86 research outputs found

    Information similarity metrics in information security and forensics

    Get PDF
    We study two information similarity measures, relative entropy and the similarity metric, and methods for estimating them. Relative entropy can be readily estimated with existing algorithms based on compression. The similarity metric, based on algorithmic complexity, proves to be more difficult to estimate due to the fact that algorithmic complexity itself is not computable. We again turn to compression for estimating the similarity metric. Previous studies rely on the compression ratio as an indicator for choosing compressors to estimate the similarity metric. This assumption, however, is fundamentally flawed. We propose a new method to benchmark compressors for estimating the similarity metric. To demonstrate its use, we propose to quantify the security of a stegosystem using the similarity metric. Unlike other measures of steganographic security, the similarity metric is not only a true distance metric, but it is also universal in the sense that it is asymptotically minimal among all computable metrics between two objects. Therefore, it accounts for all similarities between two objects. In contrast, relative entropy, a widely accepted steganographic security definition, only takes into consideration the statistical similarity between two random variables. As an application, we present a general method for benchmarking stegosystems. The method is general in the sense that it is not restricted to any covertext medium and therefore, can be applied to a wide range of stegosystems. For demonstration, we analyze several image stegosystems using the newly proposed similarity metric as the security metric. The results show the true security limits of stegosystems regardless of the chosen security metric or the existence of steganalysis detectors. In other words, this makes it possible to show that a stegosystem with a large similarity metric is inherently insecure, even if it has not yet been broken

    Crypto Steganography using linear algebraic equation

    Get PDF
    Demand of information security is increasing day by day with the exponential growth of Internet. The content of message is kept secret in cryptography, where as steganography message is embedded into the cover image. In this paper a system is developed in which cryptography and steganography are used as integrated part along with newly developed enhanced security model. In cryptography the process of encryption is carried out using symmetric block ciphers with linear algebraic equation to encrypt a message [1] and the obtained cipher text is hidden in to the cover image which makes the system highly secured. Least Significant Bit (LSB) technique is used for message hiding which replaces the least significant Bits of pixel selected to the hide the information. A large number of commercial steganographic programs use LSB as the method of choice for message hiding in 24-bit,8bit-color images, and gray scale images. It is observed from the simulation study that both methods together enhance security significantly

    Steganalysis of video sequences using collusion sensitivity

    Get PDF
    In this thesis we present an effective steganalysis technique for digital video sequences based on the collusion attack. Steganalysis is the process of detecting with a high probability the presence of covert data in multimedia. Existing algorithms for steganalysis target detecting covert information in still images. When applied directly to video sequences these approaches are suboptimal. In this thesis we present methods that overcome this limitation by using redundant information present in the temporal domain to detect covert messages in the form of Gaussian watermarks. In particular we target the spread spectrum steganography method because of its widespread use. Our gains are achieved by exploiting the collusion attack that has recently been studied in the field of digital video watermarking and more sophisticated pattern recognition tools. Through analysis and simulations we, evaluate the effectiveness of the video steganalysis method based on averaging based collusion scheme. Other forms of collusion attack in the form of weighted linear collusion and block-based collusion schemes have been proposed to improve the detection performance. The proposed steganalsyis methods were successful in detecting hidden watermarks bearing low SNR with high accuracy. The simulation results also show the improved performance of the proposed temporal based methods over the spatial methods. We conclude that the essence of future video steganalysis techniques lies in the exploitation of the temporal redundancy

    Detecting browser drive-by exploits in images using deep learning

    Get PDF
    Steganography is the set of techniques aiming to hide information in messages as images. Recently, stenographic techniques have been combined with polyglot attacks to deliver exploits in Web browsers. Machine learning approaches have been proposed in previous works as a solution for detecting stenography in images, but the specifics of hiding exploit code have not been systematically addressed to date. This paper proposes the use of deep learning methods for such detection, accounting for the specifics of the situation in which the images and the malicious content are delivered using Spatial and Frequency Domain Steganography algorithms. The methods were evaluated by using benchmark image databases with collections of JavaScript exploits, for different density levels and steganographic techniques in images. A convolutional neural network was built to classify the infected images with a validation accuracy around 98.61% and a validation AUC score of 99.75%

    Review of steganalysis of digital images

    Get PDF
    Steganography is the science and art of embedding hidden messages into cover multimedia such as text, image, audio and video. Steganalysis is the counterpart of steganography, which wants to identify if there is data hidden inside a digital medium. In this study, some specific steganographic schemes such as HUGO and LSB are studied and the steganalytic schemes developed to steganalyze the hidden message are studied. Furthermore, some new approaches such as deep learning and game theory, which have seldom been utilized in steganalysis before, are studied. In the rest of thesis study some steganalytic schemes using textural features including the LDP and LTP have been implemented

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Methods of covert communication of speech signals based on a bio-inspired principle

    Get PDF
    This work presents two speech hiding methods based on a bio-inspired concept known as the ability of adaptation of speech signals. A cryptographic model uses the adaptation to transform a secret message to a non-sensitive target speech signal, and then, the scrambled speech signal is an intelligible signal. The residual intelligibility is extremely low and it is appropriate to transmit secure speech signals. On the other hand, in a steganographic model, the adapted speech signal is hidden into a host signal by using indirect substitution or direct substitution. In the first case, the scheme is known as Efficient Wavelet Masking (EWM), and in the second case, it is known as improved-EWM (iEWM). While EWM demonstrated to be highly statistical transparent, the second one, iEWM, demonstrated to be highly robust against signal manipulations. Finally, with the purpose to transmit secure speech signals in real-time operation, a hardware-based scheme is proposedEsta tesis presenta dos métodos de comunicación encubierta de señales de voz utilizando un concepto bio-inspirado, conocido como la “habilidad de adaptación de señales de voz”. El modelo de criptografía utiliza la adaptación para transformar un mensaje secreto a una señal de voz no confidencial, obteniendo una señal de voz encriptada legible. Este método es apropiado para transmitir señales de voz seguras porque en la señal encriptada no quedan rastros del mensaje secreto original. En el caso de esteganografía, la señal de voz adaptada se oculta en una señal de voz huésped, utilizando sustitución directa o indirecta. En el primer caso el esquema se denomina EWM y en el segundo caso iEWM. EWM demostró ser altamente transparente, mientras que iEWM demostró ser altamente robusto contra manipulaciones de señal. Finalmente, con el propósito de transmitir señales de voz seguras en tiempo real, se propone un esquema para dispositivos hardware
    corecore