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Abstract

We investigate the performance of sparsely-connected networks of integrate-and-fire neurons for ultra-short term information pro-
cessing. We exploit the fact that the population activity of networks with balanced excitation and inhibition can switch from an oscil-
latory firing regime to a state of asynchronous irregular firing or quiescence depending on the rate of external background spikes.

We find that in terms of information buffering the network performs best for a moderate, non-zero, amount of noise. Analogous to
the phenomenon of stochastic resonance the performance decreases for higher and lower noise levels. The optimal amount of noise cor-
responds to the transition zone between a quiescent state and a regime of stochastic dynamics. This provides a potential explanation of
the role of non-oscillatory population activity in a simplified model of cortical micro-circuits.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The brain processes information in a constantly varying
world. The visual scenes one sees in everyday life are extre-
mely rich and change rapidly in time. In addition, the
human eye performs more than three saccades every sec-
ond causing sudden changes in the visual input [53]. Com-
plex sounds, such as speech or music vary continuously in
time and frequency. Moreover, the human brain has to
deal with simultaneous sound sources from different ori-
gins, that are superimposed and mixed together. From such
a perspective, it is clear that cortical areas are confronted
with time-varying sensory inputs rather than stationary
stimuli. While attractor neural networks are considered
suitable as models of working memory [67,22,1], they are
less useful to explain ultra-short memory buffer properties
in the range of 10-100 ms of signals that vary continuously
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in space or time. Recently, models of continuous informa-
tion processing in recurrent neural networks have been
proposed under the names of liquid state machine (LSM,
[45]) and echo state networks [31,32], both related to the
timing network of Buonomano and Merzenich [9]. Those
models, that perform computation using transient activity
(as opposed to convergence to a stable state), are some-
times referred to as models of computation with dynamic
states. The idea underlying those models is that the instan-
taneous state of the network provides a rich reservoir of
non-linear spatio-temporal transformations of the inputs.
In the framework of the liquid state machines, learning
only acts on the readout structures, the network itself
remaining fixed. Several recent studies focus either on the
biological realism of such model networks or on possible
implementations of this approach in machine learning or
robotics. The role played by dynamical synapses was stud-
ied from the perspective of efficient temporal processing in
[50,51]. Principles of liquid state machines were applied to
the analysis of a variety of time series [49,52] for computer
vision [44], movement generation and control [33,39], and
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prediction of chaotic time series [32]. The idea of perform-
ing (simple) computations based on perturbation of a real
liquid (water) was investigated in [21].

Cortical micro-circuits are extremely complex recurrent
networks of neurons. A given neuron is functionally con-
nected to only a relatively small fraction of the other neu-
rons. The connection strength between neurons is not fixed,
but is mediated by synapses that have their own dynamics
[3,56,15,19,28,60]. Maass and colleagues have chosen to
simulate networks with a detailed set of biologically-
inspired parameters. They implemented distance-depen-
dent connectivity and different refractory periods and
thresholds for the inhibitory and excitatory pools. They
also investigated the role of dynamic synapses and intro-
duced stochasticity in the values of some parameters [45].

On the other end of the spectrum of neural network
models are idealised networks that replace real cortical
connectivity by sparse random connections and reduce
neuronal diversity to two neuron types, i.e. excitatory
and inhibitory. Even from these simplified models, a rich
dynamics can emerge such as fast and slow oscillations,
synchrony and even chaotic behaviour [5,7,29,62,66]. These
simplified models have the advantage that theoretical
methods for investigating the dynamics are available via
an analytical approach, so that the parameter space can
be explored systematically. Based on mathematical analy-
sis, the network behaviour can be classified in a small num-
ber of types, such as fast oscillations, slow oscillations, or
spontaneous asynchronous activity [5,20], a rigorous classi-
fication which would be difficult to obtain by pure simula-
tion-based studies.

A remarkable result of such studies concerns asynchro-
nous activity [5,7]: in the phase diagram of the activity of
sparsely-connected network of inhibitory and excitatory
neurons, there exists a stable phase of asynchronous irreg-
ular firing in which the overall activity is stationary (its sta-
tistical properties such as mean and variance are time-
independent) but the activity of individual neurons is
highly irregular. From the point of view of information
processing in a cortical-like network, such a regime of fir-
ing provides very interesting properties. In particular, we
can imagine that information about past input can be buf-
fered in the perturbations of the stable state of asynchro-
nous activity.

The presence of such a memory trace of past stimula-
tions is hypothesised for example in models of conditioning
(such as reinforcement learning [64]) under the name of eli-
gibility trace. However the underlying mechanism for such
a trace is not known, even though many models have blos-
somed in the past decade. In most models (for example
[63]), the clock is replaced by a series of spectra without
any strong biological relevance. Bullock et al. [4] have a
model of a clock that is dependent on the Ca®" activity
and Contreras-Vidal [13] hypothesised an activation of dif-
ferent subsets of striosomes. However these mechanisms
are supposed to cover many orders of magnitude in timing
(from a fraction of a second up to a few seconds), and it is

unlikely that such a broad spectrum can be covered by a
single ionic mechanism. Another way of keeping track of
time is to have a recurrent neural network, that will store
dynamically the timing information. Such a mechanism is
likely to exist in the olivo-cerebellar system [34].

In this paper we make use of the mathematical analysis
of sparsely-connected networks [5] in order to relate mac-
roscopic states of the network with evaluations of informa-
tion buffering, thus establishing a link between network
theory and the liquid state machines [45]. Specifically, we
inject a time-dependent input current into a network of
excitatory and inhibitory neurons with sparse connectivity.
We want to know for how long information about an input
signal is kept in the network. In order to get a quantitative
answer, we attempt to reconstruct the input signal at time
t — T using the instantaneous membrane potentials of all
neurons at time ¢. If the error of signal reconstruction is
small, we say that the network is capable of “buffering”
information for a time T.

2. Model and methods
2.1. Integrate-and-fire neuron

The system we study is a sparsely connected network of
leaky integrate-and-fire (IF) neurons. Our network is com-
posed of n =200 IF neurons, 80% of which are excitatory
and 20% inhibitory. The equation for the membrane poten-
tial of such neurons can be written as

Tt (£) = —u;(¢) + RI(2) (1)

where I; is the total input, 7, = RC,, the effective mem-
brane time constant, R the effective input resistance and
Cy, the membrane capacity. The total input of neuron i
can be decomposed into contributions of the presynaptic
spikes from other neurons j within the micro-circuit under
consideration, an external drive I and a noise term /7'
that models background spikes (described in detail in Sec-
tion 2.2) from other brain areas that are not described
explicitly

RI(1) =tn > ;Y 8(t— 15 — D) + RI (1)

jEM; k
+ RI}™(1) (2)

where M; is the ensemble of presynaptic neurons, tj‘ the
time neuron J fires its kth spike and D is a transmission de-
lay. Synaptic weights are chosen from two values, either
excitatory, w; = wg or inhibitory, w;= —w;. Thus from
Egs. (1) and (2), the EPSP’s resulting from spike arrivals
at an excitatory synapse are of amplitude wg and decay
with the membrane time constant 7,. Analogously, the
IPSP’s resulting from spike arrivals at an inhibitory syn-
apse are of amplitude —w; and decay with the membrane
time constant 7,. The total depolarisation of neuron i is
the sum of all EPSP’s and IPSP’s that have arrived since
the last spike of postsynaptic neuron i.
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Table 1

(Left) numerical values of the model neurons (leaky integrate-and-fire neuron) used for the simulations

Neuron parameters

Network parameters

Membrane time constant Tm 20 ms Number of neurons n 200
Threshold 0 SmV Connectivity ratio € 0.2

Absolute refractory period Trp 2 ms Excitatory synaptic efficacy WE 1 mV
Transmission delay D 1 ms Inhibitory synaptic efficacy Wy SmV

Reset membrane potential Ureset 0mV Number of external excitatory neurons Ng 100
Effective input resistance R 10 MQ

Membrane capacity Ch 2nF Spiking freq. of the external excitatory neurons (model A) Vexc 10732100 Hz

Voltage is measured with respect to the resting potential. (Right) Numerical parameters of the simulated neural network. The connection probability of

one neuron to another corresponds to the connectivity ratio e.

When the depolarisation u(t) of neuron i reaches a
threshold 6, a spike is emitted and the membrane potential
is reset to a potential u... after an absolute refractory per-
iod 7., during which the neuron is insensitive to any stim-
ulation. The numerical values are shown in Table 1.

2.2. Stochastic background input

We consider two noise models. The first model assumes
stochastic arrival of excitatory spikes from other areas.
Since a complete analytical description of the impact of this
noise model on the dynamics of the network has been done
[5], we can connect our results to the known macroscopic
dynamics of randomly connected networks.

In a second noise model, we include both excitatory and
inhibitory spikes from outer regions. The combination of
inhibition with excitation generalises the first model and
permits change in the fluctuations of the drive without
changing its mean. It also allows us to draw an interesting
link to a physical phenomena known under the name of
stochastic resonance.

2.2.1. Model A: stochastic spike arrival at excitatory
synapses

In order to simulate the intense synaptic bombardment
of neurons observed in vivo (for a review see [14]), we first
consider purely excitatory stochastic spike arrivals coming
from Ng external excitatory neurons. We assume that each
spike changes instantaneously the membrane potential of
the post-synaptic neurons (satisfying Eq. (1)). Stochastic
spike arrivals can be described by the sum of Ng homoge-
neous Poisson processes of rate ve... In such a description
the probability of having a spike in a time window is sta-
tionary in time. There is no correlation between spikes,
i.e. the occurrence of a spike at a given time does not influ-
ence the future. If we make the approximation that a neu-
ron receives a large number of presynaptic contributions
per unit time, each generating a change wg in the mem-
brane potential that is relatively small compared to the fir-
ing threshold 0, the noise term can be written as a constant
drive plus a fluctuating part:'

RIJ™(t) = pg + 0p /Tt (1) (3)

! This substitution is known as a diffusion approximation, see e.g. [5].

where ug = NEWgVexcTm and o = Ogv/NgVexcTm- BY 11, we
denote standard Gaussian white noise of zero mean and
unit variance, i.e.,

(n,(1)) =0
<’75(t)’1i(t/)> =0t — t/)
This type of excitation correspond to the analysis of asyn-
chronous activity in sparsely connected network of IF neu-
rons made in [5]. The results from our simulations can thus
be directly interpreted with the phase diagram of the activ-
ity, Fig. 2 in Ref. [5].

We will focus on the influence of the external spiking

activity to the performance of the network in the range
107 Hz < vexe < 100 Hz.

2.2.2. Model B: excitatory and inhibitory stochastic
spike arrivals

In the second noise model we assume stochastic spike
arrival from both excitatory and inhibitory neurons. Let
us consider that we have an external population Ng of
excitatory neurons firing at a rate vey., as in model 4. We
now add a further input population (referred thereafter
as the “balanced population”) made out of two groups
of neurons, one of them excitatory and the other one inhib-
itory. In order to have a balance between excitation and
inhibition, we choose to have five times as many excitatory
neurons as inhibitory neurons, but with inhibitory synapses
that are five times as strong, ie., Np° =Z2LN7™, with
% = 5. This approximate balance between excitation and
inhibition is thought to take place at a functional level in
cortical areas [41,59]. The choice we made to have an exact
balance in this additional population of neurons is for the
sake of simplicity only. Its mean contribution is therefore
zero and a change in the firing rate of this population only
affects the variance of the drive. In addition, modulation of
the variance part of the drive will allow us to focus on pure
noise effects for a fixed mean drive.

With such a model we can write the noise term, similar
to the previous model A

RIT™™(t) = ptg + Gpopy/T(1) (4)
where we have defined g = Np®WgVexeTm and
Opop = \/Tm [INEORVexe + Vpop(NE "0 + N7 o3f)].

The effective mean drive corresponds to the mean excita-
tion from the purely excitatory population only since the




420 J. Mayor, W. Gerstner | Journal of Physiology - Paris 98 (2004) 417428

mean contribution of the balanced population is zero. The
variance can now be varied independently of the effective
mean input, by changing the discharge rate v, of the bal-
anced population.

The noise terms in both models (A) and (B) can be
expressed as:

RIS(1) = g + 0/, (1)

where ¢ = og in noise model (A) and ¢ = o}, in noise
model (B). Since the drive pg = Ng®gVexcTm > 0 corre-
sponds to the background activity of an excitatory popula-
tion, the mean drive is always positive. For Ng = 100,
wg=1mV, ve,c =1Hz and 7, =20 ms we get a mean
depolarisation of ug =2 mV due to the noise input.

2.3. Network structure

Both excitatory and inhibitory neurons are modelled
with a membrane time constant 7, of 20 ms. The neurons
are weakly (connection probability = 0.2) and randomly
connected through simple static synapses. We carefully
chose the synaptic strengths, w; = Swg so that for ve,. =
2—5Hz and Ng = 100, the network is in a regime of asyn-
chronous and irregular firing (see Fig. 3B centre), based on
the phase diagram described in [5]. In such a regime, there
is a stationary overall activity and highly irregular spike fir-
ing of individual cells. Specifically, we take 7., =2ms,
D=1ms, 0=5mV, theee =0mV, wg=1mV and w; =
5mV (see Table 1), but other combinations of parameters
give qualitatively similar results. An extensive scanning of
the parameter space has been carried out.” This robustness
originates from the fact that the phase diagram of the type
of networks we study in this article, can be qualitatively
drawn as a function of two parameters only; the external
drive (mean and variance) and the effective ratio between
excitation and inhibition. The presence of an asynchronous
phase of neural activity (and therefore the essence of our
results) is guaranteed for a broad range of neuronal param-
eters [5].

With a stronger input, the system reaches a phase of syn-
chronous firing with fast oscillations [5]. For weak drive,
activity will tend to zero (quiescent state) since the network
itself is not capable of sustaining intrinsic activity.

As we will see later, the absence of synchrony at the
working point of the network is important in order to let
information about a past stimulation flow for a long time
in the network.

2.4. Evaluating information buffer properties

We perform simulations of the network with some time-
dependent inputs /(7). The question we want to ask is:

2 For example, the precise values of the synaptic strengths affect the
exact location of the optimal performance when larger than 0.1 mV but
not the overall trend of the results.

how much information is left about the external inputs
after some time 7? Given some continuous input I$(s)
we expect that the instantaneous state of the network
(given by its membrane potentials {u(¢)|1 <j < n}) holds
information about I$*(s) for s <. If a reconstruction of
the input signal I$*(s — T) can be achieved by looking at
the membrane potentials at time z, we say that the network
can “buffer” information for a time 7.

We assess the information buffering capacity of the net-
work with a procedure analogous to [45], [31]. We inject
simultaneously N; independent input signals to N, disjoint
groups of randomly chosen neurons (see Fig. 1A), every
neuron receiving exactly one input; e.g. for Ng =4 input
signals we have four groups of 50 neurons in our network
of 200 neurons. N, readout structures have access to the
membrane potentials of all neurons in the network at time
t and use this information to estimate the input signal that
was present at time ¢ — 7 (see Fig. 1B).

We consider two different methods

e Linear read-out.
The outputs of the readout structures are simple linear
combinations of all the membrane potentials i.e.

Output(z) = Z o (1) + 09 = " - i + ot
’

where @ = (u,uy, ... ,un)T is the vector of membrane
potentials and o, a bias term.

e Non-linear kernel-based read-out.

In order to know whether more complex read-out struc-
tures can extract significantly more information than the
linear read-out, we used support vector machines (SVM’s)
[10], a powerful method from the field of statistical learning
[65]. It belongs to the family of kernel-based methods [58].
In those techniques, the input is sent to a high-dimensional
space in which linear fits are expected to work, i.e.

Output(s) = Z oy (H(1), (1)) + oo

The sum runs over several samples of instantaneous net-
work states i(#;). The set of relevant samples is selected
by the SVM algorithm. Different kernels () can be used
in order to implicitly build a multi-dimensional space. In
Section 6 we will compare the linear read-out to a support
vector machine with a Gaussian kernel. We used SVM-
torch [12] for the SVM method.

Only the parameters (the weights o) of the readout
structures are tunable, while the network of IF neurons
itself remains fixed. Since we want to assess how much
we can learn about the input at time 7 — T if we read out
the membrane potentials at time ¢, we minimise the error:

E(@) = % Z[Output(t) — Input(z — T)] (5)

with 4 = 3 (Input(¢) —7)* where I denotes the mean
drive. Minimisation is achieved by an optimisation proce-
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Fig. 1. (A) The different signals S1,...,Sx are introduced to randomly chosen interconnected neurons. Every neuron receives exactly one input from the

exterior. Only two input signals S1 and Sx are shown in the figure. (B) Based on the momentary state of all membrane potentials (those receiving directly
the signal S1 and those receiving any other signal Sx), a readout structure is trained to guess the amplitude of its corresponding input a time 7 before

(referred as delay thereafter).

dure (optimal regression for the linear read-out) on the
training set. Later in the results section, we will refer to
the error defined in Eq. (5) as the signal reconstruction
error. The Input (¢t — T) plays the role of a target value
for optimisation. For the linear readout there is a unique
optimal set of weights {ay} for every delay T3 After a
training period, the weights of the readout structures are
frozen and Ny new input signals are introduced in the net-
work. Outputs of the readout structures are then compared
with their corresponding targets. For all the simulations,
the trajectories used for training correspond to 50,000 time
steps of simulation. Performance is measured on an inde-
pendent test set of 50,000 time steps. For the sake of clar-
ity, all figures in the result section are obtained for a single
input Ny = 1. In the discussion section, we vary the number
N; of inputs.

2.5. Autocorrelated inputs

As mentioned before, all neurons in the network receive
one of N input signals /$*(¢). We build an input such that
its autocorrelation profile depends on a single parameter
and decays to zero beyond a given value. In order to do
so, the total simulation time is broken into segments of
duration Tp,,,. During each segment of length T, the
input is kept constant. At the transition to the next segment,
a new value of I{*(¢) is drawn from a uniform distribution
centred at zero, between —20 pA and +20 pA (7.5 pA
and +7.5 pA as an additional example shown in Fig. 2B).

3 The application of the projection theorem [43] say that it is true if the
number # of free parameters (the number of neurons, n = 200 in our case)
is smaller than the number of independent examples. We took 50,000
examples, but these are slightly correlated in time. A realistic measure is to
divide the number of examples by the effective autocorrelation of the input
(3.3ms up to 80 ms, see Section 2.5). Even in the worst case, a lower
bound for the number of linearly independent examples is
% =625 > n =200. The lengths of the simulations guarantees that
there is a unique optimal set of weights.

This procedure results in a triangular autocorrelation pro-
file A(s) that is zero for ¢ > Tpay, 1.€.

Ao(Tiax — I8])  for |s| < T,
A(s) =
0 for |S| = Tmax

Thus the signal at time ¢ provides no information about the
signal at t — T for T > T,.x. With the triangular autocorre-
lation, we can compute the effective autocorrelation 7y,
(that can be seen as the time constant) of such an input

o Jo Isld(s)ds
T A(s)ds

which yields t;, = T% In our simulations we explored val-
ues of t;, in the range of 3.3 < 7;, < 80 ms.

2.6. Spectral analysis

For the interpretation of some of our results, it is useful
to consider the power spectrum of the network activity.
The spectrum is obtained by a fast Fourier transform on
the temporal evolution of the spiking activity during 2'°
time steps. The spectrum is then averaged over 1000 fre-
quency steps in order to smooth the curves. Such spectral
curves give us the power at different frequencies. A single
peak at a given frequency would indicate for example oscil-
lations in the network at that precise frequency. As an arti-
fact of the averaging procedure sharp resonance peaks
would be slightly broadened. We have checked that for
the simulations shown in this paper, averaging does not
cause artificial broadening.

3. Results

We stimulate a network of sparsely connected excitatory
and inhibitory integrate-and-fire neurons by a continuous
time-dependent input current I°*'(¢). We will evaluate for
how long information about an input signal is kept in the



422

5 T T T T
V.= 1.6 [Hz]
4+ |— v, =5Hz] J
— v, . =52.5[Hz]
S
E 3
E |
Ep)
=
1
0 n 1 n 1 n 1 n ‘\
0 100 200 300 400 500
A Frequency [Hz]

Error

J. Mayor, W. Gerstner | Journal of Physiology - Paris 98 (2004) 417428

0.8 /
ool =20pA
max
/ el =75pA
max
0.6 == Optimality Zone

0.4

0.2

0.01 1
v [Hz]

exc

0.0001 100

Fig. 2. (A) Power spectra of the population firing activity. (B) Error as a function of Poisson noise. Notice the non-monotonic dependence on the amount
of noise. As explained in [5], the asynchronous firing phase can be found for an intermediate drive (rather flat power spectrum). In a lower noise regime the
neurons stand farther from threshold, the network remains silent in absence of a signal. Hence a spike-based readout would only become effective for an
external drive larger than v, ~ 0.8 Hz. The zone of optimality is then located at the upper limit of the quiescent regime. In the high excitation limit, the
mean drive dominates the effect of the “pure noise” component and oscillations appear.

network. To this end, we try to reconstruct the input signal at
time ¢ — 7 by looking at the instantaneous membrane poten-
tials of all neurons at time ¢. If the reconstruction is possible,
we say that the network is capable of “buffering” informa-
tion for a time 7. The “buffering” performance as a function
of T'is the central quantity of interest. Information buffering
is possible if the error of signal reconstruction is small.

In the first subsection we investigate the role of noise on
the performance measured in terms of the signal recon-
struction error. We show that a moderate amount of noise
systematically improves the performance. The role of asyn-
chronous firing is emphasised.

In the second subsection we focus on the temporal char-
acteristics of the input signal. We derive an empirical rela-
tion between the temporal memory of the network and the
effective autocorrelation of the input.

Finally we show that the rich dynamics of the network
in its asynchronous state provides a good representation
of its past stimulation. Therefore simple linear readouts
are powerful enough to extract information and perform
nearly as well as advanced kernel-based methods [58,10].

3.1. On the importance of noise

3.1.1. Stochastic arrival of excitatory background spikes
Networks of integrate-and-fire neurons are known to
have complex dynamics [5,7]. In particular, our network
of 200 excitatory and inhibitory neurons switches from
highly synchronised neuronal activity to a very irregular
firing regime, depending on the external input; Fig. 3A
and B, see also [5]. In the asynchronous phase, individual
cells have a coefficient of variation Cy* close to or larger
than 1, reflecting this stochasticity (for the analytical com-

4 This is a measure of the width of the distribution of spike intervals,
defined as the ratio of the variance and the mean squared. A Poisson
distribution has a value of Cy = 1. A value of Cy > 1, implies that a given
distribution is broader than a Poisson distribution with the same mean. If
Cy <1, then the spike train is more regular than that generated by a
Poisson neuron of the same rate (see for example [26]).

putation of Cy, see [5]). The asynchronous firing phase can
be reached with an external noise term corresponding to
stochastic spike arrival at excitatory synapses (noise model
A, see methods). The phase diagram of such a network is
fully described in [5].

In order to characterise the network activity with this
first model of noise (Eq. (4) see methods), we perform a
preliminary series of simulations for different stochastic
spike arrival rates v at excitatory synapses in absence
of a deterministic external stimulus. The power spectrum
of the activity illustrates the regime of firing for the differ-
ent drives, in particular the regimes of fast oscillations
(above vexe =2 10 Hz, e.g. for v = 52.5 Hz, see Fig. 2A)
and irregular asynchronous firing (vexe =1 — 5Hz). In
the asynchronous firing phase, the power spectrum has
no significant resonance peak (Fig. 2A, ve. = 1.6 Hz), the
individual spike trains are irregular (Fig. 3A centre) and
the overall activity has no oscillations (Fig. 3B centre) in
absence of input signal.

In a second series of simulation, we apply a time-depen-
dent stimulus current . Neuronal activity reflects the
temporal structure of the input (see Fig. 3C). In order to
assess whether we can estimate the input at time ¢ — 7 from
the set of membrane potentials at time z, we measure the
signal reconstruction error (see methods).

In Fig. 2B, short-term memory buffer performance is
measured in terms of the reconstruction error on the test
set for a delay 77=10ms by varying the rate v, at
Ng = 100 excitatory synapses. Information buffer proper-
ties are good (i.e minimal reconstruction errors) up to
Vexe = 2 Hz. The zone of optimality extends approximately
up to the transition zone between quiescent and asynchro-
nous irregular firing phase. In the quiescent regime (up to
Vexe = 1 Hz), there is no activity in absence of the input
signal I°*' as seen in the left part of Fig. 3B.> However
the neurons are close to threshold and the input signal,

> A more realistic readout, that would have access to the spikes of the
individual neurons solely, would therefore only work when the network is
not silent. Thus the zone of optimality would be dramatically narrowed.
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Fig. 3. (A) Representative spike trains in absence of the time dependent external signal I°*'(¢), for the quiescent state (left), for the asynchronous state
(centre) and for the synchronised state (right). (B) Network activity and a representative noise signal for the quiescent state (left), for the asynchronous
state (centre) and for the synchronised state (right). Note the different scale for the noise in the synchronised regime. (C) The external input /*(¢) has been
switched on at time 1000 ms (not shown on the graph). We show the network activity and the sum of the external input signal I°*(¢) and a representative
noise signal for the quiescent state (left), for the asynchronous state (centre) and for the synchronised state (right).

that is switched on at time 1000 ms, make them fire when
the input becomes sufficiently large, Fig. 3C left. For a
weaker drive, neurons are farther from threshold and
the input signal has to be stronger in order to elicit a
response.

As the frequency vey is increased beyond 1 Hz, the net-
work reaches a phase of asynchronous firing. The popula-
tion activity is now modulated by the input signal (Fig. 3C
centre).

Increasing the excitatory background input does not
only increase the noise, but also the mean drive. A reso-
nance peak is already present in the high frequency domain
for a moderate drive (Fig. 2A, vexe = 5 Hz). The increased
effective drive generates network activity at a high fre-
quency (see the large peak at about 300 Hz in Fig. 2A,
Vexe = 52.5 Hz). In such a regime, the individual cells fire
at a large rate, Fig. 3A right, and the overall activity has fast
oscillations in absence of input signal, Fig. 3B right. The
excitation by the time-dependent external signal I°*'(¢) is
buried in the noise of the stochastic excitatory background,
and the overall activity is barely modulated by the signal,

Fig. 3C right. The performance hence decreases dramati-
cally with an increase in the excitatory firing rate veyc.

We can thus deduce from the error plot in Fig. 2B, that
the network operates at best close to the stochastic dynam-
ics, rather than in a network dominated by oscillations.

Signature of chaos in neural systems is not a new con-
cept. It was already shown in the past that networks of
model neurons can give rise to a chaotic firing regime
[29,62,66]. Experimental evidence indicates that cells exhibit
in vivo very irregular spike trains, with a coefficient of var-
iation Cy close to 1 (see e.g [61]), that may be the signature
of a rich and very irregular underlying dynamics. From
both an experimental and a theoretical perspective, the
brain is thought to exhibit a chaotic behaviour [18,17,37].

In parallel, the fact that information processing by a
dynamical system may gain from being close to a chaotic
regime was postulated in the framework of cellular auto-
mata [38].

But only recently studies have focused on the fact that
the brain may actually be operating at the edge of chaos
[57,2]. Our findings suggest that networks of spiking
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Fig. 4. (A) Errors as a function of the amplitude of noise in model B. Again, we can see that a moderate amount of noise level increases the performance of
the network. In this case, this is purely a noise effect since the mean drive is constant. Thus it an also be interpreted as a stochastic resonance effect. Notice
there is a different optimal noise level for the different delays 7. A possible explanation is proposed in Section 3.1.2. (B) Corresponding power spectra of
the activity. Since the constant drive is fixed, the noise just smoothes out the resonance peak present at a low noise level. Even though the peak in the
power spectrum at high noise is slightly weakened, noise still has a corrupting effect on the input. The neurons are well desynchronised but the signal-to-

noise ratio gets very low.

neurons can efficiently buffer information when close to a
stochastic dynamics.

Spontaneous stochastic activity at low rates is also
known to be a prerequisite of rapid signalling [25,6].

3.1.2. A relation to stochastic resonance: model B

We can also set the network in an state of a stationary
network activity with irregular individual spike trains by
driving it with a balanced excitatory and inhibitory spike
input (see methods, noise model B). As detailed in Section
2.2.2, this drive is equivalent to a constant input (contrib-
uted by the purely excitatory population only) and addi-
tional white noise (the variance parts of both the purely
excitatory population and the balanced population). The
performance is evaluated for different white noise amplitude
on the top of a constant depolarisation of ug =0.6 mV.
Errors on the test set are computed for different delays T
(see Fig. 4A). As previously seen for the noise model A,
there is a non-monotonic dependence of the performance
upon the noise level.

The signal reconstruction error is relatively high when
the noise is low since the network is in a quiescent state.
Addition of noise sets up the network in a state where the
neurons are weakly coupled; each neuron act as an almost
independent unit and its coupling to the other neurons
enriches the network dynamics: we have reached a state in
which the neurons are optimally desynchronised. By adding
more noise, the signal-to-noise ratio decreases along with
the ability to retrieve information. The resonance peak pres-
ent in the low noise case is smoothed out as the noise level
increases® (see Fig. 4B). In contrast to Section 3.1.1, this
non-monotonic dependence on the drive is now a pure noise
effect, since the mean drive is kept constant.

% In the case of a larger network, the resonance peak would be washed
out. Since our simulations include a small number of neurons, finite size
effects (such as the impact of fluctuations) become strong.

An additional interesting effect can be seen in Fig. 4A.
For one delay T to another, the signal reconstruction error
is at its lowest for a different noise level (referred as “opti-
mal”). Surprisingly this optimal noise amplitude increases
with the buffering time 7. It means that if we want to set
up the network so that information remains available for
a buffering time of 40 ms, the noise has to be stronger than
if we want to extract faithfully information after a buffering
time of 10 ms. A possible explanation is that in the low
noise limit, transients are reflected almost instantaneously
in the activity profile [25,36]. A low noise level thus allows
the readout to have a fine temporal resolution. In the high
noise limit however, the network acts as a low pass filter
[25,6]. Slow transients for high noise allow longer buffering
times. Therefore the amplitude of noise has to be higher for
long buffering times than for short ones.

Our results are related to the well-known phenomenon
of stochastic resonance. Such an effect is seen when the
response of a system to a drive depends non-monotonically
on noise, with an optimum at a moderate, non-zero, noise
level. There are many pointers in the literature to physical
evidences of stochastic resonance in physical systems
[69,11,23,24,47,71,70], and in models of neurons [8,42,55,
54]. In living systems stochastic resonance has been
reported in crayfish mechanoreceptors [16], the cricket cer-
cal sensory system [40], neural slices [27], hippocampus
[72], and the cortex [48]. More importantly the brain
appears to actually make use of stochastic resonance at a
functional level [35,30].

3.2. Impact of autocorrelated inputs

When the input is correlated in time, the readout can
extract information from both the information buffered
in the recurrent activity and from the input itself (filtered
by the neurons). Thus if the autocorrelation of the input
is short compared to the intrinsic temporal trace of the
network, the role of the recurrency is crucial whereas for
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Fig. 5. (A) Error plots as a function of time for different input statistics. An evident increase in performance is seen as the autocorrelation of the input gets
longer. (B) Delays corresponding to an error of 0.5 as a function of the effective autocorrelation of the input. A linear fit shows us the clear dependence of
the persistence of information in the network on the “self-memory” of the input.

very long autocorrelation, the output will predominantly
read “online” the input, making use of the “self-memory””’
of the stimulation signal. We expect then to have an
increase in performance as a function of the autocorrela-
tion of the input. We can rule out an alternative explana-
tion that a long autocorrelation has more time to impact
the dynamics of the neural network by comparing the
cross-correlation of the reconstructed output and the input
with the signal autocorrelation for different autocorrela-
tion profiles (for an illustrated example and additional
arguments, see [46]). Thus the cross-correlation depends
on the shape and on the duration 7;, of the signal
autocorrelation.

We performed numerical simulations using different
effective autocorrelation times 1y, for the input signals.
The results are shown in Fig. 5SA. We can estimate the effec-
tive information buffer by looking at the buffer time 7 at
which the error rises to a value “arbitrary’ chosen to be
E = 0.5 (the similarity of the reconstructed output to the
target is still visually evident).

As we can see in Fig. 5B, the simulation points can be
fitted to first approximation by a straight line. In the limit
of long autocorrelation 7, > 1,, we expect from simple
mean field considerations, the buffer to have a temporal
extension longer than %rin, and to approach this line
asymptotically from above.® Indeed the simulation results

7 On average the signal at time ¢ holds information about itself at time
t — T for T < Tyax-

8 In order to derive a lower bound we could use the averaged membrane
potential for reconstruction instead all the membrane potentials of the 200
neurons in the network. Since the distribution of the membrane potentials
is modulated by the external input I, a reconstruction based on the
average is possible. A trivial reconstruction can then be done assuming
that the external input has not changed during the last time interval 7.
Assuming that the network can trivially buffer a signal that has not
changed in the last time interval 7, and that the network cannot
reconstruct at all an input that has switched in this last time interval 7, the
effective buffer of the network for an input that changes every Ty is
T < %T max- Since the effective autocorrelation of our input is tj, = _%T maxs
the network has an effective buffer of 7 = 31;,.

for large t;, stay always above the lower bound represented
by the dashed line in Fig. 5B.

For short autocorrelation profiles (of the order of the
membrane time constant t, =20ms or shorter), this
approximation no longer holds, since the filtering effects
due to the neuron’s membrane time constant comes into
play. Rapid changes of the input on the scale of 7;, < 7,
will be averaged out irremediably by the integration with
the membrane time constant. Hence the network cannot
buffer efficiently (i.e. with an error smaller than E = 0.5)
input signals that have an effective autocorrelation t;, smal-
ler than about 5 ms (see Fig. 5B).

The performance can be improved for different autocor-
relation profiles and for different network connectivities as
proposed in [68]. They can also be increased by adding
other time scales in the network, for example at the level
of the synapses [45].

Analysis of cross-correlation and autocorrelation pro-
files (more precisely the analysis made in [46] of the loca-
tion of the peak in the cross-correlation profile that is
shifted in proportion of the autocorrelation length) show
that the readout effectively makes an optimal trade-off
between retrieving information from the autocorrelation
of the signal and from the buffer provided by the network
recurrency.

3.3. Simple linear readouts are efficient

As we have seen in the Section 3.1, injection of noise in
the network helps in desynchronising the neurons. The
resulting dynamics of the network is thus extremely rich.
It has been shown that in the case of formal neural net-
works [2] and analogously for cellular automaton [38],
the computational abilities of complex systems is at best
when the system is close to a chaotic behaviour, as opposed
to a dynamic state with short limit cycle. Another way of
interpreting this complex behaviour is to notice that the
network provides a broad set of different filters for the
input. In other words, the one-dimensional input signal
I°*'(¢) undergoes a “dimensional blow up”. This is a strong
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Fig. 6. Comparison of performances between support vector machines
(Gaussian kernel) and the simple linear readout on a test set. Optimisation
has been performed on a separate training set of 50,000 time steps. A
simple linear combination of the membrane potentials is extremely
effective in extracting information and is comparable to that of a support
vector machine.

correspondence to the working principle of some of the
most efficient classification methods, named support vector
machines (SVM) [10]. These methods, known under the
generic name of kernel methods [58], send the input to a
high dimensional space. In this multidimensional space, a
simple linear separation (a hyper-plan) into two sub-spaces
is able to perform the classification. An adapted version of
those methods can handle regression problems. In Fig. 6 a
comparison of the performances of both the simple linear
readout and the SVM with a Gaussian kernel is represented
(see methods).

Although the kernel method achieves slightly better
results than the linear combination, the gain is of the order
of a few milliseconds only. The explanation is that an addi-
tional dimensional blow up that is at the basis of kernel
methods is not necessary since a sufficiently high dimen-
sional representation is already given by the network itself.
Hence a simple linear combination (corresponding to the
hyper-plan in the kernel methods) is able to extract most
of the information needed.

4. Discussion and conclusions

We investigated the buffering capacity of networks of
excitatory and inhibitory integrate-and-fire neurons. The
population firing activity of such a network with sparse
connectivity can switch from an oscillatory firing state to
an asynchronous irregular firing regime, depending on
the rate of stochastic background spike arrival.

We found that the buffering capacity of the network is
optimised in the presence of a moderate, non-zero, amount
of noise. This non-trivial dependence upon noise can be
related to the well-known phenomenon of stochastic reso-
nance. The optimal noise level, or equivalently the optimal

discharge rate of an external population of neurons, corre-
sponds approximately to the region of transition between a
quiescent state and an asynchronous irregular firing
regime. In this region, a very complex dynamics emerges
from the network’s activity. It provides a rich representa-
tion of the inputs. Simple adaptable linear readouts are
thus able to extract the buffered information in an efficient
way. Hence our results provide an interpretation for the
role of non-oscillatory dynamics in a simplified model of
cortical micro-circuits.

The buffering capacity of a such network can be gener-
alised to the processing of a larger number of inputs.
Simultaneous buffering of eight inputs is shown in Fig. 7
in comparison to a single input.

No significant degradation is seen for a moderate num-
ber of inputs. A loss in performance can be seen only when
processing more than sixteen inputs (data not shown). This
ability to handle multiple simultaneous inputs, along with
the way information can be extracted from both the auto-
correlation of the input signals and the buffer provided by
the network recurrency, could provide an interesting way
of combining different sources of information having differ-
ent time scales. On somewhat more speculative grounds, we
can think of the cortex as being in a state that is close to a
chaotic behaviour, and that other neighbouring neural
micro-circuits or even farther afferents may be tuning the
amount of chaos (by changing their spiking rate for exam-
ple) of a given cortical micro-circuit depending on the rel-
evant task. One can also imagine to build artificial
networks made out of such model neurons, in order to
do both information processing and prediction of (even
chaotic) time series. The present study would suggest to
set up such a device in a state where its dynamics can easily
switch to a more complex behaviour, depending on its
drive.
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Fig. 7. Error plots for simultaneous buffering of eight inputs. A
comparison to the buffering of a single input (thick line) emphasises the
fact that no significant degradation in performance is seen for a reasonable
number of inputs. Our simulations show that a degradation is seen only
from about sixteen simultaneous inputs.
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