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ABSTRACT

Steganalysis of Video Sequences Using Collusion Sensitivity. (May 2005)

Udit Budhia, B.E. , Birla Institute of Technology, India

Chair of Advisory Committee: Dr. Deepa Kundur

In this thesis we present an effective steganalysis technique for digital video sequences

based on the collusion attack. Steganalysis is the process of detecting with a high proba-

bility the presence of covert data in multimedia. Existing algorithms for steganalysis target

detecting covert information in still images. When applied directly to video sequences

these approaches are suboptimal. In this thesis we present methods that overcome this

limitation by using redundant information present in the temporal domain to detect covert

messages in the form of Gaussian watermarks. In particular we target the spread spectrum

steganography method because of its widespread use. Our gains are achieved by exploiting

the collusion attack that has recently been studied in the field of digital video watermarking

and more sophisticated pattern recognition tools. Through analysis and simulations we,

evaluate the effectiveness of the video steganalysis method based on averaging based col-

lusion scheme. Other forms of collusion attack in the form of weighted linear collusion and

block-based collusion schemes have been proposed to improve the detection performance.

The proposed steganalsyis methods were successful in detecting hidden watermarks

bearing low SNR with high accuracy. The simulation results also show the improved per-

formance of the proposed temporal based methods over the spatial methods. We conclude

that the essence of future video steganalysis techniques lies in the exploitation of the tem-

poral redundancy.
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CHAPTER I

INTRODUCTION ∗

A. Steganography

Steganography is the art of hiding messages in innocuous looking mediums such as text

files, audio files, images, video sequences etc. It is different from cryptography where the

goal is to convert the message into a form that is not easily comprehensible or deciphered.

The main aim of steganography is to hide the very presence of the message by embedding

it into a host carrier known as the cover object such that it is not detected. The sender

embeds a secret message ’m’ into the cover–object ’c’ to obtain a stego-object ’s’ using an

embedding scheme and a secret key ’K’ [1]. A common element shared by steganography

and cryptography is that, the security of the underlying methods lie in the secrecy of the

embedding and the cryptographic keys, respectively. In other words, the attacker should

not be able to detect the presence of the message in the former or be able to decipher

the message in the latter without having access to the secret key. As in cryptography, we

assume that the details of the embedding algorithm are known to the attacker. (Kerckhoff’s

Principle [2]).

The existence of steganography has been recorded even in the ancient times where

hidden messages were tattooed on the shaven heads of messengers. The messengers were

sent across borders once their hair grew and were later shaved again to deliver the message.

Much known form of steganography, like sending hidden messages using invisible ink on

∗Reprinted from pages 210–214, with permission from“Video steganalysis using col-
lusion sensitvity” by U. Budhia and D. Kundur, Proceedings of SPIE: Sensors, Command,
Control, Communications and Intelligence(C3I) Technologies for Homeland Security and
Homeland Defense, April 2004, vol. 5403.

The journal model is IEEE Transactions on Automatic Control.
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blank papers or written letters, was used by Great Britain [3]. As we can see, steganog-

raphy is not restricted to mediums such as text, images, audio, video etc. A form of text

steganography used by German spies in World War II taken from [3] is shown below. The

following message was sent:

“Apparently neutral’s protest is thoroughly discounted and protested. Isman hard

hit. Blockade issue affects pretext for embargo on byproducts, ejecting suets and vegetable

oils”. Taking the second letter from each word the sentence reads,“Pershing sails from NY

June 1”.

The modern form of steganography is represented in terms of the Prisoner’s Prob-

lem [4], in which A and B are two inmates, confined to separate cells in a prison and are

hatching an escape plan. All communication between them goes through a warden W. In

order to exchange messages without arousing any suspicion in the minds of W, they need

to pass the information secretly inside a medium that does not draw any attention. The

warden may be passive where she just tries to determine whether there is something hidden

in the cover object. In this case, the overall goal of steganography is to hide the message in

such a way that it is difficult for the third party to distinguish between a cover-object and a

stego-object while ensuring accurate covert communication. On the other hand the warden

may be active and alter the stego-objects before passing it to B. The following World War

II historical example elucidates the actions of an active warden [5]. A telegram originally

sent as “Father is dead” was changed to “Father is deceased”. This prompted a reply,

“Father dead or deceased?” Thus we can see that apart from sending the message in a

way that it does not produce any detectable artifact it should be hidden in a robust manner

to survive all perturbations along the path.
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B. Steganalysis

The process of detecting the presence of covert communication through innocuous looking

multimedia distribution, with high probability is called steganalysis. It is a way of dis-

tinguishing between a stego-object and a cover-object. A steganalyst may be passive or

active [6]. A steganalyst is said to be passive if his only goal is to detect the presence of

a message. He/she may try to identify the embedding method used to hide the messages

in the cover medium. However an active steganalyst tries to estimate the hidden message

itself. Since finding the true message may be impossible due to secure encryption schemes

available in the market, he/she may try to figure out the location or the length of the hidden

message or estimate the parameters used in the embedding process (e.g. the strength of the

watermark or hidden message in case of spread spectrum steganography [7, 8]).

In this thesis we propose a method to detect the presence of steganographic messages

in video data and do not consider estimation of the message. We design a steganalysis

method that detects the presence of hidden messages in raw video sequences by taking ad-

vantage of the inherent temporal redundancy present in a video sequence. We study the

advantages and disadvantages over the current steganalysis methods that can be incorpo-

rated for video.

In order to design a passive steganalysis system, one should look for the statistical

changes brought about in the cover medium due to embedding. The changes can be quan-

tified and compared to a threshold or to a known database to arrive at a decision. A typical

steganalysis system is shown in Figure 1. The attacker or the steganalyst obtains a copy of

the host signal from the communication channel. After processing it, he/she measures the

statistical change in the host signal due to embedding. The quantified change t is compared

against a threshold thresh to arrive at a decision of whether there is something hidden or

not.
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Fig. 1. Steganalysis system.

C. Motivation and Applications

The recent attacks on information systems, cyber-security and cyber-forensics have become

a primary concern for both governments and commercial industries. Attackers of informa-

tion systems can potentially use sophisticated means to hide messages in multimedia for

covert communications. Identifying such communications must be automated in order to

be able to effectively and practically monitor such behavior [9]. The presence of a temporal

domain increases the volume of covert data that can be embedded into a video sequence.

Thus from an embedder’s point of view, using video sequences as cover-objects is the best

choice since the capacity or the amount of covert data that can be carried is very high when

compared to other mediums such as text and digital audio.

A number of efficient and reliable techniques have been proposed for still images that

can be applied to raw video sequences, but to the best of our knowledge, there have been no

steganalysis techniques proposed targeting the characteristics of digital video. This moti-

vates us to develop a video steganalysis scheme that can be used to detect hidden messages.
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The video steganalysis is a fundamental problem that has implications for watermark at-

tacks too. The results can be used to design better steganalysis and watermarking methods.

Steganalysis finds its use in a broad area of applications ranging from computer secu-

rity, cyber-security, cyber-forensics, homeland security, field of watermarking etc. Auto-

mated steganalysis techniques can be used to monitor the astronomical amount of Internet

data to detect the presence of cover communication. One of the ways to use the Internet to

pass covert data apart from using digital media as carrier is through the time stamps of the

Internet packets. Steganalysis can be used to stop terrorists from using steganography as

a means of covert communication. According to unnamed law officials terrorist organiza-

tions are hiding maps and photographs of potential targets, instructions for other terrorists

on chat rooms and pornographic sites [10, 11].

Some parties use these sophisticated data hiding methods to pass Trojan content for

malicious purposes or to get some information from the receiver without its knowledge.

One such instance can be stated from the era of cold war between USA and Russia. The

United States security agencies loaded Trojan content in a Control’s software built for a

gas-pipeline in Russia in 1982. The Trojan ran a test on the pipeline and doubled the

pressure causing an explosion equivalent to a nuclear weapon [9, 12]. Detecting Trojan

content is yet another application where steganalysis finds its use.

Steganalysis can be used in the field of digital forensics by examiners who look for

hidden data or trace of hidden data in digital media [13]. A possible scenario is the distribu-

tion of child pornography using digital media as a cover object [14]. Steganalysis softwares

will be useful in detecting the presence of such content and can act as a proof in the court

of law. It can be used to differentiate between a natural image and digitally made images

using graphics application softwares [15]. This finds its use in court cases where the origin

of the image (natural, digitally made) is in question. Forensic experts are also hired by
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companies to detect steganographic programs on the server that may be constantly sending

sensitive information from the company databases.

Steganalysis may help in the design of computer security programs like anti-virus pro-

grams. Recently viruses were attached in JPEG images to take advantage of a security flaw

in Microsoft’s image viewer programs [16]. Steganalysis may be used to detect viruses,

spywares, adwares and other malicious programs that may be hidden in digital media and

may affect a computer.

Steganalysis and watermarking have a lot of commonality between them. Collusion

schemes proposed in this thesis can be used to get an estimate of a watermark in a video

sequence. This can be used to authenticate or detect the presence of a watermark in the

sequence. Thus we see that steganalysis also finds its use in the field of watermarking.

D. Objectives

The objectives of this thesis are:

1. To propose efficient steganalysis techniques for video sequences that take advantage

of the temporal redundancy present in it. We develop a composite method that can

be used to detect messages hidden using a variety of embedding schemes that work

in the spatial as well as the frequency domain. Most of the current methods assume

the knowledge of the embedding scheme and thus are able to achieve higher detec-

tion accuracy. However there is a trade off between the detection accuracy and the

applicabality of steganalysis to a broad class of embedding algorithms. The inspira-

tion is drawn from a number of currently available steganalysis techniques aimed at

detecting hidden messages from a variety of embedding schemes [17, 18, 19, 20].

2. To highlight the limitations of data hiding in video. In this thesis we assert that

the chances of detection of hidden messages greatly improve due to the presence of
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temporal redundancy in a video sequence. This limits the capacity of the payload

that can be successfully embedded in a video sequence without producing statistical

artifacts. We show by theoretical arguments and simulations that it is infeasible to

hide data in those parts of video that are non-moving or have translational motion. A

successful steganalysis algorithm is recognized by its ability to restrict the capacity

of hidden messages in the cover medium.

3. To study the relationship between the fields of steganography and watermarking.

There are many tools borrowed from watermarking that are used in steganography

and vice versa. Through this thesis we want to support the fact that watermarking

and steganography complement each other. We use collusion attack–a well studied

area in the field of watermarking for our proposed steganalysis method. On the other

hand, steganalysis can be used to detect the presence of a watermark.

4. To study the tradeoff between statistical invisibility and robust embedding of hidden

messages in a video sequence. Through analysis and simulations we show the lower

bounds on the embedding strengths of the hidden message that leads to the failure of

the proposed steganalysis method.

5. To design a steganalysis method that can be applied for real-time applications. Most

researchers assume the availability of infinite processing power for steganalysis.

However this assumption poses serious challenges for real-time applications if the

method has a large time complexity. In order to monitor the presence of a stegano-

graphic data in a broadcast video scenario a steganalysis method with low time

complexity is needed. We propose a method that has a very low memory and process-

ing power requirement and hence can be use for real-time video monitoring.
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E. Nomenclature

A steganographic system involves two parties: the sender who embeds the secret message

in the cover object and the receiver who extracts it. Security comes in part from the pres-

ence of a secret key K in the system that details how the secret message is embedded and

extracted. We assume that K is securely exchanged between the sender and receiver prior

to covert communication; this key is specific to the steganography algorithm and can con-

tain information such as how strongly and where in the cover-object the secret information

is embedded, and seed information for pseudo-random number generation.

Communication
ChannelEmbedding Algorithm

Steganographic Steganographic

Extraction Algorithm

Steganography

Secret Message
Binary

(e.g. Digital Image)
Cover Object

Message
Decoded

Steganalysis
Active/Passive

Secret Key Secret Key

Covert Data???

Eavesdropper/Monitoring Point

SENDER RECEIVER

Fig. 2. Steganography and steganalysis. Steganography consists of the process of embed-
ding (by a sender) and extracting (by a receiver) covert information from innocuous
messages. Steganalysis is the process of determining from a given message whether
or not covert data has been embedded [21].

A typical steganographic system scenario is summarized in Figure 2. The sender takes

the “host” video sequence, which represents the cover-video, and embeds a secret binary

message vector using K to produce a stego-video sequence that is perceptually identical

to the cover-video. The stego-video is then communicated along a public channel to the
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receiver. At the receiver the stego-object and secret key K are used to extract the secret

binary message. The public channel may be monitored by an active or a passive steganalyst

whose goal is to detect the presence of any covert communication taking place.

The original host video sequence or the cover-object is denoted by Uk(m,n) where

1 ≤ k ≤ N is the frame number and m,n are the row and column indices of the pixels,

respectively. The binary secret message is embedded into the host by modulating it into a

signal known as the watermark [7] denoted by Wk(m,n). Since the influence of the secret

message is carried on to the watermark, we will use the terms hidden message and wa-

termark interchangeably throughout this thesis. Detection of the watermark will imply the

presence of hidden information in the medium. For compatibility, the watermark Wk(m,n)

is defined over the same domain as the host Uk(m,n). Later on we will ease on this con-

straint and will look at watermarks embedded in the Discrete Cosine Transform (DCT)

domain. The stego-video signal is represented by the commonly used equation [22]:

Xk(m, n) = Uk(m,n) + αk(m,n) ·Wk(m,n) k = 1, 2, 3 . . . N , (1.1)

where αk(m,n) is a scaling factor used to manipulate the strength of the hidden message to

trade-off between perceptibility and robustness. In practice, for simplicity α is considered

to be constant over all the pixels and frames. So the equation becomes:

Xk(m,n) = Uk(m,n) + α ·Wk(m,n) k = 1, 2, 3 . . . N . (1.2)

The scaled watermark α · Wk(m,n), in practice, is a function of the binary secret

message, secret key K and the host Uk(m,n). The relation between these parameters is

decided by the embedding algorithm. In general, every steganographic algorithm can be

represented by Equation 1.2, where we first set a value for α 6= 0, and let Wk(m,n) =

Xk(m,n)−Uk(m,n)
α

. In order to have a proper reference for effective steganalysis, we must

make some assumptions about the embedding method as discussed in the next section.
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F. Problem Formulation

The overall goal of this thesis is to design a steganalysis method for digital video sequences

that is more optimum than frame by frame application of previously proposed image meth-

ods that do not taken into account the temporal redundancy that can be exploited for higher

accuracy detection. We consider this problem by first restricting our video processing to

the temporal domain; image methods that work in the orthogonal spatial domain can then

be easily incorporated to enhance performance over previously proposed techniques. We

focus on steganalysis of spread spectrum-based steganographic methods [7, 8] due to its

popularity and influence in the research literature.

In essence, our problem is to develop a decision box that takes a stream of digital

video as input and concludes whether or not hidden information is present by using partial

information about the embedding algorithm and a model of temporal redundancy in digital

video frames; no knowledge of the secret key K, if any is used, is available. In particular,

we assume the spread spectrum-based embedding method works by inserting Gaussian

watermarks in the spatial or frequency domain of each frame [7, 8]. We therefore make

the following necessary assumptions. First, we postulate that the watermarks embedded

in each frame Wk(m,n) are independent, have zero mean, and are Gaussian. Second, the

sender embeds a watermark into every pixel of each frame of the video sequence; this

assumption is valid because to maximize the steganographic capacity, a sender will make

use of as much of the host signal as possible for information embedding. There is, however,

a trade-off between steganographic security and transmission capacity as we later discuss.

Figure 3 displays the steganographic results for a single image frame to elucidate the

concept. Figure 3(a) is the host frame also known as cover-object or cover-video frame,

and Figure 3(b) is the stego-object or stego-video frame containing the Gaussian watermark

(amplified for visual perceptibility) shown in Figure 3(c) with α = 5.
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Cover Image Stego Image Gaussian Watermark

Fig. 3. Example of steganography in a single image frame. (a) the host or cover-image
frame, (b) the watermarked or stego-image frame, (c) the watermark containing the
binary secret message.

The figures of merit used to assess success of the algorithm are the probability of false

positive detection and the probability of false negative detection defined as follows. The

probability of false positive detection is the likelihood of detecting that hidden information

is present in a given video sequence when nothing has been embedded (i.e., α = 0); that

is, a given video signal is declared a stego-video when it is not. The probability of false

negative detection is the likelihood of detecting that hidden information is not present when

in fact it has been embedded (i.e., α 6= 0); that is, a given video signal is declared a

cover-video when it is not. A good steganalysis technique should strive to minimize both

error probabilities. However, for cyber-security or computer forensic applications, it is

imperative that the false negative detection rate be lower. Thus, sacrificing false positive

detection for false negative detection may be necessary through the selection of appropriate

algorithmic thresholds. Further processing on a video signal flagged by our technique may

be optionally conducted for more accurate results. Figure 4 summarizes the basic video

steganalysis problem for spread spectrum embedding.
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     Decision Box

Video Steganalysis

about the embedding algorithm

input output

present or absent

Covert Data

Additional information and assumptions 

Video Sequence under Test

Fig. 4. Video steganalysis problem. The objective is to design an decision box that takes
a given video sequence and makes use of partial information about the potential
embedding algorithm to decide whether or not hidden information is present in the
given media [21].
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CHAPTER II

LITERATURE REVIEW

A. Past Work

Much of the research work in the field of steganalysis has been carried out on images. In

raw format, video sequences can be considered as a series of still images and the steganaly-

sis methods designed to work for still images can be applied to video sequences. So in this

section we look at all the significant steganalysis methods specifically built for still images.

1. Passive Steganalysis

Most of the steganalysis methods developed over time were designed to be passive i.e. the

goal was just to detect the presence of hidden messages. Jessica Fridrich, a pioneering

researcher developed efficient algorithms to foil steganography schemes based on Least

Significant Bit (LSB) embedding. In [23] Fridrich et al. propose a method to detect LSB

embedding in 24 bit color images by exploiting the fact that the number of unique colored

pairs decreases after embedding. The method works reasonably well but has certain con-

straints since the success of the method is based on the number of unique colored pairs.

The authors have pointed out the infeasibility of embedding messages in digital images

stored in JPEG format in [24]. The JPEG quantization matrix leaves unique fingerprints in

the image. Any deviation from these characteristics signifies the presence of covert data.

Other methods such as performing first order statistical analysis in the form of Chi-Square

test on Pair of Values has been proposed by Westfield and Pfitzman in [25]. However this

strategy fails if the LSB embedding is done at random locations based on some seed. In

[26] the authors have shown how first order statistics can be defeated by making sure that

the statistics derived from Pair of Values remains same before and after embedding.
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The failure of first order statistical techniques led to the development of methods [17,

18, 15, 27] that uses higher order statistics. In this work, Farid and his colleagues designed

a blind detection scheme that uses higher order statistics such as mean, variance, skew

and kurtosis to measure the disruption of statistical regularity in the wavelet coefficients

due to embedding. He uses linear and non-linear classification methods such as Fischer

Linear Discrimination Analysis [17] and Support Vector Machine [18] to solve the two

class classification problem. The statistics are believed to be rich enough to detect messages

using different schemes. In [27] the authors have extended their method to color images

and have shown how a reduction from a two class classification problem to a single class

can significantly improve the detection capability. This method has better generalization

properties and helps in foiling a variety of the embedding schemes.

In [1, 19] the author uses image quality metrics and multivariate regression analysis

to detect the presence of covert data in an image. It has been proposed that the distance

between a watermarked image and its filtered version is greater than a non-watermarked

image and its filtered version. The image quality metrics most sensitive to embedding

schemes [28] are chosen to measure the change in distance. The weighted sum of the dis-

tance measured from these metrics is calculated and compared to a threshold to detect the

hidden messages. In a similar implementation in [19], Avcibas et al. use binary similarity

measures to calculate disruption of the correlation between the 7th and the 8th bit plane

due to LSB embedding. We adopt a similar strategy as proposed in [1] by using temporal

filters to get the best estimate of the watermark in each frame and use characteristics of the

watermark to detect it.

In [20] Harmsen and Pearlman propose a steganalysis method for all those embed-

ding schemes where the watermark or hidden message can be modeled as an independent

additive noise. Their detection scheme exploits the first order statistics of the Histogram

Characteristic Function (HCF). They hypothesize that embedding lowers the center of mass
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of the HCF due to filtering action of noise added in the form of hidden message. A Bayesian

Classifier is used to differentiate between a cover and a stego-image by measuring the Cen-

ter of Mass and comparing it to a threshold. It is not an efficient scheme since counter

measures to compensate for changes in the first order statistics have been proposed. The

authors have also proposed a generalized detection scheme where the training is done based

on a single class and Mahalanobis distance is used for detection.

The methods proposed for steganalysis in [29, 30] targets wavelet based embedding

techniques. This is of particular significance since the current image compression algo-

rithm JPEG2000 is based on wavelets. In [30] the parameters for a Generalized Gaussian

Distribution to model the sub-band coefficients in a 3 level wavelet decomposition of an

image are calculated. The parameters from the high frequency horizontal, vertical and diag-

onal regions are fed to a neural network. The neural network is trained using a database of

watermarked and non-watermarked images for which the GGD parameters are calculated.

The neural-network captures the non-linearity in the decision making process.

Another method that uses wavelet analysis to detect hidden messages in wavelet do-

main is proposed in [29]. In the proposed method the energy of the wavelet coefficients

is calculated by taking the Discrete Fourier Transform of it. The strength of the spikes

in the energy curve are measured and compared to a threshold to detect presence of hid-

den data. Both the methods seem to work reasonably well in the wavelet domain but lack

generalization.

2. Active Steganalysis

The aim of active steganalysis techniques is to estimate the hidden message or to find

information pertaining to the embedding scheme. (message length, embedding strength

etc.)
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In [6] Chandramouli suggests a method to estimate the hidden message embedded us-

ing spread spectrum principles in two highly correlated stego images. Strong assumptions

about two stego images having the same secret message and embedding key are used in the

steganalysis method. He shows that the common notion of spread spectrum steganogra-

phy being robust and secure is wrong. In this thesis we try and break the spread spectrum

steganography and support the conception that it is not a good method for steganography.

In [31] Trivedi et al. propose a method to find the secret key in those digital images which

use sequential embedding strategy. The paper focuses on spread spectrum steganography

and demonstrates that it leaves a sufficient statistical mark to facilitate active steganalysis.

Fridrich et al. have proposed different methods to estimate the length of the messages

in digital images for different steganographic algorithms in [32]. It can accurately mea-

sure the length of the message in JPEG images using the F5 and the Outguess, in palette

based images using EZstego, in raw formats using the LSB embedding schemes. The gain

achieved in detecting low capacity payload with high accuracy is at the expense of the loss

in generalization capability.

3. Collusion Research

In [22] Su et al. have presented a mathematical framework for linear collusion in video

sequences and have presented the notion of statistical invisibility. A theoretical proof has

been provided to justify that all watermarks embedded in the video sequences can be suc-

cessfully removed if they are embedded independent of each other or have small correlation

with the host sequences. The conditions in which the linear collusion scheme would fail

to remove the watermark have been provided. We were inspired by this work since most

of the embedding schemes fail to meet these conditions and hence linear collusion scheme

could be used to detect the presence of a hidden watermark in video sequences. In [33]

Kilian et al. have calculated the minimum number of colluders needed to have a successful
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collusion scheme for images. Insight into the number of frames needed to collude in a

video sequence can be drawn from the authors’ findings.

In [34, 35] the authors have used non-linear collusion attack to remove the Gaussian

fingerprints embedded in still images. Performance evaluation for various non-linear at-

tacks has been done. The idea is to replace blocks in an image with similar looking blocks

from other images thus changing the embedded watermark in the original image. However

a non-linear attack will fail to obtain a mark free copy from the watermarked sequence

which is needed in our strategy.

Temporal filtering and other intra-frame collusion schemes were implemented in [36]

to remove watermarks from video sequence. A new technique for watermark removal using

mosaicing was proposed. This is a potential method that could be used for steganalysis to

detect the presence of a hidden data. But there are potential limitations to this method since

it works well only for panoramic videos.
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CHAPTER III

PROPOSED SOLUTION, ANALYSIS AND JUSTIFICATION ∗

The essence of a steganalysis technique is to quantify the statistical change brought in the

cover medium due to embedding. In order to detect the change, a steganalyst may look

for the deviation in the characteristics of the cover or probe into the features of the hidden

message itself. The pros and cons of each method are discussed below.

Modeling the cover medium limits the steganalysis attack to a narrow class of cover

objects that have characteristics of the natural medium. For example in [15] Farid et al. ex-

tract the characteristics of natural images using wavelet coefficients. The assumption is that

any deviation from these characteristics signifies the presence of covert data in an image.

There are limitations to this method because images such as medical images, satellite im-

ages and digital images (constructed artificially from graphics application softwares) which

do not belong to the subset of natural images will always be classified as stego-images.

In order to overcome the above constraint a steganalyst may target the characteristics

of the embedded message or changes brought about in the cover due to a particular kind

of embedding strategy. This however leads to the loss of generality and the ability of a

steganalysis method to detect messages embedded using different steganographic methods.

Due to diversity in the time varying nature of video sequences, we assert that it is

impossible to find a well-defined set of features that can differentiate between natural video

and stego-video. This leads us to focus on methods that target the characteristics of the

hidden message. For spread spectrum steganography, this is specifically in the form of

Gaussian watermarks. The detection capability of our proposed steganalysis technique

∗Reprinted from pages 214–218, with permission from“Video steganalysis using col-
lusion sensitvity” by U. Budhia and D. Kundur, Proceedings of SPIE: Sensors, Command,
Control, Communications and Intelligence(C3I) Technologies for Homeland Security and
Homeland Defense, April 2004, vol. 5403.
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is theoretically limited to spread spectrum steganography but is applicable to embedding

either in the spatial or in the frequency domain.

A. Basic Architecture

As discussed above, the spirit of most steganalysis methods is to devise a function that dif-

ferentiates between the general characteristics of a signal with and without embedding [21].

This function is normally compared implicitly or explicitly to a threshold in order to decide

whether or not a given signal Yk contains hidden information1. Much research on image

steganalysis has focused on identifying image features that change when steganography

algorithms are applied. Researchers have traditionally employed image processing and sta-

tistical tool-sets that in some form attempt to estimate a potential “host” Ûk = H[Yk] signal

from Yk. This “host” estimate Ûk is then compared in some way to Yk in order to detect if

something is hidden. The basic hypothesis is that the deviation of specific characteristics

of Yk and Ûk will differ if something is embedded in Yk (i.e., Yk = Xk = Uk + α · Wk)

in comparison to when nothing is embedded in Yk (i.e., Yk = Uk). Pattern classification is

often employed to characterize this deviation effectively.

In this thesis, we formulate a novel framework for this problem that employs previous

research on digital watermarking attacks. The advantage is that instead of searching li-

braries of image processing and statistical functions in order to identify potential candidates

for steganalysis, we borrow on venerable research in the related field of digital watermark-

ing. Furthermore, our approach is general and can be targeted to identify specific types of

steganography by replacing our general blocks with appropriate algorithms.

1Please note that we have removed the subscripts m,n from our notations for clarity.
For the rest of this thesis we will assume that all operations are done on the entire frame
unless stated otherwise.
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Figure 5 presents our framework. The video sequence under consideration Yk is passed

through a digital watermarking attack block that attempts to estimate the host signal to

produce Ûk. This block may assume knowledge of the embedding algorithm (if any is

used) to be effective. The estimate of the watermark Ŵk, calculated by taking the difference

between Yk and Ûk, is passed through an appropriate pattern classifier. If Yk is a stego-video

then the input to the pattern classifier is a Gaussian watermark signal corrupted by some

noise due to filtering(watermarking attack). On the contrary, if Yk is a video signal without

any watermark the estimate Ŵk would simply consist of the noise due to filtering. In an

ideal case, if the filter is able to perfectly re-construct the host, the estimate Ŵk will consist

of the original Gaussian watermark embedded in case of a watermarked video and will

be zero for a non-watermarked video. By employing some a priori information about the

embedding algorithm, the distinction between these two cases can be made to detect the

presence of covert communication.

Fig. 5. Proposed framework for steganalysis [21].
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Since our goal is, in part, to develop a tool to enhance existing image steganalysis

methods, we focus on algorithms for Figure 5 that account for temporal changes in a signal

due to embedding. Together, with image steganalysis methods that incorporate spatial in-

formation through the use of (weighted) mean and Wiener filters, an improved solution may

be produced. We conjecture that the linear collusion attack, used to remove the presence

of independent digital watermarks in a sequence of images or video frames is ideal for our

problem. First, the attack focuses on temporal correlations between video frames to esti-

mate a “host” video sequence that can be easily incorporated into our framework. Second,

much analytic and simulation-based work focuses on this area providing a strong foun-

dation upon which to build a steganalysis method. Finally, the attack is computationally

simple making our steganalysis approach practically feasible for real-time applications.

An effective pattern classifier is also developed by incorporating knowledge that the

watermark, if any present, is zero mean and Gaussian. The design of the pattern classifier

is discussed in the future sections. In the next subsections we dicuss the linear collusion

scheme which is used to estimate the host sequence Uk from the received signal Yk. In

particular we discuss the various schemes that can constitute the “attack” block in Figure 5.

B. Collusion Attack

Collusion for digital watermarking and steganography refers to the use of multiple image

frames (that may or may not form a video sequence) in order to remove the presence of

a watermark in one or more of the image frames. In general, the collusion attack may be

linear or nonlinear exploiting the differences and similarities between frames to judiciously

reduce the energy of the watermark in comparison to that of the host information. We

represent collusion of a sequence of video frames, which produces a resulting frame that

has lower watermark content as follows:
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X̂k = C[X1, X2, . . . , XN ] (3.1)

where X̂k is called the colluded result and in this thesis represents the estimate of the kth

host frame Uk. C is the collusion operator that exploits the similarities and differences

amongst all or a select subset of watermarked image frames X1, X2, . . . , XN to produce

X̂k. As we discuss, the colluded result X̂k in general contains significantly less contribution

from Wk as compared to Xk. Common forms of the collusion operator C include taking the

pixel-by-pixel maximum, minimum, mean or median over a range of image frames.

Linear collusion is a special case in which C represents a weighted average operation

of select video frames. Intuitively, linear collusion on a sequence of video frames amplifies

parts of the frames that are similar and attenuates components that are different. In the next

subsection we concentrate on a subset of linear collusion attack where the weights applied

to each frame in the collusion attack are equal. This leads to a simple collusion scheme

where we take an average over a range of video frames. For the rest of this thesis we

refer to the averaging based collusion method as the simple linear collusion scheme. The

linear collusion method where the weights are different will be referred to as the weighted

collusion scheme.

1. Simple Linear Collusion Scheme

Linear collusion has recently received much attention in the digital video watermarking

community [22, 33]. It has been shown analytically that if the linear correlation amongst

host video frames Ui for some i differs from that of the watermark frames Wi over the same

range of i then the linear collusion scheme based on averaging will be successful in either

attenuating or amplifying the presence of the watermark in the resultant frame X̂k [22].
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In this thesis, we focus on the application of spread spectrum steganography on video

sequences that in most applications requiring high covert data capacity implies that Wi is

independent for each frame. We assume that the motion in the video sequence is “slow”

which implies that adjacent video frames are similar. Because of this visual correlation, it

is expected that over a neighborhood of i centered at k, the watermarked video frames can

be averaged in order to attenuate the presence of the watermark in the kth frame.

Let us assume that we use a sliding window to denote the temporal neighborhood used

for frame averaging; this window is assumed to contain visually similar frames. Specifi-

cally, we take a window size of 2L + 1 frames centered at frame k (except toward the

beginning and end of the sequence since the window goes outside the range of i) to average

the video sequence. Let us formally define the collusion operator CL for the simple linear

collusion scheme as:

CL =
1

2L + 1

k+L∑

i=k−L

(3.2)

The operator represents an averaging over a window of 2L+1 frames centered over a frame

having index k.

The estimate of the kth host frame is given by:

X̂k = CL(Xk) (3.3)

X̂k =
1

2L + 1

k+L∑

i=k−L

Xi (3.4)

Equation 3.4 is modified for frames that lie in the beginning and in the end of a video

sequence.

X̂k =





1
2L+1

∑2L+1
i=1 Xi 1 ≤ k ≤ L

1
2L+1

∑k+L
i=k−L Xi L < k < N − L

1
2L+1

∑N
i=N−2L Xi N − L ≤ k ≤ N

(3.5)
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where k is the frame under consideration to produce X̂k, an estimate of Uk. We next show

why we assert that X̂k ≈ Uk.

Substituting Xi = Ui + α.Wi for all i from Equation 1.2 into Equation 3.5 we obtain:

X̂k =
1

2L + 1

∑
i

Ui +
α

2L + 1

∑
i

Wi (3.6)

where the summations are over the appropriate domains for the various ranges of k shown

in Equation 3.5. Since the watermarks Wi are independent and zero mean, the second term

of the left hand side of Equation 3.6 approaches zero as L increases. Furthermore, because

we assume Ui ≈ Uk for all i in the neighborhood of the sliding window centered at k, the

first term will dominate resulting in the following approximation:

X̂k ≈ 1

2L + 1

∑
i

Ui (3.7)

≈ 1

2L + 1

∑
i

Uk (3.8)

≈ Uk (3.9)

The effectiveness of X̂k as an approximation of Uk depends on the value of L in

relation to the rate of motion in the video sequence. Through extensive analysis we show

that an optimum value of L will lead to the cancelation of the Gaussian watermarks and

ensure the assumption that Ui ≈ Uk for all i holds true.

If collusion is applied to a given video sequence Yk that may or may not contain

a watermark, we believe that in both cases for slowly varying video and an appropriately

selected value of L, the result will be an effective approximation of Uk. Thus if a watermark

is embedded in the video, subtracting X̂k from Yk gives Yk − X̂k ≈ Yk − Uk = αWk, an

estimate of the scaled zero mean Gaussian watermark. If no watermark is present in Yk then

the result will be independent of any characteristics such as Gaussianity that we assume for
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the watermark. This difference is used by a pattern classifier discussed in the future sections

for steganalysis.

In case of a non-watermarked video we have Yk = Xk = Uk + αWk, where α = 0.

The estimate of the scaled watermark is denoted by,

Ŵk = Yk − X̂k

Ŵk = Yk − CL(Xk)

Ŵk = Uk + αWk − CL(Uk + αWk)

Ŵk = Uk − CL(Uk) Since α = 0 for non watermarked sequences (3.10)

Ŵk = nk where nk = Uk − CL(Uk) (3.11)

The residual “noise” from the simple linear collusion scheme is denoted by nk and is a

measure of the invariance of the collusion operator on legitimate non-watermarked data.

Ideally we would like CL(Uk) ≈ Uk.

In case of watermarked sequences we have Yk = Xk = Uk + αWk, the estimate of the

scaled watermark is given by,

Ŵk = Yk − X̂k

Ŵk = Yk − CL(Xk)

Ŵk = Uk + αWk − CL(Uk + αWk)

Ŵk = Uk − CL(Uk) + αWk − αCL(Wk) (3.12)

Since CL(a + b) = CL(a) + CL(b) in case of linear collusion

Ŵk = nk + W
′
k where W

′
k = α(Wk − C(Wk)) (3.13)

In the case of the watermarked sequences the estimate of the watermark is the sum of the

noise due to collusion attack and a Gaussian signal which bears a very high correlation
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with embedded watermark Wk. In case all the host frames are same, nk will be zero and

the estimate of the watermark Ŵk will be the embedded watermark Wk. We can represent

the steganalysis in terms of a hypothesis testing problem.

a. Hypothesis Testing

The video steganalysis problem can be mathematically formulated as a hypothesis testing

problem.




H0 : Ŵk = nk k=1,2,. . . ,N if watermark is absent

H1 : Ŵk = nk + W
′
k k=1,2,. . . ,N if watermark is present

where nk is the residual noise defined above and W
′
k is a Gaussian watermark signal. The

aim of steganalysis is to differentiate between the two situations and simultaneously mini-

mize the probability of false positive and false negative. The probability of false negative

can be defined as the probability of choosing H0 when it is actually H1. Similarly, the

probability of false positive can be defined as the probability of choosing H1 when it is

actually H0.

C. Theoretical Justification and Analysis

The steganalysis method proposed looks at the characteristics of the watermark and uses

pattern recognition for finding the hidden messages. Therefore the accuracy of the esti-

mated watermark is related to the accuracy of the hypothesis testing. In this section we

study the performance of the collusion scheme, estimate the bounds on the embedding

parameters that will lead to the failure of the collusion based steganalysis and find the

optimum length for collusion attack.

We make the following assumptions about the video sequences and the watermark

frames.
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(1) The host frames Uk are assumed to be from a distribution having mean µ and variance

σ2
u.

(2) The correlation model of the host frames follows the first-order Markov model where

the correlation between frame Ui and Uj is given by ρ|i−j|. Where ρ is the correlation

coefficient between any two adjacent frames.

(3) The watermark frames Wk are assumed to be independent from Uk and from each

other, and derived from a Gaussian distribution having mean 0 and variance σ2
w. Since

the watermark is embedded with an embedding strength of α the effective variance

of the watermark is α2σ2
w.

For slow moving sequence where the scene changes are not drastic we can reasonably

make an assumption that the frames have approximately the same mean and variance as

stated in Assumption (1). In Assumption (2) we assert that a first order Markov model

can be used to model the correlation between various frames of a video sequence. By

intuition we know that the correlation between a reference frame and other frames in a

video sequence decreases as one moves away from the reference frame. We model this

decrease in correlation using the term ρ|i−j|, where |i− j| represents the distance between

the reference and the other frames in terms of frame index. We note that the term ρ|i−j|

decreases with an increase in the distance since, |ρ| ≤ 1 always holds true.

D. Effectiveness of Simple Linear Collusion Scheme

The effectiveness of the collusion scheme proposed can be studied by looking at the ex-

pected Mean Squared Error(MSE) between the estimate of the watermark Ŵk and the

embedded watermark αWk. In order to get the best estimate, the expected MSE should

be minimized. In this section we look at conditions where the frame averaging or simple
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linear collusion scheme will be successful in extracting the watermark from the original

frames.

The mathematical equation to represent the expected MSE between the estimated wa-

termark and the embedded watermark in each frame is given by:

E[(Ŵk − αWk)
2] = E[(Yk − X̂k − αWk)

2]

= E[(Xk − X̂k − αWk)
2]

= E[(Uk + αWk − X̂k − αWk)
2]

= E[(Uk − X̂k)
2] (3.14)

= E[(Uk − Ûk)
2] (3.15)

This equation shows that the expected value of the expected MSE between the estimated

watermark and the original watermark is the same as the expected value of the MSE be-

tween the original host frame and the colluded host frame.

Proposition 1 Given a sequence of watermarked video frames Xk, k = 1, 2, . . . , N as

defined by Equation 1.2. Under assumptions (1), (2) and (3) the expected MSE between the

original watermark and the estimated watermark obtained from collusion attack is given

by

E[(Ŵk − αWk)
2] = σ2

u

[
z − 1

z
− 2ρ

z(1− ρ)
+

4ρ
z+1
2

z(1− ρ)
− 2ρ(1− ρz)

z2(1− ρ)2

]
+

α2σ2
w

z
(3.16)

where z = 2L + 1.

Proof: See Appendix A.1

In the next proposition we introduce the concept of no-collusion attack. We define the

no-collusion attack as the collusion scheme where the number of frames colluded is one.

In the trivial case the estimate of the watermark will always be zero irrespective of whether

it is a watermarked or a non-watermarked sequence.
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Proposition 2 Under assumptions (1), (2) and (3) the expected MSE between the original

watermark and the estimated watermark when there is no collusion is given by

E[(Ŵk − αWk)
2] = α2σ2

w; (3.17)

Proof: See Appendix A.2

Since the estimate of the watermark is always zero in case of no collusion the expected

MSE between the watermarks is always equal to the variance of the effective watermark

embedded i.e. α2σ2
w.

The next proposition helps us in analyzing the success of the collusion attack. We

look at the ratio of the variance of the embedded watermark and the variance of the host

frame. It is a measure of signal-to-noise ratio(SNR) where the watermark is the signal and

the interference comes from the host frames.

Proposition 3 From Propositions 1 and 2 we obtain the following bound on the ratio of

the variance of the host frames σ2
u to the effective variance of the embedded watermark

α2σ2
w.

σ2
u

α2σ2
w

<
1

1− 2ρ
(z−1)(1−ρ)

+ 4ρ
z+1
2

(z−1)(1−ρ)
− 2ρ(1−ρz)

z(z−1)(1−ρ)2

(3.18)

where z = 2L + 1.

Proof: See Appendix A.3

1. Discussion

We arrive at the bounds on the ratio of the variance of host frame to that of the effective vari-

ance of the watermark by laying a constraint that the expected MSE between watermarks in

case of simple linear collusion is smaller than the expected MSE encountered when there

is no collusion at all. There is no additional advantage of using the simple linear collusion
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method if the expected MSE between watermarks in case of this method is larger than that

encountered for simple guessing. Therfore we present the conditions where simple linear

collusion scheme will be successful in reducing the MSE.

Figure 6 shows the upper-bound on the ratio of the variance of the host frames to the

strength of the watermark for various values of L and correlation coefficient ρ as given by

Equation 3.18. We would like to recall that the size of the window in case of collusion

is given by z = 2L + 1. e.g. From Figure 6 we see that for a correlation coefficient of

ρ = 0.94 between adjacent frames and L = 4 the maximum ratio of the variances can
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be 10. This means that if the variance of the frame is greater than 10 times the effective

variance of the watermark a collusion length of 4 will yield a higher expected MSE than

the case when there is no collusion. However we can use a lower value of L to facilitate

collusion attack.

The choice of a higher value of L is made to cancel the Gaussian watermarks (Since

limL→∞
∑L

k=1 Wk = 0). However, if the correlation between frames is small an increase in

L would increase the residual noise due to collusion. We have shown above that an increase

in L will lead to a situation where the expected MSE between watermarks will be greater

than the expected MSE in case of no collusion. Hence there is a tradeoff and in order to

use collusion to estimate the host frame one will be forced to use a lower value of L.

As the correlation coefficient increases, the upper bound on the ratio increases expo-

nentially. This implies, for a fixed frame variance the ability to collude a watermarked video

sequence embedded with lower embedding strengths increases with increase in correlation.

Given that the strength of the watermark α2σ2
w is small in comparison to the strength of the

host video σ2
u to guarantee imperceptibility, the practical operating range for parameters

exists toward the right hand side of Figure 6 (for large ρ).

Although Figure 6 provides us with an idea of when the collusion approach to ste-

ganalysis holds promise, it does not, however, give information about the optimal value of

L to produce the best estimate of the watermark.

In Figure 7 the expected MSE between the watermarks is plotted as a function of L for

various values of ρ in terms of the strength of the watermark α2σ2
w. The variance of the host

frames σ2
u is assumed to be 10 times the strength of the watermark α2σ2

w. For a SNR of 0.1

we see that if the correlation coefficient is greater than 0.86 we do have a local minimum.

The value of L corresponding to the point of local minimum gives the optimum size of the

window for collusion attack for a given SNR and correlation coefficient. Intuitively we can

see that as the correlation decreases simple linear collusion scheme yields a higher MSE
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Fig. 7. MSE as a function of collusion length and correlation coefficient.

than the case when we do not have any collusion. The increase in the correlation between

the frames results in the increase in the optimum number of frames needed for collusion to

minimize the MSE. If there is perfect correlation between the frames ideally we should use

infinite number of frames for collusion attack. From the figure we see that the optimum

value of L is 1 and 2 for correlation coefficient of 0.94 and 0.98 respectively.

The reader should note that in the case of fast moving video sequences, the simple

linear collusion scheme applied to dissimilar frames may not result in a reasonable ap-

proximation for Uk. However, in the next subsections we provide a practical alternative to
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improve simple linear collusion performance for steganalysis that involves using weighted

collusion attack and block based collusion attack.

E. Weighted Collusion Scheme

Linear collusion scheme in the form of frame averaging is sub-optimal since the weights

are assumed to be the same for each frame in the collusion attack. A weighted collusion

attack may be used to lower the expected MSE between the watermarks. The weighted

collusion scheme can be visualized as a low pass filter applied in the temporal domain.

The taps of the filters are represented by the weights in the weighted collusion scheme.

Equation 3.4 can be modified to represent the weighted collusion scheme in the following

way:

X̂k =
k+L∑

i=k−L

βi ·Xi (3.19)

However we need to empirically find the weights in order to facilitate the weighted collu-

sion attack.

Proposition 4 The weights for the weighted collusion scheme as defined in equation 3.19

is given by the following equation:

B = A−1P (3.20)

where,

P = [1 σ2
uρ

L σ2
uρ

L−1 . . . σ2
uρ

L]T

B = [βk−L βk−L+1 . . . βk+L λ]T
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A =




1 1 . . . 1 0

σ2
u + α2σ2

w σ2
uρ . . . σ2

uρ
2L 1

σ2
uρ σ2

u + α2σ2
w . . . σ2

uρ
2L−1 1

...
... . . . ...

...

σ2
uρ

2L σ2
uρ

2L−1 . . . σ2
u + α2σ2

w 1




Proof: See Appendix A.5

The equation suggests that the correlation between frames ρ, the host variance σ2
u and

the watermark variance α2σ2
w should be known ahead of time in order to derive the optimal

weights for the weighted collusion attack. This is not possible at all times. We can however

have a rough estimate of the correlation and the host variance from the test sequence. The

approximate weights can be derived by assuming a reasonable value of the variance of the

watermarks added.

The other assumption which has been made is that the mean and the variance of each

frame in the host video sequence is constant. This may not be true since due to the time-

varying nature of the video sequences the mean and variance may vary from frame to frame.

So in order to overcome these problems we suggest an adaptive method that can be applied

to calculate the weights, and is free of the above constraints.

In the adaptive scheme we embed another Gaussian watermark to the test sequence

using the spread spectrum technique as defined in Equation 1.2. The test sequence may

or may not contain a hidden message in the form of the original Gaussian watermark. The

idea is to find the weights to maximize the correlation between the Gaussian watermark

embedded to the test sequence and the estimate of this watermark using the weighted col-

lusion scheme. The weights are found using an iterative search procedure such as gradient

descent approach. Once the weights are found, these set of weights are used to estimate

the original watermark embedded in the host sequence. We expect that the weights should
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work reasonably well in estimating the original watermark in the host sequence. The results

using this method are discussed in the next chapter.

F. Block-based Collusion Scheme

In case of fast moving sequences or sequences having non-translational motion the simple

collusion scheme or the weighted collusion scheme may be sub-optimal. We recall that the

aim of collusion is to produce a watermark free frame from a set of similar watermarked

frames. The colluded frame is a close approximation to the host frame. We can imagine

each frame to be made of 8x8 blocks and visualize the collusion attack as the collusion of

the blocks. We note that in case of simple linear collusion or weighted collusion scheme

the blocks that are colluded from different frames may be visually dis-similar and our

assumption that all the frames/blocks in the neighborhood of center frame are similar may

not hold true. So in order to increase the correlation between the blocks that are colluded

we use a block-based similar to MPEG/H.263x coding schemes.

Block based collusion scheme for five frames is shown in Figure 8. The frame corre-

sponding to the center of the window Xk is assumed to be the reference frame. For each

block in the reference frame the best match is found in all the other frames

(Xk−2,Xk−1,Xk+1,Xk+2) in the window. A new set of reconstructed frames

(X ′
k−2,X ′

k−1,X ′
k+1,X ′

k+2) are formed from the matched blocks. The matched blocks are

placed in the reconstructed frames at the position corresponding to the reference block in

the reference frame. The reconstructed frame corresponding to the reference frame Xk is

formed by simply copying the reference frame. The process is repeated for all blocks in

the reference frame. Once the reconstructed frames are formed collusion is performed to

estimate the host frame Uk. Like before, we perform the collusion operation to estimate all

the host frames in the video sequence by shifting the window.
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Another insight which is drawn is that the effective embedding data rate that can be

achieved in a video sequence can be significantly reduced if a block based collusion attack

is used instead of frame based collusion attack. The effective correlation between the blocks

will be higher for non moving parts and will help in detecting messages embedded with

very low strengths in those areas. Thus from an embedder’s point of view he/she can hide

the messages only in the moving areas for which a good match cannot be found in the

frames under collusion attack.

Fig. 8. Block based collusion attack.
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In the next section we discuss the ways to implement a pattern classifier. The input

to the pattern classifier will be the estimate of the watermark in each frame. The classifier

will give a decision to whether there is a message hidden in each frame or not.

G. Pattern Classifier

A pattern classifier helps in assigning class labels to the objects from one of the underlying

classes in the training data. In the perspective of this thesis, the pattern classifier should be

able to discriminate between a stego and a cover video based on the input to the classifier,

which is the estimate of the watermark in each frame. The two main components of a

pattern classifier are the feature extraction and the discriminator. We discuss the design of

each of these components in the next subsections.

1. Feature Extraction

Feature extraction is a process of extracting the distinctive features or characteristics from

a data set to help the discriminator in distinguishing between different classes. The features

extracted from the estimate of the watermark will aid the classifier in detecting the presence

of covert data in the video sequence or help in rejecting one of the two hypotheses.

Figure 9 gives an example of the distribution of the estimated watermark Ŵk for a

frame from a watermarked and a non-watermarked video sequence. It is clear that there

exists a difference between the two cases that can be quantified through statistical features;

the case in which no watermark is present results in a distribution that is not Gaussian.

Since we assume that steganography occurs through the addition of Gaussian watermarks,

we employ features that can measure the level of Gaussianity in a signal. These include

kurtosis, entropy and the 25th percentile.
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Fig. 9. Distribution of the watermark estimates for a video sequence (a) with and (b) without
steganographic data embedded [21].

a. Kurtosis

Kurtosis [37] is a value that partially measures the “shape” of a distribution. Kurtosis for a

Gaussian distribution is 3 and for most of the other distributions it is more than or less than

3 depending on the shape of the distribution. It is defined as

Kurtosis =
1

σ2N

∑
(x− µ)4, (3.21)

where σ and µ represent the variance and mean of the distribution. Kurtosis also measures

the peakedness of a distribution. A higher value signifies a distribution with higher peak

than the normal distribution. We expect the kurtosis of the estimate from the watermarked

sequence to have a kurtosis close to 3. The estimate from a non-watermarked sequence

should yield a higher kurtosis value owing to is peakness. We can see from Figure 9 that the

distribution from the non-watermarked sequence has a curve which is peakier as compared

to the other.

Table VII shows the average kurtosis values for the estimates of the watermark over

40 frames for different watermarked and a non-watermarked sequences. We can see that

the kurtosis values from non-watermarked sequences are much higher as compared to the

watermarked sequences, thus supporting our theory. We note that the kurtosis values from
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a watermarked sequence are closer to 3 only for higher embedding strengths. The estimate

of the watermark from a watermarked video is given by Equation 3.13 and it shows that the

estimate is the sum of residual noise nk and the Gaussian signal W
′
k. At lower embedding

strength the residual noise masks the Gaussian signal and hence the kurtosis values are

higher than expected.

b. Entropy

Entropy [37] helps to determine the degree of “randomness” in a given distribution. For

a fixed variance the Gaussian distribution has the maximum entropy. Thus the estimates

obtained from the watermarked video sequence should have a higher entropy than those

obtained from a non-watermarked sequence since there are a lot of points close to zero.

Entropy is given by

Entropy = −
N∑

i=1

(pX(i)log(pX(i))), (3.22)

where pX(i) is an estimate of the distribution of Ŵk shown in Figure 9 for a specific test

case. In [38] the authors define a good steganographic algorithm as one that can minimize

the increase in entropy due to embedding.

We mathematically show that the entropy for the estimates of the watermark in each

frame from a non-watermarked and a watermarked sequence are different and hence is a

good feature for the classifier. Let us represent the entropy of the estimate of the watermark

obtained for non-watermarked sequences as E0 and the entropy of the estimate of the wa-

termark from a watermarked sequence as E1. The estimate of the watermark obtained from

a watermarked sequence consists of the residual noise encountered due to collusion attack

and the Gaussian signal W
′
k as shown in equation 3.13. The estimate W

′
k is independent of

nk and hence the entropy E1 can be represented as the sum of E0 and entropy of W
′
k.
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Proposition 5 The entropy (E1) of the estimate of the watermark obtained from a water-

marked sequence is greater than the entropy (E0) of the estimate of the watermark obtained

from a non-watermarked sequence in case of simple linear collusion scheme.

Mathematically,

E1 = E0 +
1

2
log(2eπσ

′2
w ) (3.23)

where σ
′2
w = 2L

2L+1
α2σ2

w

Proof: See Appendix A.4

Equation 3.23 suggests that as L increases the difference between E1 and E0 is maxi-

mized. We would like the difference to be maximized since this is one of the discriminating

features used in the classifier. Also, increasing the window length L facilitates the re-

moval of Gaussian watermarks using collusion scheme. However increasing L will also

increase nk, the noise due to collusion attack and increase the expected MSE between the

watermarks. Thus we take an optimum value of L that provides enough discriminatory

information as well as keeps the noise low.

c. 25th Percentile

The last feature that we consider is the 25th percentile of a given distribution defined as

the value above which 25% of the points in the histogram reside. From Figure 9 it is clear

that the distribution when a watermark is present is more spread than when no watermark

is present resulting in a difference in this percentile value.

Figure 10 represents a scatter plot of specific statistical features of Ŵk for different

video sequences that do and do not contain steganographic information. The features are

estimates of the kurtosis, entropy and 25th percentile of the distribution of Ŵk to form a

three-dimensional feature vector that is plotted for different video frames in two different
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test video sequences (shown as parts (a) and (b) in the figure). The colored vector points

represent the results for different video containing hidden information and the clear points

are the results for no hidden information. The separate clustering for the two cases is clear

which makes classification possible.
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(a) Scatter plot for “Backyard” video se-
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(b) Scatter plot for “Hotel” video sequence.

Fig. 10. Scatter plots of kurtosis, entropy and 25th percentile feature vectors extracted in
each frame for two different test video sequences. The colored and clear points
represent the cases with and without a watermark present in the video, respectively
[21].

Once the features are extracted, we build a kNN classifier [39, 40]. More sophisti-

cated classifiers using support vector machines and neural networks [40] could have been

employed for discrimination, but are higher in complexity without providing significantly

improved performance.

2. KNN Classifier

Classifier is an entity that assigns a class or a group to the feature vector extracted from

the test data. In other words it labels the test set into one of the underlying groups from

the training data. The kNN algorithm classifies the feature vector extracted from the test
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data set on the basis of its similarity with the feature vectors from the training set [40].

As the name suggests, the k nearest neighbor algorithm finds the k closest neighbors or

feature vectors to the test feature vector in terms of some distance measure (Euclidean in

our case) in the training set. It assigns a class on the basis of the class labels that appear

most in the k nearest neighbors found. The inputs required for a kNN classifier are the

training data, integer k and the metric to measure the closeness. The value of k will be

calculated experimentally and the training set is chosen using Cross Validation [39, 40]

which is discussed in the next subsection.

a. Training

Training is necessary in a pattern classifier to help the classifier in extracting the important

characteristics of all the classes from the data sets for which we know the class labels. The

training was done in the following way. We picked up 14 video sequences having differ-

ent characteristics so that it represents a broad category of video. These sequences were

watermarked using the spread spectrum technique as shown in Equation 1.2. The same

set of sequences were used to represent the situation where there are no hidden messages

embedded by leaving the sequences unmarked. Features were extracted from both of these

classes and labeled as Class 1 and 2. Cross validation, a method used to find the best train-

ing data from a large set, was used to select the sequences or feature vectors that were used

to represent different classes in the final classifier. The idea of cross validation is to pick

n random test sequences from this training set and predict the probability of false negative

and false positive for the rest of the 14-n sequences. The n sequences act as the training

set for the rest 14-n sequences. The process is repeated a number of times to arrive at the

training sequences that will minimize the probability of false negative and false positive.

This is picked as the final training set and the rest of the sequences are discarded.
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Table I summarizes the overall steganalysis method that incorporates linear collusion

and classification.

Table I. Simple linear collusion based steganalysis.

• Variable Definitions:

N Number of Frames

Xk(, ) kth frame of the video sequence

Yk(, ) kth received frame of the video sequence

X̂k(, ) colluded version of the kth frame

Ŵk(, ) estimate of the watermark in the kth frame

Ok Output from the pattern classifier for the kth frame

Coll() Averaging based collusion attack on 2L+1 frames as described in Section B

Patt() Pattern Classification on as described in Section G

• Algorithm:

for k={1,2,. . . ,N}
X̂k(, ) := Coll(Xk(, ))

Ŵk(, ) := Yk(, )− X̂k(, )

Ok(, ) := Patt(Ŵk(, ))

end
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CHAPTER IV

RESULTS

The sequences1 that were chosen for the simulations consist of grayscale video sequences

in the raw format. The number of frames in each video sequence was restricted to 40 due

to memory constraints in MATLAB. The resolution of the sequences varied for different

video sequences. Most of the sequences that were chosen were slow moving video se-

quences due to the limitations of the proposed algorithm in detecting hidden data in fast

moving sequences. These limitations were discussed in the previous chapter. Appendix B.1

contains the description of each sequence that was used for the simulation. We label the

sequences from 1 to 27 as shown in Table 1 and will refer to the sequences using these

labels for the rest of the thesis.

As discussed in Sections E and F of Chapter I, the messages are embedded in the

spatial domain of each video frame to test the performance of our technique. However,

the reader should note that our approach to steganalysis will still work if the embedding is

done in another linear transform domain such as the discrete cosine transform (DCT). The

embedding was done by adding watermarks Wk from a zero-mean Gaussian distribution as

presented in Equation 1.2 into every pixel of each frame. The watermark strength parameter

α is varied to test the affects on secrecy. The values used in our simulations are α =

1, 3, 5. The smaller the value of α the less perceptible the mark both visually and through

steganalysis, but the lower the capacity or robustness of the covert data embedding.

As mentioned in Section B of Chapter III we use a sliding window to perform the

collusion attack. Different window lengths were employed for a simple linear collusion

attack on test video sequences containing watermarks Xk to produce X̂k. The difference

1The sequences were downloaded from http://ise.stanford.edu/video.html and
http://www.articom.info/1489.html
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Yk − X̂k was then obtained to provide an estimate of αWk. To determine the success of

the window length for steganalysis, the pairwise correlation coefficient ρ(αWk, Ŵk) was

computed, where

ρ(A,B) =
cov(A,B)√

var(A) · var(B)
, (4.1)

cov(·, ·) denotes the covariance and var(·) denotes the variance of the argument random

variable(s).

Figures 11(a),11(b) and 11(c) show the average correlation between the embedded

watermarks and the estimated watermarks over 40 frames using simple linear collusion

for different values of embedding strength and window lengths for various sequences. We

see that in Figure 11(a) the average correlation is highest for majority of the sequences

for a window length of 3. The optimum collusion length increases for higher embedding

strengths which can be seen from Figures 11(b) and 11(c). This is in accordance with our

earlier assertion that for with a fixed value of correlation coefficient and average variance of

the host frames an increase in SNR will lead to a increase in the value of the optimum col-

lusion length. e.g. From Figures 11(a),11(b) and 11(c) we see that the optimum collusion

length of sequence ”alex” is 3,5,13 for embedding strengths of 1,3,5 respectively.

We assume that the embedder uses a low embedding strength for watermark insertion

since a higher embedding strength would leave significant statistical imprints. With this

assumption we chose the optimum collusion length to be 2L + 1 = 5 for the proposed

steganalysis method.

Other issues that require optimization are the training and parameter selection of the

kNN classifier. The number of video sequences required for training for effective classi-

fication is application-dependent. In our work, we employed cross validation to minimize

the probability of false negative with different numbers of training video sequence sets. It

was found that two video sequences are effective for training. The parameter k in the kNN
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Fig. 11. Average correlation between Wk and Ŵk for different sequences.
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classifier [39, 40] that determines the number of “nearest neighbors” searched to reach a

classification decision also needs to be set. Increasing k increases computational complex-

ity, so the optimal value must provide good performance without cost. Our tests showed

that k = 1 gave a low probability of false negative and false positive and higher values of

k did not improve performance.

In Section E of Chapter III we described an adaptive scheme of finding a set of weights

for weighted collusion scheme to detect the presence of a watermark. Using simulations

we depict that the weighted collusion scheme is superior than the simple linear collusion

scheme in estimating the watermark in each frame. The success of the method is noted

by measuring the correlation between the estimated watermark Ŵk and the embedded wa-

termark αWk in each frame. Table VI in Appendix B shows the comparison between the

averaging based scheme and the weighted scheme. We can clearly see an improvement of

about 0.05 in the correlation values for the weighted scheme over the averaging scheme

for an embedding strength of 1. The improvement is not significant for higher embedding

strengths. For the higher embedding strengths we might use the simple linear collusion

scheme instead of the weighted scheme to get rid of the inherent complexity involved in

computing the weights in the weighted collusion scheme.

The probabilities of false negative PFN and false positive PFP were computed for a

given test video sequence by counting the number of misdetections over each of the 40

frames in the sequence; thus if one video frame out of the 40 results in a false detection

the error probability is 2.5%. We estimated PFN by embedding a Gaussian watermark into

a given video sequence and then applying a collusion attack to estimate the watermark

present. The result was then passed to the pattern classification algorithm to determine the

detection result. The fraction of failed detections was counted to estimate PFN . Similarly,

the same approach was applied to unmarked video sequences to estimate PFP .
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Our aim is to detect the presence of covert data in a video sequence on the whole

rather than estimating the presence of watermarks in individual frames. So if PFN and

PPN is less than 50 we still have a successful steganalysis attack. Let us assume that the

PFN for a watermarked sequence is 30. It means that 30 percent of the total number of

frames from a watermarked sequence were classified as non-watermarked and the rest as

watermarked. Adopting a majority takes all scheme suggests that the video sequence is wa-

termarked since the number of frames that were classified as watermarked were more than

the other. The steganalysis method was tested on 3 different variations of the spread spec-

trum steganography. The first method does embedding in the spatial domain as described

in Section E of Chapter I. The other two methods require adding Gaussian watermarks in

the DCT domain which are explained in Appendix C.2.

Tables VIII, IX and X shows the probability of false negative PFN and the probabil-

ity of false positive PFP for the proposed steganalysis method for embedding in spatial

domain. The tables show the error encountered in detection of watermarked and non-

watermarked sequences for different values of alpha using different steganalysis methods.

The comparison between the spatial based steganalysis method based on weiner filtering to

estimate the hidden watermark and the temporal methods such as simple linear collusion

scheme, weighted collusion scheme and the block based scheme has been provided. As we

can see from Table VIII, for an embedding strength of α = 1 the PFN is reasonably low

for most test video sequences. We also note that PFP is higher than PFN and the method

classifies most of the frames of an unwatermarked sequence as watermarked. This is not

of great concern because the overall goal of steganalysis in most applications is to avoid a

false negative detection. Any sequences that is (rightly or wrongly) flagged as potentially

containing hidden information can go under more thorough processing for better detection

results.
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Table IX and X also shows how the performance of the steganalysis technique im-

proves as the magnitude of the embedding strength α increases. It follows that a steganaly-

sis technique that works well for a lower value of α will work at least as well for higher

values. Thus, our analysis of small values of α provides a minimum performance limit on

the algorithm.

The performance of the temporal based simple linear collusion detection is almost

the same to that of the spatial based weiner filtering method to detect the messages. This

suggests no added advantage of using the temporal based schemes over the spatial based

detection schemes that work on individual frames. However we note the improvement in

the error detection probabilities in case of the block-based temporal detection method over

the spatial and simple linear collusion detection schemes.

The steganalysis technique does not quite work well for Sequence No:15 which is

a sequence having a lot of motion. We see that inspite of using block based techniques

the PFP is significantly high and the sequence is always classified as watermarked. This

suggests that the proposed steganalysis method fails if the correlation between the frames

is very low. We can see from Figure 6 that a very high value of SNR is required for video

sequences where the correlation between frames is pretty low in order to have a successful

collusion attack. This is further verified by the simulation results.

The proposed steganalysis method was also tested on video sequences embedded with

watermarks in the DCT domain. The results for false positives and false negatives are

shown in Appendix C.2 for the two different DCT based embedding schemes.

The PFN and PFP for DCT based embedding scheme using Method A shows a similar

trend to that of the spatial based embedding scheme. This is attributed to the fact that

the addition of Gaussian watermarks in the DCT domain can be modeled as addition of

Gaussian watermarks in the spatial domain using Equation 1.2. The DCT transform is

linear and hence any Gaussian watermark added in the DCT domain remains Gaussian in
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the spatial domain. We would like to point out that the proposed steganalysis method has

to undergo no change apart from the training set in order to foil the DCT based spread

spectrum steganography for video sequences.



51

CHAPTER V

CONCLUSION

A. Discussion

The work presented in this thesis demonstrates the potential of our framework and the use

of temporal processing for effective steganalysis. In this chapter we discuss the salient

features of our algorithm and to what extent we were able to achieve our objectives.

To the best of our knowledge we developed the first video steganalysis algorithm that

takes advantage of the temporal redundancy present in the video. We see the improvement

in the performance of our method over the spatial methods that work on frame-by-frame

basis. This clearly shows that the essence of future steganalysis methods for video lies in

the utilization of the temporal information.

From an embedders point of view the presence of temporal redundancy makes video

sequences an attractive choice for cover objects. But the statistical redundancy in the video

aids the steganalyst too in detecting the hidden Gaussian watermarks. This poses serious

challenges to an embedder since the effective data rate is reduced substantially in order

to prevent the insertion of statistical imprints. We earlier asserted that the success of the

proposed method is a factor of the correlation between the host frames. The chances of

detection increase exponentially with the increase in correlation for a fixed SNR. The block-

based scheme further tries to maximize the correlation by finding the best match in the

previous frames corresponding to the reference frame. We conclude that slow moving

video sequences is not an ideal choice for steganography. The notion is also supported by

Chandramouli in [6]. The embedder should therefore hide messages in moving parts of a

video or choose a video that has a lot of motion as a cover object.
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One of our objectives was to study the trade off between robust embedding of mes-

sages and detection capability of our steganalysis method. We see that the detection rate

increases with an increase in the embedding strength of the watermark suggesting robust-

ness increases the chances of detection. The theoretical bounds plotted earlier suggest using

a range of 1 to 3 for α to foil the collusion attack. We note from simulations that for an

embedding strength of 1 the probability of false positive and false negative are relatively

high as compared to higher embedding strengths. The PFN and PFP are low enough for

a successful detection of a covert data in a video sequence for an embedding strength of

3. Thus based on simulations and the theoretical analysis one should embed the Gaussian

watermarks with an embedding strength of 1-3.

We would like to reiterate the fact that the field of watermarking and steganography

complement each other. The method of estimating the watermark in each frame using

collusion attack as proposed in our steganalysis method can be applied to the field of wa-

termarking. It can be used for watermark detection in watermarking applications such as

content authorization, fingerprinting etc. Collusion attack used in our steganalysis method

helps in getting a mark free copy from watermarked sequences. Thus we have shown that

spread spectrum may not be the most robust data hiding scheme for video as proposed in

the literature. The same conception is supported by authors in [6, 31] who propose different

methods to break spread spectrum steganography.

The complexity of the simple linear collusion scheme is very low and can be applied

for real time applications. For every frame that is under a steganalysis test we need to

wait for 2-4 future frames to arrive before one can perform the collusion attack. At a

display rate of 30 frames per sec this corresponds to time lag of 1/10 of a second. The

processing time is bare minimum and thus the total time it takes to predict the presence

or absence of a message after the arrival of a frame is small enough to be applied for real

time applications. The weighted linear collusion scheme or the block based schemes have
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a larger time complexity and hence is not feasible to be used for real time applications. The

increase in performance of these methods over the simple linear collusion schemes makes

it an ideal choice for all situations other than real-time applications.

B. Limitations and Future Directions

In this section we discuss limitations of our algorithm and highlight the areas of future

research.

Apart from the assumption that the watermark is additive white and Gaussian, our

scheme also presumes that the sender embeds the watermark in each pixel of every frame.

To maximize covert communication capacity, this may be reasonable. However, future

investigation must consider how the affects of interleaving the watermark in select pixels

and frames affects the detection accuracy of steganalysis. Such interleaving will provide the

sender with greater secrecy at the expense of capacity or robustness. We expect that there

is a threshold for interleaving below which steganalysis detection will become inaccurate.

Thus, this value determines the effective covert communication capacity that cannot be

detected.

In order to develop a strategy that works for all embedding schemes (not just the

spread-spectrum based Gaussian watermarks discussed in this paper), we need to target the

statistics of the video sequence [1, 17, 19, 15] rather than solely consider the statistics of a

possibly hidden message. The proposed steganalysis schemes uses a model of the distribu-

tion of the embedded message as reference information. A steganalysis technique that also

accounts for the statistics of a natural video sequence may be more general. However this

method may have some disadvantages and may not target all classes of video sequences.
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This method will fail for those situations where the characteristic of the sequence is differ-

ent from natural sequences. The proposed method in this thesis on the other hand will be

more robust to the outliers.

Another possible change that can be made to the block based collusion scheme is to

detect the presence of a watermark at block level rather than a frame level. A collective

decision such as majority wins can be made on each frame using the individual detection

results on the blocks. The detection results for each frame can be used to detect the presence

and absence of a message in the entire video sequence. It is shown in [41] that a distributed

framework can help lower the probability of false negative and false positive.
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APPENDIX A

PROOFS

1. Proof of Proposition 1

The expeted MSE between the estimated watermark and the orginal watermark as defined

in equation 3.14 is given by

E[(Ŵk − αWk)
2] = E[(Uk − X̂k)

2]

= E[(Uk − 1

2L + 1

k+L∑

i=k−L

Xi)
2]

= E[(Uk − 1

2L + 1

k+L∑

i=k−L

(Ui + α ·Wi))
2]

= E[U2
k +

1

(2L + 1)2
(

k+L∑

i=k−L

(Ui + α ·Wi))
2

− 2

2L + 1
Uk(

k+L∑

i=k−L

(Ui + α ·Wi))]

= E[U2
k +

1

(2L + 1)2
((

k+L∑

i=k−L

Ui)
2 + α2(

k+L∑

i=k−L

Wi)
2

+2α(
k+L∑

i=k−L

Ui ·
k+L∑

i=k−L

Wi))− 2

2L + 1
(

k+L∑

i=k−L

(Uk · Ui + α · Uk ·Wi))]

= EU2
k +

1

(2L + 1)2
(E[(

k+L∑

i=k−L

Ui)
2] + E[α2(

k+L∑

i=k−L

Wi)
2]

+2αE[
k+L∑

i=k−L

Ui ·
k+L∑

i=k−L

Wi]− 2

2L + 1
(

k+L∑

i=k−L

E[Uk · Ui + α · Uk ·Wi])]

= σ2
u +

α2σ2
w

2L + 1
+

1

(2L + 1)2
E[(

k+L∑

i=k−L

Ui)
2]− 2

2L + 1

k+L∑

i=k−L

E[Ui · Uk]

(Using Assumption 2, i.e. EWk = 0, EWi.Wj = 0 for i 6= j and
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EWi.Uj = 0 for all i,j)

= σ2
u +

α2σ2
w

2L + 1
+ A−B (A.1)

where,

A =
1

(2L + 1)2
E[(

k+L∑

i=k−L

Ui)
2]

B =
2

2L + 1

k+L∑

i=k−L

E[Ui · Uk]

Now,

B =
2

2L + 1

k+L∑

i=k−L

E[Ui · Uk]

=
2

2L + 1
E[Uk · Uk−L + Uk · Uk−L+1 + . . . + Uk · Uk−1

+Uk · Uk + Uk · Uk+1 + . . . + Uk · Uk+L−1 + Uk · Uk+L]

=
2σ2

u

2L + 1
(ρL + ρL−1 + . . . + ρ + 1 + ρ + . . . + ρL−1 + ρL)

(Using Markov Model defined in Assumption 2)

=
2σ2

u

2L + 1
(1 + 2(ρ + ρ2 . . . + ρL−1 + ρL))

=
2σ2

u

2L + 1
(1 +

2ρ(1− ρL)

1− ρ
)

(Assuming |ρ| < 1, it dosen’t work if ρ = 1)

Now,

A =
1

(2L + 1)2
E[(

k+L∑

i=k−L

Ui)
2]

=
1

(2L + 1)2
E[

k+L∑

i=k−L

Ui

k+L∑

j=k−L

Uj)]

=
1

(2L + 1)2
E[(Uk−L

k+L∑

j=k−L

Uj) + (Uk−L+1

k+L∑

j=k−L

Uj) + . . .

+(Uk+L−1

k+L∑

j=k−L

Uj) + (Uk+L

k+L∑

j=k−L

Uj)]
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=
1

(2L + 1)2
E[

k+L∑

j=k−L

Uk−L · Uj +
k+L∑

j=k−L

Uk−L+1 · Uj + . . .

+
k+L∑

j=k−L

Uk+L−1 · Uj +
k+L∑

j=k−L

Uk+L · Uj]

The 1st term is =
σ2

u

(2L + 1)2
(1 + ρ + ρ2 + . . . + ρ2L−1 + ρ2L)

2nd term is =
σ2

u

(2L + 1)2
(ρ + 1 + ρ + . . . + ρ2L−2 + ρ2L−1)

...
...

...
...

2L + 1th term is =
σ2

u

(2L + 1)2
(ρ2L + ρ2L−1 + ρ2L−2 + . . . + ρ + 1)

The terms can be put together as rows of a Toeplitz matrix and the sum of all the terms is

given by the sum of all the elements in the matrix.

A =
σ2

u

(2L + 1)2

2L+1∑
r=1

2L+1∑
s=1

Tr,s

=
σ2

u

(2L + 1)2

2L∑
r=−2L

2L+1−|r|∑
s=1

T1,|r|+1 (A.2)

where

T =




1 ρ ρ2 . . . ρ2L

ρ 1 ρ . . . ρ2L−1

ρ2 ρ 1 . . . ρ2L−2

...
...

... . . . ...

ρ2L ρ2L−1 . . . ρ 1
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Evaluating Equation A.2 and assuming z = 2L + 1 we have,

A =
σ2

u

z2
[z + 2(z − 1)ρ + 2(z − 2)ρ2 + . . . + 2(z − (z − 1))ρz−1]

=
σ2

u

z2
[z + 2z(ρ + ρ2 + ρ3 + . . . + ρz−1)− 2(ρ + 2ρ2 + 3ρ3 + . . . + (z − 1)ρz−1)]

=
σ2

u

z2
[z + 2zρ

(1− ρz−1)

1− ρ
− 2ρ

z−1∑
j=1

jρj−1]

=
σ2

u

z2
[z + 2zρ

(1− ρz−1)

1− ρ
− 2ρ

z−1∑
j=1

d

dρ
ρj]

=
σ2

u

z2
[z + 2zρ

(1− ρz−1)

1− ρ
− 2ρ

d

dρ

z−1∑
j=1

ρj]

=
σ2

u

z2
[z + 2zρ

(1− ρz−1)

1− ρ
− 2ρ

d

dρ
(ρ

(1− ρz−1)

1− ρ
)]

=
σ2

u

z2
[z + 2zρ

(1− ρz−1)

1− ρ
− 2ρ(

(1− ρz − zρz−1(1− ρ))

(1− ρ)2
)]

Substituting the values of A,B and z = 2L + 1 in equation A.1 we have

E[(Ŵk −Wk)
2] = σ2

u +
α2σ2

w

z
+

σ2
u

z2
[z + 2zρ

(1− ρz−1)

1− ρ
− 2ρ(

(1− ρz − zρz−1(1− ρ))

(1− ρ)2
)]

−2σ2
u

z
(1 +

2ρ(1− ρ
z−1
2 )

1− ρ
)

This simplifies to

E[(Ŵk −Wk)
2] = σ2

u[
z − 1

z
− 2ρ

z(1− ρ)
+

4ρ z+1
2

z(1− p)
− 2ρ(1− ρz)

z2(1− ρ)2
] +

α2σ2
w

z

The mean µ of the host frames in our proof has been ignored and is assumed to be zero.

However the final term will be independent of the mean even if we take it into account.
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2. Proof of Proposition 2

The expected MSE between the watermarks in case there is no collusion attack used is

given by substituting L = 0 or z = 1 in equation 3.16.

E[(Ŵk − αWk)
2] = σ2

u[−
2ρ

(1− ρ)
+

4ρ

(1− ρ)
− 2ρ

(1− ρ)
] + α2σ2

w

= α2σ2
w

3. Proof of Proposition 3

From Proposition 1 we know the expected MSE between the watermarks when we apply

collusion attack. To determine the conditions for which the collusion attack is successful in

estimating the watermark, we consider the case in which the estimated MSE obtained from

collusion attack is smaller than the estimated MSE obtained without the collusion attack.

σ2
u[

z − 1

z
− 2ρ

z(1− ρ)
+

4ρ
z+1
2

z(1− ρ)
− 2ρ(1− ρz)

z2(1− ρ)2
] +

α2σ2
w

z
< α2σ2

w

⇒ σ2
u[

z − 1

z
− 2ρ

z(1− ρ)
+

4ρ
z+1
2

z(1− ρ)
− 2ρ(1− ρz)

z2(1− ρ)2
] <

(z − 1)

z
α2σ2

w

⇒ σ2
u[1−

2ρ

(z − 1)(1− ρ)
+

4ρ
z+1
2

(z − 1)(1− ρ)
− 2ρ(1− ρz)

z(z − 1)(1− ρ)2
] < α2σ2

w

⇒ α2σ2
w

σ2
u

> 1− 2ρ

(z − 1)(1− ρ)
+

4ρ
z+1
2

(z − 1)(1− ρ)
− 2ρ(1− ρz)

z(z − 1)(1− ρ)2

⇒ σ2
u

α2σ2
w

<
1

1− 2ρ
(z−1)(1−ρ)

+ 4ρ
z+1
2

(z−1)(1−ρ)
− 2ρ(1−ρz)

z(z−1)(1−ρ)2

4. Proof of Proposition 5

The entropy of the estimate of the watermark from a watermarked frame is given by

E1 = H(nk + w
′
k) (where H is the entropy operator)

E1 = H(nk) + H(W
′
k) (Since W

′
k is independent of nk)
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E1 = E0 + H(W
′
k)

Now,

W
′
k = α(Wk − C(Wk)) (From Equation 3.13)

W
′
k = α(Wk − 1

2L + 1

k+L∑

i=k−L

Wk)

Now since W
′
k is a linear combination of independent gaussian variables, W

′
k also belongs

to a gaussian distribution.

The mean and the variance of this gaussian distribution is given by:

µ = EW
′
k

= E[α(Wk − 1

2L + 1

k+L∑

i=k−L

Wk)]

= 0 (Since Wk = N(0, σ2
w))

σ = EW
′2
k − µ2

= α2E[(Wk − 1

2L + 1

k+L∑

i=k−L

Wk)
2]

= α2(σ2
w +

σ2
w

2L + 1
− 2σ2

w

2L + 1
)

=
2L

2L + 1
α2σ2

w

We know that the entropy a Gaussian distrbuted random variable is given by 1
2
log(2eπσ2).

Since W
′
k is Gaussian distributed with a variance of σ

′2
w = 2L

2L+1
α2σ2

w, the entropy of it is

given by 1
2
log(2eπσ

′2
w ).

Therefore,

E1 = E0 +
1

2
log(2eπσ

′2
w ) (A.3)
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5. Proof of Proposition 4

From equation 3.14 and 3.19 the cost function that needs to minimized can be written as

E[(Uk −
∑k+L

i=k−L βi(Ui + α ·Wi))
2] subject to a linear constraint

∑k+L
i=k−L βi = 1. We can

solve the above linear constraint problem using Lagrange Mulitpliers. The cost function

can be written as

f(β, λ) = E[(Uk −
k+L∑

i=k−L

βi(Ui + α ·Wi))
2] + 2λ(

k+L∑

i=k−L

βi − 1)

∂(f(β, λ))

∂βj

= 0 for j = k − L, k − L + 1, . . . , k + L

∂(f(β, λ))

∂βj

= E[2(Uk −
k+L∑

i=k−L

βi(Ui + α ·Wi))(−1)(Uj + α ·Wj)] + 2λ

0 = E[−2(Uk(Uj + α ·Wj)−
k+L∑

i=k−L

βi(Ui + α ·Wi)(Uj + α ·Wj))] + 2λ

0 = E[(UkUj −
k+L∑

i=k−L

βi(Ui + α ·Wi)(Uj + α ·Wj))]− λ

E(UkUj) = E[
k+L∑

i=k−L

βi(Ui + α ·Wi)(Uj + α ·Wj)] + λ

E(UkUj) = βjE(α2 ·W 2
j ) +

k+L∑

i=k−L

βiE(UjUi) + λ

σ2
uρ
|k−j| + µ2 = βjα

2σ2
w +

k+L∑

i=k−L

βi(ρ
|i−j|σ2

u + µ2) + λ

σ2
uρ
|k−j| + µ2 = βjα

2σ2
w +

k+L∑

i=k−L

βiρ
|i−j|σ2

u +
k+L∑

i=k−L

βiµ
2 + λ

σ2
uρ
|k−j| = βjα

2σ2
w +

k+L∑

i=k−L

βiρ
|i−j|σ2

u + λ
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The 2L + 1 linear set of equations alongwith the constraint equation can be represented in
a matrix form in the following way.




1
σ2

uρ
L

σ2
uρ
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...
σ2

uρ
L
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1 1 . . . 1 0
σ2

u + α2σ2
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uρ . . . σ2
uρ
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uρ σ2
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...
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σ2
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2L σ2
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L σ2
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uρ

L]T

B = [βk−L βk−L+1 . . . βk+L λ]T

A =




1 1 . . . 1 0

σ2
u + α2σ2

w σ2
uρ . . . σ2

uρ
2L 1

σ2
uρ σ2

u + α2σ2
w . . . σ2

uρ
2L−1 1

...
... . . . ...

...

σ2
uρ

2L σ2
uρ

2L−1 . . . σ2
u + α2σ2

w 1
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APPENDIX B

RESULTS

1. Description of Sequences

The 27 gray scale video sequences in raw format having 40 frames each that are used

for simulations is shown in Table II. Most of the sequences are slow moving sequences

containg scences having little eye, lip or hand movement of the subject. The sequences 1

to 14 will be used for training our classifier. The remaining sequences from 15 to 27 will

be used to test the performance of the proposed steganalysis methods. The training set has

sequences representing from minimal to little motion. The test set also contains sequences

having minimal to low motion. Sequence ”backyard” in the test set is a sequence that shows

some motion due to the movement of the camera.

Table II. Sequence description.

Sequence Number Sequence Name

1 alex

2 carphone

3 container

4 heart

5 highway

6 mobile

7 paris
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Table II. continued.

Sequence Number Sequence Name

8 salesman

9 suzie

10 tempete

11 town

12 trevor

13 akiyo

14 arti

15 backyard

16 bridge-close

17 bridge-far

18 building

19 claire

20 diskus

21 foreman

22 grandma

23 hand

24 house

25 miss

26 mother

27 silent
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Table III. Average correlation between Wk and Ŵk for α = 1.

Window Length(2L+1) 3 5 7 9 11 13

Seq No:1 0.5124 0.4379 0.3757 0.3336 0.3082 0.2877

Seq No:2 0.3856 0.4616 0.4193 0.4290 0.4086 0.4067

Seq No:3 0.3979 0.2600 0.1851 0.1422 0.1154 0.0981

Seq No:4 0.0512 0.0449 0.0424 0.0397 0.0371 0.0348

Seq No:5 0.2783 0.2535 0.2232 0.2070 0.1963 0.1897

Seq No:6 0.3430 0.3706 0.3575 0.3485 0.3408 0.3378

Seq No:7 0.0593 0.0520 0.0474 0.0448 0.0418 0.0397

Seq No:8 0.1905 0.1484 0.1380 0.1308 0.1233 0.1160

Seq No:9 0.2565 0.2228 0.1991 0.1847 0.1778 0.1729

Seq No:10 0.6626 0.6708 0.6110 0.5274 0.4447 0.3734

Seq No:11 0.1153 0.1062 0.0969 0.0894 0.0835 0.0786

Seq No:12 0.1993 0.1325 0.1030 0.0862 0.0772 0.0700

Seq No:13 0.6190 0.6267 0.6107 0.5892 0.5676 0.5462

Seq No:14 0.1537 0.1488 0.1330 0.1193 0.1071 0.0985
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Table IV. Average correlation between Wk and Ŵk for α = 3.

Window Length(2L+1) 3 5 7 9 11 13

Seq No:1 0.7363 0.7406 0.7074 0.6734 0.6457 0.6214

Seq No:2 0.6882 0.7750 0.7675 0.7819 0.7731 0.7739

Seq No:3 0.6922 0.5957 0.4784 0.3896 0.3258 0.2802

Seq No:4 0.1489 0.1337 0.1243 0.1171 0.1106 0.1048

Seq No:5 0.5839 0.5751 0.5360 0.5100 0.4919 0.4805

Seq No:6 0.6582 0.7186 0.7213 0.7204 0.7167 0.7155

Seq No:7 0.1736 0.1539 0.1404 0.1321 0.1241 0.1179

Seq No:8 0.4526 0.3972 0.3762 0.3636 0.3479 0.3275

Seq No:9 0.5643 0.5374 0.5019 0.4789 0.4673 0.4574

Seq No:10 0.7881 0.8499 0.8515 0.8251 0.7824 0.7305

Seq No:11 0.2950 0.2801 0.2616 0.2474 0.2345 0.2232

Seq No:12 0.4794 0.3629 0.2936 0.2518 0.2259 0.2054

Seq No:13 0.7768 0.8280 0.8348 0.8306 0.8213 0.8111

Seq No:14 0.4033 0.4014 0.3691 0.3359 0.3059 0.2827

Seq No:15 0.6168 0.6029 0.5505 0.4980 0.4566 0.4247



72

Table V. Average correlation between Wk and Ŵk for α = 5.

Window Length(2L+1) 3 5 7 9 11 13

Seq No:1 0.7590 0.8419 0.8554 0.8715 0.8726 0.8762

Seq No:2 0.5912 0.5617 0.5433 0.5351 0.5177 0.4943

Seq No:3 0.8017 0.8744 0.8922 0.8879 0.8697 0.8428

Seq No:4 0.6954 0.7178 0.6870 0.6408 0.5983 0.5644

Seq No:5 0.5705 0.5904 0.5740 0.5518 0.5309 0.5174

Seq No:6 0.3112 0.2145 0.1798 0.1655 0.1576 0.1510

Seq No:7 0.5087 0.4709 0.4357 0.4076 0.3852 0.3667

Seq No:8 0.7560 0.7909 0.7778 0.7537 0.7224 0.6901

Seq No:9 0.7590 0.7640 0.7278 0.6925 0.6578 0.6260

Seq No:10 0.4241 0.3882 0.3501 0.3217 0.3013 0.2848

Seq No:11 0.3996 0.3910 0.3738 0.3639 0.3642 0.3572

Seq No:12 0.6828 0.5947 0.5084 0.4466 0.4036 0.3683

Seq No:13 0.7791 0.8216 0.8165 0.8010 0.7860 0.7694

Seq No:14 0.7585 0.7336 0.6472 0.5605 0.4875 0.4288
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Table VI. Correlation between αWk and Ŵk for different values of alpha for sequence
”alex” using averaging and weighted collusion attack.

α 1 3 5

Frame No. Averaging Weighted Averaging Weighted Averaging Weighted

1 0.3720 0.4524 0.7383 0.7672 0.8435 0.8504

2 0.3679 0.4446 0.7353 0.7647 0.8419 0.8487

3 0.4391 0.4874 0.7872 0.7994 0.8679 0.8699

4 0.4364 0.4926 0.7859 0.8000 0.8673 0.8702

5 0.4764 0.5515 0.8095 0.8254 0.8787 0.8818

6 0.4970 0.5499 0.8186 0.8291 0.8828 0.8845

7 0.5167 0.6140 0.8289 0.8444 0.8868 0.8895

8 0.4853 0.5484 0.8146 0.8274 0.8808 0.8829

9 0.4912 0.5827 0.8158 0.8329 0.8809 0.8838

10 0.4636 0.5342 0.8013 0.8182 0.8747 0.8783

11 0.4167 0.4825 0.7722 0.7930 0.8605 0.8646

12 0.4337 0.4989 0.7840 0.8023 0.8664 0.8701

13 0.4463 0.5077 0.7919 0.8071 0.8704 0.8724

14 0.3774 0.4306 0.7425 0.7653 0.8457 0.8506

15 0.4350 0.5104 0.7845 0.8076 0.8673 0.8721

16 0.4325 0.4707 0.7823 0.7919 0.8655 0.8665

17 0.4711 0.5424 0.8058 0.8205 0.8764 0.8789

18 0.4216 0.4806 0.7749 0.7926 0.8616 0.8640

19 0.4163 0.5055 0.7714 0.7996 0.8600 0.8667

20 0.4335 0.4722 0.7859 0.7969 0.8674 0.8700
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Table VI. continued.

α 1 3 5

Frame No. Averaging Weighted Averaging Weighted Averaging Weighted

21 0.3777 0.4507 0.7458 0.7695 0.8470 0.8516

22 0.4087 0.4646 0.7657 0.7841 0.8571 0.8609

23 0.4301 0.4722 0.7818 0.7946 0.8648 0.8673

24 0.4021 0.4314 0.7601 0.7691 0.8542 0.8551

25 0.4041 0.4492 0.7633 0.7778 0.8559 0.8583

26 0.4221 0.4811 0.7755 0.7926 0.8623 0.8659

27 0.4528 0.5172 0.7968 0.8123 0.8731 0.8760

28 0.4572 0.5110 0.7982 0.8098 0.8728 0.8749

29 0.4791 0.5470 0.8104 0.8227 0.8793 0.8812

30 0.3843 0.4207 0.7459 0.7571 0.8470 0.8488

31 0.4266 0.4679 0.7770 0.7878 0.8630 0.8651

32 0.4061 0.4434 0.7657 0.7788 0.8574 0.8599

33 0.4191 0.4792 0.7736 0.7915 0.8611 0.8647

34 0.4703 0.5323 0.8069 0.8202 0.8774 0.8794

35 0.3803 0.4545 0.7455 0.7764 0.8468 0.8543

36 0.3764 0.4825 0.7402 0.7804 0.8436 0.8538

37 0.3867 0.4476 0.7495 0.7804 0.8485 0.8567

38 0.3492 0.4070 0.7149 0.7408 0.8301 0.8363

39 0.3143 0.3729 0.6808 0.7146 0.8104 0.8194

40 0.1926 0.2030 0.4902 0.5008 0.6660 0.6706
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Table VII. Average kurtosis values of Ŵk in case of watermarked and non-watermarked
video sequences.

α 1 3 5

Sequence Watermarked Non-Watermarked Watermarked Non-Watermarked Watermarked Non-Watermarked

1 11.670 53.3703 3.5075 53.3703 2.938 53.3703

2 8.1279 21.3997 3.2317 21.3997 2.9076 21.3997

3 3.1629 102.850 2.8786 102.851 2.8559 102.850

4 5.2722 10.3778 3.3362 10.3778 3.1906 10.3778

5 3.0644 4.1163 2.6771 4.1163 2.6119 4.1163

6 7.0148 7.6084 4.7217 7.6084 3.5211 7.6084

7 21.125 40.0643 5.3969 40.0643 3.4368 40.0643

8 10.561 76.399 3.3026 76.399 3.0214 76.399

9 8.4182 28.2341 3.3834 28.2341 3.1313 28.2341

10 20.625 42.7215 5.0787 42.7215 3.4108 42.7215

11 54.115 60.0454 30.289 60.0454 15.370 60.0454

12 16.475 33.8751 4.2042 33.8751 3.3169 33.8751

13 29.396 188.678 4.6948 188.678 3.2693 188.678

14 3.9711 21.2551 2.724 21.2551 2.7965 21.2551
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APPENDIX C

RESULTS

1. Embedding in spatial domain

Table VIII. False negative (PFN ) and False positive (PFP ) probabilities for steganography
in spatial domain using α = 1.

α = 1

Method Weiner Averaging Weighted Block based

Sequence PFN PFP PFN PFP PFN PFP PFN PFP

Seq No:15 0 100 30 75 37.5 62.5 0 97.5

Seq No:16 10 0 0 0 12.5 0 57.5 12.5

Seq No:17 0 100 2.5 15 0 92.5 10 100

Seq No:18 37.5 100 35 77.5 30 55 7.5 57.5

Seq No:19 100 0 15 0 17.5 15 2.5 0

Seq No:20 75 35 10 90 17.5 97.5 5 77.5

Seq No:21 37.5 40 2.5 42.5 12.5 70 15 55

Seq No:22 0 92.5 20 22.5 10 10 2.5 2.5

Seq No:23 0 100 22.5 87.5 35 72.5 2.5 80

Seq No:24 80 0 47.5 0 25 0 97.5 0

Seq No:25 82.5 0 2.5 12.5 7.5 17.5 0 0

Seq No:26 75 30 22.5 2.5 20 20 5 5

Seq No:27 82.5 100 5 0 15 0 10 0
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Table IX. False negative (PFN ) and false positive (PFP ) probabilities for steganography in
spatial domain using α = 3.

α = 3

Method Weiner Averaging Weighted Block based

Sequence PFN PFP PFN PFP PFN PFP PFN PFP

Seq No:15 0 100 0 100 0 100 0 100

Seq No:16 0 0 0 0 0 0 0 0

Seq No:17 0 0 0 0 0 60 0 100

Seq No:18 0 0 0 100 0 100 2.5 0

Seq No:19 0 0 0 0 0 0 0 0

Seq No:20 0 0 0 0 0 27.5 0 0

Seq No:21 0 0 0 5 0 65 0 7.5

Seq No:22 0 0 0 0 0 0 0 0

Seq No:23 0 100 0 100 0 100 0 100

Seq No:24 0 0 0 0 0 0 65 0

Seq No:25 0 0 0 0 0 0 0 0

Seq No:26 0 0 0 0 0 0 0 0

Seq No:27 0 100 0 0 0 0 0 0
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Table X. False negative (PFN ) and false positive (PFP ) probabilities for steganography in
spatial domain using α = 5.

α = 5

Method Weiner Averaging Weighted Block based

Sequence PFN PFP PFN PFP PFN PFP PFN PFP

Seq No:15 0 100 0 100 0 97.5 0 100

Seq No:16 0 0 0 0 0 0 0 0

Seq No:17 0 0 0 0 0 0 0 0

Seq No:18 0 0 0 100 0 100 0 0

Seq No:19 0 0 0 0 0 0 0 0

Seq No:20 0 0 0 0 0 0 0 0

Seq No:21 0 0 0 0 0 2.5 0 0

Seq No:22 0 0 0 0 0 0 0 0

Seq No:23 0 100 0 95 0 100 0 52.5

Seq No:24 0 0 0 0 0 0 0 0

Seq No:25 0 0 0 0 0 0 0 0

Seq No:26 0 0 0 0 0 0 0 0

Seq No:27 0 0 0 0 0 0 0 0
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2. Embedding in DCT Domain

Messages can be hidden in a video sequence by embedding Gaussian watermarks in the

frequency domain too. We discuss two different ways of hiding Gaussian watermarks in

the DCT domain in the next subsections and present the results of our steganalysis method.

1. Method A

The embedding in the DCT domain is done by first taking a 2D DCT transform of the host

frame. A Gaussian watermark is then added to all the DCT coefficients except the DC

coefficient. The DC coefficient is left unwatermarked to prevent any significant changes in

the visual quality of the watermarked frame from the host frame. An inverse DCT transform

of the watermarked image is taken to arrive back to the spatial domain. The whole process

of watermarking a frame in the DCT domain can be represented by the following equations.

XD
k (m, n) = UD

k (m,n) + α ·Wk(m,n) k = 1, 2, 3 . . . N . (C.1)

where UD
k (m,n) represents the 2D DCT transform of the host frame Uk(m,n) and XD

k (m,n)

represents the watermarked frame in the DCT domain. Wk(m,n) like before represents a

Gaussian watermark and α represents the embedding strength which is constant for the en-

tire video sequence. An inverse DCT transform of the watermarked frame in DCT domain

XD
k (m, n) is taken to arrive back in the spatial domain. The watermarked signal in the

spatial domain is given by Xk(m,n) = IDCT−1[XD
k (m,n)].
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Table XI. False negative (PFN ) and false positive (PFP ) probabilities for DCT based
steganography(Method A) using α = 1.

α = 1

Method Weiner Averaging Weighted Block based

Sequence PFN PFP PFN PFP PFN PFP PFN PFP

Seq No:15 0 100 0 100 0 100 0 0

Seq No:16 0 100 0 2.5 0 20 0 100

Seq No:17 0 100 0 100 0 100 0 0

Seq No:18 0 100 0 100 0 100 0 5

Seq No:19 92.5 0 0 7.5 0 92.5 0 100

Seq No:20 0 100 0 100 0 100 0 5

Seq No:21 0 100 0 92.5 0 100 0 5

Seq No:22 0 100 0 2.5 0 87.5 0 0

Seq No:23 0 100 0 100 0 97.5 0 0

Seq No:24 100 0 0 0 5 0 85 5

Seq No:25 2.5 0 0 10 0 90 0 100

Seq No:26 0 100 0 22.5 0 95 0 5

Seq No:27 0 100 0 2.5 0 47.5 0 0



81

Table XII. False negative (PFN ) and false positive (PFP ) probabilities for DCT based
steganography(Method A) using α = 3.

α = 3

Method Weiner Averaging Weighted Block based

Sequence PFN PFP PFN PFP PFN PFP PFN PFP

Seq No:15 0 100 0 100 0 100 0 100

Seq No:16 0 0 0 0 0 0 0 0

Seq No:17 0 0 0 87.5 0 100 0 100

Seq No:18 0 0 0 100 0 100 0 0

Seq No:19 0 0 0 0 0 67.5 2.5 0

Seq No:20 0 0 0 32.5 0 90 0 0

Seq No:21 0 0 0 5 0 100 0 7.5

Seq No:22 0 0 0 0 0 82.5 0 2.5

Seq No:23 0 100 0 100 0 100 0 100

Seq No:24 0 0 0 0 0 0 72.5 0

Seq No:25 0 0 0 0 0 75 0 0

Seq No:26 0 0 0 0 0 70 0 2.5

Seq No:27 0 100 0 0 0 12.5 0 0
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Table XIII. False negative (PFN ) and false positive (PFP ) probabilities for DCT based
steganography(Method A) using α = 5.

α = 5

Method Weiner Averaging Weighted Block based

Sequence PFN PFP PFN PFP PFN PFP PFN PFP

Seq No:15 0 100 0 100 0 97.5 0 100

Seq No:16 0 0 0 0 0 0 0 0

Seq No:17 0 0 0 0 0 67.5 0 0

Seq No:18 0 0 0 100 0 100 0 0

Seq No:19 0 0 0 0 0 0 0 0

Seq No:20 0 0 0 17.5 0 65 0 0

Seq No:21 0 0 0 0 0 82.5 0 0

Seq No:22 0 0 0 0 0 15 0 0

Seq No:23 0 100 0 95 0 97.5 0 52.5

Seq No:24 0 0 0 0 0 0 0 0

Seq No:25 0 0 0 0 0 5 0 0

Seq No:26 0 0 0 0 0 15 0 0

Seq No:27 0 0 0 0 0 0 0 0

2. Method B

The second method of embedding messages in DCT domain is similar to the first one. This

method is popularly known as the spread spectrum watermarking method designed by Cox

et al. [7]. The only change that is made is the way the Gaussian watermark is added to the

DCT coefficients. The embedding of the watermark is done in the following way.

XD
k (m,n) = UD

k (m,n)(1 + α ·Wk(m,n)) k = 1, 2, 3 . . . N . (C.2)
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The typical value of α that is used for spread spectrum watermarking is 0.1.

Table XIV. False negative (PFN ) and false positive (PFP ) probabilities for DCT based
steganography(Method B) using α = 0.1.

α = 0.1

Method Weiner Averaging Weighted Block based

Sequence PFN PFP PFN PFP PFN PFP PFN PFP

Seq No:15 0 100 0 100 0 100 0 0

Seq No:16 0 100 0 0 7.5 0 0 100

Seq No:17 0 100 0 97.5 0 95 0 0

Seq No:18 0 100 0 100 0 100 0 5

Seq No:19 77.5 20 0 0 0 52.5 0 100

Seq No:20 0 100 0 62.5 0 97.5 0 5

Seq No:21 0 100 0 90 0 100 0 5

Seq No:22 0 100 0 0 0 92.5 0 0

Seq No:23 0 100 0 100 2.5 97.5 0 0

Seq No:24 100 0 0 0 17.5 0 0 5

Seq No:25 52.5 75 0 0 0 65 0 100

Seq No:26 0 100 0 15 0 55 0 5

Seq No:27 0 100 0 0 0 10 0 0
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Table XV. False negative (PFN ) and false positive (PFP ) probabilities for DCT based
steganography(Method B) using α = 0.3.

α = 0.3

Method Weiner Averaging Weighted Block based

Sequence PFN PFP PFN PFP PFN PFP PFN PFP

Seq No:15 0 100 0 100 0 100 0 90

Seq No:16 0 100 0 0 7.5 7.5 0 0

Seq No:17 12.5 0 0 0 0 92.5 0 87.5

Seq No:18 0 32.5 0 100 0 100 0 0

Seq No:19 7.5 0 0 0 0 0 0 0

Seq No:20 0 95 0 30 2.5 12.5 0 0

Seq No:21 0 65 0 0 0 17.5 0 0

Seq No:22 0 100 0 0 0 55 0 0

Seq No:23 0 100 0 67.5 0 100 0 95

Seq No:24 20 0 0 0 0 15 0 0

Seq No:25 0 0 0 0 0 7.5 0 0

Seq No:26 0 20 0 0 0 2.5 0 0

Seq No:27 0 100 0 0 0 0 0 0
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Table XVI. False negative (PFN ) and false positive (PFP ) probabilities for DCT based
steganography(Method B) using α = 0.5.

α = 0.5

Method Weiner Averaging Weighted Block based

Sequence PFN PFP PFN PFP PFN PFP PFN PFP

Seq No:15 0 100 0 90 0 95 0 70

Seq No:16 0 0 0 0 7.5 2.5 0 0

Seq No:17 0 50 0 0 0 72.5 0 0

Seq No:18 0 57.5 0 10 0 100 0 0

Seq No:19 0 95 0 0 0 0 0 0

Seq No:20 0 57.5 0 0 0 7.5 0 0

Seq No:21 0 0 0 0 0 32.5 0 0

Seq No:22 0 100 0 0 0 17.5 0 0

Seq No:23 0 100 0 0 5 77.5 0 42.5

Seq No:24 0 100 0 0 10 0 0 0

Seq No:25 0 97.5 0 0 0 0 0 0

Seq No:26 0 75 0 0 0 0 0 0

Seq No:27 0 100 0 0 0 0 0 0
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