6,300 research outputs found

    PDE models of adder mechanisms in cellular proliferation

    Get PDF
    Cell division is a process that involves many biochemical steps and complex biophysical mechanisms. To simplify the understanding of what triggers cell division, three basic models that subsume more microscopic cellular processes associated with cell division have been proposed. Cells can divide based on the time elapsed since their birth, their size, and/or the volume added since their birth-the timer, sizer, and adder models, respectively. Here, we propose unified adder-sizer models and investigate some of the properties of different adder processes arising in cellular proliferation. Although the adder-sizer model provides a direct way to model cell population structure, we illustrate how it is mathematically related to the well-known model in which cell division depends on age and size. Existence and uniqueness of weak solutions to our 2+1-dimensional PDE model are proved, leading to the convergence of the discretized numerical solutions and allowing us to numerically compute the dynamics of cell population densities. We then generalize our PDE model to incorporate recent experimental findings of a system exhibiting mother-daughter correlations in cellular growth rates. Numerical experiments illustrating possible average cell volume blowup and the dynamical behavior of cell populations with mother-daughter correlated growth rates are carried out. Finally, motivated by new experimental findings, we extend our adder model cases where the controlling variable is the added size between DNA replication initiation points in the cell cycle

    Effect of Sunflower and Marine Oils on Ruminal Microbiota, In vitro Fermentation and Digesta Fatty Acid Profile

    Get PDF
    Funding This work has been funded by Consejería de Educación, Junta de Castilla y León (research project LE007A07). Acknowledgments We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI). Support received from CICYT project AGL2005-04760-C02-02 is gratefully acknowledged.Peer reviewedPublisher PD

    The impact of cellular characteristics on the evolution of shape homeostasis

    Full text link
    The importance of individual cells in a developing multicellular organism is well known but precisely how the individual cellular characteristics of those cells collectively drive the emergence of robust, homeostatic structures is less well understood. For example cell communication via a diffusible factor allows for information to travel across large distances within the population, and cell polarisation makes it possible to form structures with a particular orientation, but how do these processes interact to produce a more robust and regulated structure? In this study we investigate the ability of cells with different cellular characteristics to grow and maintain homeostatic structures. We do this in the context of an individual-based model where cell behaviour is driven by an intra-cellular network that determines the cell phenotype. More precisely, we investigated evolution with 96 different permutations of our model, where cell motility, cell death, long-range growth factor (LGF), short-range growth factor (SGF) and cell polarisation were either present or absent. The results show that LGF has the largest positive impact on the fitness of the evolved solutions. SGF and polarisation also contribute, but all other capabilities essentially increase the search space, effectively making it more difficult to achieve a solution. By perturbing the evolved solutions, we found that they are highly robust to both mutations and wounding. In addition, we observed that by evolving solutions in more unstable environments they produce structures that were more robust and adaptive. In conclusion, our results suggest that robust collective behaviour is most likely to evolve when cells are endowed with long range communication, cell polarisation, and selection pressure from an unstable environment

    Darwinism, probability and complexity : market-based organizational transformation and change explained through the theories of evolution

    Get PDF
    The study of transformation and change is one of the most important areas of social science research. This paper synthesizes and critically reviews the emerging traditions in the study of change dynamics. Three mainstream theories of evolution are introduced to explain change: the Darwinian concept of survival of the fittest, the Probability model and the Complexity approach. The literature review provides a basis for development of research questions that search for a more comprehensive understanding of organizational change. The paper concludes by arguing for the development of a complementary research tradition, which combines an evolutionary and organizational analysis of transformation and change

    Muller's ratchet and mutational meltdowns

    Get PDF
    We extend our earlier work on the role of deleterious mutations in the extinction of obligately asexual populations. First, we develop analytical models for mutation accumulation that obviate the need for time-consuming computer simulations in certain ranges of the parameter space. When the number of mutations entering the population each generation is fairly high, the number of mutations per individual and the mean time to extinction can be predicted using classical approaches in quantitative genetics. However, when the mutation rate is very low, a fixation-probability approach is quite effective. Second, we show that an intermediate selection coefficient (s) minimizes the time to extinction. The critical value of s can be quite low, and we discuss the evolutionary implications of this, showing that increased sensitivity to mutation and loss of capacity for DNA repair can be selectively advantageous in asexual organisms. Finally, we consider the consequences of the mutational meltdown for the extinction of mitochondrial lineages in sexual species

    Method for finding metabolic properties based on the general growth law. Liver examples. A General framework for biological modeling

    Full text link
    We propose a method for finding metabolic parameters of cells, organs and whole organisms, which is based on the earlier discovered general growth law. Based on the obtained results and analysis of available biological models, we propose a general framework for modeling biological phenomena and discuss how it can be used in Virtual Liver Network project. The foundational idea of the study is that growth of cells, organs, systems and whole organisms, besides biomolecular machinery, is influenced by biophysical mechanisms acting at different scale levels. In particular, the general growth law uniquely defines distribution of nutritional resources between maintenance needs and biomass synthesis at each phase of growth and at each scale level. We exemplify the approach considering metabolic properties of growing human and dog livers and liver transplants. A procedure for verification of obtained results has been introduced too. We found that two examined dogs have high metabolic rates consuming about 0.62 and 1 gram of nutrients per cubic centimeter of liver per day, and verified this using the proposed verification procedure. We also evaluated consumption rate of nutrients in human livers, determining it to be about 0.088 gram of nutrients per cubic centimeter of liver per day for males, and about 0.098 for females. This noticeable difference can be explained by evolutionary development, which required females to have greater liver processing capacity to support pregnancy. We also found how much nutrients go to biomass synthesis and maintenance at each phase of liver and liver transplant growth. Obtained results demonstrate that the proposed approach can be used for finding metabolic characteristics of cells, organs, and whole organisms, which can further serve as important inputs for many applications in biology (protein expression), biotechnology (synthesis of substances), and medicine.Comment: 20 pages, 6 figures, 4 table

    The emergence of biofilms:Computational and experimental studies

    Get PDF
    The response of biofilms to any external stimuli is a cumulative response aggregated from individual bacteria residing within the biofilm. The organizational complexity of biofilm can be studied effectively by understanding bacterial interactions at cell level. The overall aim of the thesis is to explore the complex evolutionary behaviour of bacterial biofilms. This thesis is divided into three major studies based on the type of perturbation analysed in the study. The first study analyses the physics behind the development of mushroom-shaped structures from the influence of nutrient cues in biofilms. Glazier-Graner-Hogeweg model is used to simulate the cell characteristics. From the study, it is observed that chemotaxis of bacterial cells towards nutrient source is one of the major precursors for formation of mushroom-shaped structures. The objective of the second study is to analyse the impact of environmental conditions on the inter-biofilm quorum sensing (QS) signalling. Using a hybrid convection-diffusion-reaction model, the simulations predict the diffusivity of QS molecules, the spatiotemporal variations of QS signal concentrations and the competition outcome between QS and quorum quenching mutant bacterial communities. The mechanical effects associated with the fluid-biofilm interaction is addressed in the third study. A novel fluid-structure interaction model based on fluid dynamics and structural energy minimization is developed in the study. Model simulations are used to analyse the detachment and surface effects of the fluid stresses on the biofilm. In addition to the mechanistic models described, a separate study is carried out to estimate the computational efficiency of the biofilm simulation models
    • …
    corecore