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Abstract: Steganography is the set of techniques aiming to hide information in messages as images.
Recently, stenographic techniques have been combined with polyglot attacks to deliver exploits in
Web browsers. Machine learning approaches have been proposed in previous works as a solution for
detecting stenography in images, but the specifics of hiding exploit code have not been systematically
addressed to date. This paper proposes the use of deep learning methods for such detection, account-
ing for the specifics of the situation in which the images and the malicious content are delivered
using Spatial and Frequency Domain Steganography algorithms. The methods were evaluated by
using benchmark image databases with collections of JavaScript exploits, for different density levels
and steganographic techniques in images. A convolutional neural network was built to classify the
infected images with a validation accuracy around 98.61% and a validation AUC score of 99.75%.
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1. Introduction

Steganography is a set of techniques designed to hide information or objects by
embedding them in another object called a host, so that they go unnoticed. Stenography
has been applied since ancient Greece but it has recently grown in importance as an area
of study in communications and computer security [1] due to its application by illegal
or malicious organisations to evade security measures and extract information by hiding
malicious code in digital objects such as video, images, audio or documents, among other
uses. The fight against stenography is the discipline of steganalysis, which aims to detect
the existence of hidden information in the host.

Depending on the steganography technique, the detection can be easier or more diffi-
cult. One of the most common techniques is the addition of a signature in the stego file, but
other techniques such as adding the data after the host EOF are also very common. More so-
phisticated techniques distribute stego in different ways exploiting different characteristics
of the images. This part is reviewed in Section 2.

Many of the current widely used tools are capable of identifying EOF steganography
or signature [2], but the implementations are not as effective in detecting more sophisticated
techniques and they are able to avoid the security controls.

Steganography techniques can be applied to introduce malicious code based on poly-
glot techniques embedded in a stego image. A polyglot is an image and JavaScript code
at the same time. If in the web page it is invoked as the next block of code, an image
is displayed:

1<img src=‘‘polyglot_stego_image.jpg ’’/>

However, if in the web page it is invoked as the next block of code, a JavaScript code
embedded in the image is executed:

1<script src=‘‘polyglot_stego_image.jpg ’’> </script >
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During the recent COVID-19 pandemic, one of the main attack categories reported
by the European Union Agency for Cybersecurity (ENISA) was the delivery of malware
using undetected and sophisticated mechanisms [3]. One such sophisticated type of attack
is the binomial steganography-polyglot, which has been exploited for real attacks, as it
is currently undetectable by standard security measures [4]. The malicious code can be
executed using “polyglot” techniques, which consist of embedding the code in such a way
that it is executable when is read by the web browser. In this type of attack, it is important
to detect the stego image before it is executed by the browser, which requires some kind of
detection model.

The attacker shows other examples of applications (https://www.bleepingcomputer.
com/tag/steganography/ (accessed on 1 November 2022)), for instance, Zeus malware
to set up a man-in-the-middle attack (https://www.silicon.co.uk/security/virus/zeus-
banking-trojan-205640 (accessed on 1 November 2022)), Lockibot malware family to down-
load the malicious malware as second step embedded in an image or in September of 2022,
the latest Window logo cyber espionage attack (https://www.cybertalk.org/2022/09/30
/hackers-hide-malware-in-windows-logo/ (accessed on 1 November 2022)) for Middle
East countries.

This paper proposes a new approach to detect polyglots. It is based on the early detec-
tion of the stego image created with LSB (Least Significant Bit) steganography, LSB with
Fermat and Fibonacci generators and F5 using deep learning (DL) techniques. Specifically,
a convolutional neural network (CNN) is used to classify the infected images and the clean
images. The main advantages of the work reported here over other approaches are (1) that
the images are only resized in the pre-processing part, trying to keep the images as close as
possible to the original and reducing the time processing and resources consumption; (2) a
very good performance of the algorithm has been obtained in the detection of different
LSB steganographies (LSB, LSB set with generator function (Fibonacci, Fermat), LSB in the
description) and F5 [5]; (3) a higher quality of steganography images is able to be detected
with lower relation of bits per pixel (BPP).

The rest of the paper is structured as follows: Section 2 briefly reviews the background
of steganography and steganalysis techniques, including the application in polyglot attacks
based on steganography. Section 3 proposes a method to detect polyglots and a description
of the different setups and experiments that were performed in order to design the algo-
rithm. Section 4 exposes the results and analysis of the different experiments. Finally, the
Section 5 provides the conclusion, including remarks and outlook.

2. Background

In this section, a brief report on the the state of the art is presented, including relevant
steganography techniques and the corresponding detection approaches, with a focus on
the use of least significant bit stenography (LSB) and F5 for embedding polyglots. Finally,
previous works applying a deep learning approach to steganalysis are described.

2.1. Stenography

As previously stated, steganography is the art of hiding information in a host in such
a way that it is not detectable [6]. There are different types of steganography depending
on the object where the message is hidden, e.g., text, image, audio, video and network or
protocol stenography. This paper focuses on the image stenography.

Several groups of algorithms can be applied to embed data into images [7]. Some
examples of groups of techniques are:

• Based on spatial domain. They are based on the statistics of the image and create a hid-
den channel using a replacement method. It can be implemented in a sequential way,
e.g., using the least significant bits (LSB) or in a random sequence, for instance, by us-
ing the least significant bits (LSB) with Fermat or Fibonacci formulas generator (https:
//stegano.readthedocs.io/en/latest/software.html#the-command-stegano-lsb-set (ac-
cessed on 15 July 2021)).

https://www.bleepingcomputer.com/tag/steganography/
https://www.bleepingcomputer.com/tag/steganography/
https://www.silicon.co.uk/security/virus/zeus-banking-trojan-205640
https://www.silicon.co.uk/security/virus/zeus-banking-trojan-205640
https://www.cybertalk.org/2022/09/30/hackers-hide-malware-in-windows-logo/
https://www.cybertalk.org/2022/09/30/hackers-hide-malware-in-windows-logo/
https://stegano.readthedocs.io/en/latest/software.html#the-command-stegano-lsb-set
https://stegano.readthedocs.io/en/latest/software.html#the-command-stegano-lsb-set
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• Based on the frequency domain. It spreads the data over the frequency domain of
the signal. Almost all robust methods of steganography are based in the Frequency
Domain. Some examples are F5 algorithm (a Discrete Cosine Transform (DCT)),
OutGuess (https://www.rbcafe.es/software/outguess/ (accessed on 1 August 2022)),
YASS (https://github.com/logasja/yass-js (accessed on 1 August 2022)), etc. There
are more robust methods than LSB, although they have the limitation of the number
of least significant bits of an image.

• Based on spread spectrum image steganography (SSIS). They are based on modulating
a narrow band above the carrier.

• Based on machine learning algorithms [8].
• Manually inserting the code in the image randomly, etc.

2.2. Steganalysis: Frameworks and Techniques

Steganalysis is the process of detecting steganography by observing variations at
different levels between the cover object and the final stego file. The aim of steganalysis
is to identify suspicious information flows and to determine whether or not they have
encoded hidden messages [9,10].

The steganalysis techniques depend on what information is available, whether it
is just the stego, both the stego and the cover file, the stego and the message, or the
stego and the steganography technique used. The less information available, the more
difficult the steganalysis becomes. There are frameworks, such as the one proposed by
Xiang-Yang et al. [11], for blind steganalysis.

In addition to the general framework, many authors suggest different taxonomies of
steganalysis techniques as Nissar and Mir’s one [12] or the Karampidis et al. taxonomy [13],
both of them well-known and commonly accepted. Yet neither Karampidis et al. nor Nissar
and Mir include the latest techniques as machine learning or deep learning as a technique
to approach steganalysis, and there are only a few previous studies using these approaches
to address the specificity of polyglots, which are described below.

2.3. Polyglot Attacks with Steganography

Steganography attacks are based in the broad use of multimedia files and the difficul-
ties of the traditional security tools to detect stegos in the files. Some security approaches
detect the strange behaviour, not the steganography infection, so a system could be infected
for a long time without notice. The infection begins just when the user downloads the file
where a polyglot is hidden. Typically, these polyglots are sent by email by phishing [4].

Polyglots are able to execute the code, e.g., in a power shell. The usual behaviour of
the attack is based on botnets that works as command and control (C&C). This means that
there is hidden some malicious code (downloader) which is “zombie” until the control
botnet contacts to it and sends the instructions.

According to Kaspersky ICS CERT, steganography is mainly used in industry target
attacks and in different areas [4]. Some of the most famous pieces of malware using
steganography for espionage were Loki Bot (https://www.zdnet.com/article/lokibot-
information-stealer-now-hides-malware-in-image-files/ (accessed on 1 October 2022)) and
ZeroT (https://attack.mitre.org/software/S0230/ (accessed on 1 October 2022)). Other
examples of bank trojans that use steganography in their attacks, some of them from the
Bebloh family [14], e.g., Shiotob or URLZone, or the Ursnif family [15], e.g., Gozi or ISFB.
Additionally, during the COVID-19 pandemic, there were directed attacks with polyglots
related to making information about the vaccines be unnoticed.

2.4. Previous Work in Steganalysis and Deep Learning

In steganalysis, approaches outside the deep learning fields have been based nowadays
in the computation of rich models followed by ensemble classifiers, as [16] or [17] propose.

Regarding deep learning, the first references using neural networks date back to
2005 [18,19]. These works proposed a feed-forward network used as classifier to detect if

https://www.rbcafe.es/software/outguess/
https://github.com/logasja/yass-js
https://www.zdnet.com/article/lokibot-information-stealer-now-hides-malware-in-image-files/
https://www.zdnet.com/article/lokibot-information-stealer-now-hides-malware-in-image-files/
https://attack.mitre.org/software/S0230/
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there is presence of steganography or not. However, the first approaches in CNN, based
in Local Contrast Normalization or Local Response Normalization, appear in 2015 [20].
The performance of this CNN for stegoanalysis was not as good as that of traditional
approaches, but also in 2015, the first batch normalisation-based CNN approach emerged
with similar performance to the other existing ones [21].

Since CNN requires large amounts of memory and time for the training, the steganog-
raphy and AI communities worked on approaches to reduce them, resulting in approaches
based in transfer learning [22], as the one proposed by [21]. However, these early ap-
proaches do not have good accuracy.

From 2015 to 2016, efforts focused on spatial steganalysis [23,24], and in 2017, work
was reoriented to JPEG steganalysis [23,25]. Then came the GAN model [26,27], but it
does not seem to be very successful since the accuracy was low in comparison to the
traditional works. The GAN approach consisted of generating JPEG-infected images to
train a CNN and generate a model that could subsequently classify between the presence
of steganography or lack thereof. As it will be described in next sections, steganography
is very sensitive to any modification in the images, and, as the GAN approach added
additional noise in the images, the results were not as good as expected.

SRNET [28] is also a CNN for classification of images that tries to add information
to help to detect singularities due to the structure of the network and get rid of the Relu.
The use of Relu and a softmax function for classification, as in the model proposed in this
paper, provides better results for detecting stego images, as we review in Section 4 Results
and discussion.

In 2021, another CNN approach was published [29]. It uses a pre-processing stage,
feature extraction, separable convolutions and a classification module. In addition to pre-
processing, this approach implements a HPF (High-Pass Filter) and 30 filters consisting
of padding and strides. The authors of [30] performed a study of a filter subset selection
method for steganalysis CNN. This study shows that the application of redundant filters
produces over-fitting, introduces noise and exploits the performance of the steganalysis
CNN models. These assertions have been taken as the basis for the approach proposed
in this paper, so the work reported here goes further by minimising pre-processing, only
using a single rescaling step.

The metric Bits per Pixels measures the quality of the steganography implementing
the relation between the number of secret bits embedded and the number of bits of the
original image. This metric is used for [29] to establish the performance of the steganalysis
method, being able to detect infected images with a 0.2 bpp and getting an accuracy of
80.3%. In the final model proposed in this paper, the model is able to detect images with
a 0.0027 bpp and a validation accuracy of 98.61% is obtained, so it is able to detect the
infection in higher-quality steganography images (with a smaller proportion of infected
data in the host) and better validation accuracy.

This new approach only features resizing in the pre-processing stage, it uses a sigmoid
function in the classification, instead of a softmax as [29] did, and it uses a drop-out for
adding more flexibility to the model. The approach also uses Adam optimization and
drop-out in order to improve the generalization of the model, as suggested in [31].

3. Proposal for a Steganalysis Approach to Polyglot Detection
3.1. Description of the Approach

The steganalysis approach reported in this paper is based on the use of convolutional
neural networks (CNN) for image classification. CNNs are selected due to the performance
of this type of Neural Networks (NN) in the classification of images [32,33] and the ability
to learn the different dimensions of the image to distinguish the nuances of the infected
images in comparison to the clean images as used for face recognition in [34].

As CNNs take images (both clean and stego) as input data for training, they are able
to learn their features and classify a new image as infected or clean. It learns patterns more
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difficult to identify by the visual analysis, the analysis of channels or statistical analysis.
This is an important feature to take into account in the selection of this technique.

The steps that the authors have performed for the final proposal CNN are described
below and shown in Figure 1. A data set has been created by collecting clean images from
Coco dataset and ILSVR dataset. On the other hand, stego images were collected from
StegoAppDB [35]. As only a stego F5 dataset was found, a stego dataset for polyglots
must be created. Identified polyglots in Javascript were then collected. With the polyglots
and the cleaned images, stegos were generated with different LSB techniques, sequential
and random.

Figure 1. Framework of Blind Steganalysis.

Once that LSB stego dataset, the clean images dataset and the StegoDB App dataset
have been created, the clean images and the stegos images are joined and then the images
with the metadata of stego or clean label are split into two datasets: a training dataset and
a test dataset. The training dataset is used to train the 2D CNN classification model and the
test dataset to validate the performance of the produced model. As a result of the process, a
model evaluation was obtained in which the validation accuracy was calculated, obtaining
the precision in the classification of the stego images.

The model uses a rescaling pre-processing stage very light in comparison to previous
tests carried out by other authors and described below. The CNN contains 10 blocks of
CNN + Batch Normalisation + Relu that classify into the classes mentioned above, i.e., clean
and infected. To obtain good results, a large variety of colour images, objects, different
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embedded malware/polyglots and different steganography techniques were required, as
explained in the following subsections.

The first model designed is based on a CNN having three parts: the preparation mod-
ule, the convolution module and the classification module. The preparation module was
composed of two further sub-modules in where data are re-scaled and data augmentation
(rotating) and batch normalization (batch size = 32) are applied. The convolution module
was composed of 10 sub-modules (conv2D, batch normalization and activation) and, finally,
the classification module used a sigmoid activation on the basis that only two possible
values should be handled: the presence of steganography or lack thereof.

The output of the network is the probabilities that an image belongs to the “stego”
class and to the “non-stego” class. Due to poor results in validation accuracy (see Figure 2)
using this model, a second version of the model was tested, dropping out the pre-processing
sub-module and removing the data augmentation based on rotation. The dropping out
removes part of information for the training in each iteration making more flexible the
model for possible modifications and the elimination of the data augmentation reduces the
errors in the training, as there were no real stego images. The second and final model (see
Figure 3) obtains very good results for classification, as described in Section 4.

Figure 2. Validation Accuracy and Training Loss of Watermelon & Model 1 & 20 polyglots.

Regarding the dataset to train the model, watermelon images were first used in the
classification model. The dataset contained both stego watermelon images generated with
a polyglot using the LSB technique and clean watermelon images. Initial results gave an
accuracy of 0.9672, which may suggest over-fitting. Although they will be discussed in
detail in the following subsection “Experimental setup”, a number of issues were identified
that could potentially lead to over-fitting, namely:

• The type and variety of objects displayed in the images. COCO were used as sources
since the images they contain show different types of objects. The ILSVRC dataset was
also used as source of images to increase variety and avoid possible biases.

• The number of polyglots embedded in the images. Several trainings were held varying
the number of Javascript polyglots and the number of images infected.
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• The characteristics of the images. Training was conducted with greyscale or colour
images. Polyglots were embedded before and after colour transformation for differ-
ent tests.

• The homogeneity of the images (same size, orientation, etc.) Image transformation
regarding size and orientation has been performed.

Multiple combinations of these cases were made to obtain higher prediction accuracy
and to avoid over-fitting.

Figure 3. Structure of our proposal of CNN to detect LSB Steganography.

Data enrichment (conversion to gray, rotating and resizing the images) was also
applied after the generation of the infected images, but as additional noise was introduced
in the identification of the stego images, detection became impossible (accuracy of 0.561)
(see Figure 4) and this approach was discarded. After testing all possible combinations
in the dataset that could have an impact on accuracy and overfitting, a model with an
accuracy of 95.21% (see Figure 5) was obtained. Then, the model was improved with other
possible steganography algorithms (random LSB Algorithms (LSB with Fibonacci and
Fermat generators and F5), and, after the training, a validation accuracy of 98.61% was
obtained (see Figure 6).

The experimental setup is described in Section 3.2.
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Figure 4. Validation accuracy and Training Loss of Coco Gray & Model 1 & 20 polyglots.

Figure 5. Validation accuracy and Training loss in Coco+ILSVR(205K) Model 2 & 104 Polyglots.
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Figure 6. Validation accuracy and Validation AUC ROC in Coco+ILSVR(205K)+F5 & Model 2 & LSB,
LSB Random, F5.

3.2. Experimental Setup

In order to obtain the most accurate and least over-fitted model, different datasets
were created to train the model. Datasets included both clean images and stego images
with known polyglots embedded using LSB stenography. Images were extracted from the
COCO dataset [36] or a combination of COCO dataset and ILSVR dataset [37]. The infected
datasets were composed of clean images with a different number of hidden polyglot
Javascript code of known vulnerabilities [38]. More concretely, the following datasets and
procedures for training the model were tested:

1. Watermelon dataset + LSB steganography (v0.1): Dataset of different watermelon
images. It contained 1354 clean images and 1946 infected images with 1 polyglot.

2. Watermelon dataset + LSB steganography (v0.2): Dataset of different watermelon
images. It contained 1354 clean images and 1946 infected images with 20 polyglots.

3. COCO Dataset + LSB steganography (v1): Using COCO as source from images that
contain a variety of items/situations, LSB technique was used to create stego images with
polyglots, resulting in a dataset with 37,000 clean images and 3000 infected images.

4. COCO Dataset + LSB steganography + Image modifications (Resizing, Relocation, . . . )
(v2): Using the the dataset configured in (2), data augmentation and images resizing
were performed.

5. COCO Dataset + Gray Conversion + LSB Steganography (v3): Using the clean COCO
dataset configured in (2) (40,000 images), 20,280 images images were first converted
to greyscale and polyglots were included in 1256 of these greyscale images using the
LSB technique.

6. COCO Dataset + LSB Steganography (v4): Using the images from COCO, the num-
ber of different polyglots embedded using the LSB technique was increased up to
20 common and known structures in Javascript. The number of infected images
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were also increased up to 411,000 images, being 328,000 clean images and 83,000
infected images.

7. COCO Dataset + LSB Steganography (v5): As the previous dataset configuration can
suggest overfitting, a new version of the training dataset was designed. Using images
from COCO dataset, the number of different polyglots embedded using the LSB
technique was increased up to 104 common and known structures in JavaScript. The
number of clean images was reduced to 123,460 and the number of infected images
to 31,000.

8. COCO Dataset + ILSVR dataset + LSB Steganography (v6): Using images from both
COCO dataset and ILSVR dataset [37], the following two datasets were generated,
which contained 41.026 clean images and 8.313 embedded images in the first case and
205.130 clean images and 41.026 embedded images in the second. In both cases, stego
images were embedded with 104 common structures of polyglots in JavaScript using
the LSB technique.

9. COCO Dataset + ILSVR dataset + LSB Steganography + LSB Steganography using
Fermat and Fibonacci generation (v7): Based on v4 dataset, 33.347 images infected
using Fermat and Fibonacci generator are added. The final dataset is composed of
279.503 images, from them 41.026 LSB infected images and 33.347 images infected
using Fibonacci and Fermat generators.

10. COCO Dataset + ILSVR dataset + LSB Steganography + LSB Steganography using
Fermat and Fibonacci generation (v7) + F5 [35] (v8) : Based on v5 dataset, 33.347
images infected using Fermat and Fibonacci generator and 621 F5 images are added.
The final dataset is composed of 280.124 images, from them 41.026 LSB infected
images, 621 F5 infected images and 33.347 images infected using Fibonacci and
Fermat generators.

The Python library Stegano (https://pypi.org/project/stegano/ (accessed on 1 July
2021)) was used for generation of stegoimages. Images colour variation was implemented
using the Pillow (https://pypi.org/project/Pillow/ (accessed on 1 July 2021)) library
of Python.

Tensorflow and Python were used to generate code of the models, which were based
on a convolutional neural network for the classification of images. Implementations were
run in multiple environments:

• Local machine;
• Docker Virtual machine based in Tensorflow without GPU;
• Google Colab with no hardware optimizations;
• Google Colab with GPU [39];
• Google Colab with TPU.

Training in the first three environments was discarded due to the resulting long run
times or the impossibility to perform the task. The number of images and the use of the
neural network required hardware optimisations, and the best-performance models were
obtained using Google Colab with TPU.

Regarding the hyperparametry of the models, during the different training processes
of both of them, the hyperparameters were never modified in order to be able to compare
the results in a robust way.

4. Results and Discussion

The two models generated (with and without pre-processing submodule) were tested.
As explained above, the second model (without pre-processing submodule) was generated
on the assumption that, although it was not a standard approach, getting rid of image
details may condition the classification results.

The results of the validation of both models are in Table 1.
The results confirm that the pre-processing sub-module (model 1) is not needed. When

the number of different polyglots that infect images is increased, the model that includes
pre-processing seems not to be good (accuracy 56.1% see Figure 4).

https://pypi.org/project/stegano/
https://pypi.org/project/Pillow/
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Using the second model (without pre-processing) with a wide variety of images and
the same increased number of different polyglots, accuracy reaches very good values
95.43%, see Figure 7).

Table 1. Results of Experiments.

Dataset Model Number of Polyglots Type of Stego Val Accuracy

Watermelon (v0.1) 1 1 LSB 0.9672
Watermelon (v0.2) 1 20 LSB 0.561

Coco RGB (v1) 1 1 LSB 0.9507
Coco RGB (v2) 2 20 LSB 0.9543
Coco Gray (v3) 2 20 LSB 0.9399
Coco RGB (v5) 2 104 LSB 0.9739

Coco RGB (v3+v4) 2 20 LSB + Gray 0.0915
Coco+ILSVR (v6) 2 104 LSB 1
Coco+ILSVR (v7) 2 104 LSB 0.9521

Coco+ILSVR+F5 (v8) 2 NA LSB, F5 0.9861

Figure 7. Validation accuracy and Training loss in Coco RGB(v2) Model 2 & 20 Polyglots.

The second model performs very well overall. The results also show that the richer
the image, the easier it is to detect embedded polyglots. Thus, the second model more
accurately classifies embedded polyglots in colour images than in greyscale images.

It is also noteworthy that if rescaling, greyscale conversion or rotation occurs after LSB
stenography, the noise introduced makes classification not possible.

On the other hand, if a large number of different polyglots are used to infect the
images, the number of images must be considerably larger to avoid overfitting.

When the second model is trained in a realistic way, i.e., with 280k (approx.) very
different images that are provided from different sources and a good number of different
polyglots, it can classify with 95.21% accuracy (Figure 5) whether an image is infected or
not, with a 0.0027 bpp in the worse relationship, and an error less than 0.06%, which can be
considered a good quality indicator of the model and it is supposed to be an advantage
over other approaches such as [28,29], that obtain 80.3% of accuracy with a 0.2 bpp in the
first case and a 31.3% of error in the second case.

Finally, Model 2 was trained with richer types of steganography methods (LSB + LSB
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with Fermat and Fibonacci Generators and F5) and it results in a new model with a
validation accuracy of 98.61% and a validation AUC score of 99.75% (see Figure 6).

5. Conclusions and Outlook

Convolutional networks have demonstrated their ability to solve image-based tasks
such as recognition, classification or segmentation in previous work. In this work, these
networks have been used for a stegoanalysis task, namely, for the detection of polyglot
payloads in images, which is quite different from the original applications of this type
of networks. Results provide evidence of the feasibility of these networks to solve the
task and the model provided evidence of better detection results than other previously
proposed approaches.

However, results shown here are limited to the detection of stego images using the
LSB and F5 stegographic techniques. Future work should expand the range of infected
images, including a diversity of stegographic techniques. This is critical in the adversarial
environment of malware detection using polyglots, whereby the robustness of models
for detecting a diversity of potential variations in the embedded payload represents a
significant challenge.
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