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1 Introduction 

 

Bacteria are single cell organisms, which are ubiquitous in nature. 

They perform different functions in nature depending on their 

biological needs and can act as decomposers [1], pathogens [2], 

parasites [3] or just live as commensals [4]. The general life cycle of 

bacteria includes growth, binary fission, cell death and lysis. Different 

bacterial species use various metabolic mechanisms to attain cell 

growth. Two major metabolic mechanisms include heterotrophic [5] 

and autotropic [6] metabolism. Heterotrophic metabolism involves 

uptake of organic compounds by the bacteria, which are later oxidized 

to energy (ATP) and other organic compounds such as glucose, CO2, 

etc. In autotrophic metabolism, the bacteria oxidize inorganic 

compounds such as iron, nitrogen and sulphur in order to acquire their 

required energy for growth and survival. Autotrophic metabolism 

encompasses photosynthesis carried out by bacteria such as 

cyanobacteria. In addition to growth and proliferation, the bacteria are 

also motile. For their locomotion, the bacteria are equipped with whip 

like structures called flagella [7]. These structures are also used as 

sensors to guide the motility of bacteria based on the chemical field [8] 

or heat signatures [9]. In order to survive, bacteria use different 

strategies during their lifetime to protect themselves from predators and 

get the optimal nutrient required for their growth. Some bacteria in their 
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environment live independently, that is, during the life cycle they 

proliferate, infect, and move without interaction with the spatially local 

bacteria. These independent bacteria are called planktonic bacteria 

[10]. The motile bacteria move across their surrounding using the 

flagella, a range of motion is exhibited such as swimming, twitching, 

sliding and gliding [11]. Their direct exposure to the environment 

makes planktonic bacteria vulnerable to antibiotics, viruses and other 

bacteriophages in their vicinity. To protect themselves from predators 

and reduce the hazards from antibiotics and toxic substances, bacteria 

generally aggregate together and form a single colony known as 

biofilm [12]. During this transition from planktonic to biofilm, the 

bacteria move towards the fluid-solid interface and lose their motility 

after contact with the surface to ensure that the structural integrity of 

the biofilm is not disturbed due to the motion inside the colony [13]. In 

addition to sessile behavior, bacteria express different levels of gene 

regulation before and after the transition from the planktonic to the 

biofilm state [14, 15]. Inside the biofilm, bacteria secrete enzymes, 

extra polymeric substance (EPS) [16] and other substances required to 

hold the colony in place and trap the required nutrients. Thus, the 

biofilm acts as a safe-house for the bacteria and also as a storage 

container of solutes [17], which may or may not be useful for the 

bacterial survival. Once a biofilm is established over a surface it can 

host millions of bacteria as a single community. EPS secreted by these 

bacteria act as an adherent and a protective layer guarding the 

community from external shear stresses, viruses, and antibiotics. 
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Though this is an ideal protection system for bacteria, it has detrimental 

effects on human beings. Around 80% of infections [18] in the human 

body caused by microbes originate from a biofilm rather from 

planktonic cells. Diseases such as cystic fibrosis in lung [19], 

periodontitis in teeth [20], endocarditis in heart tissue [21] and urinary 

tract infections [22] are a few diseases commonly caused by biofilms 

residing in human body. In addition to concerns in healthcare, 

industrial biofouling [23, 24] is another important field where biofilms 

have a devastating effect. For instance, the Embalse [25] nuclear power 

plant has been a victim of biocorrosion with biofilms being its major 

contributor. Biocorrosion in nuclear reactors or water distribution 

systems could lead to large scale disasters on public health and 

spending.  Similarly, biofilms have been a major concern for public 

health throughout the world. A good example would be the listeriosis 

outbreak in South Africa [26] in 2017 where Listeria monocytogenes, 

a gram-positive anaerobic bacterium, was the reason behind the disease 

outbreak. It affected foetuses, new-borns, men and women alike, with 

around one fourth of the cases proving fatal with a death toll of more 

than 200. The outbreak started through processed meat and other 

refrigerated products. L. monocytogenes are capable of surviving in 

refrigerated conditions. Generally, during food processing, the food is 

treated with surfactants which renders these bacteria inert or kills them. 

However, L. monocytogenes can form biofilms, making the chemicals 

only partially effective on the biofilm population, whereby a part of the 

population survives and infects human hosts. Hence, interest on biofilm 
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removal research [27, 28] has increased considerably during the past 

years. In order to reduce the damage caused by such biofilms, it is 

important to remove the colony from its parent site. Removal of biofilm 

is a complex process, as previous research has shown, a single chemical 

or mechanical scrubbing process [28, 29] is not capable of uprooting 

and displacing the biofilm completely from the surface. This 

necessitates a deeper understanding of the dynamics behind formation 

and spread of the biofilm structures. 

1.1 Structure of biofilms 

The process of biofilm formation occurs in three distinct phases; 

• Adhesion of initial colonizers 

• Growth of colony 

• Detachment and dispersion of bacteria 

1.1.1 Adhesion phase 

First, planktonic bacterial cells suspended in the liquid phase 

settle onto the solid surface. The settling process proceeds through two 

kinds of processes, active and passive settling. Passive settling involves 

cells settling due to effect of gravitational force and viscous effects of 

the suspension fluid. This passive process is relatively slower than the 

active settling process in which some cells propel themselves towards 

the surface using their flagella [30] and swim through the liquid. After 

they reach the surface, depending on the electrostatic charge [31] on 
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the surface, they secrete enzymes to make the surface suited for their 

habitat. Followed by the modification of the surface properties, bacteria 

settle on the surface and adhere to the surface. This process of adhesion 

is dynamic, the cells repeatedly attach and detach until they find a 

suitable spot, where their adhesion force to surface is maximum [32]. 

Once attached, the initial colonizers attract other planktonic cells 

towards their site of adhesion. The attracted cells adhere to the surface 

or to the colonizers to form a small colony of cells. Success of  

colonization of the surface depends on the adhesive characteristics of 

the bacteria [33]. In addition to adhesion characteristic of the cell, the 

quorum sensing (QS) phenomenon of bacterial population determines 

the extent of surface colonization [34, 35]. QS involves inter-bacterial 

communication through passive diffusion [36] of signal molecules 

secreted by the bacteria. The bacteria in the biofilm have been shown 

to sense population density and vary gene expression of cells through 

QS signaling [37].  In addition to QS, there are also mechanisms 

through with bacteria can suppress the QS activity, known as Quorum 

Quenching (QQ) [38]. After the colonizing bacteria settle on the 

surface, they start to proliferate and establish a suitable base for 

bacteria to thrive on. This stage is the onset of biofilm formation. 

During this stage, there is no definable shape or overall structure to the 

biofilm, since the cells could spread out as they are yet to secrete EPS. 
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1.1.2 Growth phase  

The next stage of biofilm structure evolution is the proliferation 

of the bacterial cells utilizing the nutrients surrounding them. Most 

bacteria [39] use organic substrates such as glucose, fructose, and 

simple sugars as their growth medium. There exist bacteria which 

thrive in places where there is no oxygen, anaerobic [40], and other 

bacteria which survive by feeding on metal ions [41], for simplicity and 

easier understanding we consider only the aerobic bacteria that feed on 

organic substrates for their growth throughout this work. One important 

parameter that decides the final shape of the biofilm is nutrient 

concentration. If the substrate is available in abundance, then the cells 

grow and divide at a faster pace. The rapid growth results in formation 

of thick slabs of biofilm [42] around 200-300 µm thickness, that can be 

observed in most natural flow systems. Under average amount of 

substrate availability, the cells at the bottom are devoid of nutrients 

while the cells at top are exposed to relatively high concentration of 

substrate. Therefore, cells at the top proliferate faster than cells at the 

bottom. The cells keep stacking over themselves, forming layers of 

cells over each other, resulting in a structure similar to a heap of sand. 

Finally, if the nutrient availability is scarce or minimal, then the growth 

of cells is retarded. Also, due to nutrient deficiency, cell deaths occur 

inside the biofilm, mostly localized at the bottom parts of the biofilm 

where the nutrient diffusion or permeation is too low. Such biofilms 

grown under nutrient deprived conditions result in finger-like 

projections [43] or structures resembling mushroom shapes [44]. Few 
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studies have tried to elucidate on the mechanism behind the 

development of such structures. Klausen et al. [44], designed a system 

where they used two strains of Pseudomonas aeruginosa bacteria, one 

is a wild-type with no mutations, the other, a motility mutant which 

cannot move actively using its flagella. When these two strains were 

mixed and co-cultured in lab, they formed a biofilm with mushroom 

shape under low nutrient condition. It was observed that the wild type 

cells always occupied the top or cap of the mushroom, while the 

motility mutants were found at the bottom. This suggests that biofilm 

structure formation depends on cell motility [45] contribute from active 

motion or from cell chemotaxis. It is important to note that mushroom 

biofilm structures are one of the toughest biofilm structures that cannot 

be detached from parent site. The cap of the mushroom structure acts 

as protective shield against the fluid shear and host majority of growing 

biofilm population inside it and exposes them to fresh incoming 

nutrients. In the event of a cap getting detached due to fluid shear, the 

stalk of the mushroom remains rooted and the cap can redevelop at the 

same spot. These structures could lead to pressure drop in flow pipes, 

heat exchangers and boilers [46], which in turn can lead to serious 

break down and machine damage. 

1.1.3 Displacement phase 

The final stage of biofilm life cycle is the displacement of 

bacteria [47] from the parent site. Removal or displacement of bacteria 

from the parent biofilm site can occur in two different process namely 
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detachment [47] and dispersal [48]. The passive removal of cells of the 

biofilm due to external stimuli such as pressure, fluid shear or structural 

failure be collectively termed as detachment. This type of bacterial 

removal is seldom initiated directly by the bacteria within the biofilm 

[49]. Detachment can proceed in multiple ways such as erosion, 

sloughing and abrasion. Erosion involves removal of few cells of the 

biofilm due to fluid shear or external pressure. Erosion could be a 

continual or an intermittent process depending on the environmental 

constraints. Sloughing is different from erosion in that it involves 

removal of chunks of biomass, instead of few smaller groups of cells.  

Sloughing is quite common in biofilms experiencing high fluid shear 

or when they are structurally unstable. Abrasion occurs due to physical 

impact of moving or floating particles around the biofilm. Due to the 

lack of active role of bacteria in the displacement process, detachment 

is considered as a passive process. On the other hand, removal or 

ejection of cells from biofilm due to processes such as production of 

enzymes, extracellular surfactants or other factors by the bacterial cells 

is termed as dispersion, which is the active process of biofilm removal. 

Biofilm dispersal could be treated as an analog to dispersion of seeds 

or pollen from plants. After dispersion of bacterial cells from the parent 

site, the cells search for new sites to colonize and repeat the life cycle. 

Biofilm dispersion has a become a subject of intense research in past 

decade. Researchers have attempted to understand dispersion using 

multiple analysis techniques such as proteomics [50], calorimetric 

methods [51] and even gene expression profiling [52]. QS signaling 
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has also been implicated as a major player in the dispersion processes 

[53].There have been many contradictory findings reported in 

literature, for instance, nutrient limitation has been reported as an 

initiator of biofilm dispersion in Aeromonas hydrophila [54], while 

high nutrient concentration initiated dispersion in Acinetobacter [55]. 

Similarly, the influence of cell motility on dispersion has not been 

clearly understood, Tolker-Nielsen et al. [13] showed that flagellar-

motility was involved in dispersion while research by Morgan et al. 

[50] proved motility was not necessary for initiating dispersion. These 

observations present an unclear explanation for dispersion; a process 

initiated by bacteria, which breaks the microenvironment that it had 

already built.  

1.2 Biofilm ecosystem 

In short, bacterial biofilm is a complex system which exists and 

evolves as a result of interactions between millions of bacteria within 

the biofilm and external factors such as nutrients, fluid shear and QS 

signaling outside the biofilm. Such complex systems cannot be 

analyzed and understood, by generalizing their overall behavior to the 

behavior of its individual members. Therefore, the core aim of this 

thesis is to unravel the underlying mechanisms behind the physical 

transformations of bacterial biofilms, which arise from the complex 

interactions of the biological, physical and chemical components 

present in the system. Due to diverse behavior and biological makeup 

of individual bacteria, it is often not possible to generalize any 
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phenotypic expression or evolutionary behaviors on all bacterial 

species. 

 

 

Figure. 1.1 Summary of biofilm phenomena analyzed in this thesis. (a) 
Various stages of biofilm growth in the presence of a nutrient field, (I) 
settling phase, (II) cell proliferation and (III) developed mushroom-
shaped structures. The green colored cells indicate settlers, orange 
cells indicate proliferating cells, violet cells indicate dormant and dead 
cells, blue color indicates the EPS in the biofilm and the surrounding 
peach color indicates the substrate field around the biofilms. (b)  
Consequences of fluid flow in the biofilm ecosystem, (I) sloughing and 
(II) erosion of biofilm due to fluid shear and (III) intra- and inter-biofilm 

a 

b 

I II III 

I II III 
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QS-QQ signaling. The yellow pentagons and green stars denote the QS 
signals and QQ signals respectively. The dark peach background 
indicates the fluid field, with the white lines denoting the flow path. 

 

The works presented in this thesis are centered around two 

bacterial species, Pseudomonas aeruginosa (PA) and Escherichia coli 

(E. coli). The reason for the selection of these model organisms is 

because of their significance on human health, their abundance in 

nature and the availability of vast literature/data for it [56, 57]. PA are 

rod-shaped bacteria with flagella protruding from the shorter edge of 

the body. It can exhibit both lifestyles – planktonic and biofilm.  E. coli 

is a gram-negative bacterium and has a similar body structure as PA. 

These two model organisms will be used as both mutants and wild-type 

in the studies included in the thesis. Due to the intertwined nature of 

the interactions and the evanescent consequences of these interactions, 

it is rather impractical and time-consuming to analyze the underlying 

mechanisms of biofilm transformations solely through experiments on 

the model organisms.  

1.3 Emergence of biofilms 

What are the crucial physical and biological drivers steering the 

spatiotemporal evolution of bacterial biofilms? – this is the core 

question which is explored in this thesis. More specifically, three sub-

questions derived from this core question are examined in detail. They 

are, how does spontaneous evolution of different biofilm shapes occur 

in nature? what are the ecological determinants of inter-biofilm 
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signalling outcomes? and how do external physical stresses and 

internal biophysical cell properties affect the structural integrity of 

biofilms? In this thesis, the mechanisms governing these phenomena 

are unraveled through studies involving both experiments and 

numerical simulations.  The numerical simulations are executed using 

cell-level mathematical models, capable of handling the intricacies 

present in the biofilm’s ecosystem. A general overview of the 

mathematical models used in this thesis is presented in chapter 2. An 

in-depth explanation of individual model is offered in the 

corresponding chapters, where the model is implemented.  

The thesis revolves around three major phenomena associated 

with bacterial biofilms. The first phenomena analyzed in this thesis 

pertains to the spontaneous formation of diverse biofilm morphologies 

in response to the ambient substrate availability. This phenomenon is 

discussed in chapter 3 of the thesis, which includes experimental and 

simulation studies carried out using PA biofilms. In addition to 

analyses on the shape formation principles, the effect of these shapes 

on the antibiotic resistance levels is also discussed. Chapter 4 analyses 

the community level effects of QS and QQ signaling. The experiments 

and the simulations are carried out with mutant E. coli bacterial strains 

capable of expressing QS, QQ and fluorescence. The effects of fluid 

shear on the biofilm structure is examined in chapter 5 using numerical 

simulations. These three chapters capture spatiotemporal evolution of 

the biofilm system in response to external stimuli namely, substrate 

field (chapter 3), QS-QQ field (chapter 4) and fluid flow field (chapter 
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5), as summarized in fig 1.1. Chapter 6 discusses the parallel 

computation efficiency of the multi-physics implementations in the 

numerical models developed for biofilm growth. As such, analysis on 

the biofilm interactions are not discussed in this chapter. This chapter 

is dedicated to the optimization of the computational models developed 

in the previous chapters (3-5). Chapter 7, the final chapter, elucidates 

the major conclusions from the studies and provides a glimpse of the 

possible future works and model extensions. 
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2 Computational framework 

 

Most phenomena observed in nature are outcomes of cascades of 

events triggered by single or multiple precursors. For example, 

consider a school of fish evading a predator attack. Of the thousands of 

fishes in the school only a few fishes sense or see the predator. These 

early detectors then adjust their course of swimming to avoid the 

predator. Inferring a predatorial attack, the other fishes in the school 

respond to this movement and coordinate in evading the attack of 

predator by moving away from the predator in multiple ways as shown 

in fig. 2.1. During this phenomenon there are multiple events occurring. 

First, the observer fishes are communicating with their nearest 

neighbors. Then, the other fishes change their course of swimming 

away from the predator. Factors such as the relative position of the 

prey, velocity of ambient water, size of the school all determine the 

outcome of the event. In this phenomenon of natural enemy evasion, 

the predator’s movement is the precursor which triggers the movement 

of the entire school. Such systems can prove difficult to be studied 

through a holistic approach since, generally such events have multiple 

actors and multiple dynamics interacting with each other in the system 

at different scales. 
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Figure. 2.1 Response to a predator’s attack from a school of fish. Red 
colored fish indicates the predator and black colored fishes are the 
evaders. 

2.1 An object and its constraints 

The optimal way to analyze and understand such systems is 

through deciphering the actions and consequences of the individual 

members making up the system and the field affecting such systems. 

In the case of predator – school model, the fishes are the individuals 

and the fluid surrounding them is the field. Each member of such 

system has their own set of characteristics, physical or biological. 

These characteristics acts as constraints to the ways the system can 

evolve. In addition to the characteristic constraints, there exist 

environmental constraints established by the spatial positioning of the 

prey and predator, the fluid dynamics and the other ambient conditions 

(such as gravel depth). Table 2.1 lists the members, characteristics and 

environmental constraints and member actions.  
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Table 2.1 The objects and their constraints 

Object Characteristics Environmental 

constraints 

Fish Movement 

Predator sensing 

Communication 

Finite size 

Crowd dynamics 

Response propagation 

Fluid Viscosity 

Density 

Pressure 

Stream direction 

Fish motion 

Solid obstacles 

Fish density 

 

As such, there are no simple experimental ways to study such 

multi-actor and/or multi-scale systems without compromising the 

complexity associated with such systems. One way to simplify such 

systems for experimental studies is to limit the number of actors 

involved. However, such compromised systems may not replicate all 

the dynamical outcomes possible for the original system. For instance, 

the reduction in number of prey fishes can result only in an evade 

response, and any other outcomes observable in a natural school system 

may not be feasible. Therefore, to study such evolving complex 

systems, a framework capable of handling all the actors, environmental 

factors, actor-actor interaction and actor-environment interaction is 

required. Computational models offer such elaborate framework 

capable of capturing the physical and biological dynamic properties 
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associated with complex systems. These methods allow for a wide 

range of parameters for defining the problem and are limited only by 

the computational power and time. Every computational method has 

two major aspects associated with the model development which 

determines the rigorousness of the model. Defining the conceptual 

basis or the physical principles is one of the aspects of computational 

modelling. The conceptual basis can be a physical law, a biological 

behavior or any other definition of quantifiable/observable processes 

in a system. In the case of the fish school, the fish’s movement and 

fluid flow, governed by Navier-Stokes equation has to be defined as a 

conceptual parameter in the model. The numerical basis for solving 

such concept definitions is the second aspect of model development. In 

case of fluid flow, the Navier-Stokes equation can be solved by 

simplifying it to analytical solutions or by implementing sophisticated 

finite element model-based simulations. Therefore, it is always 

necessary to validate both the conceptual and the numerical basis used 

in problem definition. The validation of simulations can be carried out 

by comparing the simulation results against analytical solution or 

experimental data. The numerical methods used in the simulations have 

to be benchmarked against the analytical solutions. In almost all cases, 

such analytical solutions may not be available for the problem in 

consideration. Therefore, the planned numerical basis has to be tested 

for stability and validated against analytical results available for a 

simplified/similar problem.  Experimental data from a less complicated 

problem observation has to be used for the validation of conceptual 
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basis. This data could be from an experiment with fewer number of 

fishes in the school, to analyze the response time of the fish after it 

encounters the predator. 

2.2 Biofilm models 

 Computational modelling can be used to explore the dynamics 

of biofilm formation and evolution. Similar to fishes in the school, the 

bacteria are the actors in the biofilm. The bacteria possess 

characteristics such as motility, cell growth, cell division and protein 

secretion. They interact with each other through cell-cell adhesion, 

communication and physical space adjustments. The environment or 

the field of the biofilm comprises of nutrient sources, antibiotic solutes, 

extra-cellular matrix and other abiotic components. The bacteria 

interact with the field and changes the local dynamics of the field which 

changes the overall development cycle of the biofilm and in-turn 

influences the spatio-temporal evolution of the field. Biofilm 

simulation models for predicting the growth dynamics of bacteria date 

back to as early as 1976 [58]. The early models focused primarily on 

the volume increase or quantification of bacterial growth within the 

biofilms. Williamson and McCarty [58] developed a simplified one-

dimensional model for studying bacterial growth in the biofilm 

structure. As such, the bacteria were not treated as separate actors or 

entities in the model. Instead, they were modelled as mass points or 

biomass occupying a finite space in the simulation domain. They 

modelled the diffusion of substrate (nutrient) using Fick’s law of 

diffusion (eq. 2.1) in one dimension through a liquid-film-media 
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interface. In equation 2.1, 𝐶  indicates the concentration of the 

substrate, D is the diffusivity of the substrate and t is the time. 

𝜕𝐶

𝜕𝑡
= 𝐷∇2𝐶 (2.1) 

The consumption rate of the substrate or the solute uptake by the 

bacteria was determined based on the available solute concentration 

and the biomass concentration of the bacteria occupying a finite space. 

The growth rate of the biomass was calculated in accordance with the 

Monod kinetic equation. The increase in the biomass was then 

translated to increase in the overall thickness of the biofilm in one-

dimension. This simplified model has been the basis for the future 

biofilm model development. Recent research works on biofilm growth 

modelling have focused on improving the numerical accuracy and 

implementing cell-level interactions. However, the conceptual basis 

which are the definitions of bacterial growth, nutrient uptake and solute 

diffusion has remained the same in the previous decades. Benefield and 

Molz [59] extended the one-dimensional model to estimate the solute 

concentration in a three-dimensional space. They implemented a finite 

difference scheme to solve Fick’s law, Monod kinetics and solute 

advection. The basic aim of the study was to explore the relationship 

between solute advection and biofilm growth dynamics. Similar to the 

previous model [58], the entire biofilm community was treated as a 

collection of mass points without any individual characteristics or 

unique member identity for the bacteria. Kissel et al., [60] developed a 

numerical model to understand the competition between multiple 
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species in a biofilm structure. They model the growth of bacteria in 

aerobic and anaerobic conditions comprising of five different solutes 

and effect of such solute variation on the multi-species population 

balance. This study showed the impact of mass transfer and bacterial 

competition for nutrients on the community population in a 

heterogeneous biofilm. Wanner and Gujer [61] further improved this 

idea by extrapolating the species balance to independent biofilm layers 

rather assuming the entire biofilm as a single entity. A practical 

application of such model in a porous media emulating the ground 

water environment was carried out by Molz et al. [62]. These 

developments constituted the first phase of biofilm modelling and 

focused majorly on the growth dynamics associated with the biofilms. 

Thus, in the early studies, even without introducing a higher level of 

complexity through assuming bacteria as individuals, research groups 

were able to show the relevance of simulation models in understanding 

the biofilm dynamics and design of practical applications.  

 The second phase of biofilm modelling research started to focus 

on more sophisticated features associated with the biofilm 

development. During the early 1990’s, the research questions started to 

get more extensive and questions such as the influence of the biofilm 

morphology on nutrient distribution[63], antibiotic resistance 

development [64] and fractal pattern investigation [65, 66]. Simulation 

models shifted from quantifying growth rate to precise characterization 

and system evolution of biofilm. The modelling methods started to 

increase in complexity to include the spatio-temporal interactions 
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between the cells and the surrounding field. Stewart [64] included 

antibiotic solute concentration as a field in the simulation model to 

analyze the effect of antibiotics on the biofilm structure. From his 

simulations, he observed the competition between bacterial 

proliferation and efficacy of the antibiotic. The model was able to 

account for the increased antibiotic resistance observed in thicker 

biofilms. Therefore, he hypothesized that biofilm simulations can be 

used in the future to drive the design of experiments. De Beer et al. [63] 

implemented a hybrid experimental data driven simulation to 

understand the morphology driven nutrient distribution in the biofilms. 

They used confocal images as an input to triangulate the 

position/morphology of biofilms in the experiments. Using mass 

transfer kinetics, they were able to establish the oxygen concentration 

profiles within the biofilms in a two-dimensional simulation domain. 

This stands as an evidence that computational modelling can be used 

to reveal data which could otherwise be impossible to obtain 

experimentally. Biofilms have been long known to form fractal patterns 

during their growth. It has been found that diffusion limitation has been 

a driving force behind the formation of such fractal patterns [66]. 

Hermanowicz et al. developed a theory to quantify the fractal 

dimension based on the height of the biofilm and the substrate 

concentration. These spatial characteristics would be straight-forward 

to model using discrete spatial methods such as cellular automata.  
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2.2.1 Cellular automata 

During the early 1940s, cellular automata (CA) [67-70] were a 

discrete computational method developed by John von Neumann. CA 

consists of a computation domain represented as two-dimensional 

cartesian grids which host automatons in the individual square grids as 

shown in fig. 2.2. In general, these automatons are controlled by 

algorithms which dictate their movement or replication within the 

domain. These automatons have neighbors that reside within a 

specified Manhattan distance [71] from them. There are multiple 

neighborhood schemes which can be defined in a CA model. A few of 

those two-dimensional schemes for neighborhood are shown in fig. 2.2. 

The Von Neumann scheme is the simplest neighborhood allocation 

scheme which allots a distance of one grid square for a neighborhood. 

Therefore, any automaton which is in contact with the edges of another 

automaton is considered its neighbor. Thus, an algorithm for CA 

modelling can take the states of the neighbor as an input and model 

evolution of an automaton. This makes the outcomes of a CA model 

dependent on the spatial and temporal states of the automatons in the 

domain. There are higher order neighborhood schemes which were 

developed to prevent anisotropic effects prevalent in models 

implementing von Neumann neighborhood. These models can consider 

cells which are in contact with the edges of the automaton and also cells 

which are completely not in contact with the automaton in 

consideration. Such contactless neighborhood schemes can be used to 

simulate density dependent functions and other force effects such as 
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Van der Waals forces. CA has been used to model and understand 

different complex systems including but not limited to immune system 

modelling [72-75], tumor growth[76, 77], language processing [78], 

finance [79] and fluid flow [80, 81].  

The working principle behind cellular automata for biological 

systems is that macroscopic phenomena observed in the physical world 

are a result of interactions between physically identical microscopic 

entities. These micro-scale interactions are the building blocks for the 

evolution of a larger system and dictate the transitional states of the 

system. Hence, in order to predict the spatiotemporal behavior of real-

world biological systems, it suffices to model the cells along with their 

surroundings. In a simplified model of cellular automata (CA), the cells 

are the automatons and are allowed to take discrete positions at grid 

squares (2D) or grid cubes (3D) in the domain. The cells can then be 

designated a specific state (such as dead “0” or live “1” for bacterial 

cells) and their interaction with their neighbors can be programmed as 

a set of algorithmic rules or mathematical functions. The time and 

space domain of the grid are discretized and at each instant the cell can 

represent any one of the defined states. As the simulation progresses 

for every time step, the cells can interact with their neighbours and 

evolve based on the rules specified. The outcome of the rules is used to 

update the state of the cell at that instant. This procedure is repeated 

iteratively for desired time interval. The entire domain may be n-

dimensional depending upon the model requirement.  
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Figure. 2.2 Possible neighbors for the cell at the center as defined by, 
(a) von Neumann, (b) Moore and radial neighborhood schemes. The 
blue cell is the cell of interest and the yellow cells indicate its 
neighbors. 

 

The spatial nature of CA models has made it an efficient tool to 

study the structural dynamics of biofilm development. Colasanti [82] 

proposed that cellular automata can be used to model microbial 

colonies. Later, Wimpenny and Colasanti [83] developed a conceptual 

model to understand three different common structures observed in 

biofilms (1) heterogeneous mosaics, (2) dense and (3) porous 

morphologies. They hypothesized that these structures were formed as 

a consequence of the nutrient distribution rather the biology of the 

bacterial cells. Using a very simple stochastic 2D CA model, they were 

able to simulate the branching structures found in biofilm. The same 

model was also able to replicate the formation of dense biofilm 

structures at a high substrate concentration. Following a similar 

approach Picioreanu et al. [84] developed a hybrid differential-discrete 

(a) (b) (c) 
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cellular automaton model to study the surface complexities of biofilms. 

They were able to use a model to simulate 2D finger-like projections 

which arise in nutrient scarce conditions. Hermanowicz [85] 

independently proved that simple 2D CA models can be used to 

recreate complex structural patterns found in biofilms. Various other 

models have implemented CA to simulate mixed culture [86], 

antimicrobial activity [87] and detachment [88]. However, CA models 

have been well known to suffer minor limitations while simulating EPS 

present in the biofilms. Since the EPS is assumed stationary in CA 

models, there is always a vacuum created in the place of bacteria after 

they decay in the simulations. Similarly, CA models cannot account for 

any mechanical constraints which would arise from the dense packing 

of the automaton. In order to overcome these limitations, Individual-

based models (IbM) [89, 90] were developed. IbM follow the same 

theory as CA except that the algorithmic rules are applied to individual 

bacterial cells instead of grid squares. The model considers bacterial 

cells as hard spheres which do not intersect each other. The spheres are 

of fixed size, they can divide and change to live or dead state. EPS 

modeling was possible using IbM models due to their ability to include 

forces or Leonard Jones potential [91, 92]. IbM has well known 

limitations such as artificial porosity introduced due to lack of tight 

packing of cells, numerical artifacts arising from assumption of 

spherical particles and formation of physically unrealistic colony 

structures. 
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2.2.2 Glazier-Graner-Hogeweg model 

Cellular automata have a few limitations that prevents them 

from replicating the exact physical and biological processes. A major 

concern of using cellular automata for representing biological 

processes is the absence of direct ways to account for the energy 

changes arising from the change of states of the system. Due to lack of 

energy restrictions in the models, cellular automata can give rise to 

physically unmeaningful states. For instance, consider a single cell 

which is about to grow in size. In cellular automata or agent-based 

models, this growth of cell can be modelled as an addition of extra grid 

point to the existing cell. This increase in size is modelled by an 

algorithmic rule, such as, the cell can increase its size by one grid 

pushing a neighbor’s grid in the same direction as shown in fig. 2.3a. 

Alternatively, the cell can stop its growth depending upon the neighbor 

density as dictated by the algorithm. Both these cases may not truly 

represent the actual physical dynamics of the system. Biologically, the 

cell must increase its size in such a way that it maintains mechanical 

equilibrium with its neighbors. In real world physiological conditions, 

the cell grows in a direction which has a least resistance for growth or 

it pushes the neighbors in a way to minimize the energy of the entire 

structure or the cell growth is arrested inherently as shown in fig. 2.3b. 

It is clear that the outcomes of any such physically meaningful 

adjustments depend upon the mechanical and biological spatial 

constraints experienced by the cell. Therefore, a model to represent any 

biological structure should have clearly defined energy-based restraints 
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which prevent the system from any run off resulting in biologically 

inconceivable states. 

 

Figure. 2.3 Cell growth as modelled by, (a) simple rule-based method 
and (b) energy-based method. Different colors of the cells indicate the 
cell types and the ring around the cells in the energy-based method 
denotes the adhesion potential. 
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The Glazier-Graner-Hogeweg (GGH) [93] method is a 

computational method which offers the freedom of modelling discrete 

biological cells bounded by discrete or continuum based energy 

constraints. The history of GGH model can be traced back to the large 

q-Potts model (qPM) and Cellular Potts Model (CPM). During its 

initial stages of development, qPM was used in studying crystal growth 

[94] and coarsening of soap froth[95]. qPM and CPM based models 

incorporated Hamiltonian energy functions to define the surface energy 

changes of the individual soap bubbles. The model assumed that the 

object (froth or crystal) under definition occupies one or more 

regularly-spaced lattice points in the computational domain. The 

Hamiltonian (eqn. 2.2) is used to compute the energy changes arising 

from interactions of neighbouring degenerate spins of a lattice site.  

𝐻 = ∑ 1− 𝛿𝜎(𝑖,𝑗,𝑘),𝜎(𝑖′,𝑗′,𝑘′)
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

(2.2) 

 

 Here, i,j,k and i’,j’,k’ are the lattice coordinates, 𝜎  is the spin 

associated with the lattice site and 𝛿 is the Kronecker delta function, 

which decides the bonding between the sites (0 or 1) based on the spins. 

The number of possible spin values ‘q’ decides the possible number of 

configurations arising from the ‘N’ spins in a lattice site. There are qN 

configurations possible, which is very large to be computed, hence 

impossible to solve analytically. To model the transitions from one 

configuration to other, Monte-Carlo method proposed by Ashkin and 
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Teller [96] can be used. The probability ‘p’ of jump from one 

configuration ( 𝜎(𝑖))  to another configuration (𝜎(𝑖′) ) is given by 

equation 2.3. Here, T is the system temperature or fluctuation 

amplitude. It should be noted that out of all the possible qN 

configurations, most configurations will tend to have high associated 

energies therefore less probable of occurring. 

𝑝 (𝜎(𝑖) → 𝜎(𝑖′⃗⃗⃗))

𝑝 (𝜎(𝑖′⃗⃗⃗) → 𝜎(𝑖))
=
e
𝐻{𝜎(𝑖)}

𝑇

e
𝐻{𝜎(𝑖′⃗⃗ ⃗)}

𝑇

(2.3) 

qPM models lack the dynamics needed to define a biological 

system. Since, biological systems do not jump between different 

configurations but rather transition through local cell-cell interactions, 

these models cannot be used to investigate cell level events in 

biological systems. In addition, CPM models support only a single 

contact energy constraint between the spins, but biological cells vary 

in their membrane contact potentials. A modified Metropolis algorithm 

[97, 98] used in GGH treats the individual cells as unique objects with 

their own contact potentials. The modified Metropolis algorithm 

(MMA) considers the energy changes arising from configurational 

changes happening at a single lattice site. Thus, the transitions 

following MMA retain memory of the previous configuration and the 

transition to consequent configuration is dependent on it. From a 

biological standpoint, while implementing MMA, instead of a cell 

abruptly changing its boundaries with a nearby cell (as done in Monte-

Carlo method), it gradually changes its shape by minimizing the energy 
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associated with intercellular contact.  Figure 2.3b summarizes the 

general steps in the MMA implementation. Thus, the probability of a 

lattice/index copy attempt is given by, 

 

𝑃 (𝜎(𝑖) → 𝜎(𝑖′⃗⃗⃗)) = {exp (−
𝛥𝐻

𝑇𝑚
)}          𝛥𝐻 > 0; (2.4) 

𝑃 (𝜎(𝑖) → 𝜎(𝑖′⃗⃗⃗)) = 1                              𝛥𝐻 ≤ 0; (2.5) 

Δ𝐻𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = ∑  𝐽 (𝜏(𝜎(𝑖)), 𝜏(𝜎(𝑗))) (1 − 𝛿𝜎(𝑖),𝜎(𝑗))

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

(2.6) 

Where 𝑃 (𝜎(𝑖) → 𝜎(𝑖′⃗⃗⃗)) is the probability of success of a single index-

copy attempt of an entity from one lattice/grid point to the other,  𝛥𝐻 

is the change in energy associated with the copy attempt and 𝑇𝑚 is the 

temperature/fluctuation amplitude term. The change in contact energy 

due to the contact between neighbor cells is quantified by the 

Hamiltonian in equation 2.6. 𝐽 (𝜏(𝜎(𝑖)), 𝜏(𝜎(𝑗)))  is the contact 

potential between cell types (𝜏) of cells (𝜎) present at lattice positions 

𝑖  and 𝑗 . Since the probability of index copy attempt is inversely 

proportional to the energy change associated with the index copy, the 

system will minimize its internal energy as successive copy attempts 

proceed. In order to properly define a biological system, in addition to 

the contact energy, other potentials such as growth potential, volume 

constraints and cell division constraints are needed. GGH model 
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implements these terms using a combination of Hamiltonian and non-

Hamiltonian functions. For instance, the increase of cell volume can be 

coupled with the internal energy using the Hamiltonian 𝛥𝐻𝑣𝑜𝑙 defined 

in equation 2.7, where 𝑣 (𝜎(𝑖′⃗⃗⃗)) and 𝑣(𝜎(𝑖)) are the volume of the cell 

containing the target and source grids respectively, 𝜆𝑣𝑜𝑙  is the volume 

constraint parameter (stability parameter) and 𝑉𝑡 is the target volume 

up to which the cell is capable of growing. This algorithm is 

implemented throughout all the cells in a simulation domain at every 

instance of time (named as Monte Carlo Steps, mcs).  

𝛥𝐻𝑣𝑜𝑙 =  𝛥𝐻𝑣𝑜𝑙
𝑛𝑒𝑤 − 𝛥𝐻𝑣𝑜𝑙

𝑜𝑙𝑑 (2.7) 

𝛥𝐻𝑣𝑜𝑙
𝑛𝑒𝑤 = 𝜆𝑣𝑜𝑙 (𝑣 (𝜎(𝑖′⃗⃗⃗)) + 1 − 𝑉𝑡 (𝜎(𝑖′⃗⃗⃗)))

2

(2.8) 

𝛥𝐻𝑣𝑜𝑙
𝑜𝑙𝑑 = 𝜆𝑣𝑜𝑙 (𝑣(𝜎(𝑖)) + 1 − 𝑉𝑡(𝜎(𝑖)))

2
(2.9) 

By applying equations (2.7), (2.8) and (2.9) in equation (2.4), 

the algorithm finds if the total energy is minimized in the volume 

expansion process, if true (P > 1), pixel-copy attempt is executed, else 

the copy attempt is ignored. The Hamiltonian functions are additive in 

nature. Therefore, the total change in internal energy from contact 

potentials and cell volume changes can be calculated as Δ𝐻𝑐𝑜𝑛𝑡𝑎𝑐𝑡 +

Δ𝐻𝑣𝑜𝑙 = Δ𝐻.  

Non-Hamiltonian functions are used to define cell events such 

as cell division or cell death. In case of cell division, a cell 𝜎 is divided 
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into two daughter cells 𝜎′ and 𝜎′′. These daughter cells are assigned 

new indices and give part of the parent’s lattice sites, generally half the 

number of parent sites for each cell. During this division event, the 

daughter cells’ target volume is reduced to the new volume, so that the 

internal pressure of the cell keeps itself stable. Similarly, for the case 

of cell death the target volume can be set to zero, leading to gradual 

buckling of the cell or the cell’s index can be deleted denoting a 

complete cell lysis.  

In all the biofilm models described in the forthcoming chapters, 

Compucell3D [99] framework is used for numerical simulations. 

Compucell3D is an open source software implementation of GGH 

model used to simulate the cell behavior and ambient conditions. 

Compucell3D provides a GUI for visualizing the simulated dynamics 

of cells.  The core section of Compucell3D is coded in C++ and the 

built-in modules can be accessed using Python interface. This 

combination ensures that the core runs efficiently, owing to its 

precompiled nature, and the modules in the core can be directly called 

using the python interpreter during runtime, eliminating the need for 

additional compilation. 

2.3 Mass transfer and Computational Fluid Dynamics: 

Compucell3D renders a simulation toolkit adequate for 

simulating and visualizing cell level activities. Therefore, we can 

define and model our object (bacteria) and its associated characteristics 

(cell behaviors). But Compucell3D lacks appropriate tools for defining 
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the environmental constraints that affect bacterial proliferation and 

consequently biofilm evolution. These constraints can include nutrient 

fields, antibiotic solutes, fluid flow and external forces. Hence, in 

addition to GGH model, other mass transfer and fluid dynamic models 

are required to completely define the biofilm ecosystem. These models 

must be coupled with GGH model at spatial (lattice) and temporal 

levels to properly synchronize the biological activities of cell and the 

ambient physical processes. 

A simplified metabolic growth process of bacteria will include 

glucose uptake from the surrounding, mass increase in proportion to 

the uptake and cell division based on the cell volume and mass. The 

last two processes, mass increase and cell division, can be simulated 

using GGH models. The former process, glucose uptake, can be broken 

down further into glucose transport through convection, glucose 

diffusion and cell mass-based glucose consumption. For calculating the 

spatial concentration of glucose transported through convection, we 

need to estimate the spatial velocity of the fluid carrying the solute 

(glucose). This can be efficiently modelled and quantified using 

various Computational fluid dynamics (CFD) techniques. CFD is a 

discipline concerned with the use of numerical methods to solve the 

mathematical equations governing fluid flow. The following are the 

basic steps involved in formulating and simulating a CFD model, 

The first step is to develop a numerical description of the flow 

in the domain of interest [100]. In general, Navier-Stokes equation (eq. 
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2.10) and other complementary mass conservation equations are used 

in defining the system. 

𝜌(�⃗⃗� ∙ ∇)�⃗⃗�  + 𝜌
𝜕�⃗⃗�

𝜕𝑡
= ∇ ∙ [−𝑝𝐼 + 𝜇(∇�⃗⃗� + (∇�⃗⃗�)𝑇) −

2

3
𝜇(∇ ∙ �⃗⃗�)𝐼] (2.10) 

    

𝜌(�⃗⃗� ∙ ∇)�⃗⃗�  + 𝜌
𝜕�⃗⃗�

𝜕𝑡
= ∇ ∙ [−𝑝𝐼 + 𝝉] (2.11) 

  

∇ ∙ (𝜌�⃗⃗�) = 0 (2.12) 

           

Here, 𝜌  is the density of the incompressible fluid, �⃗⃗�  is the fluid 

velocity, 𝑝 is the pressure, I is the identity matrix, 𝝉 is the stress tensor 

and 𝜇  is the viscosity of the fluid. Equation 2.12 is the mass 

conservation equation, which could be interpreted as, 

Rate of Inflow mass = Rate of accumulation of mass in system + Rate 

of Outflow mass  

The initial condition and boundary conditions are applied on the fluid 

domain. These can include conditions such as, 

Initial inlet velocity condition, �⃗⃗� =𝑢𝑜⃗⃗⃗⃗⃗ 

No slip boundary condition, for solid walls, �⃗⃗� = 0 

Slip boundary condition for fluid interfaces, �⃗⃗�̇. �⃗⃗� = 0  
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Fluid flow domain is discretized up to required spatial 

resolution. Resolution refers to the smallest size of the grid used for the 

simulation. For cases involving individual bacterial model simulations, 

the resolution of the domain should be equal to or lower than the 

volume an individual cell, to correctly estimate the ambient solute 

concentration of the cell. 

The governing Navier-Stokes and mass conservation equations 

are discretized. In addition to the spatial discretization, temporal 

discretization is also required for these equations. The temporal 

resolution should be determined based on the time-scale of the bacterial 

nutrient uptake and stability of the numerical method used. A brief 

description of various numerical methods is given below, 

2.3.1 Finite difference method (FDM) 

FDM is the simplest of discretization methods available [101]. 

In finite difference method (FDM) we approximate the differentials in 

the equations by interpreting the differentials as differences in 

parametric values with respect space and time. Here, the discretization 

is based upon the differential form of the PDE to be solved. The 

derivatives in the PDE are replaced with approximate difference 

formula based on set of weights as shown in equations for the 

incompressible 1-D Navier-Stoke’s equation (eq. 2.13 and 2.14).  

𝜕�⃗⃗�

𝜕𝑡
+ �⃗⃗�

𝜕�⃗⃗�

𝜕𝑥
=  −

𝜕𝑝

𝜕𝑥
+
1

𝑅𝑒

𝜕2𝑢

𝜕𝑥2
(2.13) 
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𝑢𝑗
𝑛+1 − 𝑢𝑗

𝑛

Δ𝑡
+  𝑢 𝑗

𝑛
[𝑢𝑗+1
𝑛 − 𝑢𝑗−1

𝑛 ]

2Δ𝑥
= − 

[𝑝𝑗+1
𝑛 − 𝑝𝑗−1

𝑛 ]

2Δ𝑥

+
1

𝑅𝑒
 
[𝑢𝑗+1
𝑛 −  2𝑢𝑗

𝑛 + 𝑢𝑗−1
𝑛 ]

(Δ𝑥)2
(2.14)

 

 Indices j and n indicate the spatial and temporal discretized steps. The 

spatial parts of the equation are approximated by central difference 

quotients and the temporal part is discretized using forward difference 

quotient. These equations can be solved using appropriate numerical 

methods, based on the required accuracy, convergence and 

computational speed requirements. A few such numerical methods 

include, Incomplete Cholesky, Incomplete Lower-Upper factorisation 

(ILU), Lower-Upper Decomposition and Gauss Jordan elimination. 

In the finite difference method, the quantities or variables under study 

are not conserved, they are estimated as pointwise functions. Therefore, 

FDM is restricted to use simple geometries and avoided in simulation 

of complex flows. 

2.3.2 Finite Volume Method (FVM): 

In FVM, the quantities under study are estimated as conserved 

entities within small volumes using volume averaged functions. The 

equations used in the simulations are discretized based upon an integral 

form of the partial differential equations such as Navier-Stokes. The 

grids used in FVM simulations are defined as finite control volumes 

encompassing the domain. The computational node of the variable, 

whose value is to be found, lies at the centroid of each control volume. 
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The conservation equations are applied to each control volume. In 

general, to derive the conservation equations, Gauss divergence 

theorem is applied to the partial differential equation 2.11.  For 

instance, the conservative form of the 3D-Navier Stokes equation can 

be written as, 

𝑑

𝑑𝑡
∫ 𝜌�⃗⃗�𝑑𝑉𝑜 + ∫ 𝜌(�⃗⃗� ∙ ∇)�⃗⃗� 𝑑𝑉𝑜 =  −∫ ∇p 𝑑𝑉𝑜 +

𝑉𝑜𝑉𝑜𝑉𝑜

 ∫ ∇𝛕 𝑑𝑉𝑜 
𝑉𝑜

(2.15) 

 

 

𝑑

𝑑𝑡
∫ 𝜌�⃗⃗�𝑑𝑉 + ∫ 𝜌𝑢⃗⃗ ⃗⃗ ⃗(�⃗⃗�. 𝑛𝑠⃗⃗⃗⃗⃗)𝑑𝑆𝑓 = −∫ 𝑝�⃗⃗�𝑑𝑆𝑓 +

𝑆𝑓𝑆𝑓𝑉𝑜

 ∫ (𝝉. �⃗⃗�)𝑑𝑆𝑓 
𝑆𝑓

(2.16) 

 

Here, the volume (Vo) integral can be approximated over the control 

volume (Δ𝑉𝑜) and the surface (Sf) integrals can be approximated as a 

sum over the area of the faces 𝐴𝑓 of the control volume as shown in 

equation 2.17. Where, �⃗⃗�𝑗
𝑛 represents the fluid velocity �⃗⃗�𝑗  at time 

discrete time n, 𝜌𝑓𝑣 is density of fluid at a face of the volume and 𝑢𝑓𝑣⃗⃗⃗⃗ ⃗⃗⃗ 

is the face velocity at time n. 

𝑑

𝑑𝑡
∫ 𝜌�⃗⃗�𝑑𝑉𝑜
𝑉𝑜

= 𝜌(�⃗⃗�𝑗
𝑛+1

− �⃗⃗�𝑗
𝑛) 
Δ𝑉𝑜

Δ𝑡
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∫ 𝜌𝑢⃗⃗ ⃗⃗ ⃗(�⃗⃗�. 𝑛𝑠⃗⃗⃗⃗⃗)𝑑𝑆𝑓 =
𝑆𝑓

∑ 𝜌𝑓𝑣𝑢𝑓𝑣⃗⃗⃗⃗ ⃗⃗⃗

𝑓𝑎𝑐𝑒𝑠

𝑢𝑓𝑣⃗⃗⃗⃗ ⃗⃗⃗ 𝐴𝑓 (2.17) 

 

Due to the conservative nature of the finite volume equations, they are 

more stable than FDM equations for fluid flow problems in irregular 

grids. 

2.3.3 Finite element method: 

Finite element method (FEM) employs integral forms of PDE, 

similar to FVM. However, in FEM, piecewise representation of the 

solution is discretized in terms of specified basis functions. The 

simulation mesh used for the FEM is made up of a set of finite elements 

which are connected at nodes. The resulting set of non-linear algebraic 

equations is solved across the entire domain for approximate parameter 

values at these nodes [102].   
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3  Mesoscopic Energy 

Minimization Drives 

Pseudomonas aeruginosa 

Biofilm Morphologies and 

Consequent Stratification of 

Antibiotic Activity Based on 

Cell Metabolism 

 

This chapter is based on Sheraton, M.V., Yam, J.K.H., Tan, C.H., Oh, 

H.S., Mancini, E., Yang, L., Rice, S.A. and Sloot, P.M.A., 2018. 

Mesoscopic Energy Minimization Drives Pseudomonas 

aeruginosa Biofilm Morphologies and Consequent Stratification of 

Antibiotic Activity Based on Cell Metabolism. Antimicrobial agents 

and chemotherapy, 62(5), pp.e02544-17. 

Abstract 

Segregation of bacteria based on their metabolic activity in biofilms 

plays an important role in the development of antibiotic drug 

tel:+10254417
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resistance. Mushroom-shaped biofilm structures, which are reported 

for many bacteria, exhibit topographically varying levels of multiple 

drug resistance from the cap of the mushroom to its stalk. 

Understanding the dynamics behind the formation of such structures 

can aid in design of drug delivery systems, antibiotics, or physical 

systems for removal of biofilms. We explore the development of 

metabolically heterogenous Pseudomonas aeruginosa biofilms using 

numerical models and laboratory knock-out experiments on wild-type 

and chemotaxis deficient mutants. We show that chemotactic processes 

dominate the transformation of slender and hemispherical structures 

into mushroom structures with a signature cap. Cellular Potts model 

simulation and experimental data provide evidence that accelerated 

movement of bacteria along the periphery of the biofilm, due to 

nutrient cues, results in the formation of mushroom structures and 

bacterial segregation.  

Importance 

Multi-drug resistance of bacteria is one of the most threatening dangers 

to public health. Understanding the mechanisms of the development of 

mushroom shaped biofilms helps to identify the multidrug resistant 

regions. We decoded the dynamics of the structural evolution of 

bacterial biofilms and the physics behind the formation of biofilm 

structures as well as the biological triggers that produce them. 

Combining in-vitro gene knock-out experiments with in-silico models 

shows that chemotactic motility is one of the main driving forces for 

the formation of stalks and caps. Our result provides physicists and 

biologists with a new perspective on biofilm removal and eradication 

strategies. 
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3.1 Introduction 

Bacteria thrive in natural environments using two modes of 

growth, (i) planktonic growth by independent, single bacteria and (ii) 

biofilm growth, where the cells function as a group. Planktonic bacteria 

proliferate, infect hosts, and move without much physical interaction 

with other bacteria in their vicinity. They are vulnerable to antibiotics, 

and bacteriophages in their vicinity. In contrast, bacteria have evolved 

the ability to aggregate together as biofilms to protect themselves from 

predators and reduce the threats from antibiotics or toxic substances. 

Once a biofilm is established, it can host billions of bacteria that 

function communally. However, bacterial cells within a single biofilm 

exhibit different physiological states. They can be alive and active; 

alive and metabolically less active (dormant) or dead and decaying in 

different parts inside the biofilm [103, 104]. Some bacteria in biofilms 

are known to develop resistance to multiple antibiotic drugs [105, 106]. 

For example, cells present at the top or cap of mushroom shaped 

biofilms have been shown to be resistant to colistin [107]. Cells within 

or on the stalk of mushroom shaped biofilms however, have shown 

resistance to carbapenem and tobramycin antibiotics [108]. This 

suggests that it is impossible to eliminate the entire mushroom structure 

using a single drug. Even worse, it could lead to selective killing of 

non-drug resistant bacteria, leaving behind the drug-resistant strains 

and accelerating the spread of an infection. In a few cases, it has been 

shown that dormant bacteria are resistant to antibiotic treatments, 

therefore the segregation of bacteria into different states within the 
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biofilm will lead to differential drug resistance expression at different 

regions [109]. 

Recently, the World Health Organisation [110] published a list 

of 12 bacteria which could be of great threat to human health due to 

their multidrug resistance. P. aeruginosa has been identified as one of 

the bacteria of critical priority. P. aeruginosa is known to form 

mushroom shaped biofilm structures in nature and during 

spaceflights[111].  Cells in the interior of the mushroom-shape biofilm 

have low metabolic activity, while the cells near the cap of the 

mushroom-shape biofilm have high metabolic activity [112, 113]. They 

can exhibit multidrug resistance within the same mushroom structure 

as a consequence of these microcolonies harboring cells in different 

metabolic states [114]. Thus, due to the differences in physiological 

status among the cells within the biofilm, it is difficult to eradicate the 

biofilm via drug monotherapy. For example, colistin selectively kills 

less active cells [113, 115, 116] while tobramycin kills highly active 

cells in the biofilm [117, 118]. While some studies have focused on 

microcolony formation, the mechanisms and dynamics of micro colony 

formation are currently not well understood [44, 119-121]. If a mixture 

of two strains of P. aeruginosa bacteria, e.g. wild-type with motility 

and a non-motile mutant, are cultured together, mushroom structures 

are formed with the wild-type motile bacteria on the cap of the 

mushroom and the non-motile mutants occupying the stalk of the 

mushroom [44]. Modelling studies have shown that bacterial motility 

plays a major role in determining the shape of the biofilm structure. 
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Farrell et al. [122],developed a Quasi-two-dimensional force-based 

biofilm growth model to study the branching of biofilms consisting of 

non-motile bacteria. It was shown numerically that mechanical 

interactions between the bacteria lead to the formation of 2D finger like 

biofilm structures, which was previously thought to be an outcome of 

diffusion limitation. This observation suggests that the macroscopic 

biofilm structure is actively changed by microscopic interactions 

between individual bacteria and is not a passively evolved structure due 

to nutrient gradients. However, extensive studies considering 

interaction forces between the bacteria and nutrient limitations were 

unable to predict the formation of the observed complex 3D mushroom 

shapes [92, 122-125]. Typically, these studies predicted a series of 

hemispherical shapes but were not able to predict the mushroom shapes 

observed in nature, specifically with those involving wild-type 

bacteria. In this work, we report on the dynamics of biofilm shapes as 

they are influenced by the availability of nutrients, the distribution of 

motile cells and cell-cell interactions through volume and chemotactic 

forces. Using laboratory experiments coupled with in silico numerical 

studies, we identify the key parameters that determine the thickness and 

height of the stalk as well as the cap of these macroscopic structures 

and consequently the distribution of dormant and metabolically active 

bacteria. The laboratory experiments, utilizing wild-type bacteria and 

specific mutants, were used to quantify and validate the outcomes of 

the biofilm growth simulation model. We also show that chemotactic 
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processes dominate the transformation of slender and hemispherical 

structures to mushroom structures with a signature cap. 

3.2 Material and method 

3.2.1 Bacterial strains and growth conditions 

The bacterial strains used in this study are listed in table 1. P. 

aeruginosa strains were grown at 37oC in ABT minimal medium 

supplemented with 5 gl -1 glucose (ABTG) [126]. Gentamicin (30 μg 

ml -1 ) or tetracycline (50 μg ml -1) was used appropriate for marker 

selection in P. aeruginosa. 

3.2.2 Cultivation of biofilms in flow chambers 

P. aeruginosa biofilms were cultivated in ABTG medium at 37oC using 

40 mm x 4 mm x 1 mm three-channel flow chambers as previously 

described [127]. Briefly, the bacterial strains were grown overnight in 

2 ml of LB medium in 37oC shaking condition (200 rpm). The 

overnight cultures were diluted 1:100x with ABTG and 300 μl of the 

diluted culture was injected via syringe and needle into each channel. 

The ABTG medium flow was halted for 1 h for bacteria incubation 

before resuming the flow at the rate of 4 ml h-1 using Cole-Parmer 

Masterflex® peristaltic pump (Cole-Parmer, United States) for 

development of biofilm. At each time-point, 3.34 μM SYTO9 and 20 

μM propidium iodide (PI) stains (LIVE/DEAD™ BacLight™ Bacterial 

Viability Kit, Invitrogen) were injected into each channel to stain the 

biofilm for live and dead cell populations respectively for 15 min prior 
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to confocal microscopy imaging. Experiments were performed in 

triplicate, and the representative images were shown as results. 

3.2.3 Confocal microscopy imaging 

The stained-biofilm was observed under confocal laser scanning 

microscopy (CLSM) (LSM 780, Carl Zeiss, Germany) and images 

were acquired using either x20 or x40 magnification objective lens. 

The argon laser (488 nm) and HeNe laser (561 nm) were used to 

observe the green and red fluorescence respectively. The captured 

images were further processed using IMARIS software (Bitplane AG, 

Zurich, Switzerland) to generate the orthogonal view of the biofilm. 

Experiments were performed in triplicate, and the representative 

images were shown as results. 

Table 3.1 Bacterial strains used in the experiments 

Strains Characteristic(s) Reference 

PAO1 Wild-type [128] 

ΔbdlA PW3587 bdlA-F03::ISlacZ/hah bdlA-

deficient strain. TcR 

[129] 

ΔCheY CheY-deficient strain. GmR [45] 

 

TCR - tetracycline resistant. GmR - gentamicin resistant. 

3.3 Simulation model 

Each bacterium in the simulation is considered as a collection of 

compute pixels. As the mass increases, the number of pixels for each 
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cell increases proportionally and the cells divide once the number of 

pixels have doubled. The cells’ mass increment is modelled using 

Tessier kinetics [130]. We consider two nutrients, glucose and oxygen 

diffusing from the top of the simulation domain. Glucose is present in 

excess in both the experiments and the numerical models. Single solute 

Monod kinetics is the common choice in most biofilm models[98, 125, 

131, 132]. This, however, would result in exponential cell growth in 

the simulations due to the presence of excess nutrients. Unlike single 

solute Monod kinetics, double solute Tessier kinetics models the 

bacterial mass increase in a more realistic way by establishing a 

nutrient consumption rate that is dependent on both limiting and excess 

nutrients, thereby preventing exponential cell proliferation. It has been 

shown in previous studies that Tessier kinetics models the growth of P. 

aeruginosa biofilms more accurately than Contois, Monod or other 

combined kinetics [130, 133]. We have therefore developed two 

substrate Tessier kinetics for modelling the biofilm growth from uptake 

of oxygen and glucose. Compared to previous P. aeruginosa biofilm 

simulations (25,27-29), our model based on Tessier kinetics is a more 

accurate predictor of the proliferation rate of bacterial cells, which is 

an important parameter for active to dormant cell transformations. 

𝜕𝑆𝑜
𝜕𝑡

= 𝐷𝑜 (
𝜕2𝑆𝑜
𝜕𝑥2

+
𝜕2𝑆𝑜
𝜕𝑦2

+
𝜕2𝑆𝑜
𝜕𝑧2

) − 𝑟𝑜(𝑆𝑜, 𝑆𝑔, 𝐵𝐶) (3.1) 
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𝜕𝑆𝑔

𝜕𝑡
= 𝐷𝑔 (

𝜕2𝑆𝑔

𝜕𝑥2
+
𝜕2𝑆𝑔

𝜕𝑦2
+
𝜕2𝑆𝑔

𝜕𝑧2
) − 𝑟𝑔(𝑆𝑜 , 𝑆𝑔, 𝐵𝐶) (3.2) 

 

𝑟𝑜(𝑆𝑜, 𝑆𝑔, 𝐵𝐶) =

(

 
 
𝜇 (1 − 𝑒

𝐶𝑜
𝐾𝑜)(1 − 𝑒

𝐶𝑔
𝐾𝑔)

𝑌𝑜
+𝑚𝑜

)

 
 
𝐵𝑐 (3.3) 

 

 

 

𝑟𝑔(𝑆𝑜 , 𝑆𝑔, 𝐵𝐶) =

(

 
 
𝜇 (1 − 𝑒

𝐶𝑜
𝐾𝑜)(1 − 𝑒

𝐶𝑔
𝐾𝑔)

𝑌𝑔
+𝑚𝑔

)

 
 
𝐵𝑐 (3.4) 

 

 

Equations 3.1 and 3.2 describe the time-evolution of nutrient 

concentrations in the simulation domain, 3.3 and 3.4 quantify the rate 

of nutrient consumption by the biomass. The equations are solved until 

steady-state is reached and the concentration at steady state is used to 

estimate the mass increase through Eq. 3.7. The motile bacteria can 

move through the domain between each time step of nutrient 

estimation, which is one hour. The motility of the cells is based on their 

energy constraint, based on the Glazier-Graner-Hogeweg model 

(GGH) [134, 135] given by Eq. 3.8. Motility is then dependent on the 

volume constraints, chemotaxis and contact adhesion between cells, 

substratum and media. In the absence of volume increase and 

chemotaxis, this motility corresponds to bacterial random walks as 
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observed in nature and is referred to as bacterial diffusion. The 

fluctuation amplitude term Tm determines the average velocity of a 

random walk in the simulation. The value of Tm is fixed in such a way 

that in the simulation the average distance moved by a cell in one hour 

due to bacterial diffusion falls within the average distance moved by P. 

aeruginosa bacteria on a glass slide for one hour in the experiments, 

which is around 145 
𝜇𝑚

ℎ
  [136]. 

So and Sg are the concentrations of oxygen and glucose 

respectively, Do and Dg are the diffusion coefficients of oxygen and 

glucose respectively, μ is the cell growth rate and Bc is the biomass. 

The constants K, Y and m are half-saturation, yield, and metabolic 

coefficients respectively, with their subscripts indicating the 

corresponding substrates, oxygen, or glucose.  The mass increase as 

estimated by Eq. 3.7 is translated into a corresponding target volume 

(VT) increase, calculated from the mass density of the cells. The rate of 

volume increase or pixel addition to a cell is controlled by the change 

in energy shown in Eq. 3.9. In a sparsely populated space, a bacterium 

will be able to increase its volume faster than a bacterium in a densely 

packed space based on the volume constraint constant. Bacteria in 

tightly packed configurations however must push others towards the 

edge to increase their volume. Thus, the local energy interactions for 

pixel space allocation will result in an overall change in the structure 

of the biofilm. This energy interaction also prevents a cell from 

growing when there is no space to place the additional biomass, thus 
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avoiding unrealistic cell proliferation. Therefore, the increase in 

biofilm biomass is controlled by nutrient consumption kinetics and by 

structural energy constraints within the biofilm. 

𝜕𝐵𝑐𝑜
𝜕𝑡

= 𝑌𝑜(𝑟𝑜(𝑆𝑜 , 𝑆𝑔, 𝐵𝐶) − 𝑚𝑜𝐵𝐶) (3.5) 

 

𝜕𝐵𝑐𝑔

𝜕𝑡
= 𝑌𝑔(𝑟𝑔(𝑆𝑜, 𝑆𝑔, 𝐵𝐶) − 𝑚𝑔𝐵𝐶) (3.6) 

 

 

𝜕𝐵𝑐
𝜕𝑡

=  

{
 
 

 
 

 

𝜕𝐵𝑐𝑜
𝜕𝑡

 ,
𝜕𝐵𝑐𝑜
𝜕𝑡

<  
𝜕𝐵𝑐𝑔

𝜕𝑡
 

  
 

𝜕𝐵𝑐𝑔

𝜕𝑡
  ,
𝜕𝐵𝑐𝑜
𝜕𝑡

≥  
𝜕𝐵𝑐𝑔

𝜕𝑡
  

                  

   (3.7)

 

 

  

 

 

Bco and Bcg are the biomass contribution from oxygen and glucose 

uptake, respectively. 

𝑃 (𝜎(𝑖) → 𝜎(𝑖′⃗⃗⃗)) = {
[ 𝑒𝑥𝑝 (−

𝛥𝐻

𝑇𝑚
)] ,   𝛥𝐻 > 0  
     

1       , Δ𝐻 ≤ 0

(3.8)

 

 

𝛥𝐸𝑣 = 𝜆(𝑉𝑐𝑒𝑙𝑙 − 𝑉𝑇)
2 (3.9) 

 

 

 

𝛥𝐸𝑐 = ∑𝐶𝑜𝑛(𝜏𝜎(𝑖), 𝜏𝜎(𝑗)
𝑖,𝑗

) (1 − 𝛿𝜎(𝑖),𝜎(𝑗))          (3.10) 

 



 

60 

 

The probability of a pixel copy [137] is calculated in Eq. 3.8, σ(i) 

is the pixel occupied by the cell, Vcell is the volume of the cell and λ is 

the volume potential. Equation 3.10 describes the contact adhesion 

energy between the cells of different types τ, at positions i and j, where 

δ is the Kronecker delta function and Con(τσ(i), τσ(j)) is the contact 

adhesion parameter. In the simulation, it is assumed that the cells are 

more adherent to the substratum than to each other, meaning less local 

energy change for adhering to the surface. The energy changes due to 

adhesion ΔEC and volume change ΔEV are combined to evaluate the 

total energy change, ΔH = ΔEV +ΔEC.  

Table 3.2 Summary of the values of different parameters used in the 
Tessier kinetics model simulations 

Parameter  Value Unit 

Domain size  150 x 150 x 

150 

μm 

Initial mass of bacteria [131], BC   1.315 x 10-13 g 

Initial volume of bacteria [131], V  

 

27 μm3 

No. of initial bacteria  5 cells 

Half-saturation coefficient of glucose 

[130], Kg 

26.9 g m-3 

Half-saturation coefficient of oxygen 

[130], Ko  

1.18 g m-3 

 

Boundary layer thickness [131], BLT  16.5 μm 
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Diffusion coefficient of glucose, Dg  2.52 x 10-6   m2 h-1 

Diffusion coefficient of oxygen, Do  7.2 x 10-6 m2 h-1 

Maintenance coefficient for glucose 

(26), mg  

0.0078 g gb
-1h-

1 

Maintenance coefficient for oxygen 

(26), mo   

0.014 g gb
-1h-

1 

Specific growth rate (27), μmax  0.29 h-1 

Yield coefficient of oxygen (26), Yo  0.635  

Yield coefficient of glucose (26),Yg  0.628  

Chemotaxis potential, λchem,fix  400  

Fluctuation amplitude term, Tm  40  

Initial glucose concentration, Sg  400 g m-3 

Initial oxygen concentration, So  8 g m-3 

 

3.4 Results and discussions 

The simulations were carried out for 50 simulation hours. The 

change in structure of the biofilm with time is summarized in fig. 3.1 

During the initial 20 h, the biofilm spreads itself across the surface 

because of the minimal energy change through bacteria-substratum 

contact. Later, when the nutrient concentration availability falls below 

the metabolic requirement of bacteria, the bacteria become dormant, 

indicated by light blue color in the simulation. Dormant bacteria in their 

natural habitat generally are confined to their space without movement. 
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In a similar way, dormant bacteria in the simulation lose their motility 

and their consumption rate becomes negligible. These processes add an 

extra layer to the growth segregation zone, the bottommost, no-growth 

dormant zone. Therefore, as time progresses the zones vary in thickness 

and, as expected, the final shape of the biofilm after 50 h was 

hemispherical. The preservation of segregation zones during the 

entirety of the growth process, is due to the moving diffusion boundary 

layer and the increasing nutrient consumption rate at the dense lower 

layers. Most models in the literature, including the forced based model 

[122], predict finger projection formation in 2D and simulate a 

hemisphere shape as shown in fig. 3.1, rather than the mushroom shape 

observed in laboratory experiments with wild-type P. aeruginosa 

PAO1 biofilms (fig. 3.2a). This indicates that some key mechanisms 

are missing, and the current model is not capable of simulating the 

dynamics of mushroom-shape formation. We performed experiments 

with ΔbdlA, a P. aeruginosa dispersion mutant. We characterized the 

structures with clearly distinguishable stalks and caps, at least 70 μm 

tall, as mushroom-shaped biofilms. ΔbdlA mutants produce mushroom 

shapes as shown in fig. 3.2b, suggesting that the ability of bacteria to 

leave the biofilm through active dispersal does not influence the 

formation of these mushroom shapes and that the formation is inherent 

in all wild-type P. aeruginosa bacteria irrespective of favourable or 

detrimental environmental cues. 
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Figure. 3.1 Simulated biofilm growth without chemotaxis. 3D views of 
the progress of biofilm development at (a) 10 h, (b) 30 h, (c) 50 h and 
2D x-z cross section at (d) 50 h. The green color indicates active cells 
and the light blue indicates dormant cells. 

As shown in fig. 3.2, bdlA is not required for mushroom 

formation. Therefore, we carried out experiments using ΔCheY, a 

chemotaxis mutant. These mutant lacks chemotactic motility, the 

motility associated with the directional movement of bacteria towards 

a nutrient presence. The biofilms produced by this ΔCheY mutant did 

not produce mushroom structures and instead formed large stalks 

without caps (fig. 3.2c). This indicates a link between mushroom 

structure and chemotactic motility. The simulation model was modified 

accordingly to include bacterial chemotaxis. This chemotactic 
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parameter was subsequently included as an energy term, ΔE coupled 

with the already existing contact adhesion and volume constraint 

energy as, ΔH = ΔEV + ΔEC + ΔE. The chemotactic energy potential 

satisfies three conditions, 

 If the critical chemotaxis concentration is zero then the change 

in energy potential should be zero,  

𝐶𝑠𝑎𝑡 → 0, Δ𝐸 → 0 (3.11) 

 

This condition biologically corresponds to the solute which does not 

evoke chemotaxis in cells, ergo critical chemotaxis concentration is 

zero. 

For solute concentrations below the critical concentrations Csat, the 

change in energy potential should be negative and chemotaxis should 

depend on the magnitude of the gradient in concentration.  

𝐶𝑠𝑎𝑡 > 𝑆𝑜 (𝑖
′
→

) , Δ𝐸 < 0 
(3.12) 

If the critical concentration is very high, then the change in 

energy potential should be minimum, which sets the cell to be always 

in motion along the gradient field with the minimum chemotaxis 

potential,  𝜆𝑐ℎ𝑒𝑚 (𝑆𝑜 (𝑖
→

) − 𝑆𝑜 (𝑖′
→

)).  

𝐶𝑠𝑎𝑡 → ∞, Δ𝐸 → 𝑚𝑖𝑛 

 

(3.13) 
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Δ𝐸 = 𝜆𝑐ℎ𝑒𝑚

[
 
 
 
 
𝑆𝑜 (𝑖

→

)

1 +
𝑆𝑜 (𝑖

→

)

𝐶𝑠𝑎𝑡

−
𝑆𝑜 (𝑖′

→

)

1 +
𝑆𝑜 (𝑖′

→

)

𝐶𝑠𝑎𝑡 ]
 
 
 
 

 

 

(3.14) 

 

Figure. 3.2 Confocal images for different strains of P. aeruginosa 
biofilms after 3 d, (a) wild-type, PAO1, (b) dispersion mutant, ΔbdlA 
and (c) a chemotaxis mutant, ΔCheY. The scale bars are 20 μm. 

Equation 14 satisfies all three chemotaxis conditions and is used in 

the model to implement chemotaxis based on oxygen concentration. As 

mentioned, an increase in volume of a cell in the simulation is modeled 

by increase in the number of pixels associated with the cell. The newly 

added pixels of a growing cell are placed in such a way that the local 

change in energy is minimized. Placing the new pixels along the 

oxygen gradient, decreases the chemotactic energy and consequently 

the local energy change. Thus, favoring the cell growth along the 

nutrient gradient. It is expected that the bacteria in the biofilm will grow 

or move towards the nutrient enriched zone to sustain activity and 

biofilm growth. In the simulations, the motility is now a function of 
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contact adhesion, volume constraint and chemotaxis. Simulations with 

this new model with modified chemotaxis constraint produce 

mushroom shapes (fig 3.2a - c). The potential, λchem, determines the 

“chemotaxis velocity”, the velocity at which the bacteria move along 

the nutrient gradient. Higher chemotaxis velocity therefore thins out 

the stalk of the mushroom.  

 

Figure. 3.3 Simulated biofilm growth with modified chemotaxis. 2D 
section views of the progress of biofilm development after 50h at 
different λchem values (a) 0.75 λchem,fix , (b) λchem,fix   and (c) 1.25 λchem,fix. 
The green color indicates active cells and the light blue indicates 
dormant cells. The bottom panel shows the distribution of (d) oxygen 
concentration (e) cell motility in the model simulation with λchem = 
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λchem,fix and (f) Estimate of mushroom-shaped biofilm structures 
produced by different strains used in the experiments.  

The change of the height of the biofilm and the number of live cells 

with time is shown in fig. 3.4a. During the early stages of biofilm 

growth (20-30 h), the rate of height increase is significantly lower than 

the proliferation rate. This is due to the biofilm spreading across the 

substratum and covering a larger area, as was also observed in 

experimental data for day 1 biofilm (fig. 3.4d). After 35 h, the height 

of the biofilm increases at a faster rate to accommodate for the increase 

in total biomass. At the later stages of biofilm growth, even though the 

proliferation rate decreases, the height of biofilm increases 

exponentially. The critical point in time (35 h) after which the height 

increases exponentially is when the stalk of the mushroom starts to 

grow rapidly and a clear distinction between the cap and stalk appears. 

This critical point can be better estimated using the change in surface 

to volume ratio shown in fig. 3.4b. After 35 h, the critical point, the 

surface area of the biofilm increases rapidly leading to the formation of 

a broad cap at the top of mushroom.  The spatial distribution of oxygen 

and the motility are shown in fig. 3.3d and e respectively. The cells at 

the bottom, which proliferate must find a new space which is 

energetically favorable. The energetically favorable outcome for the 

cell is to move along the increasing nutrient gradient. In this GGH 

model with cell-cell adhesion energy, a cell in a crowded environment 

needs to expend more energy to push the nearby cells to move in its 

intended direction, than a cell in a sparsely populated environment. Due 
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to this inherent density-controlled cell motility, the model favors the 

mobility of cells in the periphery of the biofilm. 

 

Figure. 3.4 (a) Change of biofilm height and cell count with time; (b) 
Change in surface to volume ratio of the biofilm with time. Simulation 
results showing the creation-time of the bacterial cells at different 
layers within the biofilm, the legend denotes the time of cell creation, 
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(c) at 35 h and (d) 50 h. Panels e and f show the formation of 
mushroom structure of PAO1 wild-type biofilm after (e) 1 d and (f) 3 
d. Green color indicates live cells, red color indicates dead cells and 
the white curve is a trace line on the outer surface of the biofilm. 

Movement along the periphery of the microcolony is motion along 

the path of least resistance to minimize the local energy and 

consequently, the global energy. As the cells in the periphery start to 

move upwards, the central width of the biofilm begins to thin, and the 

stalk starts to form in the middle (fig. 3.4b). The mature cells, colored 

red, are found to climb over the relatively new cells at the stalk and 

periphery guided by the chemotaxis gradient.  Once the chemotaxis 

potential has been maximized the motile cells start to aggregate into a 

crown at the top of the biofilm, in other words the cells have reached 

the region where oxygen is available for survival. This process 

continues, and a clear distinction appears between the cap and the stalk 

part of the mushroom shape. 

The model simulations without chemotaxis (fig. 3.1) and the 

experiments using chemotaxis deficient mutant ΔCheY (fig. 3.2c) did 

not produce any significant number of mushroom shaped structures as 

shown in fig. 3.3f. This clearly shows that chemotaxis is one of the key 

mechanisms in determining the shape of the biofilm. The formed 

structures in ΔCheY biofilms closely resemble the hemispherical shape 

formed by the contact and volume constraint version of the model. 

Segregation of bacteria within the biofilm based on their metabolic 

activity is conclusive from the model. In the simulations, three unique 

zones are observable in the formed mushroom structure, 
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• The dormant bottom layers 

• Nutrient limited layers of the stalk 

• Fast proliferating cells at the cap of mushroom 

The bacteria in these three unique zones show differential 

responses to antibiotics. As such, the entire biofilm becomes highly 

heterogenous over time similar to the observations made by 

Williamson et al [138]. Therefore, eradication of the biofilm through 

clinical or chemical treatments is not straightforward due to the varying 

levels of antibiotic resistance at different layers of the biofilm. This 

antibiotic resistance could arise due to the physiological heterogeneity 

[138] of the cells or the accumulation of genetic mutations based on the 

local stresses acting on the cells [139]. Removing the cap and stalk of 

the mushroom will expose the dormant cells to fresh nutrient supply. 

This would help them revert to metabolically active state. In diseases 

such as cystic fibrosis involving P. aeruginosa biofilms, the reversion 

of dormant bacteria to an active state could result in exacerbations 

resulting in acute infections [140]. Our model can help understand the 

time-evolution of biofilm structure in P. aeruginosa biofilms and along 

with it the spatial distribution of antibiotic drug resistance. The model 

can be used to estimate antibiotic penetration and oxygen limitations, 

which have been shown [141] as contributors of antibiotic tolerance in 

P. aeruginosa biofilms. Using model simulations to estimate the 

parameters, which could otherwise be hard or impossible to measure 

experimentally, will aid a clinician to understand the inherent 

heterogeneity and provide valuable decision-making insights in 



 

71 

 

selection of antibiotics.   Additional development of the current model 

for other bacteria and inclusion of drug induced cell lysis mechanisms 

can establish the model as a predictor of clinical efficacy of antibiotics. 
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4 Convection and matrix dictate 

inter- and intra-biofilm 

quorum sensing 

communication 

 

This chapter is based on Tan C.H. †, Oh H.S. †, Sheraton M.V. †, 

Mancini E., Chye1 J.L.S., Kjelleberg S., Sloot P.M.A., and Rice S.A. 

The Impact of Mass Transfer and Quorum Quenching on 

Quorum Sensing Behaviors, submitted to Science Advances. 

ABSTRACT 

While the molecular mechanisms and impact of quorum sensing (QS) 

at the population level are well studied, it is unclear how QS functions 

in species-rich, matrix-encased communities. Here, we explore the 

impact of quorum quenching (QQ) activity on QS signalling in 

spatially organised biofilms in scenarios that mimic the open systems 

of natural and engineered environments. Using a functionally 

differentiated biofilm system and numerical modelling, we show that 

the extracellular matrix, local flow and QQ interact to modulate 

communication. In a biofilm, the matrix restricts QS and QQ to the site 

of production, and QQ impacts QS as a function of spatial distribution 

and organization. For aqueous environments, signals are rapidly 

disseminated by convection and received by distant responders via 
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matrix-trapping. This process enables signalling between biofilms even 

when the overall extracellular signal level is below the activation 

threshold. Using this model, we tested the potential impact of QQ on 

QS responses and show that QQ enzymes degrade signals as a function 

of the local hydrodynamics, rather than spatial localization, in water-

saturated conditions. The predictions from the mathematical model 

were experimentally validated, supporting the application of in-silico 

models for the design of laboratory experiments. We further show that 

intracellular QQ activity does not influence the QS function of 

surrounding organisms, as previously suggested. Our studies highlight 

that convection facilitates inter-biofilm communication in the 

environment while the extracellular matrix further dictates the 

transport of the competing QS and QQ molecules within biofilms, 

leading to heterogenous QS behaviour in multispecies biofilm 

communities.  

 

4.1 Introduction 

Quorum sensing (QS) is a microbial communication system that 

relies on the production, secretion and perception of small diffusible 

signalling molecules. This system has evolved to control social 

behaviours that influence the fitness of microbial populations [142, 

143]. The genetics and the regulatory pathways of many QS systems 

are well documented and the means by which such cooperative traits 

are protected from exploitation by QS cheaters have also begun to be 

described [144-147]. However, despite our understanding of QS gained 

from studying individual, planktonic model organisms in the 

laboratory, we have very limited information on how QS is achieved in 
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spatially organised, microbial communities in natural and engineered 

environments. Although QS has been implicated in the formation of 

complex, mixed species granular biofilms and sludge biocakes in 

bioreactor ecosystems [148, 149], QS signals in the liquid phase 

frequently occur at concentrations that are significantly lower than the 

typical QS thresholds (i.e., ~ 500 pM) recorded for planktonic cultures 

[149]. Hence, it is unclear how distinct biofilm communities may 

communicate via QS signals and achieve QS regulatory control at such 

low extracellular concentrations. Furthermore, the levels of QS signals 

can be influenced by quorum quenchers (QQ) that coexist with the QS 

signal producers in the community, impeding the formation of granular 

biofilms [150]. Given the high frequencies of co-occurrence of QS and 

QQ organisms in nature [151, 152], the interplay between the QS and 

QQ activities is likely to have profound impacts on the behavior of 

biofilm communities. Thus, while QS organisms are prevalent, it 

remains to be determined how the QS process varies according to the 

dynamics of cellular activities and the community composition in any 

specific environment.  

Within biofilms, microorganisms often grow as highly structured 

cell clusters encased in an extracellular matrix of polymeric substances 

(EPS)[149, 153-155]. The EPS matrix thus serves not only as a 

protective structure enabling biofilm cells to survive, but it can also 

partition different populations or communities within the environment 

[156]. In monospecies cultures, biofilm thickness and the abundance of 

the EPS matrix have been associated with the ability of the biofilm to 
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retain signals for QS induction under flow conditions [157], and the 

EPS components have been shown to influence communication 

between aggregates of biofilm populations [158-161]. However, little 

is known about how the extracellular matrix impacts QS signalling in 

microbial consortia with communal interactions (i.e., QS vs. QQ), and 

how spatial distribution and organization of individual competing 

populations, as segregated by the EPS matrix, may determine the 

outcome of communication within the biofilm communities. 

To address this knowledge gap, we have developed an 

experimental system to mimic QS processes reflective of open systems 

of naturally occurring biofilms that have functionally distinct 

community members [149, 155]. In this biofilm model, each bacterial 

population was encapsulated within a microliter-scale hydrogel granule 

and grown into a biofilm aggregate. By patterning these engineered 

aggregates onto an agar surface, we defined how the spatial 

organization of functionally distinct organisms impacts the 

interaggregate communication in different ecological contexts, 

including the presence and absence of local flow, using both 

experimental and numerical models. 

 

4.2 Results 

4.2.1 Designing a microbial biofilm system for QS study 

 An experimental biofilm model comprised of individual 

populations of QS signal producers, responders and quenchers was 
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assembled to study the impact of the extracellular matrix, 

hydrodynamics and signal interference on QS signaling at a macroscale 

level (i.e., centimeters) (fig. 4.1). To minimise confounding variables 

that potentially arise from interactions between different bacterial 

species, we engineered the QS and QQ functions into different 

populations of Escherichia coli (Appendix Table S1). The signal 

producer was an E. coli strain harboring a pTrcHis2 plasmid with an 

acyl-homoserine lactone (AHL) signal synthase, esaI, derived from 

Pantoea stewartii[150], while the signal quencher strain encoded aiiO, 

an AHL acylase from Ochrobactrum anthropi[162]. Both esaI and aiiO 

genes were fused to a Ptrc promoter, and constitutively expressed in all 

experimental conditions (data not shown). EsaI synthesizes N-(3-

oxohexanoyl)-L-homoserine lactone (3OC6-HSL) while AiiO 

degrades a wide spectrum of AHLs, including 3OC6-HSL [162, 163]. 

E. coli JB525 is a signal reporter strain that is unable to produce AHLs, 

but senses them with high sensitivity (e.g., 3OC6-HSL at 1 nM) and 

expresses the green fluorescent protein (GFP) in a signal concentration-

dependent manner [164]. To simulate densely packed biofilm 

aggregates, such as those found in aerobic granules in wastewater 

treatment systems (fig. 4.1a), individual bacterial strains were 

encapsulated using alginate polymers to produce aggregates of cells 

(i.e., granules) with an average dimension of 1.91±0.06 mm (fig. 4.1b 

and Appendix fig. 4.1). Bacterial microcolonies, similar to microbial 

clusters found in naturally occurring biofilms [165, 166], were formed 

within the alginate matrix after 24 h incubation at room temperature 
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(fig. 4.1c). Using these strain-defined alginate aggregates (defined as 

producers, responders and quenchers), we built a microbial biofilm 

system on the surface of an agarose hydrogel (1% w/v) where the 

spatial coordinates of each aggregate population were defined along the 

grid (fig. 4.1d). Unless otherwise stated, bacterial aggregates were 

placed at a distance of 1 cm apart from one another (in coordination x 

and y). Nutrients for growth were supplied in an agarose hydrogel (1% 

w/v), representing the extracellular matrix, or in a liquid medium, 

characteristic of the open systems of aqueous environments (fig. 4.1f). 

The biofilm was cultured in a dark-chamber, and signalling (activation 

of the QS reporters, i.e., QS activation) was visualised under UV 

illumination using a camera equipped with a GFP emission filter (fig. 

4.1e). This setup thus provided a platform to study how species interact 

based on diffusible molecules, such as AHLs and QQ enzymes, in 

natural communities.  
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Figure. 4.1 Experimental configuration. a, Natural biofilm aggregate 
– a highly structured, multispecies microbial community in 

wastewater treatment plant/bioreactor. Scale bar:  500 m. b, 
Synthetic biofilm aggregate – a biofilm model engineered by 
encapsulating individual strains into an alginate-based hydrogel 

granule. Scale bar:  500 m. c, Microcolonies of QS signal reporter 
strain developed within an alginate-based hydrogel granule after 
incubating for 24 h at room temperature. The reporter aggregate was 
exposed to 100 nM of QS signal (i.e., 3OC6-HSL) for 4 h for GFP 
induction prior to imaging by confocal laser scanning microscope at 

488/510 nm. Scale bar:  50 m. d, Layout of a microbial biofilm system 
comprised of individual biofilm aggregates of QS signal reporters 
(blue), producers (red) and quenchers (pink) on a 9 cm petri dish. e, 
The setup for time series snapshots of signalling events in the 
experimental system. The GFP fluorescence, representing QS 
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activation, is visualised under UV illumination using a camera 
equipped with a GFP emission filter in an enclosed chamber. f, An 
illustration of the cross-sectional view of a microbial biofilm system 
setup on a 9 cm petri dish. The biofilm aggregates were crosslinked 
onto an agarose hydrogel layer (1% w/v) and overlaid with 10% 
lysogeny broth (w/v), with or without 1% agarose (w/v) 
supplementation, to represent the hydrogel matrix or the aqueous 
environment, respectively. Both QS signal producer (red) and 
quencher (pink) aggregates were protected with an additional layer of 
alginate (i.e., hydrogel shield) to prevent cell leakage. QS signals and 
QQ enzymes are expected to be released from the respective source 
of biofilm aggregates into extracellular space to activate the QS signal 
reporters (green – on state) or to inhibit reporter activation (blue – off 
state) by degrading the QS signals. The image for the natural biofilm 
aggregate (a) is adapted from Tan et al. [149].  

 

4.2.2 QS signalling in a hydrogel matrix 

 To simulate QS signalling in natural biofilms such as microbial 

mats, where the organisms appear to be embedded in continuous 

patches of extracellular matrix, we used 1% agarose hydrogel (w/v) as 

the biofilm matrix of the microbial system (fig. 4.2). In this experiment, 

AHLs were secreted from two spatially separated, actively growing 

signal-producing aggregates located at positions (1, 1) and (0, -2) (fig. 

4.2a). Activation of the surrounding reporter populations was uniform 

and symmetric. Individual reporter aggregates were sequentially 

activated, where the signal acquisition time for each reporter increased 

with their distance from the AHL producer, which is a reflection of 

signal concentration and diffusion rates. To elucidate the mechanism 

responsible for this pattern of induction, we developed a three-
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dimensional (3D) in silico model that integrated simple AHL diffusion 

with the dynamic signal production rate according to the logistic 

growth of the AHL producer, abiotic signal degradation rate, as well as 

cooperative activation behaviour of the reporter (fig. 4.2b, Appendix 

fig. 2 and see Mathematical Model). The model predicted the 

spatiotemporal changes in signal profiles, showing localised AHL 

accumulation around the producer (fig. 4.2c) as well as limited signal 

diffusion away from the producer within biofilms. Diffusivity of the 

AHL was the only free parameter in this model and was tuned using 

experimental reporter granule activation results (data not shown). 

Based on the simulations, the diffusivity of AHL (DAHL) in the hydrogel 

matrix was determined to be 4.75 × 10-6 cm2/s (fig. 4.2d), which is close 

to the estimated diffusivity of AHL in water, 4.9 × 10-6 cm2/s, reported 

previously [167]. The average relative error of mismatch in the QS 

activation time between the experiment and numerical simulations was 

approximately 6%, and the Fréchet distance showed a maximum 

mismatch of 3.5 h (fig. 4.2e), indicating a good match between the 

experiment and the simulations.  
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Figure. 4.2 QS signalling in a hydrogel matrix. a, Activation of QS 
signal reporter aggregates, i.e., GFP induction, in response to signals 
generated by QS signal producer aggregates (open red circles) located 
at (1, 1) and (0, -2). b, Simulations of QS activation based on the signal 
diffusivity (DAHL) of 4.75 × 10-6 cm2/s. Blue and green circles indicate 
uninduced and QS-activated states of reporter aggregates, 
respectively. Red circles indicate QS signal producer aggregates. c, 
Spatio-temporal prediction for the QS signal concentration profile 
based on the signal diffusivity of 4.75 × 10-6 cm2/s. The colour scale:  
0-50 nM. d, Simulations of spatio-temporal QS responses based on 
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different QS signal diffusivities. Means ± SD are presented (n = 3) for 
the experiment. e, The mismatch of QS activation times for the 
experimental results and the simulations with a signal diffusivity of 
4.75 × 10-6 cm2/s. The colour scale:  0-3.5 h. 

4.2.3 QS signalling in a hydrogel matrix in the presence of 

quorum quenchers 

 To determine the impact of physical distribution of quorum 

quenchers on QS signalling in the biofilm context, two signal-

quenching aggregates were placed in proximity to (-0.5, -0.5), or at a 

distance away from (1.5, 1.5), the signal producer (0, 0) (fig. 4.3). Both 

quenchers exhibited localised QQ effects but differed in their impact 

on QS activation, depending on the relative position of the respective 

quencher to the signal producer (fig. 4.3a). For the quencher positioned 

at a greater distance from the signal producer (1.5, 1.5), signal 

inactivation was seen for the granules positioned to the left and right as 

well as behind the QQ strain (fig. 4.3a). In contrast, QS inhibition was 

only observed for the granules behind the QQ strain, where the QQ is 

between the producer and sensor granule, when in close proximity to 

the QS producing strain (fig. 4.3a). Thus, the QQ effectively creates a 

‘shadow’ effect, blocking QS activation based on diffusion of the 

signal around the QQ strain.   

AiiO has been reported to be a cytoplasmic QQ enzyme in the 

original host O. anthropi  [168], and it was therefore assumed here that 

the AiiO remained as an intracellular protein when it is expressed 

heterogeneously in E. coli. Additionally, the production rate of AiiO 

was expected to be similar to that of EsaI since both enzymes were 
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synthesised using the same expression system. We therefore performed 

simulations assuming that no AiiO was released outside the quencher 

aggregates and that quenching of AHL occurred based on diffusion of 

the AHL into the quencher aggregates where they are degraded by AiiO 

in the cells. These simulations suggested that all reporter populations 

were activated after a certain period of time despite the presence of 

quenchers. Thus, the effect of QQ was predicted to be negligible, even 

when adjacent to the quencher aggregates (Appendix fig. 4.3). Since 

the experimental data showed QS inhibition, these results suggested 

that QQ activity was not limited to the intracellular/intra-aggregate 

process and that the enzymes may be released into the 

extracellular/extra-aggregate space. We subsequently confirmed the 

presence of extracellular QQ activity outside the quencher aggregate 

after incubating the aggregate in the growth medium for 6 h or more 

(Appendix fig. 4.4a and b). The release of AiiO corresponded to the 

detection of the intracellular enzyme alkaline phosphatase 

extracellularly, suggesting that AiiO might be released via cell lysis by 

a small subpopulation of cells (Appendix fig. 4.4c). The incorporation 

of these findings into our existing model enabled an improved and 

more accurate simulation of the experimental observations of reporter 

activation with an average relative error of mismatch of approximately 

6.5% (fig. 4.3b, Appendix fig. 4.5 and see Mathematical Model).  
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Figure. 4.3 QS signalling in a hydrogel matrix in the presence of 
quorum quenchers. a, Activation of QS signal reporter aggregates, 
i.e., GFP induction, in response to signals generated by QS signal 
producer aggregate (open red circles) located at (0, 0) with the 
presence of QS signal quencher aggregates (open pink circles) located 
at (1.5, 1.5) and (-0.5, -0.5). Blue dashed line indicates the zone of QS 
inactivation. b, Simulations of QS activation. Blue and green circles 
indicate uninduced and QS-activated states of reporter aggregates, 
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respectively. Red and pink circles indicate QS signal producer and 
quencher aggregates, respectively. c, Spatio-temporal prediction for 
the QS signal concentration profile. The colour scale:  0-50 nM. d, 
Spatio-temporal prediction for the QQ enzyme concentration profile. 
The colour scale:  0-1.5 nM. The diffusivities of QS signals (DAHL), i.e., 
4.75 × 10-6 cm2/s and QQ enzymes (DAiiO), i.e., 1.35 × 10-6 cm2/s were 
used in all simulations. e-h, Simulation of QS signalling in a hydrogel 
matrix in the presence of quorum quenchers with different spatial 
configurations. Specifically, the QS signal quencher aggregates 
positioned with a geometric centre at (1.5, 1.5) and vertices spaced 
equally from this centre as e, concentrated, f, arc, g, small pentagon 
and h, large pentagon configurations. Blue and green circles indicate 
uninduced and QS-activated states of reporter aggregates, 
respectively. Red and pink circles indicate QS signal producer and 
quencher aggregates, respectively. 

 

The model was tuned for two free parameters, diffusivity of 

AiiO and amount of AiiO released by cell lysis (Kleak) using 

experimental reporter granule activation results (data not shown). The 

diffusivity of AiiO (DAiiO) in the hydrogel matrix was determined to be 

1.35 × 10-6 cm2/s, which is approximately 3.6 times slower than the 

diffusivity of the AHL. Correspondingly, the model predicted minimal 

AiiO transport in the hydrogel matrix and hence allowed the build-up 

of the released enzyme around the quencher aggregate over time (fig. 

4.3d). As a consequence, AHL concentrations around the quencher 

aggregate were predicted by the simulations to be significantly reduced 

compared to other regions (fig. 4.3c), though it might still sufficient to 

allow QS activation depending on the relative distance to the signal 

producer (fig 4.3a and b). Our numerical model further predicted that 
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dispersed QQ populations would have a greater impact on QS 

behaviour compared to the highly clustered QQ populations (fig. 4.3e-

h). For example, 14% of the responder populations were inactive with 

the clustered QQ populations (fig. 4.3e) while up to 35% of the 

responders, depending on specific configurations, were inactive when 

the QQ populations were dispersed throughout the system (fig. 4.3f-h). 

4.2.4 QS signalling in an aqueous environment 

 In contrast to the highly organised, symmetrical QS activation 

pattern observed in the hydrogel matrix (fig. 4.2a), activation of QS in 

the aqueous environment was random and uneven (fig. 4.4a). The 

reporter populations were activated independent of their distance from 

the signal producer. The activation process often occurred 

unidirectionally, initiating from one edge of the plate with activation 

proceeding away from that edge until all of the reporter populations 

were activated. The entire reporter population could be fully activated 

by a single signal producer in 15.5 h (i.e., with a 6 h interval from the 

time the first aggregate was activated until all of the reporter aggregates 

were fully induced), while this might take more than 50 h in the 

hydrogel matrix model and setup (Appendix figs. 6 and 7).  
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Figure. 4.4 QS signalling in an aqueous environment. a, Activation of 
QS signal reporter aggregates, i.e., GFP induction, in response to 
signals generated by QS signal producer aggregate (open red circles) 
located at (0, 0). b, Simulations of QS activation based on the Navier-
Stokes model for fluid convection. Blue and green circles indicate 
uninduced and QS-activated states of reporter aggregates, 
respectively. Red circles indicate QS signal producer aggregates. c, 
Spatio-temporal prediction for the QS signal concentration profile. 
The colour scale:  0-50 nM. d, Experimental design to test for QS signal 
absorption, retention and release by extracellular matrix (e.g., 
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alginate granule). e, GFP induction in the QS reporter strain by QS 
signals, including 3OC6-HSL, 3OC8-HSL and 3OC12-HSL, released from 
supernatant or alginate granule. DMSO was used as a solvent control. 
Relative fluorescent intensity was determined at 488/510 nm and 
normalized by OD600 for each sample.  Means ± SD are presented (n = 
3). Multiple t-tests with corrections using the Holm-Sidak method 
were performed to compare the QS signal retention by the alginate 
matrix to the supernatant, where significant differences are indicated 
as follows: * P < 0.01, ***P < 0.001. 

 

Given the discrepancy in the QS activation times, the hydrogel 

based mathematical model was not able to reproduce the rapid QS 

induction profile in the aqueous environment, even if the signal 

production rate was increased 100 fold (Appendix fig. 8). For example, 

a 100 fold increase in the signal production rate only reduced the time 

to full QS activation by 18 h (i.e., from 52 h to 34 h). Thus, it was clear 

that the irregular and rapid QS activation in the aqueous environment 

could not be simply driven by diffusion but involves other modes of 

signal transport, including convection. The presence of a local flow in 

the enclosed incubation chamber was verified by a drift assay 

(Appendix fig. 9a). When the petri dish was covered with a lid, the 

local flow was prevented but evaporation-induced convection 

remained (Appendix Fig. 9b). Correspondingly, the rate of QS 

activation was reduced remarkedly in the closed system (Appendix fig. 

10c) compared to the open lid experiments. For example, 88% of the 

responder populations were activated within 10 h in the open aqueous 

system (i.e., without lid) compared to only 37% in the closed aqueous 
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system (i.e., with lid) and 8% in the open hydrogel system (i.e., without 

lid) (Appendix fig. 10). By incorporating a convection term, as a means 

of local flow and evaporation induction, to the hydrogel-based model, 

we simulated the experimental observations in the aqueous 

environment with velocity being the only free, tuneable parameter and 

found that an x-velocity of 0.1 cm/s and y-velocity of 0.2 cm/s 

qualitatively best reproduced the QS pattern (fig. 4.4b and see 

Mathematical Model). Although it was not possible to precisely 

simulate the spatial QS activation profile in the experimental data, the 

simulations predicted similar activation times of 13.5 h for the entire 

system, with a 5 h interval from the time of activation for the first 

aggregate until all were induced, indicating a close match of the 

experiments and the simulations. 

 The simulations subsequently predicted non-circular or 

asymmetrical signal concentration contours in the aqueous 

environment (fig. 4.4c). The signal accumulation was estimated to 

occur rapidly and the entire system could reach a uniform minimum 

concentration of 50 nM in 13 h. Interestingly, many signal hot spots, 

where significantly higher signal concentration was anticipated to 

accumulate than in the immediate surroundings, were found across the 

system for the early time points (i.e., < 9 h). The majority of these hot 

spots overlapped with the positions of the reporter aggregates, which 

were encapsulated in the alginate matrix, indicating that the signals 

may preferentially accumulate in, or are retained by, the matrix. Based 

on these outcomes, we further hypothesised that the biofilm matrix 
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(e.g., alginate) may absorb AHLs from the aqueous environment to 

achieve a higher AHL concentration in the granule over time to enable 

reporter activation within the matrix. To verify this hypothesis, we 

exposed alginate granules without bacteria to different AHL solutions, 

including 3OC6-HSL, 3OC8-HSL and 3OC12-HSL for 1 h (fig. 4.4d). 

After a brief washing, the alginate granules were added to a reporter 

assay to represent the matrix sample while the ‘washout’ was taken as 

the supernatant. In all cases, the reporter strain was activated by signals 

released from the alginate matrix and the level of activation was 

significantly higher than that of the supernatant (i.e., > 5 fold, P < 0.05 

for all) (fig. 4.4e), demonstrating the reversible binding of signals into 

the biofilm matrix. This outcome underscores a crucial role of biofilm 

matrix in QS signalling in aqueous environments. 
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Figure. 4.5 QS signalling in an aqueous environment in the presence 
of quorum quenchers. a, Activation of QS signal reporter aggregates, 
i.e., GFP induction, in response to signals generated by QS signal 
producer aggregate (open red circles) located at (0, 0) with the 
presence of QS signal quenchers aggregates (open pink circles) 
located at (1.5, 1.5) and (1.5, -1.5). b, Simulations of QS activation 
based on the on the Navier-Stokes model for fluid convection. Blue 
and green circles indicate uninduced and QS-activated states of 
reporter aggregates, respectively. Red circles indicate QS signal 
producer aggregates. c, Spatio-temporal prediction for the QS signal 
concentration profile. The colour scale:  0-50 nM. d, Spatio-temporal 
prediction for the QQ enzyme concentration profile. The colour scale:  
0-1.5 nM. 
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4.2.5 QS signalling in an aqueous environment in the presence of 

quorum quenchers 

Unlike the case for the hydrogel matrix (fig. 4.3a and Appendix 

fig. 11), the addition of two signal-quenching aggregates at positions 

(1.5, 1.5) and (1.5, -1.5) in the aqueous environment did not alter the 

QS activation profile, with the exception of a limited number of 

reporter aggregates that remained partially inactive after 13 h 

incubation (fig. 4.5a). Such experimental observations were also 

predicted by the simulations (fig. 4.5b and see Mathematical Model). 

While the presence of QQ aggregates had little impact on the pattern of 

QS activation experimentally (fig. 4.5a vs. 4.4a), the simulations 

suggested that the quenchers could strongly suppress the accumulation 

of high concentrations of signal (i.e., >10 nM) (fig. 4.5c vs. 4.4c). For 

example, in the absence of quenchers, the entire system was saturated 

with signals with a minimum concentration of 50 nM by 13 h (fig. 

4.4c), while in the presence of quenchers, the average signal 

concentration was predicted to be less than 15 nM by 13 h (fig. 4.5c). 

Thus, in an aqueous environment, it is likely that QQ can cause  more 

global but varying impacts on the QS responses, depending on the QS 

activation thresholds of the responders, than in a biofilm context.  

Extracellular matrix, hydrodynamics and QQ dictate the pattern 

of QS signalling. To quantitatively measure the impacts of the 

extracellular matrix, hydrodynamics and QQ on QS signalling, we 

compared the cumulative QS responses of reporter populations in 
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different environments. In these experiments, the spatial coordinates of 

individual populations in each system were standardised (fig. 4.1d). 

The activation time for each experimental condition was normalised by 

subtracting the time taken for the first reporter aggregate to be activated 

and the subsequent time for activation of the reporter populations in the 

system (fig. 4.6). In the hydrogel matrix, the normalised time for 

activating the first 50% of the reporter populations was almost identical 

for experiments with and without the quenchers (fig. 4.6a). However, 

the time for activation of 90% of the reporters, in the presence of 

quenchers, was significantly longer compared to when the quenchers 

were absent (i.e., with a mean difference varied from 4 h to 18 h). The 

experimental variability, as indicated by the 95% confidence interval 

based on three independent studies, was minimal with or without the 

quenchers. In contrast, in the aqueous environment, quenchers 

appeared to have a strong influence on the reproducibility of the 

experiment in terms of activation time (fig. 4.6b). While the 

experimental variation in the absence of quenchers was negligible, 

there was high variability in QS activation when the quenchers were 

present. The difference in mean activation time between experiments 

with and without quenchers increased from less than 30 min to more 

than 6 h as the percentage of activated reporters increased from 15% to 

90%. These findings were consistent with the prediction of AHL 

profiles in both scenarios (fig. 4.4c and 5c), indicating a reduced, but 

global QQ impact on QS. Importantly, in the absence of quenchers, full 

QS activation in the aqueous environment could be achieved at least 10 
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times faster than that in the hydrogel matrix (fig. 4.6). Even with the 

presence of quenchers, the duration required to arrive at more than 90% 

of signal responder populations activated was approximately five times 

shorter than that in the hydrogel matrix, highlighting the extent by 

which the interaction with the physical environment may influence QS 

behaviour. 

 

Figure. 4.6 Extracellular matrix, hydrodynamics and QQ dictate the 
pattern of QS signalling. Cumulative QS responses of the signal 
reporters embedded within a, a hydrogel matrix and b, an aqueous 
environment, determined in the absence (blue circles) or the presence 
of signal quenchers (i.e., QQ - red squares) according to the 
experimental system layout shown in fig. 4.1d. The QS activation time 
was normalised by subtracting the time taken for the first reporter 
aggregate to be activated and the subsequent time spent for 
cumulative activation of the reporters in the system. Means ± SD are 
presented (n = 3). The dotted lines represent the 95% confidence 
intervals. 

 



 

96 

 

4.3 Discussion 

The spatiotemporal activity of QS signaling and QQ is strongly 

influenced by the mode of mass transport and/or the biogeography and 

organization of individual populations in the biofilm system. First, 

monospecies biofilm studies have indicated the ability of biofilms to 

retain AHLs at concentrations 1,000 fold higher than in the liquid phase 

[169] and the biofilm thickness can affect the levels of QS induction 

under flow conditions [157]. Here, we further show that the EPS matrix 

of the biofilm governs molecular transport (e.g., QS signals and QQ 

enzymes) via diffusion mechanisms, resulting in distinct zones of QS 

signalling and QQ inhibition (figs. 4.2 and 4.3). These findings clearly 

support the hypothesis that QS would be most pronounced in the 

vicinity of QS organism/population clusters within biofilms [36, 170]. 

Since the production of EPS matrix in many organisms is directly 

regulated by QS [171-173], one might speculate that AHL-EPS 

synthesis/secretion has co-evolved to facilitate cooperative QS 

behaviour to immediate neighbours for population benefits and 

evolutionary stability of QS, according to the kin selection hypothesis 

[174, 175]. Similarly, QQ activity would be concentrated within 

biofilms and thus compete with QS signalling. It is important to note, 

however, that although the QQ function is localised within the biofilm 

matrix, the impact of QQ on the QS behaviour may vary according to 

the spatial organization and distribution of different species. 

Specifically, we found that dispersed QQ populations have greater 

influence on the QS behaviour compared to the QQ populations present 
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in clusters (fig. 4.3e-h). Also, it was noted that a QQ population in close 

proximity to a QS signal source may not necessarily affect the QS 

behaviour in the immediate vicinity but it may otherwise influence 

those at a further distance (fig. 4.3a-b and h). These observations are 

likely due to the differences in production rate and diffusivity of the 

molecules. Hence, these findings strongly suggest that heterogenous 

QS may be an emergent property of multispecies biofilm communities.  

In contrast, in an aqueous environment the transport of molecules 

was mainly driven by convection, including the local flow and 

evaporation-induced advection [176]. Although convection at high 

velocity (e.g., 1 cm/s), for example in the flow cell system, has been 

shown to dilute signals and deter QS induction [157], we demonstrated 

here that convection at low velocity (i.e., < 0.1 cm/s) mediates rapid 

AHL and AiiO dissemination and allows for their activity, in a 

relatively open environment. For example, in the absence of quenchers, 

full QS activation in an aqueous environment could be accomplished 

at least ten times faster than that in the extracellular matrix (fig. 4.6). 

Under these conditions, it was not possible to establish local gradients 

of QS signals or QQ enzymes and there was little or no heterogeneity 

in the QS response of the system (figs. 4.4a and 5a). In fact, QQ had a 

limited effect on the QS behaviour measured here with a low activation 

threshold of 1.5 nM. Nonetheless, a reduced but global QQ effect on 

QS signalling was predicted (fig. 4.4c vs. 4.5c) and may therefore 

affect QS behaviours that rely on higher activation thresholds. These 

QS signalling and signal-quenching interactions could be particularly 
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relevant in environments where significant hydraulic retention time 

(HRT, i.e., water retention time) is expected, including water pockets 

in the rhizosphere [177], on wetted leaves [178], in sequencing batch 

bioreactors [149], in wastewater treatment plants [165] or even in the 

animal gastrointestinal tract [179]. For example, a previous study 

comparing the quorum size of Pseudomonas syringae on dried and 

wetted leaves, indicated that the total population on the wetted leaves 

displayed at least 25% more QS activity compared to that of the dried 

condition after 48 h of incubation [178], suggesting that 

liquid/convection-mediated transport enables interaggregate 

communication. It is also likely that convection plays a critical role in 

mediating signal transduction in engineered ecosystems, such as in 

granular bioreactors where the suspended biofilm aggregates are 

constantly mixed by aeration, allowing signal exchange to occur 

between individual granules in the liquid medium [149]. The 

observation that the EPS matrix absorbs signals from the environment 

(fig. 4.4e) provides a mechanistic insight into how biofilm aggregates 

effectively perform QS, even at extremely low signal concentrations 

(i.e., ~500 pM) in a continuous suspended condition [149]. 

The experimental and modelling data show that QQ activity, in 

the hydrogel matrix, must be an extracellular/extra-aggregate process 

to deliver any significant impact on QS. This raises an important 

ecological question regarding the role of QQ in nature, as the majority 

of QQ isolates from different environments exhibit intracellular or cell-

associated QQ activity, which is presumed to result from a lack of a 
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signal peptide for secretion [180, 181]. Without secretion of the QQ 

enzyme, the cellular uptake and degradation of the environmental AHL 

by the QQ organism is probably too limited to compete with the signal 

production rates by other species. Therefore, our data suggest that the 

intracellular QQ enzymes may not have evolved primarily to degrade 

environmental AHL signals as a competition measure as previously 

proposed [182], at least not in habitats where the movement of QQ 

organisms is bound by the extracellular matrix. Instead, it is likely that 

the intracellular QQ enzymes have evolved to control other important 

cellular processes; for example, regulating QS signal level in the AHL 

producers [183]. Alternatively, for QQ to evolve as a competitive 

advantage, high production rates of QQ enzymes are needed to counter 

the much higher population densities of co-occurring QS producing 

organisms. We observed extracellular QQ, which was also associated 

with the extracellular activity of alkaline phosphatase, an intracellular 

enzyme [184]. This suggests that cell lysis plays an important role in 

localised QQ activity, and could be achieved by a subpopulation of 

cells undergoing lysis, as was observed for extracellular DNA (eDNA) 

release in P. aeruginosa [185]. 

In summary, our data provide a quantitative assessment of QS in 

biofilms and reveal that the pattern of QS signalling is primarily 

governed by the physics of mass transport. In a diffusion limited 

environment, afforded by the extracellular matrix, both QS signalling 

and QQ function are restrained to close neighboring cells, and the 

impact of QQ on QS behaviour is highly dependent on the species 



 

100 

 

localization. By contrast, the operational range of QS signalling and 

QQ activity is greatly enhanced by the local flow as well as the binding 

affinity of signals or quenching enzymes to the EPS matrix. 

Importantly, these findings have strong implications for how other 

extracellular metabolites behave in the environment and explain 

complex spatiotemporal patterns of cellular or social activities in mixed 

species communities.  

4.4 Methods 

4.4.1 Engineering of biofilm aggregates using alginate polymers 

Sodium alginate solution was prepared by autoclaving 1.3% 

w/v sodium alginate (Thermo Fisher Scientific, Singapore). Overnight 

cultures, i.e., QS signal producer (E. coli EsaI), quencher (E. coli AiiO) 

and reporter (E. coli JB525), were washed three times with MilliQ 

water. Thirty microliters of each bacterial culture were mixed with 970 

µl of sodium alginate solution (1.3% w/v) to reach a final OD600 of 

0.25. Approximately 4 µl of alginate-bacteria suspension were dripped, 

via a syringe needle (26G), into a sterile CaCl2 (4% w/v) (Merck, 

Singapore) solution to crosslink the alginate polymers. The Ca-

alginate-bacteria aggregates, with an average diameter of 1.920.04 

mm, were formed in CaCl2 solution after incubation for 20 min and 

washed twice with MilliQ water (Appendix fig. 1a). To prevent any 

leakage of QS signal producers or quenchers, the alginate aggregates 

of QS signal producers or quenchers were coated with an additional 

layer of Ca-alginate with a thickness ranging from 0.03-0.07 mm 

(Appendix fig. 1b). These Ca-alginate-bacteria aggregates were 
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allowed to grow into biofilm aggregates in nutrient media as described 

below. 

Arraying bacterial aggregates into a microbial biofilm system. The Ca-

alginate-bacteria aggregates were arrayed onto a 9 cm petri dish, 

containing 1% w/v agarose hydrogel (with a thickness of 2.5 mm) to 

construct a biofilm system, using the Ca-alginate gelation method. 

Briefly, 1 µl of sodium alginate solution (1.3% w/v) was dropped 

evenly onto the agarose hydrogel according to the grid at an interval of 

1 cm. The Ca-alginate-bacteria aggregates were placed onto the sodium 

alginate drops and 3 µl of CaCl2 (4% w/v) solution were added to each 

aggregate to allow crosslink formation between aggregates and the 

agarose for 10 min. Twenty millilitres of 10% w/v lysogeny broth 

(Lennox, Difco, Singapore), with or without 1% w/v agarose 

supplementation, were overlaid onto the plate to represent the hydrogel 

matrix or the aqueous environment, respectively. CaCl2 (0.095% w/v) 

was supplemented to each medium to prevent swelling of Ca-alginate 

aggregates during the experiment. 

4.4.2 Imaging and image processing 

The plate containing the microbial biofilm system was placed 

inside a Gel-Doc XR+ system (Bio-Rad Laboratories, Singapore). UV 

fluorescent images were captured every 15 min with 20 s exposure for 

the aqueous environment experiment using a GFP emission (520/530 

nm) filter. The exposure time was reduced to 5 s for the hydrogel matrix 

experiment to minimise the background fluorescence, which was 
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observed to increase linearly with time. The raw data were exported as 

1392- by 1040- pixel (91.2 x 91.2 m pixel size) 16-bit TIFF images 

for image analysis (Appendix fig. 12). To quantify the fluorescence 

intensity for each reporter aggregate, we first created a binary template 

image by localizing every reporter aggregate to a new layer using the 

‘Pencil Tool’ (size 20 px) of Photoshop software (Adobe, USA). The 

template image was used to determine the mean grey value of each 

reporter aggregate using the ‘Analyse Particles’ command of ImageJ 

(version 1.48, National Institute of Health, USA). After normalising the 

mean grey value of each reporter aggregate by deducting the 

background  fluorescence over time, the fluorescence intensity of each 

aggregate relative to a fully QS-activated aggregate (i.e., the relative 

fluorescence intensity) was determined. The overall shape of synthetic 

aggregate and microcolonies of QS signal reporter strain developed 

within the synthetic aggregate was visualised using Stereomicroscope 

(Stereo Discovery V8, Zeiss, Singapore) and confocal laser scanning 

microscope (LSM 780, Zeiss, Singapore), respectively. 

4.4.3 Determination of QS activation thresholds in experiments 

and simulations 

The thresholds of AHL concentration and incubation duration 

required for QS activation (i.e., GFP detection) in simulations were 

determined by wet-lab experiments. The experimental setup described 

above using a 9 cm petri dish was adapted to a 24 well microtiter plate 

(id. 15.6 mm). A single reporter aggregate was fixed onto an agarose 

surface (1% w/v with 2.5 mm in height), at the centre of the well, using 
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the Ca-alginate gelation method. Six hundred microliters of nutrient 

medium (10% w/v lysogeny broth + 0.095% CaCl2) supplemented with 

varying concentrations of synthetic AHL (i.e., 3OC6-HSL; ranging 

from 0 to 50 nM) were added to the well as a hydrogel (+1% w/v 

agarose) or an aqueous overlay. Fluorescent images were captured at 

20 s exposure time and quantified as described above. The relative 

fluorescence intensity of reporter aggregates exposed to different 

concentrations of AHL were plotted against the incubation time (data 

not shown). Based on the curves, the thresholds of AHL concentration 

and incubation duration required for GFP expression (i.e., time delay, 

𝑡𝑑𝑒𝑙𝑎𝑦 , for QS activation) were determined to be 1.5 nM and 4 h, 

respectively, for both hydrogel matrix and aqueous environment 

simulations. For the analysis of experimental results, 60% of relative 

fluorescence intensity was determined as the threshold for QS 

activation in the aqueous environment based on the same curves. It was 

adjusted to 5% of relative fluorescence intensity for the analysis of 

results from hydrogel matrix experiments, in which the fluorescent 

images were captured at shorter UV exposure time (5 s).  

4.4.4 Numerical model 

We modeled the transport of QS signals (i.e., AHL) and QQ 

enzymes (i.e., AiiO) using advection-diffusion-reaction equations. 

Equation 4.1 describes the change in concentration of AHL with time. 

The first term describes the diffusion of the molecules (Fick’s law). 

The diffusivity of AHL, 𝐷𝐴𝐻𝐿, varies spatially depending on whether 

AHL is present in an aqueous or a hydrogel medium. The second term 
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represents the production rate of AHL by the signal-producing 

aggregates, which is described as functions of time. The parameters of 

these functions were fitted to the experimental data describing the 

actual production of AHL by isolated signal-producing aggregates. The 

third and fourth terms describe the degradation rate of AHL due to 

interaction with AiiO and the abiotic degradation rates, respectively. 

The degradation rate of AHL by QQ activity (𝑟𝐴𝐻𝐿,𝑄𝑄) is described by 

a Michaelis-Menten reaction (Equation 4.1a) and the abiotic 

degradation of AHL (𝑟𝐴𝐻𝐿,𝑑𝑒𝑔) follows simple first order degradation 

kinetics (Equation 4.1b). The final term represents the advection of 

AHL in an aqueous solution. In Equation 4.1, the only free parameter 

is 𝐷𝐴𝐻𝐿. The key parameters used in the model are listed in Table 4.1. 

The simulations are carried out in two different phases, (i) data tuning, 

which is used to find the values of the free parameter(s) in the model 

and (ii) model validation, where the value obtained from the data tuning 

is used in simulating different spatial setups of QS and/or QQ granules 

and the results are validated. 

Equation 4.2 describes the transport of AiiO. The equation is 

similar to Equation 4.1 except for the absence of the degradation due 

to the interaction with AHL. Since AiiO catalytically degrades AHL, 

they are not consumed in the AHL degradation process and are only 

subject to abiotic degradation. We derived the production rate of AiiO 

(𝑟𝐴𝑖𝑖𝑂) from 𝑟𝐴𝐻𝐿 by assuming that the production rate of AiiO and EsaI 

(i.e., AHL synthase) is equal since both enzymes were expressed using 

the same promoter system (i.e., Ptrc) and their molecular weights are 
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similar (Equation 4.2a). 𝛽 represents the maximum production rate of 

AHL by a mole of AHL synthase, based on literature values[186]. By 

assuming that the intracellular AiiO is released from the quencher 

aggregates only when the cells lyse, the final production rate of AiiO 

from a quencher aggregate was determined by the concentration of 

AiiO and 𝐾𝑙𝑒𝑎𝑘, the first order rate constant. In addition, the leakage of 

AiiO was determined to be zero for the first 6 h due to the time delay 

for cell lysis (Appendix fig. 4a), which is also observed in experiments 

as shown in Appendix fig. 4a and b. 𝐷𝐴𝑖𝑖𝑂 and 𝐾𝑙𝑒𝑎𝑘 were treated as 

free parameters in the model. Both free parameters were optimized 

simultaneously with the experimental data (Appendix fig. 13).   

Equation 4.3 is the incompressible Navier-Stokes equation for the 

aqueous medium, so it applies only to experiments simulating the 

aqueous environment (where I is the identity matrix, p is the pressure 

and 𝜌 is the density and 𝜇 is the viscosity of the fluid). Equation 4.3 is 

used to obtain the steady state velocity vectors (�⃗⃗�), which are later used 

in Equation 4.1 for solving the advection term. When solving Equation 

4.3, four different boundary conditions were implemented (Appendix 

fig. 14). 

• No slip boundary condition – at the walls of the petri dish 

plate and at the interfaces with aggregates and agarose layer; 

• Sliding wall boundary condition – at the air-liquid interface at 

half of the upper aqueous layer, with �⃗⃗�𝑤 and �⃗⃗� being the wall 

velocity and the normal vector respectively; 

• Slip boundary condition – at the air-liquid interface at the 

other half of the upper aqueous layer; 
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• Pressure point constraint – at one point at the bottom of the 

dish. 

 

𝜕𝐶𝐴𝐻𝐿
𝜕𝑡

= 𝐷𝐴𝐻𝐿∇
2𝐶𝐴𝐻𝐿 + 𝑟𝐴𝐻𝐿 − 𝑟𝐴𝐻𝐿,𝑄𝑄 − 𝑟𝐴𝐻𝐿,𝑑𝑒𝑔 + ∇. (�⃗⃗� 𝐶𝐴𝐻𝐿)(4.1) 

 

𝑟𝐴𝐻𝐿,𝑄𝑄 =
𝑘𝑐𝑎𝑡 𝐶𝐴𝑖𝑖𝑂

𝐾𝑚+𝐶𝐴𝐻𝐿
𝐶𝐴𝐻𝐿 (4.1𝑎)

      

𝑟𝐴𝐻𝐿,𝑑𝑒𝑔 = 𝑘𝑑𝑒𝑔,𝐴𝐻𝐿𝐶𝐴𝐻𝐿 (4.1𝑏)

     

𝜕𝐶𝐴𝑖𝑖𝑂

𝜕𝑡
= 𝐷𝐴𝑖𝑖𝑂∇

2𝐶𝐴𝑖𝑖𝑂 + 𝑟𝐴𝑖𝑖𝑂 − 𝑟𝐴𝑖𝑖𝑂,𝑑𝑒𝑔 + ∇. (�⃗⃗�𝐶𝐴𝑖𝑖𝑂 ) (4.2)

  

𝑟𝐴𝑖𝑖𝑂 = 𝐾𝑙𝑒𝑎𝑘𝐶𝐴𝑖𝑖𝑂 = 𝐾𝑙𝑒𝑎𝑘
𝑟𝐴𝐻𝐿
𝛽

, ( 𝑟𝐴𝑖𝑖𝑂 = 0 , 0 < 𝑡 < 6 ℎ ) (4.2𝑎) 

𝑟𝐴𝑖𝑖𝑂,𝑑𝑒𝑔 = 𝑘𝑑𝑒𝑔,𝐴𝑖𝑖𝑂𝐶𝐴𝑖𝑖𝑂 (4.2𝑏)

    

𝜌(�⃗⃗� ∙ ∇)�⃗⃗� = [−∇𝑝 + 𝜇(∇2�⃗⃗�)] (4.3) 
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∇ ∙ �⃗⃗� = 0 (4.3𝑎) 

No slip boundary, 

�⃗⃗� = 0 (4.3𝑏)

        

Sliding wall boundary, 

�⃗⃗� = �⃗⃗�𝑤,𝑝𝑟𝑜𝑗 (4.3𝑐)

          

�⃗⃗�𝑤,𝑝𝑟𝑜𝑗 = (�⃗⃗�𝑤 − (�⃗⃗�𝑤 ∙ �⃗⃗�) �⃗⃗�) ∙ |�⃗⃗�𝑤| / |�⃗⃗�𝑤 − (�⃗⃗�𝑤 ∙ �⃗⃗�) �⃗⃗�|  (4.3𝑑) 

      

Slip boundary, 

�⃗⃗� ∙ �⃗⃗� = 0 (4.3𝑒) 

  

Pressure point constraint, 

𝑝 = 0 (4.3𝑓) 
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𝛿𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝐶𝐴𝐻𝐿 , 𝑡) =

{
0, 𝐶𝐴𝐻𝐿 < 𝐶𝐴𝐻𝐿

∗

1, 𝐶𝐴𝐻𝐿 ≥ 𝐶𝐴𝐻𝐿
∗ , 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠𝑙𝑦 𝑓𝑜𝑟 𝑡𝑑𝑒𝑙𝑎𝑦

(4.4)
 

    

To solve Equations 4.1 and 4.2 we use FiPy, a python (version 2.7) 

based finite volume solver. The advection-diffusion-reaction of AHL 

is modelled using Equation 4.1 and solved using FiPy. The equation is 

solved on a cylindrical mesh generated using GMSH (version 3.0). In 

a similar fashion, the change in concentration of AiiO is modelled using 

Equation 4.2. Both the Equations 4.1 and 4.2 are coupled and solved to 

estimate the spatiotemporal variation of the concentration levels of 

AHL and AiiO. If the concentration of AHL in an inactive aggregate 

was greater than a certain threshold value, 𝐶𝐴𝐻𝐿
∗ , continuously for 

𝑡𝑑𝑒𝑙𝑎𝑦  (the time delay for GFP expression), then the aggregate was 

considered to be active and expressing GFP (Equation 4.4). The 

thresholds of AHL concentration (i.e., 1.5 nM) and the time delay (i.e., 

𝑡𝑑𝑒𝑙𝑎𝑦: 4 h) for GFP expression (i.e., QS activation) were determined 

as described above.  

For simulation of fluid dynamics, we use a commercial fluid dynamic 

solver, COMSOL Multiphysics (version 4.4). A single-phase fluid 

(water) was simulated assuming the top half of the aqueous layer to be 

dragged by air in the vicinity, thus setting the other half layer in motion 

as shown in Appendix fig. 15. Finally, we use CompuCell-3D (CC3D 

3.7.5) for visualization purposes.  
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Table 4.1 Model parameter definitions  

Parameter Definition (value) Source 

𝑫𝑨𝑯𝑳 diffusivity of QS signal (4.75 × 10-6 

cm2/s) 

free parameter 

𝑫𝑨𝒊𝒊𝑶 diffusivity of QQ enzyme (1.35 × 10-

6 cm2/s) 

free parameter 

𝒌𝒄𝒂𝒕  catalytic rate constant (22.68 1/s) [187] 

𝑲𝒎 Michaelis constant (2.95 mM) [187] 

𝒌𝒅𝒆𝒈,𝑨𝑯𝑳 0.005545 1/h [188] 

𝒌𝒅𝒆𝒈,𝑨𝒊𝒊𝑶 0.005545 1/h assumed to be 

equal to  

𝑘𝑑𝑒𝑔,𝐴𝐻𝐿 

𝒒𝒍𝒆𝒂𝒌 fraction released from the granule 

out of the total QQ enzymes 

produced (0.011) 

free parameter 

𝒒𝒕𝒖𝒓𝒏𝒐𝒗𝒆𝒓 proportional amount of QS signal 

synthase produced with respect to the 

QS signal production rate  

(1.1 mol AHL/mol AHL synthase) 

[186] 

𝑪𝑸𝑺
∗  minimum concentration of QS signal 

to activate granule (1.5 nM) 

calibration 

experiment 

𝒕𝒅𝒆𝒍𝒂𝒚 delay time for GFP expression (4 h) calibration 

experiment 
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4.5 QS signal absorption, retention and release by extracellular 

matrix 

Alginate granules without bacterial cells were prepared as described 

above. The alginate granules were exposed to AHLs at final 

concentrations ranging from 100 nM to 1,000 nM for 1 h at room 

temperature. After brief washing in PBS for 5 min, the alginate 

granules were added to a reporter assay, i.e. JB525, to represent the 

matrix sample while the ‘washout’ was taken as the supernatant. 

DMSO was used as a solvent control. Relative fluorescent intensity 

was determined at 488/510 nm and normalised by OD600 for each 

sample using a microplate reader (Tecan Infinite M200pro, 

Switzerland). The experiment was repeated three times. 

4.6 Statistical analysis 

All statistical analyses were performed using Prism (GraphPad version 

6). Multiple t-tests with corrections using the Holm-Sidak method were 

performed to compare the QS signal retention by the alginate matrix to 

the supernatant. The significance levels for the family of comparisons 

were set at 5%. The corrected P values were reported. Data in all 

figures show means ± SD (n = 3 to 6, biological replicates). 
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5 Prediction and Quantification 

of Bacterial Biofilm 

Detachment Using Glazier-

Graner-Hogeweg Method 

Based Model Simulations 

 

This chapter is based on Sheraton M.V., Melnikov V and Sloot P. M. 

A Prediction and Quantification of Bacterial Biofilm Detachment 

Using Glazier Graner Hogeweg Method Based Model 

Simulations. Submitted to Journal of Theoretical Biology. 

Abstract 

Morphological changes in bacterial biofilm structures arise from the 

fluid-structure interactions between the biofilm and the surrounding 

fluid. Depending on the magnitude of the force acting on the structure, 

the bacteria rearrange to attain an equilibrium shape or get washed 

away by the moving fluid. Understanding the dynamics behind the 

evolution of such equilibrium or failed states can aid in development 

of tools for biofilm removal or eradication. We develop a Glazier-

Graner-Hogeweg method-based model to explore the collective 

evolution of biofilm morphology arising from cell-cell and cell-fluid 

interactions. We show that low adherence and high motility of the cells 
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lead to sloughing of biofilms and streamers form under laminar flow 

conditions in tightly packed biofilms. Also, in mixed species biofilms, 

we found that a species with less cell-cell binding affinity gets eroded 

faster than its counterpart. Therefore, we hypothesize that in nature 

these less adherent species should be present encapsulated within the 

biofilm structure to maximize their chances of survival. 

 

5.1 Introduction 

Biological cell-cell interactions have been modelled using agent-based 

models[189, 190] since they can handle individual attributes of the 

cells and simulate the evolution of a larger system which encompasses 

these cells. Frameworks such as NetLogo [191], FLAME [192, 193] 

and MASON [194] offer a wide range of tools to develop agent-based 

models. These frameworks can handle a wide range of problems in 

economics, socio-political and geographical domains, which require 

and agent-based approach. However, to handle individual biological 

cells in the model, along with their associated physical characteristics 

such as cell shape, intercellular adhesion and cell signaling, a robust 

biophysics-based model is required.  iDYnomics [195], an individual 

Based Model framework (iBM), is one such biophysics-based model, 

which simulates cells as hard spheres with an adhesion potential 

serving as a mechanical link between these cells. The adhesion 

potential varies as a function of the distance between the cells. 

iDYnomics was developed with primary focus on simulating bacterial 

communities and their associated surroundings. Jayathilake et al. [196] 

developed a flexible iBM model based on Large-scale 
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Atomic/Molecular Massively Parallel Simulator (LAMMPS) to 

simulate the adhesion between the cells using springs and dashpot 

model. The major drawback of using the above iBM based models for 

simulating bacterial communities is the absence of proper mechanisms 

to incorporate the dynamics associated with cell shape variations, 

topographical cell stacking[197], and the consequent effects associated 

with cell-cell interactions. Glazier-Graner-Hogeweg model (GGH) 

[98] eliminates these shortcomings by implementing energy-based 

evolution of cell shapes [198, 199].  In addition, the energy-based 

approach restricts the evolution of physically unrealistic scenarios 

which would otherwise arise in other simplistic approaches [195, 196], 

which assume cells to be a fixed solid geometry such a sphere. The 

proliferation of cells in GGH is also indirectly governed by the energy 

minimization principle, thus preventing artificial growth dictated by 

the nutrient diffusion-reaction equations. GGH model has been used in 

simulating various cell level and tissue level phenomena such as 

avascular tumor growth, angiogenesis[97], and biofilm simulations[98, 

197]. Due to their ability to handle multiple cell types, each with their 

own interacting energies, GGH model can be readily used to simulate 

multispecies bacterial communities somitogenesis [200]. 

Bacterial biofilms are community-driven biological systems, which 

warrant the use of Agent-Based simulations to explore their emergent 

properties[12]. In general, bacterial biofilms consist of structures that 

house millions of bacteria that stay as a single colony. The bacteria in 

the biofilms are different from planktonic cells, the free roaming 
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bacteria, in that they are confined within the biofilm and are seldom 

motile. The community members (bacteria) interact at microscopic 

levels with each other and the ambient environment to define the 

overall evolution of the system[201]. Such a community-driven system 

can only be effectively modelled using Agent-Based methods, in 

particular GGH models. The biofilms offer cover to the confined 

bacteria from antibiotics [202, 203], bacteriophages, and external 

stresses. Due to their strong adherence to the substratum, they are hard 

to remove or eradicate, thus leading to biofouling and microbial 

induced corrosion (MIC) of the adhering surface. Biofouling of pipes 

used in heat exchangers[204] or offshore structures[205] may lead to 

pressure drop, leading to system failure and damage. Bacterial biofilms 

are also a major concern in Fast Breeder Test Reactor[206] or other 

nuclear reactors [25] due to their presence in the cooling water systems. 

Any uncontrolled build-up of biofilms within these systems will result 

in devastating consequences. In cases of water treatment plants, growth 

of biofilms decreases the flux of treated water, necessitating increase 

of pressure within the system [207, 208] thus adding to operational 

costs. To prevent such outcomes, bacterial biofilms must be 

periodically removed from the systems. The mechanical process of 

biofilm removal is known as detachment, where a part or whole of the 

biofilm is removed from its original site due to mechanical stresses 

from flowing fluid and localized structural defects occurring within the 

biofilm.  In most industries, detachment of biofilms is carried through 

high pressure washing or mechanical scrubbing [209]. The efficiency 
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of such methods depends on parameters such as the type of the biofilm, 

the location of biofilm within the structure and device geometry.  There 

have been simulation studies to estimate the detachment rate of 

biofilms in various systems. Quantifying the detachment process 

started with modelling the rate of detachment as a function of biofilm 

thickness [210, 211] or biomass density, ignoring the spatial effects of 

the biofilm structure. There have been models that address the spatial 

detachment process using stochastic variables dependent on the height 

of the biofilm or relative position of the bacteria in a biofilm [212]. 

Piciorreanu et al[213] developed a more realistic shear stress-based 

detachment model assuming the biofilm as an elastic structure. They 

simulated 2D flow in a channel comprising the biofilm and evaluated 

the detachment rate of the bacteria with time. Following a similar 

approach, Tierra et al.[214] developed a three- phase multicomponent 

model, where they considered biofilm as an incompressible viscous 

fluid that deforms from interaction with the ambient forces. Similar 

fluid structure interaction models have been developed for other 

biological systems such as corals [215] and blood flow [216]. However, 

treating the entire biofilm as a single mechanical structure with 

homogenous physical and biological properties does not truly represent 

the heterogenous nature biofilm’s mechanical properties. It has been 

shown that the physical properties such as tensile strength vary 

throughout the biofilm based on the localized bacterial populace and 

EPS distribution. To capture such cell level dependencies of the 

mechanical properties of biofilm, Jayathilake et al. [196] implemented 
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mechanistic interaction between the cells using discrete element 

method. They assumed a fixed shear rate profile for the fluid interacting 

with the biofilm, which composed of hard spherical particles. This 

fluid-particle interaction in the model was used to predict the roughness 

and detachment rates of the biofilm formed. All these models, however, 

do not account for the localized interactions arising from the cell 

motility and cell shape fluctuations, which are important determinants 

of the biofilm’s response [217] to the eradication techniques. These cell 

level activities can give rise to formation of mechanically interesting 

structures such as streamers[218], piece-wise detachment[219] of the 

structure and further colonization of the neighborhood[217]. GGH 

model-based simulations can include all such cell level activities and 

incorporate external force coupling with the cell through the 

Hamiltonian and Non-Hamiltonian energy [93] potential associations. 

In this paper, we develop a hybrid GGH - Finite Element Method [220] 

based model to understand the effect of shear stress on the shape of the 

biofilm and to quantify the loss of biomass due to detachment. We 

analyze the potential outcomes of the detachment process, based on the 

strength of the biofilm or the adhesion strength between individual 

bacteria. Since there are numerous models in literature [221] detailing 

the bacterial cell proliferation and nutrient based growth of biofilms, 

we initialize the model with a fixed structure such the classical 

mushroom shape, ignoring the evolution of biofilm before the initiation 

of the removal processes. We then examine the influence of various 
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biophysical model parameters such as, shear stress, adhesion potential 

and motility on the morphology of the biofilm structure. 

5.2 Model description 

5.2.1 Model for bacterial cells 

 We implement our GGH model using the opensource “CompuCell3D” 

software framework. The individual bacteria are modelled as a 

collection of pixels, with each pixel of length ‘dx’ occupying one grid 

point in space. The volume of the cells ‘Vc’ is set equal to the average 

volume of Pseudomonas aeruginosa cells [131]. The cells have 

inherent motility based on the membrane fluctuations, modelled by the 

temperature term ‘Tm’ in GGH model. At each simulation time step, 

one of the pixels (target) in the domain is chosen at random and copied 

to a (destination) grid point in its neighbourhood, this process is known 

as pixel copy attempt. If the target and destination grid points are of the 

same cell, then there is no pixel copy. This means that only the pixels 

residing along the periphery the cells or in other words, the membrane 

of the cells, are involved in the pixel copy attempts. The probability of 

success for such a pixel copy attempt or in this case the bacterial 

membrane fluctuation, is dictated by equation 5.1. 

𝑃 (𝜎(𝑖) → 𝜎(𝑖′⃗⃗⃗)) = {
[ 𝑒𝑥𝑝 (−

𝛥𝐻

𝑇𝑚
)] , 𝛥𝐻 > 0  
     

1, 𝛥𝐻 ≤ 0                 

(5.1)

 

 

The term, 𝛥𝐻 is the change in energy due to the pixel copy event for 

the cells at positions 𝜎(𝑖)  to 𝜎(𝑖′⃗⃗⃗) , where 𝑖′⃗⃗⃗  and  i⃗  are the pixel 
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positions on the domain. The larger the value of Tm , the faster the 

membrane fluctuations occur.  

Equation 5.2 imposes a volume constraint on the cell and equation 5.3 

addresses the adhesion between the cells. In addition to the bacterial 

cells, we model the substratum as immobile group of cells with fixed 

volume. These cells form the bottom layer on which the bacterial cells 

rest and adhere to. Therefore, the adhesion between bacteria and 

substratum is made stronger than the bacteria-bacteria adhesion, which 

is reflected in the model by a lower adhesion CBB or Con(τσ(i) , τσ(j))  

parameter for the bacteria-substratum interactions. Here, τ indicates the 

type of cell at the location ‘𝜎(𝑖)’ or ‘𝜎(𝑗).  𝜆 is the volume potential, 

𝑉𝑇 is the target volume and Vcell is the volume of the cell. In addition to 

the volume and contact constraints, a connectivity constraint is 

included in the model. The connectivity constraint 𝛥𝐸𝑝  acts as a 

penalty parameter which prevents the cells from fragmentation, due to 

numerical instabilities[222]. 

𝛥𝐸𝑉 = 𝜆(𝑉𝑐𝑒𝑙𝑙 − 𝑉𝑇)
2 (5.2) 

 

𝛥𝐸𝑐 = ∑𝐶𝑜𝑛(𝜏𝜎(𝑖), 𝜏𝜎(𝑗)
𝑖,𝑗

) (1 − 𝛿𝜎(𝑖),𝜎(𝑗)) (5.3) 

The normal and shear forces experienced by the cells are modelled as 

a field around the cells. Since, the volume of individual pixels are very 

small compared to the size of the domain and the cells themselves, the 
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forces are applied over the surface of the pixels. In scenarios, where a 

part of a cell is exposed to flowing fluid, this enables applying force to 

only that region instead of the entire cell surface. Equation 5.4 

describes the change in energy arising from the displacement of cell 

pixels (|𝑖⃗⃗⃗′ − 𝑖|⃗⃗⃗) by the GGH pseudo-force (𝐹𝐺𝐺𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   or GGH F). The GGH 

pseudo-force in the model is directly proportional to the stresses per 

unit area of pixel (Traction, �⃗⃗�), developed by the biofilm structure in 

response to the ambient fluid flow. (The overall implementation of the 

module in Compucell3D is done similar to the ‘ExternalPotential’ 

plugin [223]. The traction force �⃗⃗� is converted to equivalent force �⃗�, 

which acts along the entire area (𝑆𝐴) of the pixel. This equivalent force 

is converted to pseudo GGH force, GGH F, using the proportionality 

constant kGGH, as shown in equation 5.5b 

𝛥𝐸𝑓 = 𝐹𝐺𝐺𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . (|𝑖⃗⃗⃗′ − 𝑖|⃗⃗⃗) (5.4) 

 

𝐹𝐺𝐺𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∝  �⃗⃗� (5.5) 

�⃗⃗� =
�⃗�

𝑆𝐴
(5.5𝑎) 

 

𝐹𝐺𝐺𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = kGGH �⃗� (5.5𝑏) 
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Thus, the Hamiltonian 𝛥𝐻  now includes the change in energies 

originating from volume constraints, adhesion potentials, connectivity 

penalty and pseudo-force potentials as shown in equation 5.6. This 

Hamiltonian is calculated at every simulation time step or Monte Carlo 

Step ‘mcs’, to determine energy of the cells and the system. 

𝛥𝐻 = Δ𝐸𝑉 + Δ𝐸𝑐 + Δ𝐸𝑝 + Δ𝐸𝑓 (5.6) 

 

5.2.2 Model for stress calculations 

 To estimate the traction force (�⃗⃗�) and consequently the normal (𝜎𝑛) 

and shear stresses (𝜏) arising from fluid interaction with the biofilm 

surface, we solve the continuity equation and incompressible Navier-

Stokes (NS) equation in a 2D channel of dimensions x’ ×  y’. An 

opensource finite element method-based solver, FENICS, is used for 

solving the continuity and NS equations. Incremental Pressure 

Correction Scheme (IPCS) [224] is used for the simulation of the 

transient state fluid flow. The biofilm is considered as a solid object 

along the flow path and therefore no-slip boundary conditions are 

applied along the surface the biofilm. The inlet velocity is fixed as a 

parabolic velocity profile at the channel inlet (at x = 0) as shown in 

equation, where �⃗⃗�, �⃗� and 𝑢𝑚𝑎𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ are velocity in x-direction, velocity in 

y-direction and maximum inlet velocity respectively. a and b are 

constants similar to the study by Tierra et al. [214]. 
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�⃗⃗� =
𝑢𝑚𝑎𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗

𝑎
(𝑏𝑌 − 𝑌2), �⃗� = 0, 𝑌 =

𝑦

𝑏
; (5.7) 

   

𝑝 = 0 ; (5.8) 

     

Atmospheric pressure is fixed at the exit boundary (at x = x’), the 

equations are solved transiently at discrete time intervals,  Δ𝑡 =4 min. 

A very low Reynold’s number, 𝑅𝑒 ≪ 1, similar to other experimental 

biofilm studies [225-227], is maintained in all model simulations. From 

the velocity and pressure values the traction force �⃗⃗�  acting on the 

surface of the biofilm is calculated from the stress tensor 𝜎  using 

equations 5.9. 

�⃗⃗� = 𝜎. �⃗⃗� (5.9) 

 

The traction force is split into individual stress components acting on 

the surface, namely normal stress 𝜎𝑛 and shear (or tangent) stress 𝜏. 

Normal stress acts along the normal direction �⃗⃗� to the surface of the 

biofilm and shear stress acts parallel to the surface 𝑠 . The calculated 

stresses are applied as an equivalent force (eq. 5.5a) �⃗�, which is then 

translated to GGH pseudo force (𝐹𝐺𝐺𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝑜𝑟 𝐺𝐺𝐻 𝐹) on the individual 

pixels of the cells, whose surface is exposed to the incoming fluid.  

𝜎𝑛 = �⃗⃗�. �⃗⃗� (5.10) 
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𝜏 = �⃗⃗�. 𝑠 (5.11) 

 

The GGH pseudo-force is applied along the surface of the biofilm for 

approximately every 600 mcs depending on the numerical stability of 

the flow simulations and meshing. The mcs can be related to the real-

time, based on the discrete time unit, Δ𝑡 , used in the fluid flow 

simulations. We assume that the changes in shape of the biofilm due to 

the application of force does not alter the flow patterns and the shear 

stresses significantly within this interval (600 mcs or 4 minutes). 

Therefore, the steady state stresses are calculated at time ‘t’ and the 

resultant GGH forces are applied on the cells from t → t+dt in the GGH 

interval (dt ~ 600 mcs).  During this interval, the bacteria in the model 

respond to forces acting on the biofilms surface) based on the energy 

changes 𝛥𝐻   goverened by equation 5.1. After t+dt, the fluid flow 

simulations are run with the new shape configuration and the cycle is 

repeated until tmax. The entire simulation accounts for about 60 minutes 

in real time or 9000 mcs.  

5.2.3 Generation of meshes for fluid dynamics 

We generate the meshes for different biofilm shapes at different time 

instances using GMSH. The generation of meshes is an automated 

process using the grid point data of individual cells from CompuCell3D 
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output. We use adaptive mesh refining to make the mesh finer near 

biofilm surfaces and coarser elsewhere as shown in fig. 5.1c.  

 

Figure. 5.1 Generation of biofilm lattice and mesh for the numerical 
simulations. (a) Portable Network Graphics file (PNG) describing the 
shape of the structure, (b) Compucell3D cell lattice recreated from the 
PNG file and (C) Portable Network Graphics file describing the shape 
of mushroom-shaped biofilm structure.  Here, h is the height of 
biofilm, which is 405 grids and w is the width of biofilm, which is 100 
grids. 

5.2.4 Results and discussion 

An arbitrary stump-like biofilm shape configuration (fig. 5.1a) 

similar to the one used by Tierra et al. [214] is drawn as an outline 

Portable Network Graphics (PNG) file. This outline image is initialized 

in CompuCell3D and discretized to individual bacterial cells occupying 

the marked biofilm area as shown in fig. 5.2a. The cells initialized from 

the image are square shaped and a few may not have their target volume 

VT at the time of initialization. Therefore, the simulation is let to anneal 
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for the first 600 mcs, during which the local energy of the cells is 

minimized, and they attain a uniform volume and shape closer to their 

target volume VT by the end of annealing steps. As the simulation 

proceeds, the biofilm structure starts to deform based on the stresses 

acting on its surface. Thus, the forces applied along the periphery are 

transformed into an energy perturbation traversing through the biofilm 

volume. The model in turn adjusts the position of the cells within the 

biofilm to minimize the local energy and consequently the final 

structure of the biofilm evolves with time. However, since the applied 

force is a pseudo-force, there are multiple outcomes possible with the 

change in values of the proportionality constant 𝑘𝐺𝐺𝐻 . 

Physically, 𝑘𝐺𝐺𝐻�⃗� or 𝐹𝐺𝐺𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , represents the strength of the force acting 

on the biofilm surface for 1 mcs and the order of magnitude ‘𝑂’ of this 

force impacts the shape of the biofilm structure. In addition to the 

applied forces, the change in morphology of biofilm structure can be 

affected by two other model parameters namely, the membrane 

fluctuations 𝑇𝑚  and the contact energy between the bacterial cells 

[CBB ]. These three parameters were therefore varied to understand 

their effects on the biofilm structure. The results from the parametric 
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variation study are summarized in fig. 5.2. The volume changes for 

each case of parameter variation (fig. 5.2a – g) clearly shows that there 

are no numerical instabilities in the GGH model and that the cells are 

not swelled up or crushed due to the force applied on them. Three 

distinct morphological outcomes are observed in fig. 5.2, (i) bending, 

(ii) distortion and (iii) detachment. The process of distortion occurs 

when the biofilm changes its shape without much loss of its individual 

members. This loss of bacterial cells from biofilm occurs due to their 

displacement by fluid shear. Heavy distortion of structures is 

commonly observed in biofilms with high contact energy as visible in 

fig. 5.2 c and 5.2 d. A high contact energy between the cells translates 

to less adhesion between the cells. The porosity of these distorted 

structures is very high compared to other biofilms in the simulation. 

This could mean that biofilms that do not secrete large quantity of EPS 

during their lifetime or biofilms that have loosely packed structures are 

bound to be heavily deformed by the incoming flow. The porous nature 

of the deformed structures indicates the propagation of the surface 

shear effects through the entire volume. In general, with the progress 

of simulation, majority of the deformed structures get removed from 
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their site due to fluid stress. This process is defined as detachment. 

From the graphs we observe two types of detachments originating in 

the simulations. They are removal of chunks of biofilm knows as 

sloughing and wash-away of individual cells in small quantities known 

as erosion.   Erosion is a common characteristic observed in all the 

biofilm simulations. Erosion starts only after a considerable time since 

the introduction of fluid stresses. This is due to the structure getting 

progressively weakened by fluid flow. If erosion were to be imminent 

once the fluid is introduced in simulation, then the cells would be 

outright plucked from the biofilm by fluid force, but this is not the case. 

As expected, the structure experiencing high GGH forces (fig 5.2a) is 

more readily weakened, with erosion starting as early as 2000 mcs. But 

surprisingly, the structures are also weakened swiftly when their 

members possess high membrane fluctuation values (𝑇𝑚). High values 

of membrane fluctuation translate to faster motility of the cell. 

Increased motility should have made it easy for the biofilm to adjust its 

structure swiftly in response to the forces experienced by its cells, 

instead it has resulted in an unstable configuration. This could be a side 

effect of the model’s basic formulation which combines motility with 
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high energy probabilities (eq. 5.1). Minimization of the energy of the 

system could result in minimized external force experienced by the 

cells. Therefore, increase in the fluctuation amplitude will result in 

increased frequency of non-optimal positioning of the cells against the 

external field. This results in increased erosion of cells which are 

directly exposed to the incoming fluid. 

Sloughing follows a similar pathway as erosion, removal of 

cells due to external force, except it is characterized by critical or total 

capitulation of the structural integrity as seen in fig5.2a,c,d,f and g. 

There are simulations in which sloughing has occurred in a biofilm 

more than once such as in fig 5.2a. This shows that there are multiple 

tipping points in the biofilm’s structural integrity, which occur based 

on the local internal stress effects originating within the biofilm. 

Sloughing effects are incredibly strong in biofilms with low cell-cell 

adhesivity (fig 5.2c and 5.2d) due to the inherent structural instability 

arising from loose packing of cells. In loosely packed structures, almost 

entire biofilms have been detached in very early stages, as early as 

<3500 mcs.   



 

130 

 

Table 5.1 Parameter values used in the biofilm simulations. (𝑚𝑐𝑠 

indicates a Monte Carlo Step, JGGH and NGGH indicate the energy and 
force units in the GGH domain respectively.) 

 

Parameter Value 

Length of simulation domain, x’ 1000 grids 

Height of simulation domain, y’ 1000 grids 

Grid size, 𝚫𝐱 1 x 10-6 m 

Time step, 𝚫𝒕 240 s 

Total simulation time, t 9000 mcs 

Volume of bacteria [131] 27 x 10-18 

 𝑚3 

Contact energy between two bacteria of specie ‘B’, 

𝐂𝐁𝐁 

5-15 JGGH 

Contact energy between two bacteria of specie ‘B*’, 

CB*B* 

15 JGGH 

Contact energy between bacteria of specie ‘B’ and 

specie ‘B*’, CBB* 

15 JGGH 

Membrane fluctuation temperature, Tm 10-30 JGGH 

Pseudo GGH force, 𝑭𝑮𝑮𝑯⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 0 – 105 

NGGH 

Reynold’s Number, Re 0.07 
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Figure. 5.2 Effect of fluid stresses acting on the biofilm structure. The 
snapshots show the structural deformation at different time 
instances, the xy plots show the change in volume with time and the 
second xy plots are detachment plots that show the cumulative 
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detached cell count with time for simulations with  𝑇𝑚 = 20, CBB =5  

and (a) 𝐹𝐺𝐺𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ≈ 𝑂(4) , (b) 𝐹𝐺𝐺𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ≈ 𝑂 (2);  𝑇𝑚 = 20, 𝐹𝐺𝐺𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ≈ 𝑂(3) and 

(c) CBB =10 , (d) CBB =15;  𝐹𝐺𝐺𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ≈ 𝑂(3) , CBB =5  and (e) 𝑇𝑚 = 10, (f) 

𝑇𝑚 = 20 and (g) 𝑇𝑚 = 30. (The values 𝑇𝑚 = 20, CBB =5 and 𝐹𝐺𝐺𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ≈
𝑂 (3) are used as base sets and one of these values is changed in 
simulations. The varying parameter for each simulation is listed in the 
detachment plots for easy following) 

 

To gain a better understanding of the sloughing phenomena, the 

velocity vectors and pressure contours are shown for a biofilm at the 

verge of sloughing in fig.5.3. For this case, the simulation parameters 

are 𝑇𝑚 = 20, CBB =5 and 𝐹𝐺𝐺𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ≈ 𝑂(4) . From plots 5.3a and b, it is 

clear that the velocity of the fluid near the head of the biofilm is 

relatively much higher than elsewhere in the biofilm.  This could mean 

a higher force acting on the top surface compared to the bottom, which 

leads development of high localized stresses in this area. The only way 

to minimize this localized high stress is for the cells to move down or 

climb up the structure. Since the space above the zenith of the structure 

is devoid of cells and is low pressure, the cells will try to climb up, 

rather than moving down. But moving up the biofilm would mean 

fewer cells at the bottom and reduced stability of the structure. 

Therefore, the structure will start to detach at weak spots, where the 
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cell density is at its lowest. Thus, there are multiple failure points in the 

biofilm structure, from which sloughing can initiate and in general, 

these points correspond to locations with low cell density. 

 

Figure. 5.3 Fluid dynamic parameters around a biofilm about to be 
detached. Normalized velocity vector plot for (a) entire biofilm and (b) 
at the top of the biofilm. (c) Normalized pressure values at the top of 
the biofilm. Progress of biofilm detachment at (d)1200 mcs, (e) 4200 
mcs and (f) 7200 mcs.  

 

In contrast to completely detached biofilms, in couple of cases, 

we find that majority of the biofilm structure has been left intact by the 

fluid flow (fig. 5.2b and e). These cases exhibit a bending structure, 
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with curved a bottom and top, which is similar to the behaviour of 

viscoelastic fluid under low external shear. The biofilms in these cases 

are elongated than their counterparts due to appearance of slender 

elongated structures at their top.  These protrusions of single or 

multiple cells forming at the top of these biofilms are similar to 

streamers that appear in bacterial biofilms growing in an environment 

with continuous flow. The shape of the streamers allows them to be 

hydro-dynamically stable in the flowing fluid by reducing the external 

forces experienced by the cells within the streamer structure. Figure. 

5.4 d, e and f capture the formation process of a streamer from the 

biofilm structure. As seen in fig. 5.3 b and c, the velocity magnitude is 

higher around the zenith of the biofilm (near the streamer), which could 

further bend the streamer and elongate it. Thus, the structure remains 

stable since the cells move horizontally along the streamer, parallel to 

the flow direction. This cell migration pattern is in stark contrast to the 

sloughing case where the cells could only ascend due to the absence of 

horizontal elongated protrusions. These observations suggest that the 

best way to eradicate a streamer is through back washing, whereby the 
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pressure is reversed. A reversal in flow would snap the streamer at its 

base, where the cell density is very low. 

 

Figure. 5.4 Fluid dynamic parameters around a biofilm with streamers. 
Normalized velocity vector plot for (a) entire biofilm and (b) near the 
streamers. (c) Normalized pressure values near the streamers. 
Progress of biofilm streamer formation at (d)1200 mcs, (e) 4200 mcs 
and (f) 7200 mcs.  

 

All the discussions with regards to the arbitrary stump-like 

structure simulations was centred around a homogenous bacterial 

biofilm population. In natural environments, biofilms seldom exist as 

homogenous entities made of same species of bacteria. They exist as 
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multispecies communities with each specie possessing its own 

biological and mechanical characteristic. In order to capture the 

response of such heterogenous biofilm systems to fluid shear, we 

carried out simulations on a mixed species biofilm modelled akin to the 

classical biofilm mushroom-shaped structure shown in figure 5.1c. The 

same base parameters (𝑇𝑚 = 20, CBB =5 and 𝐹𝐺𝐺𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ≈ 𝑂(3)) used in the 

stump-like structure simulations were used for the new simulations. 

Three different cases were studied using the mushroom-shaped 

structure simulations, (i) a homogenous population, (ii) less adherent 

and (iii) more adherent cap mixed species populations. The less 

adherent species used in the simulation are denoted as B* and more 

adherent species is denoted by B. The contact energy values between 

these species are listed in table 5.1.  

The results from the multispecies biofilm simulations are 

summarized in figure 5.5. In general, all the mushroom structures, 

homogenous and heterogenous, suffered structural deformation due to 

the fluid flow to varying degrees.  The bottom parts or the stalks of the 

mushrooms, which face the incoming fluid, were displaced from their 

original position in all the cases. The effect of fluid force is more 
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pronounced at the cap of the mushroom, where the structure is heavily 

distorted. On the leeward side, the peripheral cells are found to move 

faster than any other cells in the structure, further confirming the 

propagation of stress effects through the structure. This increased 

motility is observed in the motility plots of fig 5.5a+, b+ and c+. Erosion 

is predominantly seen to occur in species B* due to their low binding 

affinity with each other and members of species B. It is important to 

note that when species B* occupies the bottom as in fig 5.5b, the stalk 

thins out at a rapid pace compared to the structure with species B 

occupying the stalk (fig. 5.5c). This means that structural configuration 

in fig 5.5b is inherently unstable and can be completely sloughed away 

earlier than its counterpart (fig 5.5c). Hence, species B* can destabilise 

the entire system based on its localization in the biofilm structure. 

Among all the three cases compared, the case with B* localization to 

the cap shows accelerated cell erosion as evident in the detachment 

plots (fig 5.5 a’, b’ and c’). In addition, the calculated roughness of the 

biofilms [133] is higher for these structures (fig. 5.5 c”). This 

observation suggests that accelerated erosion should be due to the 

lowered adhesion potential between the cells at the top, which in turn 



 

138 

 

varies the biomass thickness leading to increased roughness.  Such 

species (B*) should be localized to the interior core of the biofilm 

structure, where they can protect themselves from erosion and avoid 

any unintended structural weakening.  In nature, morphologies with 

strong adherent (B) bacterial species covering the peripheral structure 

and internalized weak adherent species (B*) should evolve 

spontaneously in flow systems. 
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Figure. 5.5 Effect of fluid stresses acting on the mushroom-shaped 
biofilm structure. The snapshots show the structural deformation at 

different time instances (𝑇𝑚 = 20 , CBB  =5, CB∗B∗  =15 and 𝐹𝐺𝐺𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ≈
𝑂(3)), for biofilm constituted of (a) homogenous bacterial population, 
(b) heterogenous bacterial population with less adherent cells at the 
bottom  and (c) heterogenous bacterial population with less adherent 
cells at the cap. Plots named with superscript + show the variation of 
normalized cell motility with the biofilm structures, the xy plots 
named with superscript ’ show the cumulative cell detachment rate 
and the second xy plots named with superscript ” are biofilm 
roughness plots for cases (a) , (b) and (c). The color bar at the bottom 
indicates the normalized cell motility for a+, b+ and c+. 

 

5.3 Conclusions 

A GGH method-based model has been developed to understand 

the effects of shear stress on bacterial biofilm structures. Although we 

have assumed a hypothetical fluid in our simulations, based on the flow 

similarity principle, the velocity and pressure should have the same 

magnitude for any fluid flowing in the same channel with identical 

Reynolds number. However, the magnitude of stresses calculated will 

change for different fluids, depending on the density of the fluid used 

(lighter or heavier). Therefore, the results from the simulations will be 

the same for any fluid, provided the magnitude ‘𝑂’ of force, 𝐹𝐺𝐺𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , used 
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in the simulations are same. This value of 𝐹𝐺𝐺𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  can be adjusted by 

changing the 𝑘𝐺𝐺𝐻  in equation 5.5b. The model is also capable of 

predicting the formation of streamers under low stress conditions. 

Streamers are found to form in biofilms experiencing low external 

force or in biofilms with slow moving cells. Multi-event sloughing has 

been observed in the simulations, suggesting the presence of multiple 

inflection points in biofilm strength, based on local cell densities. In 

addition, cells with different adhesivities were introduced to examine 

the strength of multi-species heterogenous biofilm systems. From the 

simulation results, it can be hypothesised that less adherent species 

should always occur enclosed within the biofilm structure for 

prolonged survival. In future, this model can be combined with growth 

dynamics to predict the exact time scale of the detachment events. The 

model can be further improved to accommodate various other external 

forces such as scrubbing, impact or attrition to evaluate the efficiency 

of such methods in industrial biofouling clean-up activities.  
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6 Parallel Performance Analysis 

of Bacterial Biofilm 

Simulation Models 

 

This chapter is based on Sheraton, M.V. and Sloot, P.M.A.,2018. 

Parallel Performance Analysis of Bacterial Biofilm Simulation 

Models. Lecture Notes in Computer Science (LNCS). 

Abstract 

Modelling and simulation of bacterial biofilms is a computationally 

expensive process necessitating use of parallel computing. Fluid 

dynamics and advection-consumption models can be decoupled and 

solved to handle the fluid-solute-bacterial interactions. Data exchange 

between the two processes add up to the communication overheads. 

The heterogenous distribution of bacteria within the simulation domain 

further leads to non-uniform load distribution in the parallel system. 

We study the effect of load imbalance and communication overheads 

on the overall performance of simulation at different stages of biofilm 

growth. We develop a model to optimize the parallelization procedure 

for computing the growth dynamics of bacterial biofilms. 
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6.1 Introduction 

Computational models involving grid based or lattice-based 

systems are solved in parallel to reduce the overall computation time. 

In cases of uneven spatial distribution of grids or non-homogenous 

presence of model objects such as cells, catalysts or solid structures in 

the domain, the allocation of computational load to the processors may 

not be uniform. Such discrepancies will result in decrease of parallel 

computing efficiency. In multiphysics systems comprising of fluid 

flow, solute diffusion, reaction (or consumption) and cell growth, 

multiple methods of solving the models need to be implemented. For 

instance, Finite Element based Method (FEM) [228] or Lattice 

Boltzmann Method (LBM) [229] can be used to solve fluid dynamic 

equations, FEM or Finite Volume Method (FVM) [220] to solve the 

Fick’s Equation of diffusion and solute consumption and Agent Based 

Method (ABM) [230] to handle the cell behavior. When combining 

these methods, there always exists a communication channel between 

them. This contributes to communication overhead in parallel 

computations. In addition, there will be fractional communication 

overhead [231] within a method resulting from memory access 

(gathering and scattering) between each processor. Therefore, it is 

necessary to estimate the communication overhead between the 

methods, fractional overhead, and the parallel execution durations to 

optimize the parallel computation process. 

In nature, bacteria exhibit two modes of growth, planktonic and 

biofilm. During their planktonic form of growth, bacteria exist as 
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individual cells that float around in a fluid medium. Due to their direct 

exposure to ambient environmental conditions, planktonic bacteria are 

susceptible to antibiotics, bacteriophages, and other chemicals. In 

contrast, during the biofilm mode of growth, the bacteria adhere to a 

solid surface and to other bacteria near them, forming a large colony of 

bacteria confined within a structure known as biofilm. By shielding the 

bacteria from harsh environmental conditions, biofilms protect them 

from detrimental external factors and act as a platform for developing 

antibiotic drug resistance. Therefore, to tackle the health hazards and 

environmental issues arising from detrimental bacterial biofilms it is 

necessary to understand the dynamics of biofilm formation. Bacterial 

biofilm modelling has become an important tool in analyzing and 

predicting the quorum sensing [232] within the bacterial community, 

detachment of biofilms [49, 233], and phage-bacteria interactions 

[234]. Bacterial biofilms are complex systems that require multiphysics 

based models to effectively describe their evolution process. In most 

studies [98, 131, 132], proliferation of bacteria is modelled by 

considering the diffusion of essential nutrients such as oxygen or 

glucose around them. The individual bacterial cells are commonly 

represented as ‘point sinks’ or reaction zones within the diffusion 

domain. Thus, bacteria consume diffusing nutrients and proliferate 

based on the rate of consumption governed by Monod kinetics [235], 

Tessier kinetics [130] or other rate equations. The diffusion process is 

usually solved using grid-based methods, which can also be 

parallelized. Bacterial distribution on the grids is non-homogenous and 



 

146 

 

localized to regions where biofilms are present. This leads to variable 

load allocation on the processors, with maximum load on the processor 

solving the grid points comprising most bacteria. In addition, bacterial 

biofilms in experiments are grown in flow cells [127], which have fluid 

flowing within the chambers growing biofilm. Here, computational 

fluid dynamics (CFD) needs to be implemented to model the effect of 

fluid on the mass transfer of nutrients. Such complex model system 

with CFD and solute mass transfer necessitates parallelization and 

optimization of the solving process. A few studies in literature have 

addressed the concerns of parallel computation in cell-level biological 

models [236, 237]. However, these studies are restricted to analysis of 

parallel efficiency in a single method (either CFD or solute mass 

transfer) and ignore the communication overhead arising from coupling 

multiple methods. 

We develop a model to analyze and optimize parallel 

computations in biofilm growth simulations. In the model, we extend 

the load balancing model proposed by Alowayyed et al. [236] to 

include the communication overhead between the methods. The effects 

of domain size, bacterial cell distribution and mesh element size on the 

parallelization efficiency are analyzed. Also, we develop a simplified 

function based on the above parameters to obtain the optimal number 

of processors required to simulate different stages of biofilm growth. 
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6.2 Methodology 

6.2.1 Computational Methods 

We have two processes involved in the biofilm model, (m1) fluid 

dynamics simulation and (m2) solute simulation. To model the fluid 

dynamics of the growth medium in the simulation domain, we solve 

the incompressible Navier-Stokes (NS) equation and continuity 

equation listed in Eq. 6.1 and Eq. 6.2 respectively. In Eq. 6.1 u is the 

velocity vector, p is the fluid pressure, 𝜈 is the kinematic viscosity and 

g is the external force (gravity) acting on the fluid. In cases of biofilm 

growth, the knowledge of steady-state nutrient concentration is 

required to model the cell proliferation. There are two ways to predict 

the steady state velocity profiles, solve the NS and continuity equations 

assuming no change of velocity with time, ie., 
𝜕𝒖

𝜕𝑡
= 0 , or solve the 

equations taking small time steps ‘dt’ until the spatial velocity values 

converge. In our study, for numerical stability and accuracy we use the 

latter method of solving the transient state flow to arrive at steady state 

velocity.  For simulating the flow, we use FENICS [238, 239], an open 

source finite element based partial differential equation solver.  NS and 

continuity equations in FENICS were implemented using Incremental 

Pressure Correction Scheme (IPCS) [240]. The meshing for the fluid 

flow domain was done using GMSH [241]. GMSH is an open source 

mesh generation tool. We generate adaptive meshes to simulate the 

flow, that is, the mesh elements get finer as they approach the surface 

of biofilm. 
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𝜕𝒖

𝜕𝑡
= 𝜈∇2𝒖 − ∇𝐩 + 𝒈 (𝟔. 𝟏) 

 

∇.𝒖 = 0 (6.2) 

 

The second simulation (m2) is the solute convection-diffusion-

consumption (CDC) simulation, modelled using Eq. 6.3 and Eq. 6.4. 

The solute concentration evolution is defined by Eq. 6.3. where, C is 

the concentration of glucose, D is the diffusivity of glucose, r is the rate 

of consumption of glucose by the cells. The steady state velocity for 

estimating the convection-diffusion is obtained from the FENICS 

solution. This solution is coupled with the Finite Volume (FV) mesh 

generated in FiPy [242]. FiPy is a partial differential solver based on 

(FV). To solve the equations in parallel we use the solver module, 

PyTrilinos, a python wrapper for open source Trilinos modules [243].   

𝜕𝐶

𝜕𝑡
= 𝐷∇2𝐶 − 𝒖. ∇C −  r (6.3) 

 

𝑟 = (
𝜇𝑚
𝑌
+𝑚)𝐵

𝐶

𝐾 + 𝐶
(6.4) 
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6.2.2 Modelling set-up and assumptions 

The bacteria in the biofilm are modelled to occupy a set of connected 

grid points with the simulation domain. In this study, we analyze three 

different biofilm settings, (i) The initial adhesion stage where only a 

few cells are present, (ii) Intermediate growth stage with a 

hemispherical structure and (iii) A final mushroom shaped structure as 

shown in fig 6.1. For the boundary conditions in FENICS, we assume 

a constant velocity inlet, atmospheric pressure boundary condition at 

the outlet and no slip boundary conditions near the bacterial cells in the 

domain as mentioned in equations 6.5,6.6 and 6.7 respectively. The 

mesh is refined near the bacterial cells to improve numerical accuracy. 

All the simulations are carried out for a Reynold’s number, Re, of 100. 

A fixed number of iterations is carried out such that the solution 

converges to a steady state. 

𝒖 = 𝒖𝒐 , at x = 0 (6.5) 

𝒑 = 0,             at x = nx (6.6) 

𝒖 = 0,       along biofilm surface (6.7) 
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Figure. 6.1 Schematic of various stages of bacterial biofilm growth, (a) 
Stage 1: The initial adhesion stage, (b) Stage 2: Intermediate growth 
stage and (c) Stage 3: Mature mushroom shaped biofilm structure. 
Yellow color indicates the bacterial cells and dark green color indicates 
the extracellular polymeric substances. 

 

We model growth dynamics of the bacteria using single substrate 

Monod kinetics given by Eq. 6.4 Here, 𝜇𝑚, is the maximum specific 

growth rate, Y is the mass yield coefficient, m is the metabolic 

maintenance coefficient, B is the biomass present at the grid and K is 

the saturation coefficient. Multiple studies involving the bacteria, 

Pseudomonas aeruginosa, have used Monod kinetics due to its 

simplicity and the availability of literature data [123, 131]. Here, 

Glucose (C) is assumed to be the critical nutrient for the bacterial 

growth and survival. The convection-diffusion-consumption is solved 

for steady state by assuming 
𝜕𝐶

𝜕𝑡
= 0 . A fixed concentration inlet ‘Gini’ 

is used at the inlet boundary, x = 0 and at all other boundaries no-flux 

boundary condition is used. We use a fixed number of iterations, large 
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enough to let the solutions converge. The values used in the simulation 

are listed in table 6.1. 

Table 6.1 Parameter values used in the biofilm simulations. (𝑔𝑏is the 
quantity of biomass, expressed in grams) 

Parameter Value 

Length of domain [131] 750 x 10-6 𝑚 

Height of domain [131] 450 x 10-6 𝑚 

Number of grids in FiPy simulation 1250 x 750 

Initial glucose concentration, 𝑮𝒊𝒏𝒊 

[131] 

3 𝑔 𝑚−3 

Initial mass of bacteria, 𝑩𝑪 [131] 1.315 x 10-13 𝑔𝑏 

Half-saturation coefficient, 𝑲𝒔 [131] 2.55 𝑔 𝑚−3 

Diffusion coefficient, Ds  2.52 x 10-6 𝑚2ℎ−1 

Specific growth rate, 𝝁𝒎  [131]  0.3125 ℎ−1 

Mass yield coefficient, Y [131] 0.45 𝑔𝐵 𝑔
−1 

Metabolic maintenance coefficient, m 

[131] 

0.036 𝑔 𝑔𝑏
−1 ℎ−1 

Reynold’s Number, Re 100 

To estimate the parallel performance, we adapt the models 

developed by Axner et al. [244] and Fox [231]. We use Eq. 6.8 to 

estimate the time taken to complete the computation through parallel 

execution, Tmi, from number of processors (P), the time for sequential 

computation (Ti,s), and the overheads arising within the individual 

process (Toverheads).  The term Toverheads does not include the 
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communication overhead between the processes m1 and m2. We 

introduce an additive term Tcomm which considers the overhead from 

communication between the two processes m1 and m2. Thus, Eq. 6.8 

is now modified as Eq 6.9 which estimates the total time ‘T’ taken for 

the computation of both the processes, where the i in Tmi indicates the 

process number.    

𝑇𝑚𝑖 =
𝑇𝑖,𝑠
𝑃
+ 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑠 (3.8) 

𝑇 = 𝑇𝑐𝑜𝑚𝑚 +∑𝑇𝑚𝑖
1,2

(3.9) 

Now we estimate the fractional load imbalance on each 

processor using the model developed by Alowayyed et al [236]. 

Consider tj,i , the time taken by processor j working on process i to 

complete the computation. When the load is distributed properly, that 

is when the domain decomposition and cell data allocation to 

processors is done evenly, we have t1,i = t2,i = t3,i =….= tP,i  . However, due 

to heterogenous cell distribution in the domain and differences in 

spatial grid smoothness such a scenario is not possible. Thus, the 

fractional load imbalance fl,i is calculated depending on the average 

execution time, <ti> and maximum processor execution time 𝑡𝑖
𝑚 using 

equation 6.10. The speed up and parallel efficiency are quantified using 

Eq. 6.11 and Eq. 6.12 respectively. 
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𝑓𝑙,𝑖 =

(

 
 
(𝑡𝑖

𝑚 − (
𝑇𝑖,𝑠
𝑃 ))

𝑇𝑖,𝑠
𝑃

)

 
 
=

𝑡𝑖
𝑚

< 𝑡𝑖 >
− 1 (6.10) 

𝑆𝑝 =
𝑇𝑖,𝑠
𝑇𝑝

(6.11) 

𝐸𝑝 =
𝑆𝑝

𝑃
(6.12) 

 

6.3 Results and Discussion 

Initially, we fix the domain size, the mesh smoothness and run the 

simulations on a single processor (sequentially) to analyze the velocity 

patterns and concentration contours developed in the domain 

containing a mature biofilm structure shown in fig. 6.1c. As shown in 

fig. 6.2, the simulations can predict the changes in velocity and glucose 

concentration in the vicinity of the cells.  
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Figure. 6.2 Simulations on mature biofilm structure, (a) fluid dynamics 
simulation result showing the normalized velocity within the domain 
and (b) CDC simulations showing the normalized glucose 
concentration distribution in the domain. 

All the simulations in the study were carried out on 3.20 GHz 

Intel® Core™ i7-6900K CPU running Ubuntu Linux 14.04. The 

parameters shown in table 6.1 were used for all the simulations, hence, 

the effects of change in domain size  or change in fluid flow 

characteristics were not analyzed in this study. The total time taken for 

the simulations to converge to steady state were 845 s and 145 s for the 

fluid dynamics and CDC simulations respectively. There will be a 

communication overhead between the processes even when running 

sequentially, as indicated by the additive term in Eq. 6.9. In the next 

step, we simulated the fluid flow and nutrient diffusion patterns for the 

various stages of biofilm developments shown in fig. 6.1. We restrict 

ourselves to these three stages of growth since after stage 3, due to 

nutrient depletion, there is a possibility of bacterial dispersion from the 

biofilm. In this study, parallel performance analysis during the biofilm 

dispersion process is not included due to the possibility of multiple 

structural configurations during the dispersion process.  We varied the 

number of processors P from 1 to 16. The results of the simulations are 

shown in fig. 6.3. We observed a plateauing of the computation time as 

the number of processors increased. This is due to the increase in 

overhead between the individual processors with increase in 

parallelization. Also, an interesting observation is that the stage 2 

biofilms required longer processing time than stage 3 due to the larger 
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number of mesh elements required to simulate stage 2 as shown in fig. 

6.3c. The effect arises solely from the quantity of the mesh elements 

and not from the quality of the elements, since all the meshes had the 

same minimal element radius of 0.18. The increase in number of mesh 

elements could be due to the meshing algorithm being dependent on 

the geometry of the biofilm area. However, the communication time 

between the processes did not follow an established trend. Since there 

is always a load imbalance when using parallel processors as shown in 

fig. 6.4a, the heterogenous distribution of mesh elements would result 

in variable response duration for each processor to the communication 

signal, thereby causing inefficient inter-process communication. This 

inefficient communication is evident in the mesh-dense stage 2 biofilm 

simulations, where the mesh decomposition is much more 

heterogeneous. 

 

 

Figure. 6.3 Parallel performance at different stages of biofilm growth 
(a) change in computational time with increase in parallel processors, 
(b) change in communication time between processes m1 and m2 
with increase in parallel processors and (c) number of mesh elements 
(Ne) used in the fluid dynamics simulation. 
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The estimated fractional load imbalance from the simulations is 

shown in fig. 6.4(a). In general, the load imbalance increased with 

increasing number of processors, and followed a sigmoidal curve 

pattern indicating the asymptotic nature of the load imbalance. The 

asymptotic behavior can be explained from the fact that, as the number 

of processors increase, the heterogeneity between the meshes allotted 

to the individual process decreases, resulting in an equilibrium value 

for fractional load imbalance. Figure 6.4(b) shows a decrease in 

efficiency of parallel computation at higher processor counts. This 

trend is expected since there is always an efficiency loss from intra-

communication overheads between the processors. We also infer that, 

efficiency is a function of mesh elements and number of parallel 

processors. The geometry of the stage 2 biofilm necessitates use of 

large number of mesh elements to have a refined mesh boundary. 

Therefore, stage 2 biofilm with large number of mesh elements 

operates at a higher efficiency with large number of processors (>8) 

and underperforms with lesser number of processors than its 

counterparts. Although the fractional load imbalance for stage 1 

biofilms is significantly higher than stage 2 and 3 biofilms using 4 

processors, the efficiency for stage 1 biofilms is marginally higher than 

stage 2 and 3 biofilms due to the presence of fewer meshing elements 

and homogenous element distribution. Thus, the average number of 

mesh elements per processor (Np) determines rate of decrease in 

parallel efficiency. We could therefore write a simplified function, 

𝐸𝑝 = 𝐸𝑝(𝑃, 𝑁𝑒 , 𝑁𝑃) (6.13) 
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Increase in Np while using large number of processors will 

therefore result in increased processor efficiency. Practically, this could 

be done by refining the fluid dynamics mesh. However, the mesh 

refinement should be optimized such that the trade-off between parallel 

efficiency and total computation time ‘T’ stays optimal. A similar trend 

is observed with the speed up values since it is indirectly proportional 

to the parallel computation time as shown in Eq. 6.12.  

 

  

Figure. 6.4 Parallel efficiency test results, (a) estimate of fractional 
load imbalance on the processors, (b) change in parallel processing 
efficiency with increase in parallel processors and (c) Speed up 
resulting from change in number of processors. 

6.4 Conclusion 

We modeled the parallel computation efficiency at different 

stages of a multi-physics implementation of biofilm growth. It was 

found that high parallelization, at initial stages of biofilm growth 

simulations is not needed, since the computational efficiency from 

parallelization is offset by the intra-process overheads. The 

intermediate stage requires more parallel processors to decrease the 

overall computation time. This is due to the presence of large number 
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of mesh elements at this stage. Therefore, as a rule of thumb, the 

number of processors needed to optimize the speed of execution of the 

entire biofilm growth simulation is, (𝑁𝑝)𝑠𝑡𝑎𝑔𝑒1 < (𝑁𝑝)𝑠𝑡𝑎𝑔𝑒2 >

(𝑁𝑝)𝑠𝑡𝑎𝑔𝑒3.  We have developed a simplified function (EP) dependent 

on the number of processors, total number of mesh elements and the 

mesh elements per processor for optimizing the parallel efficiency in 

simulating bacterial biofilm growth. 
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7 Conclusions and future works 

The research presented in this thesis revolve around a common 

theme ‘emergent nature of bacterial biofilm and its ecosystem’. Each 

chapter analyses a significant non-linear phenomenon emerging from 

the biofilms, in response to its interaction with the surrounding. Instead 

of developing a single unified model that fits in all the studies, a 

modular approach has been used in the model development process. 

The modelling process was broken down to the rudimentary principles 

that need to be captured by the models. There are three basic principles 

in the models, cell behaviour, chemical species transport and fluid 

dynamics. Cell behaviour has been captured using the GGH models, 

chemical species transport has been modelled using FVM and fluid 

dynamic simulations have been handled using FEM. Thus, the 

framework developed for the simulation studies includes three modules 

namely, GGH, FVM and FEM based modules. These three modules 

have been coupled in different ways, as necessary, to capture the 

underlying dynamics of the biofilm phenomenon under study. Chapter 

3 includes the GGH and FVM modules to simulate and predict the 

morphological changes in biofilms at their developmental stages. GGH 

and FEM modules have been incorporated in the development of the 

biofilm’s fluid shear response model of chapter 5. A spatiotemporally 

coupled model comprising of FEM and FVM modules has been 

implemented in Chapter 4 for predicting the QS-QQ signalling 

dynamics. In addition, the GGH module has been used for visualization 
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purposes in Chapter 4. Thus, although there are conceptually distinct 

phenomena studied in this thesis, the underlying principles steering 

these phenomena are interconnected and their spatiotemporal evolution 

has captured by numerical models built upon a common set of 

biophysical modules. 

The biofilm morphology simulation model explained in chapter 3 

has identified chemotaxis of nutrient deprived bacteria as the major 

driver behind the mushroom-shaped formations. The cells at the bottom 

of the colony that were under starvation were found to move vertically 

towards the regions of higher nutrient availability. This movement 

produces the neck or stalk structure of the mushroom morphology. 

Further competition and consequent displacement of the cells in the 

stalk structure, leads to overcrowding at the crown of the biofilm, 

which corresponds to the cap of the mushroom. These results have been 

validated by the experimental findings in the study. The chemotaxis 

mutants ΔcheY in the experiments seldom formed distinguishable stalk 

and cap structures in the flow cell but rather resembled the shape of a 

hemispherical dome. Thus, a combination of wet-lab experiments 

involving mutant bacterial strains and simulation models built on the 

coupled GGH-FVM modules have enabled us to unravel the physics 

behind formation of metabolically heterogenous biofilms.  In the 

biofilms that formed the mushroom-shaped structures, segregation of 

bacteria based on their motility has been found to be of common 

occurrence. This implies formation of three distinct zones capable of 

expressing differential antibiotic response. The zones being, dormant 
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bottom layer, nutrient limited stalk and a fast proliferating cap. The 

antibiotic resistance can arise from the genetic mutations occurring due 

to local stresses in these stratified regions. Eradication of such biofilms 

is not straightforward, as removal of its head will mean exposure of the 

sturdy antibiotic resistant bottom. This necessitates development of 

proper biofilm removal strategies, which result in total elimination of 

biofilm formed in a system. Such strategies will have significant impact 

in medical and industrial biofilm eradication processes. In clinical 

setting, for diseases such as cystic fibrosis, it is of crucial importance 

that an antibiotic does not aid in the spread of the biofilm to nearby 

sites. To avoid such scenarios, in future, computational model based on 

the current GGH-FVM modules can be developed to address the 

structural effects of antibiotic combinations and predict a combination 

that completely removes the entire biofilm structure.  A simple 

hypothetical example would be an antibiotic combination of two drugs, 

one targeting fast proliferating bacteria and other the targeting sessile 

cells. Such multi-targeting drug combinations would eliminate the cap 

and the bottom of the structure. One additional concern of using 

antibiotics is the development of antibiotic resistance due to their 

longer exposure to sturdy cells. Since the models developed will be 

able to address the metabolic segregation in bacteria, it can help reduce 

the overuse or use of incorrect antibiotics in bacterial infection 

treatments. Thus, the platform developed can act as a decision support 

tool for clinicians treating infections caused by bacterial biofilms. 
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The QS-QQ models developed in chapter 4 of the thesis, have 

helped elucidate the impact of mass transfer and QQ on QS behaviors 

in microbial communities. The experimental data driven models have 

clearly shown that intracellular QQ activity can never significantly 

influence the inter-biofilm QS signalling in aqueous and matrix-based 

environments. Only the extracellular QQ enzymes can effectively 

control QS signalling. Hence, intracellular QQ enzymes may not have 

evolved to degrade environmental QS signals as a competition 

measure. Overall, three major components that modulate the QS 

communication have been identified in the model. These include the 

extracellular matrix, local flow and quorum quenching (QQ). These 

components have been found to interact with each other and decide the 

outcome of inter-biofilm QS signalling. In open systems, convection is 

found to amplify the signal dispersal to the environment and thus 

extending the reach of the bacterial colony. Further, the extracellular 

matrix absorbs these dispersed signals and relays the signal messengers 

into the biofilm. This process allows long range inter-biofilm 

communication even at low extracellular signal concentration. This 

means that a bacterial species in one biofilm can send QS signals to its 

own specie members in a biofilm far away, without much dilution in 

the signalling strength.   Within the biofilm, the matrix further dictates 

the transfer of QS signals and QQ enzymes through differential 

diffusion. In general QS signals diffuse faster due to their small 

molecular size, this results in a dynamic competition of QS expansion 

and QQ neutralization of the QS present. The spatial segregation of the 
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individual populations within the biofilm has also been found to control 

the outcomes of QS-QQ signalling, based on the localized 

concentrations of the molecules. Thus, as a result of signal transport 

and species localization a highly heterogenous QS behaviour can be 

observed in multispecies biofilm communities. In future, these FEM-

FVM module-based models can be easily incorporated into the 

morphology models discussed in chapter 3. A combination of these 

models would provide a framework for studying and evaluating 

hypotheses formed around the impact of QS-QQ in multispecies 

environment. QS has long been implicated for its role in biofilm 

dispersion. Hence, combining QS with biofilm growth models can lead 

to prediction of tipping points of mass dispersion within multispecies 

biofilms. One additional future use of the model would be in design of 

water filtration system, where species balance plays in important role 

in maintaining the efficiency of the filter system. QS-QQ models can 

help locate and quantify local species population based on 

experimental values of signal intensity in the substrate and the matrix.  

FVM and FEM modules are computationally memory and 

processor intensive numerical models. Without proper optimization of 

these modules, simulations can take more execution time than wet-lab 

experiments.  Chapter 7 provides the optimization rules necessary for 

parallelizing these modules in the context of biofilm simulations. The 

impact of the various stages of biofilm growth on the memory and 

processing efficiency of the computing machine have been analysed 

and summarized in this chapter. It has been found that at initial stages 
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of biofilm growth, when the biofilm is only a few micrometres high 

from the substratum, high parallelization is not advisable. This is due 

to the intra-process overheads offset the computational efficiency from 

parallelization. At later stages of biofilm growth, since the FEM model 

assumes no-slip conditions at the boundary, the number of elements 

required is lower compared to a short hemispherical intermediate 

biofilm shape. Thus, large number of processors are required for the 

intermediate stage to decrease the overall computation time. A 

simplified function has been developed in the study for optimizing the 

parallel efficiency in simulating bacterial biofilm growth. Although 

this study has examined both FVM and FEM modules’ parallel 

efficiency, it has not considered the impact of traction force 

calculations. Since traction force calculations are done along the 

surface of the biofilm, it could mean that the parallel compute time 

could increase for fully developed biofilms with large surface area. In 

future, a study needs to be carried out, which analyses the parallel 

efficiency of a biofilm model simulation, which includes multiple 

interacting solutes (such as QS-QQ) and traction forces acting the 

surface, to better understand the computational requirements of such 

multiparameter models.  
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8 Appendix 

 

 

Appendix Figure 1. Stereo-microscopic image (left) and size 
distribution (right) of bacterial aggregates encapsulated in alginate 
hydrogel. a, QS signal (AHL) reporter cells were encapsulated in the 
alginate hydrogel and allowed to grow into aggregate biofilms. b, An 
additional layer of alginate hydrogel was coated onto the aggregates 
containing QS signal (AHL) producers or quenchers to prevent cell 
leakage. 
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Appendix Figure 2. Characterizations of QS signal producer, quencher 
and reporter strains. a, Growth kinetics of individual strains. The cell 
density was determined over 24 h at OD600 nm. Means ± SD are 
presented (n = 3). b, QS signal (AHL) production kinetics of a single AHL 
producer aggregate. AHL was determined using the QS signal reporter 
assay. Means ± SD are presented (n = 6). c, QS signal (AHL) detection 
by a single AHL reporter at different concentrations of 3OC6-HSL over 
time. Images were acquired using confocal laser scanning microscope 
at 488/510 nm for GFP detection together with a phase contrast filter. 

Scale bar:  100 m. In all cases (a-c), all cultures were maintained using 
10% lysogeny broth supplemented with 0.095% CaCl2 at room 
temperature. Except for (c), all cultures were maintained without 
shaking at 150 rpm. 
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Appendix Figure 3. Simulations of QS signalling in a hydrogel matrix 
without QQ leakage. a, Simulations of QS activation. Blue and green 
circles indicate uninduced and QS-activated states of reporter 
aggregates, respectively. Red circles located at (0, 0) indicate QS signal 
producer aggregates. Pink circles located at (1.5, 1.5) and (-1.5, -1.5) 
indicate QS signal quencher aggregates. b, Spatio-temporal prediction 
for the QS signal concentration profile. The colour scale:  0-50 nM. c, 
Spatio-temporal prediction for the QQ enzyme concentration profile. 
The colour scale:  0-1.5 nM. The diffusivity of QS signals (DAHL), i.e., 
4.75 × 10-6 cm2/s was used in all simulations.  
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Appendix Figure 4. Extracellular QQ activity occurs through cell lysis. 
a, Temporal detection of extracellular space QQ activity. Both QS 
signal quencher, i.e., E. coli TOP10/AiiO, and the QS signal quencher 
mutant, i.e., E. coli TOP10/mAiiO, were inoculated at an initial cell 

density of 2  106 cells/mL at room temperature. Inactivation of 
exogenous QS signal (i.e., AHL: 3OC6-HSL) by cells suspended in PBS 
(i.e., intracellular QQ activity) or cell-free supernatant (i.e., 
extracellular QQ activity) were assessed over time. The exogenous 
AHL was added at 1,000 nM to each sample for 2 h and the residual 
AHL was detected using the QS signal reporter assay (i.e., JB525). 
Means ± SD are presented (n = 6). b, Detection of extracellular QQ 
activity. The alginate granules encapsulating the QS signal quencher, 
i.e., E. coli TOP10/AiiO, or the negative control, i.e., E. coli TOP10, were 
allowed to grow for 24 h at room temperature. Inactivation of 
exogenous QS signal (i.e., AHL: 3OC6-HSL) by the aggregate biofilms 
(i.e., granule) suspended in PBS (i.e., intra-aggregate QQ activity) or 
cell-free supernatant (i.e., extra-aggregate QQ activity) or heat-
treated cell-free supernatant were assessed. The exogenous AHL was 
added at 1,000 nM to each sample for 2 h and the residual AHL was 
detected using the QS signal reporter assay (i.e., JB525). Means ± SD 
are presented (n = 6). c, Detection of extracellular alkaline 
phosphatase activity. The alginate granules encapsulating the QS 
signal quencher, i.e., E. coli TOP10/AiiO, were allowed to grow for 24 
h at room temperature. The presence of alkaline phosphatase activity, 
indicative of cell lysis, in the cell-free supernatant (1X), heat-treated 
cell-free supernatant (1X) and concentrated cell-free supernatant 

(25X) were assessed. A cell lysate prepared by sonication of 2  108 
cells was included as a positive control for cell lysis. Means ± SD are 
presented (n = 3). 
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Appendix Figure 5. QS activation time mismatch between the 
experimental results and the simulations in a hydrogel matrix. The 
diffusivities of QS signals (DAHL), i.e., 4.75 × 10-6 cm2/s and QQ enzymes 
(DAiiO), i.e., 1.35 × 10-6 cm2/s were used in all simulations. The colour 
scale:  0-5 h. 
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Appendix Figure 6. QS signalling in a hydrogel matrix with a single QS 
signal producer aggregate. a, Activation of QS signal reporter 
aggregates. QS signal producer aggregate (open red circles) located at 
(0, 0). b, Simulations of QS activation based on the signal diffusivity of 
4.75 × 10-6 cm2/s. Blue and green circles indicate uninduced and QS 
activated states of reporter aggregates, respectively. Red circles 
indicate QS signal producer aggregates. 
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Appendix Figure 7. QS activation profiles of reporter aggregates. 
Cumulative QS responses of the signal reporters embedded within a 
hydrogel matrix (circle) or in an aqueous environment (square) were 
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determined in the absence (a) or the presence of QS signal quenchers 
(b) according to the community layout shown in fig. 1d. Both 
experimental (close) and simulation results (open) are presented. 
Means ± SD are presented (n = 3). 

 

Appendix Figure 8. Simulation of QS activation in a hydrogel matrix 
with 100-fold increased signal production rate.  Blue and green circles 
indicate uninduced and QS activated reporter aggregates, 
respectively. Red circles located at (0, 0) indicate QS signal producer 
aggregates. The diffusivity of QS signals (DAHL), i.e., 4.75 × 10-6 cm2/s 
was used in the simulation.   
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Appendix Figure 9. Influence of air flow inside the enclosed chamber 
of Gel-Doc XR+ system on the convective flow of an aqueous medium. 
a, A piece of plastic slice (1.5 × 1.5 mm) was placed at the center 
surface of an aqueous medium in the petri-dish, and its drifting path 
was visualized under white epi illumination using a camera. b, The 
same experiment was repeated by using a transparent lid to close the 
petri dish so that the air flow did not affect the convective flow of the 
aqueous medium. 
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Appendix Figure 10. QS signalling with a single QS signal producer 
aggregate in an open hydrogel (i.e., without lid) or in an open aqueous 
(i.e., without lid) or in a closed aqueous system (i.e., with lid). 
Activation of QS signal reporter aggregates. QS signal producer 
aggregate (open red circles) located at (0, 0). 
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Appendix Figure 11. QS signalling in a hydrogel matrix in the presence 
of quorum quenchers. a, Activation of QS signal reporter aggregates. 
QS signal producer aggregate (open red circles): (0, 0), QS signal 
quencher aggregates (open pink circles):  (1.5, 1.5) and (-1.5, -1.5). b, 
Simulations of QS activation based on the signal diffusivity of 4.75 × 
10-6 cm2/s, QQ enzyme diffusivity of 1.43 × 10-6 cm2/s and cell leakage 
of 1.1%. Blue and green circles indicate uninduced and QS activated 
states of reporter aggregates, respectively. Red and pink circles 
indicate QS signal producer and quencher aggregates, respectively.



 

Appendix Figure 12. Scheme of image quantification process. GFP 
fluorescent images obtained using Gel-Doc XR+ system were analyzed 
using ImageJ software to quantify the fluorescence intensity for each 
reporter aggregate.  
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Appendix Figure 13. Parameter estimation for QS signalling in a 
hydrogel matrix in the presence of quorum quenchers. a, Simulations 
of QS activation based on the signal diffusivity of 4.75 × 10-6 cm2/s 
with varying diffusivities of QQ enzymes (DAiiO) and 1.1% cell leakage. 
b, Simulations of QS activation based on the signal diffusivity of 4.75 
× 10-6 cm2/s with varying degrees of cell leakage from the QQ granule 
(qleak) and DAiiO of 1.43 × 10-6 cm2/s. For both a and b, the relative 
differences between the length of the lines denote the relative 
differences in the QS activation time between the experiment and 
simulations. c, Simulated activation time of QS signalling in a hydrogel 
matrix in the presence of quorum quenchers based on the signal 
diffusivity of 4.75 × 10-6 cm2/s, QQ enzyme diffusivity of 1.43 × 10-6 
cm2/s and cell leakage of 1.1%. Size of the circles indicates the 
activation time of the QS signal reporter aggregates. Circle size scale: 
0-50 h. For all a-c, blue and green dots indicate uninduced and QS-
activated states of reporter aggregates, respectively. Red and pink 
dots indicate QS signal producer and quencher aggregates, 
respectively. 
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Appendix Figure 14. Influence of ambient air flow on convective flow 
of aqueous medium in petri dish. a, A scheme of ambient air flow. b, 
Boundary conditions implemented for solving the Navier-Stokes 
equation. One half of the liquid layer on the top of the petri dish is 
subjected to sliding wall boundary condition and the other half is set 
to slip condition. No slip boundary condition is applied elsewhere near 
the solid-liquid boundaries. 
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Appendix Figure 15. Velocity vectors in liquid media obtained from 
the Navier-Stokes simulation model. The colour bar indicates the 
steady-state magnitude of the velocity vectors. The spatial direction 
of the velocity vectors is denoted by the direction of the arrows. 
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Appendix Table 1. Bacterial strains used in this study. 

Strain Relevant characteristics Reference 

 

P. 

stewartii 

R067d 

QS signal (AHL) producer isolated 

from a wastewater treatment plant. 

[150] 

E. coli 

TOP10 

Wildtype E. coli strain TOP10 for 

plasmid transformation and gene 

expression. 

Invitrogen, 

Singapore 

E. coli 

EsaI 

QS signal (AHL) producer. TOP10 

strain carrying a pTrcHis2-EsaI 

plasmid with Ptrc-esaI; AmpR and 

KmR 

This study 

E. coli 

AiiO 

QS signal (AHL) quencher. TOP10 

strain carrying a pTrcHis2-AiiO 

plasmid with Ptrc-aiiO; AmpR and 

KmR 

[162] 

E. coli 

JB525 

QS signal (AHL) reporter. MT102 

strain carrying a pJBA132 plasmid 

with luxR-PluxI-gfp(ASV); TetR 

[164] 

Abbreviations: AHL, acyl-homoserine lactone; gfp, green fluorescent protein; 

Amp, ampicillin; Km, kanamycin; Tet, tetracycline. 
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10 Summary 

 

The response of biofilms to any external stimuli is a cumulative 

response aggregated from individual bacteria residing within the 

biofilm. Any perturbation at a microscopic level manifests response at 

a macroscopic scale. Therefore, the organizational complexity of 

biofilm can be studied effectively by understanding the bacterial 

interaction at cell level. The overall aim of the thesis is to explore the 

complex evolutionary behaviour of bacterial biofilms subject to 

external perturbations. This thesis is divided into three major studies 

based on the type of perturbation analysed in the study. These studies 

answer the fundamental questions associated with the complexity of 

biofilm development. The first study analyses the physics behind the 

development of mushroom-shaped complex structures from the 

influence of nutrient cues in Pseudomonas aeruginosa biofilms. 

Glazier-Graner-Hogeweg model is used to simulate the cell 

characteristics such a motility, proliferation, and adhesion in the study. 

From the study, it is observed that chemotaxis of bacterial cells towards 

nutrient source is one of the major precursors for formation of 

mushroom shaped structures. Also, formation of such cap-and-stalk 

structures leads to the development and segregation of bacterial 

antibiotic resistance within the biofilm. The objective of the second 

study is to analyse the impact of ambient environmental conditions on 

the inter-biofilm quorum sensing signalling. The study reveals that the 
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dynamics of inter-biofilm bacterial communications is significantly 

affected by the characteristics of the fluid medium surrounding the 

biofilm. Using a hybrid convection-diffusion-reaction model, the 

simulations predict the diffusivity of quorum sensing molecules, the 

spatiotemporal variations of quorum sensing signal concentrations and 

consequently, the competition outcome between quorum sensing and 

quorum quenching mutant bacterial communities present under various 

environmental conditions. The mechanical effects associated with the 

fluid-biofilm interaction is addressed in the third study. A novel fluid-

structure interaction model based on fluid dynamics and structural 

energy minimization is developed in the study. Model simulations are 

used to analyse the detachment and surface effects of the fluid stresses 

on multi-species biofilms. In addition to the mechanistic models 

described, a separate study is carried out to estimate the computational 

efficiency of the biofilm growth model and predict the optimal 

processor allocation for simulating different stages of biofilm growth. 
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