452 research outputs found

    Stochastic resonance and finite resolution in a network of leaky integrate-and-fire neurons.

    Get PDF
    This thesis is a study of stochastic resonance (SR) in a discrete implementation of a leaky integrate-and-fire (LIF) neuron network. The aim was to determine if SR can be realised in limited precision discrete systems implemented on digital hardware. How neuronal modelling connects with SR is discussed. Analysis techniques for noisy spike trains are described, ranging from rate coding, statistical measures, and signal processing measures like power spectrum and signal-to-noise ratio (SNR). The main problem in computing spike train power spectra is how to get equi-spaced sample amplitudes given the short duration of spikes relative to their frequency. Three different methods of computing the SNR of a spike train given its power spectrum are described. The main problem is how to separate the power at the frequencies of interest from the noise power as the spike train encodes both noise and the signal of interest. Two models of the LIF neuron were developed, one continuous and one discrete, and the results compared. The discrete model allowed variation of the precision of the simulation values allowing investigation of the effect of precision limitation on SR. The main difference between the two models lies in the evolution of the membrane potential. When both models are allowed to decay from a high start value in the absence of input, the discrete model does not completely discharge while the continuous model discharges to almost zero. The results of simulating the discrete model on an FPGA and the continuous model on a PC showed that SR can be realised in discrete low resolution digital systems. SR was found to be sensitive to the precision of the values in the simulations. For a single neuron, we find that SR increases between 10 bits and 12 bits resolution after which it saturates. For a feed-forward network with multiple input neurons and one output neuron, SR is stronger with more than 6 input neurons and it saturates at a higher resolution. We conclude that stochastic resonance can manifest in discrete systems though to a lesser extent compared to continuous systems

    Stochastic Resonance in Neuron Models: Endogenous Stimulation Revisited

    Full text link
    The paradigm of stochastic resonance (SR)---the idea that signal detection and transmission may benefit from noise---has met with great interest in both physics and the neurosciences. We investigate here the consequences of reducing the dynamics of a periodically driven neuron to a renewal process (stimulation with reset or endogenous stimulation). This greatly simplifies the mathematical analysis, but we show that stochastic resonance as reported earlier occurs in this model only as a consequence of the reduced dynamics.Comment: Some typos fixed, esp. Eq. 15. Results and conclusions are not affecte

    A Fokker-Planck formalism for diffusion with finite increments and absorbing boundaries

    Get PDF
    Gaussian white noise is frequently used to model fluctuations in physical systems. In Fokker-Planck theory, this leads to a vanishing probability density near the absorbing boundary of threshold models. Here we derive the boundary condition for the stationary density of a first-order stochastic differential equation for additive finite-grained Poisson noise and show that the response properties of threshold units are qualitatively altered. Applied to the integrate-and-fire neuron model, the response turns out to be instantaneous rather than exhibiting low-pass characteristics, highly non-linear, and asymmetric for excitation and inhibition. The novel mechanism is exhibited on the network level and is a generic property of pulse-coupled systems of threshold units.Comment: Consists of two parts: main article (3 figures) plus supplementary text (3 extra figures

    Transient Information Flow in a Network of Excitatory and Inhibitory Model Neurons: Role of Noise and Signal Autocorrelation

    Get PDF
    We investigate the performance of sparsely-connected networks of integrate-and-fire neurons for ultra-short term information processing. We exploit the fact that the population activity of networks with balanced excitation and inhibition can switch from an oscillatory firing regime to a state of asynchronous irregular firing or quiescence depending on the rate of external background spikes. We find that in terms of information buffering the network performs best for a moderate, non-zero, amount of noise. Analogous to the phenomenon of stochastic resonance the performance decreases for higher and lower noise levels. The optimal amount of noise corresponds to the transition zone between a quiescent state and a regime of stochastic dynamics. This provides a potential explanation on the role of non-oscillatory population activity in a simplified model of cortical micro-circuits.Comment: 27 pages, 7 figures, to appear in J. Physiology (Paris) Vol. 9

    Dynamical response of the Hodgkin-Huxley model in the high-input regime

    Full text link
    The response of the Hodgkin-Huxley neuronal model subjected to stochastic uncorrelated spike trains originating from a large number of inhibitory and excitatory post-synaptic potentials is analyzed in detail. The model is examined in its three fundamental dynamical regimes: silence, bistability and repetitive firing. Its response is characterized in terms of statistical indicators (interspike-interval distributions and their first moments) as well as of dynamical indicators (autocorrelation functions and conditional entropies). In the silent regime, the coexistence of two different coherence resonances is revealed: one occurs at quite low noise and is related to the stimulation of subthreshold oscillations around the rest state; the second one (at intermediate noise variance) is associated with the regularization of the sequence of spikes emitted by the neuron. Bistability in the low noise limit can be interpreted in terms of jumping processes across barriers activated by stochastic fluctuations. In the repetitive firing regime a maximization of incoherence is observed at finite noise variance. Finally, the mechanisms responsible for spike triggering in the various regimes are clearly identified.Comment: 14 pages, 24 figures in eps, submitted to Physical Review

    Neutral theory and scale-free neural dynamics

    Get PDF
    Avalanches of electrochemical activity in brain networks have been empirically reported to obey scale-invariant behavior --characterized by power-law distributions up to some upper cut-off-- both in vitro and in vivo. Elucidating whether such scaling laws stem from the underlying neural dynamics operating at the edge of a phase transition is a fascinating possibility, as systems poised at criticality have been argued to exhibit a number of important functional advantages. Here we employ a well-known model for neural dynamics with synaptic plasticity, to elucidate an alternative scenario in which neuronal avalanches can coexist, overlapping in time, but still remaining scale-free. Remarkably their scale-invariance does not stem from underlying criticality nor self-organization at the edge of a continuous phase transition. Instead, it emerges from the fact that perturbations to the system exhibit a neutral drift --guided by demographic fluctuations-- with respect to endogenous spontaneous activity. Such a neutral dynamics --similar to the one in neutral theories of population genetics-- implies marginal propagation of activity, characterized by power-law distributed causal avalanches. Importantly, our results underline the importance of considering causal information --on which neuron triggers the firing of which-- to properly estimate the statistics of avalanches of neural activity. We discuss the implications of these findings both in modeling and to elucidate experimental observations, as well as its possible consequences for actual neural dynamics and information processing in actual neural networks.Comment: Main text: 8 pages, 3 figures. Supplementary information: 5 pages, 4 figure

    Sample Path Analysis of Integrate-and-Fire Neurons

    Get PDF
    Computational neuroscience is concerned with answering two intertwined questions that are based on the assumption that spatio-temporal patterns of spikes form the universal language of the nervous system. First, what function does a specific neural circuitry perform in the elaboration of a behavior? Second, how do neural circuits process behaviorally-relevant information? Non-linear system analysis has proven instrumental in understanding the coding strategies of early neural processing in various sensory modalities. Yet, at higher levels of integration, it fails to help in deciphering the response of assemblies of neurons to complex naturalistic stimuli. If neural activity can be assumed to be primarily driven by the stimulus at early stages of processing, the intrinsic activity of neural circuits interacts with their high-dimensional input to transform it in a stochastic non-linear fashion at the cortical level. As a consequence, any attempt to fully understand the brain through a system analysis approach becomes illusory. However, it is increasingly advocated that neural noise plays a constructive role in neural processing, facilitating information transmission. This prompts to gain insight into the neural code by studying the stochasticity of neuronal activity, which is viewed as biologically relevant. Such an endeavor requires the design of guiding theoretical principles to assess the potential benefits of neural noise. In this context, meeting the requirements of biological relevance and computational tractability, while providing a stochastic description of neural activity, prescribes the adoption of the integrate-and-fire model. In this thesis, founding ourselves on the path-wise description of neuronal activity, we propose to further the stochastic analysis of the integrate-and fire model through a combination of numerical and theoretical techniques. To begin, we expand upon the path-wise construction of linear diffusions, which offers a natural setting to describe leaky integrate-and-fire neurons, as inhomogeneous Markov chains. Based on the theoretical analysis of the first-passage problem, we then explore the interplay between the internal neuronal noise and the statistics of injected perturbations at the single unit level, and examine its implications on the neural coding. At the population level, we also develop an exact event-driven implementation of a Markov network of perfect integrate-and-fire neurons with both time delayed instantaneous interactions and arbitrary topology. We hope our approach will provide new paradigms to understand how sensory inputs perturb neural intrinsic activity and accomplish the goal of developing a new technique for identifying relevant patterns of population activity. From a perturbative perspective, our study shows how injecting frozen noise in different flavors can help characterize internal neuronal noise, which is presumably functionally relevant to information processing. From a simulation perspective, our event-driven framework is amenable to scrutinize the stochastic behavior of simple recurrent motifs as well as temporal dynamics of large scale networks under spike-timing-dependent plasticity

    Linear response for spiking neuronal networks with unbounded memory

    Get PDF
    We establish a general linear response relation for spiking neuronal networks, based on chains with unbounded memory. This relation allows us to predict the influence of a weak amplitude time-dependent external stimuli on spatio-temporal spike correlations, from the spontaneous statistics (without stimulus) in a general context where the memory in spike dynamics can extend arbitrarily far in the past. Using this approach, we show how linear response is explicitly related to neuronal dynamics with an example, the gIF model, introduced by M. Rudolph and A. Destexhe. This example illustrates the collective effect of the stimuli, intrinsic neuronal dynamics, and network connectivity on spike statistics. We illustrate our results with numerical simulations.Comment: 60 pages, 8 figure

    Clique of functional hubs orchestrates population bursts in developmentally regulated neural networks

    Full text link
    It has recently been discovered that single neuron stimulation can impact network dynamics in immature and adult neuronal circuits. Here we report a novel mechanism which can explain in neuronal circuits, at an early stage of development, the peculiar role played by a few specific neurons in promoting/arresting the population activity. For this purpose, we consider a standard neuronal network model, with short-term synaptic plasticity, whose population activity is characterized by bursting behavior. The addition of developmentally inspired constraints and correlations in the distribution of the neuronal connectivities and excitabilities leads to the emergence of functional hub neurons, whose stimulation/deletion is critical for the network activity. Functional hubs form a clique, where a precise sequential activation of the neurons is essential to ignite collective events without any need for a specific topological architecture. Unsupervised time-lagged firings of supra-threshold cells, in connection with coordinated entrainments of near-threshold neurons, are the key ingredients to orchestrateComment: 39 pages, 15 figures, to appear in PLOS Computational Biolog
    • …
    corecore