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Abstract— The distributed control of spacecraft flying in
formation has been shown to have advantages over conventional
single spacecraft systems. These include scalability, flexibility
and robustness to failures. This paper considers the real
problem of actuator saturation and shows how bound control
laws can be developed that allow pattern formation and
reconfigurability in a formation of spacecraft using bifurcating
potential fields. In addition the stability of the system is ensured
mathematically through dynamical systems theory.

I. INTRODUCTION

Recently formation flying has emerged as an enabling
technology for future space systems that allows for a variety
of new and exciting mission concepts. By distributing
the functionality of the system over several spacecraft it
has been shown that the performance can be significantly
improved in comparison with a large single spacecraft[1]. At
present there are several formation flying concepts currently
being investigated, for example, for interferometric/sparse
aperture missions. The Stellar Imager is an example of
such a mission that consists of a UV/Optical deep-space
telescope composed of approximately30 one-meter array
elements[2]. Another example is the DARWIN mission that
will consist of6 spacecraft equipped with optical telescopes
in formation at the Sun-Earth L2 point[3].

Scharf et al.[4] and Lawton [5] define five formation
control architectures for spacecraft formation flying;
Multiple-Input, Multiple-Output (MIMO), Virtual Structure
(VS), Leader/Follower (L/F), Cyclic and behavioral.

MIMO follows the multiple input, multiple output
methodology, considering the relative states of the
formations as a single plant[6]. The advantage of this
system is that optimality can be guaranteed, however,
the controller can become unstable with the failure of
one spacecraft[4]. The VS system is a centralised control
architecture where all spacecraft in the formation are part
of a virtual rigid structure where changes in the position
of each spacecraft are communicated with a formation
controller and the appropriate alterations are made to the
structure[7]. The system has the advantage of maintaining
a formation well during manoeuvrers[8] , however, it does
not perform well if the formation shape is time-varying and
is also susceptible to failure as it is centralised control [9].

The L/F architecture is a centralised hierarchical control
scheme where one spacecraft obtains information on
a desired trajectory and follower spacecraft track the
leader[10], [11]. The Landsat-7 and Earth Observing-1
(EO-1) satellites are examples of a real hierarchical L/F
mission and is generally considered the first mission to
demonstrate formation flying[1]. The two satellites in this
formation do not communicate with each other directly.
Instead a central controller determines Landsat-7’s position
and sends this information to EO-1 determining the future
orbits of both spacecraft[12]. The limitation of this system
is that it is also dependent upon the central controller and
is therefore susceptible to failure. In addition as the number
of spacecraft increase, the workload required to maintain
a formation discretely will increase significantly. Cyclic
controller architectures are similar to the L/F however each
spacecraft are connected in a non-hierarchical way[13].

A promising approach to overcome the limitations of the
architectures discussed above is to develop behavioral control
architectures in which all spacecraft interact producing an
emergent global behaviour. One such method is the use
of the artificial potential function method[14] that is used
throughout this paper. This autonomous distributed system
allows for agents to be driven to desired goal positions
whilst ensuring collision avoidance and can be considered
scalable, flexible and robust to individual spacecraft failures.
It has been used successfully, for example, by Reif and
Wang as a form of distributed behavioural control for
autonomous robots[15], by McQuade[16] in formation
flying and by Badaway and McInnes in autonomous
structure assembly[17]. Related approaches have been
developed by Izzo to form coherent spatial patterns in large
spacecraft swarms[18].

For real, safety critical applications it is essential thatthe
behaviour of the spacecraft be verified in order to ensure
that no unwanted behaviours will occur. Winfield[19] has
introduced the term ‘swarm engineering’ to highlight the key
issues that are involved in real, safety critical applications
as opposed to those based on simulation. Through the use
of dynamical systems theory this paper aims to take steps
towards replacing algorithm validation with mathematical



proof. Bifurcation methods are employed to create a flexible
system that can allow for different spacecraft configurations
to be formed through a simple parameter changes to
command the entire formation.

The paper proceeds as follows. In the next section we
describe the formation model used and explain the artifi-
cial potential field method and bifurcation theory. We then
discuss the linear and non-linear stability of the models
developed inSection III. Section Section IV shows the
numerical results of simulations carried out and also control
force experienced during simulation.

II. FORMATION MODEL

A. Model and Basic Formation Properties

We consider a swarm of homogeneous autonomous space-
craft (1 ≤ i ≤ N ) interacting via an artificial potential
functionU . It is assumed that all spacecraft can communicate
with each other and are fully actuated. The negative gradient
of the artificial potential defines a virtual force acting on
each spacecraft so that the dynamics of each spacecraft can
be described by Eq. 1 and 2 with mass,m, position,xi, and
velocity, vi;

dxi

dt
= vi (1)

m
dvi

dt
= −∇iU

S(xi) −∇iU
R(xij) − σvi (2)

From Eq. 2 it can be seen that the virtual force experienced
by each spacecraft is dependent upon the gradient of two
different artificial potential functions and a dissipativeterm,
where σ > 0 controls the amplitude of the dissipation.
The first term in Eq. 2 is defined as thesteering potential,
US which will control the formation, whereas the second
term in Eq. 2 is the collision avoidance pairwiserepulsive
potential, UR.

The repulsive potentialis based on a generalized Morse
potential [20] as shown in Eq. 3;

UR
ij =

∑

j,j 6=i

Cr exp−|xij |/Lr (3)

where Cr and Lr represent the amplitude and length-
scale of repulsive potential respectively and|xij | = |xi−xj |.

The total repulsive force on theith spacecraft is dependent
upon the position of all the other(N − 1) spacecraft in
the formation. The repulsive potential is therefore used to
ensure that as the spacecraft are steered towards the goal
state they do not collide with each other. Once all the
spacecraft have been driven to the desired equilibrium state
the repulsive potential also ensures that they are equally
spaced for symmetric formations.

B. Artificial Steering Potential Function

The aim of the steering potential is to drive each
spacecraft to a desired position in phase space with the
repulsive potential ensuring collision avoidance and equally
spaced symmetric formations. We have previously shown
how this can be achieved through classical bifurcation
methods in order to create a system that is capable of
forming three different formations; ring, double ring and
cluster through a simple parameter change assuming ideal
spacecraft [21]. In order to ensure the stability of real,
mission critical systems it is important to consider actuator
saturation.

In [21] the steering potential was based on the classical
pitchfork bifurcation as shown in Eq. 4 and Fig. 1 with
xi = (ρi, zi)

T and ρi = (x2 + y2)0.5. As the gradient of
this potential is unbound as the distanceρi from the origin
increases the control force is also unbound and actuator
saturation would occur in the system.

US(xi; µ, α) = −1

2
µ (ρi − r)2

+
1

4
(ρi − r)

4
+

1

2
αz2

i (4)
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Fig. 1. Potential functions: (i)µ < 0 and (ii) µ > 0

Recently work done by Badaway and McInnes [17] de-
vised a promising approach to overcome this unbound con-
trol force through the use of a hyperbolic potential function.
This function has a smooth shape at the goal state whilst
becoming asymptotic with a constant gradient (thus bound
control force) as the distance from origin increases. Equation
5 and Fig. 2 show the hyperbolic control potential,Uh(ρi),
that can be used as the steering potential in order to achieve
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a bound control force, where the constantCh controls the
amplitude of the function;

Uh(ρi) = Ch

[

(ρi − r)2 + 1
]0.5

(5)
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Fig. 2. Hyperbolic Potential Function (Ch = 1, r = 5)

In order to make use of the principles demonstrated
through the pitchfork bifurcation we can add an additional
exponential potential function,Ue(ρi), shown in Eq. 6 and
Fig. 3 that has amplitudeCe, range Le, and bifurcation
parameterµ;

Ue(ρi) = µCe exp−(ρi−r)2/Le (6)
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Fig. 3. Exponential potential function (Ce = 1, Le = 1, r = 5): (i)
µ > 0 (ii) µ < 0

Combining Eq. 5 and 6 together we achieve the bound
steering potential given in Eq. 7 with Fig. 4 and Fig.
5 showing the bifurcation diagram and potential of this
equation. The last term in Eq. 7 ensures that the formation
is created in the x-y plane driving the z-position coordinate
to zero.

US(xi) = Uh(ρi) + Ue(ρi)

= Ch

[

(ρi − r)2 + 1
]0.5

+ µCe exp−(ρi−r)2/Le

+Cz

[

z2
i + 1

]0.5
(7)
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Fig. 4. Steering potential bifurcation diagram (Ch = 1, r = 5, Ce = 1,
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h
: µ ≤ 0, Ch = 1,

Ce = 1, Le = 1, r = 5 (ii) US

h
: µ > 0, Ch = 1, Ce = 3, Le = 1,

r = 5

III. STABILITY

A. Artificial Potential Function Scale Separation

As noted in the previous section the force experienced
by each spacecraft is dependent upon the gradient of two
different artificial potential functions both of which are
dependent upon position;

US = Ch

[

(X − r)2 + 1
]0.5

+ µCe exp−(X−r)2/Le

(8)

UR = Cr exp−X/Lr (9)
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For illustration we consider a simple 1-dimensional
system with position coordinateX .

Defining an outer region dependent upon the steering
potential only and an inner region dependent upon the
repulsive potential only we can show that these two regions
are separated so that the spacecraft move under the influence
of the long-range steering potential, but with short range
collisions (forLr/R << 1) effectively creating a boundary
layer between them. This can then be used to determine
the non-linear stability of the formation using the steering
potential only.

For 1D motion of a spacecraft of massm we have;

m
dV

dt
= −∂UR

∂X
− ∂US

∂X
− σV (10)

so that,

mV
dV

dX
=

Cr

Lr
exp−X/Lr − Ch(X − R)

[(X − R)2 + 1]
0.5

+
2µCe

Le
(x − r) exp−(X−R)2/Le −σV

(11)

ScalingX such thatS = X/R then;

1

R
mV

dV

dS
=

Cr

Lr
exp

−
R

Lr
S

+R(S − 1)

[

2µCe

Le
exp− (SR−R)2

Le

− Ch

[(SR − R)2 + 1]
0.5

]

− σV (12)

Now defineε =
Lr

R
<< 1 so that;

mV
dV

dS
=

Cr

ε
exp

−
S

ε

+R






R(S − 1)







2µCe

Le
exp

−
(SR − R)2

Le

− Ch

[(SR − R)2 + 1]0.5

)

− σV

]

(13)

Let ε → 0 in order to consider ‘far field’ dynamics which
forms a singularly perturbed system and note that;

lim
ε→0

1

ε
exp



−
S

ε





= 0 (14)

Therefore at large separation distances the repulsive
potential vanishes and we can consider the steering potential

only when considering the stability of analysis of the system.

Conversely if we defineS =
S

ε
we find that the ‘near

field’ dynamics are defined by;

mV
dV

dS
= Cr exp−S

+ǫR

[

R(S − 1)

(

2µCe

Le
exp− (SR−R)2

Le

− Ch

[(SR − R)2 + 1]
0.5

)

− σV

]

(15)

and lettingε → 0;

mV
dV

dS
= Cr exp−S (16)

Thus, at small separations the steering potential vanishes
and we can treat the collisions separate in the subsequent
stability analysis.

Also if we consider a spacecraft to be moving at its
maximum speedVm towards another spacecraft and assume
that the spacecraft needs to brake toV = 0 atS = Xmin/Lr

we have;

m

∫ 0

Vm

V dV = Cr

∫ S

∞
exp−S dS (17)

so that,

−1

2
mV 2

m = −Cr

[

exp−S
]S

∞ (18)

The minimum separation is then estimated as;

Xmin = Lr ln

(

2Cr

mV 2
m

)

(19)

Therefore, we can assure collision avoidance with the
condition that2Cr > mV 2

m.

B. Linear Stability

In order to determine the linear stability of a system of
spacecraft subject to such a1-parameter bifurcation steering
potential we perform an eigenvalue analysis on the linearized
equations of motion assuming that at large separation dis-
tances the repulsive potential can be neglected through scale
separation as explained insection II A. The linear stability
analysis will be used to determine the local behaviour of the
system by calculating its eigenvalue spectrum. Therefore,the
equations of motion for the model are re-cast as;

(

ẋi

v̇i

)

=

(

vi

−σvi −∇iU
S(xi)

)

=

(

f(xi, vi)
g(xi, vi)

)

(20)

Let xo and vo denote fixed points witḣxi = v̇i = 0 so
that;
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f(xo, vo) = 0 (21)

g(xo, vo) = 0 (22)

Defining δxi = xi − xo and δvi = vi − vo and Taylor
Series expanding about the fixed points to linear order the
eigenvalues of system can be found using;

(

δẋi

δv̇i

)

= J
(

δxi

δvi

)

(23)

where,

J =

( ∂
∂xi

(f(xi, vi))
∂

∂vi
(f(xi, vi))

∂
∂xi

(g(xi, vi))
∂

∂vi
(g(xi, vi))

)∣

∣

∣

∣

xo,vo

(24)

The Jacobian,J, is then a4x4 matrix given by;

J =











0 0 1 0
0 0 0 1

−∂2U
∂ρ2

i

− ∂2U
∂ρi∂zi

−σ 0

− ∂2U
∂ρi∂zi

−∂2U
∂z2

i

0 −σ











∣

∣

∣

∣

∣

∣

∣

∣

∣

x̃o,vo

(25)

Substituting a trial exponential solution into Eq. 23 we
find that;

(

δxi

δvi

)

=

(

δxo

δvo

)

eλt (26)

Therefore, the eigenvalues,λ, of the system are found
from det(J − λI ) = 0.

For µ < 0 (Ch = 1, Ce = 1, Le = 1 and r = 5)
equilibrium of Eq. 20 occurs whenρeq = 5, zeq = 0 and
veq = 0. Evaluating the Jacobian matrix given in Eq. 25 with
µ = −2, σ = 2 we find that;

J =









0 0 1 0
0 0 0 1
−5 0 −2 0
0 −1 0 −2









(27)

The corresponding eigenvalue spectrum is then;
λ = −1 ± i,−1,−1. As the eigenvalues are either
negative real or complex with negative real part the
equilibrium position can be considered linearly stable.

For µ > 0 (Ch = 1, Ce = 1, Le = 1 and r = 5)
equilibrium occurs when;ρeq1 = 5, ρeq2 = 3.61, ρeq3 =
6.39, zeq = 0 andveq = 0. The Jacobian matrix evaluated at
the three different equilibrium positions is given by Eq. 28,
29 and 29.

J1 =









0 0 1 0
0 0 0 1
3 0 −2 0
0 −1 0 −2









(28)

J2 =









0 0 1 0
0 0 0 1

−1.86 0 −2 0
0 −1 0 −2









(29)

J3 =









0 0 1 0
0 0 0 1

−1.86 0 −2 0
0 −1 0 −2









(30)

The eigenvalues forJ1 are; λ = −3,−1,−1, 1. As
atleast one eigenvalue is positive the equilibrium position
in linearly unstable. The eigenvalues forJ2 and J3 are;
λ = −1 ± i,−1,−1. Again as the eigenvalues are negative
real or complex with negative real part the equilibrium
positions can be considered as linearly stable.

C. Non-linear stability:1-parameter static bifurcation

To determine the non-linear stability of the dynamical
system we consider Lyapunov’s Second Theorem as
expressed by Kalman and Bertram[22], [23] ;

“ If the rate of change ofdE(x)/dt of the energyE(x) of
an isolated physical system is negative for every possible
state x, except for a single equilibrium statexe, then the
energy will continually decrease until it finally assumes its
minimum valueE(xe)”

The aim of thesteering potentialis to drive the spacecraft
to the desired equilibrium position that corresponds to the
minimum potential. Therefore, if Lyapunov’s method can be
used for the system, as time evolves the system will relax
into the minimum energy state.

Again using the scale separation, the Lyapunov function,
L, is defined as the total energy of the system, whereUS(xi)
is given in Eq. 4 so that for unit mass;

L =
∑

i

(

1

2
v2

i + US(xi)

)

(31)

where,L > 0 other than at the goal state whenL = 0.

The rate of change of the Lyapunov function can be
expressed as;

dL

dt
=

(

∂L

∂xi

)

ẋi +

(

∂L

∂vi

)

v̇i (32)

Then, substituting Eq. 20 into Eq. 32 it can be seen that;

dL

dt
= −σ

∑

i

v2
i ≤ 0 (33)

From Lyapunov’s Second Theorem [24] it states that ifL
is a positive definite function anḋL is a negative definite
the system will be uniformly stable. A problem arises in the
use of superimposed artificial potential functions asL̇ ≤ 0.
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This implies thatL̇ could equal zero in a position other than
the goal minimum suggesting that the system may become
trapped in a local minimum. In order to ensure that our
system is asymptotically stable at the desired goal state the
LaSalle principle [25] can be used. It extends the above
constraints to state that ifL(0) = L̇(0) = 0 and the set
{xi|L̇ = 0} only occurs whenxi = xo, then the goal state is
asymptotically stable. Therefore, for the quadratic potential
considered in this paper the LaSalle principle is valid. As
we have a smooth well defined symmetric potential field,
equilibrium only occurs at the goal states so the local minima
problem can be avoided and the system will relax into the
desired goal position.

IV. RESULTS

A. Formations

In order to test the control laws we consider a system
of 20 spacecraft with mass10 kg, required to form the
three different formations; cluster, ring and double ring.Each
spacecraft are given random initial positions on the x-y plane
and an initial speed equal to0.1 ms−1. During the first time
period (t= 0 − 8000 s) the system of spacecraft are driven
to a ring of diameter50 m and then forced into a cluster
state (t= 8000 − 16000 s) with diameter equal to30 m.
Once in this state a bifurcation is performed on the system
and two rings are formed with the outer ring corresponding
to a diameter of30 m and an inner ring with diameter14
m (t= 16000 − 24000 s). The results of the simulation are
given in Fig. 6 with Table I noting the value of the parameters
during each stage.

TABLE I

BOUND CONTROL FORMATION PATTERN CONSTANTS

Formation µ r Ch Ce Le Cz Cr Lr σ

Ring 0 25 0.05 - - 0.01 1 1 0.5
Cluster 0 0 0.05 - - 0.01 1 2 2

Two rings 4 11 0.1 0.1 5 0.01 1 2 5

B. Actuator Saturation

From Eq. 2 we can determine the control force acting on
each spacecraft as shown in Eq. 34.

ui = uS + uR + ud (34)

where,




uS

uR

ud



 =





−∇iU
S(xi)

−∇iU
R(xij)

−σvi



 (35)

Through the triangle inequality [26] the maximum control
force must be;

|ui| 6 |∇iU
S(xi)| + |∇iU

R(xij)| + |σvi| (36)

The maximum control force that the system is required
to produce will therefore be dependent upon the sum of the
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Fig. 6. Bound Control Pattern Transition: (i) ring (t= 8000s) (ii) cluster
(t= 16000s) (iii) double ring (t= 24000s)

maximum gradient of the steering and repulsive potentials
and the maximum speed that each spacecraft can move.

As the purpose of the new steering potential is to have
a bound control force it is important to determine the
maximum control force for the hyperbolic and exponential
potential functions in order to place a bound on the steering
potential. If we consider the hyperbolic function, the control
force,uh, is shown in Eq. 37 and Fig. 7;

uh = −∇iUh(ρi, zi)

=

[

− Ch(ρi − r)

[(ρi − r)2 + 1]
0.5 ,− Czzi

(z2
i + 1)0.5

]T

(37)

Therefore, asρi → ∞, uh → −Ch; ρi → 0, uh → Ch
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and aszi → ∞, uz → −Cz as shown in Fig. 7.

If we now consider the exponential control force as shown
in Eq. 38;

ue = −∇iUe(ρi, zi)

=

[

2µ
Ce

Le
(ρi − r) exp−(ρi−r)2/Le , 0

]T

(38)

The maximum exponential control forces occurs when

ρi = r±
√

Le

2 giving the maximum control force,ue, equal

to ±
√

2µ exp−0.5 Ce√
Le

as shown in Fig. 8.
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Fig. 8. Exponential Control Force (µ = 1, Ce = 1 andLe = 1)

Therefore, depending upon the constants chosen in the
equations the maximum bound control force in theρi

direction will either be controlled through the hyperbolic
or exponential term in the steering potential equation. The
equations have to be evaluated to determine if either the

hyperbolic or exponential term dominates as shown in Fig. 9
(i) and (ii). Considering the case whenµ > 0 with constants
choosen so that the hyperbolic term dominates then,
|∇iU

S(ρi)|max = Ch. If, however, the exponential term
dominates then|∇iU

S(ρi)|max can be found numerically. In
the z direction,|∇iU

S(zi)|max = Cz as shown in Fig. 7 (ii).
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Fig. 9. Steering Potential Control Force: (i)uh dominating (ii) ue

dominating

The bound steering potential control force is then;

|uS | = |∇iU
S(xi)|max

≤
[

(

∇iU
S(ρi)max

)2
+

(

∇iU
S(zi)max

)2
]0.5

(39)

The repulsive potential is a bound force that has
a maximum value equal toCR/LR that occurs when
xij = 0. This would, however, occur when two spacecraft
are in the same position and therefore would have
collided. The realistic maximum control force would
therefore be(uR

i )max = CR/LR exp−(|xij |min/LR) where,
|xij |min = |xi − xj |min, is the minimum separation distance
between both spacecraft without colliding as shown in Fig.
10 (ii) for example.

The maximum control force is therefore;

|uR| = |∇iU
R(xij)|max =

Cr

Lr
exp−|xij |min/Lr (40)

where, |xij |min = Lr ln

(

2Cr

mV 2
m

)

and Vm can assumed

to be the initial speed of the spacecraft if the the dissipative
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Fig. 10. Repulsive potential: (i) potential function (ii) control force

constantσ is large as discussed insection II B.

The dissipative force,ud is bound by the maximum speed,
Vm. Therefore;

|ud| = |σvi|max ≤ σVm (41)

The maximum total force that the actuator will generate
is therefore;

|ui| 6 |∇iU
S(xi)| + |∇iU

R(xij)| + |σvi| (42)

If the steering potential is dominated by the hyperbolic
term, the maximum control force is;

|ui| 6 |∇iU
S(xi)| + |∇iU

R(xij)| + |σvi|

6

√

C2
h + C2

z +
Cr

Lr
exp−|xij |min/Lr +σVm (43)

If, however, the steering potential is dominated by the
exponential term,|∇iU

S(xi)| will have to be evaluated with
|∇iU

S(zi)max| = Cz, |∇iU
R(xij)| = Cr

Lr
exp−|xij |min/Lr

and |σvi| = σVm.

From the results it can be seen that the desired formations
are formed during the simulation. Fromsection II A
we know that the minimum separation distance between
the spacecraft occurs when the spacecraft is traveling at
its maximum speed equal toLr ln

(

2Cr

mV 2
m

)

. During the
formation of the first two stages the maximum bound
control force acting is equal to that given in Eq. 43.
Similarly in the formation of the double ring state when
the steering potential is influenced by both the hyperbolic

and exponential term, as the hyperbolic term dominates the
maximum bound control force is also given by Eq. 43. The
control force calculated from the simulation is given in Fig.
11 and summarised in Table II with a comparison to the
upper bound estimated previously.
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Fig. 11. Numerical control force: (i) formation of ring (ii)formation of
cluster (iii) formation of double ring

TABLE II

ANALYTICAL AND COMPUTATION CONTROL FORCE

Formation Maximum Analytical Simulated Maximum
Control Force (N) Control Force (N)

Ring 0.15 0.09
Cluster 0.27 0.05

Two rings 0.63 0.15

From the results shown in Fig. 11 it can be seen that
the maximum control force was found to occur at the
start of simulation of each formation as at this point the
spacecraft are moving at their maximum velocity. In Fig.
11 (i) it can be seen that as each spacecraft are driven
to the equilibrium position short range repulsion occurs
as they interact agreeing well with the scale separation
explained insection II Bso that the spacecraft move under
the influence of a long-range steering potential but with
short range collisions. From Table II it can also be seen that
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the maximum simulated control force during each formation
is less than the maximum analytical bound control force. A
real system could therefore be designed in such a way that
the actuator saturation can be avoided so that the desired
formation will form.

V. CONCLUSION

We have shown that the control of spacecraft flying in
formation can be achieved through the use of the artificial
potential function method. We have extended previous re-
search in this area through the use of bifurcation theory to
demonstrate that through a simple parameter change a for-
mation of spacecraft can be made to alter their configuration.
To ensure that desired behaviours always occur the stability
of the system is proven mathematically through dynamical
systems theory. In order to overcome the real problem of
actuator saturation we have shown how a bound control force
can be achieved through a hyperbolic/exponential function
and demonstrated this for a system of20 spacecraft of mass
10kg and maximum speed of0.1ms−1. The control force
achieved in simulation was found to be smaller than the
analytical solution so that a real system could be designed in
such a way that the real problem of actuator saturation can
be avoided.
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