19 research outputs found

    A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas

    Get PDF
    In this paper, we present the receiver and the on-chip antenna sections of a fully integrated 77-GHz four-element phased-array transceiver with on-chip antennas in silicon. The receiver section of the chip includes the complete down-conversion path comprising low-noise amplifier (LNA), frequency synthesizer, phase rotators, combining amplifiers, and on-chip dipole antennas. The signal combining is performed using a novel distributed active combining amplifier at an IF of 26 GHz. In the LO path, the output of the 52-GHz VCO is routed to different elements and can be phase shifted locally by the phase rotators. A silicon lens on the backside is used to reduce the loss due to the surface-wave power of the silicon substrate. Our measurements show a single-element LNA gain of 23 dB and a noise figure of 6.0 dB. Each of the four receive paths has a gain of 37 dB and a noise figure of 8.0 dB. Each on-chip antenna has a gain of +2 dBi

    SiGe-based broadband and high suppression frequency doubler ICs for wireless communications

    Get PDF
    戶ćșŠ:新 ; 栱摊ç•Șć·:ç”Č3419ć· ; ć­ŠäœăźçšźéĄž:ćšćŁ«(ć·„ć­Š) ; 授䞎ćčŽæœˆæ—„:2011/9/15 ; æ—©ć€§ć­Šäœèš˜ç•Șć·:新574

    Analysis and design of a high power millimeter-wave power amplifier in a SiGe BiCMOS technology

    Get PDF
    Our current society is characterized by an ever increasing need for bandwidth leading towards the exploration of new parts of the electromagnetic spectrum for data transmission. This results in a rising interest and development of millimeter-wave (mm-wave) circuits which hold the promise of short range multi-gigabit wireless transmissions at 60GHz. These relatively new applications are to co-exist with more established mm-wave consumer products including satellite systems in the Ka-band (26.5GHz - 40GHz) allowing e.g.: video broadcasting, voice over IP (VoIP), internet acces to remote areas, ... Both need significant linear power amplification due to the high attenuation typical for this part of the spectrum, however, satellite systems demand a saturated output power which is easily an order of magnitude larger (output powers in excess of 30dBm / 1W). Monolithic microwave integrated circuits (MMICs) employing III-V chip technologies, e.g.: gallium arsenide (GaAs), gallium nitride (GaN), have historically been the preferred choice to implement efficient mm-wave power amplifiers (PA) with a high saturated output power (>30dBm). To further increase the commercial viability of consumer products in this market segment a low manufacturing cost for the power amplifier, together with the possible integration of additional functions, is highly desirable. These features are the strongpoint of silicon based chip technologies like CMOS and SiGe BiCMOS. However, these technologies have a breakdown voltage typically below 2V for nodes capable of millimeter-wave applications while III-V transistors with equivalent frequency performance demonstrate breakdown voltages in excess of 8V. Because of this, output powers of CMOS and SiGe BiCMOS Ka-band power amplifiers rarely exceed 20dBm which poses the main hurdle for using these technologies in satellite communication (SATCOM). To overcome the limited output power of a single amplifying cell in a silicon technology, caused by the low breakdown voltage, multiple power amplifiers cells need to have their output power effectively combined on-chip. This requires the on-chip integration of high-Q passives within a relative small area to realize both the impedance transformation, to create the optimal load impedance for the different amplifier cells, and implement an efficient on-chip power combination network. Compared to III-V technologies this is again a challenge due to the use of a silicon substrate which introduces higher losses. Once a large enough on-chip output power is created, the issue of launching this signal to the outside world remains. Moreover, due to the limited efficiency of mm-wave PAs, the generated on-chip heat will increase when larger output power are required. This means a chipto-board interface with a low thermal resistance and a low loss electrical connection needs to be devised. Proof of the viability of silicon as a serious candidate for the integration of medium and high power Ka-band amplifiers will only be delivered by long term research and the actual creation of such an amplifier. In this context, the initial goal for the presented work is proposed. This consists of the creation of a power amplifier with a saturated output power above 24dBm (preferably 27dBm), a gain larger than 20dB and an efficiency in excess of 10% (preferably 15%). These specifications where conceived with the precondition of using a 250nm SiGe BiCMOS technology (IHP’s SG25H3) with an fT of 110GHz and a collector to emitter breakdown voltage in open base conditions (BVCEO) of 2.3V. The use of this technology is a significant challenge due to the limited speed, rule of thumb is to have at least one fifth of the fT as the operating frequency, which reflects in the attainable power added efficiency (PAE). On the other hand, proving the possible implementation in this “older” technology shows great potential towards the future integration in a fast technology (e.g.: IHP’s SG13G2, ft =300GHz). Next to issues caused by limitations of the chip technology, the proposed specifications allows to identify generic difficulties with high power silicon PA design, e.g.: design of efficient on-chip power combiners, thermal management, single-ended to differential conversion, ... As this work is of an academic nature the intention of this design was to leave the beaten track and explore alternative topologies. This has led to the adoption of a driver stage using translinear loops for biasing and a transformer-type Wilkinson power combiner previously only used in cable television (CATV) applications. Although the power combiner showed 2dB more loss than expected due to higher than expected substrate losses, both topologies show promise for further integration. Furthermore, an in-depth analysis was performed on the output stage which uses positive feedback to increase its gain. The entire design consists of a four-way power combining class AB power amplifier together with test structures of which the performance was verified by means of probing. Due to the previously mentioned higher than expected loss in the on-chip power combiner, the total output power and power added efficiency (PAE) was 2dB lower than expected from simulations. The result is a saturated output power at 32GHz of 24.1dBm with a PAE of 7.2% and a small signal gain of 25dB. This demonstrates the capability of SiGe BiCMOS to implement PA’s for medium-power mm-wave applications. Moreover, to the best of the author’s knowledge, this PA achieves the second highest saturated output power when comparing SiGe BiCMOS PA’s with center frequency in or close to the Ka-band. The 1dB compression point of this amplifier lies at 22.7dBm which is close to saturated output power and results in a low spectral regrowth when compared to commercial GaAs PA’s (compared with 2MBaud 16QAM input signal at 10dB back-off). Many possible improvements to this design remain. The most important would be the re-design of the on-chip power combiner, possibly with a floating ground shield, to reduce the losses and increase the total output power and PAE. Also the porting of the design to a faster chip technology might result in a considerable increase of the output stage efficiency at the cost of needing to combine more amplifier cells. The transition to a faster chip technology would additionally allow to use this design for alternative mm-wave applications like automotive radar at 79GHz andWiGig at 60GHz

    A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas

    Full text link

    High-speed low-power modulator driver arrays for medium-reach optical networks

    Get PDF
    The internet is becoming the ubiquitous tool that is changing the lives of so many citizens across the world. Commerce, government, industry, healthcare and social interactions are all increasingly using internet applications to improve and facilitate communications. This is especially true for videoenabled applications, which currently demand much higher data rates and quality from data networks. High definition TV streaming services are emerging and these again will significantly push the demand for widely deployed, high-bandwidth services. The current access passive optical networks (PONs) use a single wavelength for downstream transmission and a separate one for upstream transmission. Incorporating wavelength-division multiplexing (WDM) in a PON allows for much higher bandwidths in both directions. While WDM technologies have been successfully deployed for many years in metro and core networks, in access networks they are not commonly used yet. This is mainly due to the high costs associated with deploying entire WDM access networks. However, the present optical networks cannot be simply and cost-effectively scaled to provide the capacity for tomorrow’s users. As an effect there is a strong need for new WDM access components which are compact, cost-competitive and mass-manufacturable. Increasing the number of wavelengths for WDM-PON automatically leads to an increase in the number of single pluggable transceivers, which brings substantial design challenges and additional costs. The multitude of TXs and RXs for different wavelength channels increases the total footprint considerably. Photonic integration of transceivers into arrays will significantly reduce the footprint and cost. However, the total power consumption of an array device is an issue. To avoid the use of a thermoelectric cooler, the integration density of components is severely limited by the heat dissipating capabilities offered by their package. As a result the WDM-PON philosophy necessitates the reduction of the transceiver’s power dissipation. From this plea it is apparent that the main technology challenges for realizing future-proof optical (access) networks are reducing active component power consumption, shrinking form factors and lowering assembly costs. In this perspective an over 100 Gb/s throughput component, composed of 10 channels at 11.3 Gb/s per wavelength channel would be a great contribution to the expansion of customer bandwidth. It can provide increased line rates to the end users at speeds of 10 Gb/s per wavelength. As RXs typically consume much less power than externally modulated TXs, they can relatively easily be integrated into an array. Mainly high speed optical transmitters have significant power consumptions and the heat generation caused by power dissipation forms a critical obstacle in the development of a 10-channel transmitter, which again underlines the importance of power reduction. Alongside the introduction of WDM in access networks, also inter-office point-to-point connections in data center environments could benefit from the WDM philosophy. As data center operators often suffer from fiber scarcity or do not own their fiber infrastructure, WDM technologies are essential to deliver reach and capacity extension for these scenarios. Interdata center communication also benefits from cost-, footprint- and energyefficient components operating at high speed to maximize the throughput. As an effect integrated over 100 Gb/s transceivers, such as 4 channels at 28 Gb/s, are highly desirable. The research described in this dissertation was partly funded by the European FP7 ICT project C3PO (Colourless and Coolerless Components for low Power Optical Networks) and the UGent special research fund. The C3PO project aimed to develop a new generation of green Si-photonic compatible components with record low power consumption, that can enable bandwidth growth and constrain the total cost. C3PO envisioned building high-capacity access networks employing reflective photonic components. To achieve this, cost-competitive reflective transmitters based on electroabsorption modulators (EAM) needed to be closely integrated into arrays. A multi-wavelength optical source provides the required wavelength channels for both downstream and upstream signals in the WDM-PON. Chapter 1 gives a short overview of a PON and describes the main implementations of a WDM-PON access network. It introduces integrated low power transmitter arrays for a cost-effective architecture of WDM-PONs and inter-data center communication. Chapter 2 compares different optical transmitters and gives a short overview of their most important characteristics. External modulation through both Mach-Zehnder modulators (MZMs) and EAMs is described. It shows that EAMs are the best choice for low power transmitter array integration, thanks to their lower drive voltage and smaller form factor, compared to MZMs. To achieve a reduced consumption, the electronic modulator driver topology is studied in chapter 3. The challenge in designing modulator drivers is the need to deliver very large currents in combination with high voltage swings. Four distinct output configurations are compared and techniques to reduce the power consumption of the drivers are described. Chapter 5 presents duobinary (DB), a modulation scheme that is gaining interest in today’s optical transmission. As the required bandwidth is about half that of NRZ, it softens the constraints on the transmitter bandwidth. Thanks to its narrow optical spectrum, it has an improved tolerance to dispersion in long haul single mode links and it can improve the spectral efficiency in WDM architectures. For optical DB a precoder is necessary to assure the received signal is equal to the original binary signal. The conducted research that resulted in this dissertation produced 2 low power EAM driver arrays: A 10-channel 113 Gb/s modulator driver array with state-of-the art ultra-low power consumption. A 2-channel 56 Gb/s duobinary driver array with a differential output with low power consumption. Both designs are elaborately analyzed in chapter 4 and 6 respectively. To the best of our knowledge the 10-channel EAM driver array is the first in its kind, while achieving the lowest power consumption for an EAM driver so far reported, 50% below the state of the art in power consumption. The 2-channel EAM driver array is the fastest modulator driver including on-chip duobinary encoding and precoding reported so far. The final chapter provides an overview of the foremost conclusions from the presented research. It is concluded with suggestions for further research

    Simulations of III-V NWFET Double-Balanced Gilbert Cells with an Improved Noise Model

    Get PDF
    III-V nanowire transistors might provide a mean for extending Moore’s law, by overcoming the scaling limitations ultimately facing planar silicon CMOS. These high frequency capable transistors with cut-off frequencies in the terahertz regime are suitable for radio communication. In this project an active double-balanced gilbert cell mixer consisting of nanowire field-effect transistors (NWFETs) was simulated in Cadence Virtuoso using a compact transistor model. The transistor model was extended to take flicker and thermal noise into account, in order to more accurately compare the mixers against state-of-the-art silicon CMOS implementations. The final mixer for 60 GHz showed much greater linearity (0.4 dBm 1 dB compression and 8.5 dBm IIP 3) than previously reported silicon CMOS counterparts. It exhibited a conversion gain of 3.47 dB, a N F DSB of 14.6 dB and a DC power consumption of 8.7 mW.Based on these findings the design requirements for suitable low noise amplifier was discussed

    High-speed equalization and transmission in electrical interconnections

    Get PDF
    The relentless growth of data traffic and increasing digital signal processing capabilities of integrated circuits (IC) are demanding ever faster chip-to-chip / chip-to-module serial electrical interconnects. As data rates increase, the signal quality after transmission over printed circuit board (PCB) interconnections is severely impaired. Frequency-dependent loss and crosstalk noise lead to a reduced eye opening, a reduced signal-to-noise ratio and an increased inter-symbol interference (ISI). This, in turn, requires the use of improved signal processing or PCB materials, in order to overcome the bandwidth (BW) limitations and to improve signal integrity. By applying an optimal combination of equalizer and receiver electronics together with BW-efficient modulation schemes, the transmission rate over serial electrical interconnections can be pushed further. At the start of this research, most industrial backplane connectors, meeting the IEEE and OIF specifications such as manufactured by e.g. FCI or TE connectivity, had operational capabilities of up to 25 Gb/s. This research was mainly performed under the IWT ShortTrack project. The goal of this research was to increase the transmission speed over electrical backplanes up to 100 Gb/s per channel for next-generation telecom systems and data centers. This requirement greatly surpassed the state-ofthe-art reported in previous publications, considering e.g. 25 Gb/s duobinary and 42.8 Gb/s PAM-4 transmission over a low-loss Megtron 6 electrical backplane using off-line processing. The successful implementation of the integrated transmitter (TX) and receiver (RX) (1) , clearly shows the feasibility of single lane interconnections beyond 80 Gb/s and opens the potential of realizing industrial 100 Gb/s links using a recent IC technology process. Besides the advancement of the state-of-the-art in the field of high-speed transceivers and backplane transmission systems, which led to several academic publications, the output of this work also attracts a lot of attention from the industry, showing the potential to commercialize the developed chipset and technologies used in this research for various applications: not only in high-speed electrical transmission links, but also in high-speed opto-electronic communications such as access, active optical cables and optical backplanes. In this dissertation, the background of this research, an overview of this work and the thesis organization are illustrated in Chapter 1. In Chapter 2, a system level analysis is presented, showing that the channel losses are limiting the transmission speed over backplanes. In order to enhance the serial data rate over backplanes and to eliminate the signal degradation, several technologies are discussed, such as signal equalization and modulation techniques. First, a prototype backplane channel, from project partner FCI, implemented with improved backplane connectors is characterized. Second, an integrated transversal filter as a feed-forward equalizer (FFE) is selected to perform the signal equalization, based on a comprehensive consideration of the backplane channel performance, equalization capabilities, implementation complexity and overall power consumption. NRZ, duobinary and PAM-4 are the three most common modulation schemes for ultra-high speed electrical backplane communication. After a system-level simulation and comparison, the duobinary format is selected due to its high BW efficiency and reasonable circuit complexity. Last, different IC technology processes are compared and the ST microelectronics BiCMOS9MW process (featuring a fT value of over 200 GHz) is selected, based on a trade-off between speed and chip cost. Meanwhile it also has a benefit for providing an integrated microstrip model, which is utilized for the delay elements of the FFE. Chapter 3 illustrates the chip design of the high-speed backplane TX, consisting of a multiplexer (MUX) and a 5-tap FFE. The 4:1 MUX combines four lower rate streams into a high-speed differential NRZ signal up to 100 Gb/s as the FFE input. The 5-tap FFE is implemented with a novel topology for improved testability, such that the FFE performance can be individually characterized, in both frequency- and time-domain, which also helps to perform the coefficient optimization of the FFE. Different configurations for the gain cell in the FFE are compared. The gilbert configuration shows most advantages, in both a good high-frequency performance and an easy way to implement positive / negative amplification. The total chip, including the MUX and the FFE, consumes 750mW from a 2.5V supply and occupies an area of 4.4mm × 1.4 mm. In Chapter 4, the TX chip is demonstrated up to 84 Gb/s. First, the FFE performance is characterized in the frequency domain, showing that the FFE is able to work up to 84 Gb/s using duobinary formats. Second, the combination of the MUX and the FFE is tested. The equalized TX outputs are captured after different channels, for both NRZ and duobinary signaling at speeds from 64 Gb/s to 84 Gb/s. Then, by applying the duobinary RX 2, a serial electrical transmission link is demonstrated across a pair of 10 cm coax cables and across a 5 cm FX-2 differential stripline. The 5-tap FFE compensates a total loss between the TX and the RX chips of about 13.5 dB at the Nyquist frequency, while the RX receives the equalized signal and decodes the duobinary signal to 4 quarter rate NRZ streams. This shows a chip-to-chip data link with a bit error rate (BER) lower than 10−11. Last, the electrical data transmission between the TX and the RX over two commercial backplanes is demonstrated. An error-free, serial duobinary transmission across a commercial Megtron 6, 11.5 inch backplane is demonstrated at 48 Gb/s, which indicates that duobinary outperforms NRZ for attaining higher speed or longer reach backplane applications. Later on, using an ExaMAX¼ backplane demonstrator, duobinary transmission performance is verified and the maximum allowed channel loss at 40 Gb/s transmission is explored. The eye diagram and BER measurements over a backplane channel up to 26.25 inch are performed. The results show that at 40 Gb/s, a total channel loss up to 37 dB at the Nyquist frequency allows for error-free duobinary transmission, while a total channel loss of 42 dB was overcome with a BER below 10−8. An overview of the conclusions is summarized in Chapter 5, along with some suggestions for further research in this field. (1) The duobinary receiver was developed by my colleague Timothy De Keulenaer, as described in his PhD dissertation. (2) Described in the PhD dissertation of Timothy De Keulenaer

    An X-Band power amplifier design for on-chip RADAR applications

    Get PDF
    Tremendous growth of RAdio Detecting And Ranging (RADAR) and communication electronics require low manufacturing cost, excellent performance, minimum area and highly integrated solutions for transmitter/receiver (T/R) modules, which are one of the most important blocks of RADAR systems. New circuit topologies and process technologies are investigated to fulfill these requirements of next generation RADAR systems. With the recent improvements, Silicon-Germanium Bipolar CMOS technology became a good candidate for recently used III-V technologies, such as GaAs, InP, and GaN, to meet high speed and performance requirements of present RADAR applications. As new process technologies are used, new solutions and circuit architectures have to be provided while taking into account the advantages and disadvantageous of used technologies. In this thesis, a new T/R module system architecture is presented for single/onchip X-Band phased array RADAR applications. On-chip T/R module consists of five blocks; T/R switch, single-pole double-throw (SPDT) switch, low noise amplifier (LNA), power amplifier (PA), and phase shifter. As the main focus of this thesis, a two-stage power amplifier is realized, discussed and measured. Designed in IHP's 0.25 [micrometer] SiGe BiCMOS process technology, the power amplifier operates in Class-A mode to achieve high linearity and presents a measured small-signal gain of 25 dB at 10 GHz. While achieving an output power of 22 dBm, the power amplifier has drain efficiency of 30 % in saturation. The total die area is 1 [square millimeters], including RF and DC pads. To our knowledge, these results are comparable to and/or better than those reported in the literature

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-”m SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86Âș, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-”m SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86Âș, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption
    corecore