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This study using the rumen simulation technique (RUSITEC) investigated the changes

in the ruminal microbiota and anaerobic fermentation in response to the addition of

different lipid supplements to a ruminant diet. A basal diet with no oil added was the

control, and the treatment diets were supplemented with sunflower oil (2%) only, or

sunflower oil (2%) in combination with fish oil (1%) or algae oil (1%). Four fermentation

units were used per treatment. RUSITEC fermenters were inoculated with rumen digesta.

Substrate degradation, fermentation end-products (volatile fatty acids, lactate, gas,

methane, and ammonia), and microbial protein synthesis were determined. Fatty acid

profiles and microbial community composition were evaluated in digesta samples.

Numbers of representative bacterial species and microbial groups were determined

using qPCR. Microbial composition and diversity were based on T-RFLP spectra. The

addition of oils had no effect on substrate degradation or microbial protein synthesis.

Differences among diets in neutral detergent fiber degradation were not significant

(P = 0.132), but the contrast comparing oil–supplemented diets with the control

was significant (P = 0.039). Methane production was reduced (P < 0.05) with all

oil supplements. Propionate production was increased when diets containing oil were

fermented. Compared with the control, the addition of algae oil decreased the percentage

C18:3 c9c12c15 in rumen digesta, and that of C18:2 c9t11 was increased when the

control diet was supplemented with any oil. Marine oils decreased the hydrogenation of

C18 unsaturated fatty acids. Microbial diversity was not affected by oil supplementation.

Cluster analysis showed that diets with additional fish or algae oils formed a group

separated from the sunflower oil diet. Supplementation with marine oils decreased

the numbers of Butyrivibrio producers of stearic acid, and affected the numbers of

protozoa, methanogens, Selenomonas ruminantium and Streptococcus bovis, but not

total bacteria. In conclusion, there is a potential to manipulate the rumen fermentation
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and microbiota with the addition of sunflower, fish or algae oils to ruminant diets at

appropriate concentrations. Specifically, supplementation of ruminant mixed rations with

marine oils will reduce methane production, the acetate to propionate ratio and the fatty

acid hydrogenation in the rumen.

Keywords: microbial community composition, dietary fats, rumen microbiota, Rusitec fermenters, TRFLP, qPCR

INTRODUCTION

Fats are added to the diets of ruminant livestock to increase
energy density of the ration. Dietary oil supplements can also be
used to manipulate the microbial community and fermentation
processes in the rumen (Huws et al., 2010). Specific microbial
groups and their interactions play a key role in several aspects of
livestock production including environmental impact (Steinfeld
et al., 2006), meat and milk quality (Shingfield et al., 2013),
efficiency of feed utilization (Myer et al., 2015), health and
welfare (Nagaraja and Titgemeyer, 2007). Therefore, the use of
oil supplements to manage the microbiota and thereby promote
measureable benefits in these aspects is of great interest.

Fats and oils impair ruminal CH4 production, and their
inclusion in ruminant diets is considered by international
agencies as one of the most feasible nutritional greenhouse
gas (GHG) mitigation strategies (Bodas et al., 2012; Hristov
et al., 2013). One of the global impacts on the environment
from livestock agriculture is the release into the atmosphere
of methane (CH4). Methane is a GHG with 21 times the
global warming potential of CO2 (IPCC, 2007), and production
from agricultural activity represents 10–12% of the total
anthropogenic GHG equivalents per year (Gt CO2 Eq/yr)
(Smith et al., 2014). Methane is produced in the rumen by
the Archaea and these microbes are often found in close
association with species of bacteria and ciliate protozoa, which
produce H2 (Morgavi et al., 2010). However, beside the effects
on methane emissions or methanogenic microbes, there is a
need to demonstrate substrate degradability is not impaired
(Hristov et al., 2013).

Oils from different sources may affect lipid metabolism in the

rumen, and consequently the type of fatty acids absorbed in the

intestine and subsequently present in the animal products. The
fate of dietary oil supplements has been studied in depth and
biohydrogenation pathways have been described in the reviews
by Kim et al. (2009) and Lourenço et al. (2010). Milk and
adipose fat obtained from ruminant livestock are sources of
rumenic acid (C18:2 c9t11), an isomer of conjugated linoleic
acid (CLA) that has been found to provide a number of benefits
to human health (Bauman et al., 2005). Butyrivibrio spp. and
related bacteria seem to be involved in producing CLA via the
isomerization and biohydrogenation of polyunsaturated fatty
acids (PUFA) in the rumen (Wallace et al., 2006; Lourenço et al.,
2010). Recently, other reports have shown that other bacterial
groups may be involved in biohydrogenation processes, although
their contribution depends upon the lipid source since the toxic
nature of the double bond may differ among different fatty
acids (Huws et al., 2015). Rumenic acid is synthesized as an
intermediate of the conversion of unsaturated linoleic acid to the
saturated stearic acid. Therefore, the inclusion of supplements

rich in PUFA in dietary rations, for example sunflower oil (ω-
6-PUFA) or fish oil (ω-3-PUFA), could be used as an effective
management practice to increase CLA in ruminant livestock
products (Varadyova et al., 2008). Sunflower oil is rich in linoleic
acid, the main precursor for the formation of CLA in the
rumen. Fish and algae lipids are rich in long chain ω-3 PUFA
(C20:5 ω-3 and C22:6 ω-3), and both have been considered
suitable dietary supplements to provide essential long chain ω-
3 PUFA and to increase their concentration in milk and meat
(Korczyński et al., 2015). Fish oils or lipids contained in algae
lessen the hydrogenation of fatty acids in the rumen then leading
to the accumulation of unsaturated intermediates such as CLA
(Wasowska et al., 2006). Thus, when diets are supplemented with
fish or algae oils, dairy cows or sheep yield milk with higher
contents in CLA (Shingfield et al., 2003). Supplementation of
fattening lamb diets with algae oil increased C20:5 ω-3 and
C22:6 ω-3 in meat to a greater extent than when the same diets
were supplemented with fish oil (Cooper et al., 2004). Algae are
increasingly used as a replacement for the commonly used fish
oil (Stamey et al., 2012), reducing the problem of undesirable
fishy smell and taste. In addition, algae are a valuable source
of biological active, antioxidant and antimicrobial compounds
(Korczyński et al., 2015). Technology for the cultivation of algae
is rapidly developing given its productive (high yield of biomass),
economic (production of food and feed, lipids, or biodiesel)
and environmental (pollution prevention, wastewater treatment,
detoxification of contaminants) benefits (Kouřimská et al., 2014;
Wang et al., 2016).

When effects of dietary supplements have been investigated
with the aim of manipulating the rumen microbiota to reduce
environmental impact or improve the quality of the product,
treatments should not adversely affect key species involved in
the essential task of the breakdown of dietary fiber. Butyrivibrio
spp. are important fiber-degrading bacteria (Maia et al., 2010).
Prominent fiber-degraders (e.g., Fibrobacter and Ruminococcus
spp.), and other dominant, nutritionally versatile groups (e.g.,
Prevotella spp.) should also be considered when a dietary
supplement can potentially affect the composition of the
rumen microbial community (Denman and McSweeney, 2006;
Stevenson and Weimer, 2007). The balance of bacteria species is
also responsible for the maintenance of a healthy ruminal pH.
Therefore, it is of interest to examine if the addition of oils to the
diet may affect lactate and volatile fatty acid (VFA) production
and utilization.

There is a paucity of data measuring the effects of dietary
oil supplements on other microbial species, particularly those
with known roles in each of the several important aspects
of rumen livestock agriculture described previously. Often,
studies assessing the effects of lipid supplementation on
rumen digestion do not address simultaneously impact on

Frontiers in Microbiology | www.frontiersin.org 2 June 2017 | Volume 8 | Article 1124

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Vargas et al. Oils, Rumen Microbiota and Fermentation

diet degradation, anaerobic fermentation, including methane
production, microbial protein synthesis, lipid metabolism, and
shifts in key microbial species and the whole community
structure. Therefore, the aim of the present study was to
investigate the effect of different types of marine oils used in
combination with sunflower oil on rumen fermentation and the
key microbial groups identified here. The experiment reported
herein was carried out using an artificial rumen simulation
technique (RUSITEC) (Czerkawski and Breckenridge, 1977), in
which there is a precise control of the fermentation conditions
and the aforementioned parameters can be measured in a single
study.

MATERIALS AND METHODS

Cultures of mixed ruminal microorganisms were maintained in
semi-continuous flow fermenters (RUSITEC) to simulate rumen
conditions. Sixteen fermentation vessels were set up using two
RUSITEC systems. The addition of sunflower oil combined with
either algae or fish oils to the basal diet was examined. Control
(CTR) treatment was the basal diet (Table 1) with no addition of
oil. The supplemented oil treatments were prepared by adding
to the control diet either 20 g sunflower oil/kg diet alone (SFL)
or combined with 10 g/kg of fish oil (FSH) or algae oil (ALG)
to a total oil concentration of 30 g/kg (3%; Table 1). Diets used
as fermentation substrate were prepared every 3 days and stored
at 4◦C until needed. Four vessels (two in each RUSITEC system)
were used for each experimental treatment.

Vessels were inoculated and operated daily following the
general incubation procedure of Czerkawski and Breckenridge
(1977) and described in detail by García-González et al. (2010).
To inoculate the fermentation units of RUSITEC, rumen digesta
was obtained from four ruminally fistulated Merino sheep fed a
diet consisting (per kg) of 700 g grass hay and 300 g concentrate.
Sheep care and handling followed the recommendations of the
Directive 2003/65 for protection of animals used for experimental
and other specific purposes. The Animal Ethics Committees of
CSIC and University of Leon (Spain) had approved procedures
for digesta sampling from sheep. Inoculum was prepared from
400 ml of strained rumen fluid diluted with 250 ml of McDougall
artificial saliva (McDougall, 1948). In addition, particulate rumen
contents (80 g) were sealed inside a nylon bag (100µmpore size),
which was placed into the feed container of each fermentation
vessel.

The dietary fermentation substrate was weighed (15 g dry
matter) into a nylon bag, which was sealed and placed into the
vessel feed container with the bag of strained rumen digesta.
Incubation was started with temperature maintained at 37◦C and
a continuous infusion of McDougall artificial saliva (pH 8.4) at a
rate of 556 ml/day (dilution rate of 3.6%/h) per vessel.

After the first 24 h of incubation, the bags with rumen contents
were replaced by others with 15 g fermentation substrate. After
48 h the bag containing the original fermentation substrate was
replaced. This procedure was repeated every 24 h replacing the
bag containing the 48-h fermentation residue. Thus, every day
in the feed container there was one bag with undigested residue

TABLE 1 | Ingredients and chemical composition of control and oil supplemented

diets.

Treatment Control Sunflower

oil

Sunflower and

fish oil

Sunflower and

marine algae

INGREDIENTS (g/kg DRY MATTER)

Cracked corn grain 250 245 243 243

Barley grain 150 147 146 146

Soybean meal 200 196 194 194

Lucerne hay 200 196 194 194

Beet pulp 100 98 97 97

Molasses 55 54 53 53

Sodium bicarbonate 15 15 15 15

Calcium carbonate 14 14 14 14

Dicalcium phosphate 6 6 6 6

Mineral vitamin premix 5 5 5 5

Marine salt 5 5 5 5

Sunflower oil – 20 20 20

Fish oil – – 10 –

Algae marine oil – – – 10

COMPOSITION (g/kg DRY MATTER)

Organic matter 896 895 894 894

Crude protein 191 189 184 185

Neutral detergent fiber 354 390 364 368

Acid detergent fiber 139 145 141 142

Ether extract 16.0 37.2 47.3 48.9

DIETARY FATTY ACID (FA) PROFILE (AS % OF TOTAL FA)

C14:0 1.09 0.60 1.30 1.78

C16:0 20.9 14.7 15.1 15.4

Total C18 76.3 82.8 72.2 66.7

C20:5ω3 1.35 0.27

C22:5ω6 0.28 3.73

C22:6ω3 4.05 8.85

C24:0 0.34

Otros 1.20 1.33 5.04 2.44

DIETARY C18 FA (AS % OF TOTAL C18 FA)

C18:0 3.8 5.0 6.5 5.2

C18:1 c9 31.8 36.4 38.2 36.6

C18:2 c9c12 50.1 52.0 48.2 51.6

18:3 c9c12c15 14.3 6.7 7.2 6.6

Fatty acid profile of oils (as % of total fatty acids).

Sunflower oil: 8.7% C16:0, 5.3% C18:0, 35.6% C18:1ω9 c9, 47.3% C18:2ω6 c9c12,

0.3% C18:3ω3 c9c12c15.

Fish oil: 4.1% C14:0, 16.6% C16:0, 6.8% C18:0, 17.5% C18:1ω9 c9, 2.3% C18:2ω6

c9c12, 3.8% C18:3ω3 c9c12c15, 6.6% C20:5ω3 c5c8c11c14c17, 1.4% C22:5ω6

c4c7c10c13c16, 19.9% C22:6ω3 c4c7c10c13c16c19.

Algae oil: 6.4% C14:0, 18.4% C16:0, 1.0% C18:0, 1.8% C18:1ω9 c9, 0.5% C18:2ω6

c9c12, 0.1% C18:3ω3 c9c12c15, 1.7% C24:0, 1.3% C20:5ω3 c5c8c11c14c17, 18.3%

C22:5ω6 c4c7c10c13c16, 43.5% C22:6ω3 c4c7c10c13c16c19.

after 48-h of incubation and another bag with a 24-h incubation
residue.

Experimental Protocol: Sampling and
Measurements
Sampling procedures were as described in detail by García-
González et al. (2010). After a preliminary period of 6 days to
reach steady state conditions, a measurement period started and
lasted for 11 days (days 7–17). Samples to determine digestibility
(as substrate disappearance from the bag) and fermentation end-
products (VFA, lactate, gas, methane, and ammonia production)
were collected on days 7, 8, 9, 14, 15, and 16 of the experiment.
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Liquid effluent was collected in flasks to which 20 mL of
75 mM sulfuric acid had been added. Volume of effluent was
measured daily and a sample (about 50 mL) was directly frozen
(–18◦C) for later ammonia, lactate and VFA analysis. Gas was
collected in Tecator gas sampling bags (Tecobag, Tesseraux
Container, Germany) and volume was measured by empting the
bags with a vacuum pump connected to a flow meter (Ritter
Apparatebau, Germany). A rubber septum was incorporated into
the tubing for taking a sample using a syringe, and samples
were kept in 10 mL vacuum tubes (Venoject R©, Terumo Europe,
Belgium).

On day 9, (15NH4)SO4 (95% enriched, Sigma, Madrid, Spain)
was added into each vessel to dose 2.18 mg 15N to instantly
label the NH3-N pool, and a solution of (15NH4)SO4 was added
to the artificial saliva to reach a daily infusion rate of 4 µg/mg
dietary N. The total effluent and the contents of the nylon bag
collected from each vessel on day 12 were thoroughly mixed and
homogenized in a blender and used to obtain a representative
sample of total digesta and to isolate a microbial pellet following
the procedures of Carro and Miller (1999). Non-ammonia N
and 15N enrichment were determined in finely ground samples
of total digesta and microbial pellets to estimate microbial N
output.

On day 17, samples of digesta were collected from each vessel,
and consisted of 30 mL of liquid content of the fermentation
vessel, 1.5 g of fermentation residue from the 48-h bag, and 1.5 g
of fermentation residue from the 24-h bag. The samples were
mixed thoroughly, immediately frozen at –80◦C and freeze-dried.
Then, each sample was divided in two fractions. One portion
was used for lipid extraction and fatty acid analysis. The other
portion was homogenized by bead beating for 1 min (BioSpec
Products) and used for DNA extraction using the QIAamp DNA
Stool Mini Kit (Qiagen Inc., Valencia, CA, USA), according to
the manufacturer’s protocol with the exception of using a higher
temperature (95◦C) at the lysis step, required for cells that are
difficult to lyse (such as some ruminal bacteria). DNA samples
were used as templates for quantitative real-time polymerase
chain reaction (qPCR) amplification and terminal restriction
fragment length polymorphism (T-RFLP) analysis.

At the end of the experiment, the vessel liquid contents were
used to inoculate batch cultures to determine fermentation gas
production kinetics as indicator of the fermentative activity in
each vessel.

Chemical Analyses
Proximate composition (moisture, ash, crude protein, ether
extract, neutral, and acid detergent fiber) was determined using
the analytical methods described by García-González et al.
(2010). Methane in fermentation gas and VFA in effluent were
determined by gas chromatography, ammonia nitrogen and
lactate in effluent samples by colorimetry, and non-ammonia N
and 15N enrichment in digesta and microbial pellets by isotope
ratio mass spectrometry according to the methods described
in detail by García-González et al. (2010). Fatty acid profile in
samples of rumen digesta were determined according to Morán
et al. (2013).

T-RFLP and qPCR Analysis
Total bacterial DNA was amplified by PCR using universal
bacterial fluorescein-labeled oligonucleotide probes, forward
primer 12f (5′-AGA GTT TGA TCC TGG CTC AG -3′) and
reverse primer 1492r (5′-GGT TAC CTT GTT ACG ACT T-3′;
Hongoh et al., 2003). The labeled PCR products were purified
using GFX PCR DNA and Gel Band Purification kits (GE
Healthcare, Madrid, Spain) and quantified. Each DNA sample
(100 ng) was digested for 12 h at 37◦C with the restriction
enzymes HhaI, HaeIII, and MspI. The terminal restriction
fragments (TRFs) were analyzed by capillary electrophoresis
on an automatic sequence analyzer (MegaBACE 500, GE
Healthcare) with internal Et-ROX labeled DNA size standards
(Amersham Biosciences, GE Healthcare).

Finally, the allele report table generated by the Gene Marker
program was used to calculate the relative height of each peak
for each sample, then these data were analyzed by principal
component analysis (PCA). The matrix of relative height of
peaks detected from TRFs was used to calculate richness and
diversity indices as described by Hill et al. (2003) and Lemos et al.
(2011).

Quantitative real-time PCR was carried out using the Applied
Biosystems StepOne PlusTM Real Time PCR system (Applied
Biosystems) using SYBR Green Supermix (Takara Bio Inc.) as
described in Maeda et al. (2003). All reactions were performed
in triplicate, using 10 µL of qPCR mix, 2 µL of DNA template, a
variable volume (ranging between 0.5 and 2µL, depending on the
species or microbial group) of 10 µM solutions of each primer,
and then adding PCR water up to a total volume of 20 µL per
single reaction.

Primers were selected (Table 2) targeting the rRNA gene,
specifically the 16S subunit for the bacteria and the 18S subunit
for the ciliates and 18S and ITS1 for fungi. The methanogenic
archaea were detected using primers targeting the methyl
coenzyme-M reductase gene (mcrA) (Denman et al., 2007).

Quantitative PCR analysis of the Butyrivibrio SA-producing
bacteria [or B. proteoclasticus group including the species causing
a complete hydrogenation of unsaturated 18 C fatty acids to
stearic acid (SA)] was carried out using the molecular beacon
approach with the primers and probe designed by Paillard et al.
(2007) (Table 2).

Standards used for copy number calculations were prepared
using a plasmid vector containing the respective PCR amplicon
sequence of each of the microbial groups. The use of plasmids
as PCR standards are described in detail by Andrés et al.
(2016). The identity of the standard amplicons were verified by
sequencing the plasmid insert and confirming sequence identity
using BLAST (http://www.ncbi.nlm.nih.gov/BLAST/).

Fermentative Activity
On the last experimental day, batch cultures were inoculated with
the liquid contents of the vessels for studying the kinetics of
gas production in the different inocula upon specific incubation
of different substrates. The substrates used were cellulose
(Sigmacell R©, Sigma-Aldrich Química SA, Madrid, Spain), corn
starch (Calbiochem R©, Merck, Germany), and the same mixed
substrate used in the Rusitec vessels (CTR diet, Table 1), ground
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TABLE 2 | Primers used for qPCR and T-RFLP.

Primer Sequence (5′–3′) Target References

qPCR

TotBacf GTGSTGCAYGGYTGTCGTCA Total Bacteria Maeda et al., 2003

TotBacr ACGTCRTCCMCACCTTCCTC

qmcrA-F TTCGGTGGATCDCARAGRGC Methanogens Denman et al., 2007

qmcra-R GBARGTCGWAWCCGTAGAATCC

316f GCTTTCGWTGGTAGTGTATT Ciliate protozoa Sylvester et al., 2004

539r CTTGCCCTCYAATCGTWCT

fwd GAGGAAGTAAAAGTCGTAACAAGGTTTC Anaerobic fungi Denman and McSweeney, 2006

rev CAAATTCACAAAGGGTAGGATGATT

PrF GGTTCTGAGAGGAAGGTCCCC Prevotella spp. Stevenson and Weimer, 2007

PrR TCCTGCACGCTACTTGGCTG

FbsF GGAGCGTAGGCGGAGATTCA Fibrobacter succinogenes Khafipour et al., 2009

FbsR GCCTGCCCCTGAACTATCCA

SrF CAATAAGCATTCCGCCTGGG Selenomonas ruminantium Stevenson and Weimer, 2007

SrR TTCACTCAATGTCAAGCCCTGG

RaF TGTTAACAGAGGGAAGCAAAGCA Ruminococcus albus Stevenson and Weimer, 2007

RaR TGCAGCCTACAATCCGAACTAA

MeF GACCGAAACTGCGATGCTAGA Megasphaera spp. Ouwerkerk et al., 2002

MeR CGCCTCAGCGTCAGTTGTC

MeProbe TCCAGAAAGCCGCTTTCGCCACT Blanch et al., 2009

SbF GATAGCTAATACCGCATAACAGCATT Streptococcus bovis Moya et al., 2009

SbR AACGCAGGTCCATCTACTAGTGAA

SbProbe TGCTCCTTTCAAGCAT

ScF TGGGAAGCTACCTGATAGAG Succinivibrio spp. Tajima et al., 2001

ScR CCTTCAGAGAGGTTCTCACT

VAf GCCTCAGCGTCAGTAATCG Butyrivibrio VA (vaccenic acid producers) Shingfield et al., 2012

VAr GGAGCGTAGGCGTTTTAC

SAf TCCGGTGGTATGAGATGGGC Butyrivibrio SA (stearic acid producers) Paillard et al., 2007

Sar GTCGCTGCATCAGAGTTTCCT

MBP* CCGCTTGGCCGTCCGACCTCTCAGTCCGAGCGG

B395f GYGAAGAAGTATTTCGGTAT Butyrivibrio group Boeckaert et al., 2008

B812r CCAACACCTAGTA TTCATC

T-RFLP

27f AGAGTTTGATCCTGGCTCAG Universal bacteria Hongoh et al., 2003

1389r ACGGGCGGTGT GTACAAG

*Molecular beacon probe.

to 1 mm. On day 17, bags of substrate were withdrawn and liquid
was kept in the vessels, which were closed and left at 39◦C for
4 h. Meanwhile, 500 mg of DM of the substrates were weighed
into 120 mL serum bottles. Then, the fluid of each RUSITEC
vessel was anaerobically dispensed into each serum bottle (50 mL
each), inoculating two bottles per substrate and two blank bottles
(without any substrate), which were sealed and crimped, and
then incubated at 39◦C for 92 h. No additional buffer was added
to the bottles. Gas production was measured using a pressure
transducer (Theodorou et al., 1994) at 3, 6, 9, 12, 16, 20, 24, 29,
34, 44, 56, 68, 80, and 92 h. Nonlinear regression was performed
using PROC NLIN of SAS to fit the exponential model of France
et al. (2000) to cumulative gas production data:

G = A
[

1− e−kd(t−L)
]

, (1)

where G is cumulative gas production (mL/g) at incubation time
t (h), A is the asymptotic gas production (mL/h), kd is the
fractional fermentation rate (h−1), and L is the lag time (h). From
this equation, estimations were obtained for gas produced at 24
h (G24, mL/g), and average gas production rate (R, mL/g h−1)
between inoculation and time at which gas production was equal
to half of A (France et al., 2000).

Statistical Analysis
Measurements taken on several days were averaged for each
vessel. Data were analyzed using the SAS program (SAS Institute
Inc. 2011. SAS/STAT R© 9.3 User’s Guide. Cary, NC: SAS Institute
Inc.) with ANOVA using a randomized complete block design.
Within each experiment, treatments were randomly assigned
to two vessels of each RUSITEC system, thus giving four
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replicates per treatment. Each vessel (fermentation unit) was an
experimental unit, and the RUSITEC system was the blocking
factor. The statistical model was:

yijk = µ + Bi + Oj + εijk (2)

where yijk is the value for an individual observation, µ the overall
mean, Bi the effect of the blocking factor (i = RUSITEC system
1 or 2), Oj is the fixed effect of oil treatment (j = 1...4; CTR,
SFL, FSH, or ALG), and εijk is the residual error. The random
effect was fermentation vessel kwithin treatment (j) and block (i).
Statistical significance was declared at P < 0.05 and P < 0.10 was
considered a tendency. Multiple comparisons of means among
oil sources were performed using Tukey’s test.

Similarity and grouping of treatments based on T-RFLP
spectra were assessed using cluster and principal components
analyses.

RESULTS

There were no significant differences (P > 0.05) in ruminal pH
between diets, although average pH was significantly decreased
(P = 0.027) when the diet was supplemented with an oil. The
addition of oils had no apparent effect on substrate degradation
(assessed by measuring disappearance from the nylon bags
containing the incubated diet), except for fat digestibility, which
was higher (P < 0.001) when oil was added to the diet.
Furthermore, fat digestibility was increased (P = 0.010) when a
marine oil was supplemented compared with the diet containing
only sunflower oil. There were no significant differences among
the four diets in neutral detergent fiber (NDF) digestibility (P
= 0.132), but the contrasting comparison of the CTR diet with
average of all treatments supplemented with an oil (SFL, FSH,
and ALG diets) reached the level of statistical significance (P =

0.039). Methane production was consistently reduced (P < 0.05)
when oil supplements were added to the diet (Table 3). Total VFA

TABLE 3 | Effects of oils added to the diet on ruminal fermentation in RUSITEC fermenters.

Item Control

(CTR)

Sunflower

oil (SFL)

SFL + Fish

oil

SFL + Marine

algae

SEM

(n = 4)

P-value P-value contrast

CTR vs. OIL

P-value contrast

SFL vs. MARINE

Effluent, mL/d 594 585 628 591 19.9 0.458 0.786 0.346

pH 6.78 6.73 6.74 6.72 0.015 0.100 0.027 0.892

DISAPPEARANCE COEFFICIENTS, g DIGESTED/100g INCUBATED

Dry matter 73.3 73.0 73.1 73.7 1.05 0.958 0.973 0.768

Organic matter 72.7 72.2 72.3 73.1 1.10 0.926 0.939 0.705

Neutral detergent fiber 53.5 57.2 56.2 55.3 1.00 0.132 0.039 0.340

Acid detergent fiber 27.9 28.6 30.8 28.9 1.51 0.596 0.415 0.526

Crude protein 70.6 72.3 71.2 72.8 1.50 0.754 0.455 0.863

Ether extract 65.4b 81.5a 85.0a 88.9a 2.43 0.002 <0.001 0.010

FERMENTATION GAS PRODUCTION

Total gas, L/d 3.03 2.95 3.05 2.91 0.086 0.658 0.583 0.784

CH4, L/d 0.265a 0.222ab 0.207b 0.211b 0.0101 0.008 <0.001 0.355

CH4, mL/100 mL total gas 8.98a 7.86b 7.54b 7.23b 0.226 0.002 <0.001 0.124

CH4, mmol/g FOM 1.20a 1.01ab 0.94b 0.94b 0.050 0.011 0.002 0.334

VOLATILE FATTY ACID (VFA, mmol/d)

Acetate 25.5 27.4 26.5 26.7 0.49 0.175 0.061 0.257

Propionate 6.94c 7.38bc 8.36ab 8.46a 0.176 <0.001 <0.001 0.002

Butyrate 8.30 8.87 8.81 8.51 0.210 0.297 0.144 0.433

Valerate 2.56c 2.88b 3.19a 3.04ab 0.053 <0.001 <0.001 0.006

Isoacids 2.24 2.29 2.46 2.41 0.063 0.075 0.060 0.070

Total VFA 47.8b 51.3a 51.4a 51.3a 0.83 0.055 0.008 0.966

Acetate:propionate ratio 3.72a 3.54ab 3.19b 3.18b 0.099 0.012 0.009 0.014

L-lactate, mg/d 9.1c 10.1bc 14.0a 13.5ab 0.81 0.003 0.004 0.004

Ammonia N, mg/d 171 156 171 165 4.2 0.140 0.211 0.062

Microbial protein, g/d 1.39 1.35 1.41 1.37 0.072 0.924 0.894 0.638

Microbial protein, g/100 g FOM 14.1 13.7 14.3 13.7 0.75 0.919 0.842 0.728

CTR, Control diet; SFL, control diet supplemented with 2% sunflower oil; SFL + fish oil, control diet supplemented with 2% sunflower oil + 1% fish oil; SFL + algae oil, control diet

supplemented with 2% sunflower oil + 1% algae oil.

SEM, Standard error of the mean.

Contrast CTR vs. OIL: comparison between CTR and all treatments supplemented with oil.

Contrast SFL vs. MARINE: comparison between SFL and treatments supplemented with marine oils.

FOM, Fermentable organic matter.
a,bWithin a row, mean values without common superscript letters differ (P < 0.05).
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production was increased when diets containing supplementary
oil were fermented, mainly as result of the increase in propionate
and valerate production (Table 3). Propionate production was
significantly increased (P < 0.05) when diets supplemented
with marine oils were fermented compared with the control,
resulting in a reduced acetate to propionate ratio (Table 3).
Lactate production was also increased in diets with marine
oils compared with the control diet. The additions of oils
to the diet did not affect ammonia or microbial protein
synthesis.

The addition of oil to the diet gave rise to variations in the
digesta fatty acid profile, changing the proportions of C14:0
(greater with ALG than with CTR or SFL diets), C16:0 (lower
with SFL and FSH than with CTR diet), total C18 (greater
with SFL than with ALG diets), and C20 and C22 PUFA (only
present in treatments supplemented with marine oils; Table 4).
Compared with CTR diet, the addition of algae decreased the

percentage of C18:3 c9c12c15 in rumen digesta. The percentage of
C18:2 c9t11 was increased and that of C18:2 t10c12 was decreased
when the control diet was supplemented with an oil (Table 4).
Ruminal biohydrogenation of C18 fatty acids was calculated
according to Wu and Palmquist (1991). Compared to the CTR
diet, the addition of sunflower and fish oils (FSH treatment)
reduced the hydrogenation of C18 PUFA (C18:2 c9c12 and
C18:3 c9c12c15) and increased the hydrogenation of C18:1 c9.
Biohydrogenation of C18:3 c9c12c15 was greater with FSH than
with ALG diets, and that of C18:2 c9c12 was higher with FSH than
with any of the other diets tested. The addition of fish oil or algae
with sunflower oil to the CTR diet resulted in a decrease of the
overall hydrogenation of C18 unsaturated fatty acids. There were
no differences among treatments supplemented with oils (SFL,
FSH, or ALG diets) in total C18 fatty acid biohydrogenation.

There were no differences among inocula from RUSITEC
vessels fed the different diets in the fermentation of the control

TABLE 4 | Effects of oils added to the diet on ruminal digesta fatty acid (FA) profile and C18 fatty acid biohydrogenation in RUSITEC fermenters.

Item Control

(CTR)

Sunflower

oil (SFL)

SFL + Fish

oil

SFL + Marine

algae

SEM

(n = 4)

P-value P-value contrast

CTR vs. OIL

P-value contrast

SFL vs. MARINE

DIGESTA FATTY ACIDS (AS % of TOTAL FA)

C14:0 2.01b 1.92b 2.53ab 3.01a 0.160 0.011 0.091 0.008

C14:1 1.41 1.34 1.16 1.35 0.165 0.940 0.622 0.840

C15:0 1.59 1.17 1.50 1.38 0.163 0.350 0.256 0.204

C15:1 0.439 0.300 0.452 0.318 0.059 0.210 0.250 0.288

C16:0 22.8a 17.8b 18.2b 20.1ab 0.88 0.012 0.003 0.241

C16:1 4.09a 3.83ab 4.59a 3.19b 0.185 0.006 0.281 0.965

Total C18 FA 62.0ab 66.5a 64.1ab 59.1b 1.53 0.041 0.535 0.029

C20:5n3 0.0b 0.0b 0.50a 0.42a 0.117 0.017 0.045 0.008

C22:6n3 0.0b 0.0b 1.32a 1.59a 0.198 <0.001 0.002 <0.001

Others 6.29 6.18 7.09 6.48 0.788 0.854 0.733 0.562

C18 FA PROFILE (AS % of TOTAL C18 FA)

C18:0 17.5 15.1 13.4 14.4 1.45 0.390 0.126 0.550

C18:1 t11 2.23 2.33 1.87 2.76 0.674 0.874 0.903 0.992

C18:1 c9 29.5 29.6 27.6 31.6 1.47 0.340 0.907 0.975

C18:1 c11 4.63 3.47 4.49 3.04 0.449 0.077 0.088 0.611

C18:2 c9c12 31.2 40.6 40.3 40.8 2.95 0.139 0.028 0.716

C18:3 c6c9c12 0.30 0.25 0.34 0.33 0.040 0.401 0.944 0.102

C18:3 c9c12c15 5.62a 4.36ab 5.25ab 4.08b 0.328 0.038 0.024 0.513

C18:2 c9t11 0.049b 0.275a 0.337a 0.343a 0.029 <0.001 <0.001 0.105

C18:2 t10c12 0.391a 0.276b 0.298ab 0.291ab 0.022 0.043 0.008 0.623

Others 2.18 2.00 1.81 1.74 0.198 0.472 0.205 0.421

BIOHYDROGENATION %

C18:3 c9c12c15 52.7a 34.4ab 27.1b 38.3a 3.91 0.012 0.004 0.733

C18:2 c9c12 34.7a 29.8a 8.5b 24.7a 2.96 0.009 0.019 0.024

C18:1 c9 6.5b 21.2ab 27.7a 13.5ab 4.17 0.040 0.028 0.917

Total C18 biohydrogenation 27.3a 21.3ab 17.3b 18.9b 1.89 0.027 0.006 0.260

CTR, Control diet; SFL, control diet supplemented with 2% sunflower oil; SFL + fish oil, control diet supplemented with 2% sunflower oil + 1% fish oil; SFL + algae oil, control diet

supplemented with 2% sunflower oil + 1% algae oil.

SEM, Standard error of the mean.

Contrast CTR vs. OIL: comparison between CTR and all treatments supplemented with oil.

Contrast SFL vs. MARINE: comparison between SFL and treatments supplemented with marine oils.
a,bWithin a row, mean values without common superscript letters differ (P < 0.05).
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diet or cellulose (Table 5). In contrast, fermentation kinetics of
starch showed that the addition of fish or algae oils had a slight
inhibitory effect on microbial amylolytic activity in the rumen
(Table 5).

Both cluster analysis (Figure 1) and PCA (Figure 2) showed
clear discrimination between microbial profiles in the vessels
fed CTR or SFL diets and those receiving the FSH or ALG
diets. Treatments were clearly separated along the factor 1
(explaining up to 19% of the variance), indicating that this
principal component would reflect the effects of dietary oil
addition onmicrobial composition. The fragments with a greatest
contribution to this principal component were identified and
the differences between treatments in these fragments were
examined. A theoretical assignment of the more eccentric
TRFs to compatible bacterial species was performed using
the tap-tRFLP tool of the Ribosomal Data Project (Cole
et al., 2003). Based on this analysis it would seem that
supplementation with FSH and ALG would increase bacteria
belonging to genera Fibrobacter and Prevotella, and would
reduce abundance of bacteria of Butyrivibrio, Ruminococcus,
Proteobacteria, Actinobacteria, Lachnospira, and Streptococcus
genera. The supplementation of the control diet with oils did not
significantly affect measurements of species richness or diversity
(Table 6) or total bacterial numbers (Figure 3A). The specific
microbial groups affected by the addition of oils are shown in
Figures 3A–C. The addition of sunflower oil alone had no effect
(P > 0.05) on any of the microbial groups examined. This effect

on the Butyrivibrio SA numbers was also seen when the diet was
further supplemented with fish or algae oils (Figure 3A). The
diets supplemented with fish and algae oils increased the numbers
of ciliate protozoa and reduced the counts of methanogenic
archaea (Figure 3B), although the decreased in methanogens was
only significant with the ALG diet. Diets FSH and ALG increased
the abundance of Selenomonas ruminantium, and ALG diet also
decreased the presence of Streptococcus bovis (Figure 3C). No
other significant diet effects were observed on any of the other
microbial groups quantified by qPCR.

DISCUSSION

If supplementation of dietary oils in ruminant livestock diets
can provide even small improvements in terms of more efficient
production, better health and welfare of the animal or reduction
of environmental impact, then there are clear benefits to their
use. This study measured the changes in rumen fermentation and
microbial community composition, in particular in prominent
microbial groups associated with key aspects of ruminant
livestock production, in response to the supplementation of the
diet with different combinations of sunflower and fish oil as
well as a marine algae based product. Microbial communities
were examined in digesta samples obtained from fermenters in
which ruminal fermentation is simulated in vitro, characterized
by a precise control of inputs (feed and saliva) to and outputs

TABLE 5 | Effects of oils added to the diet on fermentative activity in RUSITEC fermenters.

Item Control

(CTR)

Sunflower

oil (SFL)

SFL + Fish

oil

SFL + Marine

algae

SEM

(n = 4)

P-value P-value contrast

CTR vs. OIL

P-value contrast

SFL vs. MARINE

CONTROL DIET

Asymptotic gas production, mL/g 321 321 312 328 9.3 0.676 0.903 0.914

Fractional fermentation rate, h−1 0.050 0.049 0.055 0.051 0.0024 0.324 0.695 0.205

Lag time, h 1.3 1.4 1.7 1.6 0.26 0.456 0.179 0.429

Average fermentation rate, mL/h 10.6 10.4 10.9 10.6 0.46 0.820 0.764 0.458

Gas production at 24 h, mL/g 217 215 220 221 7.1 0.936 0.955 0.537

STARCH

Asymptotic gas production, mL/g 414 419 400 422 15.8 0.780 0.980 0.704

Fractional fermentation rate, h−1 0.111 0.107 0.104 0.096 0.0054 0.270 0.184 0.264

Lag time, h 2.2b 3.0ab 3.5ab 5.1a 0.51 0.012 0.016 0.061

Average fermentation rate, mL/h 24.7a 22.2ab 20.1b 18.1b 1.04 0.006 0.003 0.035

Gas production at 24 h, mL/g 377 374 347 346 11.1 0.132 0.120 0.067

CELLULOSE

Asymptotic gas production, mL/g 388 384 356 382 23.3 0.760 0.627 0.604

Fractional fermentation rate, h−1 0.046 0.048 0.051 0.047 0.044 0.924 0.661 0.886

Lag time, h 14.9 15.3 16.6 16.0 1.53 0.859 0.534 0.619

Average fermentation rate, mL/h 6.6 6.4 5.9 6.1 0.40 0.603 0.345 0.374

Gas production at 24 h, mL/g 122 122 100 112 16.2 0.753 0.590 0.432

CTR, Control diet; SFL, control diet supplemented with 2% sunflower oil; SFL + fish oil, control diet supplemented with 2% sunflower oil + 1% fish oil; SFL + algae oil, control diet

supplemented with 2% sunflower oil + 1% algae oil.

SEM, Standard error of the mean.

Contrast CTR vs. OIL: comparison between CTR and all treatments supplemented with oil.

Contrast SFL vs. MARINE: comparison between SFL and treatments supplemented with marine oils.
a,bWithin a row, mean values without common superscript letters differ (P < 0.05).
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FIGURE 1 | Dendrogram derived from the analysis of T-RFLP data showing the grouping of RUSITEC bacterial communities provided with either control diets (CTR) or

diets supplemented with 2% sunflower oil (SFL) oil, sunflower oil with 1% fish oil (FSH) or sunflower oil and 1% marine algae (ALG). The number after the treatment

code indicates the RUSITEC system (there were two RUSITEC systems and two replicates of each treatment in each system).

(fermentation end-products) from the system, and of the
fermentation conditions (e.g., pH, temperature). The use of live
animals was avoided by maintaining the microbial communities
in a simulated rumen environment.

The diversity of the total bacterial community was measured
using T-RFLP. Richness and diversity of species were not
affected by the supplementation with SFL either with or without
the addition of the fish oil and marine algae. In both the
clustering and principal component analyses, the RUSITEC
vessels formed groups separate from the effects of the treatment.
This effect was considered a normal effect of the variability in
the microbial community between systems. For instance, in the
case of the vessels receiving only SFL (2%), the treatment effect
was not as strong as the system effect. However, the samples
containing the additional 1% fish oils or algae formed a group
separated from the SFL only and control treatments. A similar
discrimination of bacteria community composition has been
reported in rumen fluid obtained from sheep supplemented
with different combinations of 2% sunflower and/or 1% fish
oil (Belenguer et al., 2010). Significant effects on the bacterial
community have been detected when grass or red clover silage
diets were supplemented with 0, 1, 2, or 3% fish oil, but
with a minor effect on richness of species (Huws et al., 2010).
Diets supplemented only with 2.5% sunflower oil, or with
this plant oil plus incremental amounts (0.8, 1.6, or 2.4%) of
marine algae were clustered according to the ruminal bacterial
composition (Toral et al., 2012) in a comparable grouping as in
our study.

Analysis by qPCR of the individual species and microbial
groups proved a more sensitive measurement of the effects of the
different oils. The addition of 2% SFL with or without additional
1% FSH and ALG caused a non-significant fold reduction in the
copy number of total bacteria relative to the control. This result
was broadly reflected in the results measuring the total microbial
protein synthesis (g/d). An inhibitory effect of oils on rumen
bacteria has been reported in a number of studies in vivo (Vargas-
Bello-Pérez et al., 2016) and in vitro pure cultures (Maia et al.,
2010) although in these cases, a higher dosemay have contributed
to a greater effect.

General bacterial diversity and abundance measured by T-
RFLP agreed with the rumen fermentation results. Substrate
degradation was not affected and total VFA production was
increased by the addition of oils to the diet. The addition of fat
to ruminant diets has been previously associated with a reduction
of feed digestibility, in particular of fiber degradation (Palmquist
and Jenkins, 1980). This effect has been attributed to changes in
the microbial communities, a reduction in fermentative activity
or the limitation of the access of microbes and enzymes to
feed particles due to physical coating (Nagaraja et al., 1997). In
our study, bacterial groups involved in fiber degradation were
not substantially modified. Ruminococcus albus showed a small
increase in copy number, and the dominant ruminal fibrolytic
bacteria Fibrobacter succinogenes was not significantly affected
by oil supplementation. Hence, the ability to breakdown dietary
fiber in the rumen was not negatively affected by the addition
of oils at the doses used in these experiments (Denman and
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FIGURE 2 | Principal components plot derived from the analysis of T-RFLP data showing the discrimination along principal components 1 and 2 of RUSITEC bacterial

communities provided with either control diets (CTR) or diets supplemented with 2% sunflower oil (SFL) oil, sunflower oil with 1% fish oil (FSH) or sunflower oil and 1%

marine algae (ALG). The number after the treatment code indicates the RUSITEC system (there were two RUSITEC systems and two replicates of each treatment in

each system).

TABLE 6 | Diversity indices of the RUSITEC bacteria community provided with control diets, or diets containing sunflower oil only, or sunflower oil with algae or fish oil

supplementation.

Index Control

(CTR)

Sunflower

oil (SFL)

SFL + Fish

oil

SFL + Marine

algae

SEM

(n = 4)

P-value P-value contrast

CTR vs. OIL

Species richness, S 84.8 80.5 78.3 65.8 8.73 0.418 0.320

Shannon’s diversity index, H’ 3.78 3.73 3.64 3.49 0.128 0.280 0.250

Shannon’s evenness index, E 0.855 0.849 0.836 0.848 0.016 0.834 0.484

Simpson’s diversity index, D 0.043 0.050 0.056 0.061 0.0092 0.397 0.222

Index of diversity, 1-D 0.957 0.950 0.944 0.939 0.0092 0.397 0.214

Number of species accounting for 50% total relative peak height 6.3 5.5 5.0 4.0 1.54 0.608 0.375

Number of species accounting for 70% total relative peak height 14.0 13.5 12.0 10.5 2.65 0.596 0.440

CTR, Control diet; SFL, control diet supplemented with 2% sunflower oil; SFL + fish oil, control diet supplemented with 2% sunflower oil + 1% fish oil; SFL + algae oil, control diet

supplemented with 2% sunflower oil + 1% algae oil.

SEM, standard error of the mean.

Contrast CTR vs. OIL: comparison between CTR and all treatments supplemented with oil.

McSweeney, 2006). In concordance with these observation, the
fermentative activity on pure substrates (cellulose or starch)
assessed by gas production kinetics was not affected when the
different fat supplements studied were added to the control
diet. The amount and type of lipid added (Jenkins, 1993)
may explain the discrepancy of the effects of oil addition
on bacteria numbers and substrate degradation observed in
our study with others reported in the literature. With levels

of added oils similar to that used in our study, Doreau
et al. (2009) concluded that organic matter fermentation in
the rumen was not affected. In a recent meta-analysis, Weld
and Armentano (2017) showed that the inclusion of fats to
dairy cow diets did not affect total tract and ruminal fiber
digestibility. Patra (2014) concluded that fiber digestibility was
only adversely affected when fat was added to sheep diets at
high concentrations. Also in agreement with our study, Gao
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FIGURE 3 | Relative quantitation compared to control diet of 16S rRNA copy

numbers of rumen microbiota groups after supplementation of the control diet

with sunflower oil (SFL) or with combinations of SFL and fish oil (FSH) or

marine algae (ALG). Fold-changes for specific amplicon groups were

calculated as the (log 2) ratio of normalized abundances. (A) Total bacteria and

microbial groups involved in biohydrogenation. (B) Major prokaryotic and

eukaryotic domains found in the rumen including the Archaeal groups

responsible for the production of ruminal methane. (C) Other key bacteria

groups including the dominant Prevotella spp. and species involved in fiber

degradation, and lactate metabolism. *Significant difference in copy number (P

< 0.05) compared with the control.

et al. (2016) observed an increase in VFA concentration in batch
cultures of mixed ruminal microorganisms fed with substrates
supplemented with different oil sources. Differences among diets

in NDF degradation were not significant (P = 0.132), but
the contrast comparing the control vs. oil-supplemented diets
became significant (P = 0.039). This finding was unexpected,
as only few studies have observed an effect similar to that
seen in our study (e.g., Kim et al., 2008). It is noteworthy that
none of the diets supplemented with an oil was significantly
different from the control diet, and that whereas the contrast
was significant for NDF, it was not so for acid detergent
fiber. On the other hand, cellulolytic activity as determined
with a highly sensitive method (gas production fermenting
cellulose in the incubation medium from Rusitec fermenters),
total VFA or acetate production and abundance of fibrolytic
bacteria (F. succinogenes and R. albus) were not different among
treatments, indicating that effects of oil supplementation on
NDF digestibility would be rather subtle. Overall, considering
all the data comprehensively it would be sound to assume that
regardless the statistical significance for that particular contrast,
the effect of oil supplementation on NDF degradation is of little
biological relevance.

Copy numbers of Succinovibrio spp. as an example of the
rumen Proteobacteria group was reduced. However, there were
few exceptions with members of the bacteroidetes Prevotella spp.
and S. ruminantium apparently benefitting from the addition
of the oil and algae supplements. These nutritionally versatile
groups may have been able to expand their niche as a result of
the general reduction in numbers of other species.

Ciliate protozoa numbers were significantly increased with
the addition of 1% FSH and ALG to the 2% SFL, and those
of methanogens significantly reduced, particularly after ALG
supplementation. The significant increase of ciliate protozoa in
the present study was unexpected. Lipids have been reported
as potential defaunating agents, albeit at much higher doses
(Newbold and Chamberlain, 1988). Previous in vivo studies
reported ciliate numbers were either unaffected (Boeckaert et al.,
2008) or reduced (Boeckaert et al., 2007) following the addition
of an algae supplement in the diet. However, the treatments
excluded the addition of SFL and could merely highlight the
differences between ciliate growth in vivo and in vitro. Martínez
et al. (2010) reported protozoa numbers in RUSITEC fermenters
were orders of magnitude reduced from and not representative
of the protozoal population observed in rumen of sheep fed a
similar diet.

A reduction of the number of methanogens caused by
dietary oil supplementation was associated with the reduced rate
of ruminal methane production by the RUSITEC fermenters.
Methanogenesis has been reported to be correlated with
methanogen numbers (Wallace et al., 2015). In our study,
whereas the production of total fermentation gas was not affected
by the inclusion of oils in the diet, the methane concentration
in the gas was reduced by 16% on average compared with that
observed with the CTR diet. As a result, methane production
(expressed either as volume per day or as mmol/g fermented
OM) was significantly reduced when FSH or ALG were added to
the diet. Similar oil based dietary supplements have been found
to reduce methane production in vitro (Castagnino et al., 2015).
The link between dietary fat supplementation and a reduction in
ruminal methane production has been also shown by compiling
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data from different studies (Eugène et al., 2008). Another meta-
analysis showed that fats added at low concentration to sheep
diets may decrease methane production without affecting rumen
fermentation (Patra, 2014), in agreement with our results in
RUSITEC fermenters. Methane reduction by oil supplementation
concurred with changes in the VFA profile, in particular with
an increase in propionate production and a decreased acetate to
propionate ratio. The relative increase in propionate production
in response to the inclusion of dietary fats has been observed in
vitro (Potu et al., 2011) and in vivo (Shingfield et al., 2012).

Ruminal biohydrogenation of PUFA has been well-
documented (Jenkins et al., 2008). Linoleic acid is converted
to CLA (C18:2 c9t11), which is then hydrogenated to vaccenic
acid (C18:1 t11). Linolenic acid is converted to C18:3 c9t11c15
and C18:2 t11c15 as intermediates and finally hydrogenated to
vaccenic acid. Under the highly reducing conditions prevailing in
the rumen, vaccenic acid may be further saturated to stearic acid
(C18:0). Less is known about the biohydrogenation of ω-3 PUFA
having more than three double bonds (C20 or C22). It has been
observed that these fatty acids disappear rapidly when incubated
in cultures of mixed ruminal microorganisms (AbuGhazaleh
and Jenkins, 2004), probably by isomerization, hydrogenation
and chain shortening leading to the formation of trans-C18:1,
although the intermediate steps have not been elucidated.

Anaerobic fungi have been found to play a role in the
biohydrogenation of linoleic and linolenic acids (Nam and
Garnsworthy, 2007). The addition of the different oil and algae
supplements had a variable non-significant effect of the copy
numbers of fungi relative to the control. Therefore, it is possible
that other microorganisms had a more relevant contribution to
biohydrogenation of fatty acids in our RUSITEC fermenters. The
Butyrivibrio bacteria groups include species that are associated
with the biohydrogenation of unsaturated fatty acids (Wallace
et al., 2006). The toxicity of unsaturated acids on isolates of
species within this group of bacteria has already been reported
(Maia et al., 2010) as well as the reduction of copy number
of Butyrivibrio spp. in vivo following the supplementation of
vegetable oils (Kim et al., 2008) or algae (Boeckaert et al., 2008). It
is apparent that there is considerable animal-to-animal variation
in the response of rumen microbes to dietary oil (Belenguer
et al., 2010). In the RUSITEC, oil or algae supplementation
consistently reduced copy number of Butyrivibrio spp. relative to
control, the stearic acid producing group (SA) being significantly
affected by the SFL, FSH, and ALG treatments. In our study,
total biohydrogenation of C18 fatty acids was reduced with the
addition of fish oil or algae. The addition of dietary fish oil at
1% or 3% of dry matter intake has been found to affect adversely
some bacterial species, in particular Butyrivibrio spp., and to
reduce the biohydrogenation of fatty acids in the rumen (Kim
et al., 2008). Stearic acid in the ruminal digesta was reduced
in all the oil supplemented treatments, although the differences
with the control diet did not reach statistical significance.
Rumenic acid (C18:2 c9t11) was significantly increased in
all oil supplemented treatments, probably in response to the
sunflower oil, as no further increase was observed when fish
oil or algae were added to this vegetable oil. The effects of oil
supplementation on fatty acid profile and biohydrogenation in

ruminal digesta depend on the type and amount of oil added
and on the diet to which the oil is incorporated (Shingfield
et al., 2012). The addition of vegetable or marine oils at an
appropriate dose could, in theory, contribute to the production of
healthier products from ruminant livestock, provided this is not
accompanied by an overall decrease in fat synthesis (Shingfield
et al., 2006).

Copy numbers of S. bovis were reduced with the addition
of the SFL, FSH, and ALG supplements, significantly in the
latter. As a prominent lactate producer, S. bovis is associated
with acidosis in livestock ruminants often as a response to
the feeding of high concentrate diets (Petri et al., 2013). By
reducing the proliferation of this microbial group with the
addition of oils or algae to the diet it may be possible to
remediate such a condition. However, the production of lactate
was significantly increased with the addition of FSH or ALG to
the diet possibly as a result of a proliferation of other lactate
producing species such as the Lactobaccilli not measured here.
Despite the increase in lactate, it was not sufficient to significantly
reduce the rumen pH. Moreover, the relative copy number of
the corresponding lactate consumer Megasphaera elsdenii was
not affected by the incorporation of oils to the diet. Studies with
lambs (Ferreira et al., 2016) or dairy cows (Shingfield et al.,
2003) reported a slight increase in rumen pH when feed was
supplemented with fish oil. This effect was not observed in our
in vitro study where the incubation medium in the fermenters is
strongly buffered, so variations in pH may be not representative
of those occurring in vivo. Lipid supplements increase the
energy concentration of the diet without increasing the risk of
rumen acidosis, but further research on the effects of adding
oils to ruminant diets on lactate production and utilization is
warranted.

Using the RUSITEC system it was demonstrated that there
can be real potential to manipulate the rumen microbiota
with the addition of vegetable and fish oils and marine
algae supplements. The balance of the various groups of the
microbial community can in turn contribute to a number of
important aspects of livestock agriculture described previously.
The effect on the microbial community of the supplementation
was reflected in VFA and methane production activity with
a significant shift toward propionate production and lower
emissions. Moreover, there were concomitant changes in long
chain fatty acid profiles and in biohydrogenation of unsaturated
fatty acids without adversely affecting ruminal fermentation.
Therefore, our findings support and add to the results of
previous studies linking dietary fish oil supplements and
the fatty acid composition in milk (Shingfield et al., 2006;
Toral et al., 2012) and methane production (Eugène et al.,
2008).
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