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Making inferences about the 3-dimensional spatial structure of natural scenes is a 

critical visual function. While spatial discrimination both in depth and on the image plane 

has been well characterized for simple stimuli, little is known about our ability to 

discriminate depth in natural scenes, particularly at far distances. To begin filling in this 

gap we: (i) developed a database of 80 stereoscopic images paired with the corresponding 

measured distance information, (ii) used these scenes as psychophysical stimuli and 

measured near-far discrimination acuity in 4 observers as a function of distance and the 

visual angle separating the targets, (iii) made additional measurements under patched-eye 

(monocular) viewing conditions to evaluate the importance of binocular vision in depth 

discrimination as a function of viewing geometries. 

 

We find that binocular thresholds are roughly a constant Weber fraction of the 

distance for absolute distances ranging from 4 to 28 meters.  Further, measured 

thresholds were around 1% for small separations, and increased to 4% for stimuli 

separated by 10 deg.  Thus, the ability to discriminate depth in natural scenes is very 

good out to considerable distances. To investigate the basis of this discrimination ability, 

monocular thresholds were measured.  We found that monocular thresholds were 



 vi 

elevated for distances less than 15 meters, but were comparable to binocular thresholds 

for greater distances. 

 

Accurate depth perception depends on combining (fusing) multiple sources of 

sensory information. Thus binocular thresholds probably involve fusing separate 

monocular and disparity-derived estimates. Under the assumption of Gaussian distributed 

independent estimates, Bayes rule provides a simple reliability-weighted summation 

model of cue combination. Using disparity threshold measurements by Blakemore 

(1970), and the current monocular thresholds, parameter-free predictions were generated 

for the current binocular thresholds.  These predictions were in broad agreement with the 

data, suggesting that the disparity and monocular cues are separable and combined 

optimally in natural scenes. 
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Chapter 1: Background 

1.1 – OVERVIEW 

Motivation: 

Our sensory systems have evolved under the constraints imposed by natural tasks 

and natural environments. Inferring the 3d geometry of a scene is presumed to have been 

a perceptual function critical to the survival of humans and other animals. Therefore, it is 

plausible that there has been considerable pressure on the organizations of the brain and 

sensory systems to precisely infer 3d geometry in the context of natural environments 

(Geisler and Diehl 2002). 

Major Contributions: 

Oddly enough the basic spatial acuity of human depth perception has not been 

adequately characterized. The reasons for this failing are complex, and are discussed in 

more detail over the following sections. The current work makes three major 

contributions: (i) A database is constructed that relates the 3d structure of natural scenes 

to the sensory stimuli they generate, (ii) basic spatial acuity for depth is characterized for 

these scenes, and (iii) the relative importance of binocular and monocular cues are 

assessed over a wide range of viewing conditions. 

Natural Scenes: 

 Natural scenes are often (incorrectly) thought of as just pictures. In general, the 

‘scene’ does not refer to a picture; it refers to the environment itself. Thus, pictures are 

better thought of as images of scenes. That is, the sensory stimulus generated by the 

natural environment via some generative process. 
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Here, the scene properties of interest are its 3d structure, and the resulting 

stereoscopic image. I stereoscopically imaged a large set of scenes using a camera with 

well-characterized spatial and chromatic imaging properties. I collected the 3d structure 

of these same scenes using a scanning laser range finder that produces ‘range images.’ I 

then determined (with appropriate calibration) the mapping between the 3d positions of 

the range pixels, and pixels in the stereoscopic photographs. This dataset is of inherent 

value for understanding not only the physical structure of scenes, but also their 

relationship with associated visual projections. Care was taken to ensure the 

measurements are of a high technical quality.  Database construction methods are 

detailed in Chapter 2. 

Acuity Measurements: 

What do we mean by depth acuity?  It is known that performance in depth 

discrimination tasks depends large number of factors.  Some have attempted to 

understand depth acuity by repeating measurements over a small set of carefully designed 

stimuli.  Usually, these stimuli are presumed to isolate a single component of more 

general depth perception models.  For example, acuity for the component cue of 

binocular disparity has been well characterized (Blakemore 1970).  Perhaps by 

integrating experimental knowledge of this sort it will ultimately be possible to make 

accurate predictions for arbitrary stimuli, including arbitrary natural scenes.  While 

efforts to develop models from experiments with laboratory stimuli have been fruitful, 

there is still no model capable of making such predictions. 

An alternative approach to studying depth acuity is to directly measure 

performance in real scenes. For example, depth estimation studies have been run outdoors 

(Gibson and Bergman 1954), or in a long corridor (Holway and Boring 1941). These 
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studies have the advantage that they are of direct relevance to the stimuli of interest, i.e. 

natural environments. Using stimuli from varying ‘real world’ conditions allows for 

stable measures of average performance appropriate for stimulus naïve benchmarks.  

However, laboratory displays have practical advantages, for examples better stimulus 

control, and they reduce the effort necessary to run a large number of trials. 

The current work attempts to combine the advantages of each of these approaches 

by bringing natural scenes into the lab. Measured stimuli are reproduced on a laboratory 

projection screen with the goal of exactly replicating the stereoscopic view of the scene 

through a window. The specific acuity task under consideration is the near-far distance 

judgment of two arbitrary points corresponding to points on surfaces in natural scenes.  

Since the ground-truth positions of the imaged surfaces are known, observer judgments 

can be evaluated objectively. Methodological details regarding psychophysical tasks are 

discussed in Chapter 3, while results of the psychophysical experiments are discussed in 

Chapter 4. 

Cue Combination Framework: 

The depth perception literature has largely been concerned with characterizing 

and understanding the different sources of depth information (cues) available to the visual 

system. The relationship between binocular and monocular cues to depth has been of 

particular interest.  However, the viewing conditions under which the binocular cues 

(most notably disparity) are relevant to performance have still not been fully 

characterized.  Geometry suggests that disparity will be less useful at large distances.  

However, the quantitative extent to which this degradation will impact depth 

discrimination in natural scenes is unknown. 
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One major impediment to understanding the relative importance of binocular 

vision at large distances has been our lack of knowledge about monocular depth cues.  

Neither the importance nor the prevalence of monocular depth cues in images is known.  

Consequently, the importance of binocular cues relative to monocular cues cannot be 

known. 

The current work attempts to directly address this gap in knowledge.  Until now, 

it was not possible to measure the precision of monocular depth estimates in real scenes 

and at large distances.  As mentioned above, it has been logistically difficult to run 

experiments at large distances, especially over many trials and with access to precise 

ground-truth data.  Our psychophysical approach makes this possible.  Here we can 

directly measure discrimination performance with one eye, and compare it to 

discrimination performance with two eyes for a given distance and angular separation. 

Importantly, some of the computational modeling concepts the have been applied 

in experiments with artifactual stimuli are still applicable in the present case.  For 

example, the concepts of Bayesian cue combination, which have been applied to e.g. 

random dot stereograms (Ernst & Banks 2002), can also be applied here using natural 

scenes (see later and section 1.2 for review of models of depth perception). The value of 

the present approach derives from marginalizing across the variability inherent to 

naturalistic stimuli while still allowing rigorous analysis and modeling.  
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1.2 –DEPTH PERCEPTION: THEORIES 

Guiding Principles: 

The optic nerve is the brain’s only visual access to the world, and hence 

estimations about the world can only be made with information conveyed by the visual 

stimulus as represented in the images formed on the retinas.  Conversely, survival 

depends on reasoning about the world, not the stimulus at the eye.  Perception is the 

process of associating stimulus properties, such as luminance, color and disparity, with 

environmental properties, such as the distance and material compositions of surfaces 

(Adelson 1995).  One useful way to conceptualize problem of perception is that it 

constructs an ‘internal model’ (Figure 1), which is a parameterized representation of the 

environment, obtained in some way via neural computations (Rao 1999). Parameters of 

interest are usually part of the ‘hidden state’ of the environment. Thus, they must be 

estimated from the ‘visible state’ (sensory stimulus).  

Depth perception is the process of associating a physical stimulus with a spatial 

structure (the difference in distance between two points).  There are many sources of 

information (cues) available for depth estimation and much of the theory of depth 

perception concerns describing the cues and how they are used by the visual system. 
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Figure 1 - Schematic Representation of the Internal Model 

‘The Estimator’ creates a parameterized representation of the world, called the ‘Internal 

Model.’  These parameters reflect properties of the ‘hidden state’ of the world, e.g. 

distance relationships between objects.  Therefore, the value of these parameters must be 

estimated (via some inverse mapping) from the ‘visible state,’ i.e. the visual stimulus.  

The hidden state and its associate mapping function constitute the generative model of 

the stimulus, (from Rao 1999 and based on O’Reilly 1996). 

 

Depth Cues: 

Depth cues are sources of information about depth.  The term is intentionally 

vague; cues can have many physical sources.  With regard to this work two classes of 

cues are of interest, specifically stereoscopic (or binocular) cues to depth and pictorial (or 

monocular) cues to depth.  There are other very important depth cues, but they were not 

the primary cues under study. See Perceiving in Depth (Howard and Rogers 2012) for a 

more exhaustive review of the historical depth perception literature. 
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Depth Cues - Historical Context: 

Giotto Di Bondone, an artist from the 14th century, is credited with being the first 

to have treated a painting like a realistic view through a window.  What he, and 

subsequent renaissance artists had begun realizing is that the illusion of depth in a 

painting can be made more realistic by following the rules of linear perspective (Edgerton 

1991).  Later, during the 19th century, Charles Wheatstone (Wheatstone 1838) first 

demonstrated how two planar images presented to the two eyes cause an observer to 

experience an even more realistic depth percept.  For at least two centuries, it has been 

widely known that the brain is sensitive to many depth cues.  The particular cues of 

interest here are exactly those you would find in paintings and stereoscopes.  That is, 

static monocular cues to depth like perspective, occlusion and lighting cues, as well as 

static stereoscopic cues to depth like binocular disparity. 

Depth Cues – Disparity Primer: 

Binocular disparity is the most comprehensively studied cue to depth.  A disparity 

results from the horizontal displacement of our eyes.  Disparity is closely related to 

parallax in that both cues are generated by a change in viewing position.  In order to get a 

common sense understanding of disparity, cover one eye and move your head to the side 

such that your open eye is now in your closed eye’s original position.  The motion you 

observe is known as ‘motion parallax.’ However, this same difference in the image is 

used by the binocular disparity system without the need to integrate over time. You may 

note that if you are fixating at a distant point, the relative translation of nearby objects 

tend to be greater than the relative translation of distant objects.  This same principle 

holds for stereopsis. 
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Binocular disparity specifically refers to the angular difference in the projected 

location of an object between the two retinal projections (see Figure 2a). An easy way to 

calculate disparity in complicated situations is to consider the convergence angles of the 

eyes necessary to fixate the targets (known as vergence demand).  The difference in these 

angles is the relative horizontal disparity.  Absolute horizontal disparity, on the other 

hand, depends on the point of fixation (i.e. the eyes’ convergence angle), not just the 

vergence demands of the targets. 

Subtle complications in stereo geometry arise quickly.  Gerhard Vieth and 

Johannes Müller are credited with formalizing the horizontal horopter, the locus of 

corresponding points in the two eyes (see Figure 2b). The so-called Vieth-Müller circle 

traces a perfect circle through the nodal points of two eyes, and the point of convergence 

(Müller 1826). Therefore, the relationship between depth and horizontal disparity is not 

isometric, i.e. zero disparity does not imply zero depth.  However, a point in 3-space can 

be fully specified given a disparity in addition to other ancillary information, e.g., the 

convergence, azimuthal (version), and elevation angles of fixation, as well as the 

viewer’s position and inter-pupillary distance (IPD). 

People are extraordinarily sensitive to disparity. As far back as World War I 

thresholds for disparity detectability were already being measured as low as two seconds 

of arc (Howard 1919).  Such a low threshold is especially remarkable considering that the 

smallest photoreceptors (pixels) in the human eye subtend roughly thirty seconds of arc.  

Thus disparity is a so-called ‘hyper-acuity.’ 
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Figure 2 – Binocular Disparity Geometry 

 In both images, the two eyes are drawn converged on the fixation target (F).  The black 

lines through the eyes thus indicate the optical axis of the eye.  (A) A schematic of the 

relationship between changing vergence demand, depth, and relative horizontal disparity.  

It can be seen from the image that even for the same magnitude of depth, crossed 

disparities are larger than uncrossed disparities.  (B) A schematic of the Vieth-Müller 

circle showing the impact of version demand.  ‘Primary Gaze’ is the axis orthogonal to 

the inter-ocular axis as well as the ground-plane (not depicted).  Version demand is the 

magnitude of the azimuthal eye movement necessary to fixate the target.  Notice that with 
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non-zero version, a target can have zero disparity (double hashed angles), and non-zero 

depth (unequal length hashed lines).  The inter-pupillary distance (IPD) is also depicted.  

Average IPDs are around 65mm for males. 

 

 

Figure 3 – A Random-dot Stereogram 

Cross your eyes to fuse the registration marks in the two images.  A depth-defined shape 

emerges in the middle of the ‘cyclopean’ view. Stimuli like this one are thought to isolate 

the binocular disparity cue to depth. 

 

The Gestalt psychologists were of the opinion that the monocular image needed to 

be grouped into objects for binocular disparity to be a useful cue to depth.  Béla Julesz 

(Julesz 1960) showed that cleverly arranged random-dots could be stereoscopically fused 

to create a shape defined by illusory depth. Importantly, the shape is ill defined in both 

monocular images.  Random-dot stereograms (see Figure 3) provide the canonical 
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example of an isolated depth cue.  The only information in the image defining the 

cyclopean shape is binocular disparity.  Therefore, disparity must be the information used 

by the observer, and it can be used independently of any pictorial cues. 

Depth Cues – Painters’ Cues: 

The increased realism of renaissance art came from the geometrically correct use 

of pictorial cues to depth. All pictorial cues to depth depend entirely on assumptions 

about the world. Linear perspective rests on the assumption that converging lines are 

more likely parallel lines receding in depth. Relative size cues depend on the assumption 

that two objects are in actuality the same size. Texture density cues depend on the 

assumption that these regularly sized texture elements are equally spaced on surfaces. 

Indeed, many monocular cues derive their information content from the geometry of 

perspective projection.  Under perspective projection, objects more distant in the scene 

appear smaller in the image. Thus knowledge (relative or absolute) about the size or 

shape of an object can be informative about its position and orientation in 3d.  However, 

even perspective cues are only informative in conjunction with some a priori knowledge. 

Other geometric regularities in the world contribute to monocular depth 

perception as well.  Occlusions are more likely than concave cutouts viewed from the 

perfect angle. Lights tend to be above, suggesting shaded surfaces are either raised or 

depressed.  In some cases our familiarity with a particular class of objects provide very 

strong evidence of a particular interpretation e.g. walls meet at right angles or faces are 

more likely than hollow masks. Presumably we believe in these structural assumptions 

about the world only insofar as they hold in our broader experience.  On average people 

are assumed to be unbiased depth estimators.  However, strong mechanisms can be 
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exploited by clever stimulus design to create illusory depths (biased depth perception). 

Typically, depth illusions depend on incorrect structural assumptions about the stimulus. 

Depth Cues – Consistency and Conflict: 

Depth cues are commonly considered to be (i) consistent with a particular 3d 

interpretation, (ii) in conflict with a particular 3d interpretation, or (iii) uninformative 

about a particular 3d interpretation. Cues that are consistent with wildly differing 3d 

interpretations are thus said to conflict. Weak cues are typically not considered consistent 

or in conflict with anything, rather they are uninformative. The difference between a 

(relevant) conflicting cue and an (irrelevant) uninformative cue is worth considering 

when designing experiments. 

Renaissance paintings provide an illustrative example of wildly conflicting cues.  

Pictorial cues to depth, for example shape cues, size cues, texture cues, and lighting cues, 

are all plausibly consistent with the depicted non-planar interpretation of the scene 

geometry. Other depth cues are in conflict with the pictorial interpretation.  For examples 

the pattern of defocus, the motion parallax as well as the pattern of binocular disparities 

are all strongly consistent with the veridical planar interpretation of the canvas.  

Considerable effort has been made to formalizing models of rational data fusion.  These 

models of depth perception are discussed in more detail under ‘Combining Cues.’ 

It is worth addressing the difference between conflict and irrelevance.  Continuing 

with the painting example, binocularly viewing the flat image introduces overwhelming 

visual evidence that the image is, indeed, flat.  The pattern of disparities produced by the 

painting would be extraordinarily unlikely for any interpretation of the physical scene 

inconsistent with a planar canvas.  Alternatively, if the painting were viewed with a 
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patched or damaged eye, the painting would be more difficult to discriminate from an 

actual view of the depicted physical scene. 

In the former case, responses from the second eye are clearly in conflict with the 

depicted scene.  In the latter case, the brain plausibly ignores responses from the second 

eye because they are relatively uninformative about the scene’s physical interpretation. 

Sometimes we close an eye.  It has no relevance on the structure of the outside world.  

Therefore, the responses (or lack there of) from the second eye are not conflicting, rather 

they are just so uninformative that they are irrelevant to the adopted scene interpretation.  

In the painting example, other cues would still be informative, notably parallax and 

defocus. However, with a stable head and enough viewing distance these cues could be 

made uninformative as well.  Interestingly, humans can make judgments of 3d structure 

in binocularly viewed paintings, even if they are simultaneously perceived as a painting 

on a flat canvas. However, when comparing the relative influence of various cues it is 

good practice to assure that there is no cues are providing extremely biased (conflicting) 

information. 

Combining Cues: 

In the case of conflicting cues, it is not a priori clear what sensory interpretation 

should be adopted.  Most models of depth perception formalize depth cues as distinct, 

randomly distributed depth estimates that are subsequently combined by some rule of 

combination.  As Larry Maloney and Mike Landy point out (1989) people are almost 

certainly ‘robust’ fusers.  That is, when cues suggest wildly conflicting interpretations, 

the less reliable cue is simply ignored.  There is no real need to test extreme cases. We 

can all look at a painting and know that it is painting (although we also unambiguously 

agree on the depth relations depicted by the painting). 
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However, there are more realistic situations where the combination rule is 

interesting to study in quantitative detail. Models vary in their assumptions, but one 

common approach is to assume that cues produce depth estimates that are independent, 

unbiased and Gaussian distributed.  Under these assumptions, the optimal combination 

rule is to linearly weight the various depth estimates inversely proportional to the 

variability associated with those estimates. Refer to Data Fusion for Sensory Information 

Processing Systems (Clark and Yuille 1990), or Perception as Bayesian Inference (Knill 

and Richards 1996) for review. 

These distributional assumptions are unlikely to hold.  However, it is a good 

starting place, and models have already been developed that allow some of the 

assumptions to be relaxed.  For example, the optimal combination rule has been derived 

for correlated estimates (Oruç, Maloney et al. 2003) allowing for a more complete 

representation of the jointly distributed cues. Optimal combination rules have been shown 

to be consistent with performance in a number of experiments covered in greater detail 

throughout section 1.3. 

1.3 –DEPTH PERCEPTION: RELEVANT FINDINGS 

Historical Cue Manipulation: 

There has been experimental evidence that cues are relevant to the perception of 

real 3D structure for quite some time.  Holway and Boring (1941) provide perhaps the 

closest analog to the current work; however they were interested in the perception of 

object size.  Recognizing that the perception of size is integrally linked to the perception 

of distance they designed an experiment in a long hallway to test their claims.  As 

expected, subjects correctly interpreted the size of an abstract object at the end of the 
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hallway as compared to a similarly shaped nearby object.  That is, they demonstrated size 

constancy. 

In other conditions they then systematically obscured references to the length of 

the hallway by removing the illumination, and obscuring the walls with black felt.  The 

more comprehensively they removed the cues to depth, the more subjects reverted to a 

visual angle rule when comparing object sizes. That is, the difference in distance between 

the two objects was no longer relevant to the observer’s percept of the object’s physical 

size without other visual cues to the length of the hallway.  Another way to interpret these 

data is that the observer’s estimate of the object’s distance down the hallway was so 

unreliable that the only cue that could be relied on is the presumed similarity in size with 

a comparable object.  That is, the relative size cue was isolated. 

Gogel was concerned that these studies all measured non-scalar (relative) percepts 

rather than metric quantities.  His concern was that in reduced cue experiments where 

two objects at different distances are seen to be at the same distance it is not at all clear 

what distance they were both perceived to be at. He called this bias towards a particular 

percept under reduced cue conditions a specific distance tendency (Gogel 1972).  Under 

the Bayesian framework it can be thought of as evidence that observers default to some 

prior estimate of distance in the absence of disambiguating information.  Gogel took this 

as evidence that we must be careful when designing cue-deprived stimuli. In the Holway 

and Boring experiment depriving the observers of cues that the objects were at different 

distances effectively served as evidence that they were in fact at the same distance.  

Whether that perceived distance was close enough to be held in your hand or further than 

could be reached in a day’s hike is completely unknown to the experimenters. 
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Rather than completely isolating cues even rich artificial stimuli can be designed 

to produce biased percepts.  Adelbert Ames’ spinning trapezoidal window and 

trapezoidal room were among the first demonstrations of the importance of 

environmental assumptions in the perception of 3D shape (Ames Jr 1951).  In particular 

that observers have a tendency to assume that indoor spaces are dominated by right 

angles and that textures (e.g. tile floors) are homogenous.  When viewed from a specific 

‘accidental viewpoint’ Ames’ trapezoidal room appears to be a regular room.  In fact, the 

percept of a square room is so strong that observers are willing to adopt the interpretation 

that people walking from one corner to the other are dramatically changing in size as they 

do so.  This demonstrates the remarkable strength of structural assumptions about the 

world; they can cause us to perceive radical changes in size when we know no such 

change could occur.  However, the illusion is brittle to changes in viewpoint or binocular 

viewing. Our depth mechanisms work exactly because these deceptive stimuli are 

impossibly unlikely until they are experimentally imposed. 

Specificity of Cue Combination: 

As Maloney and Landy point out (1989) it is possible to devise experiments to 

specifically test the validity of the combination rule in their model. The typical test 

involves running three experiments to obtain behavioral estimates of the parameters in 

their model.  In the first two experiments each of the two cues under study are isolated 

and the psychophysical reliability of the cue is assessed.  In the third experiment the two 

cues are combined so that their combined reliability can be compared to predictions.  

Additionally, small conflicts can be added to the cues so that the specific weight being 

given to each cue can be measured in the psychophysical bias. It has been repeatedly 

shown experimentally that pairs of isolated cues are combined in the way that would be 



 
 

17 

expected by the cue combination model (see Landy, Maloney et al. 1995 for an early 

review). The stimuli in these experiments were carefully designed to expose precise 

mechanistic details that continue to hold in a large variety of contexts.  As an example of 

the breadth of these findings, optimal combination has been shown for multimodal 

combination (Ernst and Banks 2002), in addition to stimuli more relevant to this work 

that combined binocular and monocular cues (Knill and Saunders 2003). 

It is not known how to apply these results to natural scenes.  Whatever the brain 

does is likely reasonable in a wide variety of contexts given these findings. One relatively 

unexplored area is how to predict cue reweighting as information content changes from 

location to location or experimental stimulus to experimental stimulus.  It would be nice 

to know how plastic the mechanism is.  That is, under what situations can the brain adapt 

to regularities in a given context.  David Knill showed that over the course of an 

experiment, observers can learn to ‘switch models’ pertaining to the relevance of isotropy 

assumptions for his stimuli (Knill 2007). It is not yet clear what the constraints on the 

brain’s model switching mechanisms are, but the results indicated that observers 

dynamically update their weights appropriately.  It is plausible that observers have a 

limited ability to do so. Most of these cue combination experiments are rely on a single 

class of stimulus (e.g. texture or shape). It is therefore difficult to predict how their results 

generalize to a situation where important properties of the stimulus vary from trial-to-

trial, a plausible occurrence from location to location in natural scenes.  See section 1.4 

‘My Approach’ for more discussion of the importance of trial-to-trial variability on stable 

measurements of baseline acuity. 
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Performance in Real Scenes: 

Some experiments have used real scenes as stimuli, however real scenes introduce 

practical difficulties. It is difficult to run the large number of trials necessary for a two 

alternative forced choice (2AFC) experiment. Instead of being inferred from a large 

number of fine discriminations, estimates are directly reported either by metric report, or 

the assignment of a comparison such as in Holway & Boring’s study.  It has been shown 

that outdoor estimates of distance are relatively accurate on average if the observers have 

been trained with the appropriate scale (Gibson and Bergman 1954, Gibson, Bergman et 

al. 1954).  However, individuals’ judgments tend to erratic, calling into question the 

relevance of the accuracy of between-subject averages (Fine and Kobrick 1983). 

In general, estimation designs have been shown to be dependent on the reporting 

methodology used, e.g. verbal report, pointing, or open loop walking (Loomis, da Silva et 

al. 1996, Fukusima, Loomis et al. 1997, Philbeck and Loomis 1997). This has also been a 

problem for the paddle boards used in slant estimation (Durgin, Hajnal et al. 2010).  

Generally, naturalistic motoric reporting is the most veridical; probably because it is 

consistent with the way sensory signals are used normally as part of the sensory-motor 

loop (Durgin and Li 2011).  However, there is still the problem that reporting noise 

substantially corrupts your only access to the variability associated with the sensory 

estimate. 

Discrimination designs are better; 2AFC tasks account for reporting noise fairly 

well. Unfortunately, only a few have been performed in real scenes.  There is some 

converging evidence of a perceptual compression of the foreshortened dimension as 

measured by discriminating lengths of physical objects in and out of the plane (Loomis, 

Da Silva et al. 1992, Loomis and Philbeck 1999) although those studies rely on repeating 
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measurements on the same target (i.e. a stick) against the same background (i.e. the 

ground).  It is plausible that performance would vary for other targets as it would from 

location to location, but this could not be tested because of the practicalities of working 

with real scenes. 

Disparity discriminations have been measured for real distances as well.  Acuity 

for real physical disparities have been discriminated at large physical distances, although 

under reduced-cue conditions similar to those of Holway & Boring (Allison, Gillam et al. 

2009, Palmisano, Gillam et al. 2010). The contribution of monocular information was 

intentionally minimized to cleanly measure threshold for disparity. There has been no 

real attempt at measuring depth discrimination thresholds for varying targets in varying 

scenes as would be expected in natural viewing. 

There is some evidence that binocular deprivation (patching an eye) impacts 

walking performance. Further, the timing of the deployment of gaze while navigating 

obstacles (Hayhoe, Gillam et al. 2009). Raising the foot higher above the obstacles 

suggests a strategy consistent with mitigating increased risk caused by sensory 

uncertainty.  However, a rigorous mapping to the quantitative sensory reliabilities is not 

possible from this sort of measure.   

What we would like are rough numbers to build into the model of uncertainty 

about distance in the real world.  A way to know on average how precise our distance 

estimates will be.  Since this has never been measured in natural scenes (until now) we 

can only base our predictions on the results of laboratory experiments using artificial 

stimuli that have a tenuous relationship to the real world; particularly to estimating depths 

at distances beyond those the observer can reach. 
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Stereoscopic Acuity – Relevant Experimental Findings: 

Under the prevailing cue combination model, the importance of binocular 

information is determined by the relative reliability of stereoscopic and monocular cues.  

The crux of this work is that we frankly have no idea what that relative reliability is.  

Nobody has measured it.  Historically measures of acuity for binocular disparity were 

taken as surrogates for ‘depth acuity.’ Stereo-acuity measurements date back to 

Helmholtz.  Today, normal disparity detection thresholds are thought to be approximately 

2 seconds of arc in the fovea, first shown by the US Air Force when testing pilots during 

World War I (Howard 1919).   

On the other hand, performance varies depending on the viewing conditions.  

Numerous studies have shown that estimates degrade rapidly as targets are moved away 

from the horopter, with crossed pedestal disparities being worse than uncrossed pedestal 

disparities (Westheimer and McKee 1977). It is not clear exactly how these factors would 

impact depth perception with fixation uncontrolled.  In general, the magnitude of 

disparities will depend on the choice of fixation.  However, given that performance is 

worse at high eccentricities (Blakemore 1970), it is likely that discriminating depths of 

points with larger spatial separations will show elevated thresholds.  For reference, 

detection thresholds for disparity increase to 30 seconds or so at 5 degrees of retinal angle 

separation in the scene. 

There is a widely held belief that disparity will only be useful within interaction 

space because small disparities correspond to large depths at large distances (Palmer 

1999). Using primary gaze (illustrated in figure 2), one can easily see that the vergence 

demand for the object at infinite distance is zero.  This viewing arrangement is called 

parallel convergence.   
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Convergence may as well be zero for objects at near infinite distances (e.g. stars, 

horizons, mountains in the distance).  In fact, assuming the standard male average IPD of 

65mm (Gordon, Walker et al. 1989) a convergence angle of one arc second would imply 

a fixation distance of 13.4km.  A convergence angle of two arc seconds implies a fixation 

distance of 6.7km. For comparison, the convergence distance implied by a 4-degree 

convergence angle would be around 1m, approximately arms length.  At those fixation 

distances, a (threshold) change in vergence demand of one arc second implies a depth 

more appropriately measured in mm.  Thus, the potency of the disparity depth signal 

degrades dramatically with the absolute distance of fixation. 

That said, Liu (Liu, Bovik et al. 2008) measured the presence of super-threshold 

disparities in real scenes and found they were more common than previously thought.  

There were even some presumably detectable uncrossed disparities for fixations greater 

than 15m (although very few).  It is plausible that stereopsis is relevant at distances much 

greater than previously thought.  It all depends on whether or not the variability 

associated with the disparity cue is large relative to the other available cues. 

The quality of disparity information will depend on the stimulus itself as well.  

Proper fusion depends on proper correspondence between the two eyes’ images.  

Binocular images could have multiple ways in which they could be aligned; for example, 

repeating stimuli like gratings could be matched along any cycle. Horizontal gratings, on 

the other hand, have no specific horizontal disparity, but may still imply a vertical 

disparity.  Mismatches in luminance yield poor fusion. Small changes in the interocular 

correlation are fairly detectable assuming super-threshold contrasts (Cormack, Stevenson 

et al. 1991) and sufficient dot density (Cormack, Stevenson et al. 1997). Glennerster and 

McKee showed that stereo acuity for two vertical lines is better when the lines are 
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superimposed on a reference plane of dots (Glennerster and McKee 1999). Real scenes 

are a mix of relatively uniform areas, and areas of increased feature density and depth 

structure (potentially causing mismatched points via occlusion).  It is not clear to what 

extent natural stimulus variability (for example, in the number of mismatched points, or 

available reference planes) impacts binocular correspondence and therefore depth 

perception in real scenes.  

There is some basis for evaluating the available information. Evidence suggests 

that the spatial frequencies most important for stereopsis are middling spatial frequencies 

between 2 and 8 cycles per degree (Frisby and Mayhew 1978, Badcock and Schor 1985, 

Lee and Rogers 1997). However, in real scenes large surfaces low (even lacking) in 

contrast can usually be grouped to some distal feature.  Measures of disparity acuity for 

isolated targets will necessarily be local measures.  Conversely, distance acuity in real 

scenes will almost certainly depend on more global information content.  Therefore, the 

relevant ‘local contrasts’ are not well defined.  It is possible local contrast is a relevant 

parameter for both binocular and monocular acuity; but in the context of natural scenes it 

is an empirical question.  In real scenes, perceptual grouping mechanisms allow for 

inferences about surfaces and objects that are embedded in a broader context.  That is, 

nonlocal image features are informative about the task.  With abstract (cue reduced) 

stimuli, these sorts of contextual distance inferences are not always possible. 

Even so, disparity discrimination thresholds provide a relatively believable 

laboratory estimate of the reliability of disparity information.  For the purposes of 

modeling disparity acuity I have adopted Colin Blakemore’s (1970) exhaustive 

measurements of the space.  These measurements at least capture the substantial impact 

of peripheral estimation.  Estimating the overall reliability of monocular information is in 
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some ways much simpler because of its immediate relationship to retinal images, and in 

some ways much more difficult because its stronger dependency on poorly understood 

prior assumptions. 

Monocular Acuity – Relevant Experimental Findings: 

Greenwald and Knill (2009) measured the relative reliability of monocular and 

binocular cues for slant estimation as a function of eccentricity and position with respect 

to the horopter.  However, these measurements were made in near space (grasping range).  

Further, slant and distance discrimination are certainly related, but it is not entirely clear 

how to predict distance discrimination thresholds from slant discrimination tasks. Finally, 

the textures and bounding contours of the surfaces were parametrically varied from trial 

to trial, but they were drawn from fixed statistical class of qualitatively identical texture 

and contour. 

Maloney and Landy point out (1989) that the reliability of texture cues will 

depend highly on the particulars of the texture.  There has been some effort to quantify in 

what way.  For example, it is known that the foreshortening of isotropic texture elements 

is a stronger cue than the change in density of texture elements with slant (Knill 1998).  

This was consistent with the results of a plausible ideal observer.  However, for textures 

with substantial relief (e.g. cobblestones), there will be less foreshortening, and thus 

density will be the only available information (Saunders 2003).  Therefore, it is 

conceivable that the relative importance of monocular cues could be sensibly modeled if 

the likelihood of various textures and surface reliefs were known. 

There has been almost no attempt to quantify the monocular information available 

in natural scenes. Yang and Purves (2003) did measure the relief of the ground plane 

using a scanning laser range finder, although they did not relate it closely to textural 
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information (Yang and Purves 2003). Their dataset is one of the only other data sets 

existing the public sphere that relates measurements of real scenes to their images, and it 

was collected with much older technology than the dataset collected here. Without direct 

measurement of the relationship between images of scenes and the structure of scenes no 

model can predict the average influence monocular depth cues.  Monocular cues other 

than textural cues have been studied extensively in the lab; however extrapolating from 

these laboratory studies to natural scenes is constrained by a lack of understanding of 

how cues of various reliabilities are distributed in real scenes.  The frequency with which 

various monocular cues of varying reliability are available in natural scenes is not known. 

It is not even known how to identify the boundaries of the relevant surfaces or textures in 

the model outside the context of an experimenter’s artifice. 

1.4 - MY APPROACH 

As an alternate approach, I have decided to measure distance discrimination 

thresholds across a large sample of natural scenes by simulating them in the lab.  This 

approach has the advantage of making direct measurements of discrimination 

performance with the real scenes, while still conferring many of the logistical advantages 

of running experiments in the lab.  To this end I have designed a unique virtual reality 

display built to maximize the similarity between the visual stimulus and the measured 

real world scene.  Thereby, psychometric functions can be measured reflecting average 

performance across a large sample of real scenes. 

Mechanistic models that make stimulus-general predictions for performance are 

clearly a worthwhile goal but they are not always tractable to develop. Here I emphasize 

the value of descriptive measurements of performance in natural scenes as a first 

approximation for baseline acuity.  Measurements of this sort can themselves be 
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predictive both by being repeatable measures across similar experiments as well as by 

parameterizing models meant to test other mechanistic predictions (e.g. the cue 

combination rule). 

Virtual Reality: 

 Running psychophysical experiments using computerized displays has 

considerable logistical advantages over running psychophysical experiments in real 

scenes, e.g. outdoors.  One major advantage is the potential for running a large number of 

trials with diverse stimuli.  Another advantage is the availability of (and experimental 

control over) an exact generative model for the stimulus.  Knowledge of the generative 

model allows for precise a specification of the psychophysical task; thereby improving 

the ease with which ground-truth accuracy can be related to the available sensory 

information.  Philosophically, I would rather run experiments in real scenes, however the 

logistical disadvantages are too difficult to overcome.  

A displayed stimulus reaching sufficient consistency with the depth structure of 

its associated physical scene can be considered a ‘virtual’ reality (VR).  At some limit of 

consonance between the displayed stimulus and the image of a real scene, virtual reality 

would presumably be indistinguishable from actual reality.  Thus virtual reality 

experiments can plausibly serve as a surrogate for experiments run in the physical scene 

being simulated. In common usage, virtual reality has been associated with head-mounted 

displays (HMDs), however the term applies more generally to any attempt to replicate the 

sensory experience of reality. 

For my depth acuity benchmark, I propose a VR stimulus that has a higher degree 

of cue consistency with real scenes than previously documented in the psychophysical 

literature.  I have some caveats to this claim. HMDs have the notable advantage of 
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accounting for parallax. Volumetric displays (Love, Hoffman et al. 2009) have the 

advantage of accounting for the large defocuses that occur at near distances. However, I 

believe the study described here to be the most rigorous attempt at replicating real images 

of real physical scenes for which the ground-truth depth structure is known. 

In so far as it is not possible to technically replicate some relevant aspect of the 

image, rigorous attempts should be made to design experiments that limit the relevance of 

the technical shortcoming (see Chapter 3).  That is, the explicit goal of this approach is to 

perfectly replicate a realistic image to the extent technically possible.  Therefore, I can 

run an experiment in the lab, and have a reasonable naturalistic proxy for an experiment 

run in the natural world.  I achieve this by directly measuring real stimuli, and displaying 

them in a fashion consistent with a stationary (head fixed) view through a window (the 

stereoscopic display). 

While these conditions are a more restrictive than natural viewing, I believe there 

are major advantages gained.  In particular, I believe that these conditions are less drastic, 

and more naturalistic, than severe restrictions on the stimulus set.  It is known that there 

is rich information available in textures, complex bounding contours, and general prior 

knowledge about images.  Typical virtual reality displays use computer graphics to 

render their scenes; and graphics models are limited in their scope.  It is not known what 

specific image properties impact their realism; consequently these synthetic images rarely 

appear ‘real’ by anyone’s definition.  Certainly not as real as those images in Figures 4 

and 5. 
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Figure 4 – A Stereoscopic Image from my Database 

A sample stereoscopic image from my database.  Even at print resolution of 300 dots-per-

inch these were too large to each fit on their own page.  They were scaled down ~4-1. 
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Figure 5 – Corresponding Range Images 

These are range maps that correspond to the stereoscopic images in Figure 4.  Cooler 

colors denote nearer objects. Notice that the two range images correspond to the two 

viewing locations, accounting for changes in the occlusion pattern.  Transparency (shown 

by shadows) denotes non-responses from the rangefinder. 

 

It is thought that humans may have detailed knowledge about scene structure not 

captured by the graphics model.  Thus, observer performance may be impacted by 

deviations from realism.  Accepting as a limitation head fixed viewing of static scenes 

through a windowed aperture allows me to make essentially perfect reproductions of real 
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scenes. That is, the advantage I gain is freedom from relying on computer graphics for 

my generative process. The real world generates my stimuli for me. 

Defocus: 

While my goal is to perfectly replicate the stimulus produced by real world 

scenes, this is not technically possible.  For one, the eye can adaptively change the power 

of its lens to accommodate to different distances. Vergence-Accommodation conflicts 

have been shown to create discomfort in stereoscopic displays(Shibata, Kim et al. 2011).  

Further, blur has been shown to be a potential complementary cue to disparity(Held, 

Cooper et al. 2012). However, the mathematics of defocus is closely related to the 

mathematics of disparity.  In particular, objects a large distances will not vary much in 

their defocus, whereas nearby objects will vary more dramatically. Most of these 

experiments are run with much closer base distances than under investigation in my 

study.  Objects in my collected scenes were never closer than 3m.  Similarly, the window 

was placed at this (relatively large) distance.  Therefore, the largest defocus in the image 

will be on the order of 1/3 diopter, not much larger than defocus detection thresholds 

measured for patches of natural scenes (Sebastian et al. in press). 

Parallax: 

Parallax is an important cue, however it is intractable to measure scenes and 

images from all possible viewpoints.  Fixing ego-motion allows for a perfect replication 

of the stimulus, rather than a reconstruction from multiple viewpoints.  While head fixed 

viewing is a bit unnatural (akin to controlling fixation) the tighter relationship with the 

real scene is worth the trade off. Since the aperture is a window straight ahead along 
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primary gaze, uncomfortable gaze angles are not necessary.  Therefore, this restriction of 

the head is somewhat reasonable. 

 

Signal Detection Theory: 

One of our goals as psychophysicists is to characterize the fidelity sensory 

estimates. Usually, estimation precision is more meaningful than estimation accuracy. 

This is because estimation biases can often be corrected by the motor system, whereas 

imprecise estimates cannot. Consequently, it is common in perception research to focus 

on acuity measures, which reflect the limit of sensory precision. 

 The fidelity (and bias) of these estimates is often measured by obtaining 

psychometric functions. A psychometric function for depth discrimination is illustrated in 

Figure 6a. The horizontal axis gives the depth of a comparison stimulus assuming a 

standard stimulus at a depth of 10 m. The vertical axis givens the proportion of times the 

observer reported the comparison was judged to be nearer than the standard. 

The precision of an estimate is typically defined to be the standard deviation of a 

cumulative Gaussian fit to the psychometric data. This definition is based on signal 

detection theory (Figure 6b,c). See Signal Detection Theory and Psychophysics (Green 

and Swets 1966) for review. According to signal detection theory, each stimulus level 

elicits a distribution of neural activity (solid and dashed curves in Fig. 6b,c). The signal-

to-noise ratio, , is the number of standard deviations between these two distributions.  

Thus, if threshold (a just noticeable difference) is defined as the difference between the 

standard and comparison stimuli where the signal-to-noise ratio is 1.0 ( ), then 

that difference is the standard deviation of the Gaussian fit to the psychometric function.  

d ʹ′

1.0d ʹ′ =
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(For the yellow and green points in Figure 6a the corresponding two distributions in 

Figure 6c are separated by one standard deviation.) 

 

Figure 6 - Schematic of the Standard Signal Detection Theory Model 

 (A) An idealized psychometric function with a plausible threshold for the distance 

discrimination task at an absolute distance of 10m.  The solid vertical line shows the 

point of subjective equality, while the dashed line shows the ~70% threshold.  (B) The 

underlying signal detection theory model for decisions made at the point of subjective 

equality.  The solid line shows an unbiased criterion, while the dashed line shows the 

standard deviation of the Gaussian estimate.  Note the equivalency with threshold.  (C) 

The underlying signal detection theory model for easier discriminations (d’=1,2).  The 

dashed curve reflects the distribution of distance estimates for a standard fixed at 10m.  

The solid curve reflects the distribution of estimates for varying comparison distances.  
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The shaded areas correspond to the probability mass associated with the data points in 

‘A’. 

 

Formally Modeling Depth Perception: 

In order to describe my psychophysical paradigm it is useful to have a more 

formal model to address.  Here, I describe the standard cue combination paradigm, so that 

I can address how my experiments relate to the literature.  I cast my model specifically 

with regard to the problem of distance estimation, but a similar framework can be (has 

been) applied to similar tasks, e.g. estimating surface orientations.  My particular 

emphasis is on how to generalize the cue combination framework to more naturalistic 

circumstances. 

The psychophysical task is to determine the nearer of two locations in the scene.  

Therefore the task can be conceived as determine the sign of the difference of two 

distance estimates.  We assume distance estimates are distributed as a Gaussian, therefore 

their difference will also be a Gaussian distributed estimate.  Since we assume distance 

estimates are unbiased, this depth estimate will be centered on the correct depth, and the 

criterion will be placed at zero.  That is, the only influence over the position of the 

decision variable’s distribution is the actual difference in distance denoted .  Thus, the 

mean of this distribution is known objectively under the model since the physical 

distances present in the scene are known objectively. 

Of particular interest is the standard deviation of these depth estimates.  In the 

signal detection framework, the standard deviation of the depth estimates can be 

measured via threshold denoted by .  It is known that sigma can be influenced by many 

other difficulty parameters including viewing conditions, observer identity, and image 

Δd

σ
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content.  In other words, threshold can be thought of as being a function of a high-
dimensional parameter vector, i.e. .  Thus, the resulting decision variable 

. 

Since we are interested in a measure of acuity to use as a baseline measurement 

across observers and images, I prioritized two parameters of difficulty tied to the viewing 

configuration, specifically the absolute distance at which the distances were 

discriminated, denoted , and the visual angle separating the targets, denoted .  Thus, 

we are only considering threshold to be a function of these two parameters, i.e. . 

Clearly there are other interesting parameters to vary in the difficulty parameter 

vector, notably properties of the image vector 

I ⊆

P .  It is known that image properties 

could impact the difficulty of the task (see above).  Rather than hold these parameters 

fixed on every trial, we opt instead to marginalize across the difficulty parameters to the 

extent possible.  For further discussion of this approach, see the next section ‘Naturalistic 

Psychophysics.’ 

One common approach to understanding mechanisms of depth perception is to 

introduce a set of cues represented as functions over the parameters.  Formally, a cue can 
be thought of as a functional relationship Δ̂c = fc


I ;

P( ) .  For some cues, particularly 

disparity, sensible definitions for  (algorithms for getting distance estimates from 

images) have been proposed cues (Marr and Poggio 1979). This is a useful approach;  

will therefore have a defined value for any given input. 

A considerable advantage to using cues is that the dimensionality of the problem 
is reduced.  Marginal likelihood distributions of the form are much easier to 

estimate than the full joint likelihood distribution, i.e. p

I ,

P Δd( ) .   

σ

P( )

Δ̂d ~ N Δd,σ

P( )( )

d θ

σ d,θ( )

fC

fC

p Δ̂c Δd( )
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Another advantage of this approach is that it is easy to design cue-isolating 

stimuli.  The responses of multiple such functions  can be made independent of each 

other over the experimental stimulus set. 

Since it is known that multiple cues are used to estimate depth, it is usually 

presumed that there is some ‘rule of combination’ by which the multiple estimates  

can be combined.  The ‘Psychophysical Observer’ (Maloney and Landy 1989) is 

designed to provide a psychophysical test for the combination rule.  In it, stimuli are 

designed such that the cues (or algorithms like ) respond independently to different 

isolated components of the stimulus. Thus, individual psychophysical experiments can be 
run to determine the variability associated with , (the acuity for the cue), 

thereby creating independent measures of the parameter in their combination model.  As 

a consequence of the independence inherent to the stimulus design, a prediction for the 

combined stimulus can be directly tested. 

Here we model two cues, monocular and binocular cues to depth denoted with the 

subscripts  and  respectively. Assume that the independent depth estimates generated 

by the cues are normally distributed, unbiased, independent distance estimates, i.e. 
p Δ̂m Δd( ) ~ N Δd,σm d,θ( )( ) .  Under this set of assumptions, the optimal combination 

rule is a linear weighting of the independent estimates.  Formally:  

Δ̂d =
σm

−2 d,θ( ) Δ̂m +σ b
−2 d,θ( ) Δ̂b

σm
−2 d,θ( )+σ b

−2 d,θ( ) . 

Under this particular assumption set, the final estimate will still be normally 
distributed, i.e. . The estimates variability is equal to 

σ 2 d,θ( ) = 1
σm

−2 d,θ( )+σ b
−2 d,θ( )

.  Here I use Blakemore’s (1970) data to as an estimate 

of , while I directly measure   and  in order to test the model. 

fC

Δ̂c

fC

p Δ̂c Δd( )

m b

Δ̂d ~ N Δd,σ d,θ( )( )

σ b d,θ( ) σm d,θ( ) σ d,θ( )
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Naturalistic Psychophysics: 

There is continued debate about the advantages and disadvantages of using 

natural images as stimuli for studying vision.  Recently, the debate is over best practices 

for physiological recordings of neurons in visual cortex (Rust & Movshon 2005, Felsen 

& Dan 2005), however this is an old debate in behavioral sensory psychology. There are 

merits to all the standard arguments.  Ultimately, the appropriateness of naturalistic 

experiment design depends on the scientific question being asked. 

It is frustrating that the term ‘natural’ is rarely operationalized.  Many factors 

intuitively contribute to the naturalism of an experiment.  Important factors include the 

choice of task, images, participants, viewing conditions, or reporting methods.  Like most 

arguments of this sort, extreme positions are untenable. Even the most natural designs are 

still experiments.  Even strict experimental controls are tempered by natural variability.  

We would like to predict all of the data, irrespective of naturalism. The value in 

operationalizing what we mean is that we can talk about the scientific purposes served by 

the specific design choices we made. 

All experiments involve choices about the design.  Some parameters need to be 

controlled.  Certainly, there needs to be control over (i.e. experimenter knowledge and 

explicit sampling of) the parameters whose influences are directly under study.  Other 

parameters may or may not be controlled.  They potentially influence the value of the 

dependent variable, but their influence is thought to be independent.  Thus, there is no 

principled reason to pick any particular level of the unspecified parameter with respect to 

the model.  There is just an arbitrary choice that needs to be made. 

In visual psychophysics a frequent example is the choice of visual stimulus, i.e. 

the particular pattern of light and dark on the screen.  Usually the model being tested is of 
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substantially lower dimensionality than the stimulus.  Thus, there are many stimulus 

dimensions unconstrained by the demands of the experiment.  Traditionally, these 

additional stimulus dimensions are either held fixed (e.g. Gabor patches), or are sampled 

randomly according to some known statistical distribution (e.g. noise samples). In the 

experiments presented here the stimuli from trial to trial are randomly sampled with 

minimal conditioning from my database of natural scenes.  This choice was made 

because the explicit goal of the study was to provide an estimate of overall sensory 

acuity. There is a simple argument for allowing trial-to-trial variability in this context.  

Stated succinctly, averaging is good. 

  It has been suggested to me that this sort of an approach adds noise to my 

measurements because, ‘threshold is changing from trial to trial.’  It is not entirely clear 

what is meant by threshold in this context.  There is no way to estimate a threshold from 

a single trial. Presumably what is meant is that parameters known to impact performance 

in other depth discrimination experiments are left to vary as they do in natural scenes.  

That is undoubtedly true, but arguably correct practice in an acuity experiment where the 

only mechanisms of interest are those that measurably influence average performance. 

It has further been suggested that sampling randomly from natural scenes is improper 

because natural scenes constitute an unknown statistical distribution.  Therefore, it is 

impossible to know if the particular sample used in the experiment is biased. While this 

may be true, within the context of the experiment any and all parameters of the sampled 

stimuli are well defined.  It is true that a second, similar experiment will use a different 

sample from natural scenes, and therefore may produce slightly different results.  

However, the problem is worse when arbitrary choices are made once and then held 

fixed. 
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 I ran a simple simulation to illustrate my argument.  Suppose, as my detractors 

may assert, that the standard deviation of the decision variable is random on a trial-to-

trial basis.  I decided to use the Bayesian conjugate prior for variances, i.e. a distribution 

from the scaled inverse gamma family.  Rather than making any deep formal argument, 

suffice it to say this is a probability distribution that does what you might expect.  It does 

not go below zero, but is skewed highly towards larger variances.  It is parameterized by 

two values, one that determines the overall tendency of threshold (the acuity measure we 

are interested in) and one that determines how variable ‘threshold’ is from trial-to-trial.   

Those opposed to naturalistic designs suggest that it is important to hold 

properties of the image fixed from trial-to-trial in order to measure a stable threshold.  I 

operationalize this as taking a single sample from this distribution of thresholds, and 

measuring an entire psychometric threshold with the difficulty fixed at this arbitrary 

level. Not surprisingly, the measured threshold is entirely determined by this single 

sample taking from the threshold distribution. 

Alternatively, I propose allowing difficulty to vary on every trial as it would in 

natural scenes.  Therefore, the standard deviation parameter associated with the decision 

variable in the simulation varies on a trial-to-trial basis.  The result is that the threshold 

measured in the simulated experiment is largely determined by the parameter in the 

distribution of thresholds we are interested in.  That is, a measure of central tendency of 

the threshold distribution.  Better yet, the variability across repeated experiments (a 

simulated meta-analysis) shows that the value measured in the naturalistic experiment is 

not appreciably more variable from experiment to experiment as a series of experiments 

in which threshold is held perfectly fixed.  Whereas, if stimulus properties (and therefore 

threshold) were held fixed from trial to trial, but varied from experiment to experiment, 
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the simulated meta-analysis reveals that this approach yields much less stable measures, 

as would be expected from a sample, rather than sampling distribution.  It may be a 

simple point about the advantages of using natural stimulus variability for acuity 

measurements, but one worth making nonetheless. 

Summary: 

With the current work I take a different approach, combining the naturalistic 

stimuli of in-field studies with the rigor of laboratory studies via virtual reality.  The 

current work accomplishes three overall aims: (i) to build a high quality natural scenes 

dataset pairing stereoscopic images with range images, (ii) to bring these images into the 

lab in order to measure naturalistic depth acuity, and (iii) to demonstrate (with disparity) 

how these measurements can be used as a benchmark in order to evaluate the relative 

importance of various cues to depth.   

The first aim is inherently useful.  Understanding depth perception ultimately 

entails understanding the relationship between sensory stimuli (i.e. stereoscopic images) 

and the physical scene (i.e. 3D structure).  Thus, this database is useful not only for my 

subsequent psychophysical aims, but also as direct measurements useful for developing a 

generative model of images. The creation of this database is a necessary next step in 

advancing theories of depth perception.  This aim involved substantial technical efforts.  

Methodological details are outlined in the next chapter (Chapter 2). 

The second aim answers a fundamental question about depth perception that has 

not yet been answered in the literature.  What is average human acuity for depths in real 

scenes?  How does it vary with viewing geometry?  While disparity discrimination 

thresholds have been measured, discrimination thresholds in real scenes containing rich 

pictorial cues to depth have not.  Estimation designs have been run outdoors, but they are 
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not as sensitive as discrimination designs for measuring the precision of sensory 

estimates.  Ultimately, the precision of sensory estimates is what limits an observer’s 

capacity to learn accurate sensory-motor mappings.  Thus, the second aim provides a 

descriptive measure the performance of people in a typical task requiring a depth 

estimate.  Knowing the precision of depth estimates in real scenes provides a benchmark 

against which the performance of models or other observers can be compared.  

Methodological details for the second and third aims can be found in chapter three. 

The third aim is more exploratory in nature.  Most laboratory depth perception 

experiments go to great lengths in order to isolate the cue of interest.  Thus, these 

experiments convincingly demonstrate that the isolated cue is sufficient to evoke a depth 

percept.  However, it is not clear from these experiments that the absence of the measured 

cue would substantially impact depth perception when a different image associated with 

different cue reliabilities is used.  For example, Palmisano et al. (2010) shows 

convincingly that binocular disparity is a viable cue to depth even at quite large physical 

distances.  Disparity was the only cue to depth available, and observers could 

discriminate depths.  However, it does not show that disparity is a substantial contributor 

to depth perception at large distances when other more reliable cues are available to 

substitute.  Using natural images as my stimuli allows me to measure the average 

usefulness of disparity as a cue to depth as a function of distance and the visual angle 

separating the targets.  Since I am beginning with natural images, and it is unknown what 

cues they contain I find that the approach is more analogous to removing an information 

source than isolating one.  However, under the cue combination model, the math is 

equivalent. 
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Here, I focus in particular on monocular performance (i.e. performance without 

binocular disparity).  In principle this approach could be applied more generally.  The 

utility of this approach is twofold.  First, it is a direct measurement of what performance 

is likely to be in the presence of a visual deficit (e.g. the loss of an eye).  Second, it 

provides an estimate of the reliability of the remaining cues that could be used in 

conjunction with the standard cue combination assumptions to estimate the acuity loss 

accounted for by the missing information. 
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Chapter 2: Construction of a Database  

2.1 – COLLECTION OVERVIEW 

Image collection involved integrating sophisticated equipment, and preparing it 

for use in the field.  Distance was measured using a Riegl VZ-400 scanning laser range 

finder chosen for its state-of-art capture density and precision.  Images were collected 

using a Nikon D700 digital SLR camera. Both of these devices were mounted on a 

custom built robotic gantry to control positioning (see Figure 7).  All of the equipment 

was controlled by a laptop running custom software written in-house. Each scene consists 

of at least two camera images spaced 65mm apart (average distance between the two eyes 

for males) and a corresponding stereo pair of range scans. 

Outdoor image collection introduced significant constraints.  The entire apparatus 

had to be battery operated.  The equipment was extremely heavy, and choice of wheels 

proved critical to successfully navigating terrain. One limitation of the apparatus is that 

images needed to be captured sequentially. Outdoors, conditions such as wind, lighting, 

and animal life were not under immediate control.  Since the collection process took 

significant time for each scene (on the order of minutes), object motion and lighting 

changes had to be avoided by waiting, persistence and post-hoc selection.  Therefore, 

moving objects (e.g. cars, animals, wind, or pedestrians) were selectively avoided as 

much as possible. 

One major advantage of our dataset is that the positioning robot allowed for 

precise colocation of the camera and the range finder by repositioning the apparatus.  

Without repositioning the quality of the dataset would have been reduced by what are 

known as “half-occlusions,” resulting from the separation between the nodal points of the 

range finder imaging system and the camera’s lens.  Because different viewing locations 



 
 

42 

result in different patterns of occlusion, there would be portions of the range images not 

visible from the camera’s viewpoint, while there will be portions of the camera image not 

visible from range finder’s viewpoint.  The range scans and camera images were captured 

from as close the same location as possible, thereby minimizing half-occlusions in our 

scenes. 

 

  

Figure 7 – Natural Scene Measurement Apparatus 

(A) The scene being measured. (B) The Nikon D700 Digital SLR Camera.  (C) The Riegl 

VZ-400 Scanning Laser Range Finder. (D) The custom built positioning robot. (E) 

Laptop running custom control software. 

 

Image content was mixed.  In order to stay consistent with natural viewing 

conditions, the images were captured from roughly eye height.  As mentioned, viewing 

locations were heavily constrained by the bulkiness of the equipment.  All images were 
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taken within walking distance of the Psychology building on the University of Texas at 

Austin campus.  Images included buildings, signs and fences as might be expected. An 

effort was made to include natural features like trees and foliage.  Some materials are not 

conducive to range scanning because they either absorb too much infrared (e.g. tires), or 

reflect it away from the camera in a specular manner (e.g. glass).  To the extent possible 

objects of this sort were avoided as the subject of photographs.  A modest effort was 

made to capture objects at multiple depth planes, with no objects closer to the observer 

than 3m.  While this introduces the possibility of some global photographer’s bias, the 

points in the images selected for depth discrimination were randomly distributed 

throughout the images. 

The vertical field of view of the Riegl VZ-400 is fixed at 100° because of the 

rotating mirror scanning mechanism.  The horizontal field of view is arbitrary, however 

60° was chosen because that closely matches the camera’s horizontal field of view.  The 

density of the scanned point cloud can be changed as a trade off with scanning time.  A 

density of .04° per sample was chosen as a compromise between scanning speed and 

resolution.  This is approximately half the linear resolution of the image, in which a pixel 

subtends roughly .02° of arc. 

It is worth noting that the scanner’s samples are relatively evenly spaced as a 

conic projection of the scene, rather than the standard planar projection used in the 

camera.  That is, azimuthal angles are evenly sampled (unlike with planar projections), 

and field of view is biased towards the upper visual field.  Therefore, there is not a 

perfect overlap between the projections. Further, the vertical scan lines produced by the 

range finder are sampled with arbitrary phase, and thus are not trivially mapped to the 
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camera image, nor any rectilinear grid.  An extensive review of the geometric registration 

procedure I developed can be found in the following section (2.2). 

The Nikon D700 camera body mounted on the scanner had a 20mm fixed focus 

lens.  Changing the focus changes the projective geometry, so the fixed focus lens was 

used to keep the geometry as consistent as possible on an image-to-image basis.  

However, this fixed focus lens should have little impact on the focus quality of the 

images as no objects were photographed from a distance of less than 3m and the camera’s 

aperture was always very small (~2.5mm diameter at a fixed F-Number of 8.0). 

Images were captured in 14-bit “raw” Nikon Extended Format (NEF) allowing for 

a large dynamic range and responses linear with veridical luminance.  The spectral 

response properties and linearity of the camera have been characterized with the 

associated methods and details presented in section 2.3.  The camera’s gain was always 

set to the standard International Standards Organization (ISO) 200, with apertures as 

small as possible to achieve reasonable exposure over maximum open-shutter durations 

of 10ms.  Care was taken to minimize the complementary metal-oxide semiconductor 

(CMOS) sensor response clipping.  The pixel dimensions of the images measure 2844 x 

4284 pixels. 

Note that the images were captured in portrait orientation with a 10° backwards 

slant. Therefore, the camera’s image plane was aligned with the rangefinder’s field of 

view. The imaging geometry is a bit involved. The next section (2.2) goes into more 

detail about the geometry intrinsic to the camera. Section 2.4 describes correcting the 

intrinsic geometry appropriate for display and analysis. 
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2.2 - SPATIAL CALIBRATION 

A spatial calibration of the range finder was performed in the factory.  

Unfortunately that calibration was measured for compressed format images in order to 

work with their graphical user interface.  Therefore, in order to preserve the 14-bit depth 

of the raw images, it was necessary to develop a custom calibration, which 

communicated with the device through the application programmer interface. 

2.2.1 - The Camera Model 

The calibration I performed was designed to mimic the calibration described by 

Riegl.  The linear (standard pinhole model) component of the full camera model can be 

made formal as follows: 
𝑥!
𝑦!
𝑧!

=
𝛼! 0 𝑢!
0 𝛼! 𝑣!
0 0 1

𝑟!! 𝑟!" 𝑟!"
𝑟!" 𝑟!! 𝑟!"
𝑟!" 𝑟!" 𝑟!!

𝑡!
𝑡!
𝑡!

𝑥!
𝑦!
𝑧!
1

 

where the column vectors reflect the point in camera and world coordinates respectively, 

the 3x4 matrix reflects a rotation and translation between the coordinate systems the 

estimation of which is described in the next chapter, and finally the 3x3 matrix is referred 

to as the intrinsic camera matrix.  In the intrinsic camera matrix 𝛼! ,𝛼!   describes a 

scaling appropriate for the focal length of the camera, while 𝑢!, 𝑣!  is referred to as the 

principle point and reflects the intersection of the optic axis with the image plane. 

 Additionally, we model higher order distortions caused by the camera’s lens 

system.  Specifically, we model four radial distortion coefficients, and two tangential 

distortion coefficients.  We begin by defining some convenience variables 𝑢! , 𝑣!  which 

result from a perspective pinhole projection of the point in the camera’s coordinate 
system.  That is, 𝑢! ≜

!!
!!

, and 𝑣! ≜
!!
!!

.  To simplify the resulting expression, we define 

further convenience variables 𝑥′,𝑦′,𝜌!  by: 𝑥! ≜ !!!!!
!!

 , 𝑦! ≜ !!!!!
!!

, and 𝜌! ≜ 𝑥′! +



 
 

46 

𝑦′!.  Finally, we can apply the lens distortions and describe the pixel coordinate, 𝑢, 𝑣 , 

of the projected 3d point such that: 

𝑢 = 𝑢! + 𝑥!𝛼! 𝑘!𝜌! + 𝑘!𝜌! + 𝑘!𝜌! + 𝑘!𝜌! +   2𝛼!𝑥′𝑦′𝑝! + 𝑝!𝛼! 𝜌! + 2𝑥′! , 

𝑣 = 𝑣! + 𝑦!𝛼! 𝑘!𝜌! + 𝑘!𝜌! + 𝑘!𝜌! + 𝑘!𝜌! +   2𝛼!𝑥′𝑦′𝑝! + 𝑝!𝛼! 𝜌! + 2𝑦′! , 

where the k parameters reflect the four radial lens distortions and the p parameters reflect 

the two tangential lens distortion parameters.  These equations together describe the 

entire camera model. 

 The parameters of this model were estimated in two stages.  The first stage 

estimates the value of the parameters determined by the imaging geometry of the camera 

itself, independent of its physical orientation in the scene.  These include the intrinsic 

camera matrix and the nonlinear lens distortion parameters.  The rotation and translation 

which best aligns the data was estimated separately on a per-image basis. 

2.2.2 - Estimating the Intrinsic Camera Parameters 

The parameters intrinsic to the camera’s imaging geometry were estimated on 

their own, and then fixed across all the images.  These parameters were estimated after 

exploring a number of techniques. The strategy ultimately chosen was one most closely 

resembling the method described by Zhang (2000).  Zhang’s method relies on taking 

images of a slanted planar grid from multiple viewpoints to provide sufficient algebraic 

constraint on both the intrinsic camera matrix, and the physical orientation of the camera 

in each image(Zhang 2000).  One small difference between the method of Zhang and the 

one used here is that the lens distortion correction described in Zhang’s paper is less 

extensive (uses fewer distortion coefficients) than the model described above. 

The large field of view, and fixed focus of the lens made it challenging to create a 

suitable grid of targets.  A poster format printer was tried. This approach yielded a grid 
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with thousands of easy to detect features, however even this was relatively small, and 

therefore needed to be about one meter away to cover the camera’s field of view.  At such 

a small distance, defocus is introduced in the image.  Additionally, the paper was difficult 

to perfectly flatten out, adding noise to the method’s assumption of planarity.  I also tried 

using the tile floor near our offices.  These provided a large enough stimulus to impose 

fewer constraints on the viewpoint, and it was at least as convincingly planar.  However 

the edges were lower in contrast, and the lighting was more difficult to control.  The 

irregularity of the features made automated feature detection impractical. I opted to hand 

localize the corners of the tiles.  Since the feature locations were hand selected, there was 

probably some (difficult to measure) human error introduced by this method.  However, 

Zhang found that the larger slants made practical by this method provide more robust 

estimates of the orientation of the plane.  It was difficult to assess whether error from 

hand localization was larger than the error from introduced by holding the poster roughly 

parallel to the image plane (necessary to fill the field of view).  Ultimately the data from 

both approaches were combined to create the best estimates of the camera geometry. 

Zhang’s method uses sophisticated geometric abstractions beyond the scope of 

this document.  Suffice to say that the maximum likelihood parameter estimates were 

found by minimizing the L2 norm of the residual.  All model parameters were optimized 

simultaneously using the Levenberg-Marquardt nonlinear minimization algorithm.  

Levenberg-Marquardt minimization requires an initial guess.  Zhang’s paper goes into 

detail on how this initial guess can be obtained for the intrinsic camera matrix.  For the 

lens distortion parameters, an initial guess of zero was used. Calibration results were 

excellent, suggesting an average calibration error of around 1-2 pixels.  That said, during 
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this entire calibration procedure it is difficult to have complete confidence in ground truth 

estimates of error, since many sources of noise challenge the assumptions in the model. 

2.2.3 - Estimating the Rotation and Translation Parameters 

 The rotation and translation parameters were allowed to vary on a per-image 

basis.  In theory, the robotic positioning and precision mounting of the camera should not 

require an image-by-image registration.  However in practice it noticeably improved 

performance in the image registration by at least a couple of pixels on average.  Note that 

each pixel corresponds to roughly one minute of arc, and therefore a couple of pixels of 

rotation seems a like a reasonable error to expect attributable to vibrations in the rig 

during field work. 

 For the hand registration a piece of software was developed to display raw images 

and range data side by side.  The software allows for the user to zoom in on individual 

pixels to improve the reliability of the clicks. I clicked on at least 20 pairs of matched key 

points for each image.  I tried to choose points that appeared stable, and are obvious in 

both the range and camera images i.e. rigid objects unlikely to be affected by wind.  For 

some images finding reliably matching points of this sort was difficult, or objects were 

clustered biasing spatial sampling in the image, adding substantial uncertainty to 

accuracy measurements.  In all, registration appeared generally quite good.  Close visual 

inspection suggested that the final registered images again had errors on the order of a 

pixel or two, with errors being largest towards the edges of the image which were not 

included in the cropped images used for subsequent projects.  
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2.3 - LUMINANCE CALIBRATION 

For the purposes of this database it was important that we not only have a precise 

spatial calibration, but also precise luminance measurements.  To be more precise, we 

wanted an accurate linear mapping from red, green, and blue (RGB) camera responses 

into standard color spaces the XYZ color space developed by the international 

commission on illumination (abbreviated CIE from the name in French).  This was 

accomplished by measuring the camera’s responses to patches of monochromatic light 

covering the visible range, and then fitting a transformation between these responses and 

known color spaces. 

2.3.1 - Measuring Monochromatic Camera Responses 

The first step in performing the luminance calibration was to measure the 

responses of the camera to monochromatic light. An optical bench was used to position 

the camera, a monochromatic illuminant, a white reflectance standard, and a 

spectroradiometer in an otherwise dark room.  A schematic of their physical arrangement 

can be seen in Figure 8. 

The monochromatic light source illuminated a Labsphere certified flat white 

reflectance standard with a narrow pass band of light.  The average wavelength was 

stepped in 5nm increments over the entire visible range from 400nm-700nm.  Note that 

the camera and spectroradiometer are at an equal angle relative to the reflectance patch 

and the illuminant.  The reflectance standard is highly Lambertian.  Therefore the 

luminous intensity will be the same as observed by the two devices according to 

Lambert’s cosine law (Lambert 1760).  The spectroradiometer provides a measurement of 

the spectral irradiance of the white test plate for a given wavelength setting on the 

monochromatic source. 
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Figure 8 – Schematic Overview of Color Calibration 

The D700 camera and a spectroradiometer measure responses to monochromatic light.  

These camera sensitivity measurements can be used to map between camera responses 

and color spaces from the literature. 

 

The integrated power will depend on the area of collection and collection time.  

The camera’s aperture was widened to its widest setting, setting the f-stop to f/1.8.  

Shutter speeds were allowed to vary across wavelength in order to produce robust CMOS 

responses.  Open times were recorded with the metadata for each image for post-hoc 
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analysis in the extended information file (EXIF file).  Responses will also depend on the 

ISO setting that was held fixed at 200 consistent with its setting during in-field image 

collection.  Combined with the spectroradiometer responses, these values allow us to 

fully specify the sensitivity of each of the camera’s three CMOS sensor channels to the 

entire visible spectrum. 

2.3.2 - Estimating Camera Sensitivity 

The camera’s response to a monochromatic light will be proportional to the 

amount of light, the area of the aperture, and the exposure time.  The constant of 

proportionality is considered the camera’s sensitivity to that wavelength.  For simplicity 

we normalize the sensitivity profiles to a peak of one.  However, in principle this 

procedure could fully specify the camera’s sensitivity on a per-quanta basis. 

We begin with the illuminated test plate.  The spectral irradiance  is a 

function of the wavelength parameterized by the wavelength setting on the 

monochromatic source.  The units of this measure are in .  Since the dial on 

the monochromatic light source may not be perfectly accurate, we define  as our best 

estimate of the wavelength actually presented, i.e. the peak of the radiometric spectrum 

measured by the spectroradiometer.  Since the light is not perfectly monochromatic, the 

irradiance (units ) is given by:  

. 

That is, the integrated spectral irradiance for a given monochromatic wavelength. 

 The camera sensitivities are a function of the wavelength, and the lights presented 

were not perfectly monochromatic.  Thus, for a particular setting of the monochromator 

Le λ;λ0( )

W ⋅m−2 ⋅nm−1

λ̂0

W ⋅m−2

L̂e λ̂0( ) = Le λ;λ0( )dλ
−∞

∞

∫



 
 

52 

technically the camera’s response, e.g. to the red channel with sensitivity profile , 

will be proportional to: 

. 

However, given that the pass band of the monochromator is relatively narrow compared 

to our step size, it is reasonable to estimate our sensitivities assuming a truly 

monochromatic light.  That is, the response of the three channels will be given by: 

, 

where  is the ratio of the aperture area  to the largest possible aperture area 

,  is the shutter open time in seconds, while e.g.  is a normalizing constant 

for the red channel and  , which we take as a surrogate for , is our estimate 

of the channel’s sensitivity profile under the monochromatic source assumption.  From 

here it is trivial to solve for the measured camera sensitivity profiles seen in Figure 9a. 

 

2.3.3 - Mapping to Standard Color Spaces 

The purpose of measuring the camera’s spectral sensitivity is ultimately to find a 

simple mapping between CMOS responses and standard color spaces.  Consider the XYZ 

standard established by the CIE.  The standard is defined by a relationship between color 

coordinate , and the associated color matching functions .  

Further, since this is a photometric rather than radiometric representation there is a 

SR λ( )

R λ̂0( )∝ Le λ;λ0( )SR λ( )dλ
−∞

∞

∫

R λ̂0( ) = KRŜR λ̂0( ) L̂e λ̂0( )A λ̂0( )T λ̂0( )
G λ̂0( ) = KGŜG λ̂0( ) L̂e λ̂0( )A λ̂0( )T λ̂0( )
B λ̂0( ) = KBŜB λ̂0( ) L̂e λ̂0( )A λ̂0( )T λ̂0( )

A λ̂0( ) = a
a0

a

a0 T λ̂0( ) KR

ŜR λ̂0( ) SR λ( )

X,Y,Z x λ( ), y λ( ), z λ( )
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conversion from watts to lumens.  For example, for the  (luminance) channel the 
equation is . 

We would like to approximate these color matching functions with a triplet of 

linear weights on the camera sensitivities.  For example, we would like a set of weights 

such that: .  With these weights we have the 

following approximation: 

 

 

 In order to determine the optimal weights, we minimize the unsigned difference 

of the left and right side of the above approximation via a least squares fit.  By 

minimizing these nine terms we obtain the optimal weights to satisfy: 

. 

Similarly we can apply the same logic to the Stockman and Sharpe (Stockman, 

Sharpe et al. 2000) cone fundamentals.  We use , to represent the responses of 

long, medium, and short wavelength sensitive cones.  Thus, we have: 

. 

After minimizing the above equations, the following values were obtained for the 

weights: 

Y
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. 

Comparisons between the standard XYZ and LMS spaces and their respective fit 

transformations of the CMOS sensitivities can be seen in Figure 9b,c. 

 

 

Figure 9 – Camera Spectral Sensitivity and Color Mapping 

(A) The measured and normalized camera sensitivities.  Note that these show the 

normalized sensitivities (i.e. accounting for K).  (B) The best-fit mapping between the 

color matching functions of the XYZ color space (solid) and the mapped camera 

sensitivities (dashed).  (C) The best-fit mapping between the Stockman and Sharpe 

(2000) long, medium, and short wavelength sensitive (LMS) cone fundamentals (solid) 

and the mapped camera sensitivities (dashed). 
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 2.4 - STIMULUS GENERATION 

The images that resulted from the above transformations were too large to be 

wieldy for further analysis or display.  Further, the representation was inconvenient for 

thinking intuitively about the images.  For example, the backwards slant of the camera 

implies that the camera’s image plane was not perpendicular to the ground.  This imaging 

geometry does not match our usual intuitions. 

In keeping with the window analogy, I developed a piece of software that allowed 

the user to define a display in 3-space.  Specifically, the user provides a 3xN matrix of 

xyz points (not to be confused with XYZ color space) corresponding with the locations of 

all N pixels in the display.  These locations are then treated like any other xyz point, and 

mapped to the stereoscopic images and range images according to the calibration 

described in section 2.2.  Thereby, both an RGB response, and xyz position can be 

defined for each pixel in the projection.  For rectilinear displays, a useful analogy is a 

window screen.  Rays from the scene are projected towards the viewer through the 

screen. 

Clearly, the display pixel locations will not correspond exactly to locations 

sampled in the original data. Otherwise, there would be no call for resampling. Therefore, 

the mapping needed to be interpolated somehow. In actuality the rays will project to real 

valued pixel locations in images of the sort depicted in Figures 4-5 (usually tracing out a 

trapezoidal projection).  The RGB data was interpolated with standard linear interpolation 

of the 16-bit images.  The xyz data was interpolated using nearest neighbor (in order to 

preserve the sharpness of discontinuities. 

The captured images were checked for object motion (i.e. visually inspected for 

troublesome regions of registration).  Eighty images survived the filtering and became 
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stimuli in the final experiment.  Thumbnails of the eighty images and corresponding data 

can be seen in Figures 10-11. 

 

 

Figure 10 – Thumbnails of the Experimental Stimuli 

Thumbnails of the images used in the psychophysical experiments.  Stimuli used were a 

fraction of the size of the raw images because of the screen’s limited field of view. 
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Figure 11 – Thumbnails of the Corresponding Range Images 

Range images corresponding to the experimental stimuli in Figure 10.  Measuring 

ground-truth allows for objective evaluation of performance. 
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Chapter 3: Psychophysical Methods 

3.1 – APPARATUS OVERVIEW 

Depth acuity has never been measured in real scenes. It is logistically too hard.  In 

laboratory experiments, the stimuli are deprived of the rich structure you see in real 

scenes. Nobody believes computer-generated images are of real scenes. Therefore they 

serve as a poor experimental model for natural acuity.  The goal here is to create a 

naturalistic proxy for real scenes in the lab.  Thus depth acuity measurements can finally 

be tractable to measure under real world conditions. 

To this end a virtual reality display was designed which allowed me to present in 

the lab the stimuli measured in Chapter 2.  The display was designed to appear as a 

window (an aperture) through which the scenes could be viewed stereoscopically.  Since 

the screen was as near as the nearest object, all objects in the depicted scene could 

plausibly be behind the window.  The room was dark, and the edges of the screen were 

obscured with black felt. The projected images were aligned carefully with the edges of 

the display completing the illusion (see Figure 12). 

The screen itself (draper uniformity display) was tensioned in the frame.  Thus the 

viewing geometry was not distorted by waves in the screen.  The screen was rectangular, 

1.43m wide and .80m tall.  At the viewing distance of 3m this implies a visual angle of 

27 degrees horizontally and 15 degrees vertically. The images were displayed at the 

standard 720p (1280x720px) definition. Therefore pixels subtended about .02 degrees, 

suggesting a Nyquist frequency of 25 cycles-per-degree (roughly half human limits). 

While higher resolution would be ideal, the sampling rate was matched to the camera. 

The projector was a DepthQ HDs3D-1 stereoscopic display.  Stereoscopy was 

achieved by active stereoscopy.  That is, liquid crystal shutters (nVidia 3d Vision) 
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synchronized to the frame rate. The projector displayed frames at 120 Hz, alternating 

between the left and right eyes’ views of the scene. Therefore, since the shutter occluded 

each eye on alternating frames, there was a 60Hz stereoscopic frame rate.  At those 

temporal frequencies the flicker was undetectable. The remaining percept is a fused 

stereoscopic view of the scene. 

 

 

 

Figure 12 – Display Apparatus 

(A) The camera gain is turned up so that the apparatus can be seen. The wooden gantry 

allows the display to be moved out of the way, necessary to accommodate other uses of 

the space. (B) The same view without the high camera gain. The black felt visible in (A) 

helps to remove cues to the edges of the frame. 

 

Clearly, if the head moves, the world appears to distort. The image is correct from 

only one location.  Therefore, a chinrest was used to minimize head movements.  More 

precisely, the image is only correct from the location of the two eyes.  It is distorted for 

observers with an IPD different than the 65mm used during scene measurement.  
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Accordingly, observers with commensurate IPDs were selected post-hoc. The viewing 

geometry was correct to a high precision.  Consequently, objects appeared to be correct in 

size, the ground plane is slanted correctly, and so forth.  Correct scale adds considerably 

to the subjective realism.  

3.2 – PSYCHOPHYSICAL TASK 

The task under consideration was a near-far distance discrimination task. On a 

given trial two points were indicated to the observer, one to the left and one to the right.  

The observer would press the right arrow if the right target was nearer, or the left arrow if 

the left target were nearer.  Note that the points under consideration were points in the 

virtual scene.  Subjects were instructed to consider the surfaces in the image.  Since the 

distances between points in the scene are known, performance can be evaluated 

objectively. 

The graphics were rendered in a custom OpenGL program written in the C++ 

programming language. The program was relatively simple, as the images were 

preloaded, and could for the most part be directly copied into memory. OpenGL was 

primarily used to display target indicators that identified points to discriminate during the 

task.  

The optimal way to indicate the points is up for debate. Here we used a triangle 

pointing towards the center of a small circle denoting a surface.  The point at the very 

center of the circle is the point being judged.  In order to avoid introducing any additional 

stereoscopic information with the indicator, it was presented in the right eye’s image 

only. Since the indicator was an abstract shape presented monocular it had no real 

apparent depth in the scene. The indicator appeared as needed in response to a press of 

the up arrow key.  If the key was held down the indicators would be visible for 250ms 
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followed by 250ms of invisibility. Trials were self-timed and randomly interleaved. 

Fixation was uncontrolled. See Figure 13 for a schematic representation of the apparatus 

and the task. 

For the monocular version of the task the left eye was patched for all subjects. 

Shutter glasses were still worn in case the glasses themselves degraded the image in any 

way. With head rested in the chinrest, and with the left eye patched, the illusion of a 

window was still convincing (all the monocular cues were correct given the position of 

the eye). 

 

 

 

Figure 13 – Schematic of the Psychophysical Task 

The observer judges the nearer of two points indicated in the virtual scene.  Difficulty can 

be increased by the visual angle separating the points and the absolute distance of the 

virtual objects. 
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The purpose of the approach was to understand depth acuity in the way that we 

would understand other acuities.  It was important to ensure that viewing conditions were 

chosen to cover the relevant space.  Further, in order to create psychometric functions, 

the discriminations need to be sufficiently difficult.  Therefore, targets could not be 

sampled completely randomly from scenes.  Some effort needed to be made to ensure 

that there were both hard and easy trials.  See Figure 13 for a schematic of the task. The 

next section goes into more detail on target sampling procedures. 

3.3 – SAMPLING PROCEDURE 

The goal was to choose points as agnostically as possible.  Still, enough difficult 

and easy trials needed to be selected to form a psychometric function.  It is important to 

consider that while the mapping between range and image pixel value is known, it is not 

really under control.  Stimuli cannot be designed, they must be found in the available 

scenes. 

A number of factors may influence the difficulty or ease with which a particular 

discrimination could be made. In the spirit of agnostic sampling, RGB image properties 

were not considered.  Specifically, image-based parameters, notably contrast, were not 

systematically sampled to vary difficultly.  Instead, difficulty was assigned according to 

three metrics, (i) the difference in distance between the two points, (ii) the absolute 

distance to the points, and (iii) the visual angle separating the points. 

 The first metric is the natural measure of difficulty, the similarity in distance 

between the two points.  Clearly, the more similar in distance, the more difficult the 

discrimination must be.  Since the only information available to anchor depth acuity is 

from the disparity literature, fixed disparity bins were used to select points.  This turned 
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out to not correspond with behavior (see Chapter 4 for results), and so additional trials 

were added to help subsequent subjects reach threshold. 

The second difficulty metric was the absolute distance to the judgment in 

question. The absolute distance to the targets will impact performance both because of 

perspective projection, and the degradation of stereoscopic cues to depth.  In the study 

distances were sampled from 3m-45m.  Sampling was spread out to cover the distances 

of interest, with bins becoming larger (sampling sparser) at larger distances.  An effort 

was made to spread trials uniformly across images, although the prevalence of content at 

a given distance inevitably biased the sampling towards a subset of scenes in certain 

conditions. 

The third difficulty metric is the visual angle separating the two points. It is 

known that sampling in the retina can account for the drop in performance in fine acuity 

tasks in the periphery(e.g., Arnow and Geisler 1996).  Further, disparity detection 

thresholds are known to vary with the eccentricity of the target (Blakemore 1970).  Thus 

it is reasonable to assume that the visual angle separating the two targets will have an 

impact on performance.  Fixation is uncontrolled, so it is not possible to describe viewing 

conditions perfectly.  However, the solid angle separating the targets naturally constrains 

the observer’s ability to have simultaneous foveal views of the two targets.  Sampling 

along the visual angle difficulty axis was concentrated around 2°, 5°, and 10° of 

separation.  Again, attempts were made to uniformly sample the scenes, but the relative 

locations of objects in the scenes ultimately constrained the success of these attempts. 

In order to find each sample, a random point in a random scene was chosen on 

account of its distance.  This was taken as the more distant of the two points because 

crossed disparities are easier to find than uncrossed disparities at large distances. The 
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second point was chosen on account of the difficulty needed.  First, an annulus of pixels 

corresponding to the appropriate angular separation bin was selected.  These pixels were 

checked for delta-scene-distances appropriate for the needed difficulty level 

(commensurate with a given disparity along primary gaze).  If the regions surrounding 

the points were approximately planar (verified via Singular Value Decomposition), the 

pair was accepted.  One final check was performed to ensure that the targets were not 

occluded in either eye. Once a pair of targets was selected, the neighboring region was 

ruled out and the process began again until all needed trial bins were filled. 

Monocular trials were still sampled according to ‘disparity’ even though it is a 

meaningless concept.  Ultimately, dioptric difference rather than disparity was adopted as 

the primary difficulty dimension because it had a closer (one-to-one) relationship with 

absolute difference in distance.  However, these measures of difference in distance are 

closely related, and the dioptric difference can be thought of as a surrogate for disparity. 

No visual estimations were repeated by the same observer, however two groups 

(pairs) of observers received equivalent trials.  Chapter 4 goes into more detail on how 

observer identity (individual differences) and stimulus particulars impact performance. 
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Chapter 4: Experimental Results 

4.1 – PSYCHOMETRIC FUNCTIONS 

It turned out that binning on either disparity or dioptric differences was not 

optimal, because performance turned out to be better described by thresholds that 

increased in proportion to absolute distance (i.e. constant Weber fraction). Consequently, 

the sampling was not ideal, and at near distances (where thresholds were highest) 

observers often had difficulty reaching 100% correct.  Nonetheless, the psychometric 

functions in most cases appeared good.  Example psychometric functions for one subject 

can be seen in Figure 14. 

 

 

Figure 14 – Example Psychometric Functions 

Psychometric functions fit to some of the data by subject SVV.  Note that threshold 

increases (x axis change) as measurements are made at increasing distances.  All of these 

measurements were for a visual angle separation of around 5°. Curves represent 

maximum likelihood fits to the data. 
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Since difficulty varied along three dimensions, it is impossible to perfectly isolate 

the influence of all three.  Usually, visual angles were binned into three bins 0°-2°, 4°- 6°, 

and 8°-12°. Distances were binned more continuously, with bin widths being roughly 

proportional to the distance.  That is, a psychometric function describing performance at 

a distance of ‘10m’ would include trials anywhere from 5m-15m.  The primary difficultly 

axis was sampled in many different ways depending on convenience, and maximum 

likelihood methods were used to fit the psychometric functions using all of the relevant 

trials respecting their continuous location on the x-axis.  In the plots, boxes show binned 

data with horizontal and vertical error bars.  They provide a visual aide for assessing the 

quality of the fit, but the binned percent corrects were not used in the model fit. 

4.2 – OBSERVER AGREEMENT 

Using the technique described in the previous section, psychometric thresholds 

could be obtained for each observer at the various distances.  Displayed in Figure 15 is 

threshold (measured as a Weber fraction in percent) of the four observers in the 

experiment.  In the figure, each dot corresponds to a threshold that came from a 

psychometric function such as those depicted in Figure 14. Note considerable overlap 

between the green and purple observers. They were tested using matched trials.  In all, 

performance seemed roughly consistent across observers. Figure 15 provides some 

justification for aggregating thresholds across observer judgments in order to more 

densely sample the space.  
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Figure 15 – Performance of Individual Subjects 

The plot shows thresholds for individual subjects (colors) in the near far task.  The x-axis 

indicates the distance of the discriminations in the psychometric functions.  The y-axis 

shows the just noticeable difference in percent range (Weber Fraction Threshold).  Dots 

show the measured threshold, with bootstrapped 95% confidence intervals shaded. All 

observations were at about 2°.  Note that the observers largely fall on top of each other. 
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4.3 – BASIC ACUITY DESCRIPTION 

Two possible predictions were visually compared, constant fractional 

performance in absolute distance, and constant disparity performance.  Visually speaking, 

it appears that constant fractional (Weber) performance is the better description of the 

data (see section 4.4 for disparity performance).  Further, the observers’ performance was 

strongly affected by the visual angle separating the targets.  Figure 16 shows the overall 

description of average observer performance as function of absolute distance and target 

separation.  In effect, Figure 16 completes my second aim.  It suggests that distance 

discrimination threshold is approximately a fixed fraction of the absolute distance, with a 

fraction that increases with separation angle.  
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Figure 16 – Acuity Description of the Aggregate Observer 

The figure shows the description of the aggregated observer’s overall performance.  Blue 

shows the performance around 2° of angular separation.  It shows the aggregation of the 

data in Figure 15 (axes are the same).  The other colors depict other angular separations, 

i.e. green ~5°, and red ~10°. Shaded regions are bootstrapped 95% confidence intervals 

on thresholds.  The impact of visual angle on threshold is substantial. 
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Figure 17 – Acuity Measured in Disparity 

The analog of Figure 16.  The only conceptual difference between the figures is that 

threshold (y-axis) is now measured in arc seconds of disparity rather than percent 

distances.  Note that thresholds monotonically decline by this measure. The prediction of 

the ‘disparity strategy’ is that thresholds in disparity would be constant as a function of 

distance. 
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4.4 – PERFORMANCE MEASURED AS BINOCULAR DISPARITY 

It can be convenient to represent performance as thresholds in binocular disparity.  

This can help relate these acuity measurements to the disparity literature.  When 

measured as a disparity, thresholds clearly decrease as a function of distance.  This 

should not be taken as evidence that threshold disparity is improving.  Rather, monocular 

cues are likely playing a greater role with greater distance, improving the quality of the 

estimate.  That is, it is important to remember that the units describing the estimates 

precision have nothing to do with how the estimate was generated.  Figure 17 shows the 

analog for Figure 16 with arc seconds of disparity on the y-axis. 

 

4.5 – MONOCULAR COMPARISON 

Recall that depth discrimination performance was also measured with one eye 

patched.  These conditions were identical to the baseline binocular case except for the 

availability of the binocular disparity cue, thus they show the performance based purely 

on the monocular cues.  The red data points in Figure 18 show depth discrimination as 

function of distance for the monocular cues.  For comparison, the blue points are the 

depth discrimination data for the binocular case in Figure 16.  It is clear that thresholds 

are elevated in the monocular condition, especially at near distances.  From the plot it 

appears that binocular and monocular performance merge at a distance of around 15m 

(see Chapter 5). 



 
 

72 

 

Figure 18 – Foveal Binocular and Monocular Comparison 

The blue data is the exact same as the 2° data from Figure 16.  The red curve shows the 

aggregated monocular comparisons for the same four subjects (different target locations).  

Shaded regions denote 95% bootstrapped confidence intervals.  Monocular thresholds are 

clearly elevated up to a distance of about 15m.  Thus, binocular disparity is likely 

contributing to those judgments. 

 

Another useful way to look at the monocular thresholds is, ironically, in units of 

binocular disparity.  Specifically, Figure 19 plots are the monocular thresholds in 

disparity units, as if the eye had not been patched.  It is a bit counter-intuitive to measure 
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performance in this way, but it is useful for comparison with binocular conditions.  In 

other words, Figure 19 shows the monocular analog to Figure 17.  Note the substantial 

elevation in thresholds for near judgments compared to those in Figure 17. 

 

Figure 19 – Monocular Thresholds Expressed as Disparity 

Thresholds measured as disparities in the monocular condition.  Axes and color codes 

were kept the same for comparison with the binocular analog Figure 17.  Thresholds off 

the chart in the 5° and 10° are so elevated the plot becomes difficult to interpret if the 

axes are scaled. Again, around 15m thresholds resemble those measured in the binocular 

condition. 
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4.6 – CUE COMBINATION PREDICTIONS 

The variability associated with the sensory estimates measured in the two 

experiments can be combined to create a prediction for a hypothetical isolated disparity 

condition. Recall that under the assumption of optimal combination of independent cues 

the variance of the combined estimate is .  In the 

experimental context, the variability associated with the estimate is directly related to the 

threshold in the combined (binocular) condition.  It is assumed that there are two cues 

with associated standard deviation parameters, disparity , and monocular .  

Therefore, by reciprocating both sides we see that the reliabilities add,

.  Exploiting this, simple rearrangement yields 

predictions for thresholds in the supposed disparity condition, i.e.

.  Note that the right hand side of the equation is 

completely constrained by the experimental thresholds.  The dots in Figure 20 show the 

parameter-free predicted disparity thresholds from the current study with the above 

formula.  

Blakemore (1970) measured disparity thresholds for two observers as a function 

of distance from the horopter and visual angle eccentricity.  While it is impossible to 

know where subjects were fixated in the current task, it is plausible that they fixated back 

and forth between targets.  Therefore, the relative horizontal disparity would reflect the 

disparity on the horopter, at the eccentricity defined by their visual angle separation.  

Accordingly, the colored bands in Figure 20 show the range of disparity detection 

thresholds (from the two observers) measured in Blakemore’s experiment for the foveal 

(blue), 5° (green) and 10° (red) conditions.  As can be seen, the thresholds predicted from 

the current data largely fall within the range expected from the Blakemore study 

σ d,θ( )2 = 1
σm d,θ( )−2 +σ b d,θ( )−2

σ B σM

σ d,θ( )−2 =σm d,θ( )−2 +σ b d,θ( )−2

σ b d,θ( ) = σm d,θ( )−2 −σ d,θ( )−2( )−1
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(although there are a few outliers).  This shows, rather remarkably, that the effect of the 

binocular cues under natural viewing conditions is largely consistent with measurements 

of disparity thresholds with simple laboratory stimuli. 

 

Figure 20 – Disparity Threshold Predictions Compared to Blakemore 

Dots show predicted thresholds in a disparity alone condition. Shaded regions cover the 

range defined by the disparity detection thresholds of two observers in Blakemore (1970).  

Colors denote an eccentricity (or spatial separation) of foveal (blue), 5° (green), and 10° 

(red).  Aside from a few scattered points, dots fall near the isolated disparity thresholds 
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from the literature.  Disparity threshold predictions appear to decrease slightly with 

distance. 
 

From the above plot it is not entirely obviously just how remarkable these predictions are.  

In particular, it is difficult to appreciate how sensitive the predictions are to the original 

data.  For example, if threshold in the monocular case happens (by chance) to be even a 

second of arc lower than in the binocular case than the prediction has no real-valued 

solution.  Perhaps a more intuitive way to see the accuracy of these predictions is to 

pretend the experiment had been of a more standard cue-combination design.  That is, we 

can sum the reliability implied by Blakemore’s thresholds with the reliabilities implied by 

the measured monocular thresholds.  A simple transformation of the sum of these 

reliabilities produces a prediction for threshold in the combined (binocular viewing) 

condition.  The shaded regions and filled marks in Figure 21 depict the same binocular 

thresholds as Figure 17.  The open symbols and dashed lines depict the monocular 

thresholds seen in Figure 19. Combining these monocular thresholds with Blakemore’s 

disparity thresholds yields a prediction (solid line). Note the agreement.  Again, this is a 

zero free-parameter prediction. 
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Figure 21 – Predicted Thresholds Comparison 

The filled dots and shaded regions depict the binocular thresholds. The open dots and 

dashed lines depict monocular thresholds.  Solid lines show the prediction yielded by 

combining the monocular data with Blakemore’s disparity thresholds.  

 

Oruç et al. (2003) derived the optimal combination rule for possibly correlated 

cues.  Borrowing their equation 7 the optimal combination rule for this task would result 

in threshold predictions as follows: 

. 

To test the importance of correlations I repeated my predictions assuming a 

(decidedly generous) correlation coefficient .  These predictions can be seen in 

Figure 22, analogous to Figure 21 with only the prediction lines changed.  As can be seen 

from the plot, the predictions are qualitatively unchanged, although are made a bit worse 

by the addition of an assumed correlation.  Notice that one change in the prediction not 

σ d,θ( )−2 = σm d,θ( )−2 +σ b d,θ( )−2 − 2ρ σm d,θ( )−2σ b d,θ( )−2
1− ρ2

ρ = 0.3
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supported by the data is that the binocular and monocular performance is predicted to 

converge at a nearer distance (closer to 10m). 

 

 

Figure 22 – Predicted Thresholds Comparison Including Correlations 

Analogous plot to figure 21.  Here the solid lines reflect predictions using Blakemore’s 

data, and an assumed correlation of 0.3. 

 

Chapter 5: Discussion 

5.1 – NATURAL SCENES DATABASE 

The natural scenes database collected here should prove valuable to the field far 

beyond the scope of this work.  One major conclusion of this work is that natural scenes 

are indeed regular enough for study. In fact, depth perception depends on exactly this 

same regularity.  If the real world were not highly statistically regular, then the visual 

system could not exploit those regularities to do the task.  Certainly, pictorial cues to 

depth would be useless.  They all depend on assumptions about the structure of the world. 
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The psychophysical results reported here suggest that binocular disparity is the 

primary binocular cue to depth.  However, monocular cues to depth have not been 

addressed in great detail.  There is substantial work to be done teasing apart the relative 

importance of monocular cues in real scenes.  As mentioned, monocular cues are highly 

dependent on regularities in the natural environment.  Therefore, it is likely that there is 

substantial insight to be gained by studying the environment itself, i.e. the generative 

model of the stimulus. 

The value of studying the statistics of natural scenes is well documented (Geisler 

and Diehl 2002). We have already begun the process of evaluating the importance of 

depth cues directly by statistical analysis of these scenes (Burge et al. in preparation).  

Preliminary results are promising, and show some counter-intuitive results, thus 

demonstrating the value of directly studying the availability of information in real scenes 

rather than relying strictly on scientific intuitions.  Since this is the first dataset to 

rigorously couple the 3d structure of scenes with their stereoscopic projections it should 

have a substantial impact on the field. 

5.2 – DEPTH ACUITY 

The depth acuity measurements were made using naturalistic stimuli, and 

therefore serve as an accurate representation of human uncertainty about distance across a 

large sample of trials in the real world.  There are some caveats to this claim.  One major 

consideration is that these are depth acuity measurements at largish distances, through a 

window (an aperture) with a stationary viewing position.  That said, the measurements 

here are much more applicable to real world depth perception than previous depth 

discrimination measurements.  These caveats are discussed more in section 5.4. 
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One finding, if unsurprising, is that depth discrimination performance does not 

track the performance of a ‘disparity alone’ strategy in real scenes. When measured as a 

disparity, thresholds drop precipitously as a function of distance. At least for foveal 

measurements (blue symbols in Figure 16), performance roughly follows Weber’s law 

with a Weber fraction at about 1% of the absolute distance (thus, for foveal comparisons 

at 10 m, threshold will be ~1cm). This is consistent with increasing reliance on 

monocular cues to depth.  

Another (unsurprising) finding is that increasing the angular separation between 

the points increases thresholds.  The source of this increase in thresholds is less obvious.  

Two factors certainly play a role.  First, disparity thresholds increase for more eccentric 

targets (Blakemore 1970).  Second, planar (monocular) acuity changes as a function of 

the visual field (Robson and Graham 1981). The successful predictions by the cue 

combination model suggest it might be possible to untangle their relative contributions. 

The results of the cue combination modeling are discussed more in section 5.3. 

In summary, this work represents perhaps the most comprehensive study of depth 

acuity in real scenes.  The results are plausible, systematic, and relatively consistent 

across observers despite ambivalence towards image content. 

5.3 – CUE COMBINATION 

The results of the cue combination modeling instilled confidence that my 

measurements are meaningful.  Monocular thresholds were measurably higher than 

binocular thresholds at distances under 15m.  This elevation in thresholds reveals the 

importance of binocular vision. 

More impressively, the standard cue combination model predicted the effect of 

disparity on depth thresholds with high accuracy and no free parameters (Figure 21).  
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Blakemore’s (1970) measurements have been relied upon for decades as an independent 

measure of disparity sensitivity. Turning the analysis around, the current results 

demonstrate that a somewhat accurate prediction of his isolated thresholds could be 

obtained by inference from independent measures in the full-cue, and monocular only 

conditions.  A quick check to see the relevance of possible correlations between the cues 

shows that if the optimal rule is still used the predictions are largely unaffected, although 

near zero values for the correlation still appear to provide the best fit suggesting that the 

cues are in fact independent. 

An additional benefit of the current approach is that Blakemore’s measurements 

could be extended into distance.  Measurements here suggest that disparity thresholds 

might actually drop somewhat as a function of distance.  Despite disparity being an 

angular measurement, information quality in the image might change reliably with 

distance and therefore influence our angular sensitivity. Glennerster and McKee (1999) 

have shown that nearby references can improve disparity acuity. Liu et al. (2008) showed 

that uncrossed disparities are quite rare at large distances with an over-representation of 

zero disparities.  Therefore, it is possible that references are useful and prevalent for 

distal comparisons. 

Against the suggestion of Maloney and Landy (1989), this prediction is made 

without holding experimental ancillary measures fixed. Stimuli are free to vary as they do 

in real scenes. Thankfully, real scenes are drawn from a relatively stationary distribution. 

Reversing the prediction, i.e. predicting full-cue thresholds from monocular thresholds 

and Blakemore’s disparity thresholds, reveals just how precise the predictions need to be 

in order to be this successful.  Recall, there was zero control over the content of images.  
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Therefore, average performance is fortunately well-behaved over a relatively short, ‘long-

run.’ 

5.4-CAVEATS 

One poor prediction in the data happens with foveal comparisons at the nearest 

distances.  It is likely that defocus conflicts could play a role.  Sebastian et al. (in press) 

measured defocus thresholds as low as 1/8 of a diopter in real scenes.  Therefore, 

presented images were in good focus at 3m, and in progressively worse focus up to a 

distance of approximately 8m (where it would level off).  It is likely that robust fusion 

mechanisms would take over once the conflict was severe enough, thus ‘turning-off’ 

defocus as a cue to depth.  However, at these near distances, defocus could plausibly be 

used by the system, and therefore bias monocular depth estimates.  This is worthy of 

further exploration. 

Another coincidence is the convergence of monocular and binocular cues to depth 

at a distance of around 15m.  It should be noted that these measurements were made 

through an aperture (the window).  Therefore, the ground plane (an important cue to 

distance) was occluded by the wall out to some distance.  It so happened that in this 

configuration, that distance was 15m.  Since the absence of a visible ground plane caused 

an elevation of thresholds, it is worth changing the size of the aperture to investigate its 

significance. 

Finally, heads were fixed.  Clearly, head-free viewing has the potential to improve 

sensitivity. A long-term goal is to extend my psychophysical (and scene collection) 

methods to include parallax images over some reasonable ego motion (e.g. seated head 

movements).  Doing so could improve the generality of the results. 
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5.5-CONCLUSIONS 

In conclusion I have developed a large dataset of stereoscopic natural scenes 

pairing images with distance measurements at each pixel. From these images I created a 

naturalistic proxy for the real scenes by stereoscopically projecting the images on a 

simulated window. Using this naturalistic proxy, acuity for distance in real scenes was 

assessed over a wide range of viewing conditions. I found that to first approximation, 

thresholds followed Weber’s law with a threshold of 1% of the distance the judgment was 

made at. Repeating the measurements under patched-eye viewing conditions directly 

assessed monocular thresholds. By comparing monocular and binocular performance an 

indirect measurement of the influence of disparity can be made.  I found that these 

indirect measurements closely matched measurements from the literature, demonstrating 

the validity of the natural scene approach taken here. 
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