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Abstract— The distributed control of spacecraft flying in
formation has been shown to have advantages over conventian ~ The L/F architecture is a centralised hierarchical control
single spacecraft systems. These include scalability, fibiity scheme where one spacecraft obtains information on

and robustness to failures. This paper considers the real desired traiect d foll ft track th
problem of actuator saturation and shows how bound control a desired trajectory and follower spacecrait trac e

laws can be developed that allow pattern formation and leader[10], [11]. The Landsat-7 and Earth Observing-1
reconfigurability in a formation of spacecraft using bifurcating  (EO-1) satellites are examples of a real hierarchical L/F

potential fi_elds. In addition the s_tability of the system is @sured  mission and is genera”y considered the first mission to
mathematically through dynamical systems theory. demonstrate formation flying[1]. The two satellites in this
| INTRODUCTION formation do not communicate w?th each other, d_irec_tly.
Instead a central controller determines Landsat-7’s joosit
Recently formation flying has emerged as an enablingnd sends this information to EO-1 determining the future
technology for future space systems that allows for a wariebrbits of both spacecraft[12]. The limitation of this syste
of new and exciting mission concepts. By distributings that it is also dependent upon the central controller and
the functionality of the system over several spacecraft it therefore susceptible to failure. In addition as the nemb
has been shown that the performance can be significandy spacecraft increase, the workload required to maintain
improved in comparison with a large single spacecraft[1]. Aa formation discretely will increase significantly. Cyclic
present there are several formation flying concepts cuyrenicontroller architectures are similar to the L/F howeverheac
being investigated, for example, for interferometricfsga spacecraft are connected in a non-hierarchical way[13].
aperture missions. The Stellar Imager is an example of
such a mission that consists of a UV/Optical deep-space A promising approach to overcome the limitations of the
telescope composed of approximately one-meter array architectures discussed above is to develop behavior&daton
elements[2]. Another example is the DARWIN mission thatrchitectures in which all spacecraft interact producing a
will consist of 6 spacecraft equipped with optical telescopegmergent global behaviour. One such method is the use
in formation at the Sun-EarthsLpoint[3]. of the artificial potential function method[14] that is used
throughout this paper. This autonomous distributed system
Scharf et al.[4] and Lawton [5] define five formationallows for agents to be driven to desired goal positions
control architectures for spacecraft formation flyingwhilst ensuring collision avoidance and can be considered
Multiple-Input, Multiple-Output (MIMO), Virtual Structte scalable, flexible and robust to individual spacecrafufais.
(VS), Leader/Follower (L/F), Cyclic and behavioral. It has been used successfully, for example, by Reif and
Wang as a form of distributed behavioural control for
MIMO follows the multiple input, multiple output autonomous robots[15], by McQuade[16] in formation
methodology, considering the relative states of thflying and by Badaway and Mclnnes in autonomous
formations as a single plant[6]. The advantage of thistructure assembly[17]. Related approaches have been
system is that optimality can be guaranteed, howevedgveloped by 1zzo to form coherent spatial patterns in large
the controller can become unstable with the failure o$pacecraft swarms[18].
one spacecraft[4]. The VS system is a centralised control
architecture where all spacecraft in the formation are part For real, safety critical applications it is essential ttredt
of a virtual rigid structure where changes in the positiomehaviour of the spacecraft be verified in order to ensure
of each spacecraft are communicated with a formatiothat no unwanted behaviours will occur. Winfield[19] has
controller and the appropriate alterations are made to thetroduced the term ‘swarm engineering’ to highlight the ke
structure[7]. The system has the advantage of maintainingsues that are involved in real, safety critical applmasi
a formation well during manoeuvrers[8] , however, it doess opposed to those based on simulation. Through the use
not perform well if the formation shape is time-varying ancof dynamical systems theory this paper aims to take steps
is also susceptible to failure as it is centralised cont®dl [ towards replacing algorithm validation with mathematical




proof. Bifurcation methods are employed to create a flexiblB. Artificial Steering Potential Function
system that can allow for different spacecraft configuretio
to be formed through a simple parameter changes
command the entire formation.

The aim of the steering potential is to drive each
gbacecraft to a desired position in phase space with the
repulsive potential ensuring collision avoidance and #gua

] spaced symmetric formations. We have previously shown
The paper proceeds as follows. In the next section We,y this can be achieved through classical bifurcation

describe the formation model used and explain the artifis,athods in order to create a system that is capable of
cial potential field method and bifurcation theory. We thefoming three different formations; ring, double ring and
discuss the linear and non-linear stability of the modelg| sier through a simple parameter change assuming ideal

developed inSection Il Section Section IV shows the gpacecraft [21]. In order to ensure the stability of real,
numerical results of simulations carried out and also mntrmission critical systems it is important to consider actuat

force experienced during simulation. saturation.

Il. FORMATION MODEL In [21] the steering potential was based on the classical

pitchfork bifurcation as shown in Eq. 4 and Fig. 1 with

xi = (pi,z)T andp; = (2 + 32)*°. As the gradient of
We consider a swarm of homogeneous autonomous spatiéis potential is unbound as the distangefrom the origin

craft 1 < i < N) interacting via an artificial potential increases the control force is also unbound and actuator

functionU. It is assumed that all spacecraft can communicataturation would occur in the system.

with each other and are fully actuated. The negative gradien

A. Model and Basic Formation Properties

of the artificial potential defines a virtual force acting on s 1 )
each spacecraft so that the dynamics of each spacecraft can U® (X ) = ok (pi—)
be described by Eqg. 1 and 2 with mass, position,x;, and 1 1
4 2
velocity, v;; + (pi—r)" + 5 0% (4)
dx;
o = Vi 1)
60
dV»L S R 50 4
m i = —VlU (Xz) — VZU (Xij) —oV; (2) .
From Eg. 2 it can be seen that the virtual force experienced U
by each spacecraft is dependent upon the gradient of two 201
different artificial potential functions and a dissipatiezm, 10|
where o > 0 controls the amplitude of the dissipation. 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
The first term in Eq. 2 is defined as tlséeering potential A
U® which will control the formation, whereas the second 0|
term in Eq. 2 is the collision avoidance pairwisgpulsive
potential U, 19
12
10 +
The repulsive potentials based on a generalized Morse 8
potential [20] as shown in Eg. 3; 61
U 44
2]
Uff = Z C, exp~ Xial/Lr (3) o —
337 n
o)
where C,. and L, represent the amplitude and length- :
scale of repulsive potential respectively drg| = [x; —X;|. (ii)

) ) Fig. 1. Potential functions: (i) < 0 and (i) x > 0
The total repulsive force on th&" spacecraft is dependent

upon the position of all the othefN — 1) spacecraft in Recently work done by Badaway and Mclnnes [17] de-
the formation. The repulsive potential is therefore used teised a promising approach to overcome this unbound con-
ensure that as the spacecraft are steered towards the doall force through the use of a hyperbolic potential funatio
state they do not collide with each other. Once all th&his function has a smooth shape at the goal state whilst
spacecraft have been driven to the desired equilibriune stabecoming asymptotic with a constant gradient (thus bound
the repulsive potential also ensures that they are equaltpntrol force) as the distance from origin increases. Eqoat
spaced for symmetric formations. 5 and Fig. 2 show the hyperbolic control potenti},(p;),

that can be used as the steering potential in order to achieve



a bound control force, where the constdrf controls the
amplitude of the function;

US(x:) = Un(pi)+ Ue(pi)
0.5 ) 2
03 O [(pr =)+ 1] 4 exp e
Un(ps) = Ch [(ps = 1) +1] (5) [ 2 P+ 17 4 pCeoxp
+C. [z} +1] )
: 10 4
5 ol
) : Stable
> Stable Poa ®] Unstable
—_—
' %7 Stable
5]
OO 1 2 3 4 5 6 7 8 9 10 H
P D S

Fig. 2. Hyperbolic Potential FunctiorCt, = 1, r = 5) Fig. 4. Steering potential bifurcation diagra@){ =1, r = 5, C. = 1,
Le=1)
In order to make use of the principles demonstrated

through the pitchfork bifurcation we can add an additional

exponential potential functiori/.(p;), shown in Eq. 6 and
Fig. 3 that has amplitud€’., range L., and bifurcation )
parameter; ‘
53
Ue(pi) = pCe exp™ (177" Le (6) 2
12 pi
1 (i)
Dcu 0.6 i
0 =
: . 1
(i) .
o2 o 1 2 3 4 pl 5 6 7 8 9 10
° 1 2 3 4 5 6 7 8 9 10 (ii)
-04 Fig. 5. Steering potential functiom (direction): (i) U}f p<0,Ch =1,
o Ce=1Le=17r=5(@)US:p>0C,=1Cc =3, Le = 1,
0.6 r=>5
B I, STABILITY
- 0 A. Artificial Potential Function Scale Separation
(i) As noted in the previous section the force experienced

by each spacecraft is dependent upon the gradient of two
different artificial potential functions both of which are
dependent upon position;

Fig. 3. Exponential potential functionC¢t = 1, L. = 1, r = 5): (i)
>0 (i) p<0

Combining Eq. 5 and 6 together we achieve the bound
steering potential given in Eq. 7 with Fig. 4 and Fig. U5 = ¢, [(X—T)2+1}0'5+u06 exp~ (X—7)*/Le
5 showing the bifurcation diagram and potential of this ®)
equation. The last term in Eqg. 7 ensures that the formation
is created in the x-y plane driving the z-position coordénat
to zero. UR = ¢, exp™X/Er (9)



For illustration we consider a simple 1-dimensionabnly when considering the stability of analysis of the syste

system with position coordinat& .

Conversely if we defineS = 5 we find that the ‘near

Defining an outer region dependent upon the steerings|q’ gynamics are defined by: <
potential only and an inner region dependent upon the

repulsive potential only we can show that these two regions

are separated so that the spacecraft move under the influencenV — =
of the long-range steering potential, but with short range

collisions (for L, /R << 1) effectively creating a boundary

layer between them. This can then be used to determine

the non-linear stability of the formation using the stegrin

potential only.

For 1D motion of a spacecraft of mass we have;

v oUR  9Us
— = = 10
L ax ox 7V (10)
so that,
mVﬂ = G exp ™ X/ Er On(X ~ B)
ix L (X = B2 +1°?
+2L£Ce (x—7) exp_(X_R)2/L€ —oV
(11)
Scaling X such thatS = X/R then;
Ly _ G T
rR"as T o oP
+R(S-1) {Mc& exp~ Tl
L.
- Ch | —oV (12
[(SR—R)2+1]"
. L,
Now definee = 3 << 1 so that;
v C §
mvﬁ = exp €
(SR — R)?
+R |R(S—-1) Pre exp Le
- Ch ox | —oV (13)
[(SR—R)2+1]"

Crexp™®

_ (SR—R)?

Le

+eR {R(S -1) (21206 exp

€

Ch
" [(SR—R)2+ 1]‘”’) —ov @9
and lettinge — 0;
p _
mV% = Cpexp™® (16)

Thus, at small separations the steering potential vanishes
and we can treat the collisions separate in the subsequent
stability analysis.

Also if we consider a spacecraft to be moving at its
maximum speed/,,, towards another spacecraft and assume
that the spacecraft needs to brakdte= 0 at S = X, /Ly
we have;

0 s
m / Vav = C. / exp ©dS (17)
Vin oo
so that,
1 2 _g18
—ime = —C, [exp }00 (18)
The minimum separation is then estimated as;
2C,
(rz) o)

Therefore, we can assure collision avoidance with the
condition that2Cr > mV,2.

B. Linear Stability

In order to determine the linear stability of a system of
spacecraft subject to suchlgparameter bifurcation steering
potential we perform an eigenvalue analysis on the linedriz
equations of motion assuming that at large separation dis-
tances the repulsive potential can be neglected throudé sca
separation as explained Bection Il A The linear stability
analysis will be used to determine the local behaviour of the
system by calculating its eigenvalue spectrum. Therefbee,
equations of motion for the model are re-cast as;

Lete — 0 in order to consider ‘far field’ dynamics which

forms a singularly perturbed system and note that; X, v,
( S) ( V; ) - ( —oV; — VlUS(XZ) )
.1 e J(Xi, v4)
- - 20
6113% - exp 0 (24) ( 9(%i, ;) (20)

Therefore at large separation distances the repulsivelLet x, andv, denote fixed points withx; = v; = 0 so
potential vanishes and we can consider the steering patentihat;

4



f (%0, Vo) =0 (21) SO
Jy— 0 0 o0 1 (29)
-186 0 -2 0
9(Xo, Vo) =0 (22) 0 -1 0 -2
Defining éx; = X; — X, and éov; = v; — v, and Taylor 0 0 1 0
Series expanding about the fixed points to linear order the Ju— 0 0 0 1 (30)
eigenvalues of system can be found using; 3 -186 0 -2 0
0 -1 0 =2
§Xl §Xi i
( Vs ) =J< oV, ) (23) The eigenvalues for; are; A = —3,—1,—1,1. As
atleast one eigenvalue is positive the equilibrium positio
where, in linearly unstable. The eigenvalues fd¢ and Js; are;
A= —-1+i,—1,—1. Again as the eigenvalues are negative

real or complex with negative real part the equilibrium
(24) positions can be considered as linearly stable.

6?‘i(g(xi’vi)) a?/i(g(xz',vz‘))

The Jacobiany, is then a4x4 matrix given by;

3 ( e (f(xi,Vi)) 7o (f (%0, Vi) )

Xo0,Vo

C. Non-linear stability:1-parameter static bifurcation
To determine the non-linear stability of the dynamical

8 8 (1) (1) system we consider Lyapunov’s Second Theorem as
J= 82U 22U (25) expressed by Kalman and Bertram[22], [23] ;
- Sp? 0pi0z; - 0
2 2
oot %2 0 -0 “If the rate of change of E(x)/dt of the energyF(x) of

XosVo

an isolated physical system is negative for every possible

Substituting a trial exponential solution into Eq. 23 Westate X, except for a Sing]e equi"brium state., then the
find that; energy will continually decrease until it finally assumes it
minimum valueF(x.)”

OX; o \ e
(év-)_<6v )6 (26) . . : :
v ° The aim of thesteering potentials to drive the spacecraft
Therefore, the eigenvalues, of the system are found to the desired equilibrium position that corresponds to the
from det(J — Al) = 0. minimum potential. Therefore, if Lyapunov’s method can be

used for the system, as time evolves the system will relax
Foru < 0(C, =1,C. =1, L. =1 andr = 5) into the minimum energy state.
equilibrium of Eq. 20 occurs whep,, = 5, z,q = 0 and
V., = 0. Evaluating the Jacobian matrix given in Eq. 25 with Again using the scale separation, the Lyapunov function,
= —2, 0 =2 we find that; L, is defined as the total energy of the system, wiiéréx;)
is given in Eq. 4 so that for unit mass;

0O 0 1 0
0o 0 0 1 Lo s
— L= —vi+U”(X; 31
J 5 0 -2 0 (27) Z<2 i ( )) (31)

where, L > 0 other than at the goal state whén= 0.
The corresponding eigenvalue spectrum is then;

A = -1 +£1i,-1,-1. As the eigenvalues are either The rate of change of the Lyapunov function can be
negative real or complex with negative real part thexpressed as;
equilibrium position can be considered linearly stable.

dL oL\ . OL\ .
— = Xi+ | =— | Vi (32)
Foruy >0 (C, =1,C. =1, L. = 1 andr = 5) dt Ox; ov;

equilibrium occurs whenpeqi = 5, peq2 = 3.61, pegz =
6.39, z¢q = 0 andv., = 0. The Jacobian matrix evaluated at

Then, substituting Eq. 20 into Eq. 32 it can be seen that;

the three different equilibrium positions is given by Eq, 28 aL 9
29 and 29. D DA (33)
0 0 1 0 From Lyapunov's Second Theorem [24] it states that if
3 — 0o 0 0 1 08 is a positive definite function and is a negative definite
13 0 -2 o (28) the system will be uniformly stable. A problem arises in the
0o -1 0 =2 use of superimposed artificial potential functions/as< 0.



This implies thatl. could equal zero in a position other than
the goal minimum suggesting that the system may become
trapped in a local minimum. In order to ensure that our
system is asymptotically stable at the desired goal stae th
LaSalle principle [25] can be used. It extends the above
constraints to state that if.(0) = L(0) = 0 and the set
{xl-|l'; = 0} only occurs wherx; = x,, then the goal state is
asymptotically stable. Therefore, for the quadratic ptiéén
considered in this paper the LaSalle principle is valid. As
we have a smooth well defined symmetric potential field,
equilibrium only occurs at the goal states so the local maim
problem can be avoided and the system will relax into the
desired goal position.

IV. RESULTS
A. Formations

In order to test the control laws we consider a system
of 20 spacecraft with mas30 kg, required to form the
three different formations; cluster, ring and double riBgch
spacecraft are given random initial positions on the x-yela
and an initial speed equal 1 ms~!. During the first time
period (&= 0 — 8000 s) the system of spacecraft are driven
to a ring of diamete’50 m and then forced into a cluster
state (&= 8000 — 16000 s) with diameter equal t@0 m.
Once in this state a bifurcation is performed on the system
and two rings are formed with the outer ring corresponding
to a diameter of30 m and an inner ring with diametar
m (t= 16000 — 24000 s). The results of the simulation are
given in Fig. 6 with Table I noting the value of the parameters
during each stage.

TABLE |
BOUND CONTROL FORMATION PATTERN CONSTANTS

Formation p r C, Ce. L C. Cr Ly o
Ring 0 25 0.05 - - 0.01 1 1 0.5
Cluster 0 0 0.05 - - 0.01 1 2 2
Tworings 4 11 0.1 0.1 5 0.01 1 2 5

B. Actuator Saturation

Fig. 6.

z (m)

z (m)

0
ym 5% X (m)

(i)

20

ym 0 x(m)

(i)

Bound Control Pattern Transition: (i) ring=(t8000s) (ii) cluster
(t= 16000s) (iii) double ring (& 24000s)

From Eq. 2 we can determine the control force acting ofayimum gradient of the steering and repulsive potentials

each spacecraft as shown in Eq. 34.

and the maximum speed that each spacecraft can move.

As the purpose of the new steering potential is to have

u; = u¥ +uff 4 u? (34)
where,
US —ViUS(Xi)
uft = —ViUR(xij) (35)
ud —oV;

a bound control force it is important to determine the
maximum control force for the hyperbolic and exponential
potential functions in order to place a bound on the steering
potential. If we consider the hyperbolic function, the coht
force, uy, is shown in Eq. 37 and Fig. 7;

Through the triangle inequality [26] the maximum control

force must be;

ui| < VU (X:)] + ViU (xi)| + |ovi

The maximum control force that the system is required

(36)

Uy, = —VUn(pi,zi)

T
= _ Ch(pl B ’f‘) . szi
- [(ps —r)2+1]"°" (27 +1)%5 (37)

to produce will therefore be dependent upon the sum of the Therefore, agp; — oo, U, — —Ch; p; — 0, U, — Cy
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(i)
Fig. 7. Hyperbolic Control Force: (j); direction (C}, = 1) (ii) z; direction
(C:=1)

and asz; — oo, U, — —C, as shown in Fig. 7.

hyperbolic or exponential term dominates as shown in Fig. 9
(i) and (ii). Considering the case when> 0 with constants
choosen so that the hyperbolic term dominates then,
ViU (pi)|lmaz = Ch. If, however, the exponential term
dominates thefiV;U* (p;)|mae can be found numerically. In
the z direction|V;U®(2;)|maz = C. as shown in Fig. 7 (ii).

pi

@

1s
0s
%)
o
S 2 4 6 8 10 12
08
1

Pi

If we now consider the exponential control force as shown

in Eq. 38;

U = —ViUe(Pi, Z’L)

Ce -
= QHL—(Pi—T)eXP P “,0 (38)

The maximum exponential control forces occurs when
pi =1t/ % giving the maximum control forcey., equal

to +v/2uexp 9 \/CT as shown in Fig. 8.

1~
0.8
0.6
0.4 4
0.2 +

0

Ue

-0.2 4
0.4 1
-0.6 1

-0.8 i
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, U, maximum

)
Pi
Fig. 8. Exponential Control Forcey{ =1, Cc. =1 andL. = 1)

Therefore, depending upon the constants chosen in the |7 = VU (%)
equations the maximum bound control force in tpe '
direction will either be controlled through the hyperbolic
or exponential term in the steering potential equation. The

(ii)
Fig. 9. Steering Potential Control Force: (@), dominating (ii) ue
dominating

The bound steering potential control force is then;

| S| |viUS(Xi)|mam

[(viUS(pi)mam)Q + (viUS(Zi)mam)Q} ’

.5

IN

(39)

The repulsive potential is a bound force that has
a maximum value equal taCr/Lr that occurs when
X;; = 0. This would, however, occur when two spacecraft
are in the same position and therefore would have
collided. The realistic maximum control force would
therefore be(u?),,a. = Cr/Lpexp™ (Kilmin/Lr) where,
[Xij|min = [Xi —X;|min, iS the minimum separation distance
between both spacecraft without colliding as shown in Fig.
10 (ii) for example.

The maximum control force is therefore;

CT — X, s .
|mam = L_ exp [Xij|min/Lr (40)

2C
where, |X;jlmin = Ly In TT? andV,, can assumed
m

equations have to be evaluated to determine if either ttie be the initial speed of the sﬁ%lcecraft if the the dissipati



and exponential term, as the hyperbolic term dominates the
maximum bound control force is also given by Eq. 43. The
control force calculated from the simulation is given in.Fig
11 and summarised in Table Il with a comparison to the
upper bound estimated previously.

IX\jlmin

AL J Lol o IS SV
o 200 400 600 800 1000
time step

0]
0 1 2 3 4 5 6 3
Xl B ’
(i)
Fig. 10. Repulsive potential: (i) potential function (iipmtrol force o
G0 200 AO‘Dime S[esl)o 800 1000
constants is large as discussed Bection Il B (i)
The dissipative forcey? is bound by the maximum speed, o
Vin. Therefore; Z 012
é 0.1
d STo.08
U] = |oVi|maz < Vi, (42) 0.06
0.04
The maximum total force that the actuator will generate 0.02
is therefore; % 0 oS00 w00
ui| < VU (%) + (ViU (xig) | + |ovi]  (42) (il

If the steering potential is dominated by the hyperboli('gligétérl'(m)’}‘é‘?njtii‘;)ﬂ S?ZtéﬂL.fSrﬁﬁg (i) formation of ring (ifprmation of
term, the maximum control force is;

g R TABLE Il
Uil < ViU (%)] + VU™ (Xi5)] + |ovi ANALYTICAL AND COMPUTATION CONTROL FORCE
C
1/ C? 24 T —|Xijlmin/Lr
< Ch +O2+ L, exp +oVm (43) Formation ~ Maximum Analytical ~ Simulated Maximum
. o . Control Force (N) Control Force (N)
If, however, the steering potential is dominated by the Ring 015 0.09
exponential term|V,; U (x;)| will have to be evaluated with Cluster 0.27 0.05
|viUS(Zi)ma;E| = C,, |viUR(Xij)| — g_:exp—lxwlmm/h Two rings 0.63 0.15

and|ov;| = o Vy,.

From the results shown in Fig. 11 it can be seen that
From the results it can be seen that the desired formatioffe maximum control force was found to occur at the
are formed during the simulation. Fromsection Il A gtart of simulation of each formation as at this point the
we know that the minimum separation distance betweeghacecraft are moving at their maximum velocity. In Fig.
the spacecraft occurs when the spacecraft is traveling ¢ (i) it can be seen that as each spacecraft are driven
its maximum speed equal td, In ,i?,%) During the to the equilibrium position short range repulsion occurs
formation of the first two stages the maximum boundis they interact agreeing well with the scale separation
control force acting is equal to that given in Eq. 43explained insection Il Bso that the spacecraft move under
Similarly in the formation of the double ring state whenthe influence of a long-range steering potential but with
the steering potential is influenced by both the hyperbolishort range collisions. From Table Il it can also be seen that




the maximum simulated control force during each formatiofis]
is less than the maximum analytical bound control force. A

real system could therefore be designed in such a way th[@g]
the actuator saturation can be avoided so that the desired

formation will form.
[15]

V. CONCLUSION [16]

We have shown that the control of spacecraft flying in
formation can be achieved through the use of the artificig|7
potential function method. We have extended previous re-
search in this area through the use of bifurcation theory to
demonstrate that through a simple parameter change a fgrB-]
mation of spacecraft can be made to alter their configuration
To ensure that desired behaviours always occur the stabili]
of the system is proven mathematically through dynamical
systems theory. In order to overcome the real problem o]
actuator saturation we have shown how a bound control force
can be achieved through a hyperbolic/exponential functio[gll
and demonstrated this for a system26fspacecraft of mass
10kg and maximum speed df.lms™'. The control force
achieved in simulation was found to be smaller than thg,
analytical solution so that a real system could be desigmed i
such a way that the real problem of actuator saturation can
be avoided. (23]
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