29 research outputs found

    Méthodes d'apprentissage statistique pour le ranking : théorie, algorithmes et applications

    Get PDF
    Multipartite ranking is a statistical learning problem that consists in ordering observations that belong to a high dimensional feature space in the same order as the labels, so that the observations with the highest label appear at the top of the list. This work aims to understand the probabilistic nature of the multipartite ranking problem in order to obtain theoretical guarantees for ranking algorithms. In this context, the output of a ranking algorithm takes the form of a scoring function, a function that maps the space of the observation to the real line which order is induced using the values on the real line. The contributions of this manuscript are the following : First, we focus on the characterization of optimal solutions to multipartite ranking. The second research theme is the design of algorithms to produce scoring functions. We offer two methods, the first using an aggregation procedure, the second an approximation scheme. Finally, we return to the binary ranking problem to establish adaptive minimax rate of convergence.Le ranking multipartite est un problème d'apprentissage statistique qui consiste à ordonner les observations qui appartiennent à un espace de grande dimension dans le même ordre que les labels, de sorte que les observations avec le label le plus élevé apparaissent en haut de la liste. Cette thèse vise à comprendre la nature probabiliste du problème de ranking multipartite afin d'obtenir des garanties théoriques pour les algorithmes de ranking. Dans ce cadre, la sortie d'un algorithme de ranking prend la forme d'une fonction de scoring, une fonction qui envoie l'espace des observations sur la droite réelle et l'ordre finale est construit en utilisant l'ordre induit par la droite réelle. Les contributions de ce manuscrit sont les suivantes : d'abord, nous nous concentrons sur la caractérisation des solutions optimales de ranking multipartite. Le deuxième thème de recherche est la conception d'algorithmes pour produire des fonctions de scoring. Nous proposons deux méthodes, la première utilisant une procédure d'agrégation, la deuxième un schema d'approximation. Enfin, nous revenons au problème de ranking binaire afin d'établir des vitesse minimax adaptives de convergences

    Ordinal regression methods: survey and experimental study

    Get PDF
    Abstract—Ordinal regression problems are those machine learning problems where the objective is to classify patterns using a categorical scale which shows a natural order between the labels. Many real-world applications present this labelling structure and that has increased the number of methods and algorithms developed over the last years in this field. Although ordinal regression can be faced using standard nominal classification techniques, there are several algorithms which can specifically benefit from the ordering information. Therefore, this paper is aimed at reviewing the state of the art on these techniques and proposing a taxonomy based on how the models are constructed to take the order into account. Furthermore, a thorough experimental study is proposed to check if the use of the order information improves the performance of the models obtained, considering some of the approaches within the taxonomy. The results confirm that ordering information benefits ordinal models improving their accuracy and the closeness of the predictions to actual targets in the ordinal scal

    Quadruply Stochastic Gradient Method for Large Scale Nonlinear Semi-Supervised Ordinal Regression AUC Optimization

    Full text link
    Semi-supervised ordinal regression (S2^2OR) problems are ubiquitous in real-world applications, where only a few ordered instances are labeled and massive instances remain unlabeled. Recent researches have shown that directly optimizing concordance index or AUC can impose a better ranking on the data than optimizing the traditional error rate in ordinal regression (OR) problems. In this paper, we propose an unbiased objective function for S2^2OR AUC optimization based on ordinal binary decomposition approach. Besides, to handle the large-scale kernelized learning problems, we propose a scalable algorithm called QS3^3ORAO using the doubly stochastic gradients (DSG) framework for functional optimization. Theoretically, we prove that our method can converge to the optimal solution at the rate of O(1/t)O(1/t), where tt is the number of iterations for stochastic data sampling. Extensive experimental results on various benchmark and real-world datasets also demonstrate that our method is efficient and effective while retaining similar generalization performance.Comment: 12 pages, 9 figures, conferenc

    Scaling-up Empirical Risk Minimization: Optimization of Incomplete U-statistics

    Get PDF
    In a wide range of statistical learning problems such as ranking, clustering or metric learning among others, the risk is accurately estimated by UU-statistics of degree d≥1d\geq 1, i.e. functionals of the training data with low variance that take the form of averages over kk-tuples. From a computational perspective, the calculation of such statistics is highly expensive even for a moderate sample size nn, as it requires averaging O(nd)O(n^d) terms. This makes learning procedures relying on the optimization of such data functionals hardly feasible in practice. It is the major goal of this paper to show that, strikingly, such empirical risks can be replaced by drastically computationally simpler Monte-Carlo estimates based on O(n)O(n) terms only, usually referred to as incomplete UU-statistics, without damaging the OP(1/n)O_{\mathbb{P}}(1/\sqrt{n}) learning rate of Empirical Risk Minimization (ERM) procedures. For this purpose, we establish uniform deviation results describing the error made when approximating a UU-process by its incomplete version under appropriate complexity assumptions. Extensions to model selection, fast rate situations and various sampling techniques are also considered, as well as an application to stochastic gradient descent for ERM. Finally, numerical examples are displayed in order to provide strong empirical evidence that the approach we promote largely surpasses more naive subsampling techniques.Comment: To appear in Journal of Machine Learning Research. 34 pages. v2: minor correction to Theorem 4 and its proof, added 1 reference. v3: typo corrected in Proposition 3. v4: improved presentation, added experiments on model selection for clustering, fixed minor typo

    Label Ranking with Probabilistic Models

    Get PDF
    Diese Arbeit konzentriert sich auf eine spezielle Prognoseform, das sogenannte Label Ranking. Auf den Punkt gebracht, kann Label Ranking als eine Erweiterung des herkömmlichen Klassifizierungproblems betrachtet werden. Bei einer Anfrage (z. B. durch einen Kunden) und einem vordefinierten Set von Kandidaten Labels (zB AUDI, BMW, VW), wird ein einzelnes Label (zB BMW) zur Vorhersage in der Klassifizierung benötigt, während ein komplettes Ranking aller Label (zB BMW> VW> Audi) für das Label Ranking erforderlich ist. Da Vorhersagen dieser Art, bei vielen Problemen der realen Welt nützlich sind, können Label Ranking-Methoden in mehreren Anwendungen, darunter Information Retrieval, Kundenwunsch Lernen und E-Commerce eingesetzt werden. Die vorliegende Arbeit stellt eine Auswahl an Methoden für Label-Ranking vor, die Maschinelles Lernen mit statistischen Bewertungsmodellen kombiniert. Wir konzentrieren wir uns auf zwei statistische Ranking-Modelle, das Mallows- und das Plackett-Luce-Modell und zwei Techniken des maschinellen Lernens, das Beispielbasierte Lernen und das Verallgemeinernde Lineare Modell
    corecore