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Formation control of stochastic multi-vehicle
systems

Violet Mwaffo*, Member, IEEE, Pietro DeLellis, Member, IEEE, Sean Humbert

Abstract—In this paper, we propose a decentralized
approach to formation control in groups of stochastic
mobile robots. Different from existing work, we explicitly
model the presence of stochastic perturbations affecting
the dynamics, and model the multi-vehicle system through
stochastic differential equations. We design a decentralized
formation control strategy where only a subset of informed
agents is aware of the desired target locations, and derive
sufficient conditions for almost sure convergence to the
desired formation pattern. Specifically, we illustrate how
the achievement of the control goal is related to the intensity
of the noise and to the topology of the communication
graph among the robots. The proposed formation control
strategy is tested through extensive numerical analyses and
validated experimentally on ground robots.

Index Terms—Autonomous systems, formation control,
non-holonomic unicycle models, stochastic systems, swarm
robotics.

I. INTRODUCTION

The spontaneous emergence of collective behaviors
in animal groups [1]–[3], as well as in biological and
social networks [4], [5], has inspired the design of sev-
eral engineering systems and notably swarms of mobile
robots and unmanned undersea or aerial vehicles [6]–
[12]. In animal groups, coordinated behavior originates
from local interaction between individuals, and provides
several benefits to the entire group, such as a more
efficient foraging or a more effective defense against
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predators [1]–[3]. Similarly, in robotic swarms, coordi-
nated motion is useful to perform complex tasks that
might not be achieved by a single unit [11], [13], [14],
as for instance collective search and rescue missions
over off-road rough terrains and large areas, or col-
lective transportation of multiples units or large-sized
objects [15]. Inspired by examples from the animal king-
dom, coordination in swarm robotic systems is achieved
by allowing individuals in the group to communicate and
cooperate toward the achievement of a common goal, as
for instance aggregation, cohesion, or the achievement
of a desired formation [9], [11], [14], [16].

A widely studied problem in the area of multi-
agent systems is formation control, where a group of
autonomous vehicles is required to track a predefined
path or trajectory while keeping a prescribed spatial
configuration [17]–[21]. With the recent progress in elec-
tronics, sensor integration, and 3D printing fabrication
resulting in a significant reduction in component prices
and allowing rapid prototyping, autonomous vehicles
and robots have become accessible not only for military
but also civil applications [22]–[24]. In swarm robotics,
leader-followers control schemes have been developed
to efficiently control the group of robots or drones.
Specifically, a single or few leaders are equipped with
advanced and expensive navigation sensors to drive the
rest of the group (the followers) equipped with less
accurate, but cheaper proximity sensors [16], [25]–[28].

Group coordination in leader-follower systems has
been intensively investigated in the literature of multi-
agent systems [18] by employing both numerical simula-
tions [29], [30] and analytical methods [31]–[35], which
then have been experimentally validated [36]. Research
efforts on formation control schemes have addressed the
problem of achieving a desired formation, tracking a
trajectory identified by an informed leader [37], [38],
and adapting to environmental constraints by avoiding
obstacles and collisions [36]. The problem of achieving
a desired formation in a three-dimensional space while
guaranteeing that minimal safety distances are main-
tained has been tackled in [39], [40]. When motion in a
two-dimensional space is considered, as in the case of
swarms of ground robots, the individual agent is often



modeled as a non-holonomic unicycle vehicle [41]–[45].
This model is widely used in applications [46], and
has proved to be particularly suitable for robots with
one castor, two differentially driven wheels [41], or 2-D
motion of fixed wind aircrafts [47].

In formation control problems, the effect of noise on
the actuation force and control torque was seldom con-
sidered in the literature. However, in real world systems,
non-holonomic robots might be subject to perturbations
due to internal factors such as fluctuations of the power
supply, possible component failures, chassis vibrations,
or environmental factors such as off-road rough terrain,
wind gusts, and sensor measurement errors [48]. These
intermittent and unpredictable perturbations can be suit-
ably modeled as stochastic noise [49], [50], but their
effect has been studied so far only on first order non-
holonomic unicycle models [47], [48], [51]. In these
works, numerical methods have been proposed to solve
an optimal feedback control problem, but the robustness
of the control strategy to the magnitude of the noise has
not been explored. In different contexts, the robustness to
noise has been explored [52]–[54], with a focus on con-
trol of manipulators [53] and of multi-agent quadrotor
systems [54]. To the best of our knowledge, no previous
work has studied the impact of noise on the second order
non-holonomic unicycle model, which is indeed a more
suitable framework [41] to study 2-D motion of ground
robots or fixed-wing aircraft [37], [41].

In this manuscript, we devise a leader-follower coop-
erative control strategy for formation control in groups
of planar non-holonomic unicycle mobile robots, that
is capable of coping with possible uncertainties on the
actuation force and control torque. In particular, by
combining the stability theory for stochastic differential
equations with graph-theoretic tools, we provide suf-
ficient conditions for almost sure convergence of the
formation towards the desired locations. Our analytical
conditions put in evidence the interplay between the
properties of the network topology, the individual dy-
namics of the robots, and the intensity of the noise. The
proposed decentralized control strategy is then tested
numerically, and its robustness to increasing noise on
both the input force and torque is investigated through
extensive simulations. Finally, we perform experiments
on ground robots that i) validate our modeling approach
and ii) show that our theoretical conditions can be used to
enforce convergence in the presence of a slippery terrain.

The rest of the paper is organized as follows. The
mathematical preliminaries on stochastic differential
equations and graph theory are provided in Section II. In
Section III, the robotic model is introduced and the for-
mation control problem is formulated. The proposed de-

centralized leader-follower control strategy is presented
in Section IV, together with the main results on the
almost sure convergence towards the desired formation.
The numerical analysis is articulated in Section V, while
the experimental results are discussed in Section VI.
Finally, conclusions are drawn in Section VII.

II. MATHEMATICAL PRELIMINARIES

A. Notation

Throughout the manuscript, Im denotes the identity
matrix of size m, 0m×p the m × p matrix with all
zero elements, and ‖v‖2 the Euclidean norm of a vector
v. Given a real matrix M , we denote by ‖M‖∗ =√

trace (MTM) its nuclear norm. When M = MT ∈
Rm×m, we sort its real eigenvalues in ascending order
as λ1(M) ≤ . . . ≤ λm(M). Given A,B ⊆ R, we
denote by L1(A,B) the space of Lebesgue integrable
functions ρ : A → B. Also, we introduce the family
C2,1 (Rn × R+,R+) of nonnegative functions V (x, t)
on Rn × R+ that are continuously twice differentiable
in x, and an operator L acting on C2,1 (Rn × R+,R+)
functions and defined as

LV (x, t) =
∂V (x, t)

∂t
+
∂V (x, t)

∂x
f(x, t)

+
1

2
trace

(
gT (x, t)

∂2V (x, t)

∂x2
g(x, t)

)
,

where f : Rn × R+ → Rn, g : Rn × R+ → Rn×m are
real functions,

∂V (x, t)

∂x
=

[
∂V (x, t)

∂x1
, ...,

∂V (x, t)

∂xn

]
and [

∂2V (x, t)

∂x2

]
ij

=

[
∂2V (x, t)

∂xi∂xj

]
,

for all i, j = 1, . . . , n.

B. Stochastic systems

Let P = {Γ, F, P} be a complete probability space
with filtration {F}t≥0, where Γ is the sample space, F
is a σ-algebra of measurable subsets of Γ, and P : F →
[0, 1] is a probability measure. The filtration {F}t≥0 is
right-continuous and contains all P -null sets, i.e. sets
of events with zero probability of occurrence. Next, we
introduce the non-autonomous n-dimensional stochastic
system

dx(t) = f(x(t), t)dt+ g(x(t), t)dW (t), (1)

with initial condition x(0) = x0, where x(t) ∈ Rn
is the state of the system at time t ≥ 0, W (t) =
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[W1(t), . . . ,Wm(t)]
T is an m-dimensional Wiener pro-

cess [55] defined on P , and f and g are measurable
functions verifying:

Assumption II.1. f and g satisfy the generalized Lips-
chitz condition, that is, for all j = 1, 2, . . . , there exists
cj > 0 such that,

‖f(x, t)− f(y, t)‖2 ≤ cj ‖x− y‖2 ,
‖g(x, t)− g(y, t)‖∗ ≤ cj ‖x− y‖2 ,

(2)

for all t ≥ 0, and x, y ∈ Rn such that ‖x‖ , ‖y‖ ≤ j.
Furthermore, f and g also satisfy the linear growth
condition, that is, there exists c > 0 such that

‖f(x, t)‖2 ≤ c (1 + ‖x‖2) ,

‖g(x, t)‖∗ ≤ c (1 + ‖x‖2) ,
(3)

for all x ∈ Rn.

When the above assumption holds, system (1) has a
unique continuous solution [56, Cor. 6.3.1], [57, Ch. 5,
Thm 1.1], [58] say x(t, x0), for t ≥ 0 and, moreover,
for all p > 0, we have

E

[
sup

0≤τ≤t
‖x(τ, x0)‖p2

]
< +∞, for t ≥ 0.

If there exists a P -null set Γ0 ∈ F such that for every
γ /∈ Γ0, the sequence x(t, x0) converges to x̄ in the usual
sense in Rn, then x(t, x0) is said to converge to x̄ almost
surely (or with probability 1), and we write

lim
t→+∞

x(t, x0) = x̄ a.s.

We can now give the following Lemma, which is a
stochastic version of the LaSalle theorem that allows to
characterize the asymptotic behavior of the stochastic
system (1) in a probabilistic sense:

Lemma II.2. [58] If
1) Assumption II.1 holds;
2) g is bounded;
3) There exist a function V ∈ C2,1 (Rn × R+,R+),

and a continuous function µ : Rn → R+ such that

lim
‖x‖2→+∞

inf
t∈R+

V (x, t) = +∞, (4a)

LV (x, t) ≤ −µ(x), (x, t) ∈ Rn × R+. (4b)

Then, for every x0 ∈ Rn,
• lim
t→+∞

V (x(t, x0), t) exists and is finite almost
surely;

• lim
t→+∞

µ(x(t, x0)) = 0 almost surely.

Finally, we provide the Itô’s formula, which will
be used to perform the computations throughout the
manuscript.

Lemma II.3. [59] Let us consider a function V ∈
C2,1 (Rn × R+,R). Then, V (x(t), t) is an Itô process
with the stochastic differential given by

dV (x(t), t) =

(
∂V (x(t), t)

∂t
+
∂V (x(t), t)

∂x
f(x, t)+

+trace

(
gT (x, t)

∂2V (x(t), t)

∂x2

)
g(x, t)

)
dt

+
∂V (x(t), t)

∂x
g(x, t)dW (t) a.s.

(5)

C. Graphs

Let G = {V, E ,W} be an undirected connected graph,
where V = {1, . . . , N} is the set of nodes, E ⊆ V×V is
the set of edges, and W is the set of scalar weights
wij = wji, (i, j) ∈ E . The graph topology can be
described by the binary adjacency matrix A, whose
generic element aij is one if (i, j) ∈ E , while it is
zero otherwise. An alternative description of the graph,
which will be useful in the following, is through the
weighted Laplacian matrix L ∈ RN×N , whose element
Lij is defined as

Lij =


− aijwij , if (i, j) ∈ E ,
0, if (i, j) /∈ E , i 6= j,

N∑
j=1,j 6=i

aijwij , if i = j.

(6)

From its definition, matrix L has zero row-sums,
that is,

∑N
j=1 Lij = 0, for all i = 1, . . . , N . Further-

more, being the graph connected and undirected, it is
an irreducible matrix, rank(L) = N − 1, and all its
eigenvalues are real and can be sorted in ascending order
as 0 = λ1(L) < λ2(L) ≤ . . . ≤ λN (L) [60].

Lemma II.4. [61]. Let M be an m-dimensional ir-
reducible square matrix whose ij-th element is de-
noted by mij , and let D be a diagonal matrix D :=
diag(D1, . . . , Dm), with Di ≥ 0 for all i, and∑m
i=1Di > 0. If rank(M) = m − 1, mij = mji ≤ 0

for all i 6= j, and
∑m
j=1mij = 0 for all i, then the

eigenvalues of the matrix Z := M +D are all real and
positive.

From the above Lemma, it follows that if we sum to
an irreducible weighted graph Laplacian L, associated
to a connected undirected graph, a nonnegative diagonal
matrix D with at least one positive element, then all the
eigenvalues of L+D are real and strictly positive.
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III. PROBLEM STATEMENT

A. Robotic model

In this paper, we consider the problem of coordinating
the motion of a group of N mobile planar robots coupled
through an undirected connected graph G = {V, E ,W},
where V = {1, . . . , N} is the set of nodes representing
the robots, E is the set of edges that connect interact-
ing robots, and W is the set of weights quantifying
the intensity of the coupling among connected robots.
The individual dynamics is described by the following
stochastic non-holonomic unicycle model:

dxi(t) = vi(t) cos (θi(t)) dt, (7a)
dyi(t) = vi(t) sin (θi(t)) dt, (7b)
dθi(t) = ωi(t)dt, (7c)

dvi(t) =
1

mi
Fi(t)dt+ σFi (vi(t)) dWF

i (t), (7d)

dωi(t) =
1

Ii
τi(t)dt+ στi (ωi(t)) dW τ

i (t), (7e)

for i = 1, . . . , N , where pi = [xi, yi]
T is the inertial po-

sition of the i-th robot, θi its steering angle, vi its linear
speed, ωi its turn rate, mi its mass, Ii(t) its moment of
inertia, τi the applied torque, Fi the applied force; WF

i

and W τ
i are two mutually independent Wiener processes

representing the noise acting on the i-th robot speed and
angular velocity with intensities σFi and στi respectively.
Notice that the increments dWF

i (t) and dW τ
i (t) are

normally distributed random variables with variance dt.
In Eq. (7d), the stochastic term σFi (vi)dW

F
i (t) cap-

tures possible uncertainties in the actuation of the input
force to robot i, which may be induced by fluctuations
of the actuators’ power supply, or by unmodeled friction
forces. The term στi (ωi)dW

τ
i (t) in Eq. (7e) captures un-

certainties in the actuation of the input torque of the i-th
robot, which may be related to external disturbances such
as wind gusts, robot chassis shaking, or vibration due to
off-road rough surface or other environmental factors.
In what follows, we consider that the noise intensities
σFi (vi) and στi (ωi) fulfill the following assumption:

Assumption III.1. The noise intensity functions σFi and
στi are globally Lipschitz with respect to vi and ωi,
respectively, that is, there exists a positive scalar κ such
that ∥∥σFi (α)− σFi (β)

∥∥
2
≤ κ ‖α− β‖2 ,

‖στi (α)− στi (β)‖2 ≤ κ ‖α− β‖2 ,
(8)

for all α, β ∈ R, i = 1, . . . , N . Furthermore, they are
zero at the origin, and there exist two positive scalars
σFmax and στmax such that |σFi | ≤ σFmax and |στi | ≤ στmax,
respectively.

Fig. 1. Differential wheeled robot i with inertial position pi, steering
angle θi, and hand position hi at a distance l from the inertial position.

Assuming a bound on the noise intensity is a ten-
able assumption and is consistent with the experimental
evidence, see the Supplementary Information. Different
value of this bound may impact on the stability properties
of the system under analysis. For instance, in harmonic
oscillators with fluctuating damping [62], [63], variations
of the noise intensity may generate a negative effective
dumping, thus yielding instability. In our study on groups
of mobile robots, we will evaluate how a variation of
σFmax and στmax affects system performance, and thus
the achievement of the desired formation.

B. Formation control goal

In this work, rather than focusing on coordinating the
inertial position of the robots, we control their hand
position, that is, the position of a point h = [hx, hy]T at a
distance l from the inertial position along the line normal
to the wheel axes that intersects it at its center, see
Figure 1. Indeed, the coordination of the hand position
is often of interest from a practical standpoint, think for
instance of robots equipped with a gripper to jointly
move large objects, or the coordinated placement of
sensors mounted at the hand position of each robot [37],
[64]–[67]. Formally, denoting hi the hand position of the
i-th robot, we can write

hi(t) =

[
hxi(t)
hyi(t)

]
=

[
xi(t)
yi(t)

]
+ l

[
cos (θi(t))
sin (θi(t))

]
. (9)

Here, we consider the problem of controlling the robots
so that a sequence of locations H`, ` = 1, . . . ,m,
are visited by the robots’ hands. Specifically, the `-th
location is defined as

H` =
{
h̄`1, . . . , h̄

`
N

}
,

where h̄`i is the desired position of the hand of the i-th
robot at the `-th location.
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We assume that the set of nodes V can be partitioned
in the subset of the followers VF and that of the
leaders VL. The followers are only aware of the desired
relative hand position with respect to neighboring agents.
Additionally, each leader i ∈ VL is also aware of the
sequence of desired positions for its own hand, that is, of
h̄1i , . . . , h̄

m
i , and can measure the relative hand position

with respect to its current desired location, say the `-th,
defined as ζi = hi − h̄`i . The control goal is twofold:
i) moving the robots towards the specified sequence of
locations H1, . . . ,Hm and ii) achieving and maintaining
the desired formation, that is, at a given location ` of the
formation pattern, guaranteeing that hi − hj converges
towards h̄`i − h̄`j for all i, j = 1, . . . , N . We can then
define the formation stabilization error as

e(t) = el(t) + ef (t), (10)

where el :=
∑N
i=1 ζ

T
i Cpζi is the location error, defined

as the square of the weighted norm of the mismatch
between the current hand position of the robots and the
current desired location, with Cp = CTp > 0 being the
weighting matrix, while

ef :=
∑

(i,j)∈E

(ζi − ζj)T Kp (ζi − ζj)

is the formation error, with weighting matrix Kp =
KT
p > 0. Cp and Kp are selected to balance the

relevance of maintaining the formation against the re-
quirement of achieving the desired location. Notice that
e(t) = 0 if and only if ζi(t) = 0 for all i = 1, . . . , N .

Definition III.2. We say that system (15) converges
almost surely (a.s.) to the desired formation if the
formation stabilization error converges a.s. to zero, that
is,

lim
t→+∞

e(t) = 0 almost surely.

Remark III.3. The proposed leader-follower control
scheme is cost-efficient, as only leaders need to use
navigation sensors such as LIDAR for Simulatneous
Localization and Mapping (SLAM) or Global Positioning
System (GPS), to follow the path [68]. Followers can
only rely on cheap proximity sensors to achieve the
formation pattern. This might result in unpredictable and
uncertain perturbations in the control actuation force
and torque, thus necessitating the use of stochastic SDEs
to model it.

C. Reduction of the input-output dynamics

As our final goal is to regulate the hands’ dynamics,
we can view (9) as the output equation of system (7),
and, extending the procedure implemented in [37], we

can design the control inputs so as to output feedback
linearize the deterministic part of the system dynamics.
For compactness of notation, in all the derivations that
follows we shall omit explicit dependence on time when
apparent. Now, we notice that, by applying the Itô’s
formula (5) to (9), and observing that no-noise is directly
acting on xi, yi, and θi,

dhi = zidt, (11)

where

zi =

[
zi1
zi2

]
=

[
vi cos (θi)− lωi sin (θi)
vi sin (θi) + lωi cos (θi)

]
.

Next, by applying the Itô’s formula to zi, and denoting
% = [vi, ωi, θi]

T we obtain

dzi1 =

(
∂zi1
∂t

+
∂zi1
∂%

f(%)

+trace

(
gT (%)

∂2zi1
∂%2

g(%)

))
dt+

∂zi1
∂%

g(%)dWi

(12)
where

g(%) =

σFi 0
0 στi
0 0

 , f(%) =

Fi/mi

τi/Ii
ωi

 ,Wi =

[
WF
i

W τ
i

]
.

(13)
Now, computing ∂2zi1/∂%2, we obtain 0 0 − sin(θi)

0 0 −l cos(θi)
− sin(θi) −l cos(θi) −vi cos(θi) + lωi sin(θi)

 ,
which, together with (13), yields

trace

(
gT (%)

∂2zi1
∂%2

g(%)

)
= 0.

Noting that ∂zi1/∂t = 0, and ∂zi1/∂% =
[cos(θi),−l sin(θi),−vi sin(θi)− lωi cos(θi)]

T , we have
that (12) becomes

dzi1 =
(
−viωi sin(θi)− lω2

i cos(θi)
)

dt

+

(
cos(θi)

mi
Fi −

l sin(θi)

Ii
τi

)
dt

+
[
σFi cos(θi),−lστi sin(θi)

] [dWF
i

dW τ
i

]
.

Following similar steps for the computation of dzi2, we
finally get

dzi =

[
−viωi sin(θi)− lω2

i cos(θi)
viωi cos(θi)− lω2

i sin(θi)

]
dt

+

[ 1
mi

cos(θi) − l
Ii

sin(θi)
1
mi

sin(θi)
l
Ii

cos(θi)

]
ui(t)dt

+

[
σFi (vi) cos(θi) −lστi (ωi) sin(θi)
σFi (vi) sin(θi) lστi (ωi) cos(θi)

] [
dWF

i

dW τ
i

]
,

5



Then, we can introduce and apply the following diffeo-
morphism ψ : R5 → R5 [69]:

χi = ψ(si) =


xi + l cos (θi)
yi + l sin (θi)

vi cos (θi)− lωi sin (θi)
vi sin (θi) + lωi cos (θi)

θi

 , (14)

where si =
[
xi, yi, θi, vi, ωi

]T
is the full state of robot i

in the inertial frame. We thus obtain the state vector χi
of robot i associated to the robot’s hand, which is what
we aim at controlling. The dynamics of hand of the i-th
robot can be then written as

dχi1 = χi3dt, (15a)
dχi2 = χi4dt, (15b)[

dχi3
dχi4

]
=

[
−viωi sin(θi)− lω2

i cos(θi)
viωi cos(θi)− lω2

i sin(θi)

]
dt

+

[ 1
mi

cos(θi(t)) − l
Ii

sin(θi(t))
1
mi

sin(θi)
l
Ii

cos(θi)

]
uidt

+

[
σFi (vi) cos(θi) −lστi (ωi) sin(θi)
σFi (vi) sin(θi) lστi (ωi) cos(θi)

] [
dWF

i

dW τ
i

]
,

(15c)

dχi5 =

(
−1

l
χi3 sin (χi5) +

1

l
χi4 cos (χi5)

)
dt,

(15d)

where ui(t) = [Fi(t), τi(t)]
T , for all i = 1, . . . , N . 1

Observing that

det

[ 1
mi

cos(θi) − l
Ii

sin(θi)
1
mi

sin(θi)
l
Ii

cos(θi)

]
=

l

miIi
6= 0,

we can then choose

ui =

[ 1
mi

cos(θi) − l
Ii

sin(θi)
1
mi

sin(θi)
l
Ii

cos(θi)

]−1 [
ϕi

−
(
−viωi sin (θi)− lωi2 cos (θi)
viωi cos (θi)− lωi2 sin (θi)

)]
,

(16)

which, together with (15c), yields[
dχi3
dχi4

]
= ϕidt

+

[
σFi (vi) cos(χi5) −lστi (ωi) sin(χi5)
σFi (vi) sin(χi5) lστi (ωi) cos(χi5)

] [
dWF

i

dW τ
i

]
,

(17)
where ϕi is a decentralized control input to be selected.
Hence, the linear operator in (14) allows to reduce
the input-output dynamics of individual robot to the

1Equation (15d) has been obtained by noticing that dχi5 = ωidt,
and then expressing ωi as a function of χi3, χi4 and χi5 by means
of equation (14).

stochastic double integrator in (15a), (15b), and (17).
Thus, to control the hand position of the differential
drive robot i, it suffices to design an appropriate control
law ϕi. Finally, note that, by computing the inverse in
(16), one obtains that the control gains are proportional
to mi/l and Ii/l, respectively. Therefore, if the hand
were too close to the inertial position, thus making l
small compared to the mass and moment of inertia of
the robot, a careful design of ϕi would be needed to
prevent potentially high values of the control gains.

IV. CONTROL DESIGN

Notice that, by introducing the vector ηi =[
χi3, χi4

]T
, and from equation (15), the dynamics of

the relative hand position error ζi can be written as

d

[
ζi(t)
ηi(t)

]
=

[
ηi(t)
ϕi(t)

]
dt+

[
02×2
Ωi(t)

]
dWi(t), (18)

for i = 1, . . . , N , where Wi =
[
WF
i (t),W τ

i (t)
]T

and

Ωi(t) =

[
σFi (vi) cos(χi5(t)) −lστi (ωi) sin(χi5(t))
σFi (vi) sin(χi5(t)) lστi (ωi) cos(χi5(t))

]
.

(19)
In compact matrix form, we can rewrite (18) as

d

[
ζ(t)
η(t)

]
= f (ζ(t), η(t)) dt+ g(t)dW, (20)

where ζ =
[
ζT1 , . . . , ζ

T
N

]T
, η =

[
ηT1 , . . . , η

T
N

]T
,

f (ζ(t), η(t)) = [η(t)T , ϕ (ζ(t), η(t))
T

]T , W =

[WT
1 , . . . ,W

T
N ]T , and g(t) =

[
02N×2N ,Ω(t)T

]T
, with

Ω = diag (Ω1, . . . ,ΩN ) and ϕ =
[
ϕT1 , . . . , ϕ

T
N

]T
. Here,

we propose a decentralized control action to achieve
the desired formation. Namely, the control input to the
followers is

ϕi = −
N∑
j=1

aijwij (Kp (ζi − ζj) +Kv (ηi − ηj)) ,

(21)
for all i ∈ VF , where Kp and Kv are symmetric positive
definite matrices defining the control gains for the group
cohesion and alignment terms, respectively. The control
input to the leaders will have an additional term to
leverage the information on the desired location. Namely,

ϕi =− Cpζi − Cvηi

−
N∑
j=1

aijwij (Kp (ζi − ζj) +Kv (ηi − ηj)) ,

(22)
for all i ∈ VL, where Cp and Cv are symmetric positive
definite matrices gains weighting the terms inducing the
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desired formation pattern.2 Note that Cp and Kp are
chosen to be identical to the weighting matrix defined
in the formation stabilization error in equation (10). In
compact matrix form, the control law (21)-(22) can be
rewritten as

ϕ = ϕ (ζ(t), η(t)) = −M1ζ(t)−M2η(t). (23)

where M1 = U⊗Cp+L⊗Kp and M2 = U⊗Cv+L⊗
Kv , with U being a diagonal matrix whose i-th element
is 1 if i ∈ VL, while it is 0 otherwise. Note that, as
the graph G is undirected and connected, M1 and M2

are symmetric and positive definite by construction [70].
Before giving our main result, we prove the following
useful Lemma:

Lemma IV.1. If limt+∞ η(t) = 0 a.s., then
1) limt+∞ dζ(t) = 0 a.s.;
2) limt+∞ ζ(t) = 0 a.s.;
3) limt+∞ dη(t) = 0 a.s.

Proof. From (18),

dζ(t) = η(t)dt.

Then, taking the limit for t → +∞, point 1) trivially
follows. In turn, this implies

lim
t+→∞

ζ(t) = ζ̄ a.s., (24)

for some constant vector ζ̄ ∈ R2N .
Next, we show that ζ̄ = 0 by contradiction. Indeed,

let us assume that ζ̄ 6= 0. From equation (20), and taking
the limit for t→ +∞, as limt→+∞ η(t) = 0 we obtain

lim
t→+∞

dη(t) = lim
t→+∞

−M1ζ̄dt+ Ω(t)dW a.s. (25)

Notice that

ηi(t) =

[
vi(t) cos (θi(t))− lωi(t) sin (θi(t))
vi(t) sin (θi(t)) + lωi(t) cos (θi(t))

]
, (26)

for all i = 1, . . . , N . As limt→+∞ η(t) = 0 a.s., this
implies that

lim
t→+∞

vi(t) = 0 a.s., and lim
t→+∞

ωi(t) = 0 a.s. (27)

From the definition (19) of Ωi, this implies that

lim
t→+∞

Ω(t) = 0. a.s. (28)

By combining (28) with (25), we obtain

lim
t→+∞

dη(t) = −M1ζ̄dt a.s. (29)

2Since collisions might occur when the formation is tight, the
controller can be completed by an additive collision avoidance term
∇Ji obtained by evaluating the gradient of a potential function Ji
which can be defined e.g. as in [47].

As we assumed ζ̄ 6= 0, since M1 is non-singular, we
must also have −M1ζ̄ 6= 0, and therefore dη(t) in the
limit would be equal to a non-zero constant vector, thus
contradicting the hypothesis that limt→+∞ η(t) = 0.
This contradicts the assumption, and therefore ζ̄ = 0,
thus proving points 2) and 3).

We are now ready to give the following result:

Theorem IV.2. Under the control law (16), (23), if
Assumption III.1 holds and λ1(M2) > κ2/2, then system
(15) converges almost surely to the desired formation.

Proof. We start by showing that all the three assumptions
of Lemma II.2 for the error system (20) hold. Indeed,

1) f is linear and continuously differentiable. Further-
more, as Assumption III.1 holds, then Assumption
II.1 is fulfilled, too.

2) Assumption III.1 also implies that g is bounded.
3) Let us introduce the following function V ∈

C2,1
(
R4N × R+,R+

)
:

V (ζ, η) =
1

2
ζT (U ⊗ Cp + L⊗Kp) ζ +

1

2
ηT η.

(30)
By defining γ := [ζ(t)T η(t)T ]T , and since M1 >
0, we have

lim
‖γ‖2→+∞

inf
t∈R+

V (γ) = lim
‖γ‖2→+∞

V (γ) = +∞,
(31)

and thus (4a) is fulfilled. Next, we can write

LV (γ) =
∂V

∂γ
f(γ) +

1

2
trace

(
gT
∂2V

∂γ2
g

)
=
∂V

∂γ

[
η

ϕ(ζ, η)

]

+
1

2
trace

([
02N×2N ΩT

] ∂2V
∂γ2

[
02N×2N

Ω

])
.

(32)
Now, considering that

∂V

∂γ
=
[
ζT (U ⊗ Cp + L⊗Kp) ηT

]
(33a)

and

∂2V

∂γ2
=

[
U ⊗ Cp + L⊗Kp O2N×2N

O2N×2N I2N×2N

]
, (33b)

by exploiting the symmetry of Cp and Kp, we
finally get

LV =− ηT (U ⊗ Cv + L⊗Kv) η

+
1

2

N∑
i=1

((
σFi (vi)

)2
+ (lστi (ωi))

2
)
.

(34)
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From Assumption III.1, we know that
N∑
i=1

((
σFi (vi)

)2
+ (lστi (ωi))

2
)

≤
N∑
i=1

(
κ2
(
v2i + l2ω2

i

))
.

(35)

Furthermore, computing the inverse of the operator
ψ defined in (14) yields

vi = χi3 cos(χi5) + χi3 sin(χi5),

ωi = −1

l
χi3 sin(χi5) +

1

l
χi4 cos(χi5).

(36)

Combining (35) and (36), we obtain
N∑
i=1

((
σFi (vi)

)2
+ (lστi (ωi))

2
)

≤
N∑
i=1

(
κ2
(
χ2
3i + χ2

4i

))
= κ2ηT η,

(37)

thus yielding

LV ≤ −ηT (U ⊗ Cp + L⊗Kp) η +
κ2

2
ηT η,

≤ −λ1(M2)ηT η +
κ2

2
ηT η

=

(
κ2

2
− λ1(M2)

)
ηT η := µ(η).

(38)
As from the hypothesis of the Theorem we have
λ1(M2) > κ2/2, and from Assumption III.1, the
third and last hypothesis of Lemma II.2 also holds.

Now, from the thesis of Lemma II.2, we have

lim
t→+∞

V (γ) exists and is finite almost surely. (39)

Furthermore, lim
t→+∞

µ(η) = 0 a.s., which implies that

lim
t→+∞

η(t) = 0 almost surely. (40)

From Lemma IV.1, the thesis follows.

Remark IV.3. Notice that to check the sufficient condi-
tion provided in Theorem IV.2, it is necessary to compute
the smallest eigenvalue of matrix M2. Although the latter
is related to the overall network structure, encoded by
the graph Laplacian, a distributed algorithm that only
leverages local information can be employed to estimate
λ1(M2) [71].

Remark IV.4. Note that, in the absence of noise, if
the network topology is an unweighted ring (that is, by
setting wij = 1, ai−1,i = ai,i+1 = 1 and aij = 0), and
all the nodes have full knowledge of the target location

(V = VL), then our control law (16), (23) coincides with
that introduced in [37], and the convergence towards the
desired location is not anymore in a probabilistic sense,
but becomes asymptotic.

Interestingly, the sufficient condition for the almost
sure convergence of the robot formation towards the de-
sired trajectory depends on the noise intensity functions
through the parameter κ, the network topology through
matrix M2, and the matrix control gains Cv and Kv . The
following corollary further highlights these relationships.

Corollary IV.4.1. If Cv = bKv for some positive scalar
b and λ1(bU + L)λ1(Kv) > κ2/2, then system (15)
converges almost surely to the desired formation.

Proof. Notice that, when Cv = bKv , we can write
M2 = (bU + L) ⊗ Cv . Then, from the properties of
the Kronecker product,

λ1(M2) = λ1(bU + L)λ1(Kv). (41)

From Theorem IV.2, the thesis follows.

Remark IV.5. In our theoretical derivation, we con-
sider the scenario in which the network topology of
the controlled networked system is undirected, that is,
if agent i is a neighbor of agent j, then j is also
a neighbor of i, thus implying a symmetric Laplacian
matrix. We emphasize that, in the presence of different
schemes yielding to a directed Laplacian matrix [72],
which may arise, for instance, when the agents are
equipped with proximity sensors with different ranges,
our approach could be extended by leveraging the theory
on M -matrices, see e.g. [73].

V. NUMERICAL ANALYSIS

In this section, we conduct a numerical study to
validate the theoretical findings of Section IV and to
offer further insights on the relevance of the network
topology, the control parameters, and the noise intensity
on the fulfillment of the formation task.

A. Discrete-time approximation

To perform the numerical analysis and allow for the
subsequent implementation on ground robots, we used a
discrete-time approximation [74], [75] of the stochastic
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robot hand dynamics (15), (18) using the standard Euler-
Maruyama method [76], which yields

ζi(k + ∆t) = ζi(k) + ηi(k)∆t

ηi(k + ∆t) = ηi(k) + ϕi(k)∆t+ Ωi(k)∆Wi(k),

χi5(k + ∆t) = χi5(k) +

(
− 1

2l
ηi1(k) sin (χi5(k))

+
1

2l
ηi2(k) cos (χi5(k))

)
∆t,

(42)
for i = 1, . . . , N , where ∆t is the discrete time in-
crement, and ∆Wi(k) =

[
∆WF

i (k),∆W τ
i (k)

]T
, with

∆WF
i (k) = WF

i (k + 1) − WF
i (k) and ∆W τ

i (k) =
W τ
i (k + 1) −W τ

i (k), respectively. Notice that the ran-
dom variables ∆WF

i (k) and ∆W τ
i (k) are independent

normally distributed with zero mean and variance ∆t.
To simulate the time behavior of the inertial position

of the robots, from equation (14) we can compute the
linear speed vi and turn rate ωi as[

vi(k)
ωi(k)

]
=

[
cos (χi5(k)) −l sin (χi5(k))
sin (χi5(k)) l cos (χi5(k))

]−1
ηi(k),

(43)
thus obtaining

xi(k + ∆t) = xi(k) + vi(k) cos(χi5(k))∆t,

yi(k + ∆t) = yi(k) + vi(k) sin(χi5(k))∆t.
(44)

B. Numerical setup

In our numerical analyses, the control objective is to
steer a formation of N = 10 planar robots towards
a desired configuration H1 =

{
H1

1, . . . ,HN1
}

, where
Hi1 is the desired hand position of the i-th robot. In
particular, we focus on the problem of achieving a bal-
anced circular formation, which is a traditional testbed
problem in the literature on multi-agent systems [77],
and therefore we select the positions Hi1, i = 1, . . . , 10,
accordingly. Specifically, the agents have to be balanced
on a circle of center (5, 5) and radius 1.5, hence the
desired position of robot 1 is randomly set on the circle,
while those of the remaining robots are successively set
on the circle at π/N degrees from the previous one.
The robots are coupled through a ring network, and thus
the off-diagonal elements of the associated Laplacian
matrix are defined as lij = −1 if |j − i| ∈ {1, N − 1},
while they are 0 otherwise. As a worst case scenario,
we consider the case in which only one node is a
leader. 3 Specifically, node 1 is elected to be the only

3Indeed, if more leaders are added in the network λ1(M2) may only
increase, see e.g. [70]. From Theorem IV.2, this means that larger
values of κ can be considered, and therefore the control action is
capable of compensating for larger classes of noise intensity functions,
see Assumption III.1.

network leader, and therefore the only non-zero diagonal
element of the matrix U , introduced after equation
(23), is the first one. Furthermore, the individual robot
parameters are taken consistently with the specifications
of the customized ground robots we used for the subse-
quent experimental validation (iRobot Create 2, iRobot
Corporation, Bedford, MA, USA). Namely, we selected
l = 0.15 m, mi = 4.99 Kg, and Ii = 0.13 Kg m2, for all
i = 1, . . . , N . The matrix control gains are selected as
multiples of the identity matrix, that is,

Cv = cvI2, Kv = kvI2, Cp = cpI2, Kp = kpI2,
(45)

where cv , kv , cp, and kp are positive scalar control gains,
whereas the noise intensity functions, in agreement with
the model validation performed in the Supplementary
Information, are selected as

σFi (vi) = sF tanh(vi), στi (ωi) = sτ tanh(ωi),
(46)

for all i = 1, . . . , N , with sF and sτ being positive
scalars. At the onset of each simulation, the position of
each robot is drawn randomly in a circular domain of
radius 2 centered at the origin, while its initial heading
is randomly drawn in the interval [−π, π]. We set the
discrete time step ∆t in (42)-(44) to 0.01s, and the total
simulation time to T = 500 s.

C. Results

In our investigation, we first perform two represen-
tative simulations to illustrate the effectiveness of the
sufficient condition in Theorem IV.2, where we set all
the scalar gains in (45) to 1, thus yielding λ1(M2) = 1.
In the first simulation, the sufficient condition for con-
vergence is fulfilled, as we select sF = 1 and sτ = 1 in
(46), and therefore κ2/2 = 0.5 < λ1(M2). According
to the theoretical prediction, in Figure 2(a) we observe
convergence towards the formation objective. Figure 2(b)
then reports the results of a second representative simula-
tion in which the sufficient conditions in Theorem IV.2
are not satisfied (sF = sτ = 5 = κ > λ1(M2)) and
convergence is not achieved.

Next, we study the influence of the design parameters
on the convergence and stability of the multi-agent sys-
tem by varying the scalar control gains cv, kv , and cp, kp
in equation (45), and the maximum noise intensities sF
and sτ in (46). To this aim, we set N = 4 and define
the convergence time tc as

tc = min T := {t ∈ R+ : |e(τ)| < 10−6 ∀τ > t}.

When T = ∅, we set tc = +∞. In Figure 3, three
colormaps describe the variation of tc when the control
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Fig. 2. Time evolution of the normalized formation error e(t)/e(0)
when (a) sF = 1, sτ = 1 and (b) sF = 5, sτ = 5, respectively.
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Fig. 3. Averaged convergence time tc as a function of (a) the gains cv
and kv in (45), (b) cp and kp in (45), (c) the noise intensities sF and
sτ in (46). Each pixel is obtained by averaging tc over 30 simulated
trajectories. White pixels correspond to tc → +∞ in at least one of
the 30 repetitions. The color scale used for displaying the convergence
time (tc) is illustrated in panel (d).

gains and the noise intensities are varied. Each dot
in the colormaps is the outcome of an average over
30 simulations. White areas in the map correspond to
tc = +∞. In Figures 3(a) and 3(b) we illustrate the
dependency of the convergence time on the control gains.
Specifically, in Figure 3(a) the control gains kv and cv
acting on the error velocity η are varied in the interval
[0, 2] with step 0.14, and the other parameters are kept
constant, with kp = 1, cp = 1, sF = 1, and sτ = 1. In
Figure 3(b), the control gains kp and cp acting on the
hand position error η are varied in the interval [0, 2] with
step 0.07, and the other parameters are kept constant,
with kv = 1, cv = 1, sF = 1 and sτ = 1. Our results

show how the control gains can be used to modulate the
convergence time according to the control specification.
Figure 3(c) shows how the stability of the system is
challenged by the noise intensity. Indeed, we vary sF
and sτ in the set [0, 4] with step 0.22, and keep the
control gains constant, with kv = 1, cv = 1, kp = 1,
and cp = 1. We observe that, as the noise increases, the
convergence time becomes higher and higher, up to a
certain noise intensity, beyond which the error dynamics
become unstable.

VI. EXPERIMENTS ON GROUND ROBOTS

A. The experimental arena and the ground robots

The experiments on ground robots were performed
at the Research and Engineering Center for Unmanned
Vehicles (RECUV) Lab at the University of Colorado
Boulder, Boulder CO, USA. A VICON motion track-
ing system (VICON Motion Systems, OMG plc (LSE:
OMG), Oxford, UK) was utilized to record the mo-
tion of the robots. The VICON marker-based motion
capture system at the RECUV lab occupied a volume
of 15.24 m× 18.29 m× 6.10 m (length, width, height)
housed in 315.87 m2 of laboratory space. The system
was equipped with 18 VICON Bonita 10 cameras and 6
VICON Vero v2.2 cameras to track each robot identified
through five reflective pearl markers (B&L Engineering,
Santa Ana, CA, USA) positioned on their surface. The
cameras were set up to detect reflective markers with
diameter as small as 0.005 m, thus allowing the VICON
motion tracking system to provide accurate position,
velocity, and acceleration data at 100 fps. The motion
tracking software further processed the captured frames
through discrete Kalman filters to achieve robust 3D-
motion estimates, and an external camera (iPhone 7 Plus,
Apple Inc., Cupertino, CA, USA) was used to record
videos for all trials. We emphasize that, although the
VICON motion tracking system may provide centralized
measurements to all the robots, in view of a decentralized
implementation, each robot only used information on
their own position and velocity, and on those of their
neighbors, according to the decentralized control law
(21)-(22). Further, the decentralized control scheme is
independently implemented in real time on each robot
computer board.

Three robots (iRobots Create 2, iRobot Corpora-
tion, Bedford, MA, USA), were used in the experi-
ments, see Figure 4(a). Their mass, moment of in-
ertia, and diameter were given in Section V-B. Each
robot was customized to house an additional computer
board (Raspberry Pi Foundation, Caldecote, UK) and
a power supply, with the housing units designed in
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Fig. 4. View of the experimental room with the three robots in
formation including the leader identified by a red marker (a) and
sample trajectory of the three robots transitioning in between the three
predefined goals (b).

Solidworks (Dassault Systèmes, Waltham, MA, USA)
and manufactured using acrylic sheets and a 3D
printer. The computer boards consisted of three Rasp-
berry Pi-s operating under Ubuntu and running the
Robotic Operating System (ROS, https://www.ros.org).
Custom code was written using RosPy, a python li-
brary for ROS. An open source third party driver “Cre-
ate Autonomy” downloaded from the github website
(https://github.com/autonomylab/create autonomy) was
employed to send via serial communication the linear
and angular velocity commands to each iRobot Cre-
ate 2 motherboard. The on-board computers in each
robot were programmed to independently issue com-
mands through ROS executing a preprogrammed control
scheme.

In the experiments, to recreate real world scenar-
ios where unpredictable uncertainties might affect the
robotic system, stochastic noise was introduced to the
system actuation following (42)-(46), where ∆t = 0.1s
corresponds to the rate at wchich the velocity command
was sent to the robot actuator and is compatible with the
actuation delay. The parameter of the stochastic noise
were selected as sF = 1 and sτ = 1 to reproduce
motion on a graveled surface. Further details on the
experimental calibration of the noise intensity is reported
in the Supplementary Information. In the absence of all

terrain robots or exploratory rovers to conduct outdoor
experiments or indoor experiments on a surface covered
by a granular material, the identified stochastic noise
was directly injected into the robot’s actuators to avoid
damaging the iRobots Create 2 used in the formation
control experiments. We emphasize that, in the absence
of the control law (21)-(22), the stochastic noise induces
unpredictable variations in speed and heading, thus lead-
ing to an erratic motion of the robot. Such motion is
comparable to what might be observed with all terrain
robots or exploratory rovers [78] either moving on an
uneven or slippery terrain, having their actuators affected
by a fluctuation of the power supply, or their wheels or
motor subject to internal or external friction forces.

Although model (7) does not explicitly account for ac-
tuation saturation, which is instead observed in practical
applications, this is taken into account when setting up
our robots, whose speed and turn rate has been capped to
the maximum absolute values 0.1 m s−1 and 1 rad s−1,
respectively.

B. Experimental validation

The three robots, coupled through a ring network, had
to visit the following sequence of three locations:

H1 =

{(
2
0

)
,

(
1
1

)
,

(
1
−1

)}
,H2 =

{(
4
2

)
,

(
3
3

)
,

(
3
1

)}
,

H3 =

{(
6
2

)
,

(
5
3

)
,

(
5
1

)}
,

where the first element of each location identifies the
desired location for the leader, which, w.l.o.g is labeled
as the first node. Initially, the robots were manually
positioned at

H0 =

{(
−1
1

)
,

(
−1
2

)
,

(
−1
0

)}
.

The formation stabilization objective was considered to
be achieved when the error value el(t) was less than
0.13 mm2, which corresponds to the estimated mean
square error of the motion tracking system. When the
i-th location was reached, the robots were automatically
assigned the next location to be achieved. Figure 4(b)
presents a sample experimental trajectory of the three
robots evolving over the three formation objectives. The
trajectories illustrate that our control strategy is capable
of driving the three robots from their initial position
towards the desired sequence of locations. The effec-
tiveness of our approach is also demonstrated through
a video of an exemplary experiment provided in the
Supplementary Information.
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VII. CONCLUSIONS

In this work, we tackled the formation control problem
for a group of mobile robots modeled as stochastic non-
holonomic unicycles. Specifically, we modeled the possi-
ble perturbations to the nominal input forces and torques,
which may be due to both internal and environmental
factors, as stochastic noise acting on the speed and torque
dynamics. Then, we designed a decentralized leader-
follower control strategy to drive the formation towards a
sequence of desired location. Under suitable assumptions
on the individual dynamics, the noise intensity, and
the graph connecting the robots, we proved that the
designed controller can drive almost surely the network
towards the desired formation. Then, extensive numerical
simulations illustrated how the control gains can be used
to counterbalance the noise intensity and regulate the
convergence time towards the desired formation. The
feasibility of the proposed control strategy was then
confirmed through its implementation on a group of
ground robots.

The promising results presented in this work suggest
that leader-follower decentralized control schemes are
a viable approach to formation control of swarms of
robots even in the presence of stochastic perturbations
to the input forces and torques. When leaders cannot
be deployed, the control law should be complemented
by an estimation strategy that only relies on the agents’
local coordinate systems, see for instance [79]. Future
research will be devoted to investigate the robustness to
possible failures of the links in the topology connecting
the robots, which may add additional uncertainty on the
information flow among the robots.

ACKNOWLEDGMENTS

The authors wish to thank Eoin Doherty and Branden
Adams for helping the setup of the robots.

AUTHOR CONTRIBUTIONS

V.M., P.D., and S.H. designed the study, V.M., and
P.D. performed the analysis, V.M. conducted the experi-
ments on ground robots, and V.M., P.D., and S.H. wrote
the manuscript.

REFERENCES

[1] B. L. Partridge, “The structure and function of fish schools,”
Scientific American, vol. 246, no. 6, pp. 114–123, 1982.

[2] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani,
I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini
et al., “Interaction ruling animal collective behavior depends on
topological rather than metric distance: Evidence from a field
study,” Proceedings of the National Academy of Sciences, vol.
105, no. 4, pp. 1232–1237, 2008.

[3] I. Giardina, “Collective behavior in animal groups: theoretical
models and empirical studies.” HFSP Journal, vol. 2, no. 4, pp.
205–19, 2008.
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