105 research outputs found

    Cellular networks for smart grid communication

    Get PDF
    The next-generation electric power system, known as smart grid, relies on a robust and reliable underlying communication infrastructure to improve the efficiency of electricity distribution. Cellular networks, e.g., LTE/LTE-A systems, appear as a promising technology to facilitate the smart grid evolution. Their inherent performance characteristics and well-established ecosystem could potentially unlock unprecedented use cases, enabling real-time and autonomous distribution grid operations. However, cellular technology was not originally intended for smart grid communication, associated with highly-reliable message exchange and massive device connectivity requirements. The fundamental differences between smart grid and human-type communication challenge the classical design of cellular networks and introduce important research questions that have not been sufficiently addressed so far. Motivated by these challenges, this doctoral thesis investigates novel radio access network (RAN) design principles and performance analysis for the seamless integration of smart grid traffic in future cellular networks. Specifically, we focus on addressing the fundamental RAN problems of network scalability in massive smart grid deployments and radio resource management for smart grid and human-type traffic. The main objective of the thesis lies on the design, analysis and performance evaluation of RAN mechanisms that would render cellular networks the key enabler for emerging smart grid applications. The first part of the thesis addresses the radio access limitations in LTE-based networks for reliable and scalable smart grid communication. We first identify the congestion problem in LTE random access that arises in large-scale smart grid deployments. To overcome this, a novel random access mechanism is proposed that can efficiently support real-time distribution automation services with negligible impact on the background traffic. Motivated by the stringent reliability requirements of various smart grid operations, we then develop an analytical model of the LTE random access procedure that allows us to assess the performance of event-based monitoring traffic under various load conditions and network configurations. We further extend our analysis to include the relation between the cell size and the availability of orthogonal random access resources and we identify an additional challenge for reliable smart grid connectivity. To this end, we devise an interference- and load-aware cell planning mechanism that enhances reliability in substation automation services. Finally, we couple the problem of state estimation in wide-area monitoring systems with the reliability challenges in information acquisition. Using our developed analytical framework, we quantify the impact of imperfect communication reliability in the state estimation accuracy and we provide useful insights for the design of reliability-aware state estimators. The second part of the thesis builds on the previous one and focuses on the RAN problem of resource scheduling and sharing for smart grid and human-type traffic. We introduce a novel scheduler that achieves low latency for distribution automation traffic while resource allocation is performed in a way that keeps the degradation of cellular users at a minimum level. In addition, we investigate the benefits of Device-to-Device (D2D) transmission mode for event-based message exchange in substation automation scenarios. We design a joint mode selection and resource allocation mechanism which results in higher data rates with respect to the conventional transmission mode via the base station. An orthogonal resource partition scheme between cellular and D2D links is further proposed to prevent the underutilization of the scarce cellular spectrum. The research findings of this thesis aim to deliver novel solutions to important RAN performance issues that arise when cellular networks support smart grid communication.Las redes celulares, p.e., los sistemas LTE/LTE-A, aparecen como una tecnología prometedora para facilitar la evolución de la próxima generación del sistema eléctrico de potencia, conocido como smart grid (SG). Sin embargo, la tecnología celular no fue pensada originalmente para las comunicaciones en la SG, asociadas con el intercambio fiable de mensajes y con requisitos de conectividad de un número masivo de dispositivos. Las diferencias fundamentales entre las comunicaciones en la SG y la comunicación de tipo humano desafían el diseño clásico de las redes celulares e introducen importantes cuestiones de investigación que hasta ahora no se han abordado suficientemente. Motivada por estos retos, esta tesis doctoral investiga los principios de diseño y analiza el rendimiento de una nueva red de acceso radio (RAN) que permita una integración perfecta del tráfico de la SG en las redes celulares futuras. Nos centramos en los problemas fundamentales de escalabilidad de la RAN en despliegues de SG masivos, y en la gestión de los recursos radio para la integración del tráfico de la SG con el tráfico de tipo humano. El objetivo principal de la tesis consiste en el diseño, el análisis y la evaluación del rendimiento de los mecanismos de las RAN que convertirán a las redes celulares en el elemento clave para las aplicaciones emergentes de las SGs. La primera parte de la tesis aborda las limitaciones del acceso radio en redes LTE para la comunicación fiable y escalable en SGs. En primer lugar, identificamos el problema de congestión en el acceso aleatorio de LTE que aparece en los despliegues de SGs a gran escala. Para superar este problema, se propone un nuevo mecanismo de acceso aleatorio que permite soportar de forma eficiente los servicios de automatización de la distribución eléctrica en tiempo real, con un impacto insignificante en el tráfico de fondo. Motivados por los estrictos requisitos de fiabilidad de las diversas operaciones en la SG, desarrollamos un modelo analítico del procedimiento de acceso aleatorio de LTE que nos permite evaluar el rendimiento del tráfico de monitorización de la red eléctrica basado en eventos bajo diversas condiciones de carga y configuraciones de red. Además, ampliamos nuestro análisis para incluir la relación entre el tamaño de celda y la disponibilidad de recursos de acceso aleatorio ortogonales, e identificamos un reto adicional para la conectividad fiable en la SG. Con este fin, diseñamos un mecanismo de planificación celular que tiene en cuenta las interferencias y la carga de la red, y que mejora la fiabilidad en los servicios de automatización de las subestaciones eléctricas. Finalmente, combinamos el problema de la estimación de estado en sistemas de monitorización de redes eléctricas de área amplia con los retos de fiabilidad en la adquisición de la información. Utilizando el modelo analítico desarrollado, cuantificamos el impacto de la baja fiabilidad en las comunicaciones sobre la precisión de la estimación de estado. La segunda parte de la tesis se centra en el problema de scheduling y compartición de recursos en la RAN para el tráfico de SG y el tráfico de tipo humano. Presentamos un nuevo scheduler que proporciona baja latencia para el tráfico de automatización de la distribución eléctrica, mientras que la asignación de recursos se realiza de un modo que mantiene la degradación de los usuarios celulares en un nivel mínimo. Además, investigamos los beneficios del modo de transmisión Device-to-Device (D2D) en el intercambio de mensajes basados en eventos en escenarios de automatización de subestaciones eléctricas. Diseñamos un mecanismo conjunto de asignación de recursos y selección de modo que da como resultado tasas de datos más elevadas con respecto al modo de transmisión convencional a través de la estación base. Finalmente, se propone un esquema de partición de recursos ortogonales entre enlaces celulares y D2Postprint (published version

    5G Fixed Wireless Access for Bridging the Rural Digital Divide

    Get PDF
    Despite the ubiquitous level of mobile and fixed broadband (FB) connectivity that exists for many people today, the availability of high quality FB services in rural communities is generally much lower than in urban communities, which has led to a digital divide. At the same time, rural communities in Canada have a high level of 4G LTE coverage and the mobile digital divide between urban and rural communities is much smaller compared to the FB divide. Traditionally, FB and mobile services were offered over separate technologies by different operators, and evolved separately from one another. However, recently, a convergence between mobile and FB has started to emerge via 4G Fixed Wireless Access (FWA), which has made it possible to take advantage of the high level of cellular coverage in rural communities to offer (limited) FB at lower costs than traditional wired FB. To bridge the digital divide, rural FWA must be able to provide the same end-to-end experience as urban FB. In in this regard, 4G FWA has been inadequate; however, the recent emergence of 5G, which brings new spectrum, a more efficient radio interface, and multi-user massive MIMO, can make a difference. In the first half of this thesis we outline a vision for how 5G could fix the rural connectivity gap by truly enabling FWA in rural regions. We examine new and upcoming improvements to each area of the 5G network architecture and how they can benefit rural users. Despite those advancements, 5G operators will face a number of challenges in planning and operating rural FWA networks. Therefore, we also draw attention to a number of open research challenges that will need to be addressed. In the latter half of this thesis, we study the planning of a rural 5G multi-user massive MIMO FWA TDD system to offer fixed broadband service to homes. Specifically, we aim to determine the user limit, i.e., the maximum number of homes that can simultaneously receive a target minimum bit rate (MBR) on the downlink (DL) and a target MBR on the uplink (UL) given a set of network resources (e.g., bandwidth, power, antennas) and given a radius. To attain that limit, we must understand how resources should be shared between the DL and UL and how user selection (as well as stream selection since both the base-station (BS) and the homes are multi-antenna), precoding and combining, and power distribution should be performed. To simplify the problem, we use block diagonalization and propose a static user grouping strategy that organizes homes into fixed groups in the DL and UL (we use different groups for the two directions); then we develop a simple process to find the user limit by determining the amount of resources required to give groups the MBRs. We study the impact of group sizes and show that smaller groups use more streams and enable more homes to receive the MBRs when using a 3.5~GHz band. We then show how the user limit at different cell radii is impacted by the system bandwidth, the number of antennas at the BS and homes, the BS power, and the DL and UL MBRs. Lastly, we offer insight into how the network could be operated for an arbitrary number of homes

    White Paper for Research Beyond 5G

    Get PDF
    The documents considers both research in the scope of evolutions of the 5G systems (for the period around 2025) and some alternative/longer term views (with later outcomes, or leading to substantial different design choices). This document reflects on four main system areas: fundamental theory and technology, radio and spectrum management; system design; and alternative concepts. The result of this exercise can be broken in two different strands: one focused in the evolution of technologies that are already ongoing development for 5G systems, but that will remain research areas in the future (with “more challenging” requirements and specifications); the other, highlighting technologies that are not really considered for deployment today, or that will be essential for addressing problems that are currently non-existing, but will become apparent when 5G systems begin their widespread deployment

    A Survey on 5G Usage Scenarios and Traffic Models

    Get PDF
    The fifth-generation mobile initiative, 5G, is a tremendous and collective effort to specify, standardize, design, manufacture, and deploy the next cellular network generation. 5G networks will support demanding services such as enhanced Mobile Broadband, Ultra-Reliable and Low Latency Communications and massive Machine-Type Communications, which will require data rates of tens of Gbps, latencies of few milliseconds and connection densities of millions of devices per square kilometer. This survey presents the most significant use cases expected for 5G including their corresponding scenarios and traffic models. First, the paper analyzes the characteristics and requirements for 5G communications, considering aspects such as traffic volume, network deployments, and main performance targets. Secondly, emphasizing the definition of performance evaluation criteria for 5G technologies, the paper reviews related proposals from principal standards development organizations and industry alliances. Finally, well-defined and significant 5G use cases are provided. As a result, these guidelines will help and ease the performance evaluation of current and future 5G innovations, as well as the dimensioning of 5G future deployments.This work is partially funded by the Spanish Ministry of Economy and Competitiveness (project TEC2016-76795-C6-4-R)H2020 research and innovation project 5G-CLARITY (Grant No. 871428)Andalusian Knowledge Agency (project A-TIC-241-UGR18)

    A Planning and Optimization Framework for Hybrid Ultra-Dense Network Topologies

    Get PDF
    The deployment of small cells has been a critical upgrade in Fourth Generation (4G) mobile networks as they provide macrocell traffic offloading gains, improved spectrum reuse and reduce coverage holes. The need for small cells will be even more critical in Fifth Generation (5G) networks due to the introduction of higher spectrum bands, which necessitate denser network deployments to support larger traffic volumes per unit area. A network densification scenario envisioned for evolved fourth and fifth generation networks is the deployment of Ultra-Dense Networks (UDNs) with small cell site densities exceeding 90 sites/km2 (or inter-site distances of less than 112 m). The careful planning and optimization of ultra-dense networks topologies have been known to significantly improve the achievable performance compared to completely random (unplanned) ultra-dense network deployments by various third-part stakeholders (e.g. home owners). However, these well-planned and optimized ultra-dense network deployments are difficult to realize in practice due to various constraints, such as limited or no access to preferred optimum small cell site locations in a given service area. The hybrid ultra-dense network topologies provide an interesting trade-off, whereby, an ultra-dense network may constitute a combination of operator optimized small cell deployments that are complemented by random small cell deployments by third-parties. In this study, an ultra-dense network multiobjective optimization framework and post-deployment power optimization approach are developed for realization and performance comparison of random, optimized and hybrid ultra-dense network topologies in a realistic urban case study area. The results of the case study demonstrate how simple transmit power optimization enable hybrid ultra-dense network topologies to achieve performance almost comparable to optimized topologies whilst also providing the convenience benefits of random small cell deployments

    A Survey on Long-Range Wide-Area Network Technology Optimizations

    Get PDF
    Long-Range Wide-Area Network (LoRaWAN) enables flexible long-range service communications with low power consumption which is suitable for many IoT applications. The densification of LoRaWAN, which is needed to meet a wide range of IoT networking requirements, poses further challenges. For instance, the deployment of gateways and IoT devices are widely deployed in urban areas, which leads to interference caused by concurrent transmissions on the same channel. In this context, it is crucial to understand aspects such as the coexistence of IoT devices and applications, resource allocation, Media Access Control (MAC) layer, network planning, and mobility support, that directly affect LoRaWAN’s performance.We present a systematic review of state-of-the-art works for LoRaWAN optimization solutions for IoT networking operations. We focus on five aspects that directly affect the performance of LoRaWAN. These specific aspects are directly associated with the challenges of densification of LoRaWAN. Based on the literature analysis, we present a taxonomy covering five aspects related to LoRaWAN optimizations for efficient IoT networks. Finally, we identify key research challenges and open issues in LoRaWAN optimizations for IoT networking operations that must be further studied in the future

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research

    Design and analysis of LTE and wi-fi schemes for communications of massive machine devices

    Get PDF
    Existing communication technologies are designed with speciÿc use cases in mind, however, ex-tending these use cases usually throw up interesting challenges. For example, extending the use of existing cellular networks to emerging applications such as Internet of Things (IoT) devices throws up the challenge of handling massive number of devices. In this thesis, we are motivated to investigate existing schemes used in LTE and Wi-Fi for supporting massive machine devices and improve on observed performance gaps by designing new ones that outperform the former. This thesis investigates the existing random access protocol in LTE and proposes three schemes to combat massive device access challenge. The ÿrst is a root index reuse and allocation scheme which uses link budget calculations in extracting a safe distance for preamble reuse under vari-able cell size and also proposes an index allocation algorithm. Secondly, a dynamic subframe optimization scheme that combats the challenge from an optimisation solution perspective. Thirdly, the use of small cells for random access. Simulation and numerical analysis shows performance improvements against existing schemes in terms of throughput, access delay and probability of collision. In some cases, over 20% increase in performance was observed. The proposed schemes provide quicker and more guaranteed opportunities for machine devices to communicate. Also, in Wi-Fi networks, adaptation of the transmission rates to the dynamic channel condi-tions is a major challenge. Two algorithms were proposed to combat this. The ÿrst makes use of contextual information to determine the network state and respond appropriately whilst the second samples candidate transmission modes and uses the e˛ective throughput to make a deci-sion. The proposed algorithms were compared to several existing rate adaptation algorithms by simulations and under various system and channel conÿgurations. They show signiÿcant per-formance improvements, in terms of throughput, thus, conÿrming their suitability for dynamic channel conditions

    Improved planning and resource management in next generation green mobile communication networks

    Get PDF
    In upcoming years, mobile communication networks will experience a disruptive reinventing process through the deployment of post 5th Generation (5G) mobile networks. Profound impacts are expected on network planning processes, maintenance and operations, on mobile services, subscribers with major changes in their data consumption and generation behaviours, as well as on devices itself, with a myriad of different equipment communicating over such networks. Post 5G will be characterized by a profound transformation of several aspects: processes, technology, economic, social, but also environmental aspects, with energy efficiency and carbon neutrality playing an important role. It will represent a network of networks: where different types of access networks will coexist, an increasing diversity of devices of different nature, massive cloud computing utilization and subscribers with unprecedented data-consuming behaviours. All at greater throughput and quality of service, as unseen in previous generations. The present research work uses 5G new radio (NR) latest release as baseline for developing the research activities, with future networks post 5G NR in focus. Two approaches were followed: i) method re-engineering, to propose new mechanisms and overcome existing or predictably existing limitations and ii) concept design and innovation, to propose and present innovative methods or mechanisms to enhance and improve the design, planning, operation, maintenance and optimization of 5G networks. Four main research areas were addressed, focusing on optimization and enhancement of 5G NR future networks, the usage of edge virtualized functions, subscriber’s behavior towards the generation of data and a carbon sequestering model aiming to achieve carbon neutrality. Several contributions have been made and demonstrated, either through models of methodologies that will, on each of the research areas, provide significant improvements and enhancements from the planning phase to the operational phase, always focusing on optimizing resource management. All the contributions are retro compatible with 5G NR and can also be applied to what starts being foreseen as future mobile networks. From the subscriber’s perspective and the ultimate goal of providing the best quality of experience possible, still considering the mobile network operator’s (MNO) perspective, the different proposed or developed approaches resulted in optimization methods for the numerous problems identified throughout the work. Overall, all of such contributed individually but aggregately as a whole to improve and enhance globally future mobile networks. Therefore, an answer to the main question was provided: how to further optimize a next-generation network - developed with optimization in mind - making it even more efficient while, simultaneously, becoming neutral concerning carbon emissions. The developed model for MNOs which aimed to achieve carbon neutrality through CO2 sequestration together with the subscriber’s behaviour model - topics still not deeply focused nowadays – are two of the main contributions of this thesis and of utmost importance for post-5G networks.Nos próximos anos espera-se que as redes de comunicações móveis se reinventem para lá da 5ª Geração (5G), com impactos profundos ao nível da forma como são planeadas, mantidas e operacionalizadas, ao nível do comportamento dos subscritores de serviços móveis, e através de uma miríade de dispositivos a comunicar através das mesmas. Estas redes serão profundamente transformadoras em termos tecnológicos, económicos, sociais, mas também ambientais, sendo a eficiência energética e a neutralidade carbónica aspetos que sofrem uma profunda melhoria. Paradoxalmente, numa rede em que coexistirão diferentes tipos de redes de acesso, mais dispositivos, utilização massiva de sistema de computação em nuvem, e subscritores com comportamentos de consumo de serviços inéditos nas gerações anteriores. O trabalho desenvolvido utiliza como base a release mais recente das redes 5G NR (New Radio), sendo o principal focus as redes pós-5G. Foi adotada uma abordagem de "reengenharia de métodos” (com o objetivo de propor mecanismos para resolver limitações existentes ou previsíveis) e de “inovação e design de conceitos”, em que são apresentadas técnicas e metodologias inovadoras, com o principal objetivo de contribuir para um desenho e operação otimizadas desta geração de redes celulares. Quatro grandes áreas de investigação foram endereçadas, contribuindo individualmente para um todo: melhorias e otimização generalizada de redes pós-5G, a utilização de virtualização de funções de rede, a análise comportamental dos subscritores no respeitante à geração e consumo de tráfego e finalmente, um modelo de sequestro de carbono com o objetivo de compensar as emissões produzidas por esse tipo de redes que se prevê ser massiva, almejando atingir a neutralidade carbónica. Como resultado deste trabalho, foram feitas e demonstradas várias contribuições, através de modelos ou metodologias, representando em cada área de investigação melhorias e otimizações, que, todas contribuindo para o mesmo objetivo, tiveram em consideração a retro compatibilidade e aplicabilidade ao que se prevê que sejam as futuras redes pós 5G. Focando sempre na perspetiva do subscritor da melhor experiência possível, mas também no lado do operador de serviço móvel – que pretende otimizar as suas redes, reduzir custos e maximizar o nível de qualidade de serviço prestado - as diferentes abordagens que foram desenvolvidas ou propostas, tiveram como resultado a resolução ou otimização dos diferentes problemas identificados, contribuindo de forma agregada para a melhoria do sistema no seu todo, respondendo à questão principal de como otimizar ainda mais uma rede desenvolvida para ser extremamente eficiente, tornando-a, simultaneamente, neutra em termos de emissões de carbono. Das principais contribuições deste trabalho relevam-se precisamente o modelo de compensação das emissões de CO2, com vista à neutralidade carbónica e um modelo de análise comportamental dos subscritores, dois temas ainda pouco explorados e extremamente importantes em contexto de redes futuras pós-5G
    corecore