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Chapter 1

Introduction

This chapter starts by giving an introduction to the field of multi-agent systems. It also explains the
motivation behind the project that is described in this thesis and gives an overview of the components
that are combined in this thesis. The chapter ends with a problem description, and an outline of the
thesis.

1.1 Multi-agent systems

Systems that consist of multiple agents have been receiving increasing attention over the last decades.
This is due to their wide range of applications, and the fact that multiple agents can cooperate to achieve
more complex tasks [6]. Some examples of these tasks are mapping and exploration of unknown terrain
and cooperative transportation of objects. Overviews of the fields in which such research is conducted,
along with numerous references are given in [3, 46]. A few examples of uses of multi-agent systems
are shown in Figure 1.1.

(a) Multiple quadrotors grasping an object [41]. (b) Highway driving with communication [25].

(c) Two rovers carrying a load cooperatively [52]. (d) A team of RoboCup soccer robots [57].

Figure 1.1: Examples of different applications of multi-agent systems.

In Figure 1.1(a), a situation is shown where multiple quadrotor robots are used to cooperatively trans-
port a large object. Figure 1.1(b) shows a number of cars that are driving on a highway and are commu-
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nicating with each other to ensure smooth traffic flow. Another example of cooperative transportation
is shown in Figure 1.1(c), where two rovers are used to carry a large beam. They can also be used as
all terrain explorers. Finally, Figure 1.1(d) shows a part of a team of the soccer robots at the Eindhoven
University of Technology. These robots participate in the RoboCup competition, which strives towards
the objective of making robots that are able to beat a professional human team in soccer around 2050.

1.2 Scope of the project

A different area where a multi-agent system of mobile robots can be used, is to transport goods in ware-
houses. There are research projects, such as the Falcon project [15], that focus on the development of a
new generation of warehouses. The goal of the Falcon project is to design a system with a maximum
degree of automation. In this project, particular attention is payed to

• New warehouse architectures that are suited for the automated handling of goods,

• Optimization of the set of parallel processes that determine the flow of goods,

• The design of automated solutions for handling and transportation of goods.

This thesis focusses on a part of this last research topic, namely the automated handling of goods. In a
traditional warehouse, conveyor belts are used for the transportation of goods, but in a new generation
distribution center, autonomous vehicles are used.

The main advantages of using autonomous vehicles instead of conveyer belts are increased scalability
of the system capacity, and increased system reliability [58]. Conveyor belts have a maximum capacity,
which can not easily be increased. If an increase of capacity is required, the layout of the whole trans-
port system has to be altered. The capacity of a transport system that uses autonomous vehicles can be
increased by simply adding new vehicles to the system.

The use of autonomous vehicles can also increase reliability of the system. When a conveyor belt
breaks down, it causes a block which can influence the whole transportation system. The breakdown
of an autonomous vehicle will only lead to a small decrease in capacity without disturbing the rest of
the system.

1.3 Unicycle robots

The autonomous vehicles that can be used for transportation of goods within a new generation ware-
house are nonholonomic mobile unicycle robots. From here on, the term unicycle will be used to
describe these systems. An example of a unicycle is shown in Figure 1.2(a). This is the e-puck mobile
robot, which is used in this thesis to perform experiments to validate simulation results. A schematic
representation of the e-puck, or any other unicycle, is shown in Figure 1.2(b).

(a) The e-puck mobile robot.

vl

vr

Resulting path

(b) Schematic representation of the e-puck.

Figure 1.2: The e-puck unicycle and a schematic representation of a unicycle.
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This robot has two motors that drive the two wheels. By controlling the left and right motors, and
therefore controlling velocities vl [m/s] and vr [m/s], the robot can drive forward and backward when
the wheel speeds are equal. When the wheel speeds are not equal, the unicycle will turn.

This system falls into a specific class of so-called nonholonomic robots, because of the nonholonomic
constraints that are imposed on its the motion. These nonholonomic constraints establish a relation-
ship between the system coordinates and their time derivatives, which is not integrable [32]. Because of
these constraints, the unicycle can not move sideways without slipping. This means that the unicycle
can not follow every desired path. However, if enough space if available, the unicycle will be able to
reach every desired position. The unicycle controller should stabilize and control the unicycle, under
the influence of the nonholonomic constraints.

1.4 Model predictive control

A control method that is able to deal with nonholonomic constraints is model predictive control, from
here on referred to as MPC. This control method determines the control inputs of the system to be
controlled by means of optimization. The controller uses a model of the system to predict what the
effect of a future input sequence will be. The effect of this future input sequence is then compared to
the control objectives in a so-called cost function. This results in a cost function value that indicates the
performance of the system. An optimization algorithm is then used to find the most optimal future
input sequence. The first part of this future input sequence is implemented on the system, and the
optimization process is repeated at the next instant.

1.5 Problem description

In this thesis, the goal is to design a model predictive controller that is able to control multiple unicycles
that operate in the same workspace. The unicycles need to be able to follow reference trajectories or
drive to a desired location. While doing so, they need to avoid collisions with other unicycles, as
they operate in a shared workspace. It is desired that collisions with obstacles that are present in the
environment are also avoided. The unicycles need to be able to drive in a formation with multiple
unicycles as well. The controller needs to fulfill these control objectives while dealing with saturation
constraints on control signals. It is also desired that the controller can cope with time-varying control
objectives, to end up with a flexible controller.

1.6 Outline of this thesis

This thesis is constructed in the following manner. Chapter 2 gives an overview of control methods
that have already been designed to control one or multiple unicycles. Chapter 3 gives a description
of traditional MPC, where the time it takes to compute the control inputs is much shorter than the
sampling time. It then discusses what happens when MPC is used in a system where these time
scales are closer to each other. After this, Chapter 4 introduces the unicycle model that is used in
this thesis. It also shows how the continuous-time model can exactly be discretized and how this
model can be used to predict the future system behavior. In Chapter 5, the cost function is discussed.
This determines a scalar performance value of a given future input sequence. To obtain the optimal
future input sequence, the cost function is used in an optimization problem, which is discussed in
Chapter 6. Then, in Chapter 7 simulation results of the controller are shown. To validate these results,
experiments are performed. The experimental setup, experimental results, and a comparison with
simulation results are presented in Chapter 8. Finally, conclusions and recommendations about the
results of this thesis are given in Chapter 9.
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Chapter 2

Literature Review

Numerous different control methods have already been proposed to control one or multiple unicycles.
This chapter discusses some of these control methods. First, control methods, other than MPC, of one
and multiple unicycles are discussed. After that, MPC for one and multiple unicycles is discussed.
Finally, some conclusions are drawn based on the results of the literature review.

2.1 Control of a single unicycle

A Lyapunov function is proposed in [29], from which a stabilizing control law is derived. This con-
troller has adjustable gains that can be used to adjust convergence. Simulations are performed with
and without limited control signals. Backstepping is used in [19], to obtain a stabilizing controller
that is also suitable for tracking a reference signal. After the design, Lyapunov theory is used to show
asymptotic stability. A similar approach is used in [34], but in this work, obstacle avoidance is included
as well. This is done by using a so-called deformable virtual zone, which is a safe area surrounding the
robot. When an object intrudes this zone, the robot tries to maintain the original shape of the zone,
implicitly repelling obstacles.

It is also possible to use optimal control methods to control a unicycle [31]. This is discussed in Chapter
3 of [47], where formation control and dynamic obstacle avoidance is implemented, using optimal con-
trol. Another work that discusses optimal control of a unicycle is [49]. Here, optimal control is used to
make a unicycle follow a shadower. The goal of the unicycle is to make it appear to the shadower as if
it is not moving, only approaching slowly. Optimal control is combined with differential geometry to
control a unicycle [56]. A large number of possible trajectory pieces are available, and optimal control
is used to combine trajectory pieces to obtain a nonholonomic path. This work is a continuation of
[50]. In Chapter 3 of [35], optimal control and other methods are discussed to determine an optimal
path for a nonholonomic system. This path is generated without the presence of obstacles.

In [17], a stabilizing controller is derived. This controller consists of two parts: an aiming algorithm
and a final stabilizer. The aiming algorithm drives the unicycles close to a desired location, after which
the final stabilizer is switched on. This controller is tested in a simulation as well as in an experiment.
In [44], a sliding-mode controller is designed for the path-tracking problem. It is assumed that there is
a delay due to communication over a network. This delay is taken into account when deriving an exact
discrete-time model. The controller is obtained from this model and tested in simulation. Another way
of controlling a nonholonomic system is by using differential flatness [20]. Here, several case studies
are presented that show the potential of this control method. In [43], a unicycle is converted to a class
of systems that can be controlled by using sinusoids. The controller is able to connect two arbitrary
orientations of a nonholonomic system and connect them via sinusoidal paths.

These are just a few control methods that can be used for the control of a unicycle. In Chapter 3
of [47], the control of nonholonomic systems is treated. Here, additional references to nonholonomic
control methods are given. A comprehensive work that discusses nonholonomic systems is [4]. In this
book, the basics of nonholonomic systems is discussed, along with methods to control them.
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2.2 Control of multiple unicycles

To control more than one mobile robot, a range of control methods can be used. A virtual structure
controller for a formation of unicycles is presented in [5]. In this controller, unicycles are mutually
coupled, so that the formation is more robust against disturbances. It is shown that this controller
is locally exponentially stable. To control the formation of a team of unicycles, virtual structures and
artificial potential fields are used in [36]. Here, each unicycle needs to track its own virtual leader. Col-
lisions with other unicycles are avoided by restricting each unicycle to operating in its own safety sector.

It is also possible to use synchronization to control a formation of robots that are modeled as point
masses [55]. In this work, the robots can track their own references, but to keep a formation, they are
linked via synchronization. Another work that uses synchronization is shown in [24]. A combination
of the virtual structure and the path following method is used to determine the shape of the formation.
The derivative of the unicycle’s path is left free to allow robots to synchronize. A virtual structure con-
troller for unicycle formations that also uses the same synchronization principle is given in [13].

In [11], a leader-follower formation strategy is used to control a group of unicycles. The followers
are asymptotically stabilized using feedback linearization. In [40], a controller for multiple unicycles
is derived using Lyapunov theory which guarantees collision avoidance and tracking of a reference tra-
jectory. Leader-follower formations can also be used with this controller.

A control framework to control large groups of mobile robots is discussed in [61]. Here, decentral-
ized control and consensus protocols are used to guide a large number of holonomic agents into a
desired formation. In [12], a decentralized controller that utilizes navigation functions is derived. This
controller is able to drive non-point agents to a desired location, while avoiding collisions that might
occur. Optimal reciprocal collision avoidance is discussed in [1]. This work focusses on the collision
avoidance when multiple unicycles are involved. Here, unicycles can even avoid collisions with each
other in very crowded situations. The same collision avoidance strategy is used in [54]. It is extended
so that obstacles, represented here as a defective unicycle, can be avoided as well. A controller that uses
theory found in fluid mechanics, the so-called panel method, is utilized in conjunction with harmonic
potential functions is presented in [18]. This controller can drive unicycles to a goal, while avoiding
collisions with other unicycles and static obstacles.

Overviews of multi-robot controllers and their issues and strategies that are used nowadays are given
in [3, 9, 46].

2.3 Control of a single unicycle using MPC

While it is possible to control a unicycle with the control methods mentioned in Section 2.1, there
are certain advantages for using MPC. The aforementioned controllers can stabilize the unicycle and
make it follow the desired reference trajectory. However, a disadvantage of these control methods is
that most of them do not take the constraints into account that are present in the system. MPC is
one of the few methods that is able to take these constraints into account. An example where MPC
is used to make a unicycle track a given reference trajectory is given in [27]. In this work, and most
others that are discussed in this section, the inputs of the unicycle are constrained. Another example
of a nonlinear MPC path tracking controller is given in [60], where a car-like nonholonomic rear wheel
drive car model tracks a reference signal, while also avoiding obstacles. The controller has a number of
terms in its cost function to prevent input saturation, increase tracking performance, avoid obstacles,
and reduce final error. In this case, trajectory generation is done beforehand, and MPC is used to track
this reference signal.

It is also possible to use MPC to generate the path that the unicycle should follow. The advantage
of doing this is that the generated path is feasible for the unicycle. Examples of controllers that both
plan a path and drive a unicycle to a desired location are given in [26, 62, 64]. The so-called back-
into-garage problem is solved in [39] for a nonholonomic car-like vehicle. MPC is used there, which
replaces the need for a switching controller, as MPC automatically switches direction. This is made
possible by well chosen weights in the cost function.
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Another advantage of MPC is the simplicity of the formulation of the control problem. This is be-
cause all control objectives, such as reaching a desired state, obstacle avoidance, formation control,
and other objectives are all grouped in a single cost function. For instance, in [38], collision avoidance
is ensured by adding penalties on the state of the unicycle to the cost function.

The use of MPC can have some drawbacks however. The most important one becomes clear in [16],
where nonlinear MPC is applied to a unicycle. The goal of this controller is to stabilize a unicycle at
a desired location. The problem with this controller is that simulations take approximately 500 times
longer than real-time on a Pentium III processor with 500 MHz, which was launched in 1999. This
is due to the complexity of the optimization problem. The same problem is also encountered in [33],
where both nonlinear and linear MPC is used. The nonlinear controller also causes a large computa-
tional load. Therefore, a linear controller is proposed which uses successive linearization, resulting in
a much lower computational load. These last two works indicate that MPC can be a computationally
intensive control method.

Another problem with MPC is that it is in most cases hard to prove stability of the control scheme.
In [28], a receding horizon controller is used to park a unicycle at a desired location. This is done using
a terminal state penalty to guarantee stability and increase convergence speed. Most works discussed
here use a terminal state penalty in the cost function [26, 27, 63, 64]. There are some other methods
that can be used, such as exponentially increasing the weight of the states [16], or adding a constraint
that forces a norm on the first predicted state to decrease [62].

2.4 Control of multiple unicycles using MPC

With MPC, it is possible to combine the control objectives of a single unicycle in a single cost function.
By then minimizing this cost function, an optimal or suboptimal future input vector is obtained. It is
of course also possible to combine the control objectives of multiple mobile robots into one or more
cost functions and to apply the same steps as in the case of a single unicycle.

An example of the use of MPC to control a formation of unicycles is given in [51]. Here, MPC is
used to plan a trajectory that a leader should follow, and also use it to stabilize the followers. For the
formation control, a leader-follower approach is used. First, a trajectory for the leader is generated.
This avoids obstacles and plans the shortest route possible given a parameter that determines the pre-
cision of the planning optimization. The trajectories of the followers are generated from a delayed and
shifted version of the leaders trajectory. When the formation is moving, every robot stays in formation
and is also able to avoid static and dynamic obstacles that are detected on the way. The formation is
able to move to a desired position in the optimal way, and it is also able to turn around in a confined
area by switching between virtual leaders. At the end of the work, an experiment is discussed where
multiple unicycles drive in formation to remove snow from a runway. A similar approach is taken
in [63], where a dual-mode receding horizon controller is designed for the leader-follower formation
control of multiple unicycles. This dual mode controller uses receding horizon control with a terminal
state constraint to get the unicycles within a target area. After that, a different controller is switched on
to drive the vehicle to the desired target. Control of a leader-follower formation is treated in [8], where
the leader is driving along the desired trajectory. MPC is then used to stabilize the followers at their
desired positions.

It is also possible to use a different approach for the path planning. In [23], distributed MPC for
leader-follower formation control of unicycles is presented. Also collision avoidance is implemented.
This is done by generating the trajectory of one unicycle at one sampling instant. The next sampling
instant is used to create a trajectory for a different unicycle. Another example of such an approach
is presented in [7], where MPC is used for collision free path planning for air traffic. To that end, a
complex aircraft model is replaced with a model of a unicycle. A scenario where four planes would
cross each other, is solved by selecting a plane and planning a trajectory. After that, another plane is
selected and the process is repeated. This means that aircraft that can plan first have more freedom
in their trajectories than the ones that can plan later. Another MPC controller is designed in [59] that
also plans the paths of multiple unicycles sequentially. The trajectories that are generated are free of
collisions. The robots with the highest priorities again have more freedom when choosing their paths.
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There are also works that simultaneously plan paths of vehicles, such as shown in [37]. Here, a leader-
follower approach is used to control a formation of unicycles using MPC. The leader trajectory is gen-
erated with the controller. The followers try to stay at a certain distance under a certain angle behind
the leader. Each unicycle has a separate cost function, which is optimized iteratively, while keeping the
trajectories of all agents in mind. In [48], low level navigation functions are used to control a group of
unicycles. This low-level controller is combined with a high level controller. MPC is used to simulta-
neously generate a collision free flight path with constrained velocities and turning radii.

A comparison between different control methods is given in [53]. Here, a leader-follower approach
is used to control a group of nonholonomic unmanned aerial vehicles. A cost function is introduced as
usual, which is to be minimized. Then three different control methods are discussed, namely central-
ized, sequentially decentralized and fully decentralized. These methods are compared in a simulation
with some obstacles involved. Another comparison where centralized, sequentially decentralized and
fully decentralized MPC is compared, is given in [10]. The decentralized method uses presumed tra-
jectories of neighboring robots when planning their own trajectory. If a collision with this presumed
trajectory would occur, information is exchanged and a collision is avoided. This results in less com-
munication and lowers the computational burden.

A different example of MPC formation control, where systems other than unicycles are used, is given
in [21]. A receding horizon controller is used here to control a formation of hovercraft vehicles. This
is done with a single cost function, containing the dynamics and control objectives of all the vehicles.
After that, a stability analysis is performed using input to state stability. In this work, it is assumed
that there is a communication delay between the vehicles. In [30], receding horizon control is used to
control a formation of flying vehicles. The low-level control of the model is done via model inversion.
The high level controller consists of a single cost function which is optimized to generate optimal tra-
jectories. There is also a different control system active that prevents collisions between vehicles. In
[14], multiple vehicles, which can have different dynamics, are controlled by grouping them in one cost
function. This function is optimized to control all vehicles and to avoid collisions. In a simulation that
uses simple dynamics, this works well if updates are fast enough and vehicles do not deviate far from
their paths.

2.5 Conclusions

The current state of the art is that it is possible to use a wide range of controllers to control one or mul-
tiple unicycles. It is possible to use controllers that allow unicycles to follow reference signals, avoid
both static and dynamic obstacles, drive in a formation with multiple unicycles, and avoid collisions
with other unicycles. While it is possible to use other control methods to accomplish these control
objectives, in this thesis MPC is used.

The advantages of using MPC with respect to other control methods is that it can take constraints
on inputs, states, and outputs into account when calculating control inputs. It also naturally handles
multivariable systems. Another advantage is that the system behavior is taken into account, which can
lead to better decisions made by the controller. A price has to be paid for this however, as computation
times with MPC are generally much longer than with other controllers.
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Chapter 3

Model Predictive Control

This chapter starts by giving a brief historic introduction of MPC. After that, the general principle of
MPC for systems with long time scale behavior is discussed. Then, a comparison is made with MPC
for systems with much shorter time scale behavior. The chapter ends with a description of different
control strategies that can be chosen when MPC is used to control multiple systems simultaneously.

3.1 Brief history of MPC

It has been more than 25 years since MPC first appeared in the industry. Its first applications were
mainly focussed on multivariable constrained processes in chemical industries [22]. The use of MPC
was limited to these very slow processes, because MPC is a computationally intensive control method,
and the computers at that time were not fast enough yet. Since then, the theory has been developed
further and computing power has increased. As a result, it has now become possible to use MPC in
much faster processes, such as electromechanical systems.

3.2 General principle of MPC

As mentioned before, MPC is traditionally used for systems with long time scale behavior. The general
working principle of this version of MPC is depicted in Figure 3.1.

kTs(k − 1)Ts. . . (k + 1)Ts (k + 2)Ts . . . (k +Nc)Ts . . . (k +Np)Ts

Control Horizon

Prediction Horizon

FuturePast
Control Objectives

Measured Output

Predicted Output

Past Input

Predicted Input

Figure 3.1: General principle of MPC of systems with a long time scale.

In this figure, the past, present, and future of a simulation or an experiment are shown. The present
time is indicated by t = kTs, where t [s] indicates the time instant, k ∈ N, and Ts is the sampling time.
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The past shows what has happened up to t = kTs. Only two past instants are shown in this figure. The
future is shown up to t = (k +Np)Ts, where Np is the prediction horizon, which indicates up to how
many samples in the future behavior of the system needs to be taken into account.

The output of the system up to and including t = kTs is indicated by the measured output, shown
in purple. The output is generally a continuous-time signal, but it is only measured at discrete sam-
pling instants. Results of the measurements of the output are indicated with the purple markers.

When the current output of the system is known, and a model of the system is available, it might
be possible to calculate what the effect of the predicted input will be on the predicted output. In this
thesis, it is assumed that this is possible. The predicted input is depicted in red. It remains constant
between two sampling instants as indicated by the open and full red markers. After the control horizon
of Nc samples, where 1 ≤ Nc < Np, has been reached, the predicted input remains constant. The
effect of the predicted input is the predicted output, which is indicated by the blue markers.

It is desired that the system output corresponds to the control objectives, which are indicated by the
green markers. How far the systems predicted output deviates from the control objectives, is indicated
by the cost function. This function compares the predicted output with the control objectives and re-
turns the performance as a scalar value, which is used as a performance measure. This is indicated
with the black lines that connect the predicted output to the control objectives. A lower cost function
value usually indicates that performance is better.

To obtain the predicted output that follows the control objectives as close as possible, it is possible
to make use of optimization. The goal of the optimization problem is to minimize the cost function
value by adjusting the predicted input. If there are constraints present in the system, such as on the
inputs, states, or outputs, it is possible to include those in the optimization problem. When an opti-
mization process is completed, and a predicted input is found that minimizes the cost function value,
the first part of the predicted input is implemented. At the next time instant, the optimization process
is repeated.

3.3 MPC of electromechanical systems

The description above is valid for systems with long time scale behavior. In that case, the time it takes
to perform the optimization is negligible compared to the sampling time. In case of electromechanical
systems, time scales are much shorter and the time it takes to solve the optimization problem has to
be taken into account. This leads to the situation that is depicted in Figure 3.2.

kTs(k − 1)Ts. . . (k + 1)Ts (k + 2)Ts . . . (k +Nc)Ts . . . (k +Np)Ts

Control Horizon

Prediction Horizon

FuturePast
Control Objectives

Measured Output

Past Input

Predicted Input

Fixed Output

Fixed Input

Predicted Output

Figure 3.2: General principle of MPC of systems with a short time scale.
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Because the time it takes to solve the optimization problem is much closer to the sampling time than
before, the optimization process is given one sampling time to come up with a predicted control input
that returns the lowest possible value of the cost function. This is done to prevent time-varying delays
from occurring in the system and to keep the system behavior deterministic. However, a delay of one
sampling time is introduced. This means that, in the situation that is depicted in Figure 3.2, the input
that is applied to the system from t ∈ [kTs, (k + 1)Ts) is the result of the optimization process that
took place when t ∈ [(k − 1)Ts, kTs). Because of the delay, the inputs become fixed for one sampling
time, while new inputs are calculated. The fixed inputs result in fixed outputs for t ∈ [kTs, (k + 1)Ts].
This is indicated with the light blue line and marker. While the input and output are fixed, the control
input is calculated that will be applied at the next time instant.

Since prediction is used, the introduction of this delay is not a problem. By using the inputs that
are fixed to calculate the output that is fixed, it is still possible to predict the future system behavior.
Because of the delay of one sample time, the first future instant t = (k + 1)Ts is now uncontrollable.
Another effect of the delay is that the control horizon is now bounded by 1 < Nc < Np.

3.4 Controlling multiple systems in the same environment

In this thesis, a single model predictive controller is used to control multiple systems. These systems
operate in a common workspace. Because of this, there is a possibility for inter-system collisions to
occur. The controller has to avoid these collisions, while trying to fulfill other control objectives. To
avoid collisions, the controller has to plan the paths of the systems collision free.

To plan collision free paths, the controller needs to have certain information on the systems avail-
able. In this thesis, it is assumed that the controller has the following knowledge of every system at
t = kTs:

• Control objectives (e.g. tracking a reference trajectory),

• Current outputs, which are the result of measurements,

• Predicted inputs from the previous optimization from t ∈ [kTs, (k + 1)Ts),

• Predicted outputs from the previous optimization from t ∈ [(k + 2)Ts, (k +Np − 1)Ts],

The first part of the predicted input from the previous optimization is sent to the systems as soon as
t = kTs. This information is used in combination with the current output of every system to determine
where the systems will end up at t = (k+1)Ts. Because of the fixed inputs and outputs, is not possible
to directly avoid a collision at t = (k+1)Ts. It is only possible to indirectly avoid collisions, by avoiding
them at t = (k + 2)Ts and later time instants. However, avoiding collisions at t = (k + 2)Ts is the
most important, as this is the last time any changes can be made to the future inputs and outputs.
If the optimization results in a collision at t = (k + 2)Ts, it will occur two sampling instants later.
The predicted output from the previous optimization can be used in the planning of the paths of the
systems. The path planning can be accomplished by using different control strategies, some of which
are shown in Figure 3.3.

3.4.1 Fully decentralized MPC

In Figure 3.3(a), a schematic representation of fully decentralized MPC is shown. In the figure, systems
are represented by circles. In this case, all systems plan their paths independent from one another. The
only thing they all have to consider is where the other systems will be at t = (k + 2)Ts, to avoid future
collisions from happening. This is the result of the previous optimization, and it is indicated in the
figure with the small arrows that connect the systems.

An advantage of using fully decentralized MPC is that the optimization problem is simple compared
to the one of the centralized control strategy as each optimization problem is solved for only a single
system. Another advantage is that the optimization problem of the systems can be solved in parallel. A
disadvantage is that when systems operate in a crowded environment, it becomes hard to ensure that
no inter-system collisions occur.
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(a) Fully decentralized.

2

1 3

4

(b) Sequentially decentralized. (c) Centralized.

Figure 3.3: Different control strategies to obtain predicted inputs.

3.4.2 Sequentially decentralized MPC

With sequentially decentralized MPC, predicted inputs are determined for one system at a time. The
order in which the inputs are calculated, is determined by the priority level of the systems, indicated
by the numbers in Figure 3.3(b). A system can determine its path while only avoiding lower priority
systems at t = (k + 2)Ts. This is again indicated by the small arrows. Higher priority systems should
be avoided at all controllable future instants, which is indicated with the large arrows.

The advantage of the control strategy is that inter-system collisions can now be avoided because the
paths of the systems are planned sequentially. Also, the simplicity of the optimization problem is
maintained. A disadvantage is that it is no longer possible to parallelize to optimization process as the
path of one system depends on earlier computed paths. It is also necessary to determine the priorities
that determine the order in which the paths of the systems are planned.

3.4.3 Centralized MPC

The last control strategy that is discussed here, is centralized MPC, as shown in Figure 3.3(c). With this
control strategy, all systems are are treated as a single entity and predicted inputs are calculated by solv-
ing a large optimization problem. In this problem, all control objectives of all systems are combined
into one cost function. This means that it is possible that fulfilling control objectives of one system can
influence other systems.

Centralized MPC can lead to better performance than the other two methods as the behavior of ev-
ery system is simultaneously taken into account. Also, determining the order of the systems is not
necessary anymore. However, priorities can still be used by weighing control objectives of certain sys-
tems heavier than of others. A disadvantage of using this method is that the optimization problem is
more complex than the previously discussed methods.

3.5 Conclusions

The controller that is discussed in this thesis is implemented in MATLAB, which is able to make use of
multiple processors using the Parallel Computing Toolbox. The problem is that the use of this toolbox
is only advantageous if a calculation takes roughly two seconds or longer. As the systems that are
considered in this thesis operate on a shorter time scale, parallelization can not be used. Therefore,
fully decentralized MPC is not discussed further. The sequentially decentralized method is discussed
in this thesis. A way in which the priority order can be determined is further discussed in Section 5.7.
The centralized control strategy is also discussed. Finally, a comparison between these two control
methods is presented in Chapter 7.
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Chapter 4

Unicycle Model

In this chapter, a kinematic model of a unicycle is given. First, the continuous-time kinematic model
of the unicycle is discussed. After this, the model is exactly discretized so that it can be used by the
discrete-time model predictive controller. Finally, it is discussed how to the predicted input can be used
to obtain the predicted output for use in the cost function.

4.1 Kinematic model of a unicycle

A unicycle drives around using a differential drive system, where a difference in velocity between two
wheels determines the velocity and angular velocity of the unicycle. A schematic model of a unicycle
can be seen in Figure 4.1.

Y

X

vui

θui

xui

yui

ωui

rui

tuiv
l

u i

v
r

u i

Figure 4.1: Schematic representation of a unicycle mobile robot.

In this figure, the location of the center of unicycle i is indicated with xui
[m] and yui

[m] along the
X- and Y -axes respectively. The angle θui [rad] indicates rotation of the unicycle with respect to the
X-axis, which also indicates in which direction the unicycle is driving with velocity vui [m/s], where
vui
∈
[
vmin
ui

, vmax
ui

]
. The angle θui

can be changed by adjusting the angular velocity ωui
[rad/s], where

ωui ∈
[
ωmin
ui

, ωmax
ui

]
. There are no specific requirements on these input bounds. For example, it is

possible to have a unicycle that can only drive backwards and turn left. If collision avoidance has to be
ensured, vui

should be able to become zero.
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The unicycle has a radius rui
[m] and a track width tui

[m], which indicates the distance from the
wheel to the center of the unicycle. The velocities of the two wheels, vlui

[m/s] and vrui
[m/s] are related

to vui
and ωui

as

vlui
= vui − tuiωui ,

vrui
= vui + tuiωui .

(4.1)

It is assumed that the velocities vlui
and vrui

that are sent to the unicycle, are tracked be a controller that
is present in the unicycle itself. The controller which is used for that, is not investigated in this thesis.
The continuous-time kinematics of unicycle i are given byẋui

(t)
ẏui

(t)

θ̇ui(t)

 =

cos(θui
(t)) 0

sin(θui
(t)) 0

0 1

[vui
(t)

ωui
(t)

]
, (4.2)

where the state vector consists of xui
(t), yui

(t), and θui
(t). The input vector consists of vui

(t) and
ωui(t). These kinematics of the unicycle restrict sideways movement, which is indicated by

ẋui(t) sin(θui(t))− ẏui(t) cos(θui(t)) = 0.

To determine whether this constraint is holonomic or nonholonomic, it needs to be checked if the
constraint can be expressed in the form of f(x, y, θ, t) = 0. To check this, the constraint needs to
be integrated. In this case, this is not possible because both ẋui

(t) and ẏui
(t) are in the constraint.

This means that the constraint is nonholonomic, which usually makes it more difficult to design a
controller for a unicycle. With MPC, no extra effort needs to be put in to the controller to overcome
this constraint. In fact, if a designer would have no knowledge of this constraint, it would not create a
problem, as MPC takes the kinematics of the system into account.

4.2 Exact discretization of unicycle model

A discrete-time model predictive controller requires a discrete-time kinematic description of the sys-
tem. An exact discrete-time model of this continuous-time model can be obtained in the following
manner [2]. It is assumed that inputs vui and ωui remain constant on the interval between two sam-
pling instants tk, which is defined as

tk = t ∈ [kTs, (k + 1)Ts).

The exact discrete-time model is given byxui
((k + 1)Ts)

yui
((k + 1)Ts)

θui((k + 1)Ts)

 =

xui
(kTs)

yui
(kTs)

θui(kTs)

+

∫ (k+1)Ts

kTs

cos(θui
(λ)) 0

sin(θui
(λ)) 0

0 1

[vui
(kTs)

ωui
(kTs)

]
dλ, (4.3)

where the integrals still need to be solved. To solve the integrals, it is necessary to know the instanta-
neous value of the angle θ(t). This instantaneous value can be obtained by taking the bottom part of
(4.3) and modifying the integration bounds, leading to

θui
(t) = θui

(kTs) +

∫ t

kTs

ωui
(kTs)dλ

= θui
(kTs) + [t− kTs]ωui

(kTs). (4.4)

To solve the integrals in (4.3), the instantaneous angle (4.4) is used. This means that the integrals are
solved using θui

(λ) = θui
(t). The first integral is solved as∫ (k+1)Ts

kTs

vui(kTs) cos(θui(λ))dλ

=

∫ (k+1)Ts

kTs

vui
(kTs) cos(θui

(kTs) + [λ− kTs]ωui
(kTs))dλ

=
vui

(kTs)

ωui(kTs)
(sin(θui(kTs) + Tsωui(kTs))− sin(θui(kTs)))

=2
vui

(kTs)

ωui
(kTs)

sin

(
Tsωui

(kTs)

2

)
cos

(
θui

(kTs) +
Tsωui

(kTs)

2

)
. (4.5)
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In the last step of this derivation, the sum-to-product identity is used. This identity states that

sin(x)− sin(y) = 2 cos

(
x+ y

2

)
sin

(
x− y
2

)
.

The second integral becomes∫ (k+1)Ts

kTs

vui
(kTs) sin(θui

(λ))dλ

=

∫ (k+1)Ts

kTs

vui(kTs) sin(θui(kTs) + [λ− kTs]ωui(kTs))dλ

=− vui
(kTs)

ωui(kTs)
(cos(θui

(kTs) + Tsωui
(kTs))− cos(θui

(kTs)))

=2
vui(kTs)

ωui
(kTs)

sin

(
Tsωui(kTs)

2

)
sin

(
θui

(kTs) +
Tsωui(kTs)

2

)
. (4.6)

A similar sum-to-product identity is used in the last step, namely

cos(x)− cos(y) = −2 sin
(
x+ y

2

)
sin

(
x− y
2

)
.

Finally, the third integral is ∫ (k+1)Ts

kTs

ωui
(kTs)dλ = ωui

(kTs)λ
∣∣(k+1)Ts

kTs

= Tsωui
(kTs). (4.7)

Now, the exact discrete-time model is derived. However, it should be noted that (4.5) and (4.6) are
not defined when ωui(kTs) = 0. A solution to this problem is to use a Taylor series approximation to
determine what would be the case when ωui(kTs) = 0. This can also be done by using l’Hôpital’s rule,
but in both cases, the result is

lim
ωui

(kTs)→0

(
sin
(
Ts

2 ωui
(kTs)

)
ωui(kTs)

)
=
Ts
2
. (4.8)

Now, all parts of the exact discretization are available. The exact discrete-time model is now given by
combining (4.5) to (4.7) asxui

((k + 1)Ts)
yui

((k + 1)Ts)
θui

((k + 1)Ts)

 =

xui
(kTs) + 2vui

(kTs)γui
(ωui

(kTs)) cos
(
θui

(kTs) +
Ts

2 ωui
(kTs)

)
yui(kTs) + 2vui(kTs)γui(ωui(kTs)) sin

(
θui(kTs) +

Ts

2 ωui(kTs)
)

θui(kTs) + Tsωui(kTs)

 , (4.9)

where γ(ωui(kTs)) is introduced, using (4.8), as

γui(ωui(kTs)) =


sin
(
Ts

2 ωui
(kTs)

)
ωui

(kTs)
, if ωui

(kTs) 6= 0,

Ts
2
, if ωui(kTs) = 0.

(4.10)

4.3 Implementation in MATLAB

When the exact discrete-time model is implemented in MATLAB, some numerical problems arise,
which are caused by (4.10). These problems occur when ω approaches the machine accuracy of MAT-
LAB. When this happens, γui

(ωui
(kTs)) takes on noticeably incorrect values, causing errors in the

future prediction of outputs.

To resolve this issue, values of ω that approach the machine accuracy are increased in size slightly,
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so that no noticeable numerical errors occur. This is also done when ω is zero, meaning that (4.10) can
be changed to

γui(ωui(kTs)) =
sin
(
Ts

2 ωui
(kTs)

)
ωui

(kTs)
. (4.11)

The prediction of future states that is implemented in MATLAB uses this modification of ω in combi-
nation with (4.9) and (4.11) to calculate future outputs. An advantage of using (4.11) instead of (4.10) is
that there now is only one way to calculate a future state, instead of two. This simplifies the construc-
tion of the cost function (Chapter 5) and the differentiation of the cost function (Chapter 6).

4.4 Obtaining predicted outputs

The cost function uses the predicted outputs of the unicycles, as it needs to compare them to the control
objectives, as discussed in Chapter 3. The comparison of the future outputs with the control objectives
is discussed in the next chapter. In this work, the predicted outputs are equal to the predicted states
of the unicycles. These future states can be calculated using (4.9) and (4.11). A predicted input vector
Ii(kTs) is therefore defined as

Ii(kTs) =




vui(kTs)
vui((k + 1)Ts)

...
vui

((k +Np − 1)Ts)


T

,


ωui(kTs)

ωui((k + 1)Ts)
...

ωui
((k +Np − 1)Ts)


T

T

. (4.12)

Here, the bold inputs are the first inputs that are calculated while t ∈ [(k − 1)Ts, kTs). As soon as
t = kTs, these inputs are sent to the unicycles and they become fixed. As discussed in the previous
chapter, the control horizon Nc determines up to which point the values of vui and ωui can change. To
reduce the complexity of the optimization problem, which is further discussed in Chapter 6, control
instantsN i

c are introduced. Control instants determine at which future sampling instants the predicted
input can change. At 1, a control instant is always present, so N i

c = [1 . . .]. Other instants can be added
as well, as long as 1 ≤ N i

c < Np. For example, when Np = 5, and control instants are chosen as
N i

c =
[
1 3

]
, the input vector becomes

Ii(kTs) =




vui(kTs)
vui

((k + 1)Ts)
vui

((k + 2)Ts)
vui((k + 3)Ts)
vui((k + 4)Ts)


T

,


ωui(kTs)

ωui
((k + 1)Ts)

ωui
((k + 2)Ts)

ωui((k + 3)Ts)
ωui((k + 4)Ts)


T

T

=




vui(kTs)
vui

((k + 1)Ts)
vui

((k + 1)Ts)
vui((k + 3)Ts)
vui((k + 3)Ts)


T

,


ωui(kTs)

ωui
((k + 1)Ts)

ωui
((k + 1)Ts)

ωui((k + 3)Ts)
ωui((k + 3)Ts)


T

T

.

Because of the control instants, the number of decision variables in the optimization is reduced, in
this example from 8 to 4. By using the predicted input vector in (4.9) and (4.11), the predicted output
matrix, Xi(kTs) can be calculated, resulting in

Xi(Ii(kTs)) =


xui

((k + 2)Ts) yui
((k + 2)Ts) θui

((k + 2)Ts)
xui((k + 3)Ts) yui((k + 3)Ts) θui((k + 3)Ts)

...
...

...
xui

((k +Np)Ts) yui
((k +Np)Ts) θui

((k +Np)Ts)

 . (4.13)

Here, the state at t = (k + 1)Ts is not included, as it is fixed due to the delay of one sample caused
by the controller. Xi(Ii(kTs)) can now be used to determine a cost function value Jui

(Xi(Ii(kTs))),
which is discussed in the following chapter. From here on, these notations are changed to Xi(kTs)
and Jui(kTs) for brevity. The sampling time Ts and the prediction horizon Np determine the physical
prediction length, i.e. the length of the predicted path of the unicycle. A longer sampling time and a
longer prediction horizon can increase this length. The physical prediction length can influence the
behavior of the controller. For example, when the unicycle is driving, and encounters an obstacle that
it needs to avoid, it can be beneficial to have a larger physical prediction length.
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4.5 Conclusions

The continuous-time unicycle model that is described in this chapter, is exactly discretized under the
assumption that the inputs remain constant over one sampling period. This results in a discrete-time
model that is as close as possible to the continuous-time model. Due to numerical errors that occur
with small values of ω, a modification has to be made to the exact discrete-time model. Because of
this modification, it can be that the results of this model are not exact. However, errors that can occur
with this modification are much smaller than errors that can occur without this modification. Finally,
the modified discrete-time model is used to determine the predicted outputs that are the result of the
predicted inputs. These outputs are used to determine a cost function value, which is further discussed
in Chapter 5.

21



22



Chapter 5

Cost Function

This chapter discusses different elements that can make up the cost function. First, the use of the
cost function is discussed. After that, terms are introduced that allow unicycles to track reference
trajectories, avoid obstacles, avoid each other, and drive in a formation. The chapter ends with assembly
of the total cost function, which depends on the control method that is used.

5.1 Use of the cost function

MPC uses the cost function to determine how well the system’s predicted output, which is the result
of a predicted input, corresponds to the specified control objectives. The cost function returns a scalar
value that determines the performance. A lower cost function value indicates that the system output
corresponds better to the control objectives.

The goal of MPC is to find the predicted input that results in the lowest cost function value. To find
that input, an optimization algorithm is used, which is discussed in more detail in Chapter 6. From
a given initial predicted input, this optimization algorithm will iteratively search for a lower value of
the cost function. In this project, the steepest descent method and Newton’s method are used for this.
These methods use the gradient and the Hessian of the cost function with respect to the inputs that
can be altered. All terms in the cost function are formulated with this in mind, meaning that the cost
function can be differentiated to obtain the gradient. The gradient can then be differentiated to obtain
the Hessian.

The optimization algorithm will try to find a predicted output, in this case a trajectory, that corre-
sponds the best with the control objectives. These objectives are specified from t = (k + 2)Ts to
t = (k +Np)Ts. The control objectives are not specified at (k + 1)Ts because this future time instant
is not controllable. This is because for t ∈ [kTs, (k+1)Ts), inputs and outputs of the system are fixed.
The relative importance of the control objectives are determined by penalty terms that penalized devi-
ating from the given control objectives. It is possible to use different penalty values at different future
instants. By doing this, different convergence behavior to the control objectives can be obtained.

5.2 Tracking a reference trajectory

If it is desired that unicycle i follows a reference trajectory, reference tracking terms should be included
in the cost function. The reference trajectory has to be specified as

Ri(kTs) =


xri((k + 2)Ts) yri((k + 2)Ts) θri((k + 2)Ts)
xri((k + 3)Ts) yri((k + 3)Ts) θri((k + 3)Ts)

...
...

...
xri((k +Np)Ts) yri((k +Np)Ts) θri((k +Np)Ts)

 .
Here, xri(m), yri(m), and θri(m) indicate the locations and rotation of reference trajectory at a future
instantm respectively. There are no requirements on the reference trajectory, so it is possible to specify
a trajectory that a unicycle can not follow, such as specifying a position that a unicycle should drive to,
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which can not be reached in one sample. This means that it is not necessary to specify a path to this
position, as this is handled by the controller. Figure 5.1 shows a situation where a unicycle should track
a reference trajectory. Note that the same color scheme is used as in Figure 3.2.

t = (k +Np)Ts

t = (k + 2)Ts

t = kTs
t = (k + 1)Ts

t = (k + 3)Ts

Figure 5.1: Unicycle tracking a reference signal.

At t = kTs, the location of the unicycle is known from measurement, as indicated with the purple
marker. The output is fixed for t ∈ [kTs, (k + 1)Ts], which is indicated with the light blue line and
marker. After that, control is regained over future states and the reference trajectory can be tracked. To
do this, the distance to the reference trajectory and the absolute angular difference are defined. These
will be used to penalize deviating from the reference trajectory, by increasing the cost function value.
The distance and absolute angular difference at a future instant m are given by

Dri
ui
(m) =

√
(xri(m)− xui(m))2 + (yri(m)− yui(m))2,

Ari
ui
(m) = (θri(m)− θui

(m))2.

To penalize Dri
ui
(m) and Ari

ui
(m) when they are not equal to zero, two scalar penalty terms P ri

ui
(m) and

Qri
ui
(m) are defined. The cost of tracking a reference trajectory for unicycle i is given by

JRi
ui

(kTs) =

k+Np∑
m=k+2

(
P ri
ui
(mTs)D

ri
ui
(mTs) +Qri

ui
(mTs)A

ri
ui
(mTs)

)
. (5.1)

By adding (5.1) to the cost function, the unicycles can track a reference trajectory.

5.3 Avoiding collisions with circular obstacles

To avoid obstacles that are in the same workspace as a unicycle, an obstacle avoidance term should
be included in the cost function. In this thesis, the obstacle avoidance term is derived for circular
obstacles only. This is done because it is straightforward to calculate the distance between a unicycle
and a circular obstacle, which is necessary to detect potential collisions. To detect a collision, the
location and radius of a circular obstacle i should be defined as

Oi(kTs) =


xoi((k + 2)Ts) yoi((k + 2)Ts) roi((k + 2)Ts)
xoi((k + 3)Ts) yoi((k + 3)Ts) roi((k + 3)Ts)

...
...

...
xoi((k +Np)Ts) yoi((k +Np)Ts) roi((k +Np)Ts)

 .
The location of the center of a circular obstacle i is indicated by xoi(m) and yoi(m). The radius of the
obstacle is indicated by roi(m). When obstacles are static, so the object’s location and radius do not
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change over time, it is theoretically possible to guarantee that no collisions occur. This can be done by
stopping a unicycle if future inputs will result in a collision with that obstacle. A requirement for this
is that vui

can become zero. After a unicycle has stopped, a new optimization at a next time instant
can result in a collision free path. It is also possible to have obstacles that vary their location and radius
over time. When obstacles are dynamic, collision avoidance can no longer be guaranteed. However,
if the location and/or radius of the obstacles varies slow enough, and the situation is not too crowded,
the obstacles will still be avoided. A situation where a unicycle is driving in the presence of a circular
obstacle is shown in Figure 5.2.

roi

t = (k +Np)Ts

t = (k + 2)Ts

t = kTs
t = (k + 1)Ts

t = (k + 3)Ts

Figure 5.2: Unicycle avoiding collisions with a circular obstacle.

The distance from the center of unicycle i to the center of a circular obstacle j at a future instant m can
be calculated as

Doj
ui
(m) =

√(
xui

(m)− xoj (m)
)2

+
(
yui

(m)− yoj (m)
)2
.

When the distance between the center of the unicycle and the object is known, it can be checked
whether a collision will occur or not. For this, the radii of the unicycle and the obstacle should be
known. However, it should also be taken into account what happens between two sampling instants,
as can be seen in Figure 5.3. In Figure 5.3(a), a unicycle is depicted at t = mTs and t = (m+1)Ts. In be-
tween the instants the unicycle is driving with vsui

= max(|vmin
ui
|, |vmax

ui
|) and ωs

ui
= max(|ωmin

ui
|, |ωmax

ui
|),

so the unicycle is driving at maximum velocity and turning with maximum angular velocity. At both
t = mTs and t = (m+ 1)Ts, no collision is detected, while a collision with the obstacle does occur. To
avoid this situation, the following analysis is made. It is required that

vsui
Ts ≤ 2rui

. (5.2)

The unicycle is driving on a circular path. The time it takes to complete a full circle can be calculated
as

tsui
=

2π

ωs
ui

. (5.3)

The circumference of this circle is
Cs

ui
= vsui

tsui
, (5.4)

and the radius of the circle is therefore

rsui
=
Cs

ui

2π
. (5.5)

The length of the arc of the circle which connects the center of the unicycle at t = mTs with the center
at t = (m+ 1)Ts is

As
ui

= vsui
Ts. (5.6)

25



asui

roj d
oj
ui

esui

rui

θsui

rsui

t = mTs t = (m+ 1)Ts

b
oj
ui

c
oj
ui

(a) Worst case inter-sample collision occurring.
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(b) Worst case inter-sample collision avoided.

Figure 5.3: Preventing inter-sample collisions with a circular obstacle.

This arc length is used to determine the angle θsui
as

θsui
=

2π

2

As
ui

Cs
ui

. (5.7)

Now, the length of line segments cojui and bcojui can be calculated as

asui
= rsui

cos(θsui
), (5.8)

esui
= rsui

sin(θsui
), (5.9)

abcojui
= asui

+ bojui
+ cojui

= rsui
+ rui

,

bcdojui
= bojui

+ cojui
+ dojui

=

√(
roj + rui

)2 − esui

2,

cdojui
= cojui

+ dojui
= roj ,

cojui
= abcojui

+ cdojui
− asui

− bcdojui
,

bcojui
= bojui

+ cojui
= abcojui

− asui
.

When the unicycle and its circular path are shifted upwards by cojui , a collision with the obstacle is
avoided, as shown in Figure 5.3(b). This shift can be used to calculate a safe distance sojui which needs
to be added to the unicycle radius in order to guarantee that no inter-sample collisions with obstacles
occur. This safe distance sojui can be calculated as

sojui
=

√(
roj + bc

oj
ui

)2
+ esui

2 − rui
− roj .

When this safe distance is added to the original radius of the unicycle, it can be guaranteed that no
inter-sample collisions with obstacles occur, assuming that the obstacle is static. It can now be checked
if a collision Coj

ui (m) will occur as

Coj
ui
(m) =

{
0, if D

oj
ui(m)− rui

− sojui − roj > 0 (no collision),

1, if D
oj
ui(m)− rui − s

oj
ui − roj ≤ 0 (collision).

The cost of approaching an obstacle, or colliding with it, is specified as

Joj
ui
(m) =


1

D
oj
ui(m)− rui

− sojui − roj
, if Coj

ui
(m) = 0 (no collision),

P
oj
ui (m)

D
oj
ui(m)

, if Coj
ui
(m) = 1 (collision).

(5.10)
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Here, a scalar penalty term P
oj
ui (m) is introduced to penalize a collision with a circular obstacle. When

no collision will occur, the cost of approaching an obstacle is determined by the first function of (5.10)
which uses the distance that is left between the obstacle and the unicycle. As a unicycle moves closer
to an obstacle, the cost increases. If a collision will occur, the second function is used to determine the
cost. BecauseDoj

ui(m)−rui−s
oj
ui−roj ≤ 0 in this area, the first function would become negative here,

which is not desired. To remedy this, only the remaining distance between the center of the unicycle
and the object is used in the denominator. To indicate the difference between the two areas, the cost is
multiplied with P oj

ui (m) to penalize collisions more. The cost returned by (5.10) is finite, except when
the distance between the centers is zero. A schematic overview of the cost (5.10) as a function of the
distance between the centers, is shown in Figure 5.4.

Collision No collision

Distance between centers [m]

C
os

t[
-]

Figure 5.4: Cost of approaching a circular obstacle or another unicycle.

The value of P oj
ui (m) should be orders larger than penalties on reference tracking and formation keep-

ing. In this way, avoiding collisions will weigh heavier than fulfilling other control objectives. As
discussed earlier, it is possible to use a different penalty at a different future instant, in fact here it is
even recommended. By choosing P oj

ui (m) higher at t = (k + 2)Ts than at other future time instants, a
difference is made between a collision that will happen sooner and a collision that will happen later.

The use of two functions in the different areas leads to a discontinuity when switching between the
functions. This means that it can occur that not colliding is penalized more than colliding. However,
this does not create a problem as the optimization algorithm, that is discussed further in Chapter 6,
uses the gradient and the Hessian to search for a lower cost function value. As can be seen in Fig-
ure 5.4, in both areas the gradient and the Hessian will point to a lower cost function value if the
unicycle moves further away from an obstacle. When the gradient and Hessian are provided to the
optimization algorithm, the predicted input can be changed to prevent a collision with the obstacle.
To obtain the cost of avoiding collisions with circular obstacles, (5.10) is combined in one equation,
resulting in

JOj
ui

(kTs) =

k+Np∑
m=k+2

(
1 + C

oj
ui (mTs)

(
P

oj
ui (mTs)− 1

)
D

oj
ui(mTs)−

(
1− Coj

ui (mTs)
) (
rui

+ s
oj
ui + roj

)) . (5.11)

By adding (5.11) to the cost function, the unicycles can avoid circular obstacles.

5.4 Avoiding collisions with other unicycles

Avoiding of other unicycles works in a similar way as the avoiding of circular obstacles. The biggest
difference is that all the unicycles can be controlled, while the objects can not. Depending on the con-
trol method that is used, unicycles have to avoid each other at only the first controllable future time
instant, or at every controllable future time instant.

When sequentially decentralized MPC is used, unicycles can plan their trajectories in the order that
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results from their respective priorities. A unicycle needs to avoid lower priority unicycles only at the
first controllable future instant t = (k + 2)Ts. Higher priority unicycles need to be avoided at every
controllable future time instant, as they already planned their trajectories. The priority of a unicycle i
is indicated by Pui(kTs). It is assumed that the priorities of the unicycles are never equal to keep the
system behavior deterministic. A way in which the priorities of the unicycles can be determined, is
discussed in Section 5.7.

If centralized MPC is used, all unicycles plan their trajectories at the same time. This means that
a change in trajectory of one unicycle can influence the trajectories of every other unicycle. Because of
this, all unicycles should avoid all other unicycles at every controllable future time instant when using
this control strategy.

To make unicycle i avoid unicycle j that operates in the same workspace, a unicycle avoidance term
should be included in the cost function. When sequentially decentralized MPC is used and Pui

(kTs) >
Puj

(kTs), the future state of a unicycle j is given by

Xj(kTs) =
[
xuj

((k + 2)Ts) yuj
((k + 2)Ts) θuj

((k + 2)Ts)
]
.

This state is obtained from the previous optimization result at (k + 3)Ts. In the case that Pui(kTs) <
Puj (kTs), or if centralized MPC is used, the future states are given by

Xj(kTs) =


xuj

((k + 2)Ts) yuj
((k + 2)Ts) θuj

((k + 2)Ts)
xuj ((k + 3)Ts) yuj ((k + 3)Ts) θuj ((k + 3)Ts)

...
...

...
xuj

((k +Np)Ts) yuj
((k +Np)Ts) θuj

((k +Np)Ts)

 .
A situation where a unicycle is driving in the presence of another unicycle is shown in Figure 5.5.

t = (k +Np)Ts

t = (k + 2)Ts

t = kTs
t = (k + 1)Ts

t = (k + 3)Ts

Figure 5.5: Unicycle avoiding collisions with another unicycle.

To avoid other unicycles, the distance from the center of unicycle i to the center of a unicycle j at a
future instant m should be known. It can be calculated as

Duj
ui
(m) =

√(
xui

(m)− xuj
(m)

)2
+
(
yui

(m)− yuj
(m)

)2
. (5.12)
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When the distance between the centers of the unicycles is known, it can be checked whether a collision
will occur or not. For this, the radii of the unicycles rui

and ruj
should be known. However, it should

also be taken into account what happens between two sampling instants, as can be seen in Figure 5.6.

t = mTs t = (m+ 1)Ts

t = mTst = (m+ 1)Ts

asui

esui

rsui

fsui

g
uj
ui
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rsuj

fsuj
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(a) Worst case inter-sample collision occurring.

t = mTst = (m+ 1)Ts

t = mTs t = (m+ 1)Ts
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esui

rsui

fsui

h
uj
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fsuj
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rui

s
uj
ui

(b) Worst case inter-sample collision avoided.

Figure 5.6: Preventing inter-sample collisions with another unicycle.

In Figure 5.6(a), two unicycles are depicted at t = mTs and t = (m+1)Ts. In between the instants the
unicycles are driving with vsui

, vsuj
ωs
ui

, and ωs
uj

, so they are both driving at their maximum velocities
and turning with their maximum angular velocities. At both t = mTs and t = (m+ 1)Ts, no collision
is detected, while a collision between the unicycles does occur. To avoid this situation, an analysis of
the situation is made. For this analysis, it is required that

vsui
Ts ≤ 2rui ,

vsuj
Ts ≤ 2ruj .

(5.13)

To obtain the length of line segments rsui
, rsuj

, asui
, asuj

, esui
, and esuj

, (5.3) to (5.9) can be used. At
t = (m+ 1

2 )Ts, the centers of the unicycles are closest to each other. The distance between the centers
g
uj
ui at this time instant can be obtained as

fsui
= rsui

− asui
, fsuj

= rsuj
− asuj

,

fgfuj
ui

= fsui
+ guj

ui
+ fsuj

=
√

(rui
+ ruj

)2 − (esui
+ esuj

)2,

guj
ui

= fgfuj
ui
− fsui

− fsuj
.

The collision depth of the unicycles at this time instant can be calculated as

duj
ui

= rui
+ ruj

− guj
ui
.

With this length known, unicycle i and its circular path are shifted upwards by duj
ui as is shown in

Figure 5.6(b). Here, huj
ui = g

uj
ui + d

uj
ui . After this shift, no inter-sample collision can occur anymore.
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The shift requires that a safe distance is added to the radius of unicycle i. The safe distance suj
ui can be

obtained as
suj
ui

=
√
(fsui

+ h
uj
ui + fsuj

)2 + (esui
+ esuj

)2 − rui
− ruj

.

When this safe distance is added to radii of the two unicycles, it can be guaranteed that no inter-sample
collisions between unicycles occur. It can now be checked if a collision Cuj

ui (m) occurs at a given future
sample as

Cuj
ui
(m) =

{
0, if D

uj
ui (m)− rui − s

uj
ui − ruj > 0 (no collision),

1, if D
uj
ui (m)− rui

− suj
ui − ruj

≤ 0 (collision).

The cost of approaching another unicycle, or colliding with it, is specified as

Juj
ui
(m) =


1

D
uj
ui (m)− rui − s

uj
ui − ruj

, if Cuj
ui
(m) = 0 (no collision),

P
uj
ui (m)

D
uj
ui (m)

, if Cuj
ui
(m) = 1 (collision).

(5.14)

Here, a scalar penalty term P
uj
ui (m) is introduced to penalize a collision with another unicycle. This

penalty term has the same properties and requirements as P oj
ui (m), as is discussed in Section 5.3. A

schematic overview of the cost (5.14) as a function of the distance is shown in Figure 5.4. As before, it
is possible to combine (5.14) to obtain an expression for the cost of avoiding another unicycle as

JUj
ui

(kTs) =

n(kTs)∑
m=k+2

(
1 + C

uj
ui (mTs)

(
P

uj
ui (mTs)− 1

)
D

uj
ui (mTs)−

(
1− Cuj

ui (mTs)
) (
rui

+ s
uj
ui + ruj

)) . (5.15)

Here, n(kTs) depends on the control strategy and the priority of the unicycle as

n(kTs) =

{
k + 2, if Pui(kTs) > Puj (kTs),

k +Np, if Pui(kTs) < Puj (kTs), or centralized MPC.
(5.16)

As unicycles can not collide with themselves, JUi
ui

(kTs) = 0. By adding (5.15) to the cost function, the
unicycles can avoid other unicycles.

5.5 Driving in formation with other unicycles

If it is desired that multiple unicycles drive in a formation, a formation should first be specified. A
unicycle can be coupled to other unicycles in three ways, which are depicted in Figure 5.7. It is possible
create leader-follower formations, virtual structures, or a mix of these two.

ψ
uj
ui

φ
uj
ui

Y

Xxujxui

yui

yuj

D
uj
ui

E
uj
ui

θui

θuj

Figure 5.7: Formation that unicycle i should keep from unicycle j.

Here, Duj
ui (m), given by (5.12), indicates the distance between the centers of unicycle i and j. The

desired distance that should be kept between unicycles is indicated with E
uj
ui (m). The angle that
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unicycle i has with respect to unicycle j is indicated by ψuj
ui (m) and can be calculated as

ψuj
ui
(m) = atan2

(
yui

(m)− yuj
(m), xui

(m)− xuj
(m)

)
. (5.17)

The desired angle that should be kept between the unicycles is indicated with φuj
ui (m). When Euj

ui (m)
and φuj

ui (m) are specified, the position of the unicycle is fully constrained. However, the angle of the
unicycle is not. To constrain this angle, a third coupling term is introduced which is the coupling of
θui

to θuj
. This last term can be used to fully constrain the unicycle when it is in the desired position.

However, when the unicycle is not yet in position, this coupling overconstrains the formation goals of
the unicycle.

To make a unicycle i drive in formation with respect to unicycle j, a formation keeping term should be
included in the cost function. When sequentially decentralized MPC is used and Pui

(kTs) > Puj
(kTs),

the future formation of a unicycle j is given by

F j
i (kTs) =


E

uj
ui ((k + 2)Ts) φ

uj
ui ((k + 2)Ts) θuj ((k + 2)Ts)

E
uj
ui ((k + 3)Ts) φ

uj
ui ((k + 3)Ts) θuj

((k + 3)Ts)
...

...
...

E
uj
ui ((k +Np − 1)Ts) φ

uj
ui ((k +Np − 1)Ts) θuj

((k +Np − 1)Ts)

 .
This formation can only be specified until (k + Np − 1)Ts because the states of unicycle j are only
available up to this time instant. In this case, unicycle i needs to base its decision on the states of
unicycle j that was calculated at the previous time instant. These are the future states from (k + 3)Ts
till (k +Np)Ts that were calculated at the previous time instant, and are shifted by the sampling time.
When Pui(kTs) < Puj (kTs), or if centralized MPC is used, the future formation is given by

F j
i (kTs) =


E

uj
ui ((k + 2)Ts) φ

uj
ui ((k + 2)Ts) θuj ((k + 2)Ts)

E
uj
ui ((k + 3)Ts) φ

uj
ui ((k + 3)Ts) θuj

((k + 3)Ts)
...

...
...

E
uj
ui ((k +Np)Ts) φ

uj
ui ((k +Np)Ts) θuj

((k +Np)Ts)

 .
The cost of staying in a formation is given by

JFj
ui

(kTs) =

o(kTs)∑
m=k+2

(
Quj

ui
(mTs)

(
Euj

ui
(mTs)−Duj

ui
(mTs)

)2
+ . . .

)
(
Ruj

ui
(mTs)

(
φuj
ui
(mTs)− ψuj

ui
(mTs)

)2
+ . . .

)
(
Suj
ui
(mTs)

(
θuj (mTs)− θui(mTs)

)2)
.

(5.18)

Three penalty termsQuj
ui (m), Ruj

ui (m), and Suj
ui (m) are introduced to penalize deviating from a desired

formation. Here, o(kTs) depends on the control strategy and the priority of the unicycle as

o(kTs) =

{
k +Np − 1, if Pui

(kTs) > Puj
(kTs),

k +Np, if Pui
(kTs) < Puj

(kTs), or centralized MPC.
(5.19)

As a unicycle can not drive solely in a formation, JFi
ui
(kTs) = 0. By adding (5.18) to the cost function,

the unicycles can drive in a formation.

5.6 Total cost function

Depending on what control objectives should be fulfilled, and what control method is used, the cost
function will be different. Terms that can be included are (5.1), (5.11), (5.15) and (5.18).

5.6.1 Sequentially decentralized MPC

When sequentially decentralized MPC is used, each unicycle has its own cost function. When all con-
trol objectives, that are discussed in this chapter, need to be fulfilled, the total cost function JTo

ui
(kTs)
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becomes

JTo
ui

(kTs) = JRi
ui

(kTs) +

No∑
j=1

JOj
ui

(kTs) +

Nu∑
j=1

JUj
ui

(kTs) +

Nu∑
j=1

JFj
ui

(kTs). (5.20)

Here, No indicated the number of circular obstacles and Nu is the number of unicycles that are in-
volved. These cost functions are scalar expressions that depend on the input vectors Ii(kTs).

5.6.2 Centralized MPC

When centralized MPC is used, the control objectives of all unicycles are combined into a single cost
function JTo(kTs), which is given by

JTo(kTs) =

Nu∑
i=1

JRi
ui

(kTs) +

No∑
j=1

JOj
ui

(kTs) +

Nu∑
j=1

JUj
ui

(kTs) +

Nu∑
j=1

JFj
ui

(kTs)

 . (5.21)

This cost function depends on a combination of all input vectors, given by

I(kTs) =
[
IT1 (kTs) IT2 (kTs) . . . ITNu

(kTs)
]T
.

5.7 Priorities based on cost function value

When sequentially decentralized MPC is used, it is necessary to determine the priority values Pui
(kTs)

of the unicycles to determine the order in which the optimization takes place. This order is determined
by arranging the priority values from high to low. If two unicycles have the same priority value, the
unicycle with a lower priority can plan first. A simple method is to use fixed priorities, which are
determined in advance. While this will not cause any issues when unicycles are operating at large
distances from each other, this is not always the case when unicycles are operating in close proximity to
each other. For example, consider the following scenario, depicted in Figure 5.8, where three unicycles
are shown using two different priority strategies.
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(a) Conflict resolution with fixed priorities.
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(b) Conflict resolution with dynamic priorities.

Figure 5.8: Resolution of a conflict situation with different priority strategies.

The goal of the three unicycles is to drive to their desired locations, which are indicated by the crosses.
The blue and green unicycles start from their desired locations, while the red one does not. When a
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fixed order is used, depicted by the number on the unicycles in Figure 5.8(a), the blue and green unicy-
cles plan their paths first. As they are already in position, they will remain there. This means that the
red unicycle is unable to plan a direct path to its desired location, and will drive as close as it can to the
blue and green unicycles, indicated with the short dashed line. It is possible that the unicycle remains
in that position, indicated with the dotted line, as local optimization is used in this thesis, which is
further discussed in the next chapter.

In the bottom half of Figure 5.8(a), the cost function values of the unicycles from (5.20) are indicated.
As can be seen, the values of the blue and green unicycles remain close to zero. The cost function
value of the red unicycle initially decreases, but then remains constant.

In Figure 5.8(b), a different strategy is used. Now, the priorities are determined by the cost function
values of the unicycles. The idea is that a unicycle that is far from accomplishing its control objectives
is more important than a unicycle that has already fulfilled its control objectives. These control objec-
tives do not include avoiding other unicycles. Why this is done is explained below. The priority value
of a unicycle can be determined as

Pui
(kTs) = JRi

ui
(kTs) +

No∑
j=1

JOj
ui

(kTs) +

Nu∑
j=1

JFj
ui

(kTs). (5.22)

When these varying priorities are used to determine the order in which the unicycles plan their paths,
the red unicycle will be able to plan a path towards its goal as it initially has a higher priority. However,
it "pushes" the other unicycles from their desired location, which causes the priority of the these uni-
cycles to rise above the priority of the red one. This leads to priorities that switch back and forth. To
resolve this issue, priorities are only allowed to increase or stay the same as they were at the previous
time instant. Only if a priority level drops below the base priority level, which is set at a fraction (e.g.
1%) of the highest priority value that has ever occurred with all unicycles, the priority value becomes
zero. This base priority level indicates that a unicycle has fulfilled its control objectives. When this
strategy is applied, the unicycles will be able to resolve this situation. The red unicycle will plan a
path as if the other unicycles are not there, and try to drive to its desired location. The blue and green
unicycles will move away, as they see that the planned path of the red unicycle will result in a costly
collision. This is why avoiding other unicycles is not included in (5.22), as it would also result in prior-
ities switching back and forth. Finally, after the red unicycle has reached its destination, the blue and
green unicycles will return to their desired positions.

The lower part of Figure 5.8(b) shows what happens with the priorities levels of the unicycles. On
the vertical axis, the priority values from (5.22) are shown. The base priority level is shown in grey, the
current priority value is indicated by the colored lines, and the actual used priorities are indicated by
the colored dashed lines. Initially, the blue and green unicycles have a priority of zero as they are below
the base priority, while the red one is not. It can therefore plan a path to its desired destination, "push-
ing" the other unicycles out of the way, resulting in a decreasing priority value. This causes the priority
values of the blue and green unicycles to rise above the base priority, and eventually to rise above the
current priority of the red unicycle, but not the actually used priority. Eventually, the priorities of all
three unicycles drop below the base level. The use of this priority strategy allows conflict situations
such as these, or with more unicycles, to be resolved. In the simulation and experimental results, this
strategy is always used in combination with sequentially decentralized MPC.

5.8 Conclusions

In this chapter, the cost function is derived, which covers the tracking of a reference trajectory, avoid-
ing collisions with circular obstacles and other unicycles, and driving in a formation. For sequentially
decentralized MPC, a priority strategy is developed which can be used to resolve conflicts between
unicycles. This strategy is not necessary when centralized MPC is used, as it considers the control
objectives of all unicycles simultaneously.

The two control strategies that are discussed in this thesis vary significantly. Whereas sequentially
decentralized MPC requires more complex preparations, such as determining priorities, before the
simpler optimization takes place, centralized MPC shifts that complexity to the optimization problem.
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The length of the input vectors show this clearly, as sequentially decentralized MPC uses two times
the number of elements in N i

c as free input variables. Centralized MPC multiplies this number of
variables by the number of unicycles, creating an optimization problem with more freedom, but more
complexity as well. A choice for the type of MPC should therefore be based on the quality and speed of
the optimization algorithm, which is further discussed in Chapters 6 and 7.
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Chapter 6

Optimization of Cost Function

In this chapter, it is discussed how an optimal predicted input can be obtained using the cost function
from Chapter 5. To that end, it is first discussed how the gradient and the Hessian of the cost function
can be obtained and used in two different optimization methods: the steepest descent and Newton’s
optimization method. After that, the two methods are augmented with a line search method to obtain a
more robust optimization algorithm. Finally, the two augmented optimization methods are compared
and some conclusions are drawn.

6.1 Introduction of optimization problem

MPC solves an optimization problem at every time instant to obtain the optimal control inputs that are
then sent to the unicycles. The goal of the optimization problem is to find a predicted input sequence
that minimizes the cost function. Depending on the control method that is used, the optimization
problem can be expressed as

min
If
(i)

(kTs)
JT
(ui)

(
If(i)(kTs)

)
,

subject to

vmin
ui
≤ vui ≤ vmax

ui
,

ωmin
ui
≤ ωui ≤ ωmax

ui
.

(6.1)

Here, the terms between brackets in subscripts ((i) and (ui)), are used to indicate that this both applies
to sequentially decentralized, and centralized MPC. When sequentially decentralized MPC is used, the
terms between the brackets are kept. When centralized MPC is used, the terms are ignored. The
variable that needs to be optimized, If(i)(kTs), is the free input vector which contains the inputs that

are specified at the control instantsN i
c . For example, whenN i

c =
[
1 3

]
, the free input vector becomes

Sequentially Decentralized MPC Centralized MPC

Ifi (kTs) =


vui((k + 1)Ts)
vui((k + 3)Ts)
ωui

((k + 1)Ts)
ωui

((k + 3)Ts)

. If (kTs) =



vu1((k + 1)Ts)
vu1((k + 3)Ts)
ωu1

((k + 1)Ts)
ωu1

((k + 3)Ts)


T

, . . . ,


vuNu

((k + 1)Ts)
vuNu

((k + 3)Ts)
ωuNu

((k + 1)Ts)
ωuNu

((k + 3)Ts)


T

T

.

The cost function depends on more variables than If(i)(kTs), but they are not shown in (6.1) for brevity.
The constraints in this optimization problem are bounds on the inputs of the unicycles.

It is required that (6.1) is solved at every time instant. When sequentially decentralized MPC is used,
this problem should be solved in a specified order that is determined by the priorities of the unicycles.
This is required to be able to determine n(kTs) and o(kTs) from (5.16) and (5.19). A method to deter-
mine the priorities of the unicycles is discussed in Section 5.7. When centralized MPC is used, (6.1)
only has to be solved once, as it plans the path of all unicycles simultaneously.
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6.2 Local exploration

It is desired that the lowest possible value of the cost function is obtained. This function is nonlinear
and there are constraints on the inputs of the unicycles, making it impossible to find an explicit solu-
tion for an optimal predicted input sequence. To overcome this problem, it is possible to search for an
optimal sequence using local exploration.

When optimality conditions cannot be manipulated to yield an explicit solution, an iterative procedure can
be sought. One may start from an initial point where the function value is calculated and then take a step in
a downward direction. where the function value will be lower. To make such a step, one utilizes local informa-
tion and explores the immediate vicinity of the current point; hence, all iterative methods perform some kind
of local exploration [45].

To obtain the lowest possible cost function value, local exploration is used in this thesis in the iterative
search for a local optimum. Two local exploration methods are discussed here: the steepest descent
method and Newton’s method. These methods make use of local first and second order approxima-
tions of the cost function, the gradient and the Hessian respectively.

6.3 Obtaining gradient and Hessian

To obtain the components that make up the gradient, the cost function can be differentiated with
respect to its free input variables. The Hessian can be obtained by differentiating the gradient to the
free input variables. As the cost function is constructed symbolically, it is possible to differentiate it to
the different free input variables. The gradient of the cost function can be obtained as

g(i)

(
If(i)(kTs)

)
=
∂JTo

(ui)

(
If(i)(kTs)

)
∂If(i)(kTs)

. (6.2)

The Hessian can then be calculated by differentiating (6.2) to obtain

H(i)

(
If(i)(kTs)

)
=
∂gT(i)

(
If(i)(kTs)

)
∂If(i)(kTs)

. (6.3)

During the differentiation, the penalty and collision terms are treated as constants. Also, the atan2
function that is used in (5.17), is changed to a basic atan function when the gradient and Hessian are
derived. After the differentiation, the atan term is changed back to atan2. Because the derivatives of
these two functions are identical, and the derivative of the atan function does not contain any atan
terms, the derivatives of the cost function remain exact.

6.4 Iterative local optimization

Starting from an initial predicted input sequence If0(i)(kTs), the first problem is to determine a search
direction. Depending on the optimization method that is used, the steepest descent method or New-
ton’s method, first and second order approximations of the cost function are used to determine this
direction respectively. These local approximations are used to determine iterative procedures to obtain
lower cost function values.

6.4.1 Steepest descent optimization method

The steepest descent optimization method uses a first order approximation of the cost function to
determine a lower cost function value. This approximation is given by

JTo

(ui)

(
I
fp+1

(i) (kTs)
)
= JTo

(ui)

(
I
fp
(i)(kTs)

)
+ gT(i)

(
I
fp
(i)(kTs)

)
∂I

fp
(i)(kTs),

Here, p indicates the current iteration, and the change of inputs is defined as

∂I
fp
(i)(kTs) = I

fp+1

(i) (kTs)− I
fp
(i)(kTs). (6.4)
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A search direction that results in a lower cost function values can be found in the negative direction of
the gradient

∂I
fp
(i)(kTs) = −g(i)

(
I
fp
(i)(kTs)

)
. (6.5)

This allows an iterative procedure to be created by combining (6.4) and (6.5) to get

I
fp+1

(i) (kTs) = I
fp
(i)(kTs)− g(i)

(
I
fp
(i)(kTs)

)
. (6.6)

6.4.2 Newton’s optimization method

It is also possible to use a second order approximation of the cost function, which is used by Newton’s
optimization method. This second order approximation is given by
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is found at the stationary condition

gT(i)

(
I
fp
(i)(kTs)

)
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)
∂I

fp
(i)(kTs) = 0. (6.7)

Using (6.4) and (6.7), an iterative procedure can be created, assuming that H(i)

(
I
fp
(i)(kTs)

)
is invert-

ible, resulting in

I
fp+1

(i) (kTs) = I
fp
(i)(kTs)−H

−1
(i)

(
I
fp
(i)(kTs)

)
g(i)

(
I
fp
(i)(kTs)

)
. (6.8)

6.4.3 Advantages and disadvantages

Both these iterative optimization methods have their advantages and disadvantages. The steepest de-
scent method has the advantage that only the gradient of the cost function needs to be available. New-
ton’s method uses the Hessian, which requires more work to derive. Another disadvantage of Newton’s
method is the Hessian is required to be positive definite to guarantee that an iteration results in a lower
function value. If this is not the case, Newton’s method may lead to higher function values. It is possi-
ble to compensate for this, but this compensation has not been investigated further in this thesis.

A disadvantage of the steepest descent method is that when the input vector approaches a local op-
timum where input constraints are not active, progress towards the optimum becomes slow, because
the gradient decreases in size. This problem can be circumvented by using Newton’s method. This is
because this method makes use of second order curvature information, leading to faster convergence
to the optimum if the input vector is close to a local optimum.

When an input vector is far from a local optimum, it can occur with both methods that a much too large
step in the search direction is taken, leading to a higher cost function value. To resolve this problem,
the two methods are used in combination with a line search.

6.5 Line search optimization

Line search optimization is a method that searches for a minimum in a descent direction that is deter-
mined in advance, and gives more control over the step size that is taken. Another advantage is that
the gradient and Hessian don’t have to be evaluated at every iteration, leading to shorter computation
times. From (6.6) and (6.8), it is possible to determine two descent directions sfp(i)(kTs) as

s
fp
(i)

(
I
fp
(i)(kTs)

)
= −g(i)

(
I
fp
(i)(kTs)

)
, (6.9)

when the steepest descent optimization method is used, and

s
fp
(i)

(
I
fp
(i)(kTs)

)
= −H−1(i)

(
I
fp
(i)(kTs)

)
g(i)

(
I
fp
(i)(kTs)

)
, (6.10)
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when Newton’s optimization method is used. When a step size length αfp is introduced, a new iterative
optimization procedure can be created as

I
fp+1

(i) (kTs) = I
fp
(i)(kTs) + αfps

fp
(i)

(
I
fp
(i)(kTs)

)
. (6.11)

Now that the search direction is determined, the length of the step size αfp that will be taken in this
direction needs to be determined. The cost function can have a wide range of values, which means that
values in the gradient and Hessian can also vary strongly. This particularly happens when unicycles
plan a path that approaches other unicycles and obstacles. It can occur that a small shift of the path
results in a collision, which can cause a strong variation in the gradient and the Hessian. This can lead
to a large shift in the inputs while it would be more optimal to shift the inputs only a little. To resolve
this issue, the direction vector is scaled so that the largest size of a component is equal to one, so

s
fp
(i)

(
I
fp
(i)(kTs)

)
=

s
fp
(i)

(
I
fp
(i)(kTs)

)
||sfp(i)

(
I
fp
(i)(kTs)

)
||∞

. (6.12)

If the search direction vector only contains zeros, this scaling is not applied. The length of the largest
step is now fully determined by the step size αfp . By keeping the initial step size small (e.g. 10% of the
range of an input), large changes in inputs can no longer occur in one iteration.

To iteratively obtain a lower cost function value using the search direction, the following steps can
be used

1. Determine an initial input vector If0(i)(kTs), the initial step size αfp , the minimum allowed step

size αfp
min, and the maximum number of function evaluations Np

max.

2. Compute the search direction sfp(i)

(
I
fp
(i)(kTs)

)
according to (6.9) or (6.10), and scale the search

direction according to (6.12).

3. Keep taking steps of size αfp in the search direction as in (6.11) and increasing the iteration index

p, until JT
(ui)

(
I
fp
(i)(kTs)

)
> JT

(ui)

(
I
fp−1

(i) (kTs)
)

.

4. Use Ifp−1

(i) (kTs) as the result of the line search of step 3, and if the first step taken with a new αfp

already results in a larger cost function value, reduce the step size αfp .

5. If αfp ≥ αfp
min, and if p ≤ Np

max, go to step 2.

When (6.11) in step 3 results in an input vector that exceeds the constraint on the inputs, the input
vector Ifp(i)(kTs) is bounded and used in step 2. After the search direction is recalculated, it is checked
if the direction of the input(s) that are on their bounds can lead to another constraint violation. If this
is so, the corresponding part of the search direction is set to zero.

This iterative scheme can result in a predicted input vector that results in a lower cost function value
than the initial predicted input vector. It can occur that the optimization results in a path of a unicycle
that will collide with an obstacle, or another unicycle. If this occurs, and if 0 ∈

[
vmin
ui

, vmax
ui

]
, the unicy-

cle is stopped at the next future time instant. In this way, collisions can be avoided. After that, a next
optimization might result in a collision free path.

6.6 Comparison of steepest decent and Newton’s method

To illustrate the difference between the two optimization methods that have been implemented, the
following examples are presented. In these examples, Np = 5 and N i

c = 1, which facilitates visual-
ization of the optimization process. As the control horizon is equal to one, there are two free control
inputs that are kept constant over the prediction horizon. This means that it is possible to show all
possible combinations of vui and ωui with their corresponding cost function values, which is shown
in the background in Figures 6.1 and 6.2.
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The red areas indicate high cost function values, while the blue areas indicate low values. The re-
sult of the optimization process are drawn over the cost function values. The optimization starts at
the white cross. From there, red crosses indicate a cost function evaluation at that point. The white
lines indicate the search direction. Finally, the most optimal input is indicated with a green circle. The
result of the optimization is the green cross. In Figure 6.1, an optimization problem is depicted of a
unicycle that has to track a reference trajectory. There are no obstacles or other unicycles present, so
the cost function values form a smooth surface.
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(b) Optimization using Newton’s method.

Figure 6.1: Unicycle tracking a reference trajectory.

In Figure 6.1(a), the steepest descent method is used to determine an optimal predicted input se-
quence. As it can be seen, the progress towards the optimum tends to follow a characteristic zig-
zagging pattern, which is especially clear when the optimum is approached. Figure 6.1(b) shows the
different behavior from Newton’s method. As it can be seen, the initial search direction is different
than the initial search direction of the steepest descent method. This is caused by the use of second
order curvature information. When the optimum is approached, using Newton’s method results in a
much faster convergence to the optimum.
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(a) Optimization using the steepest descent method.
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(b) Optimization using Newton’s method.

Figure 6.2: Unicycle avoiding a circular obstacle while tracking a reference trajectory.

Another optimization problem is shown in Figure 6.2, which shows the cost function values of a
unicycle that again has to track a reference trajectory, but now a circular obstacle is in the way. The cost
function values show a distinct pattern here. Within the dark red zones, a given combination of the
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inputs will result in a future collision. The cost function values do vary in this area but this is not shown
in this figure, as it would reduce the contrast in the areas where no collision will occur. Figure 6.2(a)
shows how the steepest descent method deals with this situation. As it can be seen, this method has
problems with getting to the desired optimum. This is caused by the fact that the cost function values
vary strongly near the edges of the red areas. This results in gradients that are almost perpendicular
to the edges, which explains why the combination of inputs that is found by this method is far from
the desired optimum. Newton’s method, depicted in Figure 6.2(b), performs better in this case, even
though it initially moves towards the wrong direction. Finally, it is able to search along the boundary
between collision and no collision, resulting in obtaining the most optimal input combination in this
situation.

6.7 Conclusions

These two examples show some of the strengths and weaknesses of the steepest descent, and Newton’s
optimization method. In the first example, both methods are able to find the optimum but they do so
in different ways. In this case, using Newton’s method is preferred, because the approach of the opti-
mum is more direct than the steepest descent method. The second example also shows that Newton’s
method outperforms the steepest descent method. Even though these two examples seem to show that
Newton’s method performs better than the steepest descent method, this is not always the case.

When the control horizon becomes longer than one, Newton’s method sometimes has trouble with
finding an optimum. This is caused by the fact that the Hessian is not always positive definite. As
mentioned earlier, it is possible to compensate for this, but this was not investigated in this thesis.
The steepest descent method does not suffer from this drawback, as the gradient always points to a
lower cost function value. Even though this method has trouble following a boundary such as the one
shown in Figure 6.2, its results prove to be more robust. Therefore, the steepest descent method is the
preferred method when a longer control horizon is used.
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Chapter 7

Simulation Results

In this chapter, simulation results of the controller that was constructed in Chapters 4 to 6 are dis-
cussed. The control objectives that are included in the cost function are first demonstrated individually.
After that, some additional simulations are performed that showcase various other properties of the
controller. Finally, some conclusions are drawn about the simulation performance of the controller.

7.1 Introduction

To determine whether the control objectives that are included in the cost function, can be fulfilled by
the designed controller, a number of simulations are performed. The control objectives that are tested
here are tracking a reference trajectory, avoiding collisions with circular obstacles and other unicycles,
and driving in a formation. The results of these simulations are given in this chapter. Because the sim-
ulations often involve multiple moving objects, it is difficult to visualize the results of the simulation
in a few images. Therefore, videos of all simulations that are discussed here are made available online.
In this chapter, the resulting paths of the unicycles during the simulation are depicted. All simula-
tion videos can be found at www.youtube.com/er47ik and clicking on ’Simulations’. Two examples of
snapshots of simulation videos are depicted in Figure 7.1.

1

(a) Unicycle tracking a reference trajectory.

1

2

(b) Two unicycles driving in formation.

Figure 7.1: Snapshots of simulation videos that are available online.

In these two figures, the unicycles are depicted as circles, along with their corresponding numbers.
The dark grey lines indicate the current orientations of the corresponding unicycles. The smooth line
that is drawn behind the unicycle indicates the path it has taken. The line that is marked with crosses
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indicates the result of the optimization algorithm at the current time instant. This is the most optimal
path that is found by the optimization algorithm at that time instant. The control objectives of the
unicycles are indicated with the small circles that have the same color as the unicycle. It is desired that
the center of the unicycle, indicated with the plus sign, is in the center of this small circle. To further
clarify this, a thin line is drawn between these points. Figure 7.1(a) shows a unicycle that is tracking
a reference trajectory. This trajectory is indicated with the small grey crosses. As a virtual circular red
obstacle is preventing the unicycle from driving on the desired trajectory, the unicycle is driving around
it. In Figure 7.1(b), two unicycles are depicted that need to form a formation. It is desired that unicycle
2 stays at a certain distance and angle from unicycle 1, which is indicated with the small green circle.
The shape of the desired formation is indicated with the light grey line that connects the unicycles.

In the simulations presented in this chapter, parameters of the unicycles are adopted that are simi-
lar to system parameters of the e-pucks. In this way, simulation results are achieved that are closer to
experimental measurements. These parameters can be found in Table 7.1.

Parameter r [m] vmin [m/s] vmax [m/s] ωmin [rad/s] ωmax [rad/s]
Value 0.035 -0.11 0.11 -2 2

Table 7.1: System parameters of the e-puck.

7.2 Tracking a reference trajectory

A reference trajectory has been created to test the tracking performance of the controller. This trajectory
consists of a straight line segment, followed by a 90◦ degree turn into a curved trajectory. At the end
of the curved segment, the reference trajectory jumps back to the start. With this trajectory, it can
be tested how the controller deals with trajectories that the unicycle can and can not follow due to
constraints on its inputs. For this simulation, the parameters from Table 7.2 are used.

Parameter Np [-] N i
c [-] Ts [s] P r

u [-] Qr
u [-]

Value 10
[
1 2

]
1/6 1e8 1e4

Table 7.2: Reference tracking simulation parameters.

The sampling period is chosen relatively long, when compared to traditional control methods. Here,
it is chosen in combination with the prediction horizon to obtain a long enough physical prediction
length. A shorter sampling time can be chosen to obtain smoother input signal, but this decreases the
physical prediction length. The results of this simulation can be seen in Figure 7.2.
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(a) Top-down reference and actual trajectories.
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(b) Cost function values.

Figure 7.2: Top-down view and cost function values of the reference tracking simulation.
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Figure 7.3: Separate state references and actual signals.

The reference and actual trajectories are depicted in Figure 7.2(a). The cost function values are shown
in Figure 7.2(b). The separate state references and actual motions in x-, y-, and θ-direction are depicted
in Figure 7.3. The green lines indicate the references and the blue lines indicate the actual values. The
velocity and angular velocity of the unicycle are depicted in Figure 7.4. Here, the dashed lines indicate
the boundaries on the inputs, which are specified in Table 7.1. These figures have letters in them,
which connect events in the different figures. A video of the simulation can be found on YouTube.
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(a) Velocity during the simulation.
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(b) Angular velocity during the simulation.

Figure 7.4: Velocities of the unicycle during the reference tracking simulation.

At the start of the simulation (a), a unicycle starts at a distance from the reference trajectory. This is
indicated with the large arrow, which indicates the initial movement direction of the unicycle. It then
drives towards the reference trajectory, switches driving direction (b), and continues following the ref-
erence trajectory. The unicycle switches direction, because the angular error is penalized. If this would
not be the case, it would drive in a different way. The unicycle continues along the reference trajectory
until the tip of the prediction horizon reaches the 90◦ turn (c). The optimization algorithm then de-
termines that it is more optimal to first drive slightly to the left, before turning right into the corner.
The curved part of the reference trajectory is then followed, until the reference trajectory returns to the
starting position at (e). Because of the prediction horizon of 10, the last part of the smooth section is
not tracked anymore. If this behavior is undesired, it is possible to decrease the prediction horizon,
decrease the sampling time, or change the weighing factors of future sampling instants. At (d), the
unicycle starts turning at the maximum angular velocity. During one sample, it drives backwards, be-
fore driving back to (e) at maximum velocity. Finally, after 24 seconds, the unicycle is in position, and
the unicycle rotates to get in the desired orientation.

As it can be seen in Figures 7.4(a) and 7.4(b), it takes one sample for the velocities to become nonzero.
This is caused by the delay that is introduced in Chapter 3. During the course of the simulation, both
inputs reach their input constraints. This causes no problems, as the unicycle is able to follow the
reference trajectory as well as is allowed by the bounds on the inputs.
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At the end of the simulation, when the unicycle is in position, some small variations can still be seen
in the velocity inputs signal (e). This is caused by the fact that the unicycle is not exactly at its de-
sired orientation, meaning that the gradient at its position is nonzero. This results in the fact that
the optimization algorithm never stops optimizing and the inputs will probably never become zero,
but remain small. How small is determined by the minimum step size that is set in the optimization
algorithm. It is also possible that the optimization never stops due to the convexity of the optimization
problem. Usually an optimum can be found, but it can not be guaranteed that this is a global optimum.

From this simulation, it can be determined that the unicycle is able to deal with different reference
trajectories. It can follow trajectories that allow the unicycles to stay within their input limitations.
However, it is no problem if this is not the case, as displayed by the behavior in the 90◦ turn. It is
also possible to specify a location that the unicycle should drive to. The behavior of the unicycle that is
observed in this simulation is similar to the behavior that is seen in other simulations. Therefore, the
results of the following simulations are not further elaborated.

7.3 Avoiding collisions with circular obstacles

To determine how the controller deals with circular obstacles, the same reference trajectory is used
as in the previous section, but four circular obstacles are now included in the same workspace. The
parameters that are used in this simulation are the same as in the previously discussed one. The
parameters that are related to obstacle avoidance are given in Table 7.3.

Parameter P o
u(mTs) [-] (m = k + 1) P o

u(mTs) [-] (m > k + 1)
Value 1e14 1e12

Table 7.3: Obstacle collision avoidance parameters.

As it can be seen, the parameters that penalize the collision with an obstacle are several orders larger
than the ones related to the tracking of a reference signal. With these parameters, a collision that will
happen at the first controllable time instant is penalized more than a collision that will occur later. The
parameters can also be reduced several orders without noticeable differences of the simulation results,
but they should remain larger than the penalties on reference tracking and formation keeping.

The results of this simulations are shown in Figure 7.5. The reference and actual trajectories are
depicted in Figure 7.5(a). The cost function values are shown in Figure 7.5(b). The separate state ref-
erences and actual motions in x-, y-, and θ-direction of this simulation are depicted in Figure 7.6. A
video of the simulation is available on YouTube.
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(a) Top-down reference and actual trajectories.
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(b) Cost function values.

Figure 7.5: Top-down view and cost function values of the obstacle collision avoidance simulation.
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Figure 7.6: Separate state references and actual signals.

Of the four obstacles that are involved in the simulation, two are static, while two vary their radii and
positions over time. The dynamic obstacles are indicated with the red arrows. As it can be seen in Fig-
ure 7.5(a) and (b), the obstacles that are present can prevent the unicycle from following its reference
trajectory. However, the optimization algorithm is able to plan a path around the obstacles, even the
dynamic ones. The positions and radii of the obstacles need to be known in advance for this to work.
Another requirement is that the obstacles should not move too fast, so that the unicycles have enough
space to get out of the way in time. By comparing Figure 7.5(a) with Figure 7.2(a), it can be seen where
the unicycle is hindered by the obstacles.

From the resulting trajectory, it can be seen that the steepest descent optimization method is used.
When the unicycle approaches the two static obstacles (a), it drives slower. This is because this al-
gorithm has trouble in dealing with steep boundaries in the cost function values. In Figure 6.2(a) a
similar illustrative situation is depicted. Here, the optimum can not be reached with the step sizes that
are used. Only if step sizes would become very small, a path to the optimum could be found. However,
this would lead to long computation times, so in this case a suboptimal solution is sufficient.

It is possible to combine multiple obstacles to form more complex shapes than just circles. It is no
problem if obstacles overlap each other, however when multiple obstacles are combined, it can hap-
pen that unicycles become stuck behind them as only local optima can be found by the optimization
algorithm. If it is desired that the unicycles stay within a certain operating area, obstacles can be used
as well. By creating objects with a large radius and placing them at a distance from the desired area,
approximately straight lines can be created that can be used to block off certain operating areas.

7.4 Avoiding collisions with other unicycles

To test the inter-unicycle collision avoidance, and the priority strategy of Section 5.7, a different simu-
lation is devised. The goal of this simulation is to let the paths of a number of unicycles cross in the
same position to see how they all behave. For avoiding other unicycles, parameters from Table 7.4 are
used.

Parameter P r
u [-] Qu

u [-] Pu
u (mTs) [-] (m = k + 1) Pu

u (mTs) [-] (m > k + 1)
Value 1e8 0 1e14 1e12

Table 7.4: Unicycle collision avoidance parameters.

The parameter that penalizes the angular difference is not used here. The parameters that penalize
collisions between unicycles have the same value as the penalties that are used with the obstacles. In
this simulation, four unicycles start in a square. Their goal is to cross diagonally, so each unicycle
would plan a path through the middle if it could. The result of this simulation is shown in Figure 7.7.
The trajectories of the unicycles are shown in Figure 7.7(a), and the cost function values and priorities
are shown in Figure 7.7(b). A video of the simulation is available on YouTube.
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(a) Trajectories of the unicycles.
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(b) Cost function values (5.22), and priorities (dashed).

Figure 7.7: Top-down view and cost function values of the unicycles in the simulation of unicycle
collision avoidance.

In Figure 7.7(a), the starting positions of the unicycles are indicated by the numbers. The paths that
are taken by the unicycles are sometimes quite odd; for instance, unicycle 1 starts moving forward but
then moves back. The same behavior can be seen in the path of the third unicycle. This behavior can
be explained by the priorities of the unicycles that change over the course of the simulation. First,
the modified cost function values of the unicycles from (5.22) are indicated by the solid lines in Fig-
ure 7.7(b). The priority values are indicated with the dashed lines. As it can be seen, the priority values
can only increase, unless the modified cost function values drop below a threshold. In this simulation,
this threshold is set at 1% of the largest modified cost function value that has occurred up to that time
instant. The modified cost function values increase and decrease over time, resulting in changes in
priorities. Because of these changes in priority, the conflicting situations are resolved quickly, which
results in the unicycles reaching their desired positions in approximately four seconds.

In this simulation, the dynamic priorities from Section 5.7 are used. The same simulation is also
performed using fixed priorities. In this simulation, the order of the optimization remains constant,
so the first unicycle plans a direct path to its destination. Lower priority unicycles needs to avoid higher
priority unicycles, meaning that some unicycles have to take detours to get to their destination. Due to
the detours, it takes a second longer for the unicycles to drive to their desired locations. Therefore, the
priority strategy is used in the formation driving simulation, and during simulations and experiments
with more than one unicycle.

7.5 Driving in formation with other unicycles

To test the formation keeping ability of the controller, one unicycle follows the same reference trajectory
as in Section 7.2. There are two other unicycles involved that have to drive behind this unicycle in a
V-shaped formation. For this simulation, parameters from Table 7.5 are used. For collision avoidance,
parameters from Table 7.4 are used.

Parameter P r
u [-] Qr

u [-] Qu
u [-] Ru

u [-] Su
u [-]

Value 1e8 1e4 1e8 1e6 1e4

Table 7.5: Formation driving simulation parameters.

The penalty values for the formation are similar to the ones for tracking a reference trajectory, as the
penalty on distance P r

u = Qu
u and the penalty on the angle Qr

u = Su
u . An additional term Ru

u is added
here, which ensures that the reference angles between the unicycles are maintained. These angles are
±0.75π [rad] according to (5.17). The distance that should be kept between the unicycles is 0.12 [m].
The result of this simulation is shown in Figure 7.8.
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(a) Reference and actual trajectories.
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(b) Cost function values (5.22), and priorities (dashed).

Figure 7.8: Top-down view and cost function values of the formation driving simulation.

The trajectories of the unicycles are shown in Figure 7.8(a), and the modified cost function values and
priorities are shown in Figure 7.8(b). A video of the simulation is available on YouTube.

In the simulation, the unicycles start above each other. As the blue unicycle starts following its ref-
erence trajectory, the green and red ones get in formation behind the blue one. The green unicycle
does so by switching driving direction (a), and the red one does so by making a sharp turn (b). Shortly
after this turn, it rotates so that it is driving in the same direction as the blue unicycle (c). At this point,
the unicycles are in the desired formation, which is indicated with the grey lines.

When the blue unicycle drives around the first corner (d), the green and red unicycle can not stay
exactly in the formation, due to the constraints on their inputs. This can be seen in Figure 7.8(b) as the
cost function values of the green and red unicycle increase slightly at (d). The green unicycle runs into
the velocity constraint, while the red unicycle is limited by the maximum angular velocity. After the
corner, the formation is restored again, until the same input limits become active again at (e). Here,
the blue unicycle returns to the start, where the other two finally restore the desired formation.

The formation that is presented here is a leader-follower formation, where the blue unicycle is the
leader, and the other two are followers. It is also possible to specify different formations such as a
virtual structure. A virtual structure is created by mutually coupling unicycles together. Another pos-
sibility is to set up a pursuit-evasion formation. To do this, one unicycle tries to get as close as possible
to another unicycle. The other unicycle needs to do the same, but if a negative Qu

u is used, it will try to
get away from the other unicycle. Any formation that is specified can be time-varying, so the desired
distances and angles can be different at every time instant. This can be used to create a changing
formation, but also to split up one formation to form another.

7.6 Limitations on inputs

As seen in previously discussed simulations, the controller can deal with input constraints that become
active. To test this property even further, two additional simulations are performed. In one, the angular
velocity of the unicycle is fixed, and in the other, the velocity is fixed. The goal of the unicycles is
to follow the same reference trajectory as in Section 7.2. The reference trajectories and the actual
trajectories are shown in Figure 7.9. Two videos of the simulations are available on YouTube.
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(a) Reference tracking with fixed angular velocity. (b) Reference tracking with fixed forward velocity.

Figure 7.9: Top-down view of two reference tracking simulations with fixed inputs.

As it can be seen in Figure 7.9(a) and (b), in both cases the unicycles are still roughly able to fulfill
their control objectives, despite one input being fixed. Both simulations show distinct behavior. Fig-
ure 7.9(a) shows regular switching of velocity direction to stay as close as possible to the reference
trajectory. Figure 7.9(b) shows the unicycles making circles to stay in the same position. This is be-
cause the velocity of the unicycle is higher than the velocity of the reference trajectory, so it quickly gets
ahead of the reference trajectory. By driving in a circle, the unicycle stays roughly in the same position
so that it can catch up with the reference trajectory. For this simulation, the values of ω are allowed to
be between -4 and 4 [rad/s].

It is also possible to specify less extreme limitations on the inputs, such as inputs that can only have
positive values. It is also possible to have time-varying input limitations that are different for each uni-
cycle. If it has to be guaranteed that no collisions occur, the limitations of the velocities should satisfy
(5.2) and/or (5.13), depending on the control objectives of the simulation.

7.7 Results with centralized MPC

All simulation that are discussed before, are performed using sequentially decentralized MPC. A num-
ber of simulations were performed with centralized MPC as well. The reason that most of these re-
sults are not shown here, is because the performance with this control strategy is usually worse. This
is caused by the increased complexity of the optimization problem, combined with an optimization
algorithm that perhaps is too simple or not suited at all for such an optimization problem.

Problems typically arise when unicycles are in close proximity to each other, allowing their predicted
paths cross. There is no longer a predetermined order in which the unicycles plan their paths, so all
paths are determined simultaneously. Information from the gradient is used to shift the paths so that
a lower cost function value is obtained. A problem that arises during the optimization is that paths
are shifted simultaneously. It can happen that the paths of the unicycles are shifted, which will then
result in a future collision. This can result in a gradient that points in the opposite direction, leading to
paths that are approximately shifted back to their initial form. This process can repeat for a long time,
leading to long computation times and poor performance in some cases.

Using centralized MPC can have benefits however. One area where it can have better performance
is in resolving conflict situations. This is because the control objectives of all unicycles are treated
equally and combined, and the optimization algorithm searches for a more ’global’ optimum of unicy-
cle inputs. To test the resolution of conflict situations, the simulation from Section 7.4 is repeated, but
now centralized MPC is used. The trajectories of the unicycles are shown in Figure 7.10(a), and the
cost function values are shown in Figure 7.10(b). A video of this simulation is available on YouTube.
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(a) Trajectories of the unicycles.
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(b) Cost function values.

Figure 7.10: Top-down view and cost function values of the unicycles in the simulation of unicycle
collision avoidance.

In comparison with the simulation from Section 7.4, there is a significant difference in terms of tra-
jectories that the unicycles take, as it can be seen in Figure 7.10(a). Initially, the unicycles all move
towards the center, where they stop to avoid collisions. Then they remain stationary for a while (a), as
it can be seen in the constant cost function values in Figure 7.10(b). While they remain stationary, the
unicycles keep on rotating. Eventually, after 8 seconds, the optimization algorithm is able to find paths
that lead all unicycles to their desired positions. These paths solve this problem in a more optimal way
than in Section 7.4.

Even though it takes longer to solve this problem than with sequentially decentralized MPC, this simu-
lation shows that centralized MPC has potential. If the algorithm was able to find these paths directly,
the problem would be solved faster than with sequentially decentralized MPC. However, this is not
the case. It also takes a fair bit of tuning to obtain this result. Another problem is that the compu-
tation times with this control method exceed the sampling time when inputs are calculated, which is
further discussed in the next section. Because of this problem, no experiments were performed using
centralized MPC.

7.8 Other properties of the controller

In the simulations that are discussed here, each unicycle only has a single control objective. It is also
possible to specify multiple control objectives, that may conflict with each other. When a unicycle is
faced with this, it will determine what to do based on the penalties that are linked to the control ob-
jectives. This usually involves that the unicycle will position itself somewhere in between the control
objectives. Furthermore, it is possible to vary many of the parameters and control objectives in the
course of the simulation. This is possible because the inputs are determined using an optimization
algorithm, which is able to solve a different optimization problem at each sampling instant. The ad-
vantage of such a controller is that the control objectives can be specified with a lot of freedom and
flexibility.

To keep the behavior of the unicycles deterministic, the new control inputs should always be calcu-
lated within one sampling time. However, when the cost function and its gradient and Hessian are
numerically evaluated, the calculation times quickly become longer than the sampling time. To resolve
this problem, the results obtained in Section 6.3 are simplified according to the rules that are described
in Appendix A. The time needed to calculate the control inputs with these simplified results, is shown
in Table 7.6. The results were obtained using an Intel Core Duo E6600 Processor, running at 2.4
GHz, which is launched at the end of 2006.
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Section of simulation 7.2 7.3 7.4 7.5 7.6(a) 7.6(b) 7.7

Total simulation time [s] 30 30 5 30 30 30 15
Time calculating [s] 0.5 0.7 0.6 4.0 1.6 0.7 22.5

Percentage of Ts used [-] 1.6 2.4 11.4 13.2 5.2 2.4 148.6

Table 7.6: Calculation times.

The table shows the total simulation time, the time it took to calculate the control inputs, and the
average percentage that is used of each sampling time. There is some variation in the calculation
times at each sampling instant, but the calculation times never exceed the sampling time, except with
the centralized controller. As it can be seen, there is quite some room to decrease the minimum step
size, add more unicycles or obstacles, or decrease the sampling time.

7.9 Conclusions

In the simulations that are discussed here, the behavior and performance of the sequentially decentral-
ized, and centralized control strategies are discussed. Sections 7.2 to 7.6 present simulations that use
sequentially decentralized MPC. The centralized version of the controller is discussed in Section 7.7.
Both controllers can fulfill the different control objectives that are implemented in the cost function.
Sequentially decentralized MPC outperforms centralized MPC in every way, both considering calcula-
tion time, as the time it takes to fulfil control objectives. However, it is clear that centralized MPC has
the potential to outperform sequentially decentralized MPC regarding the time required to fulfill the
control objectives. However, this requires improvement of the optimization algorithm such as a way to
handle the increased complexity of the optimization problem in a less computationally intensive way.
Because the optimization algorithm is not developed further, the experiments have all been performed
using sequentially decentralized MPC. The experiments are discussed in the next chapter.
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Chapter 8

Experimental Results

In this chapter, the results of the performed experiments are discussed. First, the experimental setup
is discussed, followed by a description of how the results are presented. After that, the experimental
results are discussed. Finally, a comparison is made between the simulation and experimental results,
and potential reasons for the difference are given.

8.1 Experimental setup

The simulation results show that the designed controller performs well and is able to fulfill the im-
plemented control objectives. However, it needs to be verified how the controller performs on real
unicycles. Therefore, a number of experiments are performed that use the e-puck nonholonomic mo-
bile unicycle robot, which is depicted in Figure 1.2(a). The e-puck is a small mobile robot, which has
been specifically developed for various teaching purposes. More information on the design of the e-
puck can be found in [42]. The goal of the experiments is to verify whether the control objectives can
be fulfilled as is observed in the simulations. Two different views that show the experimental setup are
depicted in Figure 8.1.

(a) Overview of the experimental setup. (b) Right camera view with recognized e-pucks.

Figure 8.1: Two views of the experimental setup.

The experimental setup with the e-pucks is depicted in Figure 8.1(a). It consists of a total of 12 e-pucks
that can be used, a PC, and two cameras. The e-pucks drive around on the white floorboards. Each
e-puck is equipped with a unique visual pattern on top. Above the setup, two cameras are mounted,
which provide an overview of the e-pucks to a PC, which is located next to the setup. On the PC, the
images from the cameras are received and the images are processed. Once the patterns are recognized,

51



the position and rotation of the e-pucks are available on the PC. An example of a camera image that
has been processed is depicted in Figure 8.1(b).

After a camera image is processed and the current orientations of the e-pucks are sent to MATLAB,
the optimization algorithm can start calculating new control inputs for each e-puck. When the next
sampling instant occurs, the new desired wheel velocities, calculated by (4.1), are sent to the e-pucks.
This is done via a Bluetooth adapter that is connected to the PC. Once an e-puck receives new desired
wheel velocities, a controller inside the e-puck adjusts the wheel velocities.

In the experiments that are discussed here, a sequentially decentralized control strategy is used, in
combination with the steepest descent optimization method. The centralized controller requires to
much computation time, and it hard to obtain good performance using this method, so it is not feasi-
ble to use this controller. Newton’s optimization method is not used here, because it proves to be less
robust than the steepest descent method.

The PC that is used with the experiments is different from the one that is used for the simulations. It
uses an Intel i7 Quad-core Processor, running at 2.4 GHz, which is launched in 2009. This processor
is roughly 30% faster in calculations than the processor in the other PC.

8.2 Introduction

The experimental results are presented in the same way as they are in Chapter 7. This means that in
the report, only the trajectories of the unicycles are depicted, while a video of the experiment is available
online. The videos from the experiments can be found at www.youtube.com/er47ik and clicking on
’Experiments’. Two examples of snapshots of experimental videos are depicted in Figure 8.2.

(a) Unicycle tracking a reference trajectory. (b) Four unicycles driving in formation.

Figure 8.2: Snapshots of experimental videos that are available online.

In the videos of the experimental results that are available online, a video of the experiment is com-
bined with the controller visualization that is discussed in the previous chapter. This makes it possible
to see a video of the e-pucks, along with the path that it has taken and the planned path at each time
instant. The result that is displayed over the video is the same visualization that is used in the videos
of the simulation results. A more detailed description of what is displayed, can be found in Section 7.1.

Figure 8.2(a) shows a unicycle that is tracking a reference trajectory, which is indicated with the small
grey crosses. As a circular red obstacle is preventing the unicycle from driving on the desired trajec-
tory, the unicycle is driving around it. In Figure 8.2(b), four unicycles are depicted that need to form a
formation. It is desired that a V-shaped formation is formed behind the blue e-puck. In the snapshot,
the green unicycle is in position, while the blue and pink unicycle are on their way.
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8.3 Tracking a reference trajectory

To test the reference tracking ability of the controller in an experiment, the same reference trajectory
as in Section 7.2 is used. This trajectory is used to test how the e-puck deals with trajectories that
fall within its nonholonomic constraints, and with trajectories that do not have this property. The
parameters that are used in this experiment are shown in Table 8.1.

Parameter Np [-] N i
c [-] Ts [s] P r

u [-] Qr
u [-]

Value 10
[
1 2

]
1/6 1e10 1e6

Table 8.1: Reference tracking experiment parameters.

The penalty values that are used in this experiment are 100 times larger than the parameters in the
simulation of the previous chapter. This is done to make the e-puck drive as close as possible to the
obstacles in the obstacle avoidance experiment, which is discussed in the next section. The velocity
limits of the e-pucks from Table 7.1 are used.

The result of this experiment is depicted in Figure 8.3. The reference and actual trajectories are
depicted in Figure 8.3(a). The cost function values are shown in Figure 8.3(b). The separate state
references and actual motions in x-, y-, and θ-direction are depicted in Figure 8.4. The green lines
indicate the references and the blue lines indicate the actual values. A video of this experiment can be
found on YouTube.
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(a) Top-down reference and actual trajectories.

Time [s]

C
os

tF
u

n
ct

io
n

V
al

u
e

[-]

0 5 10 15 20 25 30
0

2

4

6

8

10

12

× 1e9

b c

(b) Cost function values.

Figure 8.3: Top-down view and cost function values of the reference tracking experiment.
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Figure 8.4: Separate state references and actual signals.
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As it can be seen from the figures, it is also possible to track a reference trajectory in an experiment.
Qualitatively, the experimental results are similar to the simulation result that is discussed in the pre-
vious chapter. Overall, the trajectory is followed in a similar way. This is clearly visible when the 90◦

turn is encountered (b), where the e-puck first turns left before turning right.

However, there are several differences with the simulation. The first difference can be seen near the
start (a), where the e-puck seems to display overshoot behavior, which is not encountered in the sim-
ulation results. The same kind of overshoot is observed at (b) and (c). This indicates that there might
be an additional delay active in the system. However, in combination with the relatively long sampling
time that is used, this does not cause problems in this experiment.

8.4 Avoiding collisions with circular obstacles

To determine how the controller deals with circular obstacles, the same reference trajectory as in the
previous section is used, but four circular obstacles are now included in the same workspace. The
parameters that are used in this experiment are the same as in the previously discussed one. Additional
parameters that are related to obstacle avoidance are given in Table 8.2.

Parameter P o
u(mTs) [-] (m = k + 1) P o

u(mTs) [-] (m > k + 1)
Value 1e14 1e12

Table 8.2: Obstacle collision avoidance parameters.

The result of this experiment is depicted in Figure 8.5. The reference and actual trajectories are de-
picted in Figure 8.5(a). The cost function values are shown in Figure 8.5(b). The separate state refer-
ences and actual motions in x-, y-, and θ-direction are depicted in Figure 8.6. A video of this experi-
ment can be found on YouTube.
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(a) Top-down reference and actual trajectories.
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(b) Cost function values.

Figure 8.5: Top-down view and cost function values of the obstacle collision avoidance simulation.

The obstacles that are added to the workspace cause no difficulties for the controller, as the e-puck is
able to drive around the static and dynamic obstacles. No collisions occur in this experiment, even
though the result of Figure 8.5(b) might suggest otherwise. Due to the increased tracking penalties,
the e-puck passes the obstacles with very little room in between. Due to errors in determining the
orientation of the e-puck, it seems as though collisions occur. However, due to the safe distance that is
used, no collisions occur.
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Figure 8.6: Separate state references and actual signals.

The experiment shows the same behavior as the simulation when the static obstacles are approached
(a). The e-puck approaches the static obstacles slowly, which is caused by the use of the steepest descent
optimization algorithm. This algorithm has trouble finding lower cost function values near the large
variations caused by obstacles. An example of this behavior can be seen in Figure 6.2(a). The dynamic
obstacles also cause no trouble for the unicycle (b), as the prediction horizon is long enough, and the
locations and sizes of the obstacles is already known in advance.

8.5 Avoiding collisions with other unicycles

To test the inter-unicycle collision avoidance and the priority strategy, an experiment is set up that is
similar to the simulation of Section 7.4. However, in stead of 4 unicycles, now 12 e-pucks are used that
all have to change position. The parameters that are used in this experiment are given in Table 8.3.

Parameter P r
u [-] Qr

u [-] Pu
u (mTs) [-] (m = k + 1) Pu

u (mTs) [-] (m > k + 1)
Value 1e10 1e6 1e14 1e12

Table 8.3: Unicycle collision avoidance parameters.

The result of this experiment is depicted in Figure 8.7. The trajectories of the e-pucks are depicted in
Figure 8.7(a). The modified cost function values and the priorities of the e-pucks are shown in Fig-
ure 8.7(b). A video of this experiment can be found on YouTube.

The twelve unicycles are able to switch positions in 35 seconds. Even though the earlier derived safe
distances are added to the unicycles, some collisions still occur. However, they are not the result of the
planned paths of the controller. Some possible reasons that cause this are presented in Section 8.7.

The paths that the e-pucks take seem chaotic, but when Figures 8.7(a) and 8.7(b) are viewed together,
some observations can be made. The four e-pucks that start in the corners (pink, yellow, red, and blue)
initially have the largest cost function values, and therefore the highest priorities. These high priorities
allow them to drive to their desired orientations in a relatively straight line, which is clearest visible
with the trajectories of the red and yellow e-puck (a).

The opposite can be observed with the light green e-puck (b). This e-puck only has to drive a short
distance, which means that it starts with the lowest priority value. Because it has such a low priority,
it gets pushed out of the way which causes its own priority to rise. Eventually, it is able to reach its
desired location.

The other e-pucks are somewhere in between these extremes. Depending on their priority levels,
they can "push" others out of the way, or get "pushed" away themselves. The total duration of the
experiment is 60 second. The PC spends 21.5 seconds out of the 60 seconds on the calculations of
new control inputs. Sometimes, the optimization process almost takes the full sampling time to obtain

55



new control inputs, but on average, 36% of the total time is used to calculate new control inputs. The
other experiments that are discussed in this chapter use less computation time.

a
a

b

(a) Trajectories of the unicycles.
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(b) Cost function values (5.22), and priorities (dashed).

Figure 8.7: Top-down view and cost function values of the unicycles in the experiment of unicycle
collision avoidance.

8.6 Driving in formation with other unicycles

To demonstrate the ability of the controller to deal with time-varying formations, the following experi-
ment is performed. In this experiment, one e-puck remains stationary, while three others form three
different formation around it. The first formation needs to be formed from 0-20 seconds, the second
from 20-40 seconds, and the third from 40-60 seconds. For this experiment, the parameters from
Table 8.4 are used.

Parameter P r
u [-] Qr

u [-] Qu
u [-] Ru

u [-] Su
u [-]

Value 1e10 1e6 1e8 1e6 1e4

Table 8.4: Formation driving experiment parameters.

The results of this experiment are shown in Figure 8.8. The trajectories of the e-pucks are depicted
in Figure 8.8(a). The modified cost function values and the priorities of the e-pucks are shown in Fig-
ure 8.8(b). A video of this experiment can be found on YouTube.

The three different formations that need to be formed, are depicted in Figure 8.8(a). The first forma-
tion is indicated with the solid black lines and requires that the green and red e-puck form a V-shaped
formation behind the blue one. The orange e-puck needs to stay at the same distance and angle from
the green e-puck. Because of this, the orange e-puck does not initially drive to its desired location (a).
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(a) Reference and actual trajectories.
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(b) Cost function values (5.22), and priorities (dashed).

Figure 8.8: Top-down view and cost function values of the formation driving simulation.

The next formation need to be achieved from 20-40 seconds. However, the e-pucks start moving
sooner than that as it can be seen in Figure 8.8(b). This is caused by the prediction horizon of 10,
combined with the sampling time of 1/6 second, resulting in a controller that can look about 1.5 sec-
onds ahead into the future. The second formation couples the three e-pucks directly to the first one.
This formation is indicated with the dashed lines. Here, it can be observed that there is a small error
in determining the angle of the blue e-puck (b), as the solid and dashed lines should overlap each other.

Finally, the third formation couples the orange to the red, the red to the green, and the green to the
blue e-puck. The goal of this coupling is to maintain a given distance and angle from another e-puck.
This angle is slightly different from the angle of the two previous formations. In this experiment, the
formation changes only three times, but it is also possible to specify a different formation at every time
instant.

8.7 Comparison with simulation results

The results that are obtained in the experiments are qualitatively identical to the simulation results.
The path that the e-puck takes when tracking a reference trajectory show the same characteristics.
Also, when multiple e-pucks are driving in close proximity to each other, the behavior is similar to the
simulations with high priority e-pucks planning paths through ones with a lower priority. However,
quantitatively the results are not identical, and in general the performance in the experiments is worse.
There are most likely a lot of factors that contribute to this decreased performance, some of which are
discussed here. It has not been investigated how much each of these factors contribute in widening
the gap between simulation and experiment. It is possible to compensate for some of these factors,
but this is not further investigated in this thesis.

The first difference between simulation and experiment results from determining the orientation of
the e-pucks. In a simulation, this is trivial, but in the experiments an image processing system is used.
This system uses two cameras to determine the position and orientation of the e-pucks. The accuracy
of this system is tested by determining the position and rotation of a stationary e-puck. It turns out that
the orientation along the x-axis (depicted in Figure 8.1(b)) varies by 1.2 mm, the y-axis by 0.4 mm, and
the θ-axis by 2.5◦. So there are errors in the measurement, especially in the rotation of the e-pucks. A
different problem that is caused by the use of a camera, is that it captures images at only 30 Hz. When
a request for the orientations of the e-pucks is made in MATLAB, the image processor waits for the
camera to capture a frame, which then needs to be processed. After the orientation of the e-pucks is
determined, the orientations are sent to MATLAB. This means that no instant orientation information
is available. The delay that this process causes is somewhere between 50 and 60 ms.
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After the orientation of the e-pucks is sent to MATLAB, and the computation of the next control inputs
is complete, they need to be sent to the e-pucks. This is done in parallel using a Bluetooth adapter. This
can cause a new set of problems, as the e-pucks are controlled using a networked control system, which
can introduce packet dropouts, leading to delays. If a single packet is lost, a delay of the sampling time
is introduced. Packet dropouts can clearly be observed when the batteries of the e-pucks are almost
empty. When the batteries are full, dropouts can not visually be detected, but they can still be present.

Another source of errors comes from the fact that the e-pucks are modeled using a kinematic model.
As the e-puck has mass, it can not instantaneously change velocity, creating a difference between sim-
ulation and experiment. Another problem is that the e-puck only has two wheels, and slides over the
ground on one side, while the other side sticks approximately 1 mm in the air. When the e-puck stops
or changes driving direction, it can tip over and drive on the other side. This can cause the e-puck
visual pattern to move, while the e-puck is not driving.

8.8 Conclusions

From the experiments that are performed, it can be concluded that the designed controller is able
to let an e-puck track reference trajectories, avoid circular obstacles and other e-pucks, and drive in
a formation. The behavior that is observed in the experiments is qualitatively similar to behavior in
simulations. However, quantitatively there are some difference with the simulations. The experimental
setup introduces time-varying delays when the orientation of the e-pucks is requested, errors when
determining the orientation of the e-pucks, and differences between the used model and the e-puck.
Even though no attention is payed to trying to compensate for these difference, the designed controller
still qualitatively performs as expected.
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Chapter 9

Conclusions and Recommendations

In this chapter, a summary of the conclusions of the thesis is given, and finally some general conclu-
sions are drawn. After that, a number of recommendations for future research are given that discuss
how aspects of the controller can be improved, or altered.

9.1 Conclusions

In this thesis, a controller is developed which is able to control multiple unicycles simultaneously. This
controller is able to make the unicycles track reference trajectories, avoid circular obstacles and each
other, and drive in a formation. These control objectives are fulfilled by using model predictive control,
of which the general principle is first discussed. This general principle is then adjusted to allow it to be
used in systems with short time scale behavior, which is done to keep the system behavior determin-
istic. Finally, different control strategies are discussed that cover the control of multiple systems that
operate in the same environment. Of those two strategies, sequentially decentralized, and centralized
MPC are chosen to be further investigated.

The continuous-time model of the unicycle is introduced next, and it is exactly discretized under the
assumption that the input remains constant between two sampling instants. A free predicted input
vector is introduced to reduce the complexity of the optimization problem. The input vector is used in
combination with the exactly discretized model to obtain the predicted outputs of a unicycle.

The predicted outputs are compared to their control objectives in the cost function, which returns a
scalar cost function value as a function of the predicted inputs. In the cost function, reference tracking,
circular obstacle and other unicycle avoidance, and formation keeping are implemented. For collision
avoidance, two worst case scenarios are investigated and safety measures are introduced to prevent
inter-sample collisions. To resolve conflicting situations that might occur, a priority strategy is devel-
oped that uses present, and past cost function values.

To obtain the lowest cost function values, two local optimization algorithms are introduced: the steep-
est descent, and Newton’s optimization method. These methods use the exact gradient and Hessian of
the cost function. Both methods are used in combination with line search to obtain robust optimiza-
tion algorithms. Newton’s method is able to produce good results as long as the Hessian is positive
definite. However, as this is not always the case, the steepest descent method performs more consis-
tently.

When all the elements of the controller are combined and put to the test in the simulations, it turns out
that all the implemented control objectives can be fulfilled. In simulations with multiple unicycles, it
can be guaranteed that no collisions occur as long as there are no dynamic obstacles. Also, conflicting
situations can be resolved quickly thanks to priorities that are assigned, based on the cost function val-
ues. Already in simulation, it becomes clear that sequentially decentralized MPC performs better than
centralized MPC. This is caused by the increased complexity of the optimization problem. However, it
can be seen that this control strategy has the potential to outperform sequentially decentralized MPC,
if the optimization algorithm is improved.
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In the experiments that are conducted, the same behavior is observed as in the experiments. The
reference trajectories are followed in the same manner, and when obstacles are encountered, the e-
pucks approach them slower, just as in the simulations. The priority system also allows the unicycles
to resolve conflicting situations. However, there are multiple factors that decrease the performance of
the experiments, such as delays and errors in obtaining the orientation of the e-pucks. Even though
the influence of these effects is not investigated further, the control objectives can still be fulfilled.

The controller that is described in this thesis, is able to control multiple nonholonomic mobile agents
simultaneously. The controller is flexible as it accepts time-varying control objectives. It is also robust
against the disturbances that are caused by the experimental setup. Furthermore, it is able to resolve
conflicting situations when multiple unicycles drive in close proximity. The control inputs are also
calculated in a fast way, thanks to significant simplification of the symbolic expressions.

9.2 Recommendations

Even though the controller that is designed in this thesis is able to fulfill the specified control objectives,
it still has a number of limitations. One problem is that the optimization algorithms that are used, can
only find local optima. This means that a unicycle that is stuck behind a number of obstacles, some-
times can not plan a path around them. One solution would be to use global optimization algorithms,
but they would drastically increase computation times. A better approach would be to combine the
controller with a path planning algorithm, that determines waypoints that a unicycle can follow. In
this way, the controller can still be used when the unicycles have navigate a complex environment.

Another issue is that the performance in the simulations is not matched by the experiments. To be
able to improve the experimental performance, the setup should be thoroughly investigated. Particular
attention should be payed to the delays that occur when the position is determined, the reliability of
the Bluetooth connection, and the mechanical limitations of the e-pucks. When the properties of the
setup are known, it can be investigated whether measures can be taken to improve performance.

As there is always room for improvement, some ideas are presented here to add or change the func-
tionality of the controller. The following ideas are changes that can be made to the cost function. In
the current cost function, two individual penalty terms are used for reference tracking. One term pe-
nalizes the distance that a unicycle is from its desired position, while another penalizes the difference
between the actual and desired angle of the unicycle. In the simulations and experiments, the penalty
on the angle is chosen much smaller than the penalty on the position. However, the penalty on the
angle is only used to fully constrain the orientation of the unicycle. When a unicycle is not yet on its
position, the penalty on the angle is generally not useful. An idea to resolve this, is to use an angular
penalty term that is a function of the distance that the unicycle has to its desired position. This would
result in a unicycle that drives to its position, which leads to an increased angular penalty, that leads to
a unicycle that rotates to its desired angle. This idea could also be applied to the formation penalty that
couples the rotation of the unicycles.

As mentioned earlier in this thesis, a tradeoff needs to be made between the physical prediction length
and the sampling time when the prediction horizon is fixed. Because the sampling time is used in
the prediction of future outputs, a shorter sampling time leads to a shorter physical prediction length.
As it can be seen in Table 7.6, there is room to decrease the sampling time, but this would negatively
influence the performance of the controller. A solution to this problem is to use two different sampling
times. One shorter sampling time for the controller, and a longer sampling time for the prediction.
This change would result in roughly the same performance, with smoother control signals. A difficulty
with two different sampling times is that the control objectives need to be specified for both sampling
times.

The cost function is designed so that it can be differentiated to the free inputs, leading to the exact
gradient and Hessian. This poses some constraints on the functions that can be used in the cost func-
tion, as they need to be differentiable. If this requirement is dropped, additional control objectives can
be added to the cost function. This would allow the use of non-circular obstacles. When non-circular
obstacles are used, it becomes harder, or even impossible to determine an analytical expression for this
distance. A solution to this problem is given in [51], where a map that holds the distance to the closest
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obstacle at each position, is precomputed before a simulation or experiment takes place. During the
simulation, the distance map can be used to quickly determine the shortest distance to an obstacle,
which can then be used to determine a cost function value.

If the cost function does not need to be differentiated, it is also possible to use a wide range of func-
tions, such as min, max, abs, sign, and many others. It is then also possible to use if-statements in the
cost function. Due to the addition of these functions and the precomputed distance map, the gradient
and Hessian need to be approximated. An approximation can be obtained by determining the cost
function values close to the current free inputs.

Changes can also be made on the optimization algorithms. The computation times of the controller
have been reduced by the simplification that is discussed in Appendix A. However, the controller is
still relatively computationally intensive. When more and more unicycles are added to the simulation
or experiment, the computational load increases rapidly. This is because the distance between every
unicycle is calculated. This is not always necessary, as unicycles that are far from each other can not
collide. A reduction of computation times can be achieved by grouping unicycles that are close to each
other, and only avoiding other members of these groups. These groups can also be used to create a
new sequentially centralized control strategy, in which the paths of one group is determined simulta-
neously, leading to less complex optimization problems.

Even though the problem description is limited to a system with multiple unicycles, it would be no
problem to use different systems. If a number of holonomic mobile robots has to fulfill the same
control objectives, the same design framework can be used. The unicycle model is then replaced with
a simpler system model. Most of the cost function can then be reused, as well as the optimization
algorithm. A very different example where this design framework can be used, is on the motion gen-
eration of a robotic arm. The unicycle model can then replaced with a forward kinematic model of the
arm. After that, reference tracking of an end defector, or other part of the arm can be implemented. By
attaching a chain of circular obstacles to the arm, and to the environment, collision free trajectories can
be generated. As long as the cost function remains differentiable to the free inputs, the simplification
of Appendix A can be used again to reduce computation times.
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Appendix A

Simplification of Obtained Results

The optimization algorithms, that are discussed in Chapter 6, use the gradient and the Hessian of
the cost function. The derivation of these is briefly discussed in Section 6.3. The actual derivation is
performed using MATLABs Symbolic Math Toolbox. If the results from the derivation would be used
in their initial form, it would create a large computational load as the expressions that occur in the gra-
dient and Hessian are very long. Fortunately, it is possible to reduce the computational load by making
use of the fact that many terms in the gradient and Hessian occur multiple times. By gathering these
terms and ensuring that each term is only calculated once, a large reduction in computation time can
be achieved.

This method works by first gathering every sine and cosine term that occurs in the expressions. When
a new term is encountered, it is stored in a database. When the same term is encountered again, it is
replaced with the corresponding database entry.

After that, the modified terms without sines and cosines are further simplified. Terms that are con-
nected with a plus or minus sign are separated, which starts with the terms that are between the most
inner brackets. An example of this simplification is shown in Table A.1, where a term is simplified us-
ing these rules. While the term is simplified, its components are stored in a database which is shown
on the right. Any subsequent term that is simplified, has access to the terms that are already in the
database, and can add new terms.

Step Equation Database
(sin(5x) + cos(2x))2 + 3x(sin(5x) + cos(2x))

1 (D1 + cos(2x))2 + 3x(D1 + cos(2x)) D1 = sin(5x)
2 (D1 +D2)

2 + 3x(D1 +D2) D2 = cos(2x)
3 D2

3 + 3xD3 D3 = D1 +D2

4 D4 + 3xD3 D4 = D2
3

5 D4 +D5 D5 = 3xD3

Table A.1: Example of simplification of an expression.

Three MATLAB functions are automatically created for use in the optimization process. One returns
the cost function value of a predicted input vector, the second one returns the cost function value and
the gradient, and the third one returns the cost function value, the gradient, and the Hessian. These
functions have been created because it is not always necessary to calculate the gradient and the Hes-
sian. Depending on the optimization method that is used, different functions are called.

After this simplification is applied to the three functions, the computation times of a simulation or
experiment are decreased significantly. The speedup is around a factor 10 when a single unicycle is
following a reference trajectory when N i

c = 1 and Np = 5. However, when there are nine unicycles
that have to exchange positions (as in Section 7.4) in a 60 second simulation with N i

c =
[
1 2

]
and

Np = 5, the speedup is even more significant, as it can be seen in Table A.2.
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Calculation time [s] File size [kB]
Steepest Newton Cost Gradient Hessian

Not simplified 120 1711 21 157 1321
Simplified 6.5 9.3 11 32 106

Factor 18.5 184 1.9 4.9 12.5

Table A.2: Example of simplification of two expressions.
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