≈ 1
ZEP

p(f |X)
N∏
i=1
N (fi|µi, σi). (2.12)

The parameters of each factor, µi and σi are found by moment matching q−1(fi)p(yi|fi),
where q−1(fi), also known as the cavity distribution, is the distribution on all
cases except i. The computational cost of updating factor parameter is quadratic
O(N2), hence updating all factors requires O(N3).

Probabilistic Least-Squares Classifier

The probabilistic least-squares classifier (PLSC) is an highly tractable approxi-
mation to the classification problem. While other GPCs approximate the non-
Gaussian posterior of a classifier, PLSC treats it as a regression problem as-

12

suming a Gaussian noise model. While such an assumption is not obvious for
classification, experimental results (Rifkin and Klautau, 2004) show comparable
performance to SVM.
The goal of the PLSC is to estimate p(C|x) using a function f . Following the

SVM literature, we define labels C+ = +1 and C− = −1 with corresponding
probabilities p(C+|x) and p(C−|x), respectively. For any given x, the classi-
fier’s output is a Bernoulli random variable with a probability q ≡ p(C+|x) and
p(C−|x) = 1− q. Hence, the squared error is E(f) = q(f − 1)2 + (1− q)(f + 1)2,
which is minimised when f = 2q− 1. This result provides asymptomatic guaran-
tees that the output of the PLSC estimates p(C|x) correctly (Rifkin and Klautau,
2004).
To represent p(C|x), the approximating function f(x) should be sufficiently

flexible. The desired flexibility is attained by extending the least-squares classi-
fier using the kernel trick, as done in SVMs (Poggio and Girosi, 1990; Suykens
and Vandewalle, 1999). While the output f of a GP regressor lies in the range
(−∞,∞), a probabilistic output [0, 1] is achieved by post-processing f through
a squashing sigmoid (Platt, 1999). Since f is modelled by a GP, f(x∗) ∼
N (f |µ(x), σ2(x)). Using a Gaussian sigmoid, the probability of predicting a
class label C∗ = C+ at x∗ is:

p(C∗ = C+|x∗, X, y, α, β) =
∫

ΦG

(
+ 1(αf + β)

)
N
(
f |µ(x∗), σ2(x∗)

)
df, (2.13)

where α and β are hyper-parameters of the classifier. The integral of Eq. (2.13)
can be computed in closed-form as:

p(C∗ = C+|x∗, X, y, α, β) = Φ
+1(αµ(x∗) + β)√

1 + α2σ2(x∗)

 . (2.14)

2.1.3 Covariance Functions

Previous sections reviewed the use of GPs in regression and classification prob-
lems. In either case, a latent Gaussian model p(f |X, y) is inferred from the data.
The covariance function is the heart of that inference process.
Formally, a GP is fully defined by its mean m(x) and covariance k(x,x′) func-

tions. While m(x) depends only on location x, the covariance function specifies
the similarity between two inputs. This abstract notion of similarity is fundamen-
tal for GP learning. The choice of covariance function encodes prior assumptions
on the underlying process, such as smoothness and differentiability.
The covariance function k defines the covariance matrix K. Given a set of

13

x

f

Latent function
Observations

y=C1

y=C0

(a) Latent function.

x

f

Squashed function
True boundary
Observations

y=C1

y=C0

(b) Squashed classifier model, p(y|x).

Figure 2.2: A GP binary classifier example. A GP classifier uses two-step process
to produce a valid discriminative classification model, p(y|x). (a) A
latent regression model is produced based only the categorical obser-
vations. (b) A squashing function transforms the output of the latent
regression step from a (−∞,∞) domain to a valid probability in the
range [0, 1].

input points X = {xi|i = 1, ..., N}, one can define the covariance matrix as an
N×N , symmetric and real-valued matrix, where each element Ki,j = k(xi, xj). A
valid covariance function is positive semi-definite, i.e. K satisfies vTKv ≥ 0 for all
vectors v ∈ RD. The rich library of covariance functions available in the literature
(Rasmussen and Williams, 2006) can be categorically grouped into stationary
and non-stationary functions. A stationary covariance function is invariant to
translation in the input space, meaning it is only a function of r ≡ |x − x′|.
Non-stationary covariance functions (Rasmussen and Williams, 2006) employ a
more general dependence in x and x′. This thesis only utilises stationary kernels,
such as the ones described next and visualised in Fig. (2.3).
Stationary covariance functions only depend on r. However, the design of co-

variance function allows for additional free parameters, also called hyper-parameters.
Most stationary covariance functions use at least two hyper-parameters, ` and σf .
σ2
f is the intrinsic signal variance, which indicates the maximum variance a GP

can produce1.
The lengthscale ` can be considered as a characteristic distance of influence. In

effect, ` scales r into effective distance of influence r` = r
`
. When using a single `

value for D dimensions of r, the kernel is considered isotropic. However, in most
cases only part of the input r affects the covariance, which can not be captured
by a single `. Therefore, a more general approach for scaling r is used:

r2
`(x,x′) = (x− x′)TM(x− x′), (2.15)

1Under the assumption of zero target noise

14

where M is positive semidefinite matrix. Automatic relevance determination
(ARD) (Neal, 1996) uses diagonal M = diag(`−2), where ` is a vector of pos-
itive values. In effect, ARD assigns different lengthscales for various inputs.

Radial Basis Function

The radial basis function (RBF), also known as squared exponential (SE) kernel,
is widely-used within machine learning. the RBF kernel is infinitely differentiable,
which leads to very smooth functions, as shown in Fig. (2.3). Its general form is:

k(r`) = σf exp
(−r2

`

2

)
, (2.16)

Matérn class

This is a family of covariance functions with the general form (Rasmussen and
Williams, 2006):

kν(r`) = 21−ν

Γ(ν)
(√

2νr`
)K
ν

(√
2νr`

)
, (2.17)

where ν is a non-negative parameter of the covariance function and Kν is a
modified Bessel function of the second kind.
For several values of ν, the Matérn covariance function take a simpler form;

kν=1/2(r`) = exp(−|r`|), (2.18)

which forms a non-differentiable covariance.

kν=3/2(r`) = (1 +
√

3r`) exp(−
√

3|r`|), (2.19)

which is once differentiable, and

kν=5/2(r`) = (1 +
√

5r` + 5
3r2

`) exp(−
√

5|r`|), (2.20)

which is twice differentiable. Figure 2.3a provides a comparison between these
covariance functions, and the implication on the differentiability of the process.

2.1.4 Parameter Learning

A crucial aspect of GP is model selection, as this determines how well the model
can generalise and fit the data. This is typically a semi-automatic process. Some
properties, such as the covariance function(s), is often chosen a-priori by the user.
Other properties, such as the hyperparameters θ, are learned from the available
data. The two most commonly used methods for training a model are to maximise

15

x

k(
x)

RBF

Matern1
2

Matern3
2

Matern5
2

(a) Covariance functions.

x

f

RBF

Matern1
2

Matern3
2

Matern5
2

(b) Sampled functions, p(y|x).

Figure 2.3: The covariance function defines the properties of a GP, such as dif-
ferentiability and smoothness. (a) Stationary covariance functions.
(b)Random functions sampled from a GP prior based on the covari-
ance functions shown in (a).

the marginal likelihood over the data or perform cross-validation (Rasmussen and
Williams, 2006).

Marginal Likelihood

The marginal likelihood, often referred to as evidence, is defined as p(Y |X, θ).
It is used in Bayesian model selection, as it automatically trades-off between the
model fit and its complexity. The general integral form of the marginal likelihood
is often intractable. However, in a GP, the log of the marginal likelihood takes a
closed-form:

log
(
p(Y |X, θ)

)
= −1

2Y
TK−1Y − 1

2 log(|K|)− N

2 log(2π). (2.21)

Here, the matrix K = k(X,X|θ) and |K| is its determinant. Training of the
hyperparameters is then defined as the optimisation of Eq. (2.21):

θ∗ = argmax
θ

log
(
p(Y |X, θ)

)
. (2.22)

One can identify two explicit parts to Eq. (2.21), the data fit component Y TK−1Y
and complexity term log(|K|) that depends solely on the covariance function. Op-
timising of their sum in Eq. (2.22) balances model fit and complexity, as desired
in Bayesian model selection.

16

Cross-validation

Cross-validation (CV) (Bishop, 2006), often also referred to as S-fold CV, is a
common method for model training in machine learning. S-fold CV partitions
the data into S disjoint sets. It uses an iterative procedure that uses S − 1 sets
to train the model, which is then evaluated on the remaining set. This process
is repeated S times with CV alternates the sets used for training and validation.
leave-one-out cross-validation (LOOCV) is a special case of S-fold CV where S
is the size of the dataset, S = N .
Using cross-validation for GP model selection takes advantage of the tractable

nature of the normal distribution, where the predictive probability is given in
closed-form (Rasmussen and Williams, 2006). Leaving out the ith training point
in D, the predictive log probability becomes:

log
(
p(yi|X, Y−i, θ)

)
= −(yi − µi)2

2σ2
i

− 1
2 log(σ2

i)−
1
2 log(2π), (2.23)

where Y−i indicates all targets in Y except of the ith observation. When computed
over the entire dataset, the LOOCV log predictive probability is given by:

LLOOCV (X, Y, θ) =
N∑
i=1

log
(
p(yi|X, Y−i, θ)

)
. (2.24)

LLOOCV can be considered as a pseudo-likelihood function, which depends on
the hyperparameters θ. Hence, it can be used as a loss during model selection.
Training is, then, done by maximising LLOOCV :

θ∗ = argmax
θ

LLOOCV (X, Y, θ). (2.25)

2.2 Bayesian Optimisation

Bayesian optimisation (BO) (Brochu et al., 2010) is a powerful global optimiser,
which is most effective when the objective function does not have a closed-form
expression, is costly to evaluate, and there is no access to derivative information.
Given a limited set of noisy observations and prior beliefs about the properties
of the objective function, BO exploits Bayes’ theorem to determine the most
effective course of action.
A motivating example for BO can be found in the field of experimental design,

such as in the development of a new drug. There are many factors that affect
the potency of a drug; for instance its ingredients and manufacturing process.
These factors, and their cross-interactions, form an enormous and complex set
of potential drugs. However, the potency of each drug is a-priori unknown. As-

17

sessing a new drug is expensive in both time and money. Therefore, it is not
feasible to explore the entire space of possibilities. BO provides a mechanism
to address this problem. It uses the observations from previous experiments to
build a probabilistic model of the problem at hand. It then suggests additional
experiments that efficiently explore the space of possibilities. Consequently, the
number of experiments required in order to find the optimum is reduced.

2.2.1 Unconstrained optimisation

Formally, the goal of BO is to find the extremum of a function f , and thus can
be written as the following minimisation problem:

x∗ = argmin
x

f(x). (2.26)

f is a black-box function, meaning its exact form is unknown to the optimiser.
Moreover, the only knowledge of f is obtained from a finite set of noisy ob-
servations. With only a limited access to f , BO replaces Eq. (2.26) with an
iterative surrogate optimisation process. The building blocks of this process are
the surrogate and acquisition functions, which will be described next.
The surrogate function is the estimated model of the objective function f .

It holds our current belief of the underlying function, which is inferred from
observations and prior knowledge of its properties. Gaussian processes (GPs)
are generally used for modelling the surrogate function due to their Bayesian
non-parametric properties and analytical form. When modelled using a GP, the
surrogate function is represented by the posterior mean and variance.
The acquisition function s(x) guides the selection of new observation points

to sample from the unknown objective function. Based on the current surro-
gate model of the objective function, it provides a quantitative measure for the
probability of finding the global extremum in a specific location. The Bayesian
optimiser uses this measure as a utility proxy to select the next observation point.
In essence, the original optimisation problem, Eq. (2.26), is transformed into an
iterative optimisation process over the acquisition function with the aim of finding
the next nth sampling point:

xn = argmin
x

s(x). (2.27)

The pseudo code shown in Algorithm 1 outlines the typical steps performed
by BO. In each iteration, a new sampling location, xn, is found by minimising
the acquisition function s(x). BO evaluates the objective function, f , at xn
and checks whether a new extremum has been found. In addition, the new

18

Algorithm 1: Bayesian Optimisation
Input: f(x): Objective function.

1 s(x): Acquisition function.
2 f ∗min: Current minimum.

Output: xmin
3 for n = 1, 2, 3, ... do
4 Find: xn ← argmin

x
s(x)

5 Sample objective function: fn ← f(xn)
6 Update GP model with new observation (xn, fn)
7 if fn < f ∗min then
8 xmin ← xn
9 f ∗min ← fn
10 end
11 end

observation, fn, updates the surrogate (GP) model, which holds our belief of
f . The updated model is then used on the next iteration of BO. By choosing an
appropriate GP model and acquisition function, BO keeps the number of function
evaluations low, leading to an efficient optimisation process.
A one dimensional example of BO is depicted in Fig. 2.4. The optimiser has

no knowledge of the objective function (blue line) other than the noisy samples
(red asterisks). A GP model is generated based on these observations. The model
is accurate and confident around the sampling points, where the posterior mean
(black dashed line) converges to the objective function values and its variance
(grey shade) is low. Initially, the LCB acquisition function resembles the GP
variance, which leads to an aggressive exploratory behaviour at the beginning of
the optimisation. As the model becomes more confident, the optimiser focuses
its search around the global minimum.
Although Eq. (2.27) is still a non-convex optimisation problem, using an

appropriate acquisition function makes the search for the extremum more effi-
cient. A proper acquisition function balances the exploration-exploitation trade-
off. Therefore, the optimisation process considers areas where it believes the
extremum lies as well as promising location in unexplored regions. Consequently,
the number of expensive evaluations of the objective function is kept to a min-
imum. Brochu et al. (2010) list the most commonly used acquisition functions.
Based on the predictive mean µ and variance σ2 defined in Eqs. (2.5) and (2.6),
the acquisition functions take the following analytic form:

1. Expected Improvement (EI). EI is defined as the expected difference from
the true extremum. On its nth iteration, the optimiser finds a location that
maximises the expected difference from the true extremum, f(xmin). In a

19

minimisation problem, finding f(xmin), EI is defined as follows:

EI(x) = E{f(x)− f(xmin)}. (2.28)

We follow a slightly modified version of EI that uses the predicted mean,
f ∗min, which is inferred from the GP model (Gramacy and Lee, 2011). Fur-
thermore, we exploit the GP structure to produce a concise closed-form for
EI:

EI(x) =

−σ(x)[ZΦG(Z) + φG(Z)] σ(x) > 0

0 σ(x) = 0,
(2.29)

where φG and ΦG represent the normal distribution PDF and CDF, respec-
tively. σ(x) is the standard deviation of the posterior distribution in x. Z
is given by

Z =

(f ∗min − µ(x)− ζ)/σ(x) σ(x) > 0

0 σ(x) = 0
,

where ζ is a user-defined parameter that balances the exploration-exploitation
trade-off.

2. Lower Confidence Bound (LCB). The LCB lacks the rigour of EI. How-
ever, its user-defined parameter κ provides a simple mechanism to adjust
the exploration-exploitation trade-off:

LCB(x) = µ(x)− κσ(x). (2.30)

Srinivas et al. (2010) propose a schedule for κ that provides no-regret bounds
for BO. In this work, however, we follow the work of (Marchant and Ramos,
2014), and fix κ.

20

Figure 2.4: One dimensional example of BO. The continuous blue line is the un-
known objective function. The red asterisks are samples (with added
noise) of this function. The black dashed line and shade represent
the posterior GP mean and variance calculated from samples, respec-
tively. The yellow shade is the acquisition function (LCB) which is
scaled and with an offset for visualisation purposes. The red verti-
cal dash-dot line represents the next sampling locations, while blue
downwards arrow marks the location on the current minimum.

21

2.2.2 Constrained BO

Constrained BO handles optimisation with unknown constraints. Similarly to
the optimisation process discussed in the previous section, our only knowledge
of the underlying constraints stems from observations. Furthermore, the objec-
tive function is undefined wherever the constraints are violated. To tackle the
uncertainty in both objective function and constraints, we employ a constraint
weighted acquisition function (Gelbart et al., 2014). Consequently, the optimi-
sation balances the expected reward with the confidence in the constraint model
and its associated risk.
In the literature, there are two different modifications to the basic BO acquisi-

tion functions relevant to our case. Gramacy and Lee (2011) propose a variant of
EI called integrated expected conditional improvement (IECI). IECI represents
the marginal effect that a new observation will have on the overall uncertainty of
the GP model regardless of its actual value and is defined as

IECI(x) =
∫
E{EI(x′|x)}c(x′)dx′ (2.31)

where p(x′) is an arbitrary probability density function. To incorporate con-
straints, Gramacy and Lee integrated the conditional improvement with p(x′) as
the probability density of the constraint. The main caveat of this method is its
scalability. Calculating the integral over the expected conditional improvement
requires heavy Monte Carlo sampling of the GP model. Hence, IECI is not a
practical method for real-time problems. Furthermore, this method might not
be suitable for most standard constrained optimisation problems since it assumes
that the objective function can be sampled in regions where the constraint is
violated.
The other modification to BO, which we use in this work, is the constraint

weighted acquisition function proposed by Gelbart et al. (2014). The confidence
in the validity of the solution scales the expected utility of the acquisition function.
With independent constraints Λk, a Constrained LCB (CLCB) is thus defined
as:

CLCB(x) = LCB(x)
K∏
k=1

Pr(Λ(x)) < 1− δk, (2.32)

where δk is a user defined constrained confidence bound over constraint k.
In order to stochastically model the constraints Ck(x), we employ GPCs, gk,

to provide an estimate for the likelihood constraint k is satisfied within the user

22

Algorithm 2: Constrained Bayesian Optimisation
Input: f(x): Objective function.

1 s(x): Acquisition function.
2 gk(x): k-th constraint function.
3 δk: k-th constraint tolerance.
4 f ∗min: Current minimum.

Output: xmin
5 for n = 1, 2, 3, ... do
6 feasible region C: C(x) = ∏K

k=1 Pr(gk(x) < 1− δk)
7 Find next sample point:
8 xn ← argmin

x∈C
s(x)∏K

k=1 Pr(gk(x) < 1− δk)
9 if xn valid then
10 Sample objective function: fn ← f(xn)
11 Update GP model with new observation (xn, fn)
12 If fn < f ∗min: xmin ← xn
13 end
14 Update GPCs with new observation
15 end

defined confidence bounds δk:

CLCB(x) = LCB(x)
K∏
k=1

Pr(gk(x) < 1− δk). (2.33)

Incorporating learned constraints complicates the optimisation algorithm as can
be seen from the pseudo code in Algorithm 2. Since the objective function is
undefined in regions where the constraints are not satisfied, a preprocessing step
finds feasible and valid regions. Within these regions, the optimiser finds the
next sampling location using the utility function defined in Eq. (2.33). With
every new observation point, the constraints are assessed and their respective
GPC model is updated. The GP model for the goal function, on the other hand,
is only updated when all constraints are met.
A one dimensional example for constrained BO is shown in Fig. 2.5. The

unknown constraint is indicated by the area shaded in green, while its predictive
probability is represented by the blue area. As with the regression of the objective
function, the confidence in the constraints value, whether valid or invalid, is
higher around observations. As evident from Fig. 2.5, BO tries to evaluate
points outside the constrained region, however this only updates the constraint
model while the objective GP model is unchanged (hence uncertainty is high).
With every observation, BO becomes more confident in the model of the objective
function, borders of the constraint, and the location of the global minimum.

23

Figure 2.5: One dimensional example of BO with an unknown constraint. The
continuous blue line is the unknown goal function and the green area
indicates the unknown constraint. The green diamonds are obser-
vations of violated constraint, hence the goal function can not be
sampled. The red asterisks are samples (with added noise) of the
goal function, where the constraint is met. The black dashed line and
shade represent the posterior GP mean and variance calculated from
samples, respectively. The area in blue is the constraint likelihood
function, where high values stand for high probability that the con-
straint will be satisfied. The yellow area is the basic unconstrained ac-
quisition function (LCB). Both acquisition and constraint likelihood
functions are scaled and with an offset for visualisation purposes. The
red vertical dash-dot line represents the next sampling locations, while
blue downwards arrow marks the location on the current minimum

24

2.3 Functional Gradient Descent Optimisation

Functional gradient descent (FGD) is a variational framework to optimise non-
linear models. It has been successfully applied to motion planning problem in
recent years with the main objective of producing safe, collision-free paths.
We first introduce notation. A path, ξ : [0, 1] → C ∈ RD, is a function that

maps a time-like parameter t ∈ [0, 1] into configuration space C. We define an
objective functional U(ξ) : Ξ→ R that returns a real number for each path ξ ∈ Ξ.
The objective functional is used in the optimisation process to capture the path
optimisation criteria such as smoothness and safety. The goal of the optimisation
process is to find a ξ that minimises the overall costs:

ξoptimal = argmin
ξ
U(ξ). (2.34)

Regardless of the exact choice of cost functional U(ξ), ξ can be optimised by
following the functional gradient. Similar to other gradient descent methods,
optimisation is performed iteratively. The functional gradient update rule is
derived from a linear approximation of the cost functional around the current
trajectory, ξn:

U(ξ) ≈ U(ξn) +∇ξU(ξn)(ξ − ξn), (2.35)

where n indicates the iteration number. To ensure convexity of the objective
function, we add a regularisation term based on the norm of the update:

ξn+1 = argmin
ξ

U(ξn) + (ξ − ξn)T∇ξU(ξn) + 1
2ηn
‖ξ − ξn‖2

A. (2.36)

The regularisation term ‖ξ−ξn‖2
A = (ξ−ξn)TA(ξ−ξn) is the squared norm with

respect to a metric tensor A and is used to prevent over-confident updates. ηn
is a user-defined learning rate which must satisfy the Robbins-Monro conditions
(Robbins and Monro, 1951); ∑n=1 η

2
n < ∞ and ∑

n=1 ηn = ∞. A closed form
solution of Eq. (2.36) is derived by differentiating the right hand side of Eq.
(2.36) with respect to ξ and setting it to zero, yielding:

ξn+1 = ξn − ηnA−1∇ξU(ξn). (2.37)

The form of the update rule in Eq. (2.37) is general, and thus, invariant to the
choice of the objective function U(ξ) or the solution space representation. The
only requirements are that A is invertible and the gradient ∇ξU(ξn) exists.
The general rule for computing the objective functional gradient∇ξU originates

from the calculus of variations. As a variational method, the objective functional

25

must take the form of an integral or sum. Generally, the objective functional
U takes the form U(ξ) =

∫ b
a v(t, ξ, ξ′)dt, therefore the functional gradient can be

computed using the Euler-Lagrange equation (Zucker et al., 2013):

∇Uξ(ξ) = ∂v

∂ξ
− d

dt

∂v

∂ξ′
. (2.38)

These gradients are then used to compute the iterative update rule of Eq. (2.37).

2.4 Occupancy Maps

Occupancy maps are an invaluable tool for autonomous navigation and planning.
In its simplest form, it provides an occupied or free classification for any region of
the map based on sensors observations. There are various mapping methods, each
with its own way to incorporate observations and assumptions on the properties
of the map. However, the most common approach, which has been extensively
used in the last several decades, is grid mapping (Elfes, 1989). An example of
the difference between occupancy representations is shown in Figure 2.6, which
plots a grid map and a Hilbert map generated using the Intel-Lab dataset
Formally, mapping is an inference problem where given a set of noisy obser-

vations z taken at partially known robot poses x, the posterior distribution over
the map m is given by

p(m|z,x). (2.39)

The posterior models the hypothesis of occupancy over the entire map. Un-
fortunately, solving the general mapping inference problem is computationally
intractable due to the dimensionality of the problem. For example, even if a 2-D
map is discretised using |m| cells, each can be either occupied or free, the number
of possible maps would be exponential, 2|m|.

2.4.1 Grid Maps

Grid maps relax Eq. (2.39) by a cell independence assumption (Elfes, 1989). In
a grid map, the 2D world is discretised into cells, where each grid cell, mi, is an
independent Bernoulli random variable. This assumption simplifies calculations
since the map posterior is now a product of the individual cells:

p(m|z,x) =
∏
i

p(mi|z,x). (2.40)

1available at http://radish.sourceforge.net/.

26

(a) Grid map. (b) Hilbert map.

Figure 2.6: Occupancy maps generated using the Intel-Lab dataset. (a) A Grid
map forms a discretised occupancy representation using independent
cells. (b) Hilbert map uses a logistic regression classifier inferred over
an RKHS for continuous occupancy mapping.

This is a strong assumption that ignores the natural dependencies between ad-
jacent cells. Although the spatial correlations are lost in a grid map, the inde-
pendence assumption is essential for tractability of the model, as the posterior of
each cell can now be computed separately. Given a new observation zt at pose
xt, the new posterior for map cell mi can be derived from Bayes’ rule:

p(mi|zt, z) = p(zt|mi, z)p(mi|z)
p(zt|z) . (2.41)

p(mi|z) is the current map model, which is based on all past observations. The
likelihood p(zt|mi, z) is computed according to a known sensor model.
To overcome numerical instabilities around p(mi|z) ≈ 0, 1, Eq. (2.41) can be

converted to an equation over its log-odds lt,i, which is defined by (Thrun et al.,
2005):

lt,i = p(mi|zt, z)
1− p(mi|zt, z) . (2.42)

Using the log-odds of the current map model li, defined similarly to lt,i, and an
inverse sensor model $(mi, xt, zt) (Thrun et al., 2005), (2.41) transforms into:

lt,i = li +$(mi, xt, zt). (2.43)

$ is a user defined function that return a log-odds likelihood value, which con-
siders properties of the sensor, such as its range, resolution and noise.
Figure 2.6a shows a grid map generated using the Intel-Lab dataset. The re-

sulting map forms a confident model of the actual floor plan of that building.
However, it relies on sensor noise and localisation errors being negligible. Uncer-

27

tainty in the robot’s pose may lead to a corrupt occupancy map, forming fake or
double walls.

2.4.2 Hilbert Maps

Hilbert maps are a scalable, fast approach for continuous occupancy mapping
that was recently presented by Ramos and Ott (2015). It is a logistic regression
classifier inferred over a reproducing kernel Hilbert space (RKHS) defined by a
kernel k(·, ·). To ensure its scalability, Hilbert maps use a finite feature vector,
which approximates the inner product defined by k, i.e. k(x,x′) ≈ Φ̂(x)T Φ̂(x′).
Traditional occupancy grid maps discretise the map into a fixed grid in or-

der to estimate the occupancy posterior (Elfes, 1989). Although such a proce-
dure ensures tractability, its drawback is the loss of spatial relationship between
neighbouring cells. To alleviate this problem, a non-parametric approach based
on Gaussian Processes (GPs) was proposed in (O’Callaghan and Ramos, 2012).
The Gaussian processes occupancy map (GPOM) utilities a GP-based PLSC as
an occupancy classifier based on sensor observations. GPOM provides a fully
non-parametric approach that maintains a complete covariance matrix between
all observations, which results in a highly expressive occupancy map model. As
such, GPOM captures spatial relationships, which enables continuous predictions
of occupancy. However, GPOM’s expressivity comes with a heavy computational
complexity, which scales cubically with the number of observations.
Hilbert maps take the advantages of both grid maps and GPOM. Similar to

GPOM, the use of kernels retain spatial relationship which enables continuous
inference. The computational complexity, on the other hand, depends linearly
on the number of features. A Hilbert map is a discriminative model based on
the logistic regression classifier (LR) that predicts the occupancy at a new query
point, x∗. Given a vector of parameters w the probability that x∗ is occupied is
given by:

p(y∗ = +1|x∗,w) = 1
1 + exp(−wTx∗) . (2.44)

As occupancy is a binary random variable, the probability of non-occupancy is
given by p(y∗ = −1|x∗,w) = 1 − p(y∗ = +1|x∗,w). We note that Eq. (2.44) is
the logit sigmoid function, σ(zL) applied on the linear projection zL = wTx.
The linear projection of the basic LR classifier cannot capture the complexity of

a real environment. To support a richer family of functions, Hilbert maps employ
non-linear classification using approximate kernels. The kernel k(·, ·) defines a
non-linear, and potentially infinite dimensional, mapping Φ(x, ·) that projects the
input into a high dimensional RKHS. The inner product between two features is
then k(x,x′) = 〈Φ(x, ·),Φ(x′, ·)〉. To reduce model training time, Hilbert maps

28

replace the kernel with an approximation, Φ̂(·) (Shalev-Shwartz et al., 2011).
Φ̂(·) defines a finite feature vector where the dot product of these features can,
in expectation, approximate the selected kernel; k(x,x′) ≈ Φ̂(x)T Φ̂(x′). Under
these assumptions, the predictive occupancy posterior becomes:

p(y∗ = +1|x∗,w) = 1
1 + exp(−wT Φ̂(x∗))

≡ σ(zNL), (2.45)

where zNL denotes the non-linear mapping achieved by the feature vector.
There are several methods to generate features to approximate a kernel (Ramos

and Ott, 2015). For the RBF kernel defined by Eq. (2.16), there are three different
approximations; Random Fourier features (Rahimi and Recht, 2009), the Nyström
method (Williams and Seeger, 2001) and the sparse random features (Melkumyan
and Ramos, 2009).
The discriminative model of Eq. (2.45) defines a flexible likelihood model.

However, it still need to be fitted to the occupancy data, i.e. learn the weights w.
This is, in effect, a maximum-likelihood procedure, where the objective function
used to estimate w is a regularised negative log-likelihood (NLL) (Ramos and Ott,
2015) defined by:

NLL(w) =
N∑
i=1

log(1 + exp(−yiwT Φ̂(xi))) +R(w). (2.46)

Here, {xi, yi}N1 , contains N occupancy observations, captured by the robot while
moving through the environment, where xi ∈ RD is a 2D or 3D position and
yi ∈ {−1,+1} represents observed occupancy at xi. R(w) is a regularisation
term that prevents overfitting.
Training a map requires optimising the NLL objective in Eq. (2.46). In large

occupancy datasets, computing the gradients and Hessians for all training points
might be restrictive. To overcome this limitation, the optimisation of NLL is
performed using stochastic gradient descent (SGD) methods. SGD iteratively
updates the weights based on a single data or a small mini-batch, which are
selected randomly from the data set. This optimisation process asymptotically
converges to the expected risk, while keeping the cost per iteration fixed. We note
that unlike GPOM, a Hilbert map provides a maximum likelihood estimate for
occupancy, and therefore lacks any measure of uncertainty. A Bayesian variant
of Hilbert maps proposed by Senanayake and Ramos (2017) maintains a model
uncertainty. However, as it is limited in its ability to incorporate data from high-
throughput sensors such as LIDAR, Bayesian HM were not used in this work.

A Hilbert occupancy map of the Intel Lab is shown in Fig. 2.6b. Compared

29

with the grid occupancy map, the continuous map representation of the Hilbert
map generates a smoother transition in occupancy around obstacles, which cap-
tures the confidence in the location of that obstacle.

2.5 Summary

In this chapter we introduced the background for the various path planning and
exploration algorithms developed throughout this thesis. The material presented
provides an overview of the key concepts, which will be further discussed, together
with the relevant literature review, in the remainder of the thesis.
Bayesian optimisation offers a powerful tool that has been gaining popularity

in the robotics community in recent years. Black-box optimisation is a recur-
rent theme in many robotic problems such as control, localisation, reinforcement
learning, and many more. As BO offers a structured framework for global opti-
misation of such problems, its appeal for robotic application is clear. To better
the robustness of BO, especially for autonomous planning tasks, the optimisa-
tion process must handle constraints, including those that are a-priori unknown.
Constrained BO is a promising approach for achieving that goal.
Functional gradient optimisation methods take a different approach to opti-

misation. Using FGD, the process of optimisation is invariant of the choice of
solution representation. Such abstraction is not available in BO, where the solu-
tion domain has to be predefined and is typically low dimensional (<10). With
FGD, the optimisation can use a richer representation, which is useful for path
planning and robotic manipulation. However, a number of open issues still re-
main, especially when planning in occupancy maps, which we will address in the
following chapters.
The introduction of Hilbert maps has opened up new possibilities for planning

algorithms. Hilbert maps provide a fast discriminative model that still retains
spatial relationships. As the occupancy is given in closed-form, many other prop-
erties of the map, such as the spatial gradients of occupancy or the map’s entropy,
can be tractably computed. This trait makes Hilbert maps a favourable occu-
pancy representation for various trajectory optimisation planning algorithms that
will be presented throughout this compilation.

30

Chapter 3

Bayesian Autonomous Exploration

3.1 Introduction

Autonomous exploration is a challenging dynamic decision-making process, where
the goal is to build a representation of an initially unknown environment. While
exploring, the robot determines its own position and decides where to move next
based on its objective. Ideally, these decisions correspond to continuous trajec-
tories which determine the goal pose of the robot and a path leading to that
point. Such a path would maximise the robot’s objective, while ensuring safety.
However, given the dimensionality and shape of the search space imposed by the
motion constraints, a closed-form solution to the general exploration problem is
intractable. The numerous exploration techniques available in the literature pro-
vide different approaches for making a decision on which path to follow, each
with its own strategy for dealing with the uncertainty of the model and planning
horizon. Risk and safety are typically addressed during execution of the chosen
path, and not as an integral part of the exploration decision-making process.
In this chapter, we present a novel framework for autonomous exploration over

continuous paths using constrained Bayesian optimisation (BO) (Gelbart et al.,
2014), which we term constrained Bayesian exploration (CBE). A-priori, the ex-
ploration objective and constraints functions are unknown, i.e. have no closed-
form expression. Knowledge about any of these functions is obtained solely from
noisy observations, typically using forward simulation. A naive approach for opti-
mising path decision in such a case is to employ an exhaustive search. Of course,
such a process is computationally infeasible due to the size of the search space
and cost associated with evaluating the reward and constraints functions over
entire paths. BO uses a completely different approach, which turns autonomous
exploration into an active learning process over the continuous search space. In-
stead of exhaustive sampling, BO learns probabilistic surrogate models for the
expensive-to-evaluate reward and constraints functions (Brochu et al., 2010). A
simple and cheap heuristic function, called acquisition function, guides an effi-

Part of this chapter has been accepted for publication in the International Journal of Robotics
Research.

31

cient sampling schedule based on the posterior mean and variance of the surrogate
models. The acquisition function balances the exploration-exploitation trade-off
which guarantees convergence to the the optimum while ensuring probabilistic
completeness of the objective and constraints.
The main contributions of this chapter are; First, we formulate the problem

of building an occupancy map of an unknown environment as an optimisation
problem over continuous paths, instead of the common approach of optimising
the selection of a single goal point. Second, we develop CBE, an innovative
method to solve this problem, i.e. optimise path decision whilst keeping the robot
safe and within its dynamic constraints. CBE provides a principled and robust
approach for optimising exploration using Bayesian optimisation. As such, CBE
guarantees convergence to a local solution and follows well known BO’s regret
bounds (Srinivas et al., 2010).
The remainder of this chapter is organised as follows. Section 3.2 surveys the

work related to autonomous exploration. In Section 3.3 we define the problem of
map exploration. Section 3.4 gives an introduction of the basic building blocks
of constrained Bayesian exploration and details the algorithms behind CBE. Ex-
perimental results and analysis for various scenarios are shown in Section 3.5.
Finally, Section 3.6 draws conclusions on the proposed method.

3.2 Related work

Autonomous exploration can be seen as an active learning process aimed at min-
imising uncertainty and producing high-fidelity maps (Makarenko et al., 2002;
Stachniss, 2009). Exploration requires solving simultaneously mapping, path
planning and localisation. Due to its complexity, existing research has mainly
focused on solving a relaxed form of this problem, by either decoupling processes
or by limiting the solution search space.
The plethora of autonomous exploration methods is categorically divided into

two branches; frontier-driven and information-theoretic. A quantitative compari-
son between the various exploration algorithms is presented in (Juliá et al., 2012).
The key concept in any frontier-based exploration is moving towards the edges

of the known space, i.e. the boundary between free space and unmapped regions
(Yamauchi, 1997). In its simplest form, after identifying and clustering frontiers,
the robot moves towards the closest one. Other authors suggest various utility
functions to prioritise candidate frontier locations. González-Baños and Latombe
(2002) used expected information gain at the frontier and travelling cost. Basilico
and Amigoni (2011) incorporated the overlap with known space as a measure
for self-localisation. Extensions for 3D autonomous exploration have also been

32

suggested by various authors (Dornhege and Kleiner, 2013; Shen et al., 2012;
Shade and Newman, 2011).
Information driven exploration strategies minimise a utility associated with

the uncertainty of the map. Early work only addressed finding the next best view
(NBV), which is the discrete location that will have the greatest effect on the
utility function. Whaite and Ferrie (1997) proposed minimising the entropy of
the map. Mutual information (MI) has also been suggested as a measure for
the predicted reduction of map uncertainty (Elfes, 1996; Bourgault et al., 2002).
Julian et al. (2014) suggested MI to encode geometric dependencies and drive
exploration into unexplored regions in a similar fashion to frontier based ap-
proaches. Makarenko et al. (2002) proposed an integrated exploration method
that combines the goal functions of map and localisation uncertainties with the
cost of navigation, balancing exploration with simultaneous localisation and map-
ping (SLAM) loop-closures. Tovar et al. (2006) extended this technique by se-
lecting several observation points using a tree search. Yet, the decision on the
path passing through these points is still not part of the optimisation process.
Stachniss et al. (2005) used a particle filter to calculate the expected information
gain of an action. However, this formulation still defines point actions of either
loop-closure or exploration. A method to generate a path based on information
potential fields is proposed by Vallvé and Andrade-Cetto (2015). The path is
generated by applying a grid-step gradient on the potential fields, resulting in a
path that does not necessarily comply with the robot’s kinematic restrictions.
Several non-myopic exploration methods have emerged in recent years. These

methods treat exploration as a sequential decision process. Yang et al. (2013)
used a rapidly-exploring random tree (RRT) planner with Gaussian process oc-
cupancy map to generate a safe path that minimises MI. Similarly to CBE, the
RRT planner does not set a goal point but rather explores promising paths. The
difference in algorithms lies in the optimisation process. While RRT uses prede-
fined valid branches for its tree, CBE optimises path selection over the continuous
domain. Furthermore, CBE learns the path constraints, which makes it a more
flexible algorithm. Hollinger and Sukhatme (2014) developed sampling-based
robotic information gathering algorithms, which build an exploration graph/tree
from randomly drawn configurations and enforce motion and planning constraints
via a node connection process (’steer’). While in the limit of infinite number of
samples, these algorithms result in a continuous and optimal exploration path,
in a realistic scenario of a fixed sampling budget, solutions are not guaranteed to
be optimal even in a local sense. Charrow et al. (2015) combined both frontier
and information-theoretic approaches. Global goal candidates are produced by
identifying frontiers. A coarse path to each candidate is generated using local mo-

33

tion primitives that satisfy the kinematic envelope of the robot. After assessing
the information gain of all candidates, the best path is refined using a sequential
quadratic programming (SQP) solver. While this method optimises control in-
puts in continuous space, the search is limited to a single promising path. CBE,
on the other hand, does not define a goal point, and its optimisation is done on
the entire domain of controls. Kollar and Roy (2008) proposed an exploration
procedure that maximises map coverage, by choosing a set of observation points
that the robot trajectory must pass through. The executed path minimises the
errors introduced by the robot motion. The control policy is implemented by a
support vector machine (SVM) classifier trained off-line.
Another exploration approach was introduced by Marchant and Ramos (2014).

In this case, Bayesian optimisation was used to learn and optimise a utility func-
tion along continuous paths. They employed two instantiations of BO, one for
the probabilistic model of the utility and another to select a continuous informa-
tive path. However, their optimisation process does not consider any motion or
safety constraints, which are learned and incorporated in the CBE framework. In
a more recent work, Marchant et al. (2014) developed a sequential Bayesian opti-
misation method within a partially observable Markov decision process (POMDP)
framework. They used Monte Carlo tree search (MCTS) to approximate the un-
constrained solution for a spatio-temporal monitoring problem. Martinez-Cantin
et al. (2007) and more recently Martinez-Cantin et al. (2009) utilised Bayesian
optimisation to find control policies that minimise the state error of a robot and
landmarks. While they used a different cost function, their method resembles the
approach taken in this work. However, CBE extends this method by incorporat-
ing and learning unknown constraints during optimisation.
Lauri and Ritala (2015) used a POMDP with an MI objective to plan ex-

ploration paths with a fixed horizon using tree search methods to optimise the
exploration policy. Their method relies on a Monte-Carlo (MC) approximation
for the MI objective forward simulation. CBE, on the other hand, uses BO
to efficiently manage the objective and constraints functions sampling. Another
POMDP continuous-domain planning technique was presented by Indelman et al.
(2015). They treated the exploration as an optimisation of the expected cost over
several look-ahead steps. The cost at each step is inferred from the joint prob-
ability distribution of the robot and environment state. As the expected cost
has a closed form expression, the authors use gradient descent to locally opti-
mise the policy selection. A similar approach was taken by Rafieisakhaei et al.
(2016) which defined a penalised cost function based on themaximum-a-posteriori
(MAP) state estimate and control effort penalties.
Our method takes a different approach to optimisation. Instead of using a

34

closed-form expression for the objective, CBE learns it from samples, which re-
sults in a more flexible solution. Therefore, there is no need to define an expression
for the objective and constraints. Rather the non-parametric structure captures
our belief about the cost function. Coupling that with the BO framework, it pro-
vides better guarantees that a solution will converge to the global optimum. The
safe exploration for active learning method (Schreiter et al., 2015) provides a simi-
lar method for constrained BO. However, the optimisation objective of (Schreiter
et al., 2015) uses only the exploratory component of BO and does not exploit
the model to optimise the objective. The SafeOpt optimisation method proposed
by (Sui et al., 2015) uses regularity assumptions about the objective function to
perform iterative optimisation in one-step reachability regions. Similar approach
for handling safety constraints is taken by safeMDP, proposed by Turchetta et al.
(2016). Both SafeOpt and safeMDP utilise a Gaussian process to model the ob-
jective function. This model is then used to generate the set of safe states. The
next state is chosen according to its associated model’s uncertainty, i.e. it only
considers the exploratory component of the objective function. In contrast, CBE
maintains global models of the constraints and of the objective function based on
appropriate samples of these functions. These models are then used to drive an
efficient optimisation process under a constrained Bayesian optimisation frame-
work. In addition, SafeOpt and safeMDP perform optimisation for a finite set of
states, whilst CBE optimises over continuous paths.
In summary, in this work we take a more holistic approach to exploration.

Ideally, one would like to select the path that yields the highest reward. However,
evaluating path reward is expensive and, as such, simple global optimisation
strategies are rendered impractical. Therefore, most exploration techniques break
this problem into two sub-problems; finding the next observation point(s) and
selecting a path through these points. By contrast, our method uses a modified
version of BO that finds a solution for these two sub-problems at the same time.
The reward function and any associated motion constraints, such as turn rate
limits or obstacles, are treated as functions which are learned by the optimiser.
The output of the optimisation procedure is a path that maximises the reward
without violating any of the constraints. Using BO, CBE attains a robust and
efficient solution for the complex problem of optimising exploration objective over
continuous paths as it relies on BO’s local convergence guarantees and regret
bounds (Srinivas et al., 2010).

35

3.3 Exploration as an Optimisation Problem

In this section we formally describe the problem of safe autonomous exploration
for building occupancy maps. We rely on the description of the map represen-
tation in Section 2.4 for formulating the exploration process as an optimisation
problem over the robot’s action space.
An optimal exploration strategy generates a path that minimises a utility func-

tion which is representative of the uncertainty of the map. In its broadest form,
this path is a series of finitely many control inputs u = (u1, u2, . . . , un) over a
valid configuration space C. Given a desired objective function f , exploration can
be defined as the following optimisation problem:

u∗ = argmin
u

f(m,u) s.t. u ∈ C. (3.1)

One can define a constraint mapping function Λ such that

Λ(u) =

1 u ∈ C
0 otherwise

. (3.2)

Using this, we can write Eq. (3.1) as follows:

u∗ = argmin
u

f(m,u) s.t. Λ(u) = 1. (3.3)

In most cases, there is no closed-form expression for f or Λ. Rather, both
are a-priori unknowns and thus can only be estimated from sparse, expensive-
to-evaluate and potentially noisy observations (samples). Accordingly, stochastic
models are well suited to represent both f and Λ. However, using probabilis-
tic models for f and Λ requires changes in the formulation of the optimisation
problem (Gelbart et al., 2014):

(i) optimisation is performed on the expected value of the objective function;

(ii) the constraints are replaced by probabilistic classifiers.

Consequently, Eq. (3.3) is transformed into:

u∗ = argmin
u

E[f(m,u)] s.t. Pr(Λ(u)) < 1− δ. (3.4)

Here, Pr(Λ(u)) stands for the probabilistic model of the constraint, and δ is its
respective confidence bound. The constraint is estimated using δ, indicating there
is high probability that the constraint is met.
However, solving Eq. (3.4) in a continuous action space, u, is computationally

infeasible. A common approach, used by most information-theoretic methods

36

to reduce complexity is to search for NBV by optimising in pose space. The
path planning process is divided into two separate sub-processes. The goal of
the first sub-process is to define a set of discrete view points. Each point is the
spatial local extermum of the objective function. The second sub-process plans
a path from the current location of the robot to its next observation pose and
is determined according to obstacles and robot’s kinematic constraints (see for
example Makarenko et al. (2002); Kollar and Roy (2008)). Although the discrete
view points approach simplifies the optimisation process, the resulting path is
suboptimal. The main drawback of this approach is that it only considers a
limited set of points and thus disregards the potential gains (or the lack thereof)
along the entire path. A less obvious, yet significant disadvantage of discrete
optimisation stems from the fact that the expected cost of the resulting path are
not an integral part of the view point selection. Penalty heuristics, e.g. distance to
goal point, are typically incorporated in the objective function in order to encode
cost, yet their limited form underestimates the real cost imposed by motion and
safety constraints. As a simple example, consider the case in which the next view
point is located close to the robot but is separated by obstacles. While a valid
path to that point might exist, it is less desirable due to excessive cost.
In this work, we treat exploration as a black-box optimisation problem over

continuous paths, where the objective function and constraints are learned from
observations. To overcome the computational limitations of Eq. (3.4), we param-
eterise the paths using θ ∈ RD. In our method, θ parametrises a quadratic spline
over the workspace of the robot. We define a unique transform ξ that maps a
parameter to a trajectory. The objective function and constraints are observed
along these trajectories, ξ(θ). Given ξ(θ), the optimisation can be written with
regards to the parameter θ:

θ∗ = argmin
θ

E
[
f
(
m, ξ(θ

)]
s.t. Pr

(
Λ
(
ξ(θ)

))
< 1− δ. (3.5)

The objective function f can be defined in various ways, as discussed in Sec-
tion 3.2. In this work, we use the accumulated MI over the entire path as the
objective function. However Eq. (3.5) provides a general optimisation method
for any choice of f and Λ.
The following section describes our approach for solving Eq. (3.5) as a black-

box optimisation problem. It provides details on how to obtain and incorporate
noisy observations of both f and Λ, which leads to an optimisation process that
maximises the utility of the entire path while minimising the risk of violating any
constraints.

37

3.4 Constrained Bayesian Exploration

Finding the best path in a continuous space requires optimising a reward function
evaluated for any given trajectory. However, computing such a reward for the
entire space of paths is computationally infeasible. Furthermore, obstacles and
the robot’s kinematic envelope impose constraints that might not have a closed
form expression or are not known a-priori. BO provides a strategy to learn the
reward function and constraints while searching for the valid extremum.
BO guides the optimisation process. Given a sparse training set, BO builds

models of the reward function and constraints using Gaussian processes (GPs).
With these models, BO identifies promising trajectories that correspond to the
optimal path with high probability. Constraints are handled in a statistical man-
ner, with BO balancing risk and rewards.
A schematic overview of CBE is shown in Fig. 3.1. As with any autonomous

exploration technique, the expected output of our method is a path that updates
our belief about the map. As shown, constrained BO exploration is an iterative
process of optimisation and learning. Using the current map as an input, BO
explores the solution space by sampling promising path candidates. The samples
update the surrogate GP models for the reward and constraints, which is followed
by the next BO suggestion. This process continues until resources are exhausted
and the optimal path is then selected and executed.
When planning a path for autonomous exploration, the objective is to acquire

new knowledge and improve the existing map in an efficient manner. Yet, both
robot and environment impose restrictions on the solution space. Any selected
path should be safe, i.e. free of obstacles, and within the kinematic envelope
of the robot. Constrained BO is a very flexible tool to find such a solution.
Safety and motion restrictions are treated as constraints which are learnt while
the optimiser searches for the global extremum among the possible paths.
CBE is an iterative process of finding a promising sampling location, observing

the values of the unknown objective and constraints functions at the location,
and updating the model using the observed values. In the context of robotic ex-
ploration, sampling a location corresponds to testing a new path candidate. Each
path candidate is defined by parameters θ, as discussed in Section 3.3. The ob-
jective function and constraints are observed along trajectories, ξ(θ). The pseudo
code for assessing a new parameter set, i.e. new path, is shown in Algorithm 3,
which consists of two major parts that are detailed next:

• Path Candidate Validity Assessment,

• Reward calculation.

38

Figure 3.1: A schematic overview of the constrained BO exploration process. Us-
ing the current map, BO explores the solution space by guiding the
sampling process.The utility of each sampled path is evaluated us-
ing forward simulation over the current map. These samples are then
used to update the model belief path utility represented by GPs. This
process continues until resources are exhausted, and the optimal path
is select and executed.

3.4.1 Path Candidate Validity Assessment

The role of the path candidate validity assessment is to determine whether a path
is valid or not. A valid path is safe from collisions with obstacles and within the
kinematic capabilities of the robot.
There are two tests to assess the validity of a new path. First, the maximum

curvature, κmax, along the path is evaluated. If it exceeds a user-defined thresh-
old, κmax > δκ, then the path is considered invalid and no other tests are needed.
Although this is a relativity simple constraint, it has the potential to incorporate
other motion considerations, such as energy or execution time budgets. Further-
more, learning the motion constraints provides greater flexibility when responding
to changing driving conditions.
The second test validates the safety of a path. Given the occupancy map, it

identifies obstacles along the path and dead-ends. Additionally, to ensure safety,
the planned path should not traverse unobserved parts of the map. Formally, we
require that the occupancy along a safe path should not exceed a user-defined

39

confidence threshold, δsafe:

Safe(θ) =

1 max
(
p(m[ξ(θ)])

)
< δsafe

0 otherwise
, (3.6)

where max
(
p(m[ξ(θ)])

)
is the maximum occupancy along the path ξ(θ).

It is important to note again that the result of Eq. (3.6) is used as a point
observation in the generation of a stochastic model for the safety constraints. As
this is a learned model, which is based solely on observations, the exact imple-
mentation of the safety criteria may vary. Instead of using m[ξ(θ)] < δsafe, the
user can define a different test to assess path safety that better suits the robot and
environment configuration. The simplest example changes the confidence safety
threshold, δsafe, which will modify the risk-reward balance. More complicated
methods may use different occupancy maps or include safety test for dynamic
obstacles.
If the path is invalid, an additional post-processing step is taken in order to

better define the valid solution space. By identifying the point where the path
becomes invalid (e.g. hit an obstacle), the invalid path can be broken down
into subsets of valid and invalid paths. The parameters θ of these derived paths
can be easily computed from the parameters of the original path. Consequently,
this post-process produces several safety observations from a single path sample.
These observations are then used in the update of the GP models and help reduce
the uncertainty of the relatively sparse GP models. But more importantly, it
provides the GP model with the boundaries, in parameter space, between the
valid and invalid space.

3.4.2 Reward calculation

Equation (3.5) defines the underlying optimisation process of CBE and has a
general form, which is invariant to the choice of objective function f . CBE only
requires access to f through noisy observations. The implementation of CBE in
this paper uses mutual information (MI), often referred to also as information
gain, as the objective function. MI measures the reduction in the map entropy
after observations are made:

MI
(
ξ(θ)

)
= H

(
m
)
−H

(
m|ξ(θ)

)
. (3.7)

Here H(m) is the entropy of the map. The conditional entropy H
(
m|ξ(θ)

)
is the

entropy of the map after a path, defined by θ, is executed. In order to approximate

40

H
(
m|ξ(θ)

)
along an entire path, CBE builds a hypothetical map m′ for each path

sample. m′ is built by simulating laser scans as the robot executes the path. The
simulated scans are generated under the assumption of an optimistic agent, i.e. it
adheres to the existing map m but assumes free space (maximum range reading)
for unknown areas. Under this assumption, the entropy of the hypothetical is an
upper bound for the empirical MI:

MI
(
ξ(θ)

)
≤ H

(
m′
)
. (3.8)

Another approach for computing MI was proposed by Charrow et al. (2015),
where m′ is computed by marginalising out cell occupancy over each simulated
beam. This approach is useful for maps built using noisy 3D sensors such as RGB-
D, but adds little value when dealing with laser scanners. With high-update-rate
and low-noise sensors such as laser scanners, only the transition areas, from un-
occupied to occupied e.g. next to walls, are uncertain. In other observed regions
of the map, p(m) tends to 0 or 1, making marginalisation redundant and similar
MI results in both methods. In unobserved areas of the map, where p(m) = 0.5,
the marginalised MI of (Charrow et al., 2015) differs from the optimistic agent
MI estimate only by a multiplicative factor. Consequently, the procedure pro-
posed by Charrow et al. (2015) offers little value for the exploration scenario
presented in the work especially given its additional computational overhead. We
emphasise again that the exact method for MI calculation is irrelevant as CBE,
a black-box optimiser, learns a representation of the MI response surface from
forward-simulation observations, regardless of the mechanism used to generate
them.
parametric optimisation of Eq. (3.5) was chosen as a trade-off of computational

complexity with the expressivity of the solution. In certain scenarios, the limited
path expressiveness may result in safe but non-informative paths. To overcome
this, the following heuristics are used:

• The first term provides a global context to the overall objective function. A
coarse path is planned from the robot’s location to the nearest frontier. This
path does not have to be traversable by the robot and it can violate safety
or kinematic constraints. However, it biases path selection towards a region
of unexplored space. We define a penalty term, PH

(
ξ(θ)

)
= cos(ω), where

ω is the difference between the direction of development of the candidate
path and the coarse path. Therefore, a path that develops in the opposite
direction of the global coarse path will have higher penalty than a path that
is oriented towards a similar direction. As PH is a cosine, the amplitude of
this penalty is |PH | ≤ 1.

41

Path Length Penalty Term, PL

P L

0

0.5

1

1.5

2

2.5

Scaled Path Length
0 0.5 1 1.5 2 2.5 3 3.5

Figure 3.2: PL, path length penalty term, as a function of path length. The
length is scaled with respect to the sensor maximum range. This
penalty term penalises very short and long paths. Short paths are
undesirable as they have little effect on map building. Longer paths
are penalised as a function of their length, in order to prevent overly
confident solutions.

• The second term PL is a function of the path length. Figure 3.2 depicts the
choice of PL used in this paper, where the path length is scaled with respect
to the maximum sensor range. The rationale behind PL is to penalise very
short and long paths. Very short paths are undesirable as their ability to
reduce uncertainty is negligible. Longer paths are penalised in order to
prevent overly confident decisions.

The additional penalties are added to the MI reward with corresponding weights,
W1 and W2. These weights keep the penalties small compared to the typical MI
utility:

MIModified

(
ξ(θ)

)
= MI

(
ξ(θ)

)
+W1 · PH

(
ξ(θ)

)
+W2 · PL

(
ξ(θ)

)
. (3.9)

The weights W1 and W2 are user defined and capture the user’s approach to ex-
ploration. For example, increasing W1 will result in a process which resembles
frontier exploration. In our implementation, the goal of PH is to pull the robot
from areas in the map that produce non-informative paths, for which the MI re-

42

ward is negligible. Consequently, we set W1 = 100. This value is approximately
10% of the average MI reward in standard scenarios. This value will have little
effect in standard planning scenarios. While in situations where MI is close to
zero, W1 = 100 guarantees that PH will exceed the expected noise of MI obser-
vations. The weight of the second penalty W2 was set to 50, which affects the
overall reward only for very short paths or if the expected path exceeds 5 times
the maximum laser range.
Even with the simplest occupancy map representation, the forward projection

model needed to estimate MI is expensive to evaluate. This is the main motivation
for using BO; optimising decision making while keeping sampling low. Instead
of optimising by explicitly calculating the forward simulation MI results, BO
learns a model for MI from sparse samples. It then uses these models to infer
the next sampling location. The efficiency of BO relies on the accuracy of the
learned GP models. However, a high fidelity GP surrogate model requires a
substantial number of function observations. We take advantage of the way MI
is sampled in order to increase the number of observations without increasing
the computational cost. We notice that MI along the path is a non-decreasing
monotonic function. Since the robot motion along the path is a set of sequential
observation points, MI in any given point is the sum of accumulated effect of all
previous observations and the contribution of the current observation:

MI(θk+1) ≡MI([u1...uk+1])
= MI([u1...uk]) + δMI(uk+1|zk+1)
≡MI(θk+1) + δMI(uk+1|zk+1).

(3.10)

Thus, by evaluating MI sequentially, CBE produces several reward observations
from a single path sample with no additional computational cost. More samples
produce a denser and more accurate GP model of the objective function.

3.4.3 CBE Algorithm

A pseudo code for CBE using constrained Bayesian optimisation is given in Algo-
rithm 4. Figure 3.3 provides a visual explanation of this process. The algorithm
is divided into two parts. To improve efficiency, we initialise the GP surrogate
models by sampling the reward and constraints functions using a training set Θ.
The training set is a list of path parameters θ ∈ Θ which defines a small set of
paths, typically 20 to 50, to evaluate. The paths are distributed evenly in all
directions in order to obtain a balanced training set. The paths associated with
the parameters in the training set are shown in Fig. 3.3a by the red (invalid) and
cyan (valid) paths. As explained before, the algorithm tries to extract valid path

43

(a) Generating training set

(b) Optimisation

Figure 3.3: CBE searches for an optimal path in an unexplored room. Walls
and obstacles are denoted by the dashed black lines, which may be
unknown to the robot. Green areas are unexplored, blue are known
to be free while red areas contain known obstacles. (a) The paths
used in the training set are shown in red (invalid) and cyan (valid).
(b) CBE produces new path candidates for assessment (pink) with
the final output of the optimiser shown in black.

44

Figure 3.4: Images (cross sectional) of the various components of CBE for the sce-
nario shown in Fig. 3.3. Rows depict different component of BO; GP
regression mean, GP standard deviation, unconstrained BO acquisi-
tion function, turn rate GPC, safety GPC and the CBE acquisition
function. Columns show two orthogonal cross sections. Contours in
GPC images represent valid (white) and invalid (black) thresholds.
Black overlay defines the CBE acquisition function (last row) valid
(transparent) and invalid (semitransparent) regions for optimisation
given observations.. CBE will try to maximise the acquisition function
in valid regions, which produces a suggestion for the next observation
point.

45

Algorithm 3: CBE Path assessment
Input: ξ(θ): assessed path

1 fmin: current objective minimum
Output: Pvalid, Preward, fmin

2
3 Pvalid ← Check: Motion Constraints
4 Pvalid ← Check: Safety
5 if Pvalid then
6 Preward ← Evaluate reward: eq. 3.9;
7 If Preward < fmin: fmin=Preward

8 else
9 Path assessment(valid subset of P)
10 end

Algorithm 4: CBE
1 /* Generate initial training set: */
2 N = Size of training set
3 Θ← Generate training path set(N)
4 for θk ∈ Θ do
5 θk ← Path assessment(θk) (Algorithm 3)
6 Update GP and GPCs: θk
7 end
8 /* Constrained BO: */
9 for i = 1, 2, 3, ... do
10 feasible region C: G(θ) = ∏K

k=1 Pr(gk(θ) < 1− δk)
11 Find: θi ← argmin

θ∈G
G(θ) · LCB(θ)

12 θi ←Path assessment(θi) (Algorithm 3)
13 Update GP and GPCs: θi
14 end
15 Execute optimal path

segments from an invalid path as can be seen in Fig. 3.3a. These paths, valid as
well as invalid, are used in the update of the GP and GPCs models, which serve
as a prior model for the subsequent constrained BO stage.
The second part of Algorithm 4 is the constrained BO. In Fig. 3.3b, the out-

puts of this stage, which corresponds to the paths suggested by the optimiser,
are depicted in pink. With every attempt, BO updates the GP and GPCs and
becomes more confident in the model of the objective function, the constraints,
and the location of the global minimum. This learning process is evident from the
distribution of the suggested paths. Although most are bundled around two main
directions, there are some stray paths that check potentially rewarding alterna-
tives. Also, some paths are on the borders of the unexplored regions, suggesting
the optimiser tries to learn about the motion constraints. The final output of

46

the optimiser, the optimal path where the accumulated reward is maximised, is
shown in black.

CBE Example

To gain additional insight into the optimisation process, Fig. 3.4 presents im-
ages of key CBE elements. As CBE is a high-dimensional optimisation process,
cross-sections are used for the visualisation. The first key element of CBE is
the surrogate GP model of the objective function, shown in the first two cross
sections, µGP and σGP . The GP represents our belief about the learned objec-
tive function. The main benefit of using a GP, as with other Bayesian regression
techniques, is the ability to obtain an inference confidence measure. The non-
parametric structure provides great flexibility in expressing the model’s expected
value and variance around observations. Previous methods using BO for explo-
ration, e.g. in (Martinez-Cantin et al., 2009), optimise using the unconstrained
acquisition function which is shown in Fig. 3.4. Instead of only optimising over
the expected value, the use of an acquisition function incorporates the model un-
certainty. However, unconstrained BO is not suitable for autonomous exploration
as reward samples can only be acquired along valid trajectories. Beyond the valid
region, the GP model provides only its intrinsic parameters; the model mean and
maximum variance. Consequently, this breaks the internal BO feedback loop of
sampling and updating, as the GP model is kept unchanged after any invalid
sample.
The constrained BO framework is more suitable for autonomous exploration.

The learned constraints, Turn Rate GPC and Safety GPC in Fig. 3.4, provide
the optimiser with an additional layer that incorporates invalid samples without
the need to define a closed-form expression for the constraints. Using GPCs pro-
vides an efficient method to query the certainty in which the constraints are met.
Furthermore, the user can easily modify the validity threshold (shown as black
and white lines), to adjust the optimiser’s risk-reward balance. The combined
acquisition function, which is shown in the last cross-section of Fig. 3.4, is the
unconstrained BO acquisition function overlaid with the GPCs valid zone. Un-
like unconstrained BO, integrating new invalid samples will not break the BO
feedback loop. It will instead modify the GPCs. This behaviour allows the CBE
to explore promising paths that are on the borders between valid and invalid.

Computational Cost

Finally, we conclude this section with an estimate of the computational com-
plexity of CBE. As GPs are used extensively throughout this algorithm, it is

47

not surprising that the CBE computational costs are mainly associated with GP
inference complexity. Similarly to other non-parametric methods, the computa-
tional complexity depends on the size of training set n. In the CBE framework,
however, two separate training sets are defined;

• N includes the entire training set of valid and invalid points.

• M (M < N) includes only the valid points used by the reward GP.

The computational complexity of a typical GP isO(n3) and is due to the Cholesky
decomposition of the covariance matrix (Rasmussen andWilliams, 2006). GP pre-
diction carries a lower complexity ofO(n2) arising from the solution of a triangular
linear system. As we use a small number of c GPCs, the overall complexity of the
Cholesky decomposition of the various components of CBE is O(M3 + cN3). In
addition, during optimisation, GP and GPCs model may be queried repeatedly
leading to O(mM2 + clN2), where l and m are the number of queries of GPCs
and GP, respectively, and m < l. Given M < N the overall complexity of CBE,
Cholesky decomposition and model queries can be estimated as O(cN3 + clN2).
We can further simplify this expression by noting that the typical training set
contains several hundred points, as is the number of optimisation steps; l ∼ N .
Thus, we can concisely write the overall CBE complexity as O(cN3).

3.4.4 Incorporating Uncertainty in CBE

In the context of autonomous exploration, path planning is a decision making
process aimed at improving the map fidelity. Any uncertainty, whether it is in
sensor observations or in the robot pose, propagates into our belief over the map
and corrupts it. While sensor uncertainty is typically fixed and arises from the
system configuration, the robot location uncertainty is controlled by the robot’s
decisions. Reducing pose uncertainty is commonly addressed in the literature by
incorporating a "loop closing" heuristic in the optimisation of the next observation
point (for example (Makarenko et al., 2002; Indelman et al., 2015; Rafieisakhaei
et al., 2016)). With the standard BO framework, incorporating such a heuristic
requires modifications to the forward simulation reward calculation as described
in the work of Martinez-Cantin et al. (2009). Handling uncertainty in the robot
pose necessitates some adaptations to the CBE algorithm to ensure the safety of
resulting paths. Therefore, we will leave the "loop closing" reward modification
for future work, and discuss the required changes to CBE in the following section.
At the end of optimisation, CBE returns an optimal path. When considering

only the nominal pose, the optimal path is safe and valid. However, the actual
outcome of that path, and more importantly, its safety, depend on the real pose

48

of the robot. Figure 3.5 depicts an example of such a case, by plotting the same
path for several starting poses, drawn from the robot’s state distribution. It is
clear that by not incorporating the pose uncertainty, the risk of collision is greatly
under-estimated.
A common approach for handling partial observability in robotics is to locally

re-plan during path execution. This simplifies path planning, as the safety of the
path is maintained mainly during path execution. However, this approach reduces
the safety margin for execution, limiting the action space for re-planning. For
example, while planning a path along a corridor, a standard planner might yield
a path that runs close to the walls. While this is a safe path, following it limits
re-planning to a single side of the corridor. CBE, on the other hand, incorporates
safety in its optimisation objective which widen the safety margins of a planned
path. In the corridor example, this equates to a path that runs in the middle of
the corridor, furthest from obstacles. Furthermore, by incorporating safety, CBE
reduces the risk of diverging from the original plan due to re-planning, resulting
in higher utility paths.
To better estimate the safety risk, we need to project the variance of the robot’s

location and orientation into the safety GPC model. However, the resulting
probability density function might have a non-trivial form. An efficient solution to
alleviate this problem utilises an unscented transform (UT) (Julier and Uhlmann,
1997). UT employs a deterministic sampling schedule to estimate the mean and
variance of the desired distribution. The sample set, termed "sigma points",
consists of 2n+ 1 samples and weights for a n-dimensional space. Given the pose
mean µp and covariance Σpp the "sigma points" χ are defined by the following
equations:

χi =

µp i = 0

µp + (
√

(n+ λ)Σp)i i = 1, ..., n

µp − (
√

(n+ λ)Σp)i−n i = n+ 1, ..., 2n

(3.11)

Here λ = ϑ2(n+ ν)− n. ϑ determines the spread of the sigma points around the
mean, µp, and is typically a small positive number (in our experiment ϑ = 10−3).
ν is a second order term to adjust kurtosis and is usually set to zero (Wan and
Van Der Merwe, 2000).
For the sigma weights, we follow Wan and Van Der Merwe (2000), and define

49

separate values for mean and covariance calculations:

wmean0 = λ

n+ λ

wcov0 = λ

n+ λ
+ (1− ψ2 + %)

wmeani = wcovi = 1
2(n+ λ) i = 1, ..., 2δ.

(3.12)

The parameter % is used to encode prior knowledge of the initial distribution.
Since we assume a Gaussian distribution for the pose, we take % = 2.
These sigma points serve as starting poses for alternative path outcomes as

shown in Fig. 3.5. We employ the same mapping from actions to trajectory
space, ξ(θ), but replace the implicit noiseless pose with the sigma points ξ(θ, χi).
As a result, we probe how ξ changes the shape of the initial pose uncertainty
and thus recover a stochastic estimate for the robot pose along the path as,
x ∼ N (ρ,Σx):

ρ =
2n∑
i=0

wmeani ξ(θ, χi)

Σx =
2n∑
i=0

wcovi (ξ(θ, χi)− ρ)(ξ(θ, χi)− ρ)T .
(3.13)

Given ξ(θ, χi) and map, m, one can now stochastically reason about the safety
of a path, ξ(θ). Although straight forward, Algorithm 5 simplifies the safety
estimation even further. Instead of inferring the pose distribution along the path,
each sigma path, originating from a specific sigma point, is validated separately.
The overall validity of a path, ξ(θ), is then determined by the worst-case scenario
over all paths.

50

Algorithm 5: CBE Path assessment assuming partially observable pose
Input: ξ(θ): assessed path

1 fmin: current objective minimum
2 χ: sigma points

Output: Pvalid, Preward, fmin
3
4 foreach p ∈ χ do
5 Pvalid ← Check: Motion Constraints(p)
6 Pvalid ← Check: Safety(p)
7 end
8 if Pvalid then
9 Preward ← Evaluate reward: Eq. 3.9;
10 If Preward < fmin: fmin=Preward

11 else
12 Path assessment(valid subset of P)
13 end

Figure 3.5: Uncertainty in path execution due to uncertain location and orienta-
tion results in a non-trivial distribution of the overall path safety.

51

3.5 Experiments

In this section, we evaluate the performance of CBE in simulation and with a
real robot.

3.5.1 Simulations

We divide our simulation experiments into two categories. First, the robot maps
various randomly generated cluttered unstructured environments. The second
experiment involves exploration of a large scale complex networks of city roads.
In both cases, we simulate a ground robot equipped with a 180◦ field of view
(FOV) laser scanner driving at a constant speed. The turn rate of the robot is
limited, forcing the optimiser to plan within the robot’s kinematic envelope using
quadratic splines. In all simulations, we assume full knowledge of the robot’s
pose.

Unstructured Environments

Many exploration experiments involve structured man-made scenarios. A struc-
tured environment is constructed of a network of corridors, for example, under-
ground mines and buildings. Although the unexplored regions include obstacles,
the corridor-like structure pulls the robot towards an obvious general path. Un-
structured scenes, with randomly positioned obstacles, break any large-scale for-
mation, and thus lack this implicit guidance. Furthermore, these scenarios exhibit
additional difficulties, such as isolated areas with only a single access point, non-
traversable narrow gaps, and long barriers dividing the world into several almost
independent parts. Such an arrangement complicates the exploration process,
since it introduces many more options the robot has to choose from. Fig. 3.6
shows examples of randomly generated worlds used to compare constrained BO
exploration to other techniques.
A qualitative comparison between CBE and other map building techniques

is shown in Fig. 3.7. The methods used for comparison follow the common
exploration paradigm where the path is determined in two separate stages; (i)
goal point selection, (ii) path planning:
A qualitative comparison between CBE and other exploration techniques is

shown in Fig. 3.7. As a benchmark, we used a state-of-the-art SQP solver
(Charrow et al., 2015) and also more traditional exploration methods that follow
the common exploration paradigm, where the path is determined in two separate
stages;

(i) Selecting the next observation point.

52

Figure 3.6: A sample of randomly generated unstructured worlds used for com-
parison of exploration methods shown in Table 3.1.

53

Figure 3.7: Comparison of simulation results for a randomly generated world
(world 3).(left) CBE results, (middle) state-of-the-art SQP solver
(Charrow et al., 2015), (right) simulation results with two planners
for next observation point; Information-theoretic (Bourgault et al.,
2002) and frontier (Yamauchi, 1997), and two smooth safe path plan-
ners, greedy and A*. The walls and obstacles are marked with black
lines. In the grid map, green is unexplored regions, blue is free space
and red occupied. The executed paths are shown as dashed yellow
lines. CBE maximises the accumulated information gain at every de-
cision point by avoiding previously traversed paths. In contrast, SQP,
information-theoretic and frontier based planners exhibit a clear criss-
cross pattern in the executed paths, as these methods only reason on
the gain of a finite set of goal points.

We employ two methods for the selection of the next observation point;

a) a frontier-based method (Yamauchi, 1997) and

b) an information-theoretic approach based on the MI utility proposed
by Bourgault et al. (2002). This utility has similar form as Eq. (3.7).
However Eq. (3.7) describes the cumulative MI reward over an entire
path, while the MI reward in (Bourgault et al., 2002) is calculated for
a single goal point.

(ii) Planning a safe path to that goal point.

To emphasise the importance of the path, and not only of the end goal
point, we employ two separate path planning techniques for stage two;

a) A∗ planner which finds the shortest traversable path to the goal point
and

b) a fast greedy planner using the distance to the goal point as its heuris-
tic.

Both path planners enforce the robot’s safety and manoeuvrability limita-
tions by generating a path from a valid set of motion primitives.

The main advantage of CBE visible in Fig. 3.7 is that the number of overlapping
paths is smaller when compared to other planners. The BO planner takes a

54

relatively short path that minimises the time the robot moves through already
visited parts of the environment. CBE maximises the accumulated information
gain at every decision point by avoiding previously traversed paths, which is
achieved by choosing paths without explicitly defining an end goal point. In
contrast to CBE, both information-theoretic and frontier based planners exhibit
a clear criss-cross pattern in the executed paths, regardless of the path planner
used. This suboptimal performance arises from the two stage exploration process.
Choosing a goal point first and then planning a path, prevents reasoning on the
potential reward along the driven path. As a result, the knowledge gained while
travelling to the goal point is not considered in the decision making. Similar
results hold for the SQP solver, as it also relies on a finite set of viewing points,
and does not consider the utility over the entire path.
With the traditional methods, the type of path planner used has also great

impact on the overall exploration performance. As expected, the greedy path
planner is less effective at finding a path through the clutter, evident by the tan-
gled paths around obstacles. This leads to longer paths with an overall lower
rate of improvement. Fig. 3.8 provides a quantitative comparison of the rate of
reduction in the map’s entropy between the various methods. The initial rate,
in the first 10 seconds, is similar in all methods as the robot passes through
the unexplored map. However, the rate at which the entropy decreases in the all
benchmark methods becomes slower, coinciding with the robot travelling through
already explored regions on its way to the goal point. This outcome is indepen-
dent of the path planner used by the traditional approaches, A∗ or greedy. The
difference in performance stems from the objective of these methods to find a
finite set of viewing points, (a single point for the information-theoretic and fron-
tier planners). In a complex unstructured scenario, there are many potential
observation points at every decision. It is clear that by visiting these points, the
entire environment will be mapped. However, with fixed-point planners there are
no guarantees on the optimality of that process, as there is only limited reasoning
about the executed path that joins these points. While these techniques might
put a cost or penalty on the driving distance, the gains along a path are not
taken into consideration. Even with the SQP-solver, where the set of viewing
points is optimised, the utility of the path is not fully considered, leading to sim-
ilar performance as the traditional planners. CBE, on the other hand, plans in
its local neighbourhood taking into account the benefits and risks of potential
paths, rather than selecting goal points. The global component pulling the robot
toward the nearest frontier only affects the decision when the local information
component is negligible.
Table 3.1 provides a quantitative comparison between the exploration tech-

55

Table 3.1: Comparison of exploration time between CBE, SQP solver (Charrow
et al., 2015) and two planners for next observation point; Information-
theoretic (Bourgault et al., 2002) and frontier (Yamauchi, 1997), and
two smooth safe path planners, greedy and A*. The fastest method is
marked in bold font.

Exploration Time [s]

goal selection
CBE SQP

Information-theoretic Frontier

Path Planner Greedy A∗ Greedy A∗

World 1 63.8 132.0 136.1 68.9 139.9 85.1

World 2 86.2 107.0 134.5 82.7 87.2 88.5

World 3 86.5 101.2 108.1 98.4 111.6 99.9

World 4 67.4 109.8 106.0 64.5 115.6 98.1

World 5 79.6 154.3 84.4 89.8 73.5 78.3

World 6 79.4 139.5 454.6 76.9 120.2 80.2

World 7 62.6 133.0 87.9 65.3 99.0 86.6

World 8 77.1 204.5 112.4 88.7 147.4 90.7

World 9 71.7 211.6 129.0 115.0 132.4 102.3

World 10 76.6 126.6 115.4 98.0 111.0 95.1

niques on several randomly-generated worlds shown in Fig. 3.6. As expected,
A∗ is a noticeably better path planner than the greedy planner, as it guarantees
the shortest traversable path to the goal point. However, it is not immediately
clear, which observation point selection method performs best. Although, in some
scenarios the performance of both information-theoretic and frontier methods is
similar, there are cases where one method outperforms the other by a significant
margin. The SQP algorithm exhibits similar properties, where it performs well
in some scenarios and poorly in other. The CBE method, on the other hand,
consistently maintains good performance. In the majority of the tested scenar-
ios, CBE is the fastest method. In all other cases, it has similar performance
as the leading method, whether frontier or information-theoretic. These results
show that the CBE planner is less sensitive to the layout of the environment and
provides a more consistent and robust method for exploration compared to the
other techniques.
As we assume the robot pose is fully known in these simulations, repeatability

was tested by changing the initial pose. Figure 3.9 and Table 3.2 present a

56

M
ap

 E
nt

ro
py

 [B
its

]

5

10

15

20

25

30

35

Time [s]
0 50 100 150

CBE
Information Theoretic - A*
Information Theoretic - Greedy
Frontier - A*
Frontier - Greedy
SQP

CBE
Information Theoretic - A*
Information Theoretic - Greedy
Frontier - A*
Frontier - Greedy
SQP

x103

Figure 3.8: Quantitative comparison of the reduction in map entropy (world 3)
between exploration methods presented in Fig. 3.7. The initial rate
of entropy reduction is similar in all methods. However, the rate slows
in both the information-theoretic and frontier methods, as the robot
travels through already explored region in route to its next goal point.
CBE, avoids previously traversed areas of the map, leading to a faster
reduction in entropy.

comparison between CBE and frontier/A∗ in world 3 (see in Figs. 3.6 and 3.7)
for various starting poses. Once again, we can see that the paths CBE chooses are
typically more efficient in covering the environment, which leads to significantly
shorter exploration times. The paths produced by frontier/A∗ tend to cross areas
already traversed before. We note that CBE performs better than frontier even
though it uses a relatively simple path representation (quadratic splines), which
emphasises the importance of the optimisation step.

Structured Environments

These experiments test CBE performance in a structured environment scenario.
Part of the roads and paths network of Venice and Jerusalem old city were ex-
tracted from Google Maps. These complex networks of corridor-like patterns
serve as the ground truth in this large-scale exploration experiment. In such a
structured system, there is no clear advantage for the constrained BO method.
The corridor structure forms an obvious path, which limits the local significance

57

Figure 3.9: Repeatability tests. Each image depicts exploration paths in world 3
(refer to Fig. 3.6) from different starting poses, marked by a black dot.
The blue and red lines are the exploration paths, CBE and frontier
(Yamauchi, 1997), receptively. Each path ends with a corresponding
diamond shaped marker.

58

Table 3.2: Repeatability - quantitative comparison of exploration paths originat-
ing from various starting poses as shown in Fig. 3.9. Comparison is
between CBE and frontier (Yamauchi, 1997) exploration methods.

Exploration Time [s] Diff [%]CBE Frontier
1 128.9 107.3 -16.8
2 89.8 111.9 24.5
3 68.7 104.6 52.2
4 96.9 103.9 7.3
5 72.7 97.4 34.1
6 61.1 78.7 28.8
7 61.8 98.6 59.7
8 88.4 91.4 3.4
9 99.5 98.5 -1.0
10 70.0 76.9 9.8

Average 83.8 96.9 20.2
std. dev. 21.2 11.6 24.1

of path selection. As there are little differences in rewards along the paths, the
end goal becomes the most important property of a path. Hence, a CBE planner
would be potentially ineffective. By comparison, the frontier based-A∗ approach
seems to be the most sensible method for such a problem as it moves the robot
on the shortest path to the edge of the known space.
Figure 3.10 depicts the executed path of a robot exploring the surroundings

of the Piazza San Marco,Venice, while Fig. 3.11 shows exploration around the
Church of The Holy Sepulchre, Jerusalem. In both cases, the road network is
complex, creating many possibilities for autonomous actions. From these quali-
tative comparisons, one can see that all techniques cover almost the entire mission
area (blue square) with no isolated pockets of unexplored regions. However, a
closer examination of the executed paths reveals a significant difference. As the
map is a-priori unknown, it is reasonable that the robot will have to move oc-
casionally through already mapped roads. However, the paths generated by the
information-theoretic heuristics revisits known roads much more than the other
planners. Although the search heuristics includes a distance penalty, it is not
general enough to be effective in all scenarios. Once again, the reason behind
such a sub-optimal performance lies in the basic properties of the global point
planners i.e. separating the solution for the goal point from the subsequent path
generation. We should note that in these scenarios the frontier planner is not
as affected. Choosing the closest frontier as the planner’s goal point keeps path
planning in the robot’s local neighbourhood. However, such an arbitrary goal

59

Figure 3.10: Comparison of simulation results of map building in Venice. (Top-
left) Satellite image with a blue overlay that marks the mission
area. In the remaining images, the black lines mark the ground
truth for walls and obstacles. The blue overlay marks unex-
plored/unobserved regions, whereas explored areas are shown with-
out the blue background. Occupied grid cells are marked with a red
overlay. Traversable roads are extracted from Google Maps. The
path the robot executed is in yellow, and the last position of the
robot is marked with a green diamond. (top-right) CBE, (bottom-
left) frontier and (bottom-right) information-theoretic based explo-
ration. As expected, all methods explored almost the entire mission
area. The paths generated by the information-theoretic method re-
visits explored region of the map much more than the other methods,
although a distance penalty is incorporated in its reward heuristic.
CBE and frontier present similar path structure as both plan mostly
in the robot’s close neighbourhood.

60

Figure 3.11: Comparison of simulation results of map building in Jerusalem old
city. (Top-left) Satellite image with a blue overlay that marks the
mission area. In the remaining images, the black lines mark the
ground truth for walls and obstacles. The blue overlay marks unex-
plored/unobserved regions, whereas explored areas are shown with-
out the blue background. Occupied grid cells are marked with a red
overlay. Traversable roads are extracted from Google Maps. The
path the robot executed is in yellow, and the last position of the
robot is marked with a green diamond. (top-right) CBE, (bottom-
left) frontier and (bottom-right) information-theoretic based explo-
ration. As expected, all methods explored almost the entire mission
area. The paths generated by the information-theoretic method re-
visits explored region of the map much more than the other methods,
although a distance penalty is incorporated in its reward heuristic.
CBE and frontier present similar path structure as both plan mostly
in the robot’s close neighbourhood.

61

M
ap

 E
nt

ro
py

 [B
its

]

4.9

4.95

5

5.05

5.1

5.15

5.2

5.25

Time [s]
0 500 1,000 1,500 2,000 2,500 3,000 3,500

CBE
Information Theoretic
Frontier

x106

CBE
Information Theoretic
Frontier

x106

Figure 3.12: Venice - Comparison of reduction in map entropy between explo-
ration methods presented in Fig. 3.10. The overall time to cover
the mission area is similar with both CBE and frontier. Both meth-
ods outperform the information-theoretic method as the number of
paths crossing already explored regions of the map is lower.

M
ap

 E
nt

ro
py

 [B
its

]

1

1.05

1.1

1.15

1.2

Time [s]
0 500 1,000 1,500 2,000 2,500

CBE
Information Theoretic
Frontier

x106

Figure 3.13: Jerusalem - Comparison of reduction in map entropy between explo-
ration methods presented in Fig. 3.11. The rate of entropy reduction
using CBE and Frontier is similar and outperforms the information-
theoretic method which corresponds to lower instances of crossing
already explored regions of the map.

62

point selection cannot always guarantee an optimal path.
A quantitative comparison for the Venice and Jerusalem exploration simula-

tions are shown in Figs. 3.12 and 3.13, respectively. Most importantly, even in
unfavourable conditions, CBE achieves performance as good as frontier. A careful
inspection of the results reveals additional insights. Similarly to the unstructured
environment simulations, the initial rate in which the map entropy drops is similar
in all techniques. As the robot moves through the map, the number of possible
actions increases leading to differences in performance. In Venice, frontier is
less effective at first, while in Jerusalem the information-theoretic solution is less
effective. Yet, in both experiments the CBE algorithm kept a consistent perfor-
mance comparable or better than the other leading method. These results affirm
the conclusion from our previous experiment that constrained BO is a robust
exploration method.
The essence of the CBE method lies in its reasoning about the usefulness and

safety of the entire path taken. The benefits of reasoning on the overall accu-
mulated reward are more distinct when compared to the information-theoretic
single goal point exploration technique (red line). The qualitative results shown
in Figs. 3.10 and 3.11 expose the inefficiencies in the single goal point meth-
ods. The slower exploration rate in this method corresponds to the revisiting of
already explored regions of the map whilst moving to the next goal point. By
reasoning on the path utility instead of the end goal point, CBE avoids selecting
paths that provide little information. Furthermore, the global component in the
constrained BO reward function is found to be very effective in pulling robot
away from dead-ends. Yet, a more expressive path option is more desirable in
such a case, since it will allow longer term planning.

3.5.2 Real Environments

Simulations show the effectiveness of CBE for autonomous exploration. However,
to assess performance with pose uncertainty, CBE was evaluated with a real robot
mapping a cluttered office environment. We used our in-house robot, the Wombot
(see Fig. 3.14), equipped with an i7-4500U 1.8GHz dual-core on-board PC and an
Hokuyo UTM-30lx laser range finder, which can travel indoors with a maximum
speed of 0.5m/s. As in simulations, we set W1 = 100 and W2 = 50..
We use Robot Operating System (ROS) (Quigley et al., 2009) to manage the

communication between the various components of the robot i.e. sensors, ac-
tuators etc., and software modules. For mapping and localisation, we utilise
externally provided ROS package, gMapping (Grisetti et al., 2007). It is worth
noting that the aim of these experiments is to assess the performance in the pres-
ence of pose uncertainty. Although CBE can encode loop-closing heuristic in its

63

Figure 3.14: The Wombot - a mobile robot equipped with a Hokuyo UTM-30lx
laser range finder.

objective function, we only used the objective function defined in Algorithm 5.
Figure 3.15 shows the maps and paths taken at different time stamps for both

CBE and frontier. Similarly to experiments in simulations, the frontier planner
places a goal point at the closest frontier. Figure 3.15 shows that both methods
cover the entire space. However, while both stay clear of obstacles, the path
taken by the frontier planner is less efficient. Even at t = 50s CBE covers a
larger area of the map and the gap in coverage between the methods widen as
exploration continues. The path taken by frontier is longer as the planner takes
unnecessary maneuvers. The occluded space behind the various obstacles forms
frontiers "traps" that are then visited by the robot. As the robot visits these goal
points, the overall path length and exploration time increase. CBE, on the other
hand, considers the utility of the entire path as opposed to only considering the
utility of the goal point, resulting a shorter and more efficient path. Furthermore,
assessing safety using sigma paths that considers the effect of the uncertain pose
with robot motion proved to be successful.
Figure 3.16 provides a quantitative comparison between the two methods. In

the beginning, both methods perform similarly. After about 50 seconds the two
methods start to diverge as the frontier planner pulls the robot towards a goal
point behind an obstacle. As the exploration continues, the performance gap be-
tween the two methods increase, mainly due to a non-optimal goal point selection

64

Figure 3.15: Map building comparison in a real environment. Each image repre-
sents the available map at a specific time stamp shown on the left.
The frontier method produces a map less efficiently as it chooses
unnecessary long paths due to frontiers forming in occluded space
behind the various obstacles.

by the frontier planner. The final map, and the reduction in overall entropy is
the same in both methods, although it took frontier roughly 30 seconds longer to
do so.
The advantage of CBE comes with a computational cost as shown in Table 3.3.

Finding a frontier and planning a safe path from the robot pose to a specific goal
point depends of the size of the map and the distance to the goal point. Typically
in our experiments, planning took less than 1 second. However, the search for
a safe path took longer when there was no safe path to the selected frontier. In
such a case, a safe path to a different goal point was calculated, but only after
the first search had exhausted its time budget. CBE is more stable despite the
higher computational cost.
As discussed in Section 3.4, updating and querying the GP models are the

computational bottlenecks of CBE. As the main goal of this paper was to address

65

M
ap

 E
nt

ro
py

 [B
its

]

3.926

3.928

3.93

3.932

3.934

3.936

Time [s]
0 50 100 150 200 250 300

BO #1
Frontier #1

x106

X10 6

 CBE
 Frontier

Figure 3.16: Autonomous exploration with a real robot - Comparison of reduction
in map entropy between exploration methods presented in Fig. 3.15;
The frontier planner visits the occluded space behind the various ob-
stacles leading to longer path and exploration time. CBE maximises
the information gain along its path. Therefore, the path avoids un-
necessary maneuvers, which results in an efficient exploration.

Table 3.3: Comparison of the average planning and execution time
BO Frontier

Planning [s] 58.4 9.8
Path Execution [s] 192 236

the accuracy and validity of CBE with respect to the exploration problem, the
computational complexity was not considered in the algorithm’s design. However,
an array of approximations for GP regression and classification can be used to
address the computational complexity of GP inference. In his work on sparse GP
models, Titsias (2009) proposed an approximation method based on variational
inference with a complexity of O(m2N), where m are inducing points. Big data
GP approximations follow an even lower complexity of O(m3) for both regression
(Hensman et al., 2013) and classification (Hensman et al., 2015). Further re-
duction in complexity can be achieved by non-linear logistic regression classifiers
(Bishop, 2006), with a computational cost that is independent of the number of
data points and linear in the number of features.

66

3.6 Summary

This chapter introduces a new strategy for safe autonomous exploration over
continuous path. Its novelty lies in the holistic probabilistic approach to robotic
exploration. Specifically it presents the following contributions:

(i) Formulation of autonomous exploration as an optimisation problem over
constrained continuous space, where the path is evaluated by its accumu-
lated reward and not only by the reward of its goal point. Traditional
exploration methods consist of a two-step solution. First, a collection of
goal points (typically one) is defined by a set of heuristics followed by a
path planning step. As a result, the expected usefulness of the resolved
path is based solely on the utility function of the end point and does not
consider any potential gains along the way. Our new strategy, on the other
hand, does not set goal points. Rather, it optimises the path selection by
learning the properties of the objective function and any associated con-
straints. Consequently, the full potential of the robot trajectory can be
exploited and not only that of the end point.

(ii) Constrained Bayesian Exploration as a holistic approach to safe exploration.
This method directs the optimisation process in the presence of unknown
constraints and risks. Hence, it provides a principled and robust approach
for optimising exploration using Bayesian optimisation. As such, CBE guar-
antees convergence to a local solution and follows well known BO’s regret
bounds.

Utilising Bayesian inference, the optimiser learns the models of the rewards and
constraints. These models are then used to generate a coherent objective function
that incorporates gains, costs and risks of any path, allowing efficient identifica-
tion of potential optimal solutions that satisfy the constraints with high confi-
dence. As the actual model of the objective function and constraints is learned
online, incorporating different objectives or constraints is straightforward. There-
fore, CBE allows a relatively simple and smooth application of other limitations
or objectives such as energy and time budget. limitations, such as energy and
time budget, or objectives, e.g. the Cauchy-Schwarz quadratic mutual informa-
tion (Charrow et al., 2015).
To test the robustness and consistency of our method, we compared its perfor-

mance with traditional and state-of-the-art exploration techniques. The results
show that the performance of the other exploration techniques depends on the
layout of the environment. By reasoning about the usefulness of the entire path
instead of only its goal point, CBE exhibits a robust and consistent performance

67

in all tests. Even in unfavourable conditions of structured environments, CBE
performs better than or as good as the leading method.
The use of sigma paths to incorporate localisation uncertainty proved success-

ful. A robot travelling through cluttered office space managed to avoid obstacles
while still optimising the cost function.
CBE provides a global optimisation framework for exploration along continuous

paths. However, it also carries several disadvantages. One major disadvantage is
the computational cost, which arises from the cubic cost of updating and querying
GPCs. A promising approach to alleviate this restriction is to utilise stochastic
variational inference for GPC (Hensman et al., 2015), which has a computational
cost independent of the number of data points.
A general disadvantage of Bayesian optimisers is their low-effectiveness for

high dimensional problems, also known as the curse of dimensionality. As the
dimensionality of the problem increases, the density of observations decreases
exponentially (Györfi et al., 2002). As a result, the GP surrogate models can
not represent well the objective function. With low fidelity surrogate models, the
optimiser is no longer effective. To overcome this problem, we followed practical
limitation on BO dimensionality (<10) (Snoek et al., 2012) and restricted the
family of trajectories used for CBE. However, the use of a predefined family of
trajectories, such as quadratic or cubic splines, limits the decision space of the
robot. This problem is more pronounced when path planning is constrained,
for example near obstacles, as the optimisation space is confined. Examples of
more expressive path generation already exists in the literature (Yang et al., 2013;
Charrow et al., 2015). However, these methods do not consider the overall reward
along the path, or only locally optimise the path selection. Combining exploration
with an expressive RKHS motion planning method, such as the method presented
by Marinho et al. (2016), may allow for global optimisation of highly expressive
paths. This approach is developed in the following chapters of this thesis.

68

Chapter 4

Stochastic Path Planning in Continuous
Occupancy Maps

4.1 Introduction

Motion planning is a basic building block in autonomous robotics. Essentially,
it is a decision making process that ensures safe travel from the robot’s current
configuration to its goal. As safety is the primary objective, the planned trajec-
tory must avoid collision with obstacles. It is a prolific branch of robotics that
has been studied for decades, producing a wide range of planning methods which
can be categorically grouped into two main branches; sampling-based planning
and trajectory optimisation.
Planning a safe path using an Occupancy Grid Map (OGM) is typically done

by sampling-based planners (Tsardoulias et al., 2016). Most planners break the
planning process into two phases. First, the planner finds a feasible, collision-
free, crude path. Then, the following step improves the resulting path by applying
certain heuristics.
Trajectory optimisers optimise an objective function such as control cost or exe-

cution time. However, there are no trajectory optimiser implementations for path
planning using occupancy maps. The main challenge lies in the optimiser’s need
for contextual information anywhere along the path. Gaps or non-informative
gradients will cause the optimiser to converge into a non-optimal and unsafe
solution.
In this chapter, we present a new planning paradigm using occupancy maps.

We utilise the recently introduced Hilbert maps (Ramos and Ott, 2015) instead of
OGMs. Hilbert maps provide a fast and continuous linear discriminative model
for occupancy mapping. We take advantage of the fact that spatial gradients of
the occupancy can be calculated in closed form, and use them in the functional
gradient motion planner update cycle. We present a novel path planner based on
a Gaussian Process (GP) path representation. Unlike other functional gradient
path planning techniques (e.g. (Marinho et al., 2016), (Zucker et al., 2013)), the
proposed planner does not commit to a predetermined resolution, whether spatial
or parametric. It replaces the regularisation of the step size used in the functional

69

gradient method with a stochastic gradient approach. This is a key element in
the planner’s optimisation strategy as it allows a resolution-free gradient update,
which is required to ensure convergence.
The contributions presented in this chapter are:

1. A novel path optimisation approach for continuous occupancy maps. This
method extends previous work done on discrete cost maps to a continuous
environment representation.

2. A stochastic functional gradient motion planner based on GP path represen-
tation. The stochastic samples allow flexible support for the path, instead
of an a-priori fixed set as used in prior work.

.
The remainder of this chapter is organised as follows. Section 4.2 reviews

the literature on path planning using occupancy maps. Section 4.3 extends the
general functional optimisation framework in Section 2.3 for path planning in
cost maps. The modifications required for planning in occupancy maps and the
algorithm for FGD path planning in Hilbert maps are detailed in Section 4.4.
The experimental results, in simulation and with real laser data, are described in
Section 4.5. Section 4.6 summarises the proposed method and findings.

4.2 Related Work

Path planning using occupancy maps is commonly approached by sampling-based
methods with several very successful algorithmic families such as: Rapidly explor-
ing Random Trees (RRT), Probabilistic RoadMap (PRM), Visibility Graphs (VG)
and Space Skeletonisation (see review by Tsardoulias et al. (2016)). Sampling-
based methods typically work by first building a graph representation of the
configuration space, where edges represent valid connections. After the graph is
built, a valid path is obtained using a search algorithm on the graph structure.
The visibility graphs method builds a graph where the nodes are the vertexes
of the obstacles (Lozano-Pérez and Wesley, 1979). Space skeletonisation uses
Generalised Voronoi Diagram (GVD) to compute safe paths (Bhattacharya and
Gavrilova, 2007; Garrido et al., 2006). PRM randomly samples the configuration
space for free space configuration and then uses a local planner to find edges to
connect these configurations to existing nodes (Kavraki et al., 1996). Next, a
tree search method is used to determine the path. Another successful and prolific
method is RRT, which randomly grows a tree rooted at the start configuration

The theory and results in this chapter were published in (Francis et al., 2017)

70

(Lavalle, 1998). The main drawback of sampling based methods is that while
they are very successful in finding safe paths, there is no explicit optimisation of
an objective function, such as length or smoothness.
Optimisation is a widely used approach for finding feasible paths, where the

planned path is the local extrema of a pre-defined arbitrary cost function. Loosely
speaking, the cost function captures the costs and penalties associated with a
configuration-space state, e.g. distance from obstacles. Khatib (1986) pioneered
the use of artificial potential field for collision avoidance. Covariant Hamiltonian
Optimisation for Motion Planning (CHOMP) utilises covariate gradients from
a precomputed obstacle cost to minimise the trajectory’s obstacle and smooth-
ness functionals (Zucker et al., 2013). The Stochastic Trajectory Optimisation for
Motion Planning (STOMP) planner uses noisy perturbations to perform optimi-
sation under constraints where the cost functional is non-differentiable (Kalakr-
ishnan et al., 2011). Both CHOMP and STOMP commit to a waypoint rep-
resentation which require to trade-off expressiveness with computational costs.
Mukadam et al. (2016) proposed the Gaussian process motion planner which
uses a Gaussian process generated by linear time varying stochastic differential
equations for path representation. Marinho et al. (2016) perform trajectory opti-
misation in a RKHS. However, all these methods fall short when planning using
occupancy maps as discussed in section 4.4.2.

4.3 Functional Gradient Path Planning

In this section, we extend the general functional optimisation framework in Sec-
tion 2.3 for path planning. We first re-define the notation of Section 2.3. A path,
ξ : [0, 1] → C ∈ RD, is a function that maps time, t ∈ [0, 1], into configura-
tion space C. We define an objective functional, U(ξ) : Ξ → R, that returns a
real number for each path ξ ∈ Ξ. The objective functional captures the path
optimisation criteria, such as path safety and kinematic costs.
The objective functional, U(ξ), varies between the different planning methods.

However, it is typically a weighted sum of two penalties:

U(ξ) = Uobs(ξ) + λUdyn(ξ)m (4.1)

where;

(i) Uobs(ξ) penalises proximity to obstacles;

(ii) Udyn(ξ) regulates either the curve shape or motion dynamics:

As obstacles are defined in the robot’s working space W ∈ R3, estimating the

71

obstacle cost functional is done by mapping a path from configuration space into
workspace using a forward kinematic map, x. Given B ∈ R3, a set of points on the
robot, x (ξ(t), u) maps a robot configuration, ξ(t) and body point u ∈ B to a point
in the workspace x : C ×B → W . Then, the obstacle cost functional is estimated
by aggregating the workspace cost function, c : R3 → R, along the trajectory and
robot body points using a reduce operator such as an integral or a maximum. The
only requirement is that the reduce operator can be approximately represented
by a sum over a finite set, T (ξ) = {t, u}i of time ti and body points ui:

Uobs(ξ) ≈
∑

(t,u)∈T (ξ)
c (x (ξ(t), u)) . (4.2)

Udyn(ξ) is a secondary objective functional, which typically penalises a path
based on its kinematic costs or curve properties. The exact choice depends on the
implementation and path representation used. In most cases the penalty deals
with derivatives of the path, for example in (Zucker et al., 2013) the squared
velocity norm was used as the dynamic penalty:

Udyn(ξ) = 1
2

∫ 1

0

∣∣∣∣∣
∣∣∣∣∣ ddtξ(t)

∣∣∣∣∣
∣∣∣∣∣
2

dt. (4.3)

In (Marinho et al., 2016), the optimisation regulariser was the L2 norm of ξ which
implicitly assumes the zero-line, connecting starting point to the goal point, as
the preferable solution. We will show in Section 4.5 that such a regulariser is not
suitable when planning using occupancy maps.
Given the cost functional in Eq. (4.1), the functional gradient is given by:

∇ξU = ∇ξUobs(ξn(·)) + λ∇ξUdyn(ξn(·)). (4.4)

Optimisation of ξ can be performed by an iterative approach as described in Eq.
(2.37). Applying the functional gradient of Eq. (4.4) to Eq. (2.37) leads to the
overall update rule;

ξn+1(·) = ξn(·)− ηnA−1 [∇ξUobs(ξn(·)) + λ∇ξUdyn(ξn(·))] . (4.5)

4.4 FGD Using Hilbert Maps

In this section we discuss the shortcoming of the current functional gradient meth-
ods when planning paths in occupancy maps. We then propose a method that
utilises a continuous GP path representation combined with stochastic sampling
to solve this problem using Hilbert maps.

72

Occupancy maps create several challenges for gradient based path planners.
Most importantly, gradient information in an occupancy map is not necessarily
useful. The obstacle cost functional defined in Eq. (4.2) requires a workspace
cost function, c(x(ξ(t), u)). Most trajectory optimisers work with a precomputed
distance field as a cost map, which produces noiseless and informative gradients
anywhere in the map. Estimating the obstacle cost in an occupancy map is more
challenging. While the occupancy map (or blurred map if using OGM) can act as
c(x(ξ(t), u)), the obstacle cost is only well defined in observed areas of the map.
Even when OGM is converted to an SDF using a Truncated Signed Distance
Function (TSDF) (Curless and Levoy, 1996), it is unable to provide informative
gradients in unobserved regions (Oleynikova et al., 2017).
Figure 4.1 illustrates the differences between the precomputed cost used by

most FGD motion planners and a standard occupancy map (Elfes, 1989). Fig-
ure 4.1a shows a cost map with complete knowledge of the obstacle. The cost,
given in closed-form, and its spatial gradient are defined everywhere in the map
as indicated schematically by the arrows. Figure 4.1b illustrates the equivalent
occupancy grid map, which is inferred from laser observations. As expected, The
grid map only holds information about observed locations. In those regions, the
cost follows the occupancy. However, in the unobserved regions of the map, the
two approaches generate different outputs. While the precomputed cost still pro-
duces a well-behaved function and the desired repulsive gradient, the occupancy
returns to the map’s prior occupancy probability of 0.5 and generates inconsistent
gradients.
The main challenge of using FGD on occupancy maps lies in the inability to

define a usable gradient everywhere in the map. Cross sectional data of the
precomputed cost and occupancy maps, as depicted in Fig. 4.1c, summarises
this. In observed areas, the occupancy can act as the obstacle cost, as spatial
gradients of both maps "pushes" away from obstacles. However, in occluded
regions the behaviour is entirely different. While the precomputed gradient still
returns a repulsive gradient, pushing away from the obstacle, the spatial gradient
of the occupancy map pulls inward, toward unobserved and unsafe regions of the
map. Conversion of an OGM to DSF using TSDF (Curless and Levoy, 1996) does
not alleviate this problem, as TSDF cannot interpolate over unobserved regions
of the map. While Oleynikova et al. (2017) suggest TSDF for planning, they
acknowledge TSDF inability to produce useful gradients everywhere in the map,
requiring multiple re-planning during execution.
The other challenge arising from planning with trajectory optimisers using oc-

cupancy maps is that all planners commit to a specific path parametrisation to
solve Eq. (2.37). Waypoint parametrisations, as used by (Zucker et al., 2013;

73

Kalakrishnan et al., 2011; Park et al., 2012), have to find a balance between
expressiveness and computational complexity. More recent work on functional
gradient motion planning in RKHS (Marinho et al., 2016) and the Gaussian pro-
cess motion planner (Mukadam et al., 2016; Dong et al., 2016) define a parametric
support with finite resolution for their path representation. These methods pro-
duce highly expressive trajectories. However, given the finite resolution of the
support, the spatial density of the support points changes, as the optimisation
process deforms the trajectory. Consequently, some areas in the workspace have
low support density, which results in a low update rate. This problem is exacer-
bated when using occupancy maps as some regions in the map have no informative
gradients. To prevent the optimisation process from becoming corrupted, such
uninformative updates are rejected, reducing even further the effective density of
the support.
The following sections address these issues. The resulting path planning algo-

rithm computes in closed-form the obstacle functional gradients from a Hilbert
map. It then uses a stochastic sampling schedule and an iterative GP represen-
tation to generate an expressive path over a flexible stochastic support.

4.4.1 Occupancy Gradient in Hilbert Maps

In our approach, the spatial cost function c(x(ξ(t), u)) is the Hilbert occupancy
map, which is estimated by Eq. (2.45) along the trajectory and robot body
points. Although Hilbert maps do not form a tangible grid as OGM, querying
the spatial occupancy gradient is as straightforward as querying an occupancy
grid. By applying the chain rule, the Euclidean space gradient of Eq. (2.45)
around a query point, x∗ becomes:

∂

∂x∗
p(y∗ = +1|x∗,w) = ∂σ(zNL(x∗,w))

∂zNL
∂zNL
∂x∗

≈ σ(zNL)(1− σ(zNL))wT ∂

∂x∗
Φ̂(x∗).

(4.6)

Here we used the fact the derivative of LR is given by ∂
∂xσ(x) = σ(x)(1− σ(x)).

4.4.2 GP Paths using Hilbert maps

GPs provide a principled way to represent smooth trajectories. The GP model
requires a small set of support points, which define waypoints in configuration
space that the path should follow. GP regression provides us with a complete
solution that allows querying the model at any given time and handles boundary
conditions we wish to impose. Unlike other GP-based motion planners (Mukadam
et al., 2016; Dong et al., 2016), the method presented here does not require a

74

predefined support, but rather learns and builds the trajectory support while
optimising the path.
A GP path is defined as a vector-valued (multiple output) GP (Alvarez et al.,

2012):
ξ(t) ∼ GP(µ(t), k(t, t′)), t, t′ ∈ [0, 1]. (4.7)

Here, µ(t) ∈ RD is the vector-valued mean function of t and k(t, t′) ∈ RD × RD

is a positive matrix-valued kernel between ξ(t) and ξ(t′) with a corresponding
kernel matrix for two different time instances, K(t, t′):

K(t, t′) =

k1,1(t, t′) k1,2(t, t′) . . . k1,D(t, t′)

...
kD,1(t, t′) kD,2(t, t′) . . . kD,D(t, t′)

 . (4.8)

As ξ(t) ∈ RD defines a state in configuration space, each element in K, kd,d′(t, t′)
d, d′ = 1, ..., D represents the effect joint [ξ(t)]d at time t has on joint [ξ(t′)]d′ at
t′.
Updating the model requires conditioning the GP model with waypoint ob-

servations. The term observations here is used loosely, and means the states,
ξo(to) at time to that the trajectory must pass through. By conditioning the
GP with these observations we can compute the maximum a posteriori (MAP)
configuration at any query time, t∗:

ξ̄(t∗) = µ(t∗) +K(t∗, to)K(to, to)−1(ξo(to)− µ(to)). (4.9)

The choice of to differentiates this work from other GP path representations, such
as (Mukadam et al., 2016; Dong et al., 2016). In prior work, gradient observations
were taken on a fixed set of observation points. Meaning that to was fixed a-priori
and as a result the path support was fixed a-priori. In this work, on the other
hand, to is learned online, by accepting and rejecting stochastic samples from the
occupancy map.
There are several advantages of using GPs to represent the path. First, we do

not need to discretise the path. Instead a finite set of N points, {toi , ξoi (toi)}Ni=1,
serve as the curve support, which can be queried for its MAP value at any given
time t∗ using Eq. (4.9). Second, the mean function µ provides an explicit prior,
which can be exploited by initialising the optimisation with a rough path from
a fast path planning method. Finally, boundary conditions can be imposed by
treating them explicitly as observations. Besides the obvious boundary conditions
at the start and goal points one can define must-visit waypoints along the tra-
jectory or define the robot’s direction by including derivative observations (Solak

75

et al., 2002).

4.4.3 Stochastic Gradient

A drawback of other functional gradient motion planners is that they either utilise
a spatial parametrisation or commit to a finite parametric resolution to represent
and update the path. In both cases, this may lead to gaps in the sampling of
the objective functional. To overcome this we adopt a resolution-free sampling
method. Since the functional objective of Eq. (4.1) can be approximated by a
sum of individual points along the path, optimisation of the objective can be
performed using stochastic gradient descent (SGD) (Bottou et al., 2016). From
Eqs. (4.1)-(4.3), we define an empirical objective functional that approximates
the real objective:

Û(ξ) =
∑
t,u∈T

Uobs (ξ(t, u)) + λUdyn (ξ(t, u)) −−−→
n→∞ U(ξ). (4.10)

A consequence of Eq. (4.10) is that minimising the objective requires reasoning
over many points all along the curve. Such a process, which effectively resembles
batch optimisation, is computationally infeasible. The approach taken by other
trajectory optimisation methods (e.g. (Marinho et al., 2016; Mukadam et al.,
2016)) is to estimate Û(ξ) with a finite resolution support. However, it is clear
from Eq. (4.10) that while this is computationally attractive, such an approach
cannot guarantee convergence to the optimum.
The stochastic functional gradient path planner utilises SGD to ensure conver-

gence under the SGD guarantees (Bottou et al., 2016). Generally, SGD randomly
selects a mini-batch from a dataset and then updates the solution in small steps,
based on the gradient computed from that mini-batch. In the path planning
problem, there is no dataset per se. Instead, the dataset is built during optimi-
sation by samples taken over the entire [0, 1] domain. Consequently, our method
utilises SGD’s update rule and uses random samples [t∗, u∗, ξn(t∗)] as stochastic
training points. The update rule of Eq. 2.37 is then replaced by:

ξn+1(·) = ξn(·)− ηnA−1∇ξU(ξn(t∗), u∗) (4.11)

where ηn > 0 is the step size parameter and can be either constant or asymptoti-
cally decaying. Matrix A can be seen as a preconditioner that may help accelerate
convergence rate, and in many cases is set to the identity matrix (Bottou et al.,
2016).
By conditioning the step size ηn, SGD ensures the convergence, in expectation,

of the empirical objective in Eq. (4.10) to the optimal objective, while keeping

76

computational cost per iteration low (Bottou et al., 2016).

4.4.4 Planning on Hilbert Maps Algorithm

To finalise the stochastic functional gradient path planning algorithm, we need
to define the functional gradient of Uobs and Udyn. Applying Eq. (2.38) to Uobs at
a sampled time t∗ and for robot body point u∗ yields;

∇Uobs(ξ(t∗), u∗) = ∂

∂ξ(t)x(ξ(t∗), u∗)∇xc (x (ξ(t∗), u∗)) . (4.12)

Here, J(t∗, u∗) ≡ ∂
∂ξ(t)x(ξ(t∗), u∗) is the workspace Jacobian. ∇x emphasises that

this is a Euclidean gradient of the cost function c.
We opted to use the squared velocity norm integral, as shown in Eq. (4.3),

as the dynamic penalty Udyn. Using the L2 norm such as in (Marinho et al.,
2016) is less attractive as it implicitly defines a favourable simple mean solution
which requires tuning of regularisation coefficients for different scenarios. With
Eq. (4.3), the functional gradient can be easily computed as:

∇Udyn(ξ(t∗)) = − d2

dt2
ξ(t∗). (4.13)

Again, as ξ(t) is represented by a GP, computing the derivative is straight-
forward. The update rule at time t∗ and robot body point u∗ can now be sum-
marised from Eqs. (4.11), (4.12), and (4.13) as:

ξn+1(t∗) = ξn(t∗)− ηnA−1
(

J(t∗, u∗)T∇xc (x (ξ(t∗), u∗)) + λ
d2

dt2
ξ(t∗)

)
. (4.14)

The algorithm for path planning using Hilbert maps is shown in Algorithm 6.
The algorithm accepts an optional initial solution to start the optimisation with,
otherwise a straight line trajectory is used. This initial path is then used as the
mean function of the GP path.
At each iteration, a mini-batch (tsup, usup) is drawn randomly. For each point

t∗ ∈ tsup and u∗ ∈ usup the corresponding state ξn(t∗) and workspace pose
x(ξ(t∗), u∗) are computed from the current GP path model, ξn(t). To perform the
functional update, the Hilbert map is queried at x(ξ(t∗), u∗), and the probability
of occupancy Pocc is obtained. Functional updates may only happen if the occu-
pancy is within safe limits, i.e. free from obstacles. Using Eq. (4.14) new states
ξn+1(t∗) are computed and the path model ξn(t) is updated with the new path
observations. To enforce a valid path, the boundary conditions are then incorpo-
rated into the GP model as additional observations. Finally, a new path model is
initialised with the previous model as its mean function ξn+1(t) ∼ GP(ξn(t), k).

77

Algorithm 6: Functional gradient path planning using Hilbert maps
Input: H: Hilbert Occupancy Map.

1 ξ(0), ξ(1): Start and Goal states.
2 Psafe: No obstacle Threshold.
3 ξinitial(t): Initial solution (optional).
4 k: covariance function for GP path.

Output: ξmin(t)
// Use prior guess/solution if available

5 if ξinitial then
6 µ0 ← ξinitial
7 else
8 µ0 ← (ξ(1)− ξ(0)) t+ ξ(0)
9 end
10 ξ0 ← GP0 ∼ GP(µ0, k)
11 n = 0
12 while ξ not converged do

// Stochastic sampling
13 (tsup, usup)← Draw mini-batch randomly
14 foreach (t∗, u∗) ∈ (tsup, usup) do
15 Pocc ← H(x(ξn(t∗), u∗)) Eq. (2.45)
16 if Pocc ≤ PSafe then
17 ξn+1(t∗)← update rule Eq. 4.14
18 ξn(t)← update GP with (t∗, ξn+1(t∗))
19 end
20 end

// Update boundary conditions
21 ξn(t)← update: (0, ξ(0)), (1, ξ(1))
22 ξn+1(t)← GP(ξn(t), k)
23 n = n+ 1
24 end

78

(a) Precomputed cost map (b) Occupancy Grid Map

(c) Cross section

Figure 4.1: Comparison of cost maps used in path planning. Dashed lines illus-
trate the obstacle boundaries. Arrows indicate the direction of gradi-
ent. (a) precomputed cost field as specified in (Zucker et al., 2013).
(b) shows an occupancy map based on sensors observations.(c) depicts
cross sections of the map in 4.1a and 4.1b, which emphasise the differ-
ence in spatial gradients, indicated by corresponding coloured arrows.
In the cost map, cost is defined everywhere in the map and always
generates repulsive gradient. The direction of gradient in occupancy
map is inconsistent around the obstacle borders, with attractive po-
tential in unsafe areas of the map.

79

4.5 Experiments

In this section, we evaluate the performance of the stochastic functional gradient
path planner in simulation and with real data. We show that other functional gra-
dient methods such as (Marinho et al., 2016) fail when planning using occupancy
maps. We also provide comparisons to other planning methods for occupancy
maps such as RRT∗ (Karaman, 2010) and PRM∗ (Karaman and Frazzoli, 2011) .

4.5.1 Simulations

In this section we compare the proposed method with the functional gradient
motion planner in RKHS (Marinho et al., 2016), as both methods are related.
We show that while (Marinho et al., 2016) provides a flexible path representation,
changes are needed in order to perform optimisation in occupancy maps.
Most trajectory optimisers assume full knowledge about the location of obsta-

cles and precompute offline a cost field, c(x) in workspaceW which penalises the
proximity to obstacles, for example (Ratliff et al., 2009):

c(x) =

−d(x) + 1

2ε d(x) < 0
1
2ε(d(x)− ε)2 0 ≤ d(x) ≤ ε

0 otherwise

, (4.15)

where d(x) is the distance of x to the boundary of the nearest obstacle and ε

is a minimal safety buffer from obstacles. An example of path planning with a
precomputed cost field based on (Marinho et al., 2016) is shown in Fig. 4.2: 4.2a
depicts the iterative optimisation process and 4.2b shows the optimal path. These
noiseless obstacles result in a cost gradient that is well-defined anywhere in the
workspace, including inside obstacles. As the gradient is precomputed, evaluating
the update rule is also computationally efficient, leading to fast convergence to a
local minima. However, planning using occupancy maps adds several challenges
to this optimisation process. The cost field, and more importantly its spatial
gradients, are not necessarily informative. In addition, as the map is generated
by laser observations, all predictions are noisy. As a result, the assumptions at
the core of the functional gradient-based planner are no longer valid and a change
to the planning process is required.
Constructing a Hilbert map for a simulated environment of randomly placed

obstacles is achieved by generating an occupancy dataset. The dataset D =
{xi, yi}N1 is created by randomly placing occupied observations, yi = +1, on the
boundaries of all obstacles and free observations yi = −1 outside obstacles. There
are no laser points inside obstacles. After the dataset is created, the map model

80

(a) Optimisation Process (b) Final Path

Figure 4.2: RKHS motion planning (Marinho et al., 2016) in a precomputed cost
field calculated according to (4.15). Obstacle potential costs and their
spatial gradients are well-defined anywhere in the workspace. Dashed
lines illustrate the obstacles boundaries. Star and pentagon mark the
start and goal points, respectively. (a) paths generated during the
RKHS optimisation process. (b) shows the optimal path.

is fitted. Figure 4.3 depicts a Hilbert continuous occupancy map generated for
the environment shown is Fig 4.2. Using the continuous map representation, the
occupancy and its gradient can be queried at any location.
Figure 4.4 shows an attempt to plan a path in an occupancy map using the

functional gradient method described in (Marinho et al., 2016) with various sup-
port sizes (N = 5, 50, 100, 200). The cyan line depicts the optimal path after the
algorithm has converged. Clearly, the resulting path is unsafe regardless of the
size of the support N used in the optimisation process. As expected, increasing
the size of support leads to a more expressive path. Yet, even with N = 200 the
resulting path was not safe. The reason lies in the lack of informative gradient
in the occupancy map and the finite parametric resolution of the path represen-
tation. As the optimisation process deforms the curve, the spatial density of the
support changes too. Consequently, there is less support around critical areas of
the map such as the boundaries of obstacles. Increasing resolution even further
will not alleviate this problem since we have no a-priori knowledge of the number
of required support points. Additionally, increasing the number of support points
create unnecessary jerks in the curve, as a response to noisy occupancy gradients,
as shown in Fig 4.4.

81

Figure 4.3: Continuous occupancy Hilbert map for the environment shown in Fig
4.2. The map shows the probability of occupancy, p(y∗ = +1|x∗,w)
as in (2.45). Note that the optimal path of in Fig. 4.2 passes through
the gap between obstacles 4 and 7. In the Hilbert map, such a path
is considered invalid as it passes occupied or unsafe area.

Our stochastic functional gradient method does not commit to a specific para-
metric resolution, rather it randomly selects points along the curve during the
optimisation. Figure 4.5a shows in cyan the average path planned using the oc-
cupancy map of Fig 4.3. Since the optimisation objective balances an obstacle
cost with a penalty on the trajectory shape, the optimal path is collision-free
and smooth. Finding a path relies on generating enough samples to instanti-
ate a gradient update, especially in areas of high importance such as obstacles
boundaries. Figure 4.5b shows the convergence of the optimisation process to the
minima of the objective, by plotting the maximum occupancy along the trajec-
tory at each iteration. The maximum occupancy along the path drops steadily
as the optimisation progresses. However, it cannot drop below 0.4, since the pre-
dictive occupancy between obstacles 2 and 4 is approximately 0.4. Yet, Fig. 4.5b
provides empirical evidence for the expected optimality of the stochastic process.
Figure 4.6 provides a qualitative comparison between the stochastic GP planner

and RRT∗ (Karaman, 2010) on the random worlds of Fig. 3.6, where Hilbert
maps were generated from simulated laser data. Table 4.1 lists complementary
information about the paths’ length and safety. At first glance, the difference
between the two planning methods is the path smoothness. The waypoints-
based path produced by the RRT∗ planner, is jagged by construction, which is in
contrast to the smooth path of the proposed method. Closer inspection reveals
that the RRT∗ planner tends to place the path close to the obstacles’ edge. This

82

(a) N=5 (b) N=50

(c) N=100 (d) N=200

Figure 4.4: RKHS motion planning (Marinho et al., 2016) fails to plan using
Hilbert maps. The individual plots compare the effect the size of the
path support N has. The final path is depicted in cyan, while the
cyan star and pentagon mark the start and goal points, respectively.
The RKHS motion planner does not find a valid solution since it
represents the path with a parametric resolution, which leads to gaps
in the sampling of the objective functional.

is a result of the search heuristic used in selecting the waypoint of the final RRT∗,
which does not consider proximity to obstacles. The stochastic GP planner, on
the other hand steers path away from obstacles, maintaining a safe distance.
Consequently, the path safety, as shown in Table 4.1, is borderline or even unsafe
for RRT∗, compared with a large safety margin for the GP planner. Moreover,
although the GP planner safety margin is bigger, most resulting paths are slightly
shorter than the paths produced by RRT∗.
A major disadvantage of RRT∗ is evident from the paths generated for worlds

4 and 8. In these scenarios, the shortest path must traverse a narrow passage,
where the probability of sampling a node for the RRT∗ is low. With no samples
in the narrow corridor, the planned path takes a detour around the obstacles.
resulting in significantly longer trajectories.
Figure 4.7 reveals the main drawback of the proposed method. It plots the

83

(a) Average optimal path

M
ax

 O
cc

up
an

cy

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

Iterations
0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

V a lid tra je c to ry

In va lid tra je c to ry

(b) Convergence

Figure 4.5: Stochastic functional gradient motion planner results. (a) Average
path over 10 repetitions. The trajectory is depicted in cyan while
the star and pentagon marker indicate the start and goal points, re-
spectively. The average path follows the mid line between obstacles,
which reduces the obstacle cost. (b) Shows the convergence of the
stochastic functional gradient motion planner. The maximum occu-
pancy along the trajectory is plotted as a function of the iterations.
Data shown is the average over 10 repetitions. The P = 0.5 dashed
red line marks the threshold for a valid trajectory. Note that the
maximum occupancy does not reduce to zero, as the continuous oc-
cupancy map predictions for the gap between obstacles 1,2 and 4 are
approximately 0.4.

84

Table 4.1: Comparison of path length and safety time between the stochastic
GP planner and an RRT∗ planner. Path safety is measured by the
maximum occupancy along the entire path, where unsafe path are
marked in red..

Algorithm Stochastic GP Planner RRT∗
Length [m] Max. Occ. Length [m] Max. Occ.

World 1 39.1 0.26 39.4 0.32
World 2 27.9 0.25 27.1 0.50
World 3 37.0 0.33 37.1 0.47
World 4 28.1 0.38 44.0 0.50
World 5 31.2 0.28 31.5 0.49
World 6 27.7 0.36 27.2 0.49
World 7 36.0 0.38 39.0 0.50
World 8 36.2 0.37 63.5 0.50
World 9 35.4 0.28 35.4 0.49
World 10 36.4 0.43 36.1 0.49

planning runtime as a function of the number of samples. While the stochastic
GP planner requires approximately an order of magnitude less samples in order to
optimise path selection, its runtime is significantly higher. The cubic dependence
on the number of samples points out that the computational bottleneck of the
stochastic planning paradigm is the GP path representation.

85

1 2

3 4

5 6

7 8

9 10

Figure 4.6: Comparison of path planning methods on a continuous occupancy
map of randomly generated scenarios (refer to Fig. 3.6). The resulting
paths for the proposed method and RRT∗ are in cyan and magenta,
respectively.

86

R
u

n
ti

m
e

[s
]

R
u

n
ti

m
e

[s
]

0

1 0 0

2 0 0

3 0 0

4 0 0

Sa m p le s # Sa m p le s
0 1 ,0 0 0 2 ,0 0 0 3 ,0 0 0 4 ,0 0 0 5 ,0 0 0 6 ,0 0 0 7 ,0 0 0 8 ,0 0 0

G P P lan n er
R R T *

Figure 4.7: Runtime comparison between the proposed method and RRT∗. RRT∗,
shown in red, requires more occupancy samples, however it keeps a
simpler path model. The stochastic path planner, in black, uses a
GP path representation. Although it require less samples to repre-
sent a path, the underlying GP model dictates a cubic computational
complexity.

87

4.5.2 Real Laser-scan Data

The map for this experiment was generated using the Intel-Lab dataset (available
at http://radish.sourceforge.net/). This map contains many rooms and dead-ends
that might challenge the optimiser. We compared the optimal trajectory of our
proposed method with two other standard planning methods; RRT∗ (Karaman,
2010) and PRM∗ (Karaman and Frazzoli, 2011) using implementations from the
Open Motion Planning Library (OMPL) (Sucan et al., 2012). Figure 4.8 shows
a comparison between the different methods. Both RRT∗ and PRM∗, using a
planning budget of 60s, succeed in generating a path from start to goal. The path
consists of waypoints (states) the robot should pass through. The list of waypoints
provides a very sparse representation of the path that requires additional resources
in order to transform into robot actions. In contrast, the proposed stochastic
functional motion planner provides a detailed and smooth path represented by
a function of t. Furthermore, the paths generated by RRT∗ and PRM∗ might
follow close to walls or overshoot the corner leading to a higher risk of collision,
and longer paths. The paths of our stochastic planner tend to follow the mid
line between obstacles and perform smooth turns resulting in shorter and safer
trajectories.
Table 4.2 and Fig. 4.8d provide a quantitative comparison between our stochas-

tic functional gradient motion planner (SFGMP), RRT∗ and PRM∗. The objec-
tive of the optimisation is to minimise the obstacle cost. Figure 4.8d shows the
reduction of the maximum occupancy along trajectory as the optimisation pro-
gresses. After converging to the optimal solution, the safety of the path of the
proposed method is significantly better than that of the other two methods. The
results in Table 4.2 summarise the expected performance. The maximum occu-
pancy along the path, which indicates the path safety, is 0.36 for the proposed
method and 0.42 and 0.48 for PRM∗ and RRT∗, respectively. Furthermore, the
penalty term Udyn in the objective in Eq. (4.10) leads the optimisation to prefer
shorter paths. We note that PRM∗ and RRT∗ employ a huerstic that is aimed
at finding a shortest path on a generated graph. However, this often results in a
path that cuts corners, potentially through unsafe space. Consequently, the path
generated by our method outperforms the other sampling-based methods.

88

(a) SFGMP (b) RRT∗

(c) PRM∗

M
ax

 O
cc

up
an

cy

0

0 .2

0 .4

0 .6

0 .8

1

Iterations
0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0

R R T *

PR M *

(d) Convergence

Figure 4.8: Comparison of path planning methods on a continuous occupancy
map of Intel-Lab; (a) stochastic functional gradient motion planner
(SFGMP), (b) RRT∗ and (c) PRM∗. Each image shows five repeti-
tions of path planning with each method. SFGMP paths are smooth
and follow the mid lines between walls. RRT∗ and PRM∗, using a
planning budget of 60s, produce paths that move the robot danger-
ously close to walls at times. (d) shows convergence of the stochastic
functional gradient motion planner. The maximum occupancy along
the trajectory is plotted as a function of the iteration. Data shown is
the average over 5 repetitions. Red and green dashed lines mark the
average performance of RRT∗ and PRM∗ respectively. Our proposed
stochastic planner significantly outperforms the other methods. Note
that the maximum occupancy does not reduce to zero, as the contin-
uous occupancy map predictions for the end point is approximately
0.35.

89

Table 4.2: Performance comparison
SFGMP RRT∗1 PRM∗2

Maximum occupancy 0.36± 0.02 0.44± 0.03 0.46± 0.03
Path length [m] 20.90± 0.10 21.50± 0.10 22.50± 0.50
1 Karaman (2010)
2 Karaman and Frazzoli (2011)

90

4.6 Summary

This chapter introduced a novel method for path optimisation using occupancy
maps. Sampling-based techniques are the prevalent method for path planning
using occupancy maps. Although these techniques are flexible and have a high
success rate in finding safe paths, optimising additional properties of the path
such as length and execution time are not part of their reasoning. Trajectory
optimisers, on the other hand, are designed for that purpose. Yet, the current
implementations of trajectory optimisers require a finite resolution in the tra-
jectory support and rely on having access to a well defined cost potential field.
However, neither of these requirements are met by occupancy maps. Gradients
obtained from the map’s occupancy are noisy and not necessarily informative,
which limits the choice of trajectory support, especially when the resolution is
finite.
The planning method used in this chapter employs stochastic optimisation to

enhance the expressiveness of the basic functional gradient motion planner. It
removes the need to commit to an a-priori parametric resolution, which allows our
planner to better handle obstacles. The GP paths used in the planner provide a
structured and flexible representation that can easily incorporate prior knowledge
or initial solutions, such as coarse paths generated by a sampling based method.
The main limitation of the stochastic algorithm presented in this chapter is

its computational complexity. The main culprit is the GP path representation,
which carries a cubic update cost and a quadratic query cost. These costs limit
performance once the number of samples reach several hundreds. To tackle this
limitation we present in the following chapter, a modification of the stochastic
planning algorithm based on kernel approximations. We also introduce an adap-
tive sampling scheme that targets under-sampled areas of the curve and biasing
the stochastic sampling.

91

Chapter 5

Stochastic Scalable Path Planning

5.1 Introduction

In the previous chapter, we presented a novel trajectory optimisation method for
planning in occupancy maps. Trajectory optimisers use a variational planning
paradigm, which enables optimisation of a variety of objective functions, such
as safety or control cost, directly in the space of trajectories. However, aside
from the method described in Chapter 4 and in (Francis et al., 2017), there are
no implementations of trajectory optimisation for occupancy maps. The main
impediment lies in the optimiser’s assumption the objective cost and gradient can
be computed anywhere. Such an assumption is generally not valid in occupancy
maps, as the map might have gaps or non-informative gradients. Consequently,
there are no guarantees for an optimal or even safe solution.
In this chapter, we present a novel approach for trajectory optimisation using

occupancy maps. We utilise kernel approximation techniques to form an expres-
sive and tractable non-linear path model. This representation can be considered
as a generalisation of the motion planning in reproducing kernel Hilbert spaces
(RKHSs) paradigm of Marinho et al. (2016). While (Marinho et al., 2016) im-
plicitly employed a reduced rank approximation of the kernel matrix (Schölkopf
et al., 1998), the proposed approach can utilise any kernel matrix approximation
technique. Moreover, the approximate kernel representation is naturally updated
by randomly drawn samples, which replace the predetermined sampling schedule
of (Marinho et al., 2016; Mukadam et al., 2016). Consequently, optimisation can
employ Stochastic Gradient Descent (SGD) (Bottou, 2010) with its convergence
guarantees. Finally, with a finite path representation, updating and querying the
path model has a fixed cost, which alleviates the main computational restriction
of the non-parametric representation discussed in Chapter 4.
The technical contributions of this chapter are:

1. An expressive and tractable path model based on kernel approximations,
Part of this chapter has been presented in the Third Machine Learning in Planning and
Control of Robot Motion Workshop, IEEE International Conference on Robotics and Au-
tomation, 2018, and will also appear in IEEE International Conference on Robotics and
Automation, 2019.

92

which can be considered a generalisation of the Gaussian Process Motion
Planner (Mukadam et al., 2016). This is a critical building block of the
path planner, as it is allows for fast and low computational cost update
procedures using stochastic samples.

2. A path planning method based on SGD (Bottou, 2010) which ensures effi-
cient convergence to an optimal solution under the guarantees of SGD.

3. Introducing an adaptive stochastic sampler to accelerate functional updates.
The sampler uses only the generated samples to reconstruct the objective
costs and adapts its proposal distribution to target areas of the curve that
require more samples. The same sampler also provides a probabilistic indi-
cator for convergence. This sample-based indicator replaces the exhaustive
convergence checks done by other FGD planners.

The remainder of this chapter is organised as follows. We rely on the gen-
eral method developed in Chapter 4 and introduce the changes required to form
a scalable functional path planner and the adaptive stochastic sampler in Sec-
tion 5.2. Experimental results obtained in simulation and with real data scenario
are shown in Section 5.3. Finally, Section 5.4 summarises the proposed method
and contributions.

5.2 Scalable Functional Regression

In this section, we extend the FGD path planning paradigm, developed in Chap-
ter 4, into a scalable stochastic trajectory optimisation framework based on kernel
approximations. Similar to Chapter 4, the main objective of the planner is to
produce a safe, collision-free path. A secondary objective may incorporate other
costs such as smoothness of the trajectory or time of travel. The notation used
in this chapter follows the notation introduced in Section 4.3.

5.2.1 Stochastic Functional Regression

Any FGD planner optimises an objective function, such as in Eq. (4.1). As
the objective is uncountable, it is estimated via samples. Therefore, the choice of
sampling schedule is paramount for a successful and efficient planner. The impor-
tance of the sampling schedule is exacerbated in occupancy maps, where not every
sample can generate an informative gradient, as discussed in Section 4.4. Con-
sequently, sampling everywhere along the curve is most desired, as this increases
the chance of identifying transition areas in the map. Yet, with a fixed resolution
sampling defining a sufficient resolution a-priori is difficult. Hence most methods
limit the sampling resolution according to their computational resources.

93

GP-based planners (Mukadam et al., 2016; Dong et al., 2016) use GPs for
a smooth path representation. However, as the path is updated only at fixed
support points, a dense representation is needed to ensure sufficient expressivity.
Similar limitations also hold for the non-parametric approach used in (Marinho
et al., 2016), where the support is taken from fixed resolution samples of the
objective function. CHOMP and STOMP perform batch optimisation by ex-
ploring the solution space using either Hamiltonian Monte Carlo or by estimat-
ing the probability density of the objective using noisy path perturbations. As
the path is waypoint based the solution space exploration is performed in the
robot’s workspace. Consequently, the optimisation process is highly sensitive to
the choice of the exploration hyperparameters. For example, STOMP’s update
rule fails if the variance of perturbation is smaller than the size of obstacles, which
in occupancy maps is unknown a-priori. The stochastic non-parametric approach
of Chapter 4 addresses this problem by using continuous sampling in the trajec-
tory domain. However, as the path is represented by a GP the computational
costs are high, i.e. of the order O(N3) where N is the number of samples.
The approach taken in this work, alleviates the limitations present in the pre-

vious chapter. Namely, it allows stochastic updates from continuous samples.
To keep the computational cost low, while maintaining a highly expressive rep-
resentation, a parametric and thus concise path representation based on kernel
approximation is employed.
In kernel machines, Υ(t) defines a mapping from t ∈ [0, 1] into a potentially

infinite-dimensional RKHS 1 H (Schölkopf and Smola, 2001). The kernel function
k(t, t′) defines the inner product

〈
·, ·
〉
H

between two points in that space. In
the approximate kernel approach we denote Υ̂ as a finite set of features that
approximate the RKHS inner product by a dot product;

k(t, t′) =
〈
Υ(t),Υ(t′)

〉
H
≈ Υ̂(t)T · Υ̂(t′). (5.1)

We note that the set of features only approximates the selected kernel in expec-
tation, indicated by Υ̂ notation. There are several methods to generate features
to approximate a kernel. For the radial basis function (RBF) kernel defined by
k(t, t′) = exp(−γ ‖ t− t′ ‖2), with γ a free parameter and ‖ · ‖ is the Euclidean
norm, we employed two different approximations2:

1. Random Fourier features (RFF) (Rahimi and Recht, 2009)

1The path RKHS is different to the one used by the Hilbert maps.
2Other approximations such as (Melkumyan and Ramos, 2009) were not used in this work

94

This approximation requires m random samples of two variables;

si ∼ N (0, 2γI)
bi ∼ uniform[−π, π]

i = 1...m (5.2)

The features vector is then given by

Υ̂RFF (t) = 1√
m

[cos(s1t + b1), ..., cos(smt + bm)] (5.3)

2. RBF features

A kernel matrix K with rank n can be approximated by projecting it into
a lower rank matrix using a set of m inducing points denoted by t̂1, ..., t̂m
(Schölkopf et al., 1998). Then, K ≈ Kn,mK̂

†
mKm,n, where the elements of

matrices Kn,m and K̂m are defined as:

(Kn,m)(i,j) = K(ti, t̂j) i = 1, ..., n and j = 1, ...,m,
(K̂m)(i,j) = K(t̂i, t̂j) i, j = 1, ...,m.

K̂†m is the pseudo inverse of K̂m. Using these m inducing points, the ap-
proximation features vector is given by Schölkopf et al. (1998):

Υ̂RBF (t) = D̂1/2V̂ T [k(t, t̂1), ..., k(t, t̂m))]T (5.4)

Here, D̂ is the diagonal matrix of eigenvalues of K̂m and V̂ are the corre-
sponding eigenvectors. The m inducing points can be modified during the
optimisation, similar to (Williams and Seeger, 2001). However, in the this
work we employed evenly distributed fixed features. We note that since the
planner of Marinho et al. (2016) also uses a fixed number of support points,
it implicitly employed this approximation, though without stochastic up-
dates.

Using a weight vector w we can now express the robot configuration ξ(t) at t,
as a function of the finite set of approximating features, Υ̂(t):

ξ(t; w) = ξo(t) + ξb(t) + wT Υ̂(t). (5.5)

Here, ξo is an offset path, which may be used to bias solution and can be computed
by a crude and fast planner. ξb is a term used to enforce boundary conditions.
Both ξo and ξb are represented by an approximated kernel representation with
the same curve properties as ξ (continuity, differentiability, etc.), although the
feature set can be different.

95

Once the path representation has been defined, we can treat path planning as
a regression problem, i.e., optimising the weight vector w:

woptimal = argmin
w

U(w). (5.6)

The advantage of using this approach is that the model can be learned through
stochastic sequential updates by samples from the entire domain.
As with any kernel method, the choice of γ and m is critical. The inverse

lengthscale parameter γ depends on the desired smoothness of the trajectory.
Non-smooth paths or sharp transitions require a shorter lengthscale (larger γ).
Alternatively, a different kernel function, e.g. Matérn, and an appropriate kernel
approximation should be used. Choosing the number of features m is a trade-
off between the approximation accuracy and computational complexity. With
a larger features set, the trajectory model can be more expressive, however the
model will require additional computational resources.
In the following sections we discuss how to implement FGD using the approx-

imated kernel regression model. We revise the general update rule of Eq. (2.37)
into a practical gradient update based on the choice of path representation. Then,
we present the full algorithm of the stochastic approximate kernel path planner.

5.2.2 Approximate Kernel Update Rule

Equation (5.5) expresses the path as a weighted sum of features, therefore the
iterative update rule of Eq. (2.37) must be performed with respect to the weight
vector w. Following Eq. (2.37), we sample the functional gradient of the objective
function at time ti. We refer to these samples as stochastic, since ti can be drawn
at random from anywhere along the curve domain, ti ∈ [0, 1], and is not limited
by a predefined sampling resolution. The sampled gradient ∇ξU

(
ξn(ti,wn)

)
∈ H

can be viewed as a path perturbation, which is defined in H and thus must be
projected onto the finite representation spanned by w using the appropriate inner
product, which is approximated using Eq. (5.1). This approximation leads to the
following iterative update rule:

wn+1 = wn − ηnA−1Υ̂(ti)T Υ̂(ti)∇ξU
(
ξn(ti,wn)

)
. (5.7)

ξo and ξb are removed from Eq. (5.7) for brevity. Note that given a convex
problem, to guarantee convergence of SGD, the learning rate ηn must satisfy
the Robbins-Monro conditions (Robbins and Monro, 1951); ∑n=1 η

2
n < ∞ and∑

n=1 ηn =∞.
Boundary conditions are handled in a similar fashion. We employ an additional

96

path ξb = wT
b Υ̂b to compensate for the difference around the boundary conditions.

The boundary features Υ̂b are not necessarily identical to Υ̂. The update rule for
wb then has the following form:

wbn+1 = wbn − A−1Υ̂b(tb)T Υ̂b(tb)∆xb(tb). (5.8)

Here tb are time points where boundary conditions are defined and ∆xb(tb) is the
corresponding difference between the current value of ξ at tb and the desired value
at the boundary. Note that this is similar to Eq. (5.7), except ηn was omitted
and the gradient was replaced by the difference to the desired boundary value.

5.2.3 Targeted Sampling

The trajectory optimisation process requires valid functional gradient samples.
It is clear, as discussed in Chapter 4, that only stochastic sampling schedules
can guarantee optimisation convergence. However, in an occupancy map, these
samples are only present around the borders of obstacles. Moreover, as the op-
timiser deforms the path, the location of these samples changes too. In order
to speed-up convergence, we introduce a dynamic proposal distribution Q, that
proposes samples based on their expected effectiveness. Q replaces the uniform
distribution used in Chapter 4. Such a sampling schedule increase the chance
of sampling around areas where previous updates were effective while still main-
taining samples over the entire path domain t ∈ [0, 1]. We note that Q serves a
similar purpose to importance sampling (Bishop, 2006), however in the functional
optimisation framework, Q must dynamically adapt to changes in the functional.
An effective Q needs to be proportional to the objective functional gradient,

i.e. higher probability where there is gradient to deform the path. In addition,
sampling and updating Q should not incur high computational costs. These two
properties are achieved by representing Q as a mixture model:

Q(t) =
∑
l∈L

p(l)p(t|l), (5.9)

where L is a set of intervals l ∈ L such that ∪l∈Ll = [0, 1]. p(t|l) is a uniform
distribution defined over the interval l, i.e., p(t|l) = U [l];∀l ∈ L . p(l) is the
probability of selecting interval l, and we require ∑l∈L p(l) = 1.
Generating samples from Q is a two-step process, as shown in algorithm 7.

First, N interval samples are drawn according to p(l). Each sample sl corresponds
to an interval l ∈ L. Given a sampled interval sl, a corresponding time sample
is drawn according to p(t|sl). In this work, p(t|sl) is a uniform distribution in
interval sl, however more elaborate distribution can be used.

97

Algorithm 7: Sampling from proposal distribution Q
Input: Q(t) = ∑

l∈L p(l)p(t|l): proposal distribution.
1 N : number of samples required.

Output: T : samples in range [0, 1]
2
3 T ← ∅
4 for i = 1 : N do
5 //Sample and interval from p(l):
6 sl ∼ p(l)
7 //Draw time samples, ts from interval sl:
8 ts ∼ p(t|sl)
9 T ← T ∪ ts
10 end

An effective proposal distribution draws samples in high-impact areas, which
corresponds to higher objective functional gradients ∇U

(
ξ(t)

)
;∀t ∈ [0, 1]. More-

over, as the path deforms during optimisation, U
(
ξ(t)

)
and its gradients changes,

which requiresQ to dynamically follow. However, since our knowledge of∇U
(
ξ(t)

)
is based on randomly drawn samples, we are also interested in sampling over
the entire [0, 1] domain. Therefore updating Q must balance the exploration-
exploitation trade-off. This approach will guarantee that intervals with higher
objective content will be sampled more, while still sufficiently sampling all over
the [0, 1] domain.
Practically, updating Q depends on the choice of p(l). To maintain efficient

computation, we employ a multinomial distribution p(l) ∼ Mult(|L|), where
|L| is the number of intervals in L. Algorithm 8 details the update process.
Since Q has to dynamically follow∇U

(
ξ(t∗)

)
, the update process collects samples

S = ∇U(t1), ...,∇U(tN) in |L| first in first out (FIFO) queues. Based on the time
ti of a sample, the relevant queue is updated with ∇U(ti). As the queue has a
finite depth DQ, new samples push older samples out. Once the queues has been
updated, p(l) is derived of the normalised sum of queue weights. The choice of
queue depth DQ defines the reactiveness of the update process. A high DQ means
p(l) will responds slowly to new samples. On the other hand, DQ = 1 will only
maintain the last samples from each interval.
AsQ changes during optimisation, it can be used as an indicator of convergence.
Q biases sampling according to the impact a sample had on the path update.
Meaning, that around ξoptimal, new samples should have little effect on the path.
As a result, Q should return to maximum entropy sampling, i.e. U [0, 1]. Hence,
by monitoring the entropy of Q, one can identify whether sampling follows a
uniform distribution which indicates a solution has been found. We note that
maximum entropy is not a sufficient condition for convergence as it does not

98

Algorithm 8: Updating the proposal distribution Q
Input: S = U(t1), ...,U(tN): N Samples of the objective functional.

1 L: intervals.
2 DQ: depth of queue.

Output: p(l)∀l ∈ L: samples in range [0, 1]
3
4 //First update instance: initialise queue Qu(l)∀l ∈ L:
5 if not Qu then
6 foreach l ∈ L do
7 Qu(l)← Queue(DQ)
8 end
9 end
10
11 //Update Queues:
12 foreach (ti, Ui) ∈ S do
13 li = l ∈ L|ti ∈ li //Find interval that contains ti.
14 Qu(li)← ∇Ui //push sample ∇Ui to queue.
15 end
16 //Computing p(l):
17 foreach l ∈ L do
18 w(l) = ∑

DQ Qu(l)
19 end
20 p(l) = w(l)∑

l∈L
w(l)

guarantee safety. To ensure safe convergence, two condition should be met:

(i) All samples must be valid, i.e. no collision. To ensure safety, we require
that this condition will hold over several iterations.

(ii) The entropy of sampler must be above a threshold which is proportional to
the maximum attainable entropy of a uniform distribution.

5.2.4 Approximate Kernel Path Planning Algorithm

The pseudo-code of the stochastic approximate kernel path planner is shown
in Algorithm (9). The output of this algorithm is an optimised path ξmin(·),
parametrised by the weight vector wmin.
At each iteration, a mini-batch (ts, us) is drawn according to the proposal

distribution Q. The occupancy of each sample t∗ ∈ ts and u∗ ∈ us is assessed
by querying the map model in the corresponding state ξn(t∗). If the probability
of occupancy at ξn(t∗), Pocc, is within the safety limits, i.e. clear of obstacles,
a functional gradient update is invoked. Following Eq. (5.7), the weight vector
w is updated with the stochastically sampled gradient observations, leading to a

99

Algorithm 9: Stochastic approximate kernel FGD path planner
Input: H: Occupancy Map.

1 ξ(0), ξ(1): Start and Goal states.
2 Psafe: No obstacle threshold.
3 ˆΥ(t′, ·): Approximated feature vector.
4 Q: Proposal distribution (optional).

Output: wmin, ξmin(·)
5
6 //If Q is not provided, use uniform distribution as default
7 if not Q then
8 Q = U [0, 1]
9 end
10
11 n = 0
12 while solution not converged do
13 (ts, us) ∼ Q ← Draw mini-batch from Q - Algo. 7
14 foreach (t∗, u∗) ∈ (ts, us) do
15 Pocc ← H(x(ξn(t∗), u∗)), Eq. 2.45
16 if Pocc ≤ PSafe then
17 //Update rule Eq. 5.7
18 wn+1 ← wn − ηnA−1Υ̂(ti)T Υ̂(ti)∇ξU

(
ξn(ti,wn)

)
19 end
20 end
21 //Fix boundary conditions, Eq. (5.8):
22 wbn+1 ← wbn − A−1Υ̂b(tb)T Υ̂b(tb)∆xb(tb)
23 Update Q - Algo. 8
24 n = n+ 1
25 end

new path representation ξn+1(·). Finally, the boundary conditions are enforced
using Eq. (5.8).
This leads to an algorithms with low computational complexity which stems

from the concise path representation and update rule. Using m approximated
features, the computational cost of updating and querying the path model is
O(m) which is constant regardless of the number of samples drawn. This is in
contrast to the computational cost of the stochastic GP path planner used in
Chapter 4, which is cubic in the number of samples, i.e. O(N3). Meaning that
the time per iteration increases as more samples are collected.

5.3 Experiments

In this section, we evaluate the performance of our method and compare it with
other related path planning techniques in simulation and with real data. We

100

show that stochastic sampling is a critical aspect of path planning in occupancy
maps, which is complimented by the scalable model of the approximate kernel
path representation. We compare our proposed method with two other planning
methods for occupancy maps; RRT∗ (Karaman, 2010) and the stochastic GP
path planner introduced in Chapter 4. We conclude this section by comparing
the effectiveness of the targeted sampler Q with a uniform sampling approach.
All methods, including Hilbert maps, are implemented in Python and tested on
an Intel Core i5-4570 with 8GB RAM.

5.3.1 Simulations

Most trajectory optimisers assume full knowledge of obstacle properties and com-
pute a cost function and its spatial gradient for the entire workspace, e.g. (Zucker
et al., 2013). This is not attainable when working with occupancy grid maps.
Fig. 5.1 compares planning using cost maps and occupancy map using two

leading methods, STOMP (Kalakrishnan et al., 2011) and an RKHS planner
(Marinho et al., 2016). Occupancy is represented by a Hilbert map (Ramos and
Ott, 2015), which was computed using simulated laser readings of the environ-
ment. While planning in a cost map both methods successfully find a safe path
from start to goal. However, when the same algorithms are used with the occu-
pancy map, they both fail. The reason lies in the deterministic sampling schedule
both methods use, where the path is updated only around its predetermined sup-
port. As there are no valid gradients inside obstacles, gaps are formed in the
support of both curves and the path can not be updated. As stated in Chapter 4,
using TSDF to convert an OGM to an SDF will do little to alleviate this problem,
since TSDF cannot produce valid gradients in unobserved parts of the map, as
been also observed by Oleynikova et al. (2017).
The performance of our proposed stochastic planner differs from that of other

planners. The RBF planner employed m = 50 inducing points with γ = 7, while
the RFF planner used m = 100 with γ = 10. The trade-off parameter λ = 0.0075
and the per iteration learning rate ηn = η−1

0 (n+n0), where η0 = 50 and n0 = 100.
An overviews of the iterative process of the stochastic FGD path planner is

shown in Fig. 5.2 where each column shows

(i) the current path overlaid on the occupancy map;

(ii) the accumulated samples, both valid and invalid;

(iii) the underlying cos which is used for presentation purposes only as it is
available to the planner only through stochastic samples.

101

Figure 5.1: Comparison of motion planning in cost maps vs. occupancy maps
using state-of-the-art planners. In all maps, dashed black lines in-
dicate the borders of obstacles. Cost map is computed according to
(Zucker et al., 2013). Hilbert maps (Ramos and Ott, 2015) are used to
model occupancy, which is computed from simulated laser readings.
Left, STOMP (Kalakrishnan et al., 2011) and on the right, RKHS
non-parametric planner (Marinho et al., 2016). Both planners are
successful when planning in a well-defined cost map. However, both
fail when planning using occupancy maps.

The iterative update process starts from an initial guess ξo, a line connecting the
start and goal points. The overall cost is determined solely by on the obstacle
cost as the dynamic cost for a straight line is Udyn = 0. After 30 iterations the
path deforms around the edges of the obstacles. Samples are drawn from the
entire domain [0, 1] and those inside obstacles are rejected. However, samples
on the edges with valid occupancy update the path and push it away from the
obstacles. At n = 50, the path clears all obstacles, however, the optimisation
has not yet converged since opposing objective functions, motion and obstacles,
have not equalised yet. After 59 iterations the algorithm has converged to its
final solution. With a mini-batch of 20 samples per iteration about 1200 samples
were used in order to reach convergence. Deterministic sampling methods such

102

Table 5.1: Simulation comparison
Max.

occupancy
Path length

[m] Samples Runtime [s]

Approx. Kernel:
RBF 0.40± 0.02 21.2± 0.4 1418± 350 10.4± 2.6

Approx. Kernel:
RFF 0.40± 0.02 21.4± 0.2 915± 212 12.3± 3.0

GP Paths1 0.35± 0.05 20.5± 0.2 775± 372 315± 293
RRT∗2 0.46± 0.05 19.6± 0.3 1397± 219 7.1± 2.2
1 Introduced in Chapter 4
2 Karaman (2010)

as (Marinho et al., 2016; Mukadam et al., 2016; Zucker et al., 2013) require dense
sampling, in the order of 100s of samples per iteration, of the objective function
to decide on the best update location. As such the stochastic path planner offers
significant reduction in computational costs.
A quantitative comparison between the different planners is shown in Table

5.1. The RRT∗ planner produces non-smooth piecewise-linear paths, which are
inherently shorter than the other method. However, as it does not minimise the
collision risk, the resulting paths might be unsafe as the maximum occupancy
exceeds the safety threshold. As expected, its runtime is shorter than both meth-
ods, though comparable to the approximate kernel method. The GP planner
requires half the iterations of the approximate kernel for convergence. However,
its runtime is an order of magnitude higher due to the cubic complexity with
the number of samples. The proposed method’s complexity, on the other hand,
is fixed regardless of the number of samples observed, which leads to a runtime
that depends mainly on the sampling cost, similar to RRT. The small difference
in runtime between RBF and RFF features, mainly depends on the number of
approximating features used.
Being a member of the functional gradient planners family (Zucker et al., 2013),

our method is able to plane trajectories in high-dimensional environments. Figure
5.3 shows a planning instance in a 3D occupancy map, where the planner finds
a safe path through an opening in a wall. The gray surface represents the 0.5
occupancy iso-surface derived from the volumetric 3D map.

103

Figure 5.2: The image is divided into four segments, depicting the state of our
planner at different iterations n = 0, 30, 50, 59. Each segment’s col-
umn consists of three images: (top) shows the current path superim-
posed on the occupancy map, (middle) shows the accumulated sam-
ples over all previous iterations, where green and red indicate valid
and invalid samples respectively, (bottom) depicts the objective func-
tions for obstacle, motion-related and the overall cost. This view of
the cost is only for presentation purposes and is not available to the
planner, as it relies only on stochastic samples. n = 0: The planner
starts from an initial guess, ξo, which in this example is the line con-
necting the start and goal points. n = 30: The path deforms around
the edges of the obstacles, while samples are drawn across the entire
domain [0, 1]. n = 50: Overall cost has reduced and path clears all
obstacles. n = 59: Solution has converged.

(a) Initial (b) Final

Figure 5.3: Planning in a 3D map. Gray surface represents 0.5 occupancy iso-
surface. Planner resolves a safe path through the narrow passage. (a)
Initial solution (b) Final solution.

104

5.3.2 Real Data

The map for this experiment was fitted according to laser observations from the
Intel-Lab dataset3. Both RFF and RBF planners used m = 50 features and
γ = 4. λ and ηn are as in the simulations.
Figure 5.4 and Table 5.2 show a comparison between the different methods.

RRT∗ forms a path based on several waypoints (states) the robot should pass
from start to goal. As a result, the path typically is jagged, with short jerks. In
contrast, the paths generated by our method are continuous and smooth. In ad-
dition, unless using inflated obstacles, RRT∗ paths tend to move close to the walls
or cutting corners, as indicated by the relative high, and unsafe, occupancy of
RRT∗ in Table 5.2. The stochastic planner follows the mid line between obstacles
and perform smooth turns resulting in shorter and safer trajectories.
Table 5.2 provides quantitative comparisons between these planners. All plan-

ners obtain similar path length, which corresponds to the length of the corridor.
Runtime results reveal the main advantage of the approximate kernel planner.
While the stochastic non-parametric GP planner introduced in Chapter 4 re-
quires less samples to converge, its actual runtime is almost 25 slower. Meaning
that while the non-parametric GP path representation is highly expressive, it is
not scalable due the cubic computational complexity. The RRT∗ runtime per-
formance is quite poor too. Although RRT∗ samples occupancy and not the
occupancy spatial gradient, it have similar per iteration cost as the approximate
kernel approach. Nonetheless, its sampling efficiency in this scenario is low since
most of the map is either occupied or unknown. In contrast to both methods,
our method uses an approximate kernel path representation, which has a fixed
linear complexity. Consequently, the properties of the path are similar to that
of the non-parametric path, however adding more observations does not change
the computational performance of the model. As a result, the time needed to
obtain a solution by the proposed method is much shorter compared with the GP
planner and RRT∗.

3Available at http://radish.sourceforge.net/

105

http://radish.sourceforge.net/

(a) Approx. Kernel RBF (b) Approx. Kernel RFF

(c) GP Paths (d) RRT∗

Figure 5.4: Comparison of path planning methods on a continuous occupancy
map of the Intel-Lab (partially shown); (a) RBF approximation, (b)
RFF approximation, (c) stochastic non-parametric GP paths, which
were introduced in Chapter 4 and (d) RRT∗ (Karaman, 2010). Each
image shows ten paths generated by the planning algorithm, to in-
dicate repeated performance.The planning methods in (a), (b) and
(c) produce smooth paths which follow the mid lines between walls.
RRT∗ paths are typically not smooth, and some have small jerks. In
addition, RRT∗ paths pass dangerously close to walls.

Table 5.2: Intel dataset comparison
Max.

occupancy
Path length

[m] Samples Runtime [s]

Approx. Kernel:
RBF 0.34± 0.05 20.3± 0.2 1629± 287 3.2± 0.6

Approx. Kernel:
RFF 0.34± 0.03 20.3± 0.1 1861± 60 5.6± 1.8

Gp Paths 0.38± 0.08 20.4± 0.2 398± 132 78.3± 47.5
RRT∗ 0.49± 0.05 20.3± 0.4 10788± 1462 34.5± 10.0

106

5.3.3 Targeted Sampling

Figure 5.5 depicts planning using an adaptive proposal distribution Q. This pro-
cess is similar to the example shown in Fig. 5.2, however the uniform proposal
distribution in Fig. 5.2 is replaced with a multinomial distribution with 10 in-
tervals evenly distributed over the entire [0, 1] domain. To dynamically update
Q, the sampler uses 10 queues, one for each interval, with a depth DQ = 5.
These queues are updated by samples of the objective function as discussed in
Section 5.2.3.
Comparing Fig. 5.5 with Fig. 5.2 reveals a difference in the distribution of

samples. As expected, the uniform proposal distribution used in Fig. 5.2 results
in samples distributed uniformly over the [0, 1] domain. In contrast, the majority
of samples drawn by the adaptive proposal distribution, Fig. 5.5, are located
around obstacles, although samples are still drawn over the entire domain.
The proposal distribution Q is derived solely from stochastic samples of the

functional gradients. Therefore, samples are drawn where it is most effective.
In Fig. 5.5, for n < 100, Q draws samples mainly in valid regions of the path,
indicated by the low probability for t > 0.6, where the path crosses an obstacle.
For n = 110, Q has a high probability around t = 0.5 (indicated by the red circle),
which corresponds with samples on the border of the obstacle. These samples
result in major changes to the path. Close to the stationary solution, there
are only small changes in the trajectory. As a result, Q approximately returns
to maximum entropy sampling, i.e, uniform sampling over the entire domain.
However, as this process relies on stochastic samples, the final solution is only in
the neighbourhood of the locally optimal solution (Bottou et al., 2016). Hence,
by checking the entropy of Q, in conjunction with a check of their validity, we can
estimate whether Q is approximately uniform, which indicates that the solution
has been found.
A performance comparison over 100 simulations of planning using an adaptive

distribution as opposed to a uniform scheme is shown in Fig. 5.6 and Table
5.3. Figure 5.6 compares the number of iterations required to reach convergence.
The adaptive sampling presents faster optimisation with smaller variance in the
number of iterations required for convergence. Table 5.3 provides a quantitative
comparison which reaffirms the advantages of targeted sampling, faster and more
robust optimisation process. Moreover, there is no degradation in performance,
as length is almost unaffected by the change in sampling procedures.
Q is also used as a convergence indicator. Path planning with uniform sampling

converges when all samples are valid, i.e. safe. An adaptive sampling method, on
the other hand, can reason on other convergence conditions, taking into consider-

107

Table 5.3: Adaptive sampling - Performance comparison
Adaptive Sampling Uniform Fixed Sampling

Iterations to converge 132± 43 202± 98
Path length [m] 21.07± 0.36 21.02± 0.35
Converged solution [%] 85 65

ation all the various components of the objective function. Fig. 5.7 depicts path
safety and Q’s entropy during optimisation.To emphasise this process, Q was set
with 50 intervals. Initially, the maximum occupancy along the path, marked in
red, is 1, a certain collision. As the optimisation progresses, the path clears from
obstacles, indicated by a maximum occupancy below 0.5. At that point, a uni-
form sampling scheme would indicate converges. Although safe, this solution is
not necessarily optimal with regards to the overall objective. The entropy of Q,
in blue, provides the complimentary condition for convergence. In the beginning
of the optimisation, part of the path is invalid. This leads to a decrease in the
sampling probability for those regions, and to a significant drop in the overall en-
tropy. As the path deforms during optimisation, a greater part of it clears from
obstacles, which results in a more balanced sampling distribution. Consequently,
the entropy gradually increases.
The dips in the entropy graph are caused by samples that led to major shift in

the path, which correspond to high functional gradient update. In the initial state
of the optimisation, these updates originates from obstacle-related costs, that
steer the path away from collision. The influence of the dynamic cost becomes
more significant as the path deforms. The motion-cost gradient update, in most
cases, counteract the effect of the obstacles’ gradient. In Fig. 5.7, these dips
continue on even after the path is considered safe. Using the entropy of Q, one
can reason on confidence of convergence, albeit to guarantee convergence, the
entropy condition must be in conjunction with a safety validity check.

108

Figure 5.5: Planning using adaptive sampling. This figure is similar in its struc-
ture to Fig. 5.2, with the addition of an additional layer which depicts
the proposal distribution Q. The proposal distribution increases the
probability of sampling where the objective is high, which is shown by
the higher density of sampling around the obstacle. A good proposal
distribution draws samples in high-impact areas, where the effect on
the trajectory is more profound. On the final iteration, Q returns to
an approximate uniform distribution, indicating convergence.

109

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

35

40

Iterations to Converge
0 100 200 300 400 500 600 700

Targetted Sampling
Uniform

Figure 5.6: Convergence comparison between a dynamic proposal distribution
and fixed uniform sampling distribution. The comparison was done
using 100 simulations in as environment as shown in Fig. 5.6. His-
togram depicts the distribution of the number of iterations required
to reach convergence. An attempt is considered to have failed once
more than 700 iteration have passed. Convergence of solution means
a safe trajectory in case a uniform sampler is used. In the case a
proposal distribution Q is used, convergence is a safe trajectory has
been obtained and the entropy of Q has reach the required threshold
(98% of a uniform distribution).

Figure 5.7: Indicting convergence using the entropy of Q. The two conditions
for convergence are safety and maximum entropy. A path is consid-
ered safe when the maximum occupancy along the path is below a
safety threshold, i.e. no collision. The shaded area marks iterations
during the optimisation where the path is not safe. The second con-
dition for convergence requires that the sampler’s entropy would be
approximately the maximum attainable entropy.

110

5.4 Summary

The planning method proposed in this chapter employs SGD to optimise a path
represented by a set of approximate kernel features. This model provides a highly
expressive path representation which is computationally efficient. SGD combines
the approximate kernel path model with a stochastic sampling schedule to form
a computationally efficient optimisation process with convergence guarantees.
Planning in occupancy maps is a challenge for trajectory optimisers. Maps are

a product of sensor observations, leading to contextual information gaps due to
corrupt measurement or occlusions. As a result, the path can only be optimised
around narrow transition areas on the edges of obstacles. Using a-priori sampling
resolution of the objective function, as done in most trajectory optimisers, can
not guarantee sampling in those areas. Employing stochastic samples across the
entire path domain avoids the need to commit to an a-priori sampling resolution,
which enables the optimiser to identify effective transition areas and overcome
the gaps formed by the obstacles.
Experimental results, in simulation and with real data, demonstrate the impor-

tance of stochastic sampling for planning in occupancy maps. Combined with an
approximate kernel path representation, our method offers a scalable and efficient
method for trajectory optimisation in occupancy maps. The resulting trajectories
are similar to the the non-parametric path representation, though with an order
of magnitude faster convergence.
The introduction of an adaptive sampling procedure provides a useful mecha-

nism to speed up convergence. More importantly, the proposal distribution acts as
an indicator of convergence. Identifying convergence in a functional optimisation
framework typically relies on testing whether the solution is safe or not. Using
the proposal distribution to indicate convergence replaces this exhaustive check
with a sample-based indicator. Such an indicator can also take into consideration
an objective functional which consists of several sub-objectives.
In the next chapter we will show how this cost-effective path optimisation

framework can be used to develop an FGD-based exploration method for con-
tinuous occupancy map. This approach offers a new take on exploration over
continuous path, as it optimises using functional gradients instead of explicitly
computing the MI reward.

111

Chapter 6

Functional Exploration

6.1 Introduction

Autonomous exploration is a complex task where the robot moves through an
unknown environment with the goal of mapping it. The desired output of such a
process is a sequence of paths that efficiently and safely minimise the uncertainty
of the resulting map. However, optimising over the entire space of possible paths
is computationally intractable. Therefore, most exploration methods relax the
general problem by optimising a simpler one, for example finding the single next
best view.
In Chapter 3, we developed a black-box optimisation process for exploration

under constraints based on Bayesian optimisation. This approach allows global
optimisation of the MI objective over continuous path. However, in practice, BO
is limited in the dimensionality of the solution space. Therefore, optimisation is
performed over a limited family of trajectories, e.g. cubic splines.
In this chapter, we formalise exploration as a variational problem. We present

a novel approach based on functional gradient descent (FGD) to efficiently op-
timise exploratory paths over continuous occupancy maps. We use stochastic
FGD to overcome the limitations of standard FGD methods in order to ensure
convergence. This process enables optimisation over the entire path, resulting in
continuous smooth paths that maximise the overall map quality while keeping
the robot safe from collisions. Our contributions are:

1. A Next Best Path method. An information-driven variational framework
for safe autonomous exploration in continuous occupancy maps. Path opti-
misation is performed directly in the space of trajectories using a combined
objective; which considers safety, efficiency and information. The method is
invariant to the choice of path representation as it uses stochastic functional
gradient descent to optimise the objective along the entire path.

2. Developing a mutual information (MI) variational objective for continuous
occupancy maps. This replaces the common and expensive approach of
computing MI explicitly over the entire map for each evaluated path. In-
stead, our method modifies the path using MI functional gradients without

112

the need to compute MI explicitly. These gradients are obtained from local
perturbations on the map model which are derived in closed-form.

The remainder of this chapter is organised as follows. Literature on autonomous
exploration in continuous occupancy maps is surveyed in Section 6.2. Section 6.3
describes in detail the functional exploration algorithm. Experimental results,
analysis and comparison with other exploration methods are presented in Sec-
tion 6.4. Finally, Section 6.5 summarises the contributions of this chapter.

6.2 Related work

The goal of autonomous exploration is to produce a consistent environment model
by minimising any uncertainties. In a mapping context, exploration is the process
of producing high-fidelity maps (Stachniss, 2009). This is a complex problem
mainly due the dimensionality of the solution space. Most exploration methods
plan exploration paths over occupancy grid maps (Thrun et al., 2005), rather
than continuous continuous occupancy maps. Regardless of the type of occupancy
map, exploration methods take one of two forms; frontier-driven or information-
theoretic. Juliá et al. (2012) provide a quantitative comparison between these
exploration methods.
Frontier-based exploration methods drive the robot toward the borders of the

known space (Yamauchi, 1997). In a grid map, frontiers are clusters of free cells
neighbouring unknown cells. Once frontiers are identified, a separate path planner
finds a safe path toward a selected frontier. Various utility functions can be used
when choosing the most desirable frontier. The simplest form considers only the
travelling costs (Yamauchi, 1997). González-Baños and Latombe (2002) choose
a goal point based on a score of expected coverage penalised by the travelling
costs. A generalised approach for goal point selection given several criteria were
suggested by Holz et al. (2011).
Information-theoretic exploration methods optimise a utility function associ-

ated with the uncertainty of the map. Early work optimised the selection of
a discrete goal point rather than optimising an entire path. Elfes (1996) sug-
gested MI as an information metric for exploration, while Whaite and Ferrie
(1997) proposed a next best view (NBV) approach using the entire map entropy.
Vallvé and Andrade-Cetto (2015) use a potential field computed over the entire
configuration space to find exploration candidates. However, this method as-
sumes discrete steps, disregarding the reduction of entropy between consecutive
robot poses. Charrow et al. (2015) combined the frontier and information-based

Part of this chapter is to appear in the 2017 International Symposium on Robotics Research.

113

methods. While they optimised the information heuristic over a continuous con-
trol input space, in effect the path consisted of a fixed number of time steps.
Lauri and Ritala (2015) formulate the exploration problem as partially observ-
able Markov decision process (POMDP) and used sample-based approach to solve
the POMDP. Similarly to the work of Charrow et al., the action space is continu-
ous, however, the path consists of a finite set of time steps, which is in contrast to
the proposed method where optimisation is performed in the space of trajectories.
Only a handful of algorithms tackle exploration in continuous occupancy maps.

Yang et al. (2013) employed rapidly-exploring random tree (RRT) to sample a set
of feasible path candidates for a Gaussian Processes (GPs) maps. An adaptation
of the frontier method for continuous occupancy maps was introduced by Jadidi
et al. (2014), where a discretised frontier map was built from the continuous
map. More recently, Jadidi et al. (2015) employed MI to rank frontiers. Bayesian
optimisation (BO) has also been used for exploration. Marchant and Ramos
(2014) utilised BO to optimise the selection of continuous informative paths over
a continuous environmental model. Chapter 3 utilised constrained BO for safe
exploration to learn an MI objective. While BO optimises continuous paths, in
practice it uses only a limited parametrisation such as quadratic or cubic splines.
In summary, the exploration method proposed in this paper uses an information-

based utility to optimise path selection. Employing calculus of variations, the
optimisation procedure is invariant to the path representation. This is a major
difference from existing methods that typically depend on a finite path parametri-
sation, such as finite sets of time steps or waypoints, or employ simple representa-
tions such as quadratic or cubic splines. Instead, our method can utilise a highly
expressive path representation; such as non-parametric (Chapter 4) or approxi-
mate kernel paths (Chapter 5). As our method uses continuous occupancy maps,
the MI utility can be derived directly from the map model in closed form, which
simplifies computations.

6.3 Exploration Functional

The following section introduces our proposed functional exploration method.
The use of functional gradient descent on an information-based objective results
in trajectories which are highly expressive and safe while optimising the amount
of information gained along the path.

6.3.1 Notation

We first re-introduce the notation used throughout the following sections. The
notation is similar to Section 4.3, although some changes of notation are required

114

as we add additional objective functionals.
The workspace of the robot W ∈ R3 defines the space where obstacles lie and

the map is queried. In addition, to account for the robot’s finite size or its pose
uncertainty, a set of body points, B ∈ R3 are defined. As the trajectory ξ lies
in configuration space C, we set a forward kinematic transform g that maps a
robot configuration, ξ(t) and body point b ∈ B to a point in the workspace
g : C ×B → W . To simplify notation, we define xt = g(ξ(t), b) as the workspace
location for the pair (t, b). We assume that the robot is equipped with a sensor,
such as laser range finder, with a maximum range Rmax and an angular field of
view Ω.
For a given function ξ, a functional returns a single value U : RD → R. Func-

tionals are usually represented by an integral. However, whenever we compute
the safety or MI functionals, the cost is computed from samples taken over W .
As a result, the functional must be approximated by a reduce operator, e.g., av-
erage or maximum, that aggregates the cost along ξ(·). Given a workspace cost
function c

(
g
(
ξ(t), b

))
: R3 → R, we can approximate the functional by a sum

over a finite set T (ξ) = {t, b}i of time and body points:

Uobs,MI(ξ) ≈
∑

(t,b)∈T (ξ)
cobs,MI

(
g
(
ξ(t), b

))
≡

∑
(t,b)∈T (ξ)

cobs,MI(xt) (6.1)

In addition, we note the difference between gradient operators. We define ∇ as
a gradient with respect to ξ, while ∇x is the workspace gradient.

6.3.2 Exploration Functional Objective

The goal of autonomous exploration is to safely reduce the uncertainty of the en-
vironment model. Some exploration methods compute a finite set of go-to points
that locally maximise information gain. Other methods optimise an information-
based objective over the entire path, however, these are highly dependent on the
path parametrisation. Formulating exploration as a variational problem and solv-
ing it using functional gradient descent, provides a general optimisation frame-
work which is invariant to the choice of path parametrisation and can even take
a non-parametric form as shown in Chapter 4.
The approach taken in our work relies on maximising mutual information along

the entire path while keeping the trajectory safe. This is attained by constructing
an objective functional U which is a weighted sum of three components:

• Uobs which maintains path safety by penalising proximity to obstacles as
defined in Eq. (4.2),

115

Figure 6.1: Given a sample (t, b), the functional U is the weighted sum of the
various objectives; obstacle, dynamic and MI. M and ξ are global
variables used to compute these objectives.

+∇ξUdyn

∇ξUobs

∇ξUMI

Sample:
(t∗, u∗) ∈

T

Map
M

Path
ξ

∇ξU

• Udyn which penalises based on the shape of the trajectory, keeping path
smooth and short as in Eq. (4.3) and,

• UMI which rewards the mutual information gained along the path.

The overall objective takes a form of a weighted sum, as is also shown schemati-
cally in Fig. 6.1;

U(ξ) = βobsUobs(ξ) + βdynUdyn(ξ) + βMIUMI(ξ). (6.2)

Here βobs,βdyn,βMI are user-defined coefficients. In the following sections, we will
introduce the different components of the functional objective; Uobs(ξ), Udyn(ξ)
and UMI(ξ). For each component we will derive its functional gradient assuming
a Hilbert map as the environment model.

6.3.3 Mutual Information Functional UMI(ξ)

Mutual information (MI) is used in many autonomous exploration algorithms as
an information-based objective function (Julian et al., 2014). In this context,
MI is defined as the reduction in entropy conditioned on expected observations.
Given an occupancy map M and a set of expected observations ẑ, we can define
MI as:

MI(M ; ẑ) = H(M)−H(M |ẑ) (6.3)

where H denotes Shannon’s entropy. The main computational challenge of Eq.
(6.3) is resolving the expected observations ẑ. These are emulated observations
that are produced by ray casting based on the sensor model. Determining ẑ and
MI over an entire path is computationally intensive, leading most exploration
methods to solve a relaxed MI optimisation problem, by either discretising or

116

Figure 6.2: MI Functional gradient. The MI gradient is computed for a time
sample t given a continuous occupancy map OM (a). The current
path estimate ξ is depicted in blue, while the expected pose at time
t is shown in green. The modified OM (b) is generated using hypo-
thetical observations, shown as cyan diamonds, based on a robot’s
configuration at time t. Only observations at the edge of sensor range
are considered for t. The entropy of the OM (c) and the modified OM
(d) can be computed from the occupancy values (high entropy shown
in white), which produces MI (e). The MI gradient is estimated by
samples around observations (shown as black arrows). Accumulating
gradient samples results in the overall MI gradient for t, shown by
the yellow arrow on the robot. Note that the images of occupancy,
entropy and MI are only given here for presentation purposes and
full maps are never computed. The planner only accesses occupancy,
entropy and gradient values through stochastic samples.

117

parameterising the paths.
The approach taken in this work uses the MI functional UMI and its gradient

to maximise MI efficiently over the entire trajectory. To compute UMI , an MI
reward function is computed over the robot’s workspace W, in a similar fashion
to the computation of Uobs:

cMI(xt) ≈MI(M ; ẑ|xt). (6.4)

However, computation of the conditional entropy H(M |ẑ) entails changes to the
Hilbert map model.
In the following section, we will describe the stages involved in computing the

MI functional gradient. The three stages executed when computing ∇UMI are:

• Simulating expected observations

• Creating a perturbed Hilbert map model M |ẑ

• Obtaining MI functional gradient ∇UMI

Figure 6.2 shows the steps required for MI gradient computations at a given time
t.

Simulating expected observations

Similarly to the obstacle functional, the MI functional is approximated by a sum
over a finite set of points xt;

UMI(ξ) ≈
∑

xt∈T (ξ)
cMI(xt). (6.5)

cMI is chosen in a way that will estimate the infinitesimal change in MI at
xt. To compute cMI we emulate observations by ray casting, as done in other
information-driven exploration techniques (Elfes, 1996; Jadidi et al., 2015). How-
ever, while other methods evaluate the MI reward over the entire field of view
of the sensor, our method is only interested in the expected observations at the
sensor’s limits (maximum range). The rationale behind this approach is that new
information about the environment will be mainly obtained at the sensor’s sens-
ing limits Rmax. Figure 6.3 illustrates the difference between the two approach
to compute MI.
The output of the ray casting process is a set of unoccupied expected observa-

tions ẑf for any time and body point xt. ẑf differs from the expected observations
of Eq. (6.3), as we are only interested in unoccupied (no obstacle) observation at
the sensor maximum range. Figure 6.2b depicts ẑf as cyan diamonds.

118

(a) Standard Exploration (b) Functional Exploration

Figure 6.3: Difference in MI calculation. xt is the robot’s pose for which MI is
computed, the black lines depict the sensor field of view and the blue
area is the region where MI is computed. (a) MI is computed over
the entire field of view of sensor, producing ẑ. (b) MI is computed
only at the sensor’s range limits, producing ẑf

Creating a perturbed Hilbert map model M |ẑ

In this step, we generate M |ẑf , the modified Hilbert map conditioned on the
expected observations. The straightforward approach is to train a new map
model based on ẑf . This approach is commonly used in exploration methods
for occupancy grid maps. However the computational costs of such an approach
are high, as new maps must be generated along the entire trajectory during
optimisation. Instead, we propose the use of a perturbed Hilbert map model.
The perturbed Hilbert map model replaces the predictive map model σ

(
wT Φ̂(x)

)
,

given in Eq. (2.45), with a perturbed model σ
(
Ψ(x, ẑf)

)
. This model uses the

expected observations as a dataset ẑf =
{
xi, ri

}N
i=1

, where xi ∈ RD is a point
in 2D or 3D space and ri is the log-odds of the desired predictive occupancy
posterior at xi, to fit a GP:

Ψ(x, ẑf) ∼ GP
(
wT Φ̂(x), k(xi, xi)

)
. (6.6)

We note that wT Φ̂(x) of the current occupancy map is the mean function of the
GP. The kernel function k is the same function approximated by the Hilbert map
features Φ̂(·). The predictive probability of the perturbed map p̂ is given by:

p̂(x, ẑf) = σ
(
Ψ(x, ẑf)

)
(6.7)

Figure 6.2 depicts the resulting occupancy map following the embedding of the
expected observations in an existing map.
The computational cost of the perturbed Hilbert map is cubic in the number

119

of expected observations |ẑf |. As we are only modifying the map in a small
region, a small set of observations is required to generate perturbation, keeping
the computation load low.

Obtaining MI functional gradient ∇UMI

The workspace MI cost function for xt is defined as the MI summed over the
entire map:

cMI(xt) =
∫
M
MI

(
M(m); ẑf (xt)

)
dm. (6.8)

However, as we are only interested in the change at the limits of the sensor range,
cMI can be replaced by;

cMI(xt) =
∫
m∈mmax(xt)

MI
(
M(m); ẑf (xt)

)
dm, (6.9)

where mmax(xt) denotes workspace locations which lie on the arc given by the
maximum sensing range Rmax and the sensor’s field of view Ω, as shown in Fig.
6.3 . cMI can be approximated with a sum using either a deterministic or a
Monte-Carlo schedule:

cMI(xt) ≈
∑

m∈mmax(xt)
MI

(
M(m); ẑf (xt)

)
. (6.10)

Given the approximations in Eqs. (6.1) and (6.10), the MI functional can be
represented as

UMI(ξ) ≈
∑

xt∈T (ξ)

∑
m∈mmax(xt)

MI
(
M(m); ẑf (xt)

)
. (6.11)

The MI functional gradient follows the same form as Eq. (4.12):

∇UMI(xt) =
∑

xt∈T (ξ)

∑
m∈mmax(xt)

J(xt)∇xMI
(
M(m); ẑf (xt)

)
. (6.12)

The spatial gradient of MI, ∇xMI
(
M(m), can be expressed in closed-form

using the Hilbert maps’ continuous model. Using the MI definition from (6.3),
the gradient is defined as

∇xMI(M ; ẑ) = ∇xH(M)−∇xH(M |ẑ), (6.13)

where ∇xH is the spatial gradient of the entropy. Using the chain rule we rewrite

120

the spatial gradient of H around a query point x as:

∇xH(x) = dH

dp
∇xp(x), (6.14)

where p is the probability of occupancy at x given by Eq. (2.45). As p is a
Bernoulli random variable, dH

dp
is simply; dH

dp
= log2

1−p
p
. The occupancy gradient

∇xp(x) depends on the occupancy map used. For the unperturbed map, ∇xp(x)
is given by Eq. (4.6). The spatial gradient of the perturbed map, Eq. (6.7), can
be computed similarly to the unperturbed map;

∇xp̂(x, ẑf) = ∇xσ
(
Ψ(x, ẑf)

)
= σ

(
Ψ(x, ẑf)

)(
1− σ

(
Ψ(x, ẑf)

))
∇xΨ(x, ẑf).

(6.15)

As Ψ is a GP, its gradient can be computed in closed form.
Figure 6.2 shows the computation of MI gradient by sampling along the arc

defined by the sensor range. Each sample produces an MI gradient, schematically
shown by the black arrows. The overall MI gradient, which pushes optimisation
toward exploratory trajectories is computed from the sum of all samples and is
shown in Fig. 6.2e as a yellow arrow.

6.3.4 Functional Exploration Algorithm

In this section, we describe the functional exploration algorithm, which aims to
find a safe path that maximises MI over its entire course.
Functional exploration is a general optimisation framework, meaning it is in-

variant to the choice of path representation. Functional optimisation methods
have used waypoint parameterisation (Zucker et al., 2013), Gaussian process rep-
resentation (Mukadam et al., 2016; Dong et al., 2016), or defined trajectories as
RKHS (Marinho et al., 2016). However, in all methods the objective is sampled
via a deterministic schedule. Such approaches have proved unsatisfactory for
planning using occupancy maps (see Chapter 4). To ensure convergence to a safe
solution, the path is stochastically sampled in the entire t ∈ [0, 1] domain and
any uninformative gradient updates, such as those coming from unsafe parts of
the map, are rejected.
The path representation used in this work is based on kernel matrix approx-

imations introduced in Chapter 5. The path is essentially a weighted sum of
nonlinear features, similar to a nonlinear regression. This path model is highly
expressive, yet concise. Most importantly, the path can be optimised by SGD
(Robbins and Monro, 1951). Following Chapter 5, the general functional optimi-
sation is transformed into an iterative optimisation process of the weights of the

121

path,
wξ
optimal = argmin

wξ

U(ξ). (6.16)

The algorithm for functional exploration is given in Algorithm 10. The essential
inputs are the initial robot state and the occupancy map. Boundary conditions
or an initial solution are optional inputs. In each iteration, a mini-batch is drawn.
The safety of each sample is checked, and if it is below Psafe, the sample is used
to update the path. The gradient of the various components (obs, dyn, MI) of the
objective functional are computed, and summed according to Eq. (4.1). Once the
overall functional gradient is computed, the weights wξn+1 are updated according
to Eq. (5.7).

Algorithm 10: Stochastic Functional Exploration
Input: M : Occupancy Map.

1 ξ(0): Start state.
2 Psafe: No obstacle threshold.
3 Q: Optional proposal sampling distribution (use uniform

U [0, 1] is unspecified.
4 Optional: boundary conditions ξb, initial guess ξo.

Output: wξ
optimal

5 n = 0
6 while solution not converged do
7 //Stochastic sampling:
8 S ∼ Q Draw mini-batch from proposal distribution
9 foreach xt ∈ S do
10 Pocc ←M(xt)) Eq. (2.45)
11 if Pocc ≤ PSafe then
12 ẑf (xt)← simulated observations
13 ∇Uobs ← ∂

∂ξ
xt
(
σ
(
wT Φ̂(xt)

)(
1− σ

(
wT Φ̂(xt)

))
wT∇xΦ̂(xt)

)
Eq.(4.12)

14 ∇Udyn ← − d2

dt2
ξ(t) Eq.(4.13)

15 ∇UMI ←
∑
m∈mmax(xt)

∂
∂ξ
xt∇xMI

(
M(m); ẑf (xt)

)
Eq.(6.12)

16 ∇U ← Combine using Eq.(6.2)
17 wξ

n+1 ← wξ
n − ηnA−1Υ̂(ti)T Υ̂(ti)∇ξU(ξn)(ti); update rule Eq.

5.7
18 end
19 end
20 Update Q - Algo. 8
21 n = n+ 1
22 end

Figure 6.4 provides an insight into the optimisation process of a single planning
iteration. Each iteration starts with an initial guess, which is depicted in blue.
The obstacle functional gradient repels the path from obstacles and unknown

122

Figure 6.4: A functional planning iteration. Functional gradients deform the ini-
tial solution in blue. The obstacles gradient repels path from obstacles
and unknown space. The MI gradient pulls path toward unexplored
space. The resulting path, in green, is the optimised solution.

space. The MI objective pulls the path toward unexplored space. The intermedi-
ate path updates, following the functional gradient, are shown in grey. The final
optimal path is shown in green.

6.4 Experimental Results

In this section, we evaluate the performance of the stochastic functional explo-
ration planner and compare it to other exploration methods for continuous occu-
pancy maps. As a benchmark, we chose to compare our method to the RRT-based
exploration method of Yang et al. (2013) which we modified to use Hilbert maps.
This method optimises MI during path selection, and while its bottleneck lies
in computational complexity, it takes advantage of the fact the RRTs are prob-
abilistically complete. Another method used for comparison is based on frontier
exploration (Yamauchi, 1997), which takes a grid approximation of the continuous
map in a similar approach to Jadidi et al. (2014). The path is then constructed
by a smooth RRT planner which reasons only about the path safety. All meth-
ods, including Hilbert maps, are implemented in Python and tested on an Intel
i5-6200U with 8GB RAM.

6.4.1 Simulations

Figure 6.5 shows a qualitative comparison at various planning iterations. While
all exploration methods successfully build the map, there are some clear dif-
ferences. The frontier-based method produces jerky paths and tends to move
towards the edges and corners of the map. Path optimisation based methods, on
the other hand, stay closer to obstacles. As the RRT-based method maximises MI
only, its path moves closer to the edges of obstacles, while the proposed method
keeps a bigger distance, as its objective includes obstacle safety explicitly. We

123

Table 6.1: Exploration performance comparison
Proposed method RRT 1 Frontier 2

Avg. occupancy [%] 1.2 5.1 3.0
Max. occupancy [%] 26.3 75.2 47.9
Median Iter. Plan Time [s] 65.4 200.6 13.4
Avg. Iter. Plan Time [s] 73.7 196.6 84.3
Max. Iter. Plan Time [s] 174.4 239.6 1345.2
1 Yang et al. (2013)
2 Yamauchi (1997)

note that increasing the safety margin by applying a blurring filter, as done with
grid maps, is not applicable in continuous maps, as it requires expensive discreti-
sation of the map.
Quantitative comparisons are shown in Fig. 6.6 and in Table 6.1. Figure 6.6

depicts the reduction in the entropy of the map. The rate of reduction is similar
for both our method and the RRT-based exploration, albeit slightly better for
the latter, mainly due the fact that the paths generated by the RRT move closer
to obstacles. As a result, the RRT planner covers the map faster, however with a
higher probability of collision, as shown in Table 6.1 by the maximum occupancy
values exceeding the 50% occupancy threshold. The convergence of the frontier
planner is slower, as a result of the over-estimation of the path utility by the choice
of a single goal at each iteration. In addition, paths are jerky, leading to longer
time to cover the same area. As the frontier planner does not explicitly minimise
collision risk, the maximum occupancy over the path is high. In contrast, the
maximum occupancy of the proposed method along the path is significantly below
the 50% occupied threshold.
Comparing the median runtime results, shown in Table 6.1, reveals that the

RRT planner is significantly slower than our method, mainly because MI is com-
puted over entire paths. Since frontier only queries the map for occupancy, its
runtime is significantly shorter. However, its average runtime is similar to our
method as occasionally resolving longer path is required. It is worth noting that
the runtime results are limited by the Python implementation of the Hilbert
map. C++ implementation of the Hilbert map proved to be two to three orders
of magnitude faster, which makes it suitable for online applications.

124

Figure 6.5: Comparison of exploration methods at various planning iterations
using continuous occupancy maps. The hexagonal markers are the
planning poses. Triangle and star represent start and end points,
respectively. The grey lines are either candidate paths (RRT) or in-
termediate solutions (functional exploration). The pink line depicts
the optimised path and the green line is the traversed path. The path
is assessed during execution, and a re-plan step is invoked if a path is
no longer safe.

125

R
ed

u
ct

io
n

 in
 E

n
tr

op
y

[b
it

s]
R

ed
u

ct
io

n
 in

 E
n

tr
op

y
[b

it
s]

− 5 ,0 0 0

− 4 ,0 0 0

− 3 ,0 0 0

− 2 ,0 0 0

− 1 ,0 0 0

0

T ra ve lled P a th [m]T ra ve lled P a th [m]
0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

R R T
Fu n ctio n a l G rad .
F ro n tie r

Figure 6.6: Comparison of exploration methods - 2 repetitions; the proposed func-
tional exploration method (red), RRT-based exploration (black) and
frontier-based exploration (green). RRT and the propose method con-
verge in a similar fashion as both optimise MI over entire path. The
goal-based approach of frontier converges slower as it does not explic-
itly optimise on MI.

6.4.2 Real World Scenario

To evaluate the performance of the functional exploration algorithm in a real
world scenario, we simulated a robot exploring the Intel-Lab. We used the Intel-
Lab dataset (available at http://radish.sourceforge.net/), which we also used in
Chapter 4 and Chapter 5, to generate a ground truth, shown in Fig. 6.7, from
which we can emulate range observations. However, the exploring robot does
not have direct access to the ground truth map. The map in Fig. 6.7 reveals
a relatively simple structure. Yet, the small rooms and narrow corridors pose a
difficulty to a robot with limited manoeuvrability. To prevent a situation where
the robot is stuck in a room, we added a reverse-on-path option. Meaning, if the
robot identifies a dead-end, it may reverse on the path that took it to that spot.
Figure 6.8 shows the exploration process at various planning iterations. The

generated Hilbert map is overlaid with the ground truth map of 6.7 as a reference
to the map accuracy. The robot successfully explores the majority of the map,
moving mainly in the main corridor. It enters only some of the rooms, only where
there is enough clearance at the entrance. We note that the robot only relies on
occupancy around the entrance to assess safety.
Figure 6.8 provides an insight to the path optimisation process. This is shown

by the intermediate paths (in grey), which reveals how the functional objective in

126

Figure 6.7: Intel-Lab - Ground truth map based on the Intel-Lab dataset. The
robot does not have access to this map. It is only used to emulate
range observations.

Eq. (6.2) balances safety with exploration during the path selection process. The
MI term in Eq. (6.2) pulls paths towards the border between known and unknown
space. The safety functional, on the other hand, maintains a safe distance from
obstacles and unknown space. Consequently, paths tend to move in the middle
of the corridors and and end close, but within some margin, to a frontier.
The main limitation of the functional exploration approach is the lack of global

context during the optimisation. As FGD in a local optimisation process, its out-
come depends on the starting point of the optimisation. This make FGD sensitive
to dead-ends. An exploration dead-end scenario is shown in Fig. 6.8c, where a
robot is inside a room unable to find its way out. When the robot is inside a room,
it can not identify any planning horizon in its local neighbourhood. Meaning, the
MI functional’s contributions during optimisation are negligible, which results in
non-exploring paths. To somewhat resolve this problem, we added a reverse-on-
path option when the algorithm identifies a dead-end. However, a more robust
solution may include a global exploration initial guess, such as a frontier, to start
the optimisation. This will require to develop a frontier detection method for
continuous occupancy maps, as current frontier exploration methods require to
discretise the occupancy map, which is computationally intensive.

127

(a) 1 (b) 4 (c) 9

(d) 14 (e) 17 (f) 22

(g) 25 (h) 29 (i) 32

Figure 6.8: Functional exploration in the Intel-Lab at various planning iterations
using continuous occupancy maps.The blue overlay depicts the ground
truth, as shown in Fig. 6.7. The grey lines are intermediate solutions
and the green line is the optimal path. The path is assessed during
execution, and a re-plan step is invoked if a path is no longer safe. The
traversed path is plotted in cyan, the red hexagons are the planning
poses and the blue hexagon is the current pose.

6.5 Summary

This chapter introduces a novel method for exploration over continuous occu-
pancy maps using stochastic functional gradient descent. This approach for-
malises exploration as a variational problem, where optimisation is performed
directly in the space of trajectories. The functional objective of the proposed
method explicitly optimises both safety and information collection over the en-
tire path, finding the Next Best Path. While this approach can be used with any
type of occupancy map, it is highly effective with Hilbert maps, where the intro-
duced MI objective and its gradient can be computed from a perturbed model of
the map. Our proposed approach eliminates the need for computing MI over the
entire map as done in other exploration techniques. Rather, it computes varia-
tions to the path based on functional gradient of MI which are efficiently derived

128

in closed-form from the map model.
Comparisons with other exploration methods show that the proposed method

improves on both safety and MI. Point exploration methods, such as frontier,
which do not optimise the path selection, exhibit slower exploration rates. On the
other hand, sampling-based exploration methods, such as (Yang et al., 2013), do
not include safety in their objective, hence the resulting paths tends to move closer
to obstacles. Moreover, these methods are computationally expensive due to the
need to repeatedly sample the MI objective over entire paths. In comparison, our
proposed method achieves similar exploration rates to (Yang et al., 2013) while
taking less time to compute and still maximising safety.

129

Chapter 7

Conclusions

This thesis addresses the problem of autonomous exploration over continuous
paths. Exploration is an active learning process aimed at minimising uncertainty
and producing high-fidelity maps. Ideally, each autonomous decision corresponds
to trajectories a robot should follow in order to maximise learning while ensuring
its safety. However, optimising the selection of an uncountable object such as a
trajectory poses computational difficulties. Consequently, the existing methods
apply various heuristics in order to relax the general exploration problem.
In this work, we apply a holistic approach to exploration which solves simulta-

neously the coupled problems of where and how to explore. Instead of breaking
exploration into independent sub-problems of finding goal points and planning
safe paths to these points, we find an optimal path that maximises the robot’s
objective over the entire path. With exploration defined as an optimisation prob-
lem over continuous paths, we examine two different optimisation paradigms;
Bayesian and functional.
In this chapter, Section 7.1 reviews the contributions and conclusions developed

over the course of this thesis. Section 7.2 identifies potential directions for future
work.

7.1 Summary of contributions

7.1.1 Constrained Bayesian Exploration

Constrained Bayesian exploration (CBE) is a global optimisation framework for
exploration, which is based on constrained Bayesian optimisation. CBE opti-
mises path selection directly, without a need to define intermediate goal points
for optimisation. Since the exploration objective has no closed-form and is expen-
sive to evaluate, CBE replaces its direct optimisation by an optimise-while-learn
approach.
To facilitate an efficient optimisation, the optimiser utilises Bayesian inference

to learn the models of the objective and constraints. These models are then
used to generate a coherent objective function that incorporates gains, costs and
risks of any path, allowing efficient identification of potential optimal solutions

130

that satisfy the constraints with high confidence. Consequently, CBE provides a
principled and robust approach for optimising exploration over continuous paths
that guarantees convergence to a local solution and follows well known BO’s
regret bounds.
The main disadvantage of CBE is the restrictions on path parameterisation. To

maintain an efficient BO, the number of parameters that define a path is limited.
In effect, CBE uses a predefined family of trajectories, such as quadratic or cubic
splines, which are a small subspace of the entire valid trajectories space. With
limited expressiveness, there is a higher risk for planning failures, where a valid
solution exists, however it requires a richer representation.

7.1.2 Stochastic Path Planning using Continuous Occupancy Maps

The stochastic path planner offers a functional optimisation framework for con-
tinuous occupancy maps that employs highly expressive non-parametric path rep-
resentation. Effectively, The stochastic path planner extends the trajectory op-
timisation framework, which is suited for discrete cost maps, to a continuous
environment representation. This enables a new planning paradigm for occu-
pancy maps, which is not based on the prevalent approach of planning using
sampling-based techniques.
The stochastic path planner takes advantage of the fact that in a continuous

occupancy map, spatial gradients of the occupancy can be computed in closed
form. It forms a flexible support for a GP path representation using stochas-
tic samples of the occupancy gradient. Unlike other trajectory optimiser, the
planner does not commit to an a-priori parametric resolution of the support,
rather it employs support points from the entire domain. As a result, the GP
path establishes a highly expressive non-parametric representation, which allows
the stochastic planner to better handle obstacles while optimising its functional
objective.
The main limitation of the stochastic planner is its computational complex-

ity. The underlying GP path representation carries a cubic update cost and a
quadratic query cost. These costs limit performance once the number of gradient
samples reaches several hundreds.

7.1.3 Scalable Stochastic Path Planner

The GP path model provides great flexibility but with a high, and potentially
limiting, computational cost. The scalable stochastic planner fixes this cost by
constructing an expressive and tractable path model based on kernel approxima-
tions. Using a finite set of approximating features, the scalable planner employs

131

SGD to optimise the path functional. SGD combines the approximate kernel
path model with a stochastic sampling schedule to form a computationally effi-
cient optimisation process under SGD convergence guarantees.
The scalable planner is a generalisation of the motion planning in RKHS

paradigm of Marinho et al. (2016) as it can utilise any kernel matrix approxi-
mation technique. Moreover, the approximate kernel representation is naturally
updated by stochastic samples, which replaces the predetermined sampling sched-
ule of other kernel-based path planners (Marinho et al., 2016; Mukadam et al.,
2016). With a finite path representation, the cost of updating and querying the
path model is fixed, which resolves the main computational bottleneck of the
non-parametric GP path representation.
The introduction of an adaptive sampling procedure provides a useful mecha-

nism to accelerate optimisation and to indicate convergence. The adaptive sam-
pler constructs a proposal distribution based on the usefulness of past samples.
It then uses this distribution to draw more samples in areas of interest. As the
proposal distribution adapts according to the changing functional, its entropy
can also be used to identify convergence. This approach replaces the exhaustive
evaluations of path safety typically required in a standard functional optimisation
setting. It also provides a simple convergence indicator for an objective functional
which consists of several sub-objectives.

7.1.4 Functional Exploration

Functional exploration is an information-driven variational framework for safe
autonomous exploration in continuous occupancy maps. The functional objective
of the proposed method explicitly optimises safety and information collection
over the entire path, finding the Next Best Path. As a functional optimiser, the
functional exploration planner is invariant to the choice of path representation.
It uses stochastic samples of the functional gradient in order to optimise the
objective along the entire path.
To optimise information collection, a mutual information variational objective

was developed. While the MI objective can potentially be computed from any
type of occupancy map, it is well suited for Hilbert maps, where the MI func-
tional can be derived efficiently, in closed-form from a perturbed Hilbert map
occupancy model. Using MI-driven functional path variations eliminate the need
for an explicit computation of MI over the entire map, as done in other explo-
ration techniques. Consequently, the functional exploration planner requires less
computational resources, while still maximising safety and information.

132

7.2 Future work

In this section we provide future research ideas based on the methods and results
presented throughout this thesis.

7.2.1 Stochastic Variational Inference GPC

The main drawback of the constrained Bayesian exploration method is its com-
putational cost, arising from the cubic cost of updating and querying GPCs. To
alleviate this limitation, GPCs can be replaced by a stochastic variational infer-
ence GPC (Hensman et al., 2015), which fixes the computational cost, making it
invariant to the number of data points.

7.2.2 Latent Variable Functional Path Planning

Latent variables models (LVMs) (Bishop, 2006) are a dimensionality reduction
technique that can offer an abstraction layer for path planning. The choice of
approximating features in current stochastic path planners is quite arbitrary.
LVMs, on the other hand, provide a principled mechanism for choosing these
features. Conceptually, an LVM gives a "physical explanation" for the data. In
an occupancy gradient observations, an LVM can capture high-level features such
as corners or intersections. Another benefit of a lower dimensional representation
is in the stability and efficiency of the optimisation process.
As LVMs are probabilistic, they can be used as generative models. Meaning,

that a path can be sampled from the LVM distribution. Such a generative model
can be employed under a a global optimisation framework, such as Hamiltonian
Monte Carlo (Neal, 2010).

7.2.3 Generative Adversarial Functional Path Planning

The generative adversarial networks (GAN) is a neural network architecture that
employs a pair generator-discriminator networks (Goodfellow et al., 2014). GANs
are used to improve unsupervised learning or as generative models. In a path
planning context, GANs can be used as generative model that suggest "intuitive"
initial guesses, ξo in (5.5), for a functional path planning. Currently, ξo can be
defined by a simple crude planner, such as RRT. However, GANs can offer a more
principled approach for producing ξo.

133

Bibliography

M.A. Alvarez, L. Rosasco, and N.D. Lawrence. Kernels for Vector-Valued Func-
tions: a Review. Foundations and Trends in Machine Learning, 4(3):195–266,
2012.

N. Basilico and F. Amigoni. Exploration Strategies Based on Multi-Criteria De-
cision Making for an Autonomous Mobile Robot. In Proc. of International
Conference on Autonomous Agents and Multiagent Systems, pages 1–6, 2011.

P. Bhattacharya and M.L. Gavrilova. Voronoi Diagram in Optimal Path Plan-
ning. In 4th International Symposium on Voronoi Diagrams in Science and
Engineering, pages 38–47, 2007.

C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

L. Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent. In
Proc. of the 19th International Conference on Computational Statistics, pages
177–186, Heidelberg, 2010.

L. Bottou, F.E. Curtis, and J. Nocedal. Optimization Methods for Large-Scale
Machine Learning. arXiv preprint arXiv:1606.04838, 2016.

F. Bourgault, A.A. Makarenko, S.B. Williams, B. Grocholsky, and H.F. Durrant-
Whyte. Information Based Adaptive Robotic Exploration. In Proc. of
IEEE/RSJ International Conference on Intelligent Robots and Systems, vol-
ume 1, pages 540–545, 2002.

E. Brochu, V.M. Cora, and N. De Freitas. A Tutorial on Bayesian Optimization
of Expensive Cost Functions, with Application to Active User Modeling and
Hierarchical Reinforcement Learning. preprint arXiv:1012.2599, 2010.

B. Charrow, G. Kahn, S. Patil, S. Liu, K. Goldberg, P. Abbeel, N. Michael, and
V. Kumar. Information-Theoretic Planning with Trajectory Optimization for
Dense 3D Mapping. In Proc. of Robotics: Science and Systems, 2015.

B. Curless and M. Levoy. A Volumetric Method for Building Complex Models
from Range Images. In Proc. of the Annual Conference on Computer Graphics
and Interactive Techniques, pages 303–312, 1996.

134

J. Dong, M. Mukadam, F. Dellaert, and B. Boots. Motion Planning as Prob-
abilistic Inference using Gaussian Processes and Factor Graphs. In Proc. of
Robotics: Science and Systems, 2016.

C. Dornhege and A. Kleiner. A Frontier-Void-Based Approach for Autonomous
Exploration in 3D. Advanced Robotics, 27(6):459–468, apr 2013.

A. Elfes. Using Occupancy Grids for Mobile Robot Perception and Navigation.
Computer, 22(6):46–57, 1989.

A. Elfes. Robot Navigation: Integrating Perception, Environmental Constraints
and Task Execution within a Probabilistic Framework. In Reasoning with Un-
certainty in Robotics, volume 1093, chapter 4, pages 91–130. Springer Berlin
Heidelberg, 1996.

G. Francis, L. Ott, and F. Ramos. Stochastic Functional Gradient for Motion
Planning in Continuous Occupancy Maps. In Proc. of IEEE International
Conference on Robotics and Automation, pages 3778–3785, 2017.

S. Garrido, L. Moreno, M. Abderrahim, and F. Martin. Path Planning for
Mobile Robot Navigation Using Voronoi Diagram and Fast Marching. In
Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2376–2381, 2006.

M.A. Gelbart, J. Snoek, and R.P. Adams. Bayesian Optimization with Unknown
Constraints. In Proc. of Uncertainty in Artificial Intelligence, 2014.

H.H. González-Baños and J.C. Latombe. Navigation Strategies for Exploring
Indoor Environments. The International Journal of Robotics Research, 21(10-
11):829–848, 2002.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative Adversarial Nets. In Proc. of Advances
in Neural Information Processing Systems, pages 2672—-2680, 2014.

R.B. Gramacy and H.K.H. Lee. Optimization Under Unknown Constraints. In
Bayesian Statistics 9, pages 229–256. Oxford University Press, 2011.

G. Grisetti, C. Stachniss, and W. Burgard. Improved Techniques for Grid Map-
ping with Rao-Blackwellized Particle Filters. IEEE Transactions on Robotics,
23(1):34–46, 2007.

L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A Distribution-Free Theory of
Nonparametric Regression. Springer Series in Statistics. Springer New York,
2002.

135

J. Hensman, N. Fusi, and N.D. Lawrence. Gaussian Processes for Big Data. In
Proc. of Uncertainty in Artificial Intelligence, 2013.

J. Hensman, A. Matthews, and Z. Ghahramani. Scalable Variational Gaussian
Process Classification. In Proc. of International Conference on Artificial Intel-
ligence and Statistics, pages 351–360, 2015.

G.A. Hollinger and G.S. Sukhatme. Sampling-Based Robotic Information Gath-
ering Algorithms. The International Journal of Robotics Research, 33(9), 2014.

D. Holz, N. Basilico, F. Amigoni, and S. Behnke. A Comparative Evaluation of
Exploration Strategies and Heuristics to Improve Them. In Proc. of European
Conference on Mobile Robots, pages 25–30, 2011.

V. Indelman, L. Carlone, and F. Dellaert. Planning in the Continuous Domain :
a Generalized Belief Space Approach for Autonomous Navigation in Unknown
Environments. The International Journal of Robotics Research, 34(7):1–56,
2015.

M. G. Jadidi, J. V. Miro, and G. Dissanayake. Mutual Information-based Explo-
ration on Continuous Occupancy Maps. In Proc. of IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 6086–6092, 2015.

M.G. Jadidi, J.V. Miro, R. Valencia, and J. Andrade-Cetto. Exploration on
Continuous Gaussian Process Frontier Maps. In Proc. of IEEE International
Conference on Robotics and Automation, pages 6077–6082, 2014.

M. Juliá, A. Gil, and O. Reinoso. A Comparison of Path Planning Strategies
for Autonomous Exploration and Mapping of Unknown Environments. Au-
tonomous Robots, 33(4):427–444, 2012.

B.J. Julian, S. Karaman, and D. Rus. On Mutual Information-Based Control of
Range Sensing Robots for Mapping Applications. The International Journal
of Robotics Research, 33(10):1375–1392, 2014.

S.J. Julier and J.K. Uhlmann. New Extension of the Kalman Filter to Nonlinear
Systems. In Proc. of 11th International Symposium on Aerospace/Defense,
Simulation and Controls, pages 182–193, 1997.

M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. STOMP:
Stochastic Trajectory Optimization for Motion Planning. In Proc. of IEEE
International Conference on Robotics and Automation, pages 4569–4574, 2011.

S. Karaman. Incremental Sampling-Based Algorithms for Optimal Motion Plan-
ning. Proc. of Robotics: Science and Systems, 104, 2010.

136

S. Karaman and E. Frazzoli. Sampling-Based Algorithms for Optimal Motion
Planning. The International Journal of Robotics Research, 30(7):846–894, 2011.

L.E. Kavraki, P. Svestka, J.C. Latombe, and M.H. Overmars. Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration Spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–580, 1996.

O. Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots.
The International Journal of Robotics Research, 5(1):90–98, 1986.

T. Kollar and N. Roy. Trajectory Optimization using Reinforcement Learning
for Map Exploration. The International Journal of Robotics Research, 27(2):
175–196, 2008.

M. Lauri and R. Ritala. Planning for Robotic Exploration Based on Forward
Simulation. Robotics and Autonomous Systems, 83:15–31, 2015.

S. M. Lavalle. Rapidly-Exploring Random Trees: A New Tool for Path Planning.
Technical report, Department of Computer Science. Iowa State University.,
1998.

S. M. LaValle. Planning Algorithms. Cambridge university press, 2006.

T. Lozano-Pérez and M.A. Wesley. An Algorithm for Planning Collision-Free
Paths Among Polyhedral Obstacles. Communications of the ACM, 22(10):
560–570, 1979.

A.A. Makarenko, S.B. Williams, F. Bourgault, and H.F. Durrant-Whyte. An
Experiment in Integrated Exploration. In Proc. of IEEE/RSJ International
Conference on Intelligent Robots and System, volume 1, pages 534–539, 2002.

R. Marchant and F. Ramos. Bayesian Optimisation for Informative Continuous
Path Planning. In Proc. of International Conference on Robotics and Automa-
tion, pages 6136–6143, 2014.

R. Marchant, F. Ramos, and S. Sanner. Sequential Bayesian Optimisation for
Spatial-Temporal Monitoring. In International Conference on Uncertainty in
Artificial Intelligence, pages 553–562, 2014.

Z. Marinho, B. Boots, A. Dragan, A. Byravan, G. J. Gordon, and S. Srinivasa.
Functional Gradient Motion Planning in Reproducing Kernel Hilbert Spaces.
In Proc. of Robotics: Science and Systems, 2016.

137

R. Martinez-Cantin, N. de Freitas, A. Doucet, and J. Castellanos. Active Policy
Learning for Robot Planning and Exploration under Uncertainty. In Proc. of
Robotics: Science and Systems, 2007.

R. Martinez-Cantin, N. De Freitas, E. Brochu, J. Castellanos, and A. Doucet. A
Bayesian Exploration-Exploitation Approach for Optimal Online Sensing and
Planning with a Visually Guided Mobile Robot. Autonomous Robots, 27(2):
93–103, aug 2009.

A. Melkumyan and F. Ramos. A Sparse Covariance Function for Exact Gaus-
sian Process Inference in Large Datasets. In Proc. of the International Joint
Conference on Artificial Intelligence, pages 1936–1942, 2009.

T. P. Minka. A Family of Algorithms for Approximate Bayesian Inference. Doc-
toral dissertation, Massachusetts Institute of Technology, 2001.

M. Mukadam, X. Yan, and B. Boots. Gaussian Process Motion Planning. In
Proc. of IEEE International Conference on Robotics and Automation, pages
9–15, 2016.

R.M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, New York,
1996.

R.M. Neal. Regression and Classification using Gaussian Process Priors. In
Bayesian Statistics 6. Oxford University Press., 1998.

R.M. Neal. MCMC Using Hamiltonian Dynamics. In Handbook of Markov Chain
Monte Carlo. Chapman & Hall /CRC Press, 2010.

S.T. O’Callaghan and F.T. Ramos. Gaussian Process Occupancy Maps. The
International Journal of Robotics Research, 31(1):42–62, 2012.

H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto. Voxblox: Incre-
mental 3D Euclidean Signed Distance Fields for on-board MAV planning. In
Proc. of IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 1366–1373, 2017.

C. Park, J. Pan, and D. Manocha. ITOMP: Incremental Trajectory Optimization
for Real-Time Replanning in Dynamic Environments. In Proc. of the Interna-
tional Conference on Automated Planning and Scheduling, 2012.

J.C. Platt. Probabilistic Outputs for Support Vector Machines and Comparisons
to Regularized Likelihood Methods. In Advances in Large Margin Classifiers,
pages 61–74. MIT Press, 1999.

138

T. Poggio and F. Girosi. Networks for Approximation and Learning. Proceedings
of the IEEE, 78(9):1481–1497, 1990.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A.Y. Ng. ROS an open-source Robot Operating System. In Proc. of the ICRA
Workshop on Open Source Software, 2009.

M. Rafieisakhaei, A. Tamjidi, S. Chakravorty, and P.R. Kumar. Feedback Motion
Planning Under Non-Gaussian Uncertainty and Non-Convex State Constraints.
In Proc. of IEEE International Conference on Robotics and Automation, pages
4238–4244, 2016.

Ali Rahimi and Benjamin Recht. Weighted Sums of Random Kitchen Sinks:
Replacing minimization with randomization in learning. In Proc. of Advances
in neural information processing systems, pages 1313–1320, 2009.

F. Ramos and L. Ott. Hilbert Maps: Scalable Continuous Occupancy Mapping
with Stochastic Gradient Descent. In Proc. of Robotics: Science and Systems,
2015.

C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning.
University Press Group Limited, 2006.

N. Ratliff, M. Zucker, J.A. Bagnell, and S. Srinivasa. CHOMP: Gradient Opti-
mization Techniques for Efficient Motion Planning. In Proc. of IEEE Interna-
tional Conference on Robotics and Automation, pages 489–494, 2009.

R. Rifkin and A. Klautau. In Defense of One-Vs-All Classification. Journal of
Machine Learning Research, 5:101–141, 2004.

H. Robbins and S. Monro. A Stochastic Approximation Method. The Annals of
Mathematical Statistics, 22(3):400–407, 1951.

B. Schölkopf and A.J. Smola. Learning with Kernels : Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, 2001.

B. Schölkopf, A. Smola, and K.R. Müller. Nonlinear Component Analysis as a
Kernel Eigenvalue Problem. Neural Computation, 10(5):1299–1319, 1998.

J. Schreiter, D. Nguyen-Tuong, M. Eberts, B. Bischoff, H. Markert, and M. Tou-
ssaint. Safe Exploration for Active Learning with Gaussian Processes. In Proc.
of the European Conference on Machine Learning, pages 133–149, 2015.

R. Senanayake and F. Ramos. Bayesian Hilbert Maps for Dynamic Continuous
Occupancy Mapping. In Conference on Robotics Learning, 2017.

139

R. Shade and P. Newman. Choosing Where to Go: Complete 3D Exploration
with Stereo. In Proc. of IEEE International Conference on Robotics and Au-
tomation, pages 2806–2811, 2011.

S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal Esti-
mated Sub-Gradient Solver for SVM. Mathematical Programming, 127(1):3–30,
2011.

S. Shen, N. Michael, and V. Kumar. Stochastic Differential Equation-Based
Exploration Algorithm for Autonomous Indoor 3D Exploration with a Micro-
Aerial Vehicle. The International Journal of Robotics Research, 31(12):1431–
1444, 2012.

J. Snoek, H. Larochelle, and R.P. Adams. Practical Bayesian Optimization of
Machine Learning Algorithms. In Proc. of Advances in Neural Information
Processing Systems, pages 2951–2959, 2012.

E. Solak, R. Murray-Smith, W.E. Leithead, C. Rasmusson, and D.J. Leith.
Derivative Observations in Gaussian Process Models of Dynamic Systems. In
Proc. of Advances in neural information processing systems, pages 1057–1064,
2002.

N. Srinivas, A. Krause, S.M. Kakade, and M. Seeger. Gaussian Process Opti-
mization in the Bandit Setting: No Regret and Experimental Design. In Proc.
of the International Conference on Machine Learning, pages 1015–1022, 2010.

C. Stachniss. Robotic Mapping and Exploration. Springer, 2009.

C. Stachniss, G. Grisetti, and W. Burgard. Information Gain-Based Exploration
Using Rao-Blackwellized Particle Filters. In Proc. of Robotics: Science and
Systems, 2005.

I.A. Sucan, M. Moll, and L.E. Kavraki. The Open Motion Planning Library.
Robotics & Automation Magazine, 19(4):72–82, 2012.

Y. Sui, A. Gotovos, J. Burdick, and A. Krause. Safe Exploration for Optimization
with Gaussian Processes. In Proc. of the International Conference on Machine
Learning, pages 997–1005, 2015.

J.A.K. Suykens and J. Vandewalle. Least Squares Support Vector Machine Clas-
sifiers. Neural Processing Letters, 9(3):293–300, 1999.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

140

M.K. Titsias. Variational Learning of Inducing Variables in Sparse Gaussian
Processes. In Proc. of the International Conference on Artificial Intelligence
and Statistics, pages 567–574, 2009.

B. Tovar, L. Muñoz-Gómez, R. Murrieta-Cid, M. Alencastre-Miranda, R. Monroy,
and S. Hutchinson. Planning Exploration Strategies for Simultaneous Local-
ization and Mapping. Robotics and Autonomous Systems, 54(4):314–331, 2006.

E. G. Tsardoulias, A. Iliakopoulou, A. Kargakos, and L. Petrou. A Review of
Global Path Planning Methods for Occupancy Grid Maps Regardless of Obsta-
cle Density. Journal of Intelligent & Robotic Systems, 84(1-4):829–858, 2016.

M. Turchetta, F. Berkenkamp, and A. Krause. Safe Exploration in Finite Markov
Decision Processes with Gaussian Processes. In Proc. of Advances in Neural
Information Processing Systems, pages 4312–4320, 2016.

J. Vallvé and J. Andrade-Cetto. Potential Information Fields for Mobile Robot
Exploration. Robotics and Autonomous Systems, 69:68–79, 2015.

E.A. Wan and R. Van Der Merwe. The Unscented Kalman Filter for Nonlinear
Estimation. In Adaptive Systems for Signal Processing, Communications, and
Control Symposium, pages 153–158, 2000.

P. Whaite and F.P. Ferrie. Autonomous Exploration: Driven by Uncertainty.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(3):193–
205, 1997.

C. Williams and M. Seeger. Using the Nyström method to speed up kernel
machines. In Proc. of Advances in neural information processing systems, pages
682–688, 2001.

B. Yamauchi. A Frontier-based Approach for Autonomous Exploration. In IEEE
International Symposium on Computational Intelligence in Robotics and Au-
tomation, pages 146–151, 1997.

K. Yang, S. Keat Gan, and S. Sukkarieh. A Gaussian Process-Based RRT Planner
for the Exploration of an Unknown and Cluttered Environment with a UAV.
Advanced Robotics, 27(6):431–443, 2013.

M. Zucker, N. Ratliff, A.D. Dragan, M. Pivtoraiko, M. Klingensmith, C.M. Dellin,
J.A. Bagnell, and S.S. Srinivasa. CHOMP: Covariant Hamiltonian Optimiza-
tion for Motion Planning. The International Journal of Robotics Research, 32
(9-10):1164–1193, 2013.

141

	Declaration
	Abstract
	Acknowledgements
	Nomenclature
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Problem Statement
	Contributions
	Formulation of Autonomous Exploration as an Optimisation over Continuous Paths
	Constrained Bayesian Exploration
	Trajectory Optimiser for Continuous Occupancy Maps
	Stochastic Trajectory Optimisation over an Expressive and Tractable Path Model based on Kernel Approximations
	Developing a Mutual Information Variational Objective for Continuous Occupancy Maps
	Next Best Path Exploration Method

	Outline
	List of Publications

	Background
	Gaussian Processes
	Gaussian Process Regression
	Gaussian Process Classification
	Covariance Functions
	Parameter Learning

	Bayesian Optimisation
	Unconstrained optimisation
	Constrained BO

	Functional Gradient Descent Optimisation
	Occupancy Maps
	Grid Maps
	Hilbert Maps

	Summary

	Bayesian Autonomous Exploration
	Introduction
	Related work
	Exploration as an Optimisation Problem
	Constrained Bayesian Exploration
	Path Candidate Validity Assessment
	Reward calculation
	CBE Algorithm
	Incorporating Uncertainty in CBE

	Experiments
	Simulations
	Real Environments

	Summary

	Stochastic Path Planning in Continuous Occupancy Maps
	Introduction
	Related Work
	Functional Gradient Path Planning
	FGD Using Hilbert Maps
	Occupancy Gradient in Hilbert Maps
	GP Paths using Hilbert maps
	Stochastic Gradient
	Planning on Hilbert Maps Algorithm

	Experiments
	Simulations
	Real Laser-scan Data

	Summary

	Stochastic Scalable Path Planning
	Introduction
	Scalable Functional Regression
	Stochastic Functional Regression
	Approximate Kernel Update Rule
	Targeted Sampling
	Approximate Kernel Path Planning Algorithm

	Experiments
	Simulations
	Real Data
	Targeted Sampling

	Summary

	Functional Exploration
	Introduction
	Related work
	Exploration Functional
	Notation
	Exploration Functional Objective
	Mutual Information Functional UMI()
	Functional Exploration Algorithm

	Experimental Results
	Simulations
	Real World Scenario

	Summary

	Conclusions
	Summary of contributions
	Constrained Bayesian Exploration
	Stochastic Path Planning using Continuous Occupancy Maps
	Scalable Stochastic Path Planner
	Functional Exploration

	Future work
	Stochastic Variational Inference GPC
	Latent Variable Functional Path Planning
	Generative Adversarial Functional Path Planning

	Bibliography

