344 research outputs found

    Quick and energy-efficient Bayesian computing of binocular disparity using stochastic digital signals

    Get PDF
    Reconstruction of the tridimensional geometry of a visual scene using the binocular disparity information is an important issue in computer vision and mobile robotics, which can be formulated as a Bayesian inference problem. However, computation of the full disparity distribution with an advanced Bayesian model is usually an intractable problem, and proves computationally challenging even with a simple model. In this paper, we show how probabilistic hardware using distributed memory and alternate representation of data as stochastic bitstreams can solve that problem with high performance and energy efficiency. We put forward a way to express discrete probability distributions using stochastic data representations and perform Bayesian fusion using those representations, and show how that approach can be applied to diparity computation. We evaluate the system using a simulated stochastic implementation and discuss possible hardware implementations of such architectures and their potential for sensorimotor processing and robotics.Comment: Preprint of article submitted for publication in International Journal of Approximate Reasoning and accepted pending minor revision

    Perceptual modelling for 2D and 3D

    Get PDF
    Livrable D1.1 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D1.1 du projet

    Modelling and analysis of plant image data for crop growth monitoring in horticulture

    Get PDF
    Plants can be characterised by a range of attributes, and measuring these attributes accurately and reliably is a major challenge for the horticulture industry. The measurement of those plant characteristics that are most relevant to a grower has previously been tackled almost exclusively by a combination of manual measurement and visual inspection. The purpose of this work is to propose an automated image analysis approach in order to provide an objective measure of plant attributes to remove subjective factors from assessment and to reduce labour requirements in the glasshouse. This thesis describes a stereopsis approach for estimating plant height, since height information cannot be easily determined from a single image. The stereopsis algorithm proposed in this thesis is efficient in terms of the running time, and is more accurate when compared with other algorithms. The estimated geometry, together with colour information from the image, are then used to build a statistical plant surface model, which represents all the information from the visible spectrum. A self-organising map approach can be adopted to model plant surface attributes, but the model can be improved by using a probabilistic model such as a mixture model formulated in a Bayesian framework. Details of both methods are discussed in this thesis. A Kalman filter is developed to track the plant model over time, extending the model to the time dimension, which enables smoothing of the noisy measurements to produce a development trend for a crop. The outcome of this work could lead to a number of potentially important applications in horticulture

    Towards a Unified Theory of Neocortex: Laminar Cortical Circuits for Vision and Cognition

    Full text link
    A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    A luminance-contrast-aware disparity model and applications

    Get PDF
    Binocular disparity is one of the most important depth cues used by the human visual system. Recently developed stereo-perception models allow us to successfully manipulate disparity in order to improve viewing comfort, depth discrimination as well as stereo content compression and display. Nonetheless, all existing models neglect the substantial influence of luminance on stereo perception. Our work is the first to account for the interplay of luminance contrast (magnitude/frequency) and disparity and our model predicts the human response to complex stereo-luminance images. Besides improving existing disparity-model applications (e.g., difference metrics or compression), our approach offers new possibilities, such as joint luminance contrast and disparity manipulation or the optimization of auto-stereoscopic content. We validate our results in a user study, which also reveals the advantage of considering luminance contrast and its significant impact on disparity manipulation techniques.National Science Foundation (U.S.) (CGV-1111415

    Encoding and estimation of first-and second-order binocular disparity in natural images

    Get PDF
    Research supported by BBSRC Grant Nos. BB/G004803/1 (RG) and BB/K018973/1 (PH/DH).The first stage of processing of binocular information in the visual cortex is performed by mechanisms that are bandpass-tuned for spatial frequency and orientation. Psychophysical and physiological evidence have also demonstrated the existence of second-order mechanisms in binocular processing, which can encode disparities that are not directly accessible to first-order mechanisms. We compared the responses of first- and second-order binocular filters to natural images. We found that the responses of the second-order mechanisms are to some extent correlated with the responses of the first-order mechanisms, and that they can contribute to increasing both the accuracy, and depth range, of binocular stereopsis.Publisher PDFPeer reviewe

    No-reference Stereoscopic Image Quality Assessment Using Natural Scene Statistics

    Get PDF
    We present two contributions in this work: (i) a bivariate generalized Gaussian distribution (BGGD) model for the joint distribution of luminance and disparity subband coefficients of natural stereoscopic scenes and (ii) a no-reference (NR) stereo image quality assessment algorithm based on the BGGD model. We first empirically show that a BGGD accurately models the joint distribution of luminance and disparity subband coefficients. We then show that the model parameters form good discriminatory features for NR quality assessment. Additionally, we rely on the previously established result that luminance and disparity subband coefficients of natural stereo scenes are correlated, and show that correlation also forms a good feature for NR quality assessment. These features are computed for both the left and right luminance-disparity pairs in the stereo image and consolidated into one feature vector per stereo pair. This feature set and the stereo pair׳s difference mean opinion score (DMOS) (labels) are used for supervised learning with a support vector machine (SVM). Support vector regression is used to estimate the perceptual quality of a test stereo image pair. The performance of the algorithm is evaluated over popular databases and shown to be competitive with the state-of-the-art no-reference quality assessment algorithms. Further, the strength of the proposed algorithm is demonstrated by its consistently good performance over both symmetric and asymmetric distortion types. Our algorithm is called Stereo QUality Evaluator (StereoQUE)

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task
    corecore