
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

1-30-2012

The development of a robotic test bed with
applications in Q-learning
Titus Appel

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Appel, Titus. "The development of a robotic test bed with applications in Q-learning." (2012). https://digitalrepository.unm.edu/
ece_etds/15

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/15?utm_source=digitalrepository.unm.edu%2Fece_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/15?utm_source=digitalrepository.unm.edu%2Fece_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Titus James Appel
 Candidate

 Electrical and Computer Engineering
 Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 Rafael Fierro , Chairperson

 Ron Lumia

 Meeko Oishi

The Development of a Robotic Test Bed
with Applications in Q-Learning

by

Titus James Appel

B.S., Electrical Engineering, Kettering University, 2009

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2011

c©2011, Titus James Appel

iii

Dedication

To my wife, for supporting and encouraging me

to work hard and finish this endeavor.

iv

Acknowledgments

This work was sponsored by the DOE University Research Program in Robotics
(URPR), Grant #DE-FG52-04NA25590, awarded to the UNM Manufacturing En-
gineering Program.

I would like to thank God, for giving me the wisdom and strength to complete
this project and my degree. I would also like to thank my wife for her support
and encouragement throughout my studies. I am grateful for my advisor, Professor
Rafael Fierro, for his support and advice during my studies as well as the Marhes

lab for their help and encouragement. I truly appreciate Professor Ron Lumia for his
help and critical suggestions on the learning part of the thesis along with Professor
Meeko Oishi for agreeing to be on the thesis committee. I want to thank my family
for encouraging me through my education. Lastly, I am indebted to Sandia National
Laboratories, especially Organization 6623, for providing the financial support for
my master’s degree through NPSC, the National Physical Science Consortium.

v

The Development of a Robotic Test Bed
with Applications in Q-Learning

by

Titus James Appel

ABSTRACT OF THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2011

The Development of a Robotic Test Bed
with Applications in Q-Learning

by

Titus James Appel

B.S., Electrical Engineering, Kettering University, 2009

M.S., Electrical Engineering, University of New Mexico, 2011

Abstract

In this work, we show the design, development, and testing of an autonomous ground

vehicle for experiments in learning and intelligent transportation research. We then

implement the Q-Learning algorithm to teach the robot to navigate towards a light

source. The vehicle platform is based on the Tamiya TXT-1 chassis which is outfitted

with an onboard computer for processing high-level functions, a microcontroller for

controlling the low-level tasks, and an array of sensors for collecting information

about its surroundings.

The TXT-1 robot is a unique research testbed that encourages the use of a mod-

ular design, low-cost COTS hardware, and open-source software. The TXT-1 is

designed using different modules or blocks that are separated based on functional-

ity. The different functional blocks of the TXT-1 are the motors, power, low-level

controller, high-level controller, and sensors. This modular design is important when

considering upgrading or maintaining the robot.

vii

The research platform uses an Apple Mac Mini as its on-board computer for

handling high-level navigation tasks like processing sensor data and computing nav-

igation trajectories. ROS, the robot operating system, is used on the computer as a

development environment to easily implement algorithms to validate on the robot.

A ROS driver was created so that the TXT-1 low-level functions can be sensed and

commanded. The TXT-1 low-level controller is designed using an ARM7 processor

development board with FreeRTOS, OpenOCD, and the CodeSourcery development

tools. The RTOS is used to provide a stable, real-time platform that can be used

for many future generations of TXT-1 robots. A communication protocol is created

so that the high and low-level processors can communicate. A power distribution

system is designed and built to deliver power to all of the systems efficiently and

reliably while using a single battery type. Velocity controllers are developed and im-

plemented on the low-level controller. These control the linear and angular velocities

using the wheel encoders in a PID feedback loop. The angular velocity controller

uses gain scheduling to overcome the system’s nonlinearity. The controllers are then

tested for adequate velocity response and tracking.

The robot is then tested by using the Q-Learning algorithm to teach the robot

to navigate towards a light source. The Q-Learning algorithm is first described in

detail, and then the problem is formulated and the algorithm is tested in the Stage

simulation environment with ROS. The same ROS code is then used on the TXT-

1 to implement the algorithm in hardware. Because of delays encountered in the

system, the Q-Learning algorithm is modified to use the sensed action to update

the Q-Table, which gives promising results. As a result of this research, a novel

autonomous ground vehicle was built and the Q-Learning source finding problem

was implemented.

viii

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Literature Review . 4

1.2.1 Mobile Robot Platforms . 4

1.2.2 Q-Learning and Robotics . 6

1.3 Contributions . 7

1.4 Thesis Outline . 8

2 Kinematic Modeling 9

2.1 Unicycle Kinematic Model . 9

2.2 Bicycle Kinematic Model . 11

2.2.1 Dual Steering Bicycle Model 13

ix

Contents

2.2.2 Modeling the Bicycle Model as a Unicycle 13

2.2.3 Maximum Angular Velocity 14

2.3 Odometry Calculations . 15

3 TXT-1 Platform Description 19

3.1 System Overview . 19

3.2 Vehicle . 20

3.2.1 Specifications . 21

3.2.2 Modifications . 21

3.3 Low-Level Control Board . 25

3.3.1 Specifications . 26

3.3.2 Development System . 27

3.3.3 FreeRTOS . 28

3.4 On-board Computer System . 33

3.4.1 Specifications . 34

3.4.2 ROS – The Robot Operating System 35

3.4.3 TXT-1 ROS Driver . 36

3.5 Communication Protocol . 42

3.6 Power Distribution System . 47

3.6.1 Requirements . 47

3.6.2 Hardware . 48

x

Contents

3.6.3 Battery Life Results . 51

3.7 Sensor Suite . 52

3.7.1 Encoders . 53

3.7.2 IMU . 54

3.7.3 GPS . 54

3.7.4 Kinect . 55

3.7.5 Laser Scanner . 57

3.7.6 Vicon Tracker . 57

4 Robot Controllers 59

4.1 PID Control . 59

4.2 Linear Velocity Controller . 61

4.3 Angular Velocity Controller . 63

4.4 Results . 65

5 A Learning Strategy for Source Tracking 69

5.1 Introduction . 69

5.2 Reinforcement Learning . 70

5.2.1 Q-Learning . 72

5.3 Light-Finding Robot . 78

5.4 Simulation Results . 82

xi

Contents

5.5 Experimental Results . 87

5.5.1 Hardware . 88

5.5.2 Problems in Hardware Implementation 90

5.5.3 Results . 91

6 Conclusions and Future Work 93

A Power Distribution Board 95

B TXT-1 Source Code 100

B.1 Marhes Repositories . 100

B.2 Development Board Programming Instructions 101

B.3 Instructions for Using the TXT-1 Source Example 103

B.4 The TXT-1 ROS Driver Example . 104

References 110

xii

List of Figures

1.1 DARPA Challenge vehicles. Stanley (1.1(a)) is shown on the left,

while Boss (1.1(b)) is shown on the right. 2

1.2 An image of one of Google’s Prius autonomous test vehicles. 2

1.3 An illustration of the concept behind SARTRE. 3

2.1 The unicycle kinematic model. 10

2.2 The bicycle kinematic model. 11

2.3 The dual steered bicycle kinematic model. 14

2.4 The reachable linear and angular velocities. 16

2.5 Calculating the wheel odometry. 17

3.1 The overall architecture of the TXT-1 platform. 20

3.2 The commercial Tamiya TXT-1 4x4 R/C monster truck. 21

3.3 The TXT-1 Robot with the mounting hardware, plates and electrical

systems. 23

3.4 Wheel encoder assembly. 24

xiii

List of Figures

3.5 The Novak Super Rooster mounting location. 25

3.6 The LPC2378 development board and its used connections. 28

3.7 An example of RTOS task scheduling. 29

3.8 Images of the designed display screens. 33

3.9 The TXT-1 node’s topics and services. 36

3.10 The TXT-1 communication protocol. 43

3.11 PID set message format. 46

3.12 The TXT-1 power distribution system. 49

3.13 A plot of the battery voltage vs. time. 52

3.14 The encoder circuit. 53

3.15 The mounting locations of the IMU and GPS. 55

3.16 The data from the Microsoft Kinect and Hokuyo Laser Scanner. The

upper left corner of the RVIZ window shows the depth map from the

Kinect. The upper right corner shows the RGB image from the

Kinect. The center shows the point cloud from the Kinect in color

along with the Hokuyo laser scan data in white. 56

3.17 The mounting of the Kinect and the laser scanner. 57

4.1 PID control loop. 60

4.2 TXT-1 velocity control loop. 62

4.3 Linear velocity controller test. 65

4.4 Angular velocity controller test. 66

xiv

List of Figures

4.5 Path of robot following v = 0.5 and ω = 0.25. 67

4.6 Path of robot following v = 0.5 and ω = 0.5. 68

5.1 Reinforcement learning description. 71

5.2 Q-Learning algorithm. 73

5.3 Q-Learning flowchart. 77

5.4 The mounting of the light sensors. 79

5.5 Discrete light direction states. 80

5.6 Learning environment. 83

5.7 The sensed angular velocity boundaries. 85

5.8 Simulated robot’s path on the 10th learning trial. The path is not

the shortest to the goal, because the agent has not learned all of the

state-action pairs. 86

5.9 Simulated robot’s path on the 31st learning trial. The path is shorter

than the path in Figure 5.8 because the agent has learned all of the

state-action pairs. 87

5.10 Average learning curve after five trials. The blue plots are the five

independent trials and the bold red plot is the average of the five trials. 88

5.11 The experimental hardware setup diagram. 89

5.12 The robot and sensors. 90

5.13 The resulting path of the robot using hardware. 92

A.1 Power distribution board schematic. 96

xv

List of Figures

A.2 Power distribution board front layout. 97

A.3 Power distribution board back layout. 98

xvi

List of Tables

3.1 The LPC-2378-STK board specifications. 27

3.2 The specifications of the Apple Mac Mini. 34

3.3 The communication protocol message types and their lengths and

command bytes. 43

3.4 Example velocity message from the TXT-1 communication protocol. 47

4.1 Angular velocity gains. 64

5.1 The probabilities of taking actions with different temperatures and

Q values. 75

5.2 Chosen robot action velocities. 80

5.3 Q-Table after a learning on hardware. 91

A.1 Power distribution board parts list. 99

xvii

Chapter 1

Introduction

This chapter describes the motivation of creating a prototype for a testbed of modular

robotic platforms and testing it in a learning application. It also provides a literature

review of developed mobile robotic platforms and Q-Learning and robotics. Then

the contributions of this thesis are explained and an overview of the chapters are

given.

1.1 Motivation

In recent years, there have been great improvements in sensor technology and com-

puting. Sensors have become smaller, more accurate, and inexpensive while break-

throughs in computing technologies have offered smaller, faster, and more efficient

computers for a lower price tag.

Additionally, there have been great pushes to research intelligent vehicles. For

example, DARPA launched the Grand Challenge in 2004 [1] and the Urban Chal-

lenge [2] in 2007, competitive races in which teams built autonomous cars capable of

navigating on dirt roads and urban cities. The projects’ goal was to spur autonomous

1

Chapter 1. Introduction

(a) (b)

Figure 1.1: DARPA Challenge vehicles. Stanley (1.1(a)) is shown on the left, while
Boss (1.1(b)) is shown on the right.

vehicle technology for the military. The winning team was awarded prize money for

their research. In 2005, Stanley, from Stanford University, won the Grand Challenge.

In 2007, Boss, from Tartan Racing, won the Urban Challenge.

In 2010, Google announced it was testing autonomous Prii throughout California.

According to [3], Google has 7 test cars that have each driven 1,000 miles without

human intervention. This Google project is led by Sebastian Thrun, who led the

Figure 1.2: An image of one of Google’s Prius autonomous test vehicles.

2005 Stanford team to win the Grand Challenge. He is followed by 15 engineers

2

Chapter 1. Introduction

devoted to developing autonomous cars.

Another research initiative is the Safe Road Trains for the Environment project

(SARTRE) [4], funded by the European Commission. The idea behind this project is

to create autonomous highway convoys of personal vehicles which results in significant

safety, comfort, and environmental benefits. The lead vehicle in the convoy is a

professional driver. The vehicles autonomously following are mainly personal vehicles

that can join or leave the train at any time.

Figure 1.3: An illustration of the concept behind SARTRE.

With the recent push in intelligent ground vehicles and low-cost hardware, a

novel research platform is needed in the Marhes laboratory to help test smart car

algorithms. Therefore, this thesis focuses on the design and development of an in-

expensive mobile robotic platform prototype for the testing of autonomous vehicle

algorithms. The prototype vehicle developed in this thesis is a novel platform which

is the heart of the ground vehicle testbed in the Marhes laboratory. The Multi-

Agent, Robotics, Hybrid, and Embedded Systems (Marhes) laboratory testbed is

a heterogeneous robotic testbed incorporating both ground and aerial autonomous

vehicles. The Marhes testbed consists of the 10 TXT-1’s in which one is the pro-

totype built, 5 MobileRobots Pioneer 3-AT ground vehicles, 3 AscTec Hummingbird

quadrotors, and a Dragonflyer X-Pro quadrotor. These platforms are used in the de-

3

Chapter 1. Introduction

sign and testing of controllers, multi-robot coordination algorithms, sensor networks,

and learning algorithms.

The TXT-1 platform is used mainly in the verification of autonomous vehicle,

multi-robot coordination, and learning algorithms. The TXT-1 can be thought of as

an electric car. Therefore, algorithms used for intelligent highway and city driving,

military convoys, search and rescue, intelligent transportation, etc. can be verified

on this vehicle. Robotics and learning is another large area of research. Robots can

learn behaviors and how to interpret their environment in order to become more

autonomous. The TXT-1 prototype is used to verify a simple learning algorithm.

1.2 Literature Review

An overview of literature relating to mobile robot platforms and Q-Learning and

robotics will be provided in this section.

1.2.1 Mobile Robot Platforms

Mobile robot platforms have been developed by universities and companies around

the world. There are several companies in the robotics field. A few of these include

MobileRobotics, Dr. Robot Inc., and Kiva Systems. MobileRobotics produces the

widely used Pioneer platforms. The Pioneer 3-AT [5] is an all-wheel differential drive

robot capable of driving outdoors. It is a medium-sized platform capable of driving

0.8 m/s with a payload of 30kg and 3 batteries. The P3-AT includes encoders to

sense the vehicle’s position and velocity; however, other sensors and an on-board

computer are add-ons. The platform weighs 12kg, which is fairly heavy, and can run

for 3 hours without any additional sensors.

4

Chapter 1. Introduction

Dr. Robot Inc. produces several ground robots. The Jaguar platform [6], an

indoor/outdoor platform, is water-resistant, capable of climbing 45◦ stairs or slopes,

and able to flip over. The Jaguar has GPS, IMU, laser scanner, and cameras included

for its sensors. Since the Jaguar uses a wireless router to communicate with it, there

is no on-board computer on the platform.

Kiva Systems [7] has pioneered the use of automated material handling systems

in store warehouses. The Kiva robots are used to bring products on shelves to

packers to increase their productivity and decrease the cost of operations at large

retail warehouses. The Kiva robots can carry up to 3000 lbs. and are controlled by a

central operations server. These robots are used by the following companies to fulfill

orders: Crate & Barrel, Dillards, GAP, Old Navy, Staples, and Walgreens.

Universities create their own mobile robot platforms, because they are used as

inexpensive alternatives to buying a commercial mobile robot. The Clodbuster III

[8] is an example of a university mobile robot from the Grasp Laboratory at the

University of Pennsylvania. The Clodbuster is developed on a Tamiya Clodbuster

chassis and has an on-board Pentium III 850MHz laptop and low-level FPGA sensor

board. The Clodbuster uses an omnidirectional camera, 12 infrared sensors, and a

2-axis accelerometer to sense its position and surroundings. The platform also uses

three batteries to power the system: a laptop battery, 9.6V battery to power the

sensor board and camera, and a 7.2V battery to power the vehicle’s motors.

Several platforms are based on the Tamiya TXT-1 monster truck chassis like the

robot being described in this thesis. For example, the previous work done on the

Marhes TXT-1 testbed was completed at Oklahoma State University [9, 10]. The

first Marhes TXT-1 developed was a low-cost mobile robot platform with an on-

board laptop computer and commercial data acquisition system [9]. Later, in [10], a

team of TXT-1’s was built for the verification of multi-robot coordination navigation

controllers. This robot used a PC104 computer with a few custom microcontroller

5

Chapter 1. Introduction

boards and a CAN communication network for sensor communication.

Other universities [11, 12, 13, 14] used the TXT-1 chassis in their robotic testbeds.

In [11], the TXT-1 chassis is used to create an autonomous mobile robot. A Mini-ITX

computer is used with Matlab Real-Time Workshop to run the velocity controller al-

gorithm. Then a hybrid navigation controller is developed which combines potential

field and obstacle avoidance controllers for waypoint following. In [12], the TXT-1

chassis is used in conjunction with Matlab and a miniPC to implement a Kalman

Filter for tracking the robot’s position and orientation. Another TXT-1 platform

uses the robots to verify multi-robot coordination algorithms in [13]. In this work,

the TXT-1 chassis is used with a 700 MHz computer and 20 MHz microcontroller

to control the robot. For this platform, the batteries are stored inside the tires to

conserve space and lower the vehicle’s center of gravity. The robot uses encoders

and vision sensors for navigation and position tracking. In [14], the TXT-1 chassis

is used to implement the simultaneous localization and mapping (SLAM) algorithm

to determine the trajectory of the robot and map the local environment. The imple-

mented SLAM algorithm uses a stereo camera to obtain the localization and mapping

estimates.

1.2.2 Q-Learning and Robotics

Q-Learning has been used in several robot hardware experiments on a wide variety

of platforms, including RoboCub players [15, 16], Lego Mindstorms NXT [17], and a

self-steering automobile [18]. As is commonly reported, implementation on physical

hardware posed some significant challenges [17, 19]. Even navigation and tracking

tasks were overwhelmingly popular among robot Q-Learners (as opposed to more

complex tasks, such as grasping and manipulation), the robots and their physical

environments provided unavoidably noisy learning problems. Such problems can, in

6

Chapter 1. Introduction

principle, be solved with Q-Learning, but in practice, the learning time required can

exceed the mean time between failure for most robot actuators.

One way the problems were kept tractable was to limit the number of sensory

channels (inputs) and actions (outputs) available to the agent. In some cases, these

were kept coarsely discretized, to minimize the number of states that must be visited

[15, 17, 20]. Where inputs and outputs were continuous, function approximators

were used [16, 18, 19]. These were multi-layer perceptrons that extrapolated values

from previously visited state-action combinations to cover the entire state-action

space. Another effective strategy was to pair the Q-Learner with either a higher

level mediating control law [15] or with lower level sensory and action primitives and

heuristics [17, 20]. Using these strategies, these Q-Learners were able to achieve a

broad set of learning objectives across a rich sampling of available robot platforms,

illustrating the generality of Q-Learning in robotic applications.

1.3 Contributions

This work presents a novel robotic platform with many advantages over traditional

commercial robotic vehicles. The robot is designed with flexibility in mind, which

allows different configurations of sensors to be used for different applications. The

design also implements a hierarchical architecture that allows components such as

the sensors and the on-board computer to be replaced or upgraded without any

significant development time. Only open-source or freeware software is used in the

creation of the software of the robot. COTS (commercial off the shelf) parts are used

when possible. This reduces the cost and the ease of finding parts for the vehicle.

It also has a significant amount of processing power located on the vehicle which

provides truly autonomous behavior as opposed to robots controlled by a central

computer. The designed prototype is a novel vehicle designed to be lightweight and

7

Chapter 1. Introduction

low-cost in comparison to commercially available vehicles, while being able to test

autonomous navigation algorithms. We implemented the Q-Learning algorithm on

the TXT-1 prototype in a source navigation problem to verify the platform’s use for

testing algorithms.

1.4 Thesis Outline

The organization of this thesis is as follows: Chapter 2 discusses the models used, the

velocity limits, and the odometry calculations. The parts and design of the TXT-1

robotic platform are explained in detail in Chapter 3. The linear and angular velocity

controllers and their responses are introduced in Chapter 4. Chapter 5 describes Q-

Learning and the results of the completed experiment. Concluding remarks of this

thesis and any resulting work are described in Chapter 6.

8

Chapter 2

Kinematic Modeling

In this chapter, the kinematics of the mobile robot are derived. Two different models

are analyzed: the unicycle and the bicycle models. Then the validity of using the

unicycle model for the bicycle model is shown. The odometry calculations and the

velocity limits for a bicycle vehicle with steering are also shown. In this study, we

assume that the world is perfect and the vehicle does not suffer from wheel slippage

and tire deformations.

2.1 Unicycle Kinematic Model

The unicycle model is a simple nonholonomic model that represents the vehicle as

a rolling disk as shown in Figure 2.1. Assuming that there is no wheel slip and tire

deformation, the nonholonomic constraint,

ẋ sin θ − ẏ cos θ = 0, (2.1)

holds, where (x, y) are the Cartesian coordinates of the local frame of the robot and

θ ∈ [−π, π] is the orientation of the vehicle to the positive x-axis of the initial local

9

Chapter 2. Kinematic Modeling

Figure 2.1: The unicycle kinematic model.

frame of the robot. The x-axis of the vehicle frame is orthogonal to the wheel axle,

which is the y-axis of the vehicle frame. The positive x-axis points toward the front

of the vehicle while the positive y-axis points to the vehicle’s left side. Following the

right-hand rule, positive θ is in the counterclockwise direction. The nonholonomic

constraint limits the vehicle from motion along its y-axis. The unicycle kinematic

model is

ẋ

ẏ

θ̇

=

cos θ 0

sin θ 0

0 1

v

ω

 , (2.2)

where v is the linear velocity of the vehicle along its x-axis and ω is the angular

velocity of the vehicle around its instantaneous center of curvature (ICC). The ICC

is the center point of the circle being transcribed by the vehicle at a certain time.

In this model, the two wheels on the rear axle can be modeled as one wheel in the

10

Chapter 2. Kinematic Modeling

midpoint of the axle, making the vehicle a unicycle.

2.2 Bicycle Kinematic Model

The car-like vehicle is shown in Figure 2.2. In this model, the vehicle has a fixed

rear axle with wheels in the front for steering. Like the unicycle model, the front

and rear sets of wheels can be modeled as single wheels positioned on the midpoint

of their respective axes, making the vehicle model a bicycle. In this model, (x, y)

are the Cartesian coordinates of the midpoint of the rear axle, θ is the orientation of

the vehicle to the x-axis, and φ is the steering angle of the front wheels to the vehicle

frame’s x-axis. The nonholonomic constraints for the front and rear wheels are

Figure 2.2: The bicycle kinematic model.

11

Chapter 2. Kinematic Modeling

ẋf sin(θ + φ)− ẏf cos(θ + φ) = 0, (2.3)

ẋ sin θ − ẏ cos θ = 0, (2.4)

where (xf , yf) are the Cartesian coordinates of the midpoint of the front axle. The

midpoint of the front axle is found using

xf = x+ L cos θ,

yf = y + L sin θ, (2.5)

where L is the length between the front and rear axles. Then the velocity of the

front axle midpoint is found by taking the derivatives of (2.5) to obtain

ẋf = ẋ− Lθ̇ sin θ,

ẏf = ẏ + Lθ̇ cos θ. (2.6)

Then θ̇ can be solved by first substituting (2.6) into (2.3) to obtain

(ẋ− Lθ̇ sin θ) sin(θ + φ)− (ẏ + Lθ̇ cos θ) cos(θ + φ) = 0, (2.7)

which reduces to

ẋ sin(θ + φ)− ẏ sin(θ + φ)− θ̇L cos θ = 0. (2.8)

Next θ̇ is solved by using the sum-difference trigonometry identities and (2.4) to

obtain

θ̇ =
v tanφ

L
, (2.9)

where the linear velocity is

v = ẋ cos θ + ẏ sin θ. (2.10)

The resulting bicycle kinematic model is

ẋ

ẏ

θ̇

φ̇

=

cos θ 0

sin θ 0

tanφ
L

0

0 1

v

u

 , (2.11)

12

Chapter 2. Kinematic Modeling

where u is the steering velocity input. The bicycle model has a singularity at φ =

±π
2
which occurs when the steering wheels of the vehicle are perpendicular to the

direction of the linear velocity. This does not usually occur because vehicles are not

designed to operate this way. In this case, the vehicle is not able to move because

the front wheels are orthogonal to the direction of the force of the rear wheels. This

restriction limits the vehicle from turning in place while having a linear velocity of

0. The inputs to the bicycle model are the linear and steering velocities.

2.2.1 Dual Steering Bicycle Model

A vehicle can have steering on both the front and the rear axles, which provides a

smaller turning radius as compared to the normal bicycle model. With dual steering,

the vehicle can reach the desired orientation quicker than with single steering. The

addition of rear steering does not change the kinematic model from the single-steered

bicycle model except by doubling the steering angle. In this model, it is assumed

that the steering angles are equal in angle and opposite in direction to one another.

The model is shown in Figure 2.3 and the kinematic model is given by

ẋ

ẏ

θ̇

φ̇

=

cos θ 0

sin θ 0

2 tanφ
L

0

0 1

v

u

 . (2.12)

2.2.2 Modeling the Bicycle Model as a Unicycle

In this work, a car-like vehicle with dual steering is developed, therefore the dual

steering bicycle model should be used. However, since the steering velocity input, φ̇,

of the bicycle model is difficult to control, it would be more practical to control the

13

Chapter 2. Kinematic Modeling

Figure 2.3: The dual steered bicycle kinematic model.

angular velocity, ω, of the vehicle. Therefore, the bicycle model is reduced to the

unicycle model. Instead of controlling the steering velocity, φ̇, the angular velocity

is controlled with

ω = 2
tanφ

L
v, (2.13)

which holds for v 6= 0.

2.2.3 Maximum Angular Velocity

Since there are limitations in the maximum steering angle of the car-like vehicle, the

maximum reachable angular velocity, ωmax, is discussed. In real-life applications, the

maximum angular velocity poses limits on the turning radius of the vehicle, which

affects its path planning. For example, to parallel park, it is necessary that a car-

14

Chapter 2. Kinematic Modeling

like vehicle plans a series of forward and backward maneuvers in order to achieve

the desired final position of the vehicle. This is due to its minimum turning radius.

Alternatively, a differential drive vehicle, which has a unicycle model and is capable

of a zero turning radius, does not have the limitations of a car-like vehicle. Using the

maximum steering angle allowed by the steering servos in the prototype vehicle, the

minimum radius of curvature was found to be Rmin = 0.56 meters. The maximum

angular velocity is limited by

−ωmax ≤ ω ≤ ωmax, (2.14)

where positive ω results in a counterclockwise rotation. The maximum angular

velocity for a constant linear velocity, v, can then be calculated using

ωmax =
v

Rmin
. (2.15)

Then by substituting Equation 2.15 into Equation 2.14, the angular velocity limits

of the vehicle are obtained by

−
v

Rmin

≤ ω ≤
v

Rmin

. (2.16)

From Equation 2.16, the maximum angular velocity limits are obtained from the

minimum radius of curvature. Figure 2.4 shows the limits of the angular velocities

with their corresponding linear velocities.

2.3 Odometry Calculations

In this section, the wheel odometry of the vehicle is derived, which is how the ve-

hicle calculates its position and velocity from knowing the rotational velocities and

circumference of its wheels. Figure 2.5 shows a vehicle with the important variables

labeled to derive the odometry calculations. It can be seen that the linear velocity

15

Chapter 2. Kinematic Modeling

-6

-4

-2

0

2

4

6

-3 -2 -1 0 1 2 3

Figure 2.4: The reachable linear and angular velocities.

of the vehicle, v, can be calculated as follows

v =
(rL + W

2
)θ

∆t
, (2.17)

where W is the width between the wheels,

W = rR − rL, (2.18)

∆t is the change in time between measurements, and rR and rL are the radii to the

ICC of the right and left wheels. Using (2.18), v becomes

v =
rL + rR

2

θ

∆t
. (2.19)

It can also be seen that the rotational velocities of the right and left wheels, vR and

vL, are

vR =
sR

∆t
=

rRθ

∆t
,

vL =
sL

∆t
=

rLθ

∆t
, (2.20)

16

Chapter 2. Kinematic Modeling

Figure 2.5: Calculating the wheel odometry.

where sR and sL are the distances traveled by the right and left wheels during the

sampling interval, ∆t. By substituting these into (2.19), the following linear velocity

equation is obtained

v =
vR + vL

2
. (2.21)

The angular velocity, ω, is calculated by observing that ω = θ
∆t
. Then this is

substituted into (2.20) to obtain

vR = rRω,

vL = rLω. (2.22)

These equations are then subtracted from each other to get

vR − vL = (rR − rL)ω. (2.23)

17

Chapter 2. Kinematic Modeling

Next (2.18) is substituted to obtain the final odometry equation for the angular

velocity,

ω =
vR − vL

W
. (2.24)

Equations (2.21) and (2.24) calculate the velocities of the vehicle from the left and

right wheel speeds. By using the wheel speeds of the vehicle the robot can calculate

its linear and angular velocities for the vehicle’s velocity controller. Also, the vehicle

can use its kinematic model to calculate its position and orientation in its local

frame.

18

Chapter 3

TXT-1 Platform Description

3.1 System Overview

This chapter describes the system’s hardware and software components. The TXT-1

prototype is part of a multi-vehicle testbed, of which there are 10 of these robots. The

prototype is a novel robotic testbed that uses existing hardware from the previous

designs [9, 10]. The existing platform, new enhancements, and the hardware and

software are explained in detail in the following sections. Figure 3.1 shows the

overall architecture of the system. As a part of this design, each robot has its own

lower level controller to control velocities and other low-level functions. The lower

level controller communicates with an on-board computer which handles high-level

control tasks and sensor data processing. This design also leverages the use of a

single battery to simplify maintenance, so a power distribution system is designed

and implemented. The robotic development framework encourages code reuse and

the use of simulation environments to test algorithms before implementing them in

hardware. The newly designed, low-cost mobile robot is designed to help in the study

and research of mobile robotics, sensor networks, cooperative control, cyber-physical

19

Chapter 3. TXT-1 Platform Description

Figure 3.1: The overall architecture of the TXT-1 platform.

systems, learning algorithms and many other application areas.

3.2 Vehicle

To reduce the cost and the amount of custom parts, a commercial vehicle chassis

is used. The chosen chassis is the Tamiya TXT-1 4x4 1:10 scaled remote control

monster truck [21]. The TXT-1 is shown in Figure 3.2.

20

Chapter 3. TXT-1 Platform Description

Figure 3.2: The commercial Tamiya TXT-1 4x4 R/C monster truck.

3.2.1 Specifications

Some of the specifications of the TXT-1 platform are discussed in this section. The

TXT-1 vehicle has two motors with drive shafts that run in parallel to produce

more torque at the wheels. It also has front and rear steering servos to decrease the

turning radius of the platform. The vehicle has a cantilever suspension which allows

the vehicle to perform well outdoors and drive over rough terrain. The TXT-1 is also

small enough, with dimensions of 510mm long by 385mm wide by 297mm tall, to be

used in an indoor laboratory environment. Since this vehicle is a car-like vehicle, the

motor and steering angle inputs are controlled.

3.2.2 Modifications

In order to transform the chassis into a robot designed for scientific experiments,

modifications are made to the chassis. First, the truck shell is removed and a plate is

fabricated to attach the sensors, on-board computer, and other necessary devices to

21

Chapter 3. TXT-1 Platform Description

the chassis. This plate was made in the previous version of the robot. It is a milled

aluminum plate that is designed to be lightweight and flexible enough to secure a

variety of sensors. The plate is 11 inches wide, 18 inches long, and weighs about 1.3

lbs. Threaded 4-40 screw holes are added to the plate to accommodate the current

sensors and computer brackets.

The on-board computer is attached to the plate described above. In order to do

this, a smaller plate was designed to secure the computer to the robot. The plate

sandwiches the computer between it and the larger plate on the chassis, and keeps

the computer from moving vertically. Then, plastic retaining fixtures are made on a

3-D printer to secure the computer from moving on the horizontal plane of the large

plate. The plates and retaining fixtures are lined with rubber strips to absorb some

vibrations and protect the computer from marring. This plate is also used to secure

the lower level control board, power distribution boards, cameras, and the GPS and

IMU mounting pole.

An additional Lexan plate is created to mount the PCBs used on the robot. The

PCBs are mounted to the plate with plastic standoffs. The plate is mounted to the

small plate for the computer. The camera is mounted to the front of the small plate

with a custom fixture. The Microsoft Kinect can be mounted in place of the camera

with a modified commercial mount. The PDP Kinect Sensor Mounting Clip is used

to mount the Kinect. To modify it, first it is disassembled and the back arm is taken

off and discarded. Then through holes are drilled in the mount so it can be secured

to the small plate with screws. The GPS and IMU are mounted on a fixture on a

pole, which is attached to the small plate above the robot, to protect the sensors

from noise. The laser range finder is mounted to the large plate with a bracket

plate. The inverter and an extra battery are mounted to the bottom of the large

plate with metal straps lined with rubber strips. An additional battery is stored

in the TXT-1’s original battery compartment. The TXT-1 robot, with its custom

22

Chapter 3. TXT-1 Platform Description

Figure 3.3: The TXT-1 Robot with the mounting hardware, plates and electrical
systems.

machined mounting brackets, plates, and electrical hardware, is shown in Figure 3.3.

The wheel well of the TXT-1 requires modifications in order to accommodate

the wheel encoders which can sense the wheel’s speed and direction. The optical

encoders are mounted in the front left and right wheel wells, which when used to-

gether, the linear and angular velocities can be calculated for odometry and the

velocity controllers. Installation of the wheel encoders requires modifications to the

wheel wells. These modifications are done on the previous version of the robot and

are listed below. First, mounting holes are drilled into the back of the wheel well and

standoffs are secured so the optical encoder PCB can be mounted inside the wheel

23

Chapter 3. TXT-1 Platform Description

well. Then the inside part of the wheel well is machined to reduce its length by 0.5

inches. Next the PCB is mounted inside the wheel well on the installed standoffs

and the patterned disc is fastened with a set screw on the wheel axle.

On the previous version of the robot, the optical encoders were poorly connected

to the cable, resulting in unreliable electrical connections. The encoders come with

a PCB connector and a connectorized cable from the manufacturer. However, these

were modified in the previous version to allow the encoder to fit in the wheel well.

The connector on the cable was cut off and the cable’s wires were soldered directly

to the PCB connector and routed through a hole in the back of the wheel well

(a) (b)

Figure 3.4: Images of the wheel encoder assembly and modifications done to the wheel
well. 3.4(a) shows the modifications done previously. 3.4(b) shows the modifications
done to fix the unreliability.

resulting in unreliable, unsecure connections to the encoders. Therefore, new cables

are purchased and new connectors are soldered to the PCB’s. The PCB with the

connector does not fit in the wheel well, therefore, a notch is cut in the side of the

wheel well to allow the connector to fit. Then the cable is routed tightly against the

wheel well and along the chassis frame. The use of the connector greatly improves

the reliability and ease of maintenance of the encoders. The wheel well modifications

for the encoders are shown in Figure 3.4.

24

Chapter 3. TXT-1 Platform Description

The electronic speed control (ESC) is reused from the previous version of the

robot. The ESC used is the Novak Super Rooster [22], which is shown mounted on

the TXT-1 in Figure 3.5. The ESC controls the speed and direction of the TXT-

1’s motors from a servo signal. The servo signal is a 50 Hz pulse-width modulated

(PWM) signal with an adjustable duty on-time of 1-2 ms. At 1 ms, the motors move

the robot at full speed in reverse. At 1.5 ms, the motors are stopped, and at 2 ms

the motors move the vehicle forward at full speed.

Figure 3.5: The Novak Super Rooster mounting location.

3.3 Low-Level Control Board

On a robot, there are many low-level tasks that need to be accomplished in order

for the robot to operate. These tasks usually require some hardware that does not

come on normal computers. Some of these tasks include the following: a) reading

the encoders and calculating the robot’s linear and angular velocities, b) control-

25

Chapter 3. TXT-1 Platform Description

ling the steering and motor servo outputs, c) performing the PID velocity control

loop, d) tracking the robot position, e) running battery measurements to calculate

their remaining life, f) warning the user when the batteries are low or shutting down

when unsafe, and g) communicating with a high-level controller. These tasks can

be handled by connecting a few USB devices to the on-board computer. For exam-

ple, Phidgets sells USB to encoder, analog input, servo, and digital output devices.

However, the total price of these components becomes high in comparison to using

a microcontroller in place of these devices. Some other benefits to using a microcon-

troller are its ability to do the following: a) flexibly choose inputs and outputs, b) run

without the need of an on-board computer, and c) offload some of the computing

power needed to run the necessary tasks. Because of these benefits, a microcontroller

is chosen instead of using the USB devices. In order to save cost, maintenance, and re-

placement cost, an off-the-shelf commercial development board is used. This section

describes the chosen low-level microcontroller development board, the programming

environment, and the real-time operating system used.

3.3.1 Specifications

Since the low-level controller requires the tasks listed above, the selected microcon-

troller needs to have some standard peripherals. These include a UART for commu-

nication, PWM controller for the servo outputs, analog to digital converter (ADC)

inputs for the battery measurements, and digital outputs for warning indicators and

the power control. In order to meet these requirements and be expandable in the fu-

ture, the Olimex LPC-2378-STK development board was chosen [23]. The LPC2378

microcontroller is an ARM 16/32 bit microcontroller with an ARM7TDMI-STMcore.

The specifications of this development board and microcontroller are listed in Table

3.1. Figure 3.6 shows the lower level control board and the connections that are used

for sensors and the on-board computer.

26

Chapter 3. TXT-1 Platform Description

Specification
72MHz Maximum Clock
512 kBytes Program Memory
16 kBytes RAM Memory
Real Time Clock
4 10-Bit ADCs
4 UARTs with 2 RS-232 Ports
2 CAN Ports
Ethernet
USB
3 I2C
SPI
6 PWM Outputs
SD Card Interface
128x128 Pixel TFT LCD Display
User Control Buttons and 4-Way Joystick
5V Tolerant Inputs
144 Pin Package with 104 General Purpose IO

Table 3.1: The LPC-2378-STK board specifications.

3.3.2 Development System

Another way to reduce the price of the TXT-1 platform is to use open-source code

development tools. The LPC2378 board is programmed over a JTAG interface, so an

Olimex ARM-USB-OCD JTAG interface was purchased. This interface allows the

microcontroller to be programmed and debugged during development. The OCD

(On Chip Debugger) interface can use OpenOCD which is an open-source on-chip

debugger and programming solution for ARM7, ARM9, and Cortex-M3 targets.

OpenOCD uses GDB, the standard open-source GNU debugger, in order to debug

and step through the code. To compile the low-level code, Codesourcery G++ Lite

for ARM EABI version 2010q1-188 is used [24]. This is a free ARM GNU compiler

which provides commands, make and GDB, for ARM microcontroller targets. Since

GDB is a command line debugger, GNU’s DDD (Data Display Debugger) is used

27

Chapter 3. TXT-1 Platform Description

- PWM Outputs for Motor and Servo Control

- Timer Counter Inputs for Encoder Counting

- ADC Inputs for Battery Measurements

- ON/OFF Control for Power Distribution Board

- LED and Buzzer Outputs on Power Distribution Board

Buttons for LCD

Control

LCD User

Interface

Potentiometer

for LCD Backlight

RS232 for High Level

Communication

JTAG

Programmer

Figure 3.6: The LPC2378 development board and its used connections.

to graphically debug source code. Because OpenOCD and DDD are started over

the command line with many additional arguments, scripts are used to make the

programming and debugging processes quicker and more simplified. Using all of

these tools allowed a free low-level development system to be created.

3.3.3 FreeRTOS

To simplify the design of the lower level controller code and provide robust real-

time operation, a real-time operating system, or RTOS, is used. Again free, open-

source real-time operating systems were searched for and FreeRTOS [25] was chosen.

FreeRTOS is an open-source RTOS that has a small memory footprint and ports to

many different architectures of microcontrollers.

The RTOS is beneficial to use for the controller board because hard real-time

28

Chapter 3. TXT-1 Platform Description

requirements can be met. Real-time operating systems are made up of a collection

of independent threads. However, the microcontroller can only execute one task, or

thread, at a time. Therefore, the RTOS also includes a task scheduler that switches

between threads based on priority. When programming with an RTOS, tasks are

created in an infinite while loop and are assigned a priority. The RTOS then uses a

scheduler with a timer interrupt to switch between tasks based on priority and meet-

ing hard real-time deadlines. Figure 3.7 shows how the scheduler switches between

tasks. In the figure, there is the idle task, Task 1 and Task 2. Tasks 1 and 2 have

Idle Task

Task 1

Task 2

Time (s)t1 t2 t3 tn

Figure 3.7: An example of RTOS task scheduling.

the same priority and have a higher priority than the idle task. Tasks are usually

periodic, so at time t1, the time has come to service Task 1 so the scheduler switches

to that task. Then when Task 1 completes its function, it goes into a blocking mode

where it releases its time slot. Then the scheduler switches to Task 2 because it was

also supposed to occur at time t1 also. Then when Task 2 is finished at time t3 and

there are no other tasks to service, the code switches to the idle task until time tn,

when the process repeats itself. This shows an example of RTOS scheduling. The

RTOS also provides queues, mutexes, and semaphores to manage the resources of

the microcontroller and avoid conflicts with accessing memory locations that have

been modified.

The low-level controller code consists of the FreeRTOS, driver, and task files. The

29

Chapter 3. TXT-1 Platform Description

FreeRTOS files include source files for the scheduler, task creation, queue and mem-

ory management, and semaphore/mutex creation. On the LPC2378 development

board, the UART, ADC, LCD, PWM, and timer counters are used. Driver files were

produced for these peripherals. The bulk of the code for the low-level controller is

in the tasks. For the task scheduler, 5 task priorities were used, 0 to 4, with 4 being

the highest priority. A functional description and the priority and frequency of each

task is given below.

Controller Task The controller task calculates the PID control loop motor and

steering outputs for the linear and angular velocity controllers, respectively. It

has a priority of 4 and hard real-time requirements. It also runs at 50 Hz. The

controller design and implementation is discussed in Chapter 4.

Encoder Task The encoder task calculates the speeds and directions of the front

right and left wheels using the encoders’ quadrature signal counts from the

timer counter inputs. The linear and angular velocities are calculated from the

wheel speeds and then used in the velocity controllers. This task has a priority

of 3 and runs at 50 Hz. The timer counter is used to count both rising and

falling edges of a modified quadrature signal, which is described in detail in

Section 3.7.1.

Serial Processing Task In order to command the robot to move and perform other

functions, an RS-232 communication link is used. With the link, the low-level

and high-level controllers can communicate with each other. This task parses

the messages sent by the high-level computer and provides functions to send

data to the high-level computer. The task runs continuously at the 4th priority

level.

Mode Task The mode task is used to switch between a couple of states. With

the TXT-1, there are two sources of odometry. In this section, they will be

30

Chapter 3. TXT-1 Platform Description

described as the encoder odometry and the combined odometry. A Kalman

filter can be computed on the high-level computer and then sent to the lower

level controller over the serial interface to be used in the PID controller calcu-

lations. This task determines if an adequate amount of Kalman filter messages

have been received in a certain amount of time. If the message count is high

enough, then the Kalman filter velocities are used in the velocity controllers. If

not, then the wheel encoder velocities are used instead. The task also checks if

an adequate amount of commanded velocity messages are received in a certain

amount of time. If so, then the velocity controller is used. However, if an ade-

quate amount of the velocity messages are not received, then the controller is

turned off and the robot is immobilized until communication is restored. The

ROS driver on the computer is responsible for sending the velocity messages

periodically. This is a safety feature that stops the robot if communication has

been lost between the high and low level controllers. This task has a priority

of 2 and runs at 1 Hz.

Battery Task Because the robot is powered from batteries, the batteries need to

be monitored to detect their state of charge. Also, some applications need

to know the remaining battery life for energy critical operations. This task

measures the battery voltages, calculates the estimated battery life and sends

the information to the high-level computer. This task runs at 1Hz and has a

priority of 1.

Display Task The LPC2378 board has a 128x128 pixel LCD display that is used

as an operator interface for communicating the robot state and debugging in-

formation to the user. This helps the user to debug the lower level controller if

an error were to occur. Four LCD display screens are designed to infer infor-

mation to the user. These screens are shown in Figures 3.8(a), 3.8(b), 3.8(c),

and 3.8(d). Figure 3.8(a) shows the TXT1 Status display. This display shows

31

Chapter 3. TXT-1 Platform Description

the status of the two modes, the battery voltages and states, the commanded

velocities, and the current gains for the linear and angular velocity controllers.

Figure 3.8(b) shows the TXT1 PWM display. The PWM values are used to

control the main motor and servos. This is helpful in debugging the controllers.

PWM6 is used to control the brightness of LCD screen. The on-time of PWM6

is calculated from the analog voltage read from the board’s potentiometer. The

PWM mode can be either controller or manual. Controller mode is when the

PID controller controls the PWM values. Manual mode is when the PID con-

troller is bypassed and the PWM values are controlled with PWM messages

over the serial link. The modes are switched by pressing the joystick button.

The manual mode is useful in determining the PWM limits or when a con-

troller is being developed on the higher level controller. Figure 3.8(c) shows

the values of the wheel encoders and calculated velocities. This display is used

to test the functionality of the encoders. Figure 3.8(d) shows a list of all the

gains that were loaded into the lower level controller. The up/down joystick

buttons are used to scroll up and down the screen to see all the values. The

display task runs every 100 ms at a priority of 2 because it has soft real-time

requirements.

Button Task The button task is used to get the change in state of the user buttons.

The state is changed on the button press. The buttons are used to switch

between display screens and switch the PWM outputs from being operated by

the controller or by manual messages sent from the high-level computer. The

manual mode is used to determine the limits of the PWM outputs. The button

tasks runs at a priority of 1 at 10 Hz.

All of the tasks described above work together to make a functioning and safe mobile

robot. The tasks make the system modular and the RTOS ensures a robust real-time

low-level robot controller.

32

Chapter 3. TXT-1 Platform Description

(a) (b)

(c) (d)

Figure 3.8: Images of the designed display screens.

3.4 On-board Computer System

In order for the TXT-1 to be an autonomous robot, it must to be able to process

a large amount of data, interpret the data, and make decisions based on the data.

These tasks require more processing power and resources than the low-level controller

can provide. Therefore, an on-board computer system is chosen to handle these

tasks. Additionally, a standard and widely used development environment is needed

to make programming robot applications and experiments less time consuming and

tedious. Consequently, an open-source robotic operating system is implemented on

33

Chapter 3. TXT-1 Platform Description

the on-board computer system. The on-board computer and the robotic development

environment are described in the next sections.

3.4.1 Specifications

Some of the requirements of the on-board computer are as follows: a) It needs to have

a fast processor and enough memory to handle processing the sensor data and make

the appropriate decisions. b) The computer must communicate with the low-level

controller. c) It must be small enough to be mounted on the robot, and light enough

to not considerably affect the dynamics of the robot. d) In order to communicate

with other computers and robots, it should have a standard wireless connection.

e) Because the robot was designed to use only one main battery, the on-board com-

puter should not have a battery. f) The computer should be reasonably priced for

its capabilities. These requirements were taken into account when searching for a

on-board computer and an Apple Mac Mini was chosen [26]. The specifications of

the Mac Mini are shown in Table 3.2. These specifications fulfill the requirements

Specification Value
Processor 2.4 GHz Intel Core 2 Duo
RAM 2 GB DDR3 SDRAM
Hard Drive 320 GB
Networking 802.11n, Bluetooth 2.1, 1000BASE-T Ethernet
Graphics Card NVIDIA GeForce 320M
Peripheral Connections 1x Firewire 800, 4x USB 2.0, SD Card, Audio
Size 7.7 x 7.7 x 1.4 inches (w x l x h)
Weight 3 pounds
Voltage 120 VAC
Max Power 85W
Price $699

Table 3.2: The specifications of the Apple Mac Mini.

stated above. The Mac Mini has a suitable amount of processing power, is very

34

Chapter 3. TXT-1 Platform Description

small and lightweight, has suitable communication capabilities, and is powered with

an external power source.

3.4.2 ROS – The Robot Operating System

There are many libraries and operating systems available for robotics research in

order to speed up and simplify development. Some of the robotic libraries include

Player, Pyro, RoboMind.net, Microsoft’s Robotics Developer Studio, and ROS. The

requirements for the robotics development environment include that it is free, has

continuous updates and improvements, has a community-based code database, stan-

dardization of sensor messages, and the ability to run multiple processes on multiple

computers. ROS was chosen because it meets all of these requirements.

ROS, the Robot Operating System, is developed by Willow Garage [27]. ROS is

an open-source, meta-operating system that provides services to make development

of robotic applications easier. It provides device drivers, standard data messages,

package management, and message passing between processes. ROS provides the

tools and libraries for building, obtaining, writing, and running code across multiple

computers. The ROS runtime graph is a peer-to-peer network of processes that are

loosely coupled using the ROS communication infrastructure.

ROS provides the ability to send data between processes using three different

methods. ROS can be used to send asynchronous streaming messages between pro-

cesses called topics. With this message type, one node or process publishes data to

a topic, and one to many nodes subscribe to the topic. The second message format

synchronously passes messages using a service. With this method, a node sends a re-

quest message to another node which in turn sends a reply message to the requesting

node. The last method uses a parameter server to store data or parameters that all

nodes can use. Using message passing between processes allows robotic applications

35

Chapter 3. TXT-1 Platform Description

to be developed that are faster, because they can run using multiple processes and

not just one while loop.

3.4.3 TXT-1 ROS Driver

For the TXT-1 robot, a ROS driver was created in order for robotic applications to

communicate with the low-level control board. The ROS driver has its own topics,

services, and parameters that user code can access and modify in order to control

the robot. The driver acts as a ROS interface to the lower level controller which

encapsulates the communication protocol described in the next section. The topics

are shown in Figure 3.9 as square boxes and the TXT-1 driver node is shown as an

oval. The services are shown to the right.

Figure 3.9: The TXT-1 node’s topics and services.

The TXT-1 node subscribes to the commanded velocity, combined odometry, and

PWM messages. The commanded velocity message is used to send velocities for the

lower level controller to follow. A geometry msgs/Twist message is used with the

36

Chapter 3. TXT-1 Platform Description

cmd vel topic name because this is the standard ROS message used for commanding

velocities. The Twist message is a part of the geometry msgs package and consists

of two 3-D vectors as shown below:

Vector3 linear

float64 x

float64 y

float64 z

Vector3 angular

float64 x

float64 y

float64 z.

For the cmd vel message, only the linear.x and angular.z values are used to

control the linear and angular velocities, which are in m/s and rad/s.

The combined odometry message is used as an alternative to using the wheel

encoders to sense the velocity. The combined odometry measurements fused from

sources like the encoders, IMU, GPS, and visual odometry can be used as the mea-

surements for the PID controllers, which allow algorithms to be developed for testing

sensor failures. The combined odometry uses the nav msgs/Odometry message with

the odom comb topic name. The Odometry message is in the nav msgs package and

consists of the following:

Header header

uint32 seq

time stamp

string frame_id

string child_frame_id

geometry_msgs/PoseWithCovariance pose

37

Chapter 3. TXT-1 Platform Description

geometry_msgs/Pose pose

geometry_msgs/Point position

float64 x

float64 y

float64 z

geometry_msgs/Quaternion orientation

float64 x

float64 y

float64 z

float64 w

float64[36] covariance

geometry_msgs/TwistWithCovariance twist

geometry_msgs/Twist twist

geometry_msgs/Vector3 linear

float64 x

float64 y

float64 z

geometry_msgs/Vector3 angular

float64 x

float64 y

float64 z

float64[36] covariance.

The Odometry message consists of a timestamp, position and orientation with a

covariance and the Twist message with a covariance. Only the Twist message of the

Odometry message is used for the combined odometry.

In order to control the two extra PWM signals on the low-level controller, the

PWM message is used. This is a custom message within the txt driver package called

38

Chapter 3. TXT-1 Platform Description

Pwm. The message format is as follows

int32 pwm4

int32 pwm5

where pwm4 and pwm5 are the PWM outputs of channels 4 and 5. Their values have

a range of [−24000, 24000] which represents a 1-2 ms on-time of the PWM signal.

This message can be used to control up to 2 extra servos like those on a pan-tilt

camera mount.

The TXT-1 ROS driver also publishes the battery status and the wheel encoder

odometry from the low-level controller board. The battery status message is a custom

message of type txt driver/Battery and has a topic of battery. The message format

is

Header header

uint32 seq

time stamp

string frame_id

float64 batt1

float64 batt2

duration expected_time

where batt1 and batt2 are the voltages of battery 1 and 2. These batteries are

diode OR’ed together on the power distribution board so the individual voltages

of the batteries can be measured. The expected_time is the time left until the

battery runs out, which uses the ros::duration data type. The driver uses the

battery life plot in Figure 3.13 to determine the remaining operating time left on

the battery. The expected_time variable calculation does not include the effects

of heat, number of discharges/recharges, or other significant variables that have an

39

Chapter 3. TXT-1 Platform Description

effect on the remaining capacity of the battery. The wheel encoder odometry is

published using the nav msgs/Odometry message shown above on the odom topic.

This message provides the calculated odometry data from the lower level controller

in the form of a position vector, orientation quaternion, linear velocity vector, and

angular velocity vector. The variable, θ, can be extracted from the quaternion using

the static function tf::getYaw(const geometry_msgs::Quaternion & msg_q).

The parameters used on the parameter server are the port, and linear and angular

velocity PID gains. The port parameter specifies the serial port that the TXT-1

driver should communicate to the low-level control board. The linear and angular

gains are array parameters corresponding to gains that the TXT-1 should send the

controller in the PID load service. The linear pid parameter is an array of 3 floats,

[proportional, integral, derivative],

which are the PID gains of the linear velocity controller. The angular pid parameter

is another array of floats; however, it has the gains for a gain scheduling angular

velocity controller. The array is

[..., max linear velocity, proportional, integral, derivative, ...]

where the maximum linear velocity is the limit for this set of PID gains. There can

be up to 14 sets of gain values for this array making the maximum array size 56.

The gain sets should be ordered by the maximum linear velocity in increasing order.

The services of the driver include PID load, shutdown, PWM test. and switched

power. All of these services use custom messages. The PID load service sends the

PID gain table parameters to the low-level controller. The PID gain table needs to

be loaded first in order to use this service. On the TXT-1 start up, this service is

automatically called in order to load the gains onto the lower level controller. To

40

Chapter 3. TXT-1 Platform Description

use this service, call the pid load service with a std msgs/Empty message. Then the

PID gains loaded on the parameter server will be loaded. The service will return a

bool value indicating a success or failure.

The shutdown service shuts down the Mac Mini, which can be used in normal

operation or for certain algorithms. To do this, a bool message is sent to the shut-

down computer service. The TXT-1 driver then issues the sudo shutdown -h now

command to shutdown the computer. This command requires superuser privileges,

so the /etc/sudoers file needs to be modified by adding this line:

%admin ALL = NOPASSWD: /sbin/shutdown.

The PWM test service allows the user to manually set the PWM values of the

lower level controller. This is only used when the lower level controller is configured

in manual PWM mode, which is entered when the center joystick button is toggled.

Then the txt driver/PwmTest service is called by using the following message,

int32 esc

int32 front

int32 rear

int32 pwm4

int32 pwm5

bool result,

on the pwm change service name where the messages above and below the --- are the

request and response. The request values are in a range of [−24000, 24000] similar to

the txt driver/Pwm message. After the request is processed, the result is returned.

The switched power service sets the status of the two switches on the power

distribution board. The following message is the txt driver/SwitchedPwr service:

41

Chapter 3. TXT-1 Platform Description

uint8 SOURCE_ATX = 0

uint8 SOURCE_ESC = 1

uint8 source

bool on

bool result.

To command one of the switches, the switched pwr service is called with the source

and on state specified. The source can either be the ATX power supply or the ESC

as indicated by the service constants. The on/off state is specified by the on variable.

The ROS driver allows the TXT-1 to easily be controlled from user programs.

Appendix B.4 shows a C++ source template to use the TXT-1 ROS driver. All of

the TXT-1 ROS services and topics are used in this C++ file. This can be used as

a starting point for other applications to start programming with the TXT-1 robot.

Instructions are also provided to start the example project, compile it, and run the

TXT-1 driver and the example in Appendix B.3. Appendix B.1 shows how to get the

source code for the lower level controller and the TXT-1 ROS driver. Appendix B.2

gives instructions to compile the low-level source code and program the development

board.

3.5 Communication Protocol

A communication protocol between the low and high-level controllers is created in

order to control the robot and access its low-level functions. The RS-232 interface

is used to communicate with the low-level control board. However, the Mac Mini

does not have an RS-232 port, therefore, a USB to RS-232 converter is used. The

42

Chapter 3. TXT-1 Platform Description

communication protocol uses a baud rate of 56700, 8 data bits, 1 start bit, 1 stop

bit, and no parity, or 8N1. The communication protocol is a modified version of the

MobileRobots ARCOS protocol [28]. The communication protocol used here is shown

in Figure 3.10. The two header bytes signal the start of a message so that the high

Figure 3.10: The TXT-1 communication protocol.

and low-level controllers can be synchronized when passing messages. The length

byte is the variable length of the data portion of the packet. The maximum length of

the whole packet is defined to be 255 bytes. Therefore, the maximum number of data

bytes is limited at 249 bytes because of the 2 byte header and checksum, length byte,

and command byte. The command byte indicates the type of message and the data’s

purpose. The different types of messages, their command bytes, and data lengths

are shown in Table 3.3. The following list describes the different types of messages

Message Type Data Length Command Byte
Velocity 4 0x67
Encoder Odometry 20 0x68
Combined Odometry 20 0x69
Battery Levels 4 0x6A
PWM Test 20 0x6C
Power Control 2 0x6E
PWM Command 8 0x6F
PID Set 236 0x70

Table 3.3: The communication protocol message types and their lengths and com-
mand bytes.

and their purposes. All of the messages are one-way and do not have a response,

43

Chapter 3. TXT-1 Platform Description

because they do not need to verify if they were received. The only exception is the

PID Set command which requires a response to start the low-level controller.

Velocity The velocity message is sent from the ROS driver to the low-level board

to set the velocities of the controller. The message consists of 2 16-bit integers,

the first for the linear velocity and the second for the angular velocity. The

values are in mm/s and mrad/s, respectively. The velocity message is sent

continuously by the ROS driver to the microcontroller board. As a safety

feature, the controller board will stop controlling the velocities and set its

PWM outputs to 0 if it does not receive a velocity message every second. This

will stop the vehicle if the ROS connection is lost.

Encoder Odometry The encoder odometry message is sent from the low-level

board to the ROS driver. This message consists of 5 32-bit integers repre-

senting the x position (mm), y position (mm), orientation θ (mrad), linear

velocity v (mm/s), and the angular velocity ω (mrad/s) calculated from the

wheel encoders in the local frame. All of the data values are then converted by

the ROS driver to m, m/s, rad, and rad/s.

Combined Odometry The combined odometry message is the same format as the

encoder odometry message except that it is sent from the ROS driver to the

microcontroller board. If this message is received by the low-level controller,

the controller uses this message’s velocity information to control the vehicle’s

velocities, v and ω. This is useful in situations when more accurate velocity

information from a Kalman filter is available by fusing sensor data. For exam-

ple, the IMU, GPS, and encoder odometry can be combined through a Kalman

filter to obtain more accurate velocities and odometry information. Then the

velocity controller would not be directly affected by encoder errors of wheel

slip.

44

Chapter 3. TXT-1 Platform Description

Battery Levels The battery levels message consists of 2 16-bit integers, in milli-

volts, sent from the controller to ROS.

PWM Test The PWM test message is mainly used for ensuring that the servos

and the motor controller work correctly. To use this message, the directional

button must be pressed in order to change the controller’s mode to manual

mode, which disables the controller algorithm. Then the message can be sent

from ROS to the development board in order to control the 5 PWM outputs.

The message consists of 5 32-bit integers from a range of [−24000, 24000]. This

message can also be used to make a velocity controller for the robot in ROS

instead of it being on the development board.

Power Control One of the features of the power distribution board which is de-

scribed in Section 3.6 is its ability to turn off power to certain parts of the

system to conserve energy. This message is sent from ROS to the controller

board to set the state of these switches: the ATX power supply switch and the

ESC switch. The message consists of two bytes: the switch byte and the switch

state byte. The switch byte can be 0x00 for the ATX power supply and 0x01

for the ESC. A switch state byte of 0x00 or 0x01 turns off or on the selected

power supply. This message can be used in critical, low-power situations.

PWM Command The PWM command controls the 2 extra PWM outputs which

can be used to control pan-tilt camera servos or other items needing servo

signals. The PWM command message consists of 2 32-bit integers in a range

of [−24000, 24000]. Unlike the PWM test message, this message can be used

during normal operation of the controller algorithm because the controller does

not use these servo outputs.

PID Set The PID set message sets the gains of the velocity controller. Since the

vehicle’s velocities are coupled by v = ωR, gain scheduling is used for the

45

Chapter 3. TXT-1 Platform Description

angular velocity controller. The controller algorithms are discussed more in

Chapter 4. This message is composed of the linear velocity and angular velocity

PID gains as shown in Figure 3.11. The gains are sent from the ROS computer

to the development board as 3 32-bit integers with each gain multiplied by

1,000, so that a decimal number can be sent serially. This message is required

from ROS before velocities are sent to the controller board, because the PID

gains are initially set to 0 when the controller board powers up. Then the

controller board sends a response to ROS if it has received the PID gains.

On the startup of the ROS driver, ROS sends this message until it receives a

response. The three linear PID gains, proportional (KP), integral (KI), and

derivative (KD) are sent as the first 12 bytes of the data packet. Next, up to

14 sets of angular velocity gains are sent in the data packet. Each set consists

of the maximum linear velocity as a 32-bit integer in mm/s and 3 32-bit PID

gains. The sets of gains should be sent in increasing order according to their

linear velocity. Also only positive linear velocities are used since the gains are

the same for negative velocities.

Figure 3.11: PID set message format.

The checksum is used to check for accidental data errors, which could cause the

system to behave improperly. For example, if a high order bit is accidentally set,

then the value read could be significantly higher than intended. In the velocity

message, this could cause the vehicle to follow a velocity higher than commanded,

potentially causing the vehicle to crash if it is in a critical area. The checksum adds

all of the byte pairs from the command message to the last data byte. If there is an

46

Chapter 3. TXT-1 Platform Description

odd number of bytes the last byte is exclusive OR’ed to the low-order byte of the

checksum. Then the two checksum bytes are put into the message in reverse order.

An example message is shown in Table 3.4. This is a velocity message with v = 0.5

m/s and ω = 0.75 rad/s.

Header
Data Command Linear Angular

Checksum
Length Byte Velocity Velocity

0xFA 0xFB 0x04 0x67 0x01 0xF4 0x02 0xEE 0x5B 0xED

Table 3.4: Example velocity message from the TXT-1 communication protocol.

3.6 Power Distribution System

The power distribution system is an essential component of the TXT-1 platform.

Without it, many of the components of the platform can not be powered, result-

ing in a limited robot, lacking autonomous capabilities. This section describes the

requirements and components of the power distribution system. The battery life

results of the platform are also discussed.

3.6.1 Requirements

All of the electrical components of the robot platform require power. The micro-

controller board, on-board computer, sensors, and the motors and servos all require

power. However, most of these components need power in various forms, such as

DC and AC current, different voltage and current levels. For example, the Mac Mini

requires 120 VAC and consumes a maximum of 85 W. The sensors that are used

on the robot typically use 5 VDC or 12 VDC, and use less than 1 A. The ESC has

a maximum input of 12 VDC and the steering servos usually run on 4.8 VDC to

47

Chapter 3. TXT-1 Platform Description

6 VDC. These motor elements use a varying amount of current, depending on the

load of the motors. The microcontroller board has a voltage regulator and has an

acceptable input voltage of up to 20 VDC, depending on the load being used. All of

these parts need their respective power supplies to operate.

Another requirement for the robot is to power everything with one battery. This

is desired so the remaining run time of the robot will not be limited by a single

battery. In the previous TXT-1 design, two batteries were used: an 11.1 V Lithium-

Ion battery pack was used to power the PC-104 computer and a 7.2 NiMH battery

was used to power the robot motors. This design worked; however, one battery would

run out before the other, which made determining the battery health complicated.

Therefore, in this design, a single battery type is used for the TXT-1. The chosen

hardware is discussed in the following section.

3.6.2 Hardware

This section describes the hardware that was chosen for the power distribution sys-

tem to meet the power requirements of the robot. Figure 3.12 shows the power

distribution board and its connections and features. This design allows the power

distribution board to be the center of the delivery of power. The descriptions of the

major components of the power system follow.

Battery To provide the robot with enough power to complete longer missions and

tasks, an appropriate battery is selected. A nominal voltage of 11.1 V is selected

because it is in the voltage range of the ESC. The Lithium-Ion Polymer (LiPo)

type of battery is chosen because of its energy density. It is very lightweight

while providing the necessary amp-hours required to run the vehicle for long

periods of time. The MaxAmps 6500 mAh 11.1 V 3-cell LiPo battery is used

to provide power to the vehicle for longer experiments. The LiPo batteries can

48

Chapter 3. TXT-1 Platform Description

Figure 3.12: The TXT-1 power distribution system.

be dangerous if the voltage levels during charge or discharge exceed 4.2 V/cell

or 3.0 V/cell. Therefore, protection circuitry is used on the power distribution

board. The power distribution board is designed to handle up to 2 batteries.

However, if another battery is necessary, it can be connected to the external

power input.

Inverter In order to power the Mac Mini from a battery, an inverter is selected.

The Mac Mini has an 85W internal AC-DC power supply, so the AIMS 180W

Pure Sine Inverter is chosen. The inverter is lightweight, small, and can power

the Mac Mini. It also features a pure sine wave output, which helps protect

sensitive electronics like the Mac Mini, and has an efficiency greater than 90%.

However, the voltage input of the inverter is limited to 10.5 − 15V and the

lowest voltage of the battery can be 9V. Therefore, an additional power supply

49

Chapter 3. TXT-1 Platform Description

is chosen to utilize the full range of the battery limits.

Power Suppy The power supply selected is the M4-ATX from Mini-box. This is

a 250W ATX DC-DC computer power supply with a 6-30 VDC input capable

of supplying 15A @ 3.3VDC, 15A @ 5VDC. and 12A @ 12VDC. The power

supply is capable of supplying enough power to the inverter at 12V to power

the Mac Mini. The power supply is also used to power sensors that require

external power.

ESC and BEC The ESC and BEC (Battery Eliminator Circuit) supply the power

to the motors. The ESC controls the speed of the main drive motors to the

wheels. It has a maximum input voltage of 12 VDC. The BEC eliminates

the need for an additional battery to power the steering servos. The Castle

Creations BEC, a buck switching regulator with an output of 5V @ 10A, is

used. It also has an input voltage range of 5-25 VDC. The ESC also has a

3A BEC incorporated into it. However during testing, the servos would draw

too much current, causing the ESC to reset and result in jerky motion of the

vehicle. Thus, the separate BEC is used.

Power Distribution Board The power distribution board is the only custom elec-

tronic hardware on the TXT-1. It is made in order to distribute power reli-

ably and flexibly, and route connections to the low-level control board. The

schematic, PCB layout, and parts list of the distribution board is shown in

Appendix A. The board is designed using KiCad, a free, open-source PCB

development suite. The board uses inputs for two batteries and an external

power supply which are diode OR’ed to provide hot-swappable power to the

robot. The battery voltages are also sensed with the ADC of the microcon-

troller. Then the battery inputs are routed through a shutoff switch and a

cutoff circuit. The cutoff circuit switches off power if the input voltages are

not in the 9.25 V - 14 V range. The power is routed to the power supply,

50

Chapter 3. TXT-1 Platform Description

low-level control board, ESC, and BEC. The ATX power supply and the ESC

can be switched on and off from the microcontroller board if the robot is to be

immobile and power is to be conserved. Then the output of the ATX power

supply is then input into the power distribution board to provide 3.3V, 5V,

and 12V. These voltages are used with terminal blocks to supply power to

sensors requiring external power. The 12V from the power supply also powers

the inverter, which powers the Mac Mini. The board has four connections for

wheel encoders and the circuit in Figure 3.14 for the microcontroller to read

the encoder signals. The encoders are powered from the ATX power supply’s

5 V output. The board has the 5V output from the BEC and connectors to

power, connect and control the servos and drive motors. The power distribu-

tion board has a warning buzzer and serial transmit and receive LEDs. The

buzzer indicates to the user that either the TXT-1 lost communication with

the Mac Mini or the batteries are low. The LEDs indicate whether the TXT-1

low-level board is receiving or transmitting messages.

3.6.3 Battery Life Results

After robot assembly and controller development, the battery is tested for its run

time. For this test, the battery is completely charged and the robot is given waypoints

in the shape of a rectangle to navigate until the battery runs out of power. All of

the sensors are mounted to give the robot a full weight load, and all of the sensors

are also powered to give the batteries a full electrical load. The electrical load

should be higher if more processing power is used on the Mac Mini; however, this

experiment does not test the battery life with different computational loads. The

battery voltage is sensed by the ADC of the microcontroller board and is sent to

ROS over the communication protocol developed. The voltage over time was then

plotted as shown in Figure 3.13. It can be seen that one battery can run the robot

51

Chapter 3. TXT-1 Platform Description

for up to 50 minutes. For safety, 46 minutes is used as the maximum for this data.

Since the data is fairly linear from 0-46 minutes, a line is fit to the data. The line is

plotted in the figure. This equation can then be used to determine the remaining life

of the battery for algorithms with power constraints. This method of determining

battery life works; however, future tests should be completed in order to determine

if the characteristics of the battery change after several charges and discharges.

2

4

6

8

10

12

14

0 10 20 30 40 50 60

Figure 3.13: A plot of the battery voltage vs. time.

3.7 Sensor Suite

In order for the robot to be autonomous, it needs to be able to sense its surroundings

and position in the world. This is done using a wide range of sensors. The sensors

used on the TXT-1 platform are described in the following section.

52

Chapter 3. TXT-1 Platform Description

3.7.1 Encoders

The wheel encoders are used to sense the wheel speeds of the vehicle and then calcu-

late the position, orientation, and velocities as shown in Section 2.3. The encoders

used are US Digital’s E7P-400-236-S-H-D-B. These encoders have a resolution of 400

counts per revolution (CPR) and use a quadrature signal. The quadrature signal

comprises of two square waves which are out of phase by ±90◦. The sign of the

phase of the signals indicates the direction of the wheel rotation, and the frequency

of the square waves indicates the wheel speed. The encoders are connected to a sim-

ple circuit on the power distribution board that simplifies the velocity calculations

on the controller board as shown in Figure 3.14. The circuit XOR’s the two signals

Q

Q

D

Encoder A

Encoder B

Direction

Frequency

Figure 3.14: The encoder circuit.

of the quadrature signal and outputs a doubled frequency and uses the flip-flop to

determine the direction of the wheel rotation. This frees many resources on the

controller board so it only has to count one frequency signal per wheel instead of

two. Additionally this circuit frees an additional interrupt from occurring when the

direction needs to be checked. In order to calculate the velocity of the wheels, the

tire circumference is measured. The tire was measured to have a circumference of

512.5 mm. To calculate the velocity of the wheel, we use

vW =
nT cW

CPR∆t
, (3.1)

53

Chapter 3. TXT-1 Platform Description

where vW is the velocity of the wheel, nT is the number of ticks that are counted

for the interval, ∆t, cW is the circumference of the wheel, and CPR is the count of

ticks from the encoder per revolution of the wheel. Once the velocities of the left

and right wheels are calculated, the position, orientation, and velocities of the robot

can be updated.

3.7.2 IMU

The IMU (Inertial Measurement Unit) used is the Microstrain 3DM-GX2. This IMU

has a tri-axial accelerometer, tri-axial gyro, tri-axial magnetometer, temperature

sensors, and a processor that fuses this data for an accurate orientation result. The

IMU is connected over USB to the Mac Mini, and a ROS driver organizes the data

into a standard message format consisting of an orientation quaternion and raw

angular velocity and acceleration measurements. The IMU can be used for gyro-

enhanced odometry because the orientation calculation from the encoders can be

prone to errors. By using the IMU orientation, the odometry results can be better.

Also the IMU can be fused with other sensors in a Kalman filter to calculate accurate

estimates of the position and orientation of the robot in the world. Figure 3.15 shows

the IMU and GPS mounted on the TXT-1.

3.7.3 GPS

The GPS is a Garmin GPS 18 5Hz which is capable of using 12 parallel channels and

WAAS. The GPS is connected to the Mac Mini with an RS232 to USB converter

and interfaces with ROS easily. There is a ROS package that uses GPSD to access

the GPS information. GPSD is a service daemon that makes data from any NMEA

0183 emitting GPS’s available on a TCP/IP port. This allows multiple programs

to access the data from one GPS. ROS has a package that listens to the GPSD

54

Chapter 3. TXT-1 Platform Description

Figure 3.15: The mounting locations of the IMU and GPS.

port and publishes ROS GPS messages. Another package can listen to the ROS

GPS messages and publish an odometry message in the UTM (Universal Transverse

Mercator) coordinate system. The GPS can be used in a Kalman filter for position

and velocity information, and it can be used for waypoint navigation. The GPS is a

good absolute sensor.

3.7.4 Kinect

Vision sensors are necessary in order for the robot to accomplish complex tasks

in a demanding 3-D environment. Vision sensors are used in robotics, traffic light

sensors, military intelligence, industrial inspection, and many other fields. On the

TXT-1, different vision sensors can be used, like the Microsoft Kinect, Point Grey

Bumblebee2, and Unibrain Fire-i. The first is connected with USB and the last 2 are

connected with Firewire to the Mac Mini. ROS has drivers for all of these cameras.

The Kinect is an indoor 3-D sensor that utilizes a time of flight method. It provides

55

Chapter 3. TXT-1 Platform Description

depth information so the robot can perceive the 3-D world and interact with it. The

Kinect sensor uses the openni kinect ROS driver to obtain both the RGB and depth

images. The driver provides this data on the /camera/rgb/points topic as a point

cloud and /camera/rgb/image_color topic as an image. An example visualization

of the data is shown in Figure 3.16. This shows RVIZ, ROS’s visualization tool,

viewing the Kinect’s 3-D point cloud along with the depth image on the left and the

RGB image on the right. The mounting of the Kinect is shown in Figure 3.17. The

Figure 3.16: The data from the Microsoft Kinect and Hokuyo Laser Scanner. The
upper left corner of the RVIZ window shows the depth map from the Kinect. The
upper right corner shows the RGB image from the Kinect. The center shows the
point cloud from the Kinect in color along with the Hokuyo laser scan data in white.

Bumblebee2 is a stereo camera that needs additional processing to get the depth

information. The Fire-i camera is a single camera that can be used with some vision

processing algorithms.

56

Chapter 3. TXT-1 Platform Description

Figure 3.17: The mounting of the Kinect and the laser scanner.

3.7.5 Laser Scanner

The laser scanner used is a Hokuyo URG-04LX and can sense the distances to objects

on the plane of the laser scan. The laser scanner is a 2-D sensor that works by

spinning a laser and reading the sensed distance to the reflection at each angle

increment. ROS has a Hokuyo laser driver and the message is an array of distances

at each angle increment. The sensor can sense a distance of 4 m at a field of view

of 240 degrees. The mounting location on the TXT-1 is shown in Figure 3.17 and

an example of the sensed data is shown in Figure 3.16. The data is shown as white

points in the center view of the window.

3.7.6 Vicon Tracker

The Vicon Tracker system [29] is an indoor, multi-camera rigid-body tracking system.

Reflective markers are attached in a unique pattern on the rigid body and the cameras

calculate the 3-D position and orientation of the object. This system is used mainly

as an indoor GPS sensor. In order to use the Vicon system, a ROS driver is created

57

Chapter 3. TXT-1 Platform Description

using the VRPN1library [30]. The ROS driver publishes ROS pose messages of

the tracked object. The Vicon system can also be used as a velocity sensor for

the velocity controller by using the combined odometry message described earlier.

To do this, a Kalman filter is used to differentiate the position information into

velocity information. The results of using the Vicon velocity are discussed in the

next chapter.

1The VRPN Library was used for this experiment, which was developed by the CISMM
project at the University of North Carolina at Chapel Hill, supported by NIH/NCRR and
NIH/NIBIB award #2P41EB002025.

58

Chapter 4

Robot Controllers

In order to complete navigation tasks, an accurate, stable controller for the robot’s

linear and angular velocities is necessary. Without the velocity controller, smooth

control of the robot would not be possible. The robot would control itself using bit-

bang techniques, causing abrupt and rough behaviors. The lower level controller’s

main task is to control the vehicle’s velocities. For the velocity controllers, we im-

plemented Proportional-Integral-Derivative (PID) controllers to close the loop of the

system. Since the linear and angular velocity is coupled by v = ωR, the angular ve-

locity controller uses gain scheduling. The next sections discuss the PID controllers

used, both the linear and angular velocity controllers, tuning the controllers, and the

performance results of each.

4.1 PID Control

The PID controller is a generic feedback control loop algorithm for controlling pro-

cesses. The controller calculates the error between the process output and the desired

setpoint and tries to minimize the error by adjusting the outputs to the process. It

59

Chapter 4. Robot Controllers

works fairly well when the transfer function of the process is not known. A PID con-

trol loop is shown in Figure 4.1. As seen from the figure, the PID controller output

Figure 4.1: PID control loop.

to the process is

u(t) = KP e(t) +KI

∫ t

0

e(τ) dτ +KD
d

dt
e(t) + u0, (4.1)

where

e(t) = SP − PO, (4.2)

and KP is the proportional gain, KI is the integral gain, KD is the derivative gain,

SP is the setpoint, PO is the process output, and u0 is the base level control signal.

In order to implement the controller on a digital system, the continuous time

domain equation needs to be discretized. By substituting differences and sums for

derivatives and integrals, we obtain:

u(k) = KP e(k) +KI∆t

k
∑

i=0

e(i) +
KD

∆t
(e(k)− e(k − 1)) + u0, (4.3)

where ∆t is the sampling period. Equation 4.3 is the discrete positional form of the

PID equation. It can be implemented on a digital system; however, u0, the base level

control output, needs to be known. This is overcome by using the velocity form of

the PID equation, which is obtained by calculating

∆u = u(k)− u(k − 1). (4.4)

60

Chapter 4. Robot Controllers

This is solved by substituting Equation 4.3 at time steps k and k − 1 to get

∆u = KP [e(k)− e(k− 1)] +KI∆t e(k) +
KD

∆t
[e(k)− 2e(k− 1)+ e(k− 2)]. (4.5)

Then u(k) is easily found by

u(k) = u(k − 1) + ∆u (4.6)

to get a control signal of

u(k) = u(k−1)+KP [e(k)−e(k−1)]+KI∆t e(k)+
KD

∆t
[e(k)−2e(k−1)+e(k−2)]. (4.7)

Equation 4.7 shows the PID update equation without u0. This equation is used for

both the linear and angular velocity controllers. The controllers are discussed in the

next section.

4.2 Linear Velocity Controller

In this case, the processes that are controlled are the velocities of the TXT-1 robot.

The setpoints of the PID loop are the desired linear and angular velocities and are set

via the ROS communication link. The process outputs are the measured linear and

angular velocities from the wheel encoders or the combined odometry message. The

inputs to the processes are the motor controller and steering servo PWM outputs.

Figure 4.2 shows the inputs and outputs of the TXT-1 velocity controller where vc

and θc are the velocity and steering angle PWM outputs. The sampling period, ∆t,

is 20 ms. The PID controller is actually composed of two PID controllers: the linear

and angular velocity controllers. The implementation of the linear velocity controller

is described in this section.

The linear velocity controller follows the commanded linear velocity from the

ROS velocity message. The PWM output that goes to the motor controller has a

61

Chapter 4. Robot Controllers

Figure 4.2: TXT-1 velocity control loop.

range of ±24000 with a value of 0 being a 1.5 ms pulse causing the motor to turn off

and the vehicle to be stationary. A value of 24000 would spin the wheels forward at

the maximum velocity and -24000 would spin the wheels backwards at the maximum

velocity.

The linear PID controller is initially tuned by using a step input and having the

steering servos positioned at 0 degrees. Then gains are iteratively chosen until the

step response is quick with little to no overshoot. The linear PID controller is tuned

by iteratively adjusting the PID gains. After the initial tuning, a constant velocity

is selected and the steering is changed using a joystick to determine whether the

coupling, v = ωR, affected the controller substantially. The gains are then modified

slightly and the controller is tested with constant velocity setpoints over the range of

the allowable linear velocities. A range of ±1.5 m/s is used and the gains are again

adjusted slightly. After tuning, the following gains are selected:

KP = 11.0, KI = 18.0, KD = 0.250.

These gains produce a fast response and are found to overcome the coupling problem

the best. However, the coupling of the linear and angular velocities affects the

controller minimally. When the robot goes from driving straight to the maximum

steering angle, the linear velocity droops by up to 10% of the setpoint. When turning

62

Chapter 4. Robot Controllers

at the maximum steering angle and switching to driving straight, the linear velocity

overshoots by up to 10% of the setpoint. This is acceptable because the linear

velocity stabilizes after 1 second and it occurs when there are fast, large steps in

the steering angle. These results are discussed more in Section 4.4. After the linear

velocity controller is tuned, the angular velocity controller is tuned.

4.3 Angular Velocity Controller

The angular velocity controller follows the commanded angular velocity from the

ROS velocity message. It controls the steering angle, φ, in order to follow the com-

manded angular velocity. The steering servos cause the wheels to be centered with

a PWM output of 0, fully turned one direction with a PWM value of 24000, and

fully turned the other direction with a PWM value of -24000. However, the TXT-1’s

steering mechanisms do not allow the maximum limits of the PWM outputs because

its steering mechanism does not rotate as much as the servo. This causes the servos

to draw excess current when the maximum PWM outputs are set. Therefore, the

maximum PWM output for the steering servos is set at ±18000.

The angular velocity controller assumes the linear velocity is constant for the

sampling period, ∆t. With this assumption, the steering angle, φ, can be used to

control the angular velocity. It was observed through experiments that having one

set of PID gains is not acceptable. For low velocities, the angular velocity gains need

to be high. When used with higher velocities, the angular velocity step response has

a large overshoot and oscillations. Therefore, gain scheduling was used to provide

stable, fast response over the allowable range of linear velocities. The gain scheduling

algorithm uses a maximum of 14 sets of gains for 14 linear velocity ranges. It uses

the current measured linear velocity to select the set of gains to use for the control

output calculation. The set of gains includes the maximum linear velocity that the

63

Chapter 4. Robot Controllers

angular velocity is tuned. For example, the third and fourth gains could have a linear

velocity maximum of 0.5 m/s and 0.7 m/s, respectively. The fourth gain would then

have a range of 0.5 < v ≤ 0.7 m/s. The gains need to be provided for positive and

negative linear velocities.

The angular velocity controller is tuned by commanding a constant linear veloc-

ity and then commanding step input angular velocities with a joystick. First, the

commanded linear velocity is set small, and then the angular velocity PID gains are

adjusted until the step response is acceptable. Once the gains are set for the first

linear velocity, the commanded linear velocity is increased until the response starts

to become poor. Then the gains are tuned and the process is repeated until the

maximum linear velocity is attained. After all the gains are found, they are adjusted

until an appropriate response is found. Table 4.1 shows the resulting angular velocity

gains.

vmax (m/s) KP KI KD

-1.35 1.0 25.0 0.005
-1.15 1.0 25.0 0.005
-0.95 1.0 25.0 0.005
-0.75 1.0 35.0 0.005
-0.55 1.0 40.0 0.005
-0.35 1.0 50.0 0.005
-0.15 1.0 30.0 0.005
0.15 6.0 200.0 0.005
0.35 6.0 170.0 0.005
0.55 4.0 130.0 0.005
0.75 3.0 80.0 0.005
0.95 4.0 60.0 0.005
1.15 4.0 30.0 0.005
1.35 4.0 20.0 0.005

Table 4.1: Angular velocity gains.

64

Chapter 4. Robot Controllers

4.4 Results

Multiple tests are performed to verify the controllers’ performance. The first test

shows the linear velocity controller’s response to step inputs of varying degrees. For

this test, ω = 0 rad/s and the linear velocity input is given a step input. Then

the vehicle is stopped and rests for 3 seconds. Next a negative step of the same

magnitude is commanded and the process is repeated. Then the magnitude of the

step input is increased and the test is repeated until the maximum tested velocity is

reached. The linear and angular velocity plots of the test are shown in Figure 4.3.

The tests are done on a tile floor. During the test, the robot loses traction when

testing the higher velocities. Also the encoder readings are fairly noisy.

-1.5

-1

-0.5

0

0.5

1

1.5

10 20 30 40 50 60 70 80

Time (s)

Commanded Vs. Actual Angular Velocity

-1.5

-1

-0.5

0

0.5

1

1.5

10 20 30 40 50 60 70 80

Time (s)

Commanded Vs. Actual Linear Velocity

Figure 4.3: Linear velocity controller test.

65

Chapter 4. Robot Controllers

The second test shows the angular velocity controller’s response to step inputs of

varying magnitudes. During the test, the linear velocity is held at a constant 0.5 m/s

and the angular velocity is continuously stepped to increasing angular velocities. The

test is repeated with increasing negative angular velocities. The results in Figure 4.4

show that the robot tracks the angular velocity without much droop in the linear

velocity.

-1

-0.5

0

0.5

1

10 20 30 40 50 60

Time (s)

Commanded Vs. Actual Angular Velocity

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30 40 50 60

Time (s)

Commanded Vs. Actual Linear Velocity

Figure 4.4: Angular velocity controller test.

The third test is to command the robot to follow constant linear and angular

velocities to check if the path produced is circular and the circular paths overlap.

Two of these tests are completed: one with v = 0.5 m/s and ω = 0.25 rad/s and the

other with v = 0.5 m/s and ω = 0.5 rad/s. These tests are shown in Figures 4.5 and

66

Chapter 4. Robot Controllers

4.6, respectively. In both tests, the circle is followed accurately. These three tests

verify that the controller behaves properly.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

Large Circle Path

Figure 4.5: Path of robot following v = 0.5 and ω = 0.25.

67

Chapter 4. Robot Controllers

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Small Circle Path

Figure 4.6: Path of robot following v = 0.5 and ω = 0.5.

68

Chapter 5

A learning strategy for source

tracking in unstructured

environments

5.1 Introduction

Ideally, mobile robots should be able to perform navigation tasks autonomously with-

out human intervention. Because of noise and a dynamically changing environment,

this becomes a very difficult task. The navigation tasks are normally implemented

with a type of feedback controller that processes the data from the sensors and makes

decisions in order to complete the robot’s navigation task. These controllers need

to be properly tuned, using gains, in order to ensure the controllers are stable and

behave optimally with respect to the most direct route to reach a goal. Because the

sensors and actuators vary among different robots, these parameters are different.

Additionally, over time, the sensors and actuators of robots can change due to wear

and tear. Consequently, the navigation controller parameters need to be manually

69

Chapter 5. A Learning Strategy for Source Tracking

fine-tuned to ensure optimal performance. For example, robot brush motors may

experience wear and their response may change. As a result, the controller may have

to be changed in order to accommodate the change in motor response. The manual

tuning of parameters on each robot can be very costly and time consuming when the

number of robots increases from a couple of robots to many thousands.

Learning, specifically reinforcement learning (RL), can be used to overcome the

problem of having to manually fine-tune and update navigation controllers. The

robot can learn through reinforcement to perform various navigation problems, thus

eliminating the need for the time-consuming task of fine-tuning navigation con-

trollers. It can learn navigation behaviors based on positive and negative rewards

from the reinforcement learning algorithm [31]. In this work, Q-Learning (QL), a RL

algorithm, is used to have the robot learn to navigate towards a light source. This

problem is implemented both in simulation and on real hardware. The organization

of this chapter is as follows: Section 5.2 gives a brief introduction to Q-Learning

and its implementation, Section 5.3 explains how the problem is organized, Sections

5.4 and 5.5 discuss the results of both the simulation and the implementation in

hardware.

5.2 Reinforcement Learning

The field of machine learning is broken up into three categories: supervised, unsu-

pervised, and reinforcement learning. In a few words, reinforcement learning is when

an agent learns a behavior by trial-and-error interactions with a dynamic environ-

ment and receives a delayed reward. Typically, the reinforcement learning problem is

posed as follows: given a discrete set of states, {S}, a discrete set of actions, {A}, and

reward signal, R, find the optimal policy, π, that maximizes the future reward. The

optimal policy is a function that maps states to actions where the agent completes

70

Chapter 5. A Learning Strategy for Source Tracking

the task at hand correctly, determined by an expert observer. For example in the

light-finding task, optimal means the robot takes the most direct route to navigate to

the light source. This is unlike supervised learning where the correct action/output

is given based on the states/inputs. In reinforcement learning, the agent only knows

the previous and current states and the reward of how good the previous action was.

From this information, the agent tries to learn the mapping of states to actions that

maximizes the future reward [32, 31]. In this model, the agent takes action, at, at

time, t, based on its state, st. Then the action produces a new state, st+1, from

the environment, and a reward, rt+1, is observed. According to its reinforcement

learning algorithm, the agent then updates its policy, π, from st, st+1, and rt+1.

This is shown in Figure 5.1. In order to converge toward the optimal control policy

Agent

Environment

action
a t

reward
r

t

state
s

t

r
t+1

s
t+1

Figure 5.1: Reinforcement learning description.

quickly, the trade-off between exploration and exploitation needs to be understood.

Exploration is when the agent selects random actions while learning, regardless of

the current state, in order to visit every state-action pair. The agent might select

an action that it thinks is suboptimal in order to find out that it might be good.

Exploration allows the agent to explore the entire state-action value space to avoid

the problem of learning local maxima. For example, in the light-finding case, if the

agent does not visit a state-action pair while learning, it may learn to take a subop-

timal action for a given state, like turning left when the light is to the right of the

71

Chapter 5. A Learning Strategy for Source Tracking

agent. This results in the robot taking more time to navigate to the light goal.

In contrast to exploration, exploitation is the use of the agent’s knowledge in

selecting actions. The agent selects the action that it thinks will produce the max-

imum reward given the current state [33]. Care needs to be given when choosing

the trade-off between exploration and exploitation. Using mostly exploration or ex-

ploitation can cause the agent to take a long time to learn the task or not even learn

the task at all. Usually when the agent is first learning, exploration is used, and

towards the end of the learning process, exploitation is used. The gradual transition

from exploration to exploitation is decided by the algorithm developer. One ap-

proach to transition between the two strategies is the Boltzmann distribution, which

is described in the next section. For the light source navigation task, reinforcement

learning methods are used because they allow the state-action mapping to be learned

through reinforcement in real-time.

5.2.1 Q-Learning

Q-Learning is a temporal difference reinforcement learning algorithm developed by

Watkins in 1989 [34]. Temporal difference learning methods use changes in pre-

dictions over consecutive time steps in order refine the prediction of a quantity.

They continuously update their estimates based on previously learned estimates,

also known as bootstrapping. This is done until a terminal state is reached. Tem-

poral difference methods use a combination of Monte Carlo methods and dynamic

programming methods [31]. Like Monte Carlo methods, temporal difference methods

do not need a model of the environment’s dynamics. Like dynamic programming,

temporal difference methods use bootstrapping.

Q-Learning is an off-policy, temporal difference method; off-policy meaning that

it can separate exploration from control. Q-Learning learns a state-action value

72

Chapter 5. A Learning Strategy for Source Tracking

function, Q, that directly approximates the optimal state-action value function, Q∗,

independent of the policy being followed. Q∗ is optimal in the sense that it is the

best state-action value function for this problem as deemed by the expert user. This

function informs the agent of the action with the greatest reward when the agent is

in the current state. The QL states are the inputs to the system and the actions

are the outputs from the system. It has been proven that Q converges to Q∗ with

probability of 1 if all state-action pairs are continuously updated [35]. The QL value

function, Q(st, at), is updated after the agent takes action, at, using

Q(st, at)← Q(st, at) + α
[

rt+1 + γmax
a

Q(st+1, a)−Q(st, at)
]

, (5.1)

where st is the state at time, t, α is the learning rate, rt+1 is the reward after taking

the action, at, γ is the discount factor, and st+1 is the state after taking the action.

The general QL algorithm is shown in Figure 5.2. Q-Learning uses a finite set of

Initialize Q(s, a) arbitrarily
while repetitions count < number repetitions do

state = current state
repeat

Action = GetAction(State)
Take Action, Observe Reward and Resulting
State
Update Q-Table with Update Equation
State = Resulting State

until State is in Goal State
end while

Figure 5.2: Q-Learning algorithm.

discrete states, si ∈ S, where 0 ≤ i < NA, and actions, ai ∈ A, , where 0 ≤ i < NS.

NA and NS are the number of discrete actions and states, respectively. The value

function, referred to as the Q-Table in the rest of the chapter, is in tabular form.

Q(st, at) is the value of Q at state, st, and action, at, at time, t [31]. The Q-Table

is stored in the agent’s memory, which is typically either a computer’s hard disk or

73

Chapter 5. A Learning Strategy for Source Tracking

RAM. Memory can be a concern if the task to learn has many state and action pairs

resulting in the system running out of memory. However, it is hard to learn tasks

with many state-action pairs because the time it takes to learn these tasks is very

large.

In the QL algorithm, action, at, is chosen based on the policy, π, and the current

state, st. The policy, π, is chosen based on the exploitation/exploration trade-off

discussed earlier. The selection of the policy is important in order to make sure

that the system converges to the optimal solution. There are many approaches

to choose a policy and three are discussed here. The first approach, the greedy

policy, is a policy that exploits the value function. Basically, the agent chooses the

action based on the maximum Q value over all possible actions for a given state, or

at = maxa Q(st, a). This policy is usually used toward the end of the training and

once the agent is trained. The second approach is a non-greedy policy where the

agent chooses random actions at every time step, or at = random(a ∈ A), where

the actions have a uniform probability. Using this approach is usually good to apply

at the beginning of training. Both of these policies can be used as stated; however,

they can theoretically be used for the entire learning process and the Q values should

converge to their optimal values regardless of the policy.

One of the more popular policies is the Boltzmann distribution [36] which is used

to move from exploration to exploitation. The Boltzmann distribution can be written

as

Pr(ai) =
eQ(s,ai)/T

∑

b∈A eQ(s,b)/T
, ai ∈ A, (5.2)

lim
T→∞

Pr(ai) =
1

NA
, (5.3)

lim
T→ 0

Pr(ai) =

1 if ai = maxaQ(st, a),

0 otherwise,
(5.4)

74

Chapter 5. A Learning Strategy for Source Tracking

where T is the temperature and NA is the number of actions. Equations (5.3) and

(5.4) show the limits of the Boltzmann distribution with respect to T .

The temperature parameter, T , in the Boltzmann distribution controls the ran-

domness of selecting an action. When T is large, the probability of choosing an

action is approximately equal to the probability of choosing any other action, fa-

voring exploration. When T is small, the probability of an action increases with its

Q value, favoring exploitation. In practice, the temperature parameter is decreased

over time as T = Cαt where C is the temperature at time, t = 0, and α is the rate

of decay. Using the Boltzmann distribution along with the decay function allows

the agent to gradually transition from exploration of the state-action space in the

beginning of the learning stage to exploitation of its acquired knowledge towards

the end, thereby speeding up the learning procedure. Some examples of how the

Boltzmann distribution affects the Q values are shown in Table 5.1. As the param-

eter T increases, the probability to choose any action is approximately equal. Once

the temperature decreases, the probability favors the highest Q value. To use the

Boltzmann distribution, first a random number is generated. Then the probability of

each action corresponding to the current state, st, is calculated using Equation (5.2).

Next, the cumulative distribution is generated from the calculated probabilities. The

generated random number is compared to the cumulative sum and the action whose

probability range contains the random number is chosen as the action to use.

Q-Value 0.2 0.5 1.0
T=0.1 3.33e-04 6.69e-03 9.92e-01
T=0.5 0.128 0.234 0.637
T=1 0.218 0.295 0.486
T=5 0.309 0.328 0.362

Table 5.1: The probabilities of taking actions with different temperatures and Q

values.

75

Chapter 5. A Learning Strategy for Source Tracking

The following description explains the Q-Learning algorithm in detail. Figure 5.3

is used in this explanation. First, the Q-Table is initialized. It can be initialized

to a constant value, such as zero, or to some random numbers. Then the current

state, st is observed and an action, at, is chosen using any of the policies discussed

above. Figure 5.3 shows the use of the Boltzmann distribution. After the action is

selected, it is then executed and the agent is delayed for a period of time, td. After

the delay, the next state, st+1, and reward, rt+1, are observed. Then the Q value,

Q(st, at), is updated according to the update equation, Equation (5.1). The update

equation uses the next state, st+1, and finds the maximum Q value over all actions

for that state. It then calculates the expected discounted reward, which is the reward

added to the maximum Q value multiplied by the discount factor, γ. The expected

discounted reward tells the agent how good the action that was taken actually was. If

it was good, Q(st, at), increases, and if it was bad, Q(st, at) decreases. The discount

factor, γ, adjusts how much future rewards affect the update. The expected total

discounted reward can be written as:

Rt = rt + γmax
a

Q(st+1, a),

= rt + γ
[

rt+1 +max
a

Q(st+2, a)
]

, (5.5)

= rt + γrt+1 + γ2rt+2 + ...+ γnrt+n + ...

The discount factor is on a range of [0, 1]. When it is small, the agent only weighs

current rewards. When γ is large, future rewards are weighted more heavily. Next

the expected discounted reward is multiplied by the learning rate, α. The learning

rate is a number from [0, 1] and controls how much of the new information is used

to update the old information. When α = 0, nothing is learned, and when α = 1,

full weight is given to the new information. The learning rate does not have to be

constant while the agent is learning. The learning rate can start at 1 and decrease to

0 so that the agent uses the new information more heavily in the beginning of training

76

C
h
a
p
ter

5
.

A
L
ea
rn
in
g
S
tra

teg
y
fo
r
S
o
u
rce

T
ra
ck
in
g

Q a
1

a
2

s
1

s
2

...

s
m

...a
3

a
n

s
3

State: s
t

Reward: r

Action:
t

a

t+1

Boltzmann Distribution

1. Evaluate for each action.

2. Select random number, n, [0, 1].

3. Choose the action where n
 falls in the Boltzmann
 Distribution.

Agent

Terminating
State?

Start

Initialize
Q-Table

Number
Repetitions

Met?

False

True

s
t+1

State:

s = s
t t+1

Exit

True

DelayEnvironment

F
igu

re
5.3:

Q
-L
earn

in
g
fl
ow

ch
art.

77

Chapter 5. A Learning Strategy for Source Tracking

and uses less in the end. The learning rate can even be different for each state. If

the agent visits a state more frequently, that state’s learning rate can decrease faster

than others.

After the update step, the next state is set as the current state. Then this

algorithm is repeated until the agent enters the terminating state. Then the process

is repeated for a number of repetitions or until the agent has learned the task. After

the agent learns the task, the task can be accomplished by the agent by using the

state-action mapping that was learned. After the task is learned, the agent normally

uses a greedy approach by exploiting the learned mapping and does not update

the Q-Table. However, the agent can be designed to continuously learn changes in

the environment that may occur after the initial training. Q-Learning is a simple,

popular reinforcement learning algorithm that trains an agent to learn a task from

discrete states and actions and a reward signal.

5.3 Light-Finding Robot

In order for the robot to learn to navigate towards a light source, the problem needs to

be formulated with more details. In the following sections, the robot model, defined

actions, environmental states, reward function and the policy used are described in

more detail.

The Robot Model

The TXT-1 prototype is used in this experiment. 5.4. Figure 5.4 shows the robot

model and the position of the 4 light sensors in the four corners of the robot. The

nonholonomic unicycle model is used for simulation. Limits on the angular velocities

are used to make the unicycle model work for the car-like TXT-1. There are 4

78

Chapter 5. A Learning Strategy for Source Tracking

Figure 5.4: The mounting of the light sensors.

light sensors that measure the intensity of the light on the robot. The light sensors

measure human perceptible light on the range of 1 lux to 1000 lux. The sensors are

positioned in a rectangle pattern on the top of the robot. They are mounted at a

distance of ±0.2286 m in the X direction and ±0.127 m in the Y direction from

the center of the robot. The sensors are labeled front-right (FR), front-left (FL),

rear-right (RR), and rear-left (RL). The sensor readings are not corrupted by noise

in the simulation but are in the real experiment.

Robot Actions

Since Q-Learning requires discrete actions, three actions are chosen: forward left,

forward straight, and forward right. Only forward actions are chosen because it

limits the number of state-actions pairs and the learning time. These actions with

their associated linear and angular velocities are listed in Table 5.2. The forward

velocity is maintained constant in order that the navigation algorithm can be applied

to both differential drive and car-like robots. The selected angular velocities are the

maximum achievable angular velocities corresponding to the selected linear velocity

satisfying vx = ωR, where R is the minimum radius of curvature of the car-like robot

used in the experiment.

79

Chapter 5. A Learning Strategy for Source Tracking

Action vx (m/s) ω (rad/s)
Forward Left 0.3 0.54
Forward Straight 0.3 0.0
Forward Right 0.3 -0.54

Table 5.2: Chosen robot action velocities.

Light Sensor States

From the mounted light sensors, the direction of the light is calculated. The magni-

tudes of the light readings are separated into their X and Y components and then

added to compute the direction of the strongest intensity of the light source. Then

the direction is discretized into 8 states as seen in Figure 5.5. In the figure, if the

direction falls within the specified boundaries, then the direction is discretized ac-

cording to the corresponding area. Therefore, the total number of states is 8 and

the number of actions is 3, resulting in 24 state-action pairs. The small number of

states permits the robot to learn quickly.

0

0. Rear Center

1. Rear Right

2. Center Right

3. Front Right

4. Front Center

5. Front Left

6. Center Left

7. Rear Left

Figure 5.5: Discrete light direction states.

80

Chapter 5. A Learning Strategy for Source Tracking

Reward Function

The reward function uses the current and next light direction states to calculate the

reward. Equations (5.6) - (5.8) show how the reward function is calculated.

s′t = st − 4, (5.6)

s′t+1 = st+1 − 4, (5.7)

rt+1 =

1 if s′t+1 = s′t = 0 or |s′t| − |s
′

t+1| > 0

0 if s′t+1 = s′t 6= 0 6= −4

−1 otherwise.

(5.8)

First the current and next states are subtracted by 4. This results in the front

center state equal to zero and the rear center state equal to -4 allowing for an easier

calculation in the next step. Next the reward is given based on the conditions in

Equation (5.8). These conditions give a reward that encourages the robot to navigate

to the light source. The reward gives positive reinforcement when the heading error

to the light source is reduced and when the light is continuously in front of the

robot. Negative reinforcement is given when the heading error to the light source

is increased or the light source is continuously behind the robot. A reward of 1 is

given when the current and next states are the front center state, meaning that the

light source is in front of the robot. This reward is also given to the robot when its

direction state gets closer to the front center state, resulting in the robot’s heading

error decreasing. A reward of zero is observed by the robot when the light direction

state does not change and the light is not directly in front of or behind the robot. A

reward of -1 is given to the robot when the heading error increases or when the light

source is behind the robot. This reward function produces a light finding behavior

as seen in the following simulation and experiment.

81

Chapter 5. A Learning Strategy for Source Tracking

Test Environment

The test environment consisted of a room, safety boundary, starting radius, light

source, robot, and light terminating position. Figure 5.6 shows all of these in detail.

First of all, the light source is positioned in the center of the test room at (0, 0).

At the beginning of each learning repetition, the robot started at a specified radius

from the center of the room at a random angle from the positive x-axis of the room.

This allows the robot to start in different locations of the room. At the starting

location for each repetition, the robot is also set at a random heading towards the

light to generalize the learning. During the learning repetitions, it is likely that

the robot navigates and collides with one of the walls of the room. Therefore, a

safety boundary is created to terminate the learning repetition when a collision is

eminent. The learning repetition is also terminated after the robot passed through

the terminating radius. The terminating radius is a boundary that represented the

robot finishing its navigation task towards the light. After the learning repetition

is terminated, the robot is moved to a new starting location and heading towards

the light and the next learning repetition is started. Both of the terminating states

needed global frame positioning information. This is provided through Stage, a robot

simulator. In the hardware experiment, the Vicon motion capture system [29] is used.

These are described in the simulation and experiment sections.

5.4 Simulation Results

The formulated Q-Learning navigation problem is then simulated and implemented

on a real robot. Both the simulation and hardware experiments are implemented in

ROS, which allowed that algorithms to be tested in simulation and then implemented

in the experiment with a few code changes.

82

Chapter 5. A Learning Strategy for Source Tracking

Figure 5.6: Learning environment.

The light-finding learning algorithm is implemented in the Stage simulation en-

vironment. Stage provides a 2-D simulated environment with a map, autonomous

ground vehicles, and some sensors. In this simulation, the simulated light and the

light sensors are artificially simulated because Stage does not have light sensors and

light objects. The intensity is modeled as a point light source where the intensity of

light decreases at a rate of the reciprocal of the distance squared. The intensity of

the light at a position, (x, y), assuming the light is at (0, 0) is written as

I(x, y) =
1

(x2 + y2)2
. (5.9)

The map chosen is a 5 by 5 meter square, which allowed for ample room during

the learning phase. During the experiment, a sample time of 2 Hz is used to update

the Q-Table. This presented the robot with enough change in heading and position

to make it possible to learn. The terminating state of the simulation is that the

robot is 0.5 meters away from the center of the light source or if the robot drives out

of the safety boundary. Stage provides global frame position information to check

83

Chapter 5. A Learning Strategy for Source Tracking

whether one of the terminating states is reached. Once the termination state was

reached, the robot is driven to a position at a fixed radius of 1.25 m from the light

source at a random angle from the x-axis and a random heading to the light source.

For the policy, a Boltzmann distribution is used. The temperature parameter, T , is

decreased over time according to T = Cαt. In the simulation, C is chosen to be 5

and α is chosen to be 0.65. This allows for the robot to utilize exploration at the

beginning and exploitation towards the end of the learning process. A learning rate

of α = 0.3 and a discount factor of γ = 0.5 is used in simulation. When starting the

learning phase, the Q-Table is initialized with random values from −0.1 to 0.1.

When testing with the simulator, it is noticed that the robot can reach the com-

manded velocities instantaneously. In order to make the dynamics of the simulated

and real robots similar, a velocity ramp is introduced to the robot in the simulator.

This causes some problems when learning. Because a significant control delay was

introduced, the robot updates its Q-Table with the wrong data. The action is com-

manded; however, when the resulting state and reward are obtained, the action is

not yet reached by the robot, resulting in the Q-Table being updated with incorrect

data.

In order to compensate for the control delay, two approaches are used. In these

approaches, the Q-Learning algorithm was slightly modified. In the first approach,

the Q-Table is not updated until after the commanded action is reached. After the

velocity action is selected and sent to the robot, the actual velocities are continuously

read until they are within a certain threshold of the commanded velocity. Then the

state, st, is read and the velocities of the selected action are held until the delay

period is finished. After the delay period, the Q-Table is updated and the algorithm

repeats as normal. By waiting for the velocities of the action to be reached, the robot

can use the correct information to learn the task. This approach results in the robot

learning the correct Q-Table; however, the trajectories are suboptimal because the

84

Chapter 5. A Learning Strategy for Source Tracking

robot has to wait for the action to be reached which results in oscillations.

The second approach is to use the sensed action after each delay interval to update

the Q-Table without waiting for the robot to reach the commanded action. In this

approach, the selected action is sent to the robot. Then the delay time is waited

and the action is sensed. The sensed action is used to update the Q-Table instead

of the commanded action. The action is sensed by quantizing the sensed velocity

into an appropriate action. This is accomplished by sensing the velocities with the

wheel encoders and dividing the angular velocity space of ±0.54 rad/s by the number

of actions, 3. Then the sensed action is selected by comparing the sensed angular

velocity with the angular velocity boundaries. The boundaries are shown in Figure

5.7 where each color represents a different action. Finally, the Q-Table is updated

Figure 5.7: The sensed angular velocity boundaries.

with the sensed quantized action, current reward and state. This modification to the

Q-Learning algorithm limits the effects of the control delay on learning and provides

optimal paths when completing the light finding task. This approach in minimizing

the effects of the control delay is used in the simulation and experiment.

In the simulation, the robot performed 31 repetitions of the task starting at a

new position and orientation to the light source each time. In the beginning of the

training, the robot both succeeded and failed in navigating towards the light source.

During the final repetitions of the simulation, the robot succeeded in navigating

towards the light source every time. A couple of the paths of the robot are shown

in Figures 5.8 and 5.9. The light is shown as the yellow circle in the center of the

map and the starting and ending positions are shown as red circles. It can be seen

that the robot did not learn the task completely in Figure 5.8. Figure 5.9 shows the

85

Chapter 5. A Learning Strategy for Source Tracking

final path of the robot. The path in this figure is almost the direct path to the light

source from the starting location. The learning curve in Figure 5.10 shows that

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 5.8: Simulated robot’s path on the 10th learning trial. The path is not the
shortest to the goal, because the agent has not learned all of the state-action pairs.

the time taken to complete the task decreases over the repetitions of the simulation,

which implies that the robot learns to navigate towards the light. From Figure 5.10,

it is seen that it takes the robot an average of 7.165s to complete the task after the

first 7 repetitions. The shortest time that is possible to complete the task with a

heading angle of 0 is 4.167s (1.25m at 0.3m/s). The simulation results were double

this time, because during the simulation, the heading angle was chosen at random.

Also to obtain good results for the learning curve, the room boundary was increased

to 8m, because there is no distinction in times when using the small room boundary.

The learning curve shows that the robot has learned to navigation towards the light

source because the times decrease and converge to value.

At the end of the simulation, the Q-Table is visually checked to see if the values are

86

Chapter 5. A Learning Strategy for Source Tracking

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 5.9: Simulated robot’s path on the 31st learning trial. The path is shorter
than the path in Figure 5.8 because the agent has learned all of the state-action
pairs.

intuitively correct. For example, if the light is to the right of the robot, one expects

the robot to turn right. Therefore, the action that is expected to be executed for

a given state should have the highest Q value among all the action Q values for

that state. After the simulation results are obtained, the algorithm is validated on

hardware through a series of experiments.

5.5 Experimental Results

Implementing the learning algorithm in hardware produced more problems than in

simulation. Noise is encountered in the light sensors and delays are experienced in

the robot following the commanded velocities, both of which debilitated the learn-

ing process. However, results are obtained by filtering the light sensor signals and

87

Chapter 5. A Learning Strategy for Source Tracking

20

40

60

80

100

120

140

0 5 10 15 20 25

T
im

e
 (

s
e
c
o

n
d

s
)

Repetitions

Figure 5.10: Average learning curve after five trials. The blue plots are the five
independent trials and the bold red plot is the average of the five trials.

using the learning algorithm from the simulations to avoid the effects of control de-

lays in learning. In this section, the hardware used, problems with the hardware

implementation, and results are discussed.

5.5.1 Hardware

Figure 5.11 shows the hardware setup used in this experiment. Firstly, the TXT-1

robot is utilized for the experiment. The light sensors used are a part of the Phidgets

Interface Kit [37]. The kit allows for 8 analog inputs, 8 digital inputs, and 8 digital

outputs to be connected and read or written to via the USB port. Only 4 of the

analog inputs are used with the light sensors. The light sensors measure human

perceptible light on the range of 1 lux (moonlight) to 1000 lux (TV Studio Lighting).

The Phidgets Interface Kit is connected to the on-board computer of the TXT-1.

88

Chapter 5. A Learning Strategy for Source Tracking

Open-source ROS drivers are used to interface with both the TXT-1 robot and the

Phidgets interface kit. To get an accurate position of the robot in order to stay

Figure 5.11: The experimental hardware setup diagram.

within the safety boundary of the map, the TXT-1’s odometry is not used due to

wheel slippage and drift. Instead the Vicon motion capture system is used. The

Vicon motion capture system uses multiple cameras with reflective spheres to track

rigid bodies. To use the system, the ROS driver developed previously was used. The

light sensors and interface kit are also mounted on the robot with the spheres for

the Vicon cameras. The mounting is shown in Figure 5.12. Finally, a 100 W light

is mounted in the center of the room on the ceiling. Because of ROS’s ability to

abstract hardware drivers, most of the same code used for simulation was used in

the experiment. The only change was the switching of the simulated light sensor

nodes to the hardware light sensors and addition of a Vicon positioning node.

89

Chapter 5. A Learning Strategy for Source Tracking

Figure 5.12: The robot and sensors.

5.5.2 Problems in Hardware Implementation

Noise in the light sensor readings affected the learning in the experiment greatly.

For example, the calculated direction of the light source oscillates around the actual

direction by about ±45◦. When learning, the learner receives the wrong reward a

majority of the time. Then the learner never learns anything because the noise causes

the learner to unlearn the task once it began to learn it. Therefore each light sensor

reading is filtered with the exponential moving average filter,

It = αIt−1 + (1− α)I ′t, (5.10)

where I ′t is the measured light intensity and It is the filtered light intensity at the

current time. Because the light sensors are sampled every 16 ms, a value of α = 0.9

is used to produce an accurate calculated direction without delay from the filter.

Another problem is the delay in the robot following the velocities of the com-

manded actions. This causes problems with learning; however, the effects of the

90

Chapter 5. A Learning Strategy for Source Tracking

control delay are minimized by using the Q-Learning modification used in simula-

tion of using the sensed actions for updating the Q-Table.

5.5.3 Results

Despite the problems encountered during the hardware implementation of the Q-

Learning light-finding algorithm, results are still obtained. Table 5.3 shows the re-

sulting Q-Table after the agent learned for 30 repetitions in hardware. Once learned,

the highest value in the row corresponding to the current state is the action that the

robot thinks it should take for the state. All the actions with the highest Q value

for each state logically correspond to the correct action that the robot should take.

Therefore, the table shows that the robot has learned to navigate to the light in

hardware. The results of this Q-Table are shown in Figure 5.13. This figure shows

State / Action Front Right Front Center Front Left
Rear Center 0.9494 -0.6495 -0.5848
Rear Right 0.7950 -0.0449 -0.2863
Center Right 0.7120 0.1365 -0.3091
Front Right 0.4466 0.1255 -0.0286
Front Center 0.8803 1.4476 1.1834
Front Left 0.3014 0.3008 0.8993
Center Left -0.5585 -0.0546 1.1205
Rear Left -0.3775 0.0077 0.8443

Table 5.3: Q-Table after a learning on hardware.

the path of the robot navigating towards the light. The resulting path is optimal in

the sense that it moves directly towards the light. During learning, it is noticed that

the quantization error of the sensed actions results in some of the actions having

close Q values. For example, this occurs mostly with the Front Center light state.

Table 5.3 shows that the Q values for this state are close compared to the rest of the

table. In this state with the quantization error, it ss easy for the right and left actions

91

Chapter 5. A Learning Strategy for Source Tracking

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 5.13: The resulting path of the robot using hardware.

to produce good rewards also. Therefore, care needs to be taken when quantizing

the sensed actions. Despite the noise and delays that were encountered in hardware

experiments, the algorithm performs reasonably well.

92

Chapter 6

Conclusions and Future Work

In conclusion, the TXT-1 prototype is finished, providing the Marhes lab with

a robot capable of autonomous behavior. The TXT-1 is designed to be a robust,

safe, and flexible vehicle. The base electromechanical platform is made to be easily

replaced and maintained during failures. Many electrical components in the system

can even be updated without much redesign of the vehicle. The vehicle allows for

several different sensor configurations to be swapped for different experiments. The

robot is developed for use with ROS, which will be used for many years to come.

Some future topics of exploration include using the TXT-1 platform to verify

algorithms other than learning algorithms, fusing multiple sensors to calculate a

highly accurate odometry estimate, and creating more TXT-1’s to test and verify

algorithms for cooperative control and sensor networks. Another research endeavor

could incorporate the IMU or another sensor into the control system to limit speeds

to prevent rollover when traveling over non-smooth terrain. Additionally, energy

conscious mobile robot algorithms can be developed with the prototype. This testbed

vehicle will help in the research of many mobile robotic algorithms.

93

Chapter 6. Conclusions and Future Work

The Q-Learning algorithm produced encouraging results in simulation and hard-

ware. Using this approach, the robot navigates towards the light, following close to

the most direct path. The hardware results are affected by noise in the sensors and

delays in the robot response. More work can be done to learn with system delays.

Another approach is to learn from the raw sensor inputs and use a neural network

to learn the actions [38, 39]. A further possibility for improving performance in the

noisy system described here is to use a biologically-inspired reinforcement learner

[40]. Biological systems deal with inherently noisy sensors and environments as a

matter of course and have adapted sophisticated mechanisms for handling the un-

certainty. Lastly, work in multiple robot coordination and learning can be pursued.

94

Appendix A

Power Distribution Board

95

Appendix A. Power Distribution Board

Figure A.1: Power distribution board schematic.

96

Appendix A. Power Distribution Board

Figure A.2: Power distribution board front layout.

97

Appendix A. Power Distribution Board

Figure A.3: Power distribution board back layout.

98

A
p
p
en
d
ix

A
.
P
o
w
er

D
istrib

u
tio

n
B
o
a
rd

Quantity Designator P/N Designation Package
1 Q4 FDS6681ZCT-ND FDS6681Z SO8N
7 R23,R5,R3,R11,R12,R10,R9 P10.0KFCT-ND 10k sm 1206
2 J27,J13 WM6136-ND 22-28-8362 th conn 100 2 ra
6 R22,R21,R20,R19,R18,R8 P1.00KFCT-ND 1k sm 1206
1 U4 296-14878-5-ND SN74LS07 DIP-14 300
2 Q8,Q9 IRF8788TRPBFCT-ND IRF8788PbF SO8N
1 R13 RHM1.74MFCT-ND 1.74M sm 1206
1 R14 P33.0KFCT-ND 33k sm 1206
1 R15 P68.1KFCT-ND 68.1k sm 1206
1 R16 P510KFCT-ND 510k sm 1206
1 R17 P1.50KFCT-ND 1.5k sm 1206
3 D9,D4,D5 754-1276-ND WP7113SRD/E LED-5MM
6 J26,J25,J24,J23,J22,J21 ED2635-ND OSTTE020161 th conn 138 2
3 R7,R6,R4 P3.00KFCT-ND 3k sm 1206
2 R2,R1 P300FCT-ND 300 sm 1206
1 SW1 SW105-ND GF-1126-1110 th sw gw slide
1 SP1 668-1019-ND AI-1223-TWT-5V-R th spkr pui ai
5 Q5,Q7,Q1,Q2,Q3 568-5987-1-ND 2N7002 sm sot 23 3
1 Q6 BSS84W-FDICT-ND BSS84 sm sot 23 3
3 D6,D7,D8 1N5225B-TPCT-ND 1N5225B-TP th do 35
1 J20 WM1352-ND 39-30-1040 th conn atx 4
1 J19 WM1362-ND 39-30-1240 th conn atx 24
1 J18 ED2581-ND OSTTA034163 th conn 200 3
5 J3,J4,J5,J6,J7 ED2580-ND OSTTA024163 th conn 200 2
5 J8,J9,J10,J11,J12 WM6136-ND 22-28-8362 th conn 100 3 ra
2 J1,J2 S9175-ND SBH11-PB PC-D20-ST-BK th conn 100 100 20 2
3 D1,D2,D3 497-6578-1-ND STPS20L15G-TR sm to263 3
4 J14,J15,J16,J17 WM1342-ND 15-91-2045 sm conn molex 15-91-2045
1 U1 296-8375-5-ND SN74HC86N DIP-14 300
2 U2,U3 568-1491-5-ND 74HC74N,652 DIP-14 300
1 U5 LTC4365CTS8#TRMPBFCT-ND LTC4365 SM TSOT 23 8

Table A.1: Power distribution board parts list.

99

Appendix B

TXT-1 Source Code

B.1 Marhes Repositories

With over 4,000 lines of code for the lower level controller, 4,000 lines of code for the

txt driver and other test programs and scripts, and 4,000 lines of code for the light

finding application, it is necessary to keep the code managed and safe. Therefore,

Google code repositories were made for the lower level controller and any Marhes

ROS code. Both of the repositories use mercurial to make any code changes or

updates. The lower level controller code is kept at:

http://code.google.com/p/marhes-txt/.

The ROS code including the TXT-1 driver and the light finding program is kept at:

http://code.google.com/p/marhes-ros-pkg/.

100

Appendix B. TXT-1 Source Code

B.2 Development Board Programming

Instructions

Things Needed

• Olimex LPC2378 Development Board (ordered from Sparkfun)

• Olimex ARM-USB-OCD JTAG Programmer/Debugger (ordered from Spark-

fun)

• Computer with Ubuntu installed (these instructions for Ubuntu 10.04)

– Internet Connection

– USB Port

Setup Steps

1. Install OpenOCD

(a) Open a terminal

(b) Type sudo apt-get install openocd

2. Install CodeSourcery Lite for ARM EABI

(a) Go to http://www.codesourcery.com/sgpp/lite/arm/

portal/subscription3053

(b) Download this version: Lite 2010q1-188

(c) Download the IA32 GNU/Linux Installer

(d) In the terminal, type sudo dpkg-reconfigure -plow dash

(e) Select No

101

Appendix B. TXT-1 Source Code

(f) Type /bin/sh ./"path to package"/arm-"version"-

arm-none-eabi.bin where ”path to package” is the path to the down-

loaded installer and ”version” is the version of the installer.

(g) Go through the installation steps

i. Typical

ii. Directory: /home/marhes/CodeSourcery/Sourcery_G++_Lite

iii. Modify PATH

(h) Add export PATH=$PATH:/home/marhes

/CodeSourcery/Sourcery_G++_Lite/bin to the end of ~/.bashrc

3. Install DDD

(a) Open a terminal

(b) Type sudo apt-get install ddd

Compiling and Programming

1. Compile the source code

(a) Open a terminal

(b) cd "source folder with makefile"

(c) make

2. Start OpenOCD

(a) Connect JTAG programmer

(b) Go to source directory with StartOpenOCD.sh

(c) In a terminal, ./StartOpenOCD.sh

3. Program and Debug the development board

102

Appendix B. TXT-1 Source Code

(a) Make sure OpenOCD is running

(b) Go to source directory with ddd.sh

(c) In a terminal, ./ddd.sh

(d) Note: To debug without programming, use dddRun.sh

B.3 Instructions for Using the TXT-1 Source

Example

To use the TXT-1 source example, this command should be run while in a directory

that is in the $ROS_PACKAGE_PATH:

roscreate-pkg name roscpp txt_driver tf nav_msgs geometry_msgs,

where name is the name of the package to create. Then, the example source code can

be copied to the src directory. Next, the CMakeLists.txt file needs to be modified

so the template gets compiled into an executable. Add the following to the end of

the file,

rosbuild_add_executable(template src/txt_driver_template.cpp)

where template is the executable name and txt_driver_template.cpp is the copied

example source file. Then use rosmake name to compile the newly created package.

Next start the TXT-1 ROS driver launch file with

roslaunch txt_launch txt_node_net.launch (continued on next line)

host:=hostname client:=clientname

103

Appendix B. TXT-1 Source Code

where hostname is the name of the host computer and clientname is the name of

the computer on the TXT-1 robot. Next, run the example code executable with

rosrun name template. The example source code should now be running. To

terminate, use CTRL+C.

B.4 The TXT-1 ROS Driver Example

1 #include "ros/ros.h"

#include "geometry_msgs/Twist.h"

#include "nav_msgs/Odometry.h"

#include "txt_driver/Battery.h"

#include "txt_driver/Pwm.h"

#include "txt_driver/PidLoad.h"

#include "txt_driver/PwmTest.h"

#include "txt_driver/Shutdown.h"

#include "txt_driver/SwitchedPwr.h"

#include "tf/tf.h"

11

// The c l a s s to handle a l l the t x t d r i v e r t op i c s and s e r v i c e s

class TxtTemplate

{

public :

// Function prototypes

TxtTemplate (ros : : NodeHandle nh) ;

private :

// ROS pub l i sh e r s , s ub s c r i b e r s , s e r v i c e c l i e n t s and t imers

ros : : NodeHandle n_ ;

21 ros : : Publisher vel_pub_ , pwm_pub_ , comb_odom_pub_ ;

104

Appendix B. TXT-1 Source Code

ros : : Subscriber odom_sub_ , batt_sub_ ;

ros : : ServiceClient pid_client_ , shutdown_client_ , pwm_client_←֓

, pwr_client_ ;

ros : : Timer pub_tmr_ ;

// Storage v a r i a b l e s

nav_msgs : : Odometry odom_msg_ ;

// Function prototypes

void odomCB (nav_msgs : : Odometry msg) ;

31 void battCB (txt_driver : : Battery msg) ;

void tmrCB (const ros : : TimerEvent& e) ;

} ;

// Class con s t ruc tor

TxtTemplate : : TxtTemplate (ros : : NodeHandle nh)

{

n_ = nh ;

// Setup pub l i s h e r s

41 vel_pub_ = n_ . advertise<geometry_msgs : : Twist>("/cmd_vel" , 1) ;

pwm_pub_ = n_ . advertise<txt_driver : : Pwm>("/pwm" , 1) ;

comb_odom_pub_ = n_ . advertise<nav_msgs : : Odometry>("/odom_comb←֓

" , 1) ;

// Setup s u b s c r i b e r s

odom_sub_ = n_ . subscribe ("/odom" , 1 , &TxtTemplate : : odomCB , ←֓

this) ;

batt_sub_ = n_ . subscribe ("/battery" , 1 , &TxtTemplate : : battCB , ←֓

this) ;

105

Appendix B. TXT-1 Source Code

// Setup s e r v i c e c l i e n t s

pid_client_ = n_ . serviceClient<txt_driver : : PidLoad>("/←֓

pid_load") ;

51 shutdown_client_ = n_ . serviceClient<txt_driver : : Shutdown>("/←֓

shutdown_computer") ;

pwm_client_ = n_ . serviceClient<txt_driver : : PwmTest>("/←֓

pwm_change") ;

pwr_client_ = n_ . serviceClient<txt_driver : : SwitchedPwr>("/←֓

switched_pwr") ;

// Setup a 2 s t imer ca l l b a ck to pub l i sh messages and s e r v i c e ←֓

c a l l s

pub_tmr_ = n_ . createTimer (ros : : Duration (2 . 0) , &TxtTemplate : : ←֓

tmrCB , this) ;

}

// The odom ca l l b a ck

void TxtTemplate : : odomCB (nav_msgs : : Odometry msg)

61 {

odom_msg_ = msg ; // Store the odometry message

ROS_INFO ("RXed odom: X: %f, Y: %f, YAW: %f, V: %f, W: %f" ,

msg . pose . pose . position . x ,

msg . pose . pose . position . y ,

tf : : getYaw (msg . pose . pose . orientation) ,

msg . twist . twist . linear . x ,

msg . twist . twist . angular . z) ;

}

71 // The battery ca l l b a ck

106

Appendix B. TXT-1 Source Code

void TxtTemplate : : battCB (txt_driver : : Battery msg)

{

ROS_INFO ("RXed battery: V1: %f, V2: %f, Expected Time: %f" ,

msg . batt1 ,

msg . batt2 ,

msg . expected_time . toSec ()) ;

}

// The timer ca l l b a ck

81 void TxtTemplate : : tmrCB (const ros : : TimerEvent& e)

{

// pub l i sh v e l o c i t y message

geometry_msgs : : Twist vel_msg ;

vel_msg . linear . x = 0 . 5 ;

vel_msg . angular . z = 0 . 3 ;

vel_pub_ . publish (vel_msg) ;

// pub l i sh pwm message

txt_driver : : Pwm pwm_msg ;

91 pwm_msg . pwm4 = 12000;

pwm_msg . pwm5 = −24000;

pwm_pub_ . publish (pwm_msg) ;

// pub l i sh the s to r ed odom message as an example

comb_odom_pub_ . publish (odom_msg_) ;

// Load the PID va lues

txt_driver : : PidLoad pid_srv ;

if (pid_client_ . call (pid_srv))

101 ROS_INFO ("PID Load Response: %d" , pid_srv . response . result) ;

107

Appendix B. TXT-1 Source Code

// Shutdown the computer

txt_driver : : Shutdown sd_srv ;

sd_srv . request . request = true ;

if (shutdown_client_ . call (sd_srv))

ROS_INFO ("Shutdown called: %d" , sd_srv . response . result) ;

// Send pwm va lues f o r manual mode

txt_driver : : PwmTest pwm_srv ;

111 pwm_srv . request . esc = 24000;

pwm_srv . request . front = 12000;

pwm_srv . request . rear = 0 ;

pwm_srv . request . pwm4 = −12000;

pwm_srv . request . pwm5 = −24000;

if (pwm_client_ . call (pwm_srv))

ROS_INFO ("PWM Response: %d" , pwm_srv . response . result) ;

// Set the switch s t a t e o f the ATX switch to on

txt_driver : : SwitchedPwr pwr_srv ;

121 pwr_srv . request . source = pwr_srv . request . SOURCE_ATX ;

pwr_srv . request . on = true ;

if (pwr_client_ . call (pwr_srv))

ROS_INFO ("PWR Response: %d" , pwr_srv . response . result) ;

}

// The main funct i on i n i t i a l i z e s ROS and s t a r t s the TxtTemplate←֓

node and then

// sp ins , s e r v i c i n g ca l l b a ck s .

int main (int argc , char ∗∗argv)

{

108

Appendix B. TXT-1 Source Code

131 ros : : init (argc , argv , "template") ;

ros : : NodeHandle n ;

TxtTemplate ∗ t = new TxtTemplate (n) ;

ros : : spin () ;

return 0 ;

}

109

References

[1] DARPA, “Grand Challenge ’05,” Dec. 2007. [Online]. Available: http:
//archive.darpa.mil/grandchallenge05/index.html

[2] ——, “Urban Challenge,” Apr. 2008. [Online]. Available: http://archive.darpa.
mil/grandchallenge/index.asp

[3] J. Markoff, “Google cars drive themselves, in traffic,” Oct. 2010, The
New York Times. [Online]. Available: http://www.nytimes.com/2010/10/10/
science/10google.html?

[4] SARTRE-Consortium, “The SARTRE Project,” May 2011. [Online]. Available:
http://www.sartre-project.eu

[5] “MobileRobots Pioneer3-AT,” 2011. [Online]. Available: http://www.
mobilerobots.com/ResearchRobots/ResearchRobots/P3AT.aspx

[6] “Jaguar platform specification,” 2010. [Online]. Available: http://jaguar.
drrobot.com/specification.asp

[7] “Automated material handling order fulfillment system,” 2011. [Online].
Available: http://www.kivasystems.com/

[8] “GRASP Lab Robot Platforms,” 2001. [Online]. Available: http://www.cis.
upenn.edu/mars/site/platforms.htm

[9] E. Edwan, “Design of a modular autonomous robot vehicle,” Master’s thesis,
Oklahoma State University, Aug. 2003.

[10] D. E. Cruz, “An experimental testbed for swarming and cooperative robotic
networks,” Master’s thesis, Oklahoma State University, Jul. 2006.

110

References

[11] B. K. Wilburn, “Hardware, software, and low-level control scheme development
for a real-time autonomous rover,” Master’s thesis, West Virginia University,
2010.

[12] M. Stanley, “Implementation of kalman filter to tracking custom four-wheel drive
four-wheel-steering robotic platform,” Master’s thesis, University of Maryland,
2010.

[13] J. Marshall, “Coordinated autonomy: Pursuit formations of multivehicle sys-
tems,” Ph.D. dissertation, University of Toronto, 2005.

[14] S. Falamaki, “Simultaneous localisation and mapping on a model off-road vehi-
cle,” Master’s thesis, The University of New South Wales, Jun. 2005.

[15] K.-H. Park, Y.-J. Kim, and J.-H. Kim, “Modular Q-learning based multi-agent
cooperation for robot soccer,” Robotics and Autonomous Systems, vol. 35, no. 2,
pp. 109–122, 2001.

[16] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange, “Reinforcement learning for
robot soccer,” Auton. Robots, vol. 27, no. 1, pp. 55–73, 2009.

[17] C. Kroustis and M. Casey, “Combining heuristics and Q-Learning in an adaptive
light seeking robot,” University of Surrey, Department of Computing, Tech. Rep.
CS-08-01, 2008.

[18] M. Riedmiller, M. Montemerlo, and H. Dahlkamp, “Learning to drive a real car
in 20 minutes,” in FBIT, 2007, pp. 645–650.

[19] C. Gaskett, “Q-Learning for robot control,” Ph.D. dissertation, The Australian
National University, 2002.

[20] C. Chen, H.-X. Li, and D. Dong, “Hybrid control for robot navigation - a hier-
archical Q-Learning algorithm,” Robotics Automation Magazine IEEE, vol. 15,
no. 2, pp. 37–47, 2008.

[21] “4x4 Monster Pick-up TXT-1.” [Online]. Available: http://www.tamiya.com/
english/products/58280txt 1/txt 1.htm

[22] “Super Rooster.” [Online]. Available: http://www.teamnovak.com/products/
esc/super rooster/index.html

[23] “LPC2378 Development Board.” [Online]. Available: http://www.olimex.com/
dev/lpc-2378stk.html

111

References

[24] “Sourcery CodeBench Lite Edition.” [Online]. Available: http://www.mentor.
com/embedded-software/sourcery-tools/sourcery-codebench/lite-edition

[25] R. Barry, “The FreeRTOS Project,” Jul. 2011. [Online]. Available:
http://www.freertos.org/

[26] “Apple - Mac Mini.” [Online]. Available: http://www.apple.com/macmini/

[27] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and N. Andrew, “ROS: an open-source Robot Operating System,”
in International Conference on Robotics and Automation, 2009.

[28] Pioneer3 Operations Manual, 3rd ed., MobileRobots Inc., Jan. 2006.

[29] “Vicon Tracker.” 2011. [Online]. Available: http://www.vicon.com/products/
vicontracker.html

[30] R. Taylor II, T. Hudson, A. Seeger, H. Weber, J. Juliano, and A. Helser, “VRPN:
A device-independent, network-transparent VR peripheral system,” in Proceed-
ings of the ACM Symposium on Virtual Reality Software & Technology 2001,
VRST 2001, Nov. 15-17, 2001.

[31] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998. [Online]. Available: http://www.cs.ualberta.ca/%7Esutton/book/
ebook/the-book.html

[32] L. P. Kaelbling, M. Littman, and A. Moore, “Reinforcement learning: A survey,”
Journal of Artificial Intelligence Research, vol. 4, pp. 237–285, 1996.

[33] P. Dayan and C. Watkins, “Reinforcement learning,” in Encyclopedia of Cogni-
tive Science. MacMillan Press, London, England, 2001.

[34] C. J. C. H. Watkins, “Learning from delayed rewards,” in International Sympo-
sium on Physical Design, 1989.

[35] P. Dayan, “Technical note: Q-Learning,” Machine Learning, vol. 292, no. 3,
pp. 279–292, 1992. [Online]. Available: http://www.springerlink.com/index/
T774414027552160.pdf

[36] R. Sutton, “Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming,” in In Proceedings of the Seventh In-
ternational Conference on Machine Learning. Morgan Kaufmann, 1990, pp.
216–224.

112

References

[37] “Phidgets Inc. - Unique and Easy to use USB Interfaces.” 2010. [Online].
Available: http://www.phidgets.com/index.php

[38] V. Ganapathy, C. Y. Soh, and W. L. D. Lui, Utilization of Webots and the
Khepera II as a Platform for Neural Q-Learning Controllers. IEEE, 2009, pp.
783–788.

[39] B.-Q. Huang, G.-Y. Cao, and M. Guo, “Reinforcement learning neural network
to the problem of autonomous mobile robot obstacle avoidance,” in Proceedings
of 2005 International Conference on Machine Learning and Cybernetics, 2005,
pp. 85–89.

[40] B. Rohrer, “A developmental agent for learning features, environment models,
and general robotics tasks,” in Joint IEEE International Conference on Devel-
opment and Learning and on Epigenetic Robotics, Frankfurt, Germany, Aug.
24-27, 2011.

113

	University of New Mexico
	UNM Digital Repository
	1-30-2012

	The development of a robotic test bed with applications in Q-learning
	Titus Appel
	Recommended Citation

	tmp.1472502609.pdf.e6xm7

