118 research outputs found

    Spacecraft formation flying using bifurcating potential fields

    Get PDF
    The distributed control of spacecraft flying in formation has been shown to have advantages over conventional single spacecraft systems. These include scalability, flexibility and robustness to failures. This paper considers the real problem of actuator saturation and shows how bound control laws can be developed that allow pattern formation and reconfigurability in a formation of spacecraft using bifurcating potential fields. In addition the stability of the system is ensured mathematically through dynamical systems theory

    Pattern transition in spacecraft formation flying using bifurcating potential field

    Get PDF
    Many new and exciting space mission concepts have developed around spacecraft formation flying, allowing for autonomous distributed systems that can be robust, scalable and flexible. This paper considers the development of a new methodology for the control of multiple spacecraft. Based on the artificial potential function method, research in this area is extended by considering the new approach of using bifurcation theory as a means of controlling the transition between different formations. For real, safety or mission critical applications it is important to ensure that desired behaviours will occur. Through dynamical systems theory, this paper also aims to provide a step in replacing traditional algorithm validation with mathematical proof, supported through simulation. This is achieved by determining the non-linear stability properties of the system, thus proving the existence or not of desired behaviours. Practical considerations such as the issue of actuator saturation and communication limitations are addressed, with the development of a new bounded control law based on bifurcating potential fields providing the key contribution of this paper. To illustrate spacecraft formation flying using the new methodology formation patterns are considered in low-Earth-orbit utilising the Clohessy-Wiltshire relative linearised equations of motion. It is shown that a formation of spacecraft can be driven safely onto equally spaced projected circular orbits, autonomously reconfiguring between them, whilst satisfying constraints made regarding each spacecraft

    A novel coordination framework for multi-robot systems

    Get PDF
    Having made great progress tackling the basic problems concerning single-robot systems, many researchers shifted their focus towards the study of multi-robot systems (MRS). MRS were shortly found to be a perfect t for tasks considered to be hard, complex or even impossible for a single robot to perform, e.g. spatially separate tasks. One core research problem of MRS is robots' coordinated motion planning and control. Arti cial potential elds (APFs) and virtual spring-damper bonds are among the most commonly used models to attack the trajectory planning problem of MRS coordination. However, although mathematically sound, these approaches fail to guarantee inter-robot collision-free path generation. This is particularly the case when robots' dynamics, nonholonomic constraints and complex geometry are taken into account. In this thesis, a novel bio-inspired collision avoidance framework via virtual shells is proposed and augmented into the high-level trajectory planner. Safe trajectories can hence be generated for the low-level controllers to track. Motion control is handled by the design of hierarchical controllers which utilize virtual inputs. Several distinct coordinated task scenarios for 2D and 3D environments are presented as a proof of concept. Simulations are conducted with groups of three, four, ve and ten nonholonomic mobile robots as well as groups of three and ve quadrotor UAVs. The performance of the overall improved coordination structure is veri ed with very promising result

    Autonomous Behaviors With A Legged Robot

    Get PDF
    Over the last ten years, technological advancements in sensory, motor, and computational capabilities have made it a real possibility for a legged robotic platform to traverse a diverse set of terrains and execute a variety of tasks on its own, with little to no outside intervention. However, there are still several technical challenges to be addressed in order to reach complete autonomy, where such a platform operates as an independent entity that communicates and cooperates with other intelligent systems, including humans. A central limitation for reaching this ultimate goal is modeling the world in which the robot is operating, the tasks it needs to execute, the sensors it is equipped with, and its level of mobility, all in a unified setting. This thesis presents a simple approach resulting in control strategies that are backed by a suite of formal correctness guarantees. We showcase the virtues of this approach via implementation of two behaviors on a legged mobile platform, autonomous natural terrain ascent and indoor multi-flight stairwell ascent, where we report on an extensive set of experiments demonstrating their empirical success. Lastly, we explore how to deal with violations to these models, specifically the robot\u27s environment, where we present two possible extensions with potential performance improvements under such conditions

    The development of a robotic test bed with applications in Q-learning

    Get PDF
    In this work, we show the design, development, and testing of an autonomous ground vehicle for experiments in learning and intelligent transportation research. We then implement the Q-Learning algorithm to teach the robot to navigate towards a light source. The vehicle platform is based on the Tamiya TXT-1 chassis which is out\ufb01tted with an onboard computer for processing high-level functions, a microcontroller for controlling the low-level tasks, and an array of sensors for collecting information about its surroundings. The TXT-1 robot is a unique research testbed that encourages the use of a modular design, low-cost COTS hardware, and open-source software. The TXT-1 is designed using different modules or blocks that are separated based on functionality. The different functional blocks of the TXT-1 are the motors, power, low-level controller, high-level controller, and sensors. This modular design is important when considering upgrading or maintaining the robot. The research platform uses an Apple Mac Mini as its on-board computer for handling high-level navigation tasks like processing sensor data and computing navigation trajectories. ROS, the robot operating system, is used on the computer as a development environment to easily implement algorithms to validate on the robot. A ROS driver was created so that the TXT-1 low-level functions can be sensed and commanded. The TXT-1 low-level controller is designed using an ARM7 processor development board with FreeRTOS, OpenOCD, and the CodeSourcery development tools. The RTOS is used to provide a stable, real-time platform that can be used for many future generations of TXT-1 robots. A communication protocol is created so that the high and low-level processors can communicate. A power distribution system is designed and built to deliver power to all of the systems efficiently and reliably while using a single battery type. Velocity controllers are developed and implemented on the low-level controller. These control the linear and angular velocities using the wheel encoders in a PID feedback loop. The angular velocity controller uses gain scheduling to overcome the systems nonlinearity. The controllers are then tested for adequate velocity response and tracking. The robot is then tested by using the Q-Learning algorithm to teach the robot to navigate towards a light source. The Q-Learning algorithm is \ufb01rst described in detail, and then the problem is formulated and the algorithm is tested in the Stage simulation environment with ROS. The same ROS code is then used on the TXT-1 to implement the algorithm in hardware. Because of delays encountered in the system, the Q-Learning algorithm is modi\ufb01ed to use the sensed action to update the Q-Table, which gives promising results. As a result of this research, a novel autonomous ground vehicle was built and the Q-Learning source \ufb01nding problem was implemented.\u2

    Formation Control of Stochastic Multivehicle Systems

    Get PDF

    Reactive Control Of Autonomous Dynamical Systems

    Get PDF
    This thesis mainly consists of five independent papers concerning the reactive control design of autonomous mobile robots in the context of target tracking and cooperative formation keeping with obstacle avoidance in the static/dynamic environment. Technical contents of this thesis are divided into three parts. The first part consists of the first two papers, which consider the target-tracking and obstacle avoidance in the static environment. Especially, in the static environment, a fundamental issue of reactive control design is the local minima problem(LMP) inherent in the potential field methods(PFMs). Through introducing a state-dependent planned goal, the first paper proposes a switching control strategy to tackle this problem. The control law for the planned goal is presented. When trapped into local minima, the robot can escape from local minima by following the planned goal. The proposed control law also takes into account the presence of possible saturation constraints. In addition, a time-varying continuous control law is proposed in the second paper to tackle this problem. Challenges of finding continuous control solutions of LMP are discussed and explicit design strategies are then proposed. The second part of this thesis deals with target-tracking and obstacle avoidance in the dynamic environment. In the third paper, a reactive control design is presented for omnidirectional mobile robots with limited sensor range to track targets while avoiding static and moving obstacles in a dynamically evolving environment. Towards this end, a multiiii objective control problem is formulated and control is synthesized by generating a potential field force for each objective and combining them through analysis and design. Different from standard potential field methods, the composite potential field described in this paper is time-varying and planned to account for moving obstacles and vehicle motion. In order to accommodate a larger class of mobile robots, the fourth paper proposes a reactive control design for unicycle-type mobile robots. With the relative motion among the mobile robot, targets, and obstacles being formulated in polar coordinates, kinematic control laws achieving target-tracking and obstacle avoidance are synthesized using Lyapunov based technique, and more importantly, the proposed control laws also take into account possible kinematic control saturation constraints. The third part of this thesis investigates the cooperative formation control with collision avoidance. In the fifth paper, firstly, the target tracking and collision avoidance problem for a single agent is studied. Instead of directly extending the single agent controls to the multiagents case, the single agent controls are incorporated with the cooperative control design presented in [1]. The proposed decentralized control is reactive, considers the formation feedback and changes in the communication networks. The proposed control is based on a potential field method, its inherent oscillation problem is also studied to improve group transient performance
    corecore