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Chapter 1

Introduction

This thesis develops a series of probability-based methods for the label rank-

ing problem, an emerging learning task often addressed in the field of machine

learning in general and preference learning in particular. In this chapter, we

give a general introduction to the thesis, starting with some illustrative ex-

amples of label ranking in Section 1.1. We summarize the contributions of

the thesis in Section 1.2 and outline its structure in Section 1.3.

1.1 Label Ranking: Illustrative Examples

Label ranking is a key prediction task in preference learning, where the goal

is to map instances to a total order of a finite set of predefined labels. Label

ranking problems can be found everywhere. As an example, suppose a car

dealer sells three brands of cars, BMW, Ford, and Toyota. Each customer

may have different preferences on these cars. The car dealer may have records

as listed in Table 1.1. An interesting question is, how we can predict the

preferences of new customers based on the historical records, i.e., the training

data. For example, what would be a reasonable ranking of these three brands

for a 32 years old male from Berlin? Such prediction can provide great helps

for the sale management. The records in Table 1.1 form a typical label

ranking data set. Different from a classification task, where a subset of
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customer preference
male, 49, New York Ford � Toyota � BMW
male, 22, Beijing BMW � Ford � Toyota
male, 30, Frankfurt BMW � Toyota � Ford
female, 27, Tokyo Toyota � BMW � Ford
· · ·

Table 1.1: A label ranking data set based on a fictitious car dealer. The
customers are characterized by gender, age, and geographical location. There
are three labels in total corresponding to three brands of cars.

labels is selected as the prediction, a complete ordering of labels is required.

Predictions in terms of a complete ordering of labels offers some advantages

over a subset of labels. In particular, when a top choice for a customer is not

available due to some unexpected reason, it is very easy to give the customer

a second best offer.

Predicting an ordering of labels is generally much harder than predicting

a subset of them, as the search space is of order n! instead of 2n, where

n is the number of labels. Moreover, the evaluation of the predictions in

label ranking becomes more complicated than that in the classification set-

ting, simply because comparing two rankings is generally more difficult than

comparing two subsets. A degree of similarity must be first defined in order

to compare rankings. For example, given the ground-true ranking BMW �
Ford � Toyota, we may say the prediction BMW � Toyota � Ford is better

than the prediction Toyota � Ford � BMW, if the degree of similarity is

defined as the number of paired labels that the prediction agrees with the

ground-true ranking.

Another challenge comes from the fact that the training data may be

imperfect. The information provided by customers can be incorrect or in-

consistent. Particularly in label ranking, the training data may contain in-

complete ranking information. For example, a customer may associate with

the ranking BMW � Ford, but no information is given about the preference

on Toyota. In this case, various interpretations exist. One may think this

customer’s ground-true ranking being one of the following, BMW � Ford �
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Toyota, BMW � Toyota � Ford, or Toyota � BMW � Ford. When analyz-

ing such piece of incomplete information, it requires us to consider all these

possible situations and hence leads to great computational challenges. Note

that, the information BMW � Ford doesn’t necessarily mean BMW is the

best choice for this customer nor Ford is the worst one. Such information

can be hardly represented with the conventional classification setting.

In some label ranking applications, the reliability of the predictions is of

particular concern. To give a striking example, let us consider a learning task

for the cancer treatment. We have observed a set of cancer patients, char-

acterized by gender, age, tumor type, tumor size, etc. and for each patient

there is an associated ranking of four possible medical actions: surgery, ra-

diotherapy, chemotheraphy, and no treatment. When a new patient arrives,

the goal is to predict a ranking of these possible actions that is most suitable

for this patient. Needless to say, any prediction must come with extreme

caution. We shall only give predictions that we are certain of. For example,

if we are sure that the new patient needs a treatment, but uncertain about

choices of treatments, the prediction should look like this

surgery | radiotherapy | chemotheraphy � no treatment,

meaning that any treatment is better than no treatment, but the preference

between different treatments is unknown. In order to come up with such

predictions, we need to have a label ranking method that is able to assess all

the pairwise comparisons it can provide and reject all the comparisons that

are unreliable.

1.2 Summary of Contributions

Built upon the existing label ranking research, this thesis attempts to pursue

three key directions:
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1. To develop new label ranking methods with sound theoretical founda-

tions.

2. To establish relations between label ranking and other learning settings,

explore new applications of label ranking.

3. To generalize the label ranking setting.

The contributions of the thesis can be categorized into these three directions

correspondingly.

Most of existing approaches to label ranking focus on adapting the es-

tablished classification methods to label ranking. That is, to reduce the

label ranking problem to a set of classification problems and the solutions

of these classification problems are then combined to a label ranking. The

label ranking methods proposed in this thesis are centered around the prob-

abilistic theory, making use of different statistical models for ranking data,

by which such reduction to classifications are avoid. The use of probabilistic

models allows theoretically sound analysis of our approaches and comes with

a number of other merits as well.

The setting of label ranking is very general and it can be seen as a general-

ization of a number of other learning settings. For example, as we mentioned

in the car dealer example in the previous section, when a subset of some

top ranked labels instead of a complete ordering of labels is predicted, it

becomes a classification problem. We elaborate the idea using label ranking

techniques to solve classification problems.

We propose an extension of the label ranking setting, where the outputs

are not necessary a total order, but can be a partial order in general. The idea

is to predict only reliable predictions. Unlike most of the existing approaches

for label ranking, with the probabilistic approaches we propose, we can derive

the degree of confidence of a label ranking prediction in a very natural way.

4



1.3 Thesis Outline

When predicting label ranking of an instance, one often interprets such rank-

ing on labels as a preference statement. In the car dealer case for example, it

can be understood that we are trying to predict the customer’s preferences

on different brands of cars. In fact, label ranking is often studied by the

preference learning community and is considered as one of the key problems

in the preference learning field. In Chapter 2, we address label ranking learn-

ing in more details under the preference learning framework and, along the

way, establish the basic mathematical concepts allowing future discussions in

later chapters. Specifically, we give a formal definition of the label ranking

learning task and discuss two other related ranking problems. Although the

label ranking setting is the focus of this thesis, we believe such a general dis-

cussion reveals a better picture and helps for understanding the background

of the research problem.

The remainder of the thesis is organized as follows: After an overview of

existing label ranking methods in Chapter 3, our probabilistic label ranking

approaches are introduced in Chapter 4 and 5. Specifically, Chapter 4 and

5 discuss how to utilize local and global learning methods with probabilistic

models, respectively. In Chapter 6 we discuss how to apply the label ranking

technique we proposed to solve classification problems. In particular, we will

make use of the probabilistic label ranking method to solve the multi-label

classification task. Chapter 7 addresses the issues of reliable predictions in

label ranking, especially how to design label ranking methods that are able

to abstain from any unreliable paired comparison between labels. Chapter 8

concludes the thesis with some final remarks.
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Chapter 2

Preference Learning

Preference learning as a new branch of machine learning has attracted consid-

erable attention in recent years. Roughly speaking, preference learning refers

to the problem of learning from observations which reveal, either explicitly

or implicitly, information about the preferences of an individual or a group of

individuals. Generalizing beyond the given training data, the models learned

are typically used for preference prediction, i.e., to predict the preferences of

a new individual or the same individual in a new situation. Among others,

the problem of learning to rank is a representative example and has received

the most attention in the machine learning literature; here, the goal is to

predict preferences in the form of total or partial orders of alternatives (e.g.,

a personalized ranking of webpages retrieved by a search engine). Based

on the form of the training data and the required predictions, three types

of ranking problems are frequently studied in the preference learning litera-

ture, namely object ranking, instance ranking, and label ranking [27]. In this

chapter, we discuss these three ranking problems with an emphasis on the

label ranking task. We try to stick as much as possible to the terminology

commonly used in supervised learning, where a labeled instance consists of a

set of features (called predictor or independent variables in statistics) and an

associated class label (called response or dependent variables in statistics).

The former is normally denoted by x with a corresponding instance space

6



Given:

– a reference set of objects X

– a finite set of pairwise preference xi � xj ∈ X × X

Find:

– a ranking function f(·) that assumes as input a set of objects and
returns a permutation of this set

Performance measures:

– ranking error (e.g., based on the rank correlation) comparing the pre-
dicted ranking with the target ranking

– top-k measures comparing the top-positions of the rankings

– retrieval measures such as precision, recall, NDCG

Table 2.1: Definition of object ranking [27]

X ,

x = (x1, x2, . . . , xd) ∈ X = X1 ×X2 × . . .×Xd , (2.1)

while the label space is denoted by Y .

2.1 Object Ranking

Given objects from an underlying reference set X , the goal in object ranking

is to learn a ranking function that produces a ranking of these objects. This

is typically done by assigning a score to each instance and then sorting by

scores. No output or class label is associated with an object.

An object x ∈ X is commonly, though not necessarily, described by a

attribute-value representation as Equation (2.1). The training information

contains exemplary rankings or pairwise preferences of the form xi � xj

7



meaning that xi is ranked higher than xj. This scenario, summarized in

Table 2.1, is also referred to as “learning to order things” [13].

The performance can be measured with a distance function or correlation

measure on rankings, when the ground-truth is given as rankings. We shall

discuss these measures at Section 2.3. Normally, as the number of objects to

be ranked is very large, one often prefers measures that emphasize more on

the top-ranked objects. Evaluation measures tailored towards such require-

ments have been frequently used in information retrieval, such as NDCG

(normalized discounted cumulative gain) [38].

As an example of an object ranking task, consider the meta-search prob-

lem [13], where the goal consists of learning to combine the web search results

from different search engines. Here the ranking performance is often provided

implicitly by users’ click-through data [39].

2.2 Instance Ranking

The setting of instance ranking resembles ordinal classification, where an

instance x ∈ X belongs to one among a finite set of classes Y = {yi | i =

1, . . . , n} and the classes have an order y1 ≺ . . . ≺ yn. For example, consider

the assignment of submitted papers at an academic conference to classes

reject, weak reject, weak accept, and accept. In contrast to the classification

setting, the goal in instance ranking is not to learn a classifier but a ranking

function. Given a subset X ⊂ X of instances as input, the function produces

a ranking of these instances as output. Hence, instance ranking can be

considered as a generic term for bipartite and multipartite ranking [29]. This

scenario is summarized in Table 2.2.

As an example, consider the task of the reviewing papers in a conference.

Often the labeling of papers is given in terms of different classes, but in the

end, a ranking of papers is more desirable than only the classifications of

them: If the conference finally decides to accept, say, 100 papers, it is much

easier to select according to the ranking, while with the classification setting,

8



Given:

– a set of training instances X = {xi | i = 1, . . . ,m}

– a set of labels Y = {yi | i = 1, . . . , n} endowed with an order y1 ≺ . . . ≺
yn

– for each training instance xi an associated label yi

Find:

– a ranking function f(·) that ranks a new set of instances {xj | j =
1, . . . ,m′} according to their (underlying) preference degrees

Performance measures:

– the area under the ROC-curve (AUC) in the dichotomous case (m = 2)

– generalizations of AUC such as C-index in the polychotomous case
(m > 2)

Table 2.2: Definition of instance ranking [27]

a further tie-breaking procedure is needed.

Different types of accuracy measures have been proposed for instance

ranking. They are normally based on the number of pairs (x,x′) ∈ X ×X
such that x is ranked higher than x′ while the former belongs to a lower

class than the latter. In the two-class case, this amounts to AUC, the area

under the ROC-curve [9], which is equivalent to the Wilcoxon-Mann-Whitney

statistic [64]. A generalization of this measure to the case of multiple classes

is known as the concordance index or C-index in statistics [31].

2.3 Label Ranking

Label ranking can be seen as an extension of the conventional setting of clas-

sification. Roughly speaking, the former is obtained from the latter through

9



Given:

– a set of training instances {xk | k = 1, . . . ,m} ⊂ X

– a set of labels Y = {y1, . . . , yn}

– for each training instance xk an associated set of pairwise preferences
of the form yi �xk

yj

Find:

– a ranking function f(·) that maps any x ∈ X to a ranking �x of Y
(permutation πx ∈ Sn)

Performance measures:

– ranking error (e.g., based on rank correlation measures) comparing pre-
dicted ranking with target ranking

– position error comparing predicted ranking with a target label

Table 2.3: Definition of label ranking [27]

replacing a selection of class labels by a complete label ranking. So, instead

of associating every instance x from the instance space X with some among

a finite set of class labels Y = {y1, . . . , yn}, we now associate x with a total

order of the class labels, that is, a complete, transitive, and asymmetric re-

lation �x on Y , where yi �x yj indicates that yi precedes yj in the ranking

associated with x. It follows that a ranking can be considered as a special

type of preference relation, and therefore we shall also say that yi �x yj in-

dicates that yi is preferred to yj given the instance x. To illustrate, suppose

that instances are students (characterized by attributes such as gender, age,

and major subjects in secondary school) and � is a preference relation on a

fixed set of study fields such as Math, CS, Physics.

Formally, a ranking �x can be identified with a permutation πx of the

set {1, . . . , n}. It is sometimes convenient to define πx(i) = πx(yi) as the

10



position of yi in the ranking, i.e., the rank of yi. This permutation encodes

the (ground truth) ranking

yπ−1
x (1) �x yπ−1

x (2) �x . . . �x yπ−1
x (n) ,

where π−1
x (i) is the index of the label at position i in the ranking. The class

of permutations of {1, . . . , n} (the symmetric group of order n) is denoted

by Ω. By abuse of terminology, though justified in light of the above one-to-

one correspondence, we refer to elements π ∈ Ω as both permutations and

rankings.

To encode a ranking, two representations with integers are often used,

namely the rank vector and the order vector. They both match an integer

from 1 to n with an object. A rank vector lists the ranks given to objects,

where “1” denotes the best and “n” denotes the worst. It presumes the

objects are listed in a prespecified order. An order vector, on the other

hand, lists the objects themselves with their corresponding indexes, from the

best to the worst. For example, considering three subjects

1. Math, 2. CS, 3. Physics,

and the ranking

Physics � Math � CS,

the rank vector representation is π = (2, 3, 1), while the order vector repre-

sentation is π−1 = (3, 1, 2).

The goal in label ranking is to learn a “label ranker” in the form of an

X → Ω mapping. As training data, a label ranker uses a set of instances

xk, k = 1, . . . ,m, together with information about the associated rankings

πxk
. Ideally, complete rankings are given as training information. From a

practical point of view, however, it is also important to allow for incomplete

information in the form of a ranking

yπ−1
x (i1) �x yπ−1

x (i2) �x . . . �x yπ−1
x (ik) ,

11



where {i1, i2, . . . , ik} is a subset of the index set {1, . . . , n} such that 1 ≤ i1 <

i2 < . . . < ik ≤ n. For example, for an instance x, it might be known that

y2 �x y1 �x y5, while no preference information is given about the labels y3

or y4.

To evaluate the predictive performance of a label ranker, a suitable loss

function on Ω is needed. In the statistical literature, several distance mea-

sures for rankings have been proposed. One commonly used measure is the

Kendall distance based on the number of discordant pairs,

T (π, σ) = # { (i, j) |π(i) > π(j) and σ(i) < σ(j) } , (2.2)

which is closely related to the Kendall’s tau coefficient in the case of complete

rankings. In fact, the latter is a normalization of (2.2) to the interval [−1, 1]

that can be interpreted as a correlation measure (it assumes the value 1 if

σ = π and the value −1 if σ is the reversal of π):

τ =
# concordant pairs − # discordant pairs

# all pairs
, (2.3)

where the number of concordant pairs is defined similarly by # {(i, j) |π(i) >

π(j) and σ(i) > σ(j) }.
Kendall distance is a natural, intuitive, and easily interpretable measure

[44]. We shall focus on (2.2) throughout our discussions, although other

distance measures could of course be used. Other widely used metrics on

rankings include the Footrule distance

F (π, σ) =
∑
i

|π(i)− σ(i)| (2.4)

and the Spearman distance

S(π, σ) =
∑
i

(π(i)− σ(i))2 . (2.5)

12



It can be shown that [21]

T (π, σ) ≤ F (π, σ) ≤ 2T (π, σ) , (2.6)

1√
n
T (π, σ) ≤ S(π, σ) ≤ 2T (π, σ) . (2.7)

Inequalities (2.6) and (2.7) establish tight relations between these three dis-

tances measures, which are of great practical relevance: Two rankings with

a small distance in terms of one of these three measures tend to have small

distance in terms of the other two measures as well. Based on this theoret-

ical result, efficient approximate algorithms can be invented without much

sacrifice of predictive performance, as we shall see in the later chapters.

A desirable property of any distance D on rankings is its invariance to-

ward a renumbering of the elements (renaming of labels). This property is

equivalent to the right invariance of D, namely D(σν, πν) = D(σ, π) for all

σ, π, ν ∈ Ω, where σν = σ ◦ ν denotes the permutation i 7→ σ(ν(i)). The dis-

tance (2.2) is right-invariant, and so are most other commonly used metrics

on Ω.

13



Chapter 3

Existing Label Ranking

Methods

A number of methods have been proposed for label ranking learning. In

this chapter, we give a concise survey of some key references, with a focus

on the methods that we are comparing with in the later chapters. Most of

the existing methods for label ranking can be categorized as reduction ap-

proaches, where a label ranking problem is decomposed into several simpler

sub-problems, usually binary classification problems, and then the solutions

of these sub-problems are combined into output rankings. In Sections 3.1 and

3.2 we will respectively introduce two widely applied schemes in the reduction

approaches, namely label ranking by learning utility functions and label rank-

ing by learning pairwise preferences, with discussions on some representative

work. In Section 3.3, we will discuss the work by Brinker and Hüllermeier [10],

which applies the instance-based methodology for label ranking and doesn’t

belong to the paradigm of reduction approaches.
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3.1 Label Ranking by Learning Utility Func-

tions

One natural way to represent preferences is to evaluate individual alternatives

by means of a real-valued utility function. In the label ranking scenario, a

utility function fi : X → R is needed for each label yi, i = 1, . . . , n. Here,

fi(x) is the utility assigned to label yi by instance x. To obtain a ranking

for x, the labels are ordered according to these utility scores, such that

yi �x yj ⇔ fi(x) > fj(x).

If the training data offer the utility scores directly, preference learning

would reduce to a conventional regression problem. But this type of in-

formation can rarely be assumed. Instead, usually only constraints derived

from comparative preference information of the form “this label should have

a higher utility score than that label” are given. Thus, the challenge for

the learner is to find a function that is in agreement with all constraints as

much as possible. Subsequently, we outline two approaches, constraint clas-

sification (CC) and log-linear models for label ranking (LL), which fit in this

paradigm.

3.1.1 Constraint Classification

To learn the utility function fi(·) for each label, the constraint classification

framework proposed by Har-Peled et al. [33] proceeds from the following

linear models:

fi(x) =
d∑

k=1

wikxk , (3.1)

with label-specific coefficients wik, k = 1, . . . , d. A preference yi �x yj is

translated into the constraint fi(x) − fj(x) > 0 and equivalently fj(x) −
fi(x) < 0. Both constraints, the positive and the negative one, can be

expressed in terms of the sign of an inner product 〈z,w〉, where w =

(w11, . . . , w1d, w21, . . . , wnd) is a concatenation of all label-specific coefficients.
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Correspondingly, the vector z is constructed by mapping the original d-

dimensional training instance x = (x1, . . . , xd) into an (n × d)-dimensional

space: For the positive constraint, x is copied into the components ((i −
1)× d+ 1), . . . , (i× d) and its negation −x into the components ((j − 1)×
d + 1), . . . , (j × d); the remaining entries are filled with 0. For the negative

constraint, a vector is constructed with the same elements but reversed signs.

Both constraints can be considered as training instances for a conventional

binary classifier in an (n×d)-dimensional space: The first vector is a positive

and the second one a negative instance. The corresponding learner tries to

find a separating hyperplane in this space, that is, a suitable vector w satis-

fying all constraints. To make a prediction for a new example x′, the labels

are ordered according to the response resulting from multiplying x′ with the

i-th d-element section of the hyperplane vector. As this method works solely

in an inner product space, it can be kernelized when more complex utility

functions are desired [53].

Alternatively, [33] proposes an online version of constraint classification,

namely an iterative algorithm that maintains weight vectorsw1, . . . ,wn ∈ Rd

for each label individually. In every iteration, the algorithm checks each

constraint yi �x yj and, in case the associated inequality 〈wi,x〉 = fi(x) >

fj(x) = 〈wj,x〉 is violated, adapts the weight vectors wi,wj appropriately.

In particular, this algorithm can be implemented in terms of a multi-output

perceptron in a way quite similar to the approach of Grammer and Singer

[15]. We list the pseudo code proposed by [33] in Algorithm 1 with slight

modifications tailored to the label ranking learning. When the training data

are noise-free, that is, all the pairwise preferences yj �xi
yj′ are correctly

given, the convergence of Algorithm 1 can be guaranteed. It is of course

not often the case in a real-world application. In practice a noise-tolerant

version of this algorithm can be applied, namely setting an upper bound α

to the number of updates that can be made on one particular instance (or

preference). This is often called the α-bound trick in the literature [42].
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Algorithm 1 Online constraint classification for label ranking
Require: training data of size m as defined in Table 2.3
Ensure: weight vectors w1, . . . ,wn ∈ Rd for ranking the labels

1: initialize w1, . . . ,wn ∈ Rd
2: repeat until converge
3: for i = 1, . . . ,m do
4: for all pairwise preference yj �xi yj′ do
5: if 〈wj ,xi〉 ≤ 〈wj′ ,xi〉 then
6: promote wj

7: demote wj′

8: end if
9: end for

10: end for

3.1.2 Log-Linear Model

The log-linear models for label ranking have been proposed by Dekel et al.

[17]. Here, utility functions are expressed in terms of linear combinations of

a set of base ranking functions:

fi(x) =
∑
j

vjhj(x, yi), (3.2)

where a base function hj(·) maps instance-label pairs to real numbers. In

particular, for the case in which instances are represented as feature vectors

x = (x1, . . . , xd) and the base functions are of the form

hki(x, y) =

{
xk y = yi

0 y 6= yi
(1 ≤ k ≤ d, 1 ≤ i ≤ n), (3.3)

the model is essentially equivalent to constraint classification, as it amounts

to learning label-specific utility functions (3.1). Algorithmically, however,

the underlying optimization problem is approached in a different way, by

means of a boosting-based algorithm that seeks to minimize a generalized
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ranking error

l(f ,G) =
m∑
i=1

1

|Gi|
∑
Gi

log (1 + exp(fk(xi)− fk′(xi))) (3.4)

in an iterative way, where Gi = {(k, k′) | yk �xi
yk′} is the set of pairwise

preferences associated with instance xi. The corresponding pseudo code, a

modified version of the one stated in [17], can be found at Algorithm 2.

Algorithm 2 A boosting-based algorithm for label ranking
Require: training data of size m as defined in Table 2.3 and a set of base ranking

functions {h0, . . . , hd·n} in the form of Equation (3.3)
Ensure: a corresponding weight vector v1, . . . , vd·n ∈ R for base ranking functions

Initialize:
1: v1 = {0, . . . , 0}
2: πi,p,j = hj(xi, term(p)) − hj(xi, init(p)), with 1 ≤ i ≤ m, 1 ≤ j ≤ d · n,
p ∈ {yk �xi yk′}, and for p = a � b, init(p) = a, term(p) = b

3: z = maxi,p
∑

j |πi,p,j |
Iterate:

4: for t = 1, 2, . . . do

5: qt,i,p =
exp〈vt,πi,p〉

1+exp〈vt,πi,p〉 , with 1 ≤ i ≤ m, p ∈ {yk �xi yk′}
6: w+

t,j =
∑

i,p:πi,p,j>0
qt,i,pπi,p,j

d·n and w−t,j =
∑

i,p:πi,p,j<0
−qt,i,pπi,p,j

d·n , with 1 ≤ j ≤
d · n

7: λt,j = 1
2 ln

(
w+

t,j

w−t,j

)
, with 1 ≤ j ≤ d · n

8: vt+1 = vt − λt
z

9: end for

3.1.3 Related Methods

The maximum-margin approach [24] proposed for multi-label classification

has a straightforward generalization to the label ranking problem. This ap-

proach tries to minimize the rank loss defined as

l(f,Gi) =
1

|Gi|
|fp(xi) ≤ fq(xi)| , (3.5)
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where fp(xi) = 〈wp,xi〉 and Gi = {(p, q) | yq �xi
yp} is the set of pairwise

preferences associated with instance xi. The corresponding optimization

problem can be formalized as follows:

min
w1,...,wn

n∑
j=1

‖wj‖2 + C

m∑
i=1

1

|Gi|
∑

(p,q)∈Gi

ξipq

subject to: 〈wp −wq,xi〉 ≥ 1− ξipq,

ξipq ≥ 0,

for all (p, q) ∈ Gi,∀i = 1, . . . ,m ,

(3.6)

where C > 0 is the hyper-parameter that balances the loss term and the

regularization term. This formulation is closely related to Algorithm 1, the

online constraint classification for label ranking: (3.6) can be considered as

a regularized, maximum margin, batch version of Algorithm 1. Despite a

higher computation cost, (3.6) has a better generalization guarantee. The

empirical performance of both algorithms are, however, generally quite com-

parable [36].

The method proposed in [24] is further generalized in [55], where one

assumes the existence of a feedback vector v ∈ Rn that can be induced by

a decomposition framework on the preference graphs of labels. Moreover,

yi �x yj if and only if vi > vj, and the difference vi − vj, representing the

importance of the pairwise preference yi �x yj, is used in the optimization

problem. The loss function considered in this work is a generalized hinge-loss

for label ranking defined as follows:

li,j(f ,v) = [(vi − vj)− (fi(x)− fj(x))]+ , (3.7)

where fi(x) = 〈wi,x〉 and [a]+ = max(a, 0). The form of the feedback vector

v can be very flexible and hence makes this method a very general one: The

quadratic programming formulation in [24] can be recovered as a special case

of this method.
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3.2 Label Ranking by Learning Pairwise Pref-

erences

Label ranking by learning pairwise preferences is motivated by the idea of

the one-vs-one framework, a decomposition technique extensively used in

multi-class classification [26]. One-vs-one is a pairwise learning framework

known by a variety of names, such as all pairs, round robin, etc. The key

idea is to transform a n-class problem with class labels Y = {y1, y2, . . . , yn}
into n(n − 1)/2 binary problems, one for each pair of class labels. For each

pair of labels (yi, yj) ∈ Y × Y , 1 ≤ i < j ≤ n, a separate model Mij

is trained using the instances from these two labels as the training set. A

modelMij is intended to separate the objects with label yi from those having

label yj. At classification time, a query instance x ∈ X is submitted to

all models Mij, and the predictions Mij(x) are combined into an overall

prediction. Often, the prediction Mij(x) is interpreted as a vote for either

yi or yj, and the label with the highest overall votes is proposed as the

final prediction. Comparing to alternative decomposition techniques, such

as the one-vs-all approach which learns one model for each label, the one-

vs-one approach often leads to simpler problems. In particular, since all

instances having neither of the two labels are ignored, pairwise problems

contain fewer training instances and are hence computationally less complex.

Moreover, these problems typically lead to simpler decision boundaries. See

an illustration in Figure 3.1.

To demonstrate how the one-vs-one decomposition principle can be ap-

plied in a label ranking problem, we illustrate an example in Figure 3.2.

Even though we assume the existence of an underlying ranking, we do not

expect the training data to provide full information about this ranking. In-

consistencies may also appear, such as pairwise preferences that conflict with

each other (e.g., lead to cycles). At prediction time, similar to classification,

a query instance x ∈ X is submitted to all learned models Mij, and the

prediction Mij(x) is often interpreted as a vote for either yi or yj. Instead
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Figure 3.1: One-vs-all classification (figure on left) transforms a 6-class prob-
lem into 6 binary problems, one for each class, where each of these problems
uses the instances of its class label as the positive ones (here ◦), and all other
instances as negative ones. One-vs-one classification (figure on right) solves
6 · (6 − 1)/2 binary problems, one for each pair of labels (here ◦ and +)
ignoring the instances with other labels.

of outputting the label with the highest value of votes, a ranking of labels

is generated according to their scores (i.e., replacing the arg max operation

with arg sort).

3.2.1 Complexity Analysis

In this section, we discuss the runtime complexity of the previously mentioned

label ranking methods. Let |Gi| be the number of pairwise preferences that

are associated with instance xi, we denote by z = 1/m ·
∑

i|Gi| the average

number of pairwise preferences over all instances throughout this section.

The two following theorems, due to [26] and [36], serve as a basic guide-

line for choosing between RPC and CC in practice, as long as the runtime

requirement is a major concern:

Theorem 1. For a base learner with complexity O(mc), the complexity of

Label Ranking by Learning Pairwise Preferences (RPC for short) is O(zmc).

Proof. Let mij be the number of training instances for model Mij. Each
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x1 x2 x3 Preferences

1 1 1 y1≻y2  | y2≻y3

1 1 0 y1≻y2  | y3≻y2

1 0 1 y2≻y1

1 0 0 y2≻y1  | y1≻y3

0 0 0 y3≻y1

0 1 0 y3≻y2  | y3≻y1

0 1 1 y1≻y3

x1 x2 x3 y1≻y2 

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 0

x1 x2 x3 y2≻y3 

1 1 1 1

1 1 0 0

0 1 0 0

x1 x2 x3 y1≻y3 

1 0 0 1

0 0 0 0

0 1 0 0

0 1 1 1

Figure 3.2: The decomposition scheme of label ranking by learning pairwise
preferences. In the original data, each instance is associated with a subset
of pairwise preferences. According to these pairwise preferences, a set of
corresponding binary classification data is established.

instance corresponds to a single preference, i.e.,

∑
1≤i<j≤n

mij =
m∑
k=1

|Gi| = zm (3.8)
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and the total learning complexity is
∑
O(mc

ij). We now obtain∑
O(mc

ij)

O(zmc)
=

1

z

∑ O(mc
ij)

O(mc)
=

1

z

∑
O
((mij

m

)c)
≤ 1

z

∑
O
(mij

m

)
=

∑
O(mij)

zO(m)
=
O(
∑
mij)

O(zm)
=
O(zm)

O(zm)

= O(1) .

(3.9)

This inequality holds since each instance has at most one preference involving

the label pair (yi, yj), and hence mij ≤ m.

Theorem 2. For a base learner with complexity O(mc), the complexity of

constraint classification (CC for short) is O(zcmc).

Proof. CC transforms the original training data into a set of 2
∑m

i=1|Gi| =

2zm instances, which means that CC constructs twice as many training ex-

amples as RPC. If this problem is solved with a base learner with complexity

O(mc), the total complexity is O ((2zm)c) = O(zcmc).

Generally, for a base learner with a polynomial time complexity, RPC is

at least as efficient as CC; but in cases where the base learner has a sub-linear

time complexity (i.e., c < 1), CC is faster. In practice, of course, many other

factors have to be taken into consideration. For example, given a base learner

with a linear runtime (and hence the same total runtime complexity for both

RPC and CC), CC might be preferable due to the quadratic numbers of

models RPC needs to store for binary predictions.

A direct comparison is less obvious for the online version and other large-

margin variants of CC, since the complexity strongly depends on the number

of iterations needed to achieve convergence for the former and the selected

optimization routine for the latter. For the online version of CC, as depicted

in Algorithm 1, the algorithm checks all constraints for every instance in a

single iteration and, in case a constraint is violated, adapts the weight vector

correspondingly. The complexity is hence O(zdmt), where d is the number

of features of an instance and t is the number of iterations.

23



The complexity for the boosting-based algorithm proposed for log-linear

models also depends on the number of iterations. In each iteration, the algo-

rithm essentially updates the weights that are associated with each instance

and preference constraint. The complexity of this step is O(zm). Moreover,

the algorithm maintains the weights for each base ranking function. If spec-

ified as in (3.3), the number of these functions is dn. Therefore, the total

complexity is O((zm+ dn) · t), with t iterations.

3.3 Case-Based Label Ranking

Instance-based or case-based learning algorithms have been applied success-

fully in various fields, such as machine learning and pattern recognition,

for a long time [1, 48]. The key characteristic of instance-based learning

algorithms, which distinguishes them from global function approximation

approaches, i.e., model-based approaches, is they don’t form the target func-

tions directly based on the entire instance space. Instead, the target functions

are formed locally, dependent on the query instances. Often, the training

instances (or a selection thereof) are stored but not processed until an esti-

mation for a new instance is requested. A different local approximation may

be obtained for each query instance. As a result, instance-based learning

comes along with a number of advantages. Since the training instances are

explicitly stored, the information present in the data is always preserved; and

as the target function is estimated locally, highly complex hypotheses can be

formulated. We shall come back to these advantages in Chapter 4.

Among other instance-based approaches (e.g., locally weighted regression,

radial basis function, etc.), k-nearest neighbor (KNN) approach is the most

prominent one, which has been thoroughly analyzed in machine learning.

The popularity of KNN is partially due to its simplicity: For a query in-

stance, KNN first retrieves the k most “similar” training instances, and the

estimation for this query instance is then given by an aggregation of these

instances’ outputs. In classification, the mostly applied aggregation operator
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Figure 3.3: An illustration of KNN (with the Euclidean distance) for binary
classification. The query instance xq will be classified as positive with 1NN,
and negative with 5NN.

is majority voting (i.e., mode of the output classes), while in regression the

mean and the median are often used. See Figure 3.3 for an illustration of the

KNN approach for classification.

When applying instance-based approaches to label ranking, the aggrega-

tion step becomes much more challenging. It essentially boils down to the

ranking aggregation problem. Ranking aggregation is a special case of the

weighted feedback arc set problem [2]. Informally, the goal is to combine

many different rankings on the same set of objects, in order to obtain a “bet-

ter” ranking that is close to these given rankings. Ranking aggregation has

been studied in many disciplines, most extensively in the context of social

choice theory. It has gained much attention in the field of computer science

in recent years. A number of applications make use of its results, such as the

meta-search problem mentioned in Section 2.1.

An intuitive approach to ranking aggregation is majority voting with the

pairwise preferences on objects, but the optimality is not guaranteed. Al-

ready in the 17th century, Condorcet has shown that the majority preferences

can be irrational: The majority may prefer pairwise preferences that lead to

a cycle. This observation is often referred to as “The Condorcet Paradox”.

Indeed, even considering preferences of 3 individuals with 3 objects, e.g.,

y1 � y2 � y3, y2 � y3 � y1, and y3 � y1 � y2, we already have 2/3 of the

group prefer y1 to y2, 2/3 prefer y2 to y3, and 2/3 prefer y3 to y1. McGar-

vey further showed that the majority may exhibit any pattern of pairwise

preferences (Figure 3.4) [47]. Moreover, it was shown by Arrow [4] that, for
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y1 � y2 � y3 � y4 � y5

y3 � y5 � y2 � y4 � y1

y4 � y5 � y1 � y2 � y3 y1

y5

y4

y3

y2

Figure 3.4: Preferences from individuals and the corresponding preference
graph based on the majority voting on pairs. The direction of the arrows
indicates the preference of the majority. Formally, every tournament on
n vertices is a 2k − 1 majority tournament for a large enough k, where
a tournament is an oriented complete graph and it is a 2k − 1 majority
tournament if there are 2k − 1 linear orders on the vertices, and yi → yj if
and only if yi precedes yj in at least k of them.

3 or more objects, there is no voting scheme that satisfies (a) unanimity,

(b) independence of irrelevant alternatives, and (c) non-dictatorship.1 This

result is known as Arrow’s impossibility theorem.

A widely accepted objective for aggregating preferences, if each individual

provides a complete ranking of the objects, is the Kemeny optimum, which

is defined with the Kendall distance (2.2). Kemeny-optimal ranking aggre-

gation seeks a ranking π that minimizes the number of pairwise disagree-

ments with the input rankings σ1, . . . , σk, i.e., arg minπ∈Ω

∑
i=1,...,k T (π, σi).

Kemeny-optimal ranking satisfies the generalized Condorcet criterion [23]:

Theorem 3. Let π be a Kemeny-optimal ranking. If Y and Y ′ partition the

set of objects, and for every y ∈ Y and y′ ∈ Y ′ the majority ranks y ahead

of y′, then π(y) < π(y′) for every y ∈ Y and y′ ∈ Y ′.

Loosely speaking, the generalized Condorcet criterion has a partition step

in addition to the majority voting and hence the Kemeny-optimal ranking

can be seen as an approximation of the majority voting result.

While it is not hard to compute the Kendall distance T for n objects in

O(n log n), finding a Kemeny-optimal ranking aggregation is known to be

1Unanimity: If all individuals rank yi above yj , then so does the resulting order.
Independence of irrelevant alternatives: The group’s relative ranking of any pair of objects
is determined by the individuals’ relative ranking of this pair. Non-dictatorship: The
group’s ranking is not determined by that of one individual.
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NP-hard, even in a special case of four individuals [23]. In recent years,

many efforts have been made in theoretical computer science in order to pro-

duce good approximations. Several algorithms are known with performance

guarantees within a factor two or less of the optimal one [51]. The very

first polynomial-time approximation scheme (PTAS) for finding the Kemeny

optimum was proposed by Kenyon-Mathieu and Schudy [41].2

The idea of using the instance-based framework for label ranking has been

pioneered by Brinker and Hüllermeier [10]. For aggregating the rankings of

the neighbors, they make use of the Borda count method, which can be traced

back to the 17th century. Given a ranking σi of n labels, the top-ranked label

receives n votes, the second-ranked n− 1 votes, and so on. Given k rankings

σ1, . . . , σk, the sum of the k votes are computed for each label, and the labels

are then ranked according to their total votes. Despite its simplicity, Borda

count is provably optimal for minimizing the sum of the Spearman distances,

and correspondingly, maximizing the sum of the Spearman’s rank correlation

coefficients [35]. As we discussed in Section 2.3, due to the tight relations

between the widely used distance measures for rankings, Borda count often

leads to satisfactory results for other measures as well.

The methods proposed in this thesis extend the one proposed in [10].

Since the conventional Borda count operates only on complete rankings, the

application of [10] is limited to complete rankings, too. One natural question

is how the instance-based framework can be generalized to the incomplete

ranking case, while preserving the optimality with respect to some measures

on rankings. We will come back to this issue in Chapter 4.

2A PTAS is an algorithm that for any fixed ε > 0 produces, in polynomial time, a
solution that is within a factor 1 + ε of being optimal.
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3.4 Chapter Conclusions

This chapter has covered a wide spectrum of methods for label ranking learn-

ing. Most methods we discussed will be empirically tested against our meth-

ods in the forthcoming chapters. Needless to say, there are more methods

that can be used for label ranking than the ones mentioned here.

The outputs in label ranking have a complex structure, so in a sense, it

can be considered as a particular type of structured prediction [5]. Roughly

speaking, structured prediction algorithms infer a joint scoring function on

input-output pairs and, for a given input, predict the output that max-

imizes this scoring function. The scoring function is parameterized by a

weight vector w and is defined as f(x, y; w) = 〈w,Φ(x, y)〉. Here, Φ(x, y)

defines the (possibly infinite dimensional) feature map of an input-output

pair. The prediction rule can then be written as ŷ = arg maxy∈Y f(x, y) =

arg maxy∈Y〈w,Φ(x, y)〉. Hence, the setting is reduced to a label ranking

framework, if Y corresponds to the space for all possible label rankings.

Other types of classification algorithms can be modified for label ranking

learning as well. A notable example is [11], where the authors make use

of tree-based models for label ranking. In a decision tree, each leaf node

represents a (typically rectangular) part of the instance space and is labeled

with a local model for prediction. In regression, the model is given in the

form of a constant or linear function, while in classification, it is simply a

class assignment. In [11], the leaf nodes of decision trees are associated with

(possibly incomplete) label rankings.

Despite many possible variations of methods, the distinctions of label

ranking by (a) learning utility functions, (b) learning pairwise preference,

and (c) case-based approaches are very general and should cover most of the

existing label ranking methods.
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Chapter 4

Instance-Based Label Ranking

with Probabilistic Models

We have discussed various approaches to label ranking in Chapter 3. Exist-

ing methods for label ranking are typically extensions of binary classification

algorithms. For example, ranking by pairwise comparison (RPC) is an ex-

tension of pairwise classification [36], while constraint classification (CC) and

log-linear models for label ranking (LL) seek to learn linear utility functions

for each individual label instead of preference predicates for pairs of labels

[33, 17].

Even though these approaches have shown good performance in the em-

pirical studies [36], the reduction of the complex label ranking problem to the

simple binary classification problem is not self-evident and does not come for

free. Such reduction becomes possible only through the use of an ensemble of

binary models; in CC and LL, the size of this ensemble is linear in the num-

ber of labels, while in RPC it is quadratic. Some problems come along with

such an ensemble. First, the representation of a “ranking-valued” mapping

in terms of an aggregation (e.g., argsort) of an ensemble of simple mappings

(e.g., real-valued utility functions) typically comes along with a strong bias.

This is especially true for methods such as constraint classification, for which
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the transformation from ranking to classification strongly exploits the linear-

ity of the underlying utility functions. Likewise, it is often not clear (and

mostly even wrong) that minimizing the classification error, or a related loss

function, on the binary problems leads to maximizing the (expected) perfor-

mance of the label ranking model in terms of the desired evaluation function

on rankings [22]. A proper aggregation of the ensemble results is challenging

for many performance measures on rankings. Second, a representation in

terms of an ensemble of models is not always desired, mainly since single

models are considered more comprehensible and interpretable. This point

is particularly relevant for the pairwise approach, as the size of the model

ensemble is quadratic in the number of class labels. Comprehensibility and

interpretability of a model are critical for certain learning tasks, such as the

decision making processes in, e.g., medical applications.

To overcome these problems, we advocate extensions of instance-based

learning to the label ranking setting. They are based on local estimation

principles, which are known to have a rather weak bias. Instance-based or

case-based learning algorithms simply store the training data, or at least a

selection thereof, and defer the processing of these data until an estimation

for a new instance is requested, a property distinguishing them from typical

model-based approaches. Instance-based approaches therefore have a num-

ber of potential advantages, especially in the context of the label ranking

problem.

As a particular advantage of delayed processing, these learning methods

may estimate the target function locally instead of inducing a global predic-

tion model for the entire input domain (instance space) X . Predictions are

typically obtained using only a small, locally restricted subset of the entire

training data, namely those examples that are close to the query x ∈ X
(hence X must be endowed with a distance measure). These examples are

then aggregated in a reasonable way. As aggregating a finite set of objects

from an output space Ω is often much simpler than representing a complete

X → Ω mapping in an explicit way, instance-based methods are especially
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appealing if Ω has a complex structure. In analogy with the classification

setting, we do not assume such mapping is deterministic. Instead, every

instance is associated with a probability distribution over Ω. This means,

for each x ∈ X , there exists a probability distribution Pr(· |x) such that,

for every σ ∈ Ω, Pr(σ |x) is the probability that x having ranking σ, i.e.,

σx = σ.

In label ranking, Ω corresponds to the set of all rankings of an underlying

label set L. To represent an Ω-valued mapping, the aforementioned reduction

approaches encode this mapping in terms of conventional binary models,

either by a large set of such models in the original label space L (RPC), or

by a single binary model in an expanded, high-dimensional space (CC, LL).

Since for instance-based methods, there is no need to represent an X → Ω

mapping explicitly, such methods can operate on the original target space Ω

directly.

This chapter is organized as follows: We first introduce two probability

models for rankings in Section 4.1. The core idea of our instance-based local

approach to label ranking, namely maximum likelihood estimation based on

probability models for rankings, is discussed in Section 4.2. Section 4.3 is

devoted to experimental results. The chapter ends with concluding remarks

in Section 4.4.

4.1 Probability Models for Rankings

So far, we did not make any assumptions about the probability measure

Pr(· |x) despite its existence. In statistics, different types of probability dis-

tributions on rankings have been proposed. A detailed review can be found in

[45]. Roughly speaking, two ways of modeling rankings have been developed

in the literature: (a) modeling the population of the rankers; and (b) mod-

eling the ranking process. While the first approach is more data-analytic,

trying to describe parametrically the distribution of rankings attached to a

population of rankers, the second approach tries to describe the underlying
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processes that a ranker undergoes to produce the rankings. In this section,

we introduce two widely-used models, the Mallows model and the Plackett-

Luce (PL) model, which fall into these two categories respectively. More

specifically, the Mallows model is a distance-based model, where one often

assumes there is a center ranking π ∈ Ω and the observed rankings are more

or less close to π. An appropriate model gives higher probability to rankings

closer to π. On the other hand, the PL model is a multi-stage model, where

one assumes a ranking is produced in a stagewise way: First, one considers

which object should be ranked first, and then which object should be ranked

second, so on and and so forth. We begin our discussion with the Mallows

model.

4.1.1 The Mallows Model

The Mallows model is a distance-based probability model first introduced by

Mallows in the 1950s [44]. The standard Mallows model is a two-parameter

model that belongs to the exponential family:

Pr(σ | θ, π) =
exp(−θT (σ, π))

φ(θ, π)
, (4.1)

where the two parameters are the center ranking (modal ranking, location

parameter) π ∈ Ω and the spread parameter θ ≥ 0. Here, φ(θ, π) is the

normalization constatnt. The Mallows model assigns the maximum proba-

bility to the center ranking π. The larger the Kendall distance T (σ, π), the

smaller the probability of σ becomes. The spread parameter θ determines

how quickly the probability decreases, i.e., how peaked the distribution is

around π. For θ = 0, the uniform distribution is obtained, while for θ →∞,

the distribution converges to the one-point distribution that assigns proba-

bility 1 to π and 0 to all other rankings.

For a right-invariant metric D, it can be shown that the normalization

constant does not depend on π and, therefore, can be written as a function
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φ(θ) of θ alone. This is due to

φ(θ, π) =
∑
σ∈Ω

exp(−θD(σ, π))

=
∑
σ∈Ω

exp(−θD(σπ−1, e))

=
∑
σ′∈Ω

exp(−θD(σ′, e)) = φ(θ) ,

(4.2)

where e = (1, . . . , n) stands for the identity ranking. Moreover for D = T , it

can be shown that (see, e.g., [25]) the normalization constant is given by

φ(θ) =
n∏
j=1

1− exp(−jθ)
1− exp(−θ)

, (4.3)

and the expected distance from the center is

E [T (σ, π) | θ, π] =
n exp(−θ)

1− exp(−θ)
−

n∑
j=1

−j exp(jθ)

1− exp(−jθ)
. (4.4)

The model we discussed here is referred as the Mallows φ model in statis-

tics, where the Kendall distance T is used. Applying other distance measures

leads to different distance-based models. Especially, replacing T with the

Spearman distance S yields the Mallows θ model. But then (4.3) and (4.4)

generally do not hold anymore, which often leads to higher computation cost.

Notice that in the case when the normalization is no longer a function of the

spread θ alone, enumerating Ω can be very costly.

4.1.2 The Plackett-Luce Model

First studied by Luce [43] and subsequently by Plackett [49], the PL model

is specified by a parameter vector v = (v1, . . . , vn) ∈ Rn
+:

Pr(σ |v) =
n∏
i=1

vσ−1(i)

vσ−1(i) + vσ−1(i+1) + . . .+ vσ−1(n)

. (4.5)
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This model is a generalization of the well-known Bradley-Terry model, a

model for the pairwise comparison of alternatives, which specifies the prob-

ability that “a wins against b” in terms of

Pr(a � b) =
va

va + vb
. (4.6)

Obviously, the larger va in comparison to vb, the higher the probability that

a is chosen. Likewise, the larger the parameter vi in (4.5) in comparison to

the parameters vj, j 6= i, the higher the probability that the label yi appears

on a top rank. Hence, the parameter vector v is often referred to as a “skill”

vector indicating each object’s skill, score, popularity, etc. An intuitively

appealing explanation of the PL model can be given by a vase model: If vi

corresponds to the relative frequency of the i-th label in a vase filled with

labeled balls, then Pr(σ |v) is the probability to produce the ranking σ by

randomly drawing balls from the vase in a sequential way and putting the

label drawn in the k-th trial on position k (unless the label was already

chosen before, in which case the trial is annulled).

4.1.3 Other Models

In addition to the distance-based model and the multi-stage model, two other

types of ranking models are often found in the statistical literature: (a) the

order statistics model and (b) the paired comparison model.1 We briefly

introduce these two models and discuss their relation to the models we pre-

viously introduced.

An order statistic model is often called a Thurstonian model as it is

pioneered by Thurstone during the 1920s [57]. In a general order statistic

model, a joint model is assumed for the vector z = (z1, z2, . . . , zn), where

zi is a continuous but unobserved random variable associated with label yi.

1The terms “paired” and “pairwise” are used exchangeably in this thesis. Depending
on the context, the choices between these two terms are made in order to be consistent
with the literature.
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The ordering of labels is given by the vector z, that is

yi1 � yi2 � . . . � yin ⇔ zi1 > zi2 > . . . > zin . (4.7)

It essentially corresponds to the utility-based label ranking setting that we

discussed in Section 3.1. In Thurstone’s original paper, he proposed that z

follows a Gaussian distribution, and hence the model parameters include n

means, n variances, and n(n − 1)/2 correlations. Straightforward simplifi-

cations of this setting were also proposed in that paper, such as equating

the correlations, equating the variances, or assuming zi’s are independent,

i.e, setting the correlations to zero. It is further showed by Yellott that, if z

follows the Gumbel distribution function G(z) = exp(− exp(−z)) for z ∈ R,

this model turns out to be the same as the PL model [66].

A paired comparison model is often referred to as a Babington Smith

model in statistics. Given a ranking of n items, n(n − 1)/2 pairwise prefer-

ences can be easily identified; but it is not always straightforward to recover a

ranking from a set of pairwise preferences (see Section 3.3). A general paired

comparison model constructs a ranking by starting with pairwise preferences,

but only the consistent set of preferences are considered. Given a ranking σ,

it has the density

Pr(σ) =
n!

c(p)

∏
(i,j):σ(i)<σ(j)

pij , (4.8)

where the model parameter p is a vector of size n(n − 1)/2 indexed by

i and j, i < j. The pij equals Pr(yi � yj), which is the probability that label

yi is preferred to label yj. A direct use of the general paired comparison

model is of less practical interest, especially when the number of items to

be ranked is large: It has a quadratic number of parameters with respect to

n and the normalization constant c(p) sums up n! products of n(n − 1)/2

terms. Usually, simplifications are made by restricting pij to a certain form,

such as defining it with the Bradley-Terry model (4.6).
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4.2 Instance-Based Label Ranking

Coming back to the label ranking problem and the idea of instance-based

learning, consider a query instance x ∈ X and let x1, . . . ,xk denote the

nearest neighbors of x (according to an underlying distance measure on X ) in

the training set, where k ∈ N is a fixed integer. Moreover, let σ1, . . . , σk ∈ Ω

denote the rankings associated, respectively, with x1, . . . ,xk.

In analogy to the conventional settings of classification and regression, in

which the nearest neighbor estimation principle has been applied for a long

time, we assume that the probability distribution Pr(· |x) on Ω is, at least

approximately, locally constant around the query x. By further assuming

independence of the observations, the probability to observe σσσ = {σ1, . . . , σk}
given the model parameters ω becomes

Pr(σσσ |ω) =
k∏
i=1

Pr(σi |ω) . (4.9)

The model parameters ω are then trained through a learning process. A com-

mon way of doing this is to fit the data with the maximum likelihood princi-

ple, leading to the maximum likelihood estimation (MLE). In the following

sections we respectively study the parameter estimation for the Mallows and

the PL model under this framework.
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4.2.1 Ranking with the Mallows Model

In the case of the Mallows model, the model parameters ω correspond to the

center ranking π and the spread θ, and (4.9) becomes

Pr(σσσ |ω) = Pr(σσσ | θ, π)

=
k∏
i=1

Pr(σi | θ, π)

=
k∏
i=1

exp (−θT (σi, π))

φ(θ)

=
exp

(
−θ
∑k

i=1 T (σi, π)
)

(∏n
j=1

1−exp(−jθ)
1−exp(−θ)

)k .

(4.10)

The MLE of (θ, π) is then given by those parameters that maximize this

probability. It is easily verified that the MLE of π is given by

π̂ = arg min
π

k∑
i=1

T (σi, π) , (4.11)

i.e., by the (generalized) median of the rankings σ1, . . . , σk. Moreover, the

MLE of θ is derived from the average observed distance from π̂, which is an

estimation of the expected distance E [T (σ, π)|θ, π]:

1

k

k∑
i=1

T (σi, π̂) =
n exp(−θ)

1− exp(−θ)
−

n∑
j=1

j exp(−jθ)
1− exp(−jθ)

. (4.12)

Since the right-hand side of (4.12) is monotone increasing, a standard line

search quickly converges to the MLE of θ [25].

Now, consider the more general case of incomplete preference information,

which means that a ranking σi does not necessarily contain all labels. The
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probability of σi is then given by

Pr(E(σi)) =
∑

σ∈E(σi)

Pr(σ | θ, π) , (4.13)

where E(σi) denotes the set of all linear extensions of σi: A permutation

σ ∈ Ω is a linear extension of σ if it ranks all labels that also occur in σi in

the same order.

The probability of observing the neighboring rankings σσσ = (σ1, . . . , σk)

then becomes

Pr(σσσ | θ, π) =
k∏
i=1

Pr(E(σi) | θ, π)

=
k∏
i=1

∑
σ∈E(σi)

Pr(σ | θ, π)

=

∏k
i=1

∑
σ∈E(σi)

exp (−θT (σ, π))(∏n
j=1

1−exp(−jθ)
1−exp(−θ)

)k .

(4.14)

Computing the MLE of (θ, π) by maximizing this probability now becomes

more difficult. For label sets of small to moderate size, say, up to seven,

one can afford a straightforward brute force approach, namely an exhaustive

search over Ω to find the center ranking π, combined with a numerical proce-

dure to optimize the spread θ. For larger label sets, this procedure becomes

too inefficient. Here, we propose an approximation algorithm that can be

seen as an instance of the EM (expectation-maximization) family [19].

Our algorithm works as follows (see Algorithm 3). Starting from an initial

center ranking π ∈ Ω, each incomplete neighboring ranking σi is replaced by

the most probable linear extension, i.e., by the ranking σ∗i ∈ E(σi) whose

probability is maximal given π̂ as a center (first M-step). Having replaced all

neighboring rankings by their most probable extensions, an MLE (θ̂, π̂) can

be derived as described for the case of complete rankings above (second M-

step). The center ranking π is then replaced by π̂, and the whole procedure
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Algorithm 3 IB-M
Require: query x ∈ X , training data T , integer k
Ensure: label ranking estimation for x

1: find the k nearest neighbors of x in T
2: get neighboring rankings σ = {σ1, . . . , σk}
3: use generalized Borda count to get π̂ from σ
4: for every ranking σi ∈ σ do
5: if σi is incomplete then
6: σ∗i ← most probable extension of σi given π̂
7: end if
8: end for
9: use Borda count to get π from σ∗ = {σ∗1, . . . , σ∗k}

10: if π 6= π̂ then
11: π̂ ← π
12: go to Step 4
13: else
14: estimate θ̂ given π̂ and σ∗

15: return (π̂, θ̂)
16: end if

is iterated until the center does not change any more; π̂ is then output as a

prediction. In the following, we discuss three sub-problems of the algorithm

in more detail, namely (a) the problem to find most probable extensions in

the first M-step, (b) the solution of the median problem (4.11) in the second

M-step, and (c) the choice of an initial center ranking.

(a) Regardless of the spread θ, a most probable extension σ∗i ∈ E(σi) of

an incomplete ranking σi, given π, is obviously a minimizer of T (π, ·). Such

a ranking can be found efficiently, as shown in the following theorem:

Theorem 4. Let π be a ranking of Y = {y1, y2, . . . , yn}, and let σ be a

ranking of a subset C ⊆ Y with |C| = m ≤ n. The linear extension σ∗ of

σ that minimizes T (π, ·) can be found as follows. First, each yi ∈ Y \ C is

optimally inserted in σ, i.e., it is inserted between the labels on position j

and j+1 in σ, where j ∈ {0, . . . ,m} (j = 0 means before the first and j = m
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after the last label), if j is a minimizer of

#{yk ∈ C |σ(yk) ≤ j ∧ π(yk) > π(yi)}

+ #{yk ∈ C |σ(yk) > j ∧ π(yk) < π(yi)} .
(4.15)

In the case of a tie, the position with the smallest index is chosen. Then,

those yi ∈ Y \ C that are inserted at the same position are put in the same

order as in π.

This theorem is a direct result of Lemma 1 and Corollary 1, which are

introduced next.

Lemma 1. If yi, yj ∈ Y \ C and π(yi) < π(yj), then σ∗(yi) < σ∗(yj) in the

optimal ranking.

Proof. Suppose that yj precedes yi in σ∗, i.e., we have

L yj M yi R .

By swapping them we produce

L yi M yj R .

The number of introduced conflicts is then

z = −1 + #{yk ∈M |π(yk) > π(yj)}

−#{yk ∈M | π(yk) < π(yj)}

+ #{yk ∈M |π(yk) < π(yi)}

−#{yk ∈M | π(yk) > π(yi)}

= −1 + |A1| − |A2|+ |A3| − |A4| .

(4.16)

Since A1 ⊆ A4 and A3 ⊆ A2, we have z < 0. Thus, swapping yi and yj

improves the result, which contradicts the optimality of σ∗.

Given σ = yc1 � yc2 � . . . � ycm−1 � ycm with C = {yc1 , . . . , ycm}, we can

put the label yi ∈ Y \ C into m+ 1 buckets:
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B1 yc1 B2 . . . Bm ycm Bm+1 .

The ordering of the labels yi ∈ Y \C within the same bucket is straightfor-

ward. Let K(yi, Bb) be the number of conflicts with C produced by putting

yi in bucket Bb, i.e.,

K(yi, Bb) = #
{
k ∈ {1, . . . ,m} | k < b ∧ π(yi) < π(yck)

}
+ #

{
k ∈ {1, . . . ,m} | k ≥ b ∧ π(yi) > π(yck)

}
.

(4.17)

Corollary 1. Let yi, yj ∈ Y \ C, π(yi) < π(yj). Let

bi = arg minb=1,...,m+1K(yi, Bb) ,

bj = arg minb=1,...,m+1K(yj, Bb) .
(4.18)

Then bi ≤ bj.

Proof. Suppose bi > bj, then σ∗(yi) > σ∗(yj), which leads to a contradiction

of Lemma 1.

From Lemma 1 and Corollary 1 it follows that the optimal ranking is

obtained by finding, for each yi ∈ Y \ C, the optimal bucket (position) that

minimizes the conflict with C, and ordering the free labels optimally within

each bucket. This is exactly the statement of Theorem 4.

Example 1. Suppose Y = {y1, y2, y3, y4, y5} and σ = y2 � y4 � y1, so we

have C = {y1, y2, y4}, Y \C = {y3, y5}, and j ∈ {0, 1, 2, 3}. Further, assume

π = y1 � y2 � y3 � y4 � y5 is the center ranking.

We can write the quantity (4.15) as a function of yi ∈ Y \C and j. That

is,

f(yi, j) = #{yk ∈ C |σ(yk) ≤ j ∧ π(yk) > π(yi)}

+ #{yk ∈ C |σ(yk) > j ∧ π(yk) < π(yi)} .
(4.19)
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Then we have

f(y3, 0) = 2, f(y3, 1) = 1, f(y3, 2) = 2, f(y3, 3) = 1, and

f(y5, 0) = 3, f(y5, 1) = 2, f(y5, 2) = 1, f(y5, 3) = 0.
(4.20)

So y3 is put at position j = 1 and y5 is put at position j = 3. We eventually

have σ∗ = y2 � y3 � y4 � y1 � y5.

(b) Solving the (generalized) median problem (4.11) is known to be NP-

hard, i.e., if the distance D is given by the number of rank inversions [3]. To

solve this problem approximately, we make use of the fact that the Kendall

distance is well approximated by the Spearman distance (see (2.7)), and that

the median can be computed for this measure (i.e., for D(·) given by the

sum of squared rank differences) by the efficient Borda count procedure [36]:

Given a (complete) ranking σi of n labels, the top-label receives n votes, the

second-ranked n− 1 votes, and so on. Given k rankings σ1, . . . , σk, the sum

of the k votes are computed for each label, and the labels are then ranked

according to their total votes.

(c) The choice of the initial center ranking in the above algorithm is of

course critical. To find a good initialization, we again resort to the idea of

solving the problem (4.11) approximately using the Borda count principle. At

the beginning, however, the neighboring rankings σk are still incomplete (and,

since there is no π either, cannot be completed by an M-step). To handle

this situation, we make the assumption that the completions are uniformly

distributed in E(σi). In other words, we start with the initial guess θ = 0

(uniform distribution). Based on this assumption, we can show the following

result that suggests an good initial center π∗.

Theorem 5. Let a set of incomplete rankings σ1, . . . , σk be given, and sup-

pose the associated complete rankings σ∗1, . . . , σ
∗
k to be distributed uniformly

in E(σ1), . . . , E(σk), respectively. The expected sum of distances D(π, σ∗1) +

. . . + D(π, σ∗k), with D the sum of squared rank distances, becomes minimal

for the ranking π∗ which is obtained by a generalized Borda count, namely
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a Borda count with a generalized distribution of votes from incomplete rank-

ings: If σi is an incomplete ranking of m ≤ n labels, then the label on rank

i ∈ {1, . . . ,m} receives (m− i+ 1)(n+ 1)/(m+ 1) votes, while each missing

label receives a vote of (n+ 1)/2.

Proof. The optimality follows from the results of [23]. We show in the follow-

ing how to derive the expected votes of a label with respect to the uniform

distribution in E(σi).

Since σ∗1, . . . , σ
∗
k are uniformly distributed in E(σ1), . . . , E(σk), respec-

tively, and the sum of all votes for one complete ranking is n(n + 1)/2, it is

easy to show that each missing label receives a vote of (n+ 1)/2.

We denote the vote for label at the j-th rank in σ as vj, where j =

1, . . . ,m. The sum of votes of these m labels equals the votes of all labels

minus the votes for the n−m missing labels:

v1 + · · ·+ vm =
n(n+ 1)

2
− (n−m)

n+ 1

2

=
m(n+ 1)

2
.

(4.21)

With δ = vp − vp+1, where p = 1, . . . ,m− 1, we have

v1 + · · ·+ vm = v1 + (v1 − δ) + . . .+ (v1 − (m− 1) δ)

= mv1 −
m(m− 1)

2
δ .

(4.22)

From (4.21) and (4.22) we have

δ =
2v1 − n− 1

m− 1
. (4.23)

We have n−m labels that have to be uniformly put into m+ 1 buckets. So

every bucket has on average (n−m)/(m+1) labels. It means, between every

adjacent labels among the m labels, there are γ = (n −m)/(m + 1) labels.
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Since δ = γ + 1, we have

2v1 − n− 1

m− 1
=
n−m
m+ 1

+ 1 , (4.24)

which lead to

v1 =
m(n+ 1)

m+ 1
and δ =

n+ 1

m+ 1
. (4.25)

Finally with v1 and δ, we can calculate the votes for all labels in σ.

As a nice feature of applying the Mallows model, not shared by most

existing methods (including reduction techniques) for label ranking, we note

that it comes with a natural measure of the reliability of a prediction π̂,

namely the estimation of the spread θ. In fact, the larger the parameter θ,

the more peaked the distribution around the center ranking and, therefore,

the more reliable this ranking becomes as a prediction.

4.2.2 Ranking with the PL Model

By integrating the Mallows model into the instance-based learning frame-

work, we have avoided the problems encountered by the reduction approaches

to some extent. Generally speaking, Section 4.2.1 outlines the basic idea to

develop label ranking methods on the basis of statistical models for ranking

data, that is, parameterized (conditional) probability distributions on the

class of all rankings. Given assumptions of that kind, the learning problem

can be posed as a problem of maximum likelihood estimation (or, alter-

natively, as a problem of Bayesian inference) and thus can be solved in a

theoretically sound way. In this section, we advocate the PL model as an

alternative, especially since this model is more apt to learning from possibly

incomplete label rankings.

Similarly as in Section 4.2.1, we assume that the probability distribution

Pr(· |x) on Ω is (at least approximately) locally constant around the query x.

By further assuming that the rankings σi have been produced independently

of each other by the PL model (4.5), the probability to observe the rankings
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σ = {σ1, . . . , σk} in the neighborhood, given the parameters v = (v1, . . . , vn),

becomes

Pr(σ |v) =
k∏
i=1

ni∏
q=1

vσ−1
i (q)∑ni

j=q vσ−1
i (j)

, (4.26)

where we denote by ni ∈ {2, . . . , n} the number of labels ranked by σi.

Moreover, recall that σ−1
i (j) denotes the index of the label ranked on position

j. The MLE of v is then given by those parameters that maximize this

probability or, equivalently, the log-likelihood function

L(v) =
k∑
i=1

ni∑
q=1

[
log
(
vσ−1

i (q)

)
− log

ni∑
j=q

vσ−1
i (j)

]
. (4.27)

Finding the MLE parameters of the PL model is a problem that has

already been considered in the statistical literature. We resort to a minoriza-

tion and maximization (MM) algorithm that is advocated by Hunter [37].

It is an iterative algorithm whose idea is to maximize, in each iteration, a

function that minorizes the original log-likelihood, namely

Qt(v) =
k∑
i=1

ni∑
q=1

log
(
vσ−1

i (q)

)
−
∑ni

j=q vσ−1
i (j)∑ni

j=q v
(t)

σ−1
i (j)

 . (4.28)

Here, v(t) = (v
(t)
1 , . . . , v

(t)
n ) is the estimation of the PL parameters in the t-th

iteration. Considering these values as fixed, the problem to maximize Qt(·)
as a function of v can be solved analytically. The corresponding solution,

i.e., the parameter vector v∗ for which Qt(·) is maximal, is then used as a

new solution: v(t+1) = v∗. This procedure provably converges to an MLE

estimation of the PL parameters.

Given the MLE v∗, a prediction of the ranking associated with x can be

derived from the distribution Pr(· |v∗) on Ω. In particular, a MAP (maxi-

mum a posteriori) estimate, i.e., a ranking with the highest posterior proba-

bility, is given by

σ∗ ∈ arg max
σ∈Ω

Pr(σ |v∗) . (4.29)
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A ranking of this kind can easily be produced by sorting the labels yi in

decreasing order according to the respective parameters v∗i , i.e., such that

v(σ∗)−1(i) ≥ v(σ∗)−1(j) (4.30)

for all 1 ≤ i < j ≤ n. More generally, given a loss function `(·) to be

minimized, the best prediction is

σ∗ = arg min
σ∈Ω

∑
τ∈Ω

`(σ, τ) · Pr(τ |v∗) . (4.31)

In general, an interesting question concerns the complexity of the minimiza-

tion problem (4.31). An explicit computation of the expected loss for each

ranking σ is feasible only for a small label set Y , since the cardinality of Ω,

which is given by |Ω| = |Y|! = n!, grows very fast. However, depending on

the loss function `(·) and the probability distribution Pr(· |v∗), an explicit

enumeration of this type can often be avoided.

The PL model appears to be especially appealing from this point of view.

In fact, due to the special structure of the probability distribution (4.5),

a ranking of the form (4.30) is not only the most intuitive prediction, but

also provably optimal for virtually all common loss functions on rankings.

In particular, it is a risk minimizer for the 0/1 loss function (defined by

`(σ∗, σ) = 0 if σ∗ = σ and = 1 if σ∗ 6= σ) and, likewise, a maximizer of the

expected rank correlation in terms of (2.3).

In contrast to other methods that simply produce a prediction in terms of

a ranking, a probabilistic approach to label ranking allows one to complement

predictions by diverse types of statistical information, for example regarding

the reliability of a prediction. In this regard, the PL model shares the same

merits as the Mallows model. The distribution Pr(· |v∗) also supports various

types of generalized predictions, such as credible sets of rankings covering the

true one with a high probability.
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4.3 Experiments

In this section, we present an empirical evaluation of the instance-based label

ranking framework with the Mallows model (IB-M) and the PL model (IB-

PL) as introduced in the previous sections. We use three state-of-the-art

methods, constraint classification (CC), log-linear model (LL), and ranking

by pairwise comparisons (RPC) as baselines to compare with. Those methods

have been already discussed in Chapter 3. Concretely, CC is implemented

which its online-variant as proposed in [33], using a noise-tolerant perceptron

algorithm as a base learner [42]2; we use (3.3) as base ranking functions in

LL; logistic regression is used as the base learner of RPC, which has been

empirically justified in [36]. For IB-M and IB-PL, the neighborhood size

k ∈ {5, 10, 15, 20} is selected through cross validation on the training set.

As a distance measure in the instance space, we simply used the Euclidean

distance (after normalizing the attributes).

4.3.1 Data

We have produced a number of label ranking data sets from real-world ap-

plications. Specifically, we resorted to multi-class and regression data sets

from the UCI repository and the Statlog collection, turned them into label

ranking data in two different ways. (A) For classification data, we followed

the procedure proposed in [36]: A naive Bayes classifier is first trained on the

complete data set. Then, for each example, all the labels present in the data

set are ordered with respect to the predicted class probabilities (in the case of

ties, labels with lower index are ranked first). (B) For regression data, a cer-

tain number of (numerical) attributes is removed from the set of predictors,

and each one is considered as a label. To obtain a ranking, the attributes are

standardized and then ordered by size. Given that the original attributes are

correlated, the remaining predictive features will contain information about

2This algorithm is based on the “α-bound trick” introduced in Section 3.1.1. The
corresponding parameter α is set to 500.
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the produced ranking. Yet, as will be confirmed by the experimental results,

this second type of data generation leads to more difficult learning problems.

A summary of the data sets and their properties is given in Table 4.1.3

data set type # instances # features # labels

authorship A 841 70 4
bodyfat B 252 7 7
calhousing B 20640 4 4
cpu-small B 8192 6 5
elevators B 16599 9 9
fried B 40769 9 5
glass A 214 9 6
housing B 506 6 6
iris A 150 4 3
pendigits A 10992 16 10
segment A 2310 18 7
stock B 950 5 5
vehicle A 846 18 4
vowel A 528 10 11
wine A 178 13 3
wisconsin B 194 16 16

Table 4.1: Label ranking data sets and their properties (the type refers to
the way in which the data has been generated).

4.3.2 Results

Results were derived in terms of Kendall’s tau correlation coefficient from

five repetitions of a ten-fold cross-validation. To model incomplete observa-

tions, we modified the training data as follows: A biased coin was flipped

for every label in a ranking to decide whether to keep or delete that label;

the probability for a deletion is specified by a parameter p ∈ [0, 1]. Hence,

p× 100% of the labels will be missing on average.

The summary of the results is shown in Table 4.2. To analyze these re-

sults, we performed a two-step statistical test, consisting of a Friedman test

3The data sets, along with a detailed description, are available at http://www.
uni-marburg.de/fb12/kebi/research .
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complete rankings
CC IB-M IB-PL LL RPC

authorship .920(3) .936(1) .936(2) .657(5) .910(4)
bodyfat .281(2) .229(5) .230(4) .266(3) .285(1)
calhousing .250(3) .344(1) .326(2) .223(5) .243(4)
cpu-small .475(3) .496(1) .495(2) .419(5) .450(4)
elevators .768(1) .727(3) .721(4) .701(5) .749(2)
fried .999(2) .900(4) .894(5) .989(3) .999(1)
glass .846(2) .842(3) .841(4) .818(5) .882(1)
housing .660(4) .736(1) .711(2) .626(5) .671(3)
iris .836(4) .925(2) .960(1) .818(5) .885(3)
pendigits .903(4) .941(1) .939(2) .814(5) .932(3)
segment .914(3) .802(5) .950(1) .810(4) .934(2)
stock .737(4) .925(1) .922(2) .696(5) .777(3)
vehicle .855(3) .855(2) .859(1) .770(5) .854(4)
vowel .623(4) .882(1) .851(2) .601(5) .647(3)
wine .933(4) .944(2) .947(1) .942(3) .921(5)
wisconsin .629(2) .501(4) .479(5) .542(3) .633(1)
avg. rank 3.00 2.31 2.50 4.44 2.75

30% missing labels
CC IB-M IB-PL LL RPC

authorship .891(3) .913(2) .927(1) .656(5) .884(4)
bodyfat .260(2) .198(5) .204(4) .251(3) .272(1)
calhousing .249(3) .310(1) .303(2) .223(5) .243(4)
cpu-small .474(2) .473(3) .477(1) .419(5) .449(4)
elevators .767(1) .683(5) .702(3) .699(4) .748(2)
fried .998(2) .850(5) .861(4) .989(3) .999(1)
glass .835(2) .776(5) .809(4) .817(3) .851(1)
housing .655(3) .669(1) .654(4) .625(5) .667(2)
iris .807(4) .867(3) .926(1) .804(5) .871(2)
pendigits .902(4) .902(3) .918(2) .802(5) .932(1)
segment .911(2) .735(5) .874(3) .806(4) .933(1)
stock .735(4) .855(2) .877(1) .691(5) .776(3)
vehicle .839(1) .822(4) .838(2) .769(5) .834(3)
vowel .615(4) .810(1) .785(2) .598(5) .644(3)
wine .911(4) .930(2) .926(3) .941(1) .902(5)
wisconsin .617(1) .464(4) .453(5) .533(3) .607(2)
avg. rank 2.63 3.19 2.63 4.13 2.44

60% missing labels
CC IB-M IB-PL LL RPC

authorship .835(4) .849(2) .886(1) .650(5) .872(3)
bodyfat .224(3) .160(5) .151(4) .241(1) .235(2)
calhousing .247(3) .263(1) .259(2) .221(5) .242(4)
cpu-small .470(1) .428(4) .437(3) .418(5) .448(2)
elevators .765(1) .596(5) .633(4) .696(3) .748(2)
fried .997(2) .777(5) .797(4) .987(3) .997(1)
glass .789(3) .611(5) .675(4) .808(1) .799(2)
housing .638(2) .543(4) .492(5) .614(3) .641(1)
iris .743(5) .799(2) .868(1) .768(4) .779(3)
pendigits .900(2) .781(5) .794(3) .787(4) .929(1)
segment .902(2) .612(5) .674(4) .801(3) .920(1)
stock .724(3) .724(4) .740(2) .689(5) .771(1)
vehicle .810(1) .736(5) .765(3) .764(4) .786(2)
vowel .598(3) .638(1) .588(5) .591(4) .612(2)
wine .853(5) .893(3) .907(1) .894(2) .864(4)
wisconsin .566(1) .399(4) .381(5) .518(3) .536(2)
avg. rank 2.56 3.75 3.25 3.44 2.00

Table 4.2: Performance of the label ranking methods in terms of Kendall’s
tau (in brackets the rank). The average ranks are listed at the last rows.
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of the null hypothesis that all learners have equal performance and, in case

this hypothesis is rejected, a two-tailed sign test to compare learners in a

pairwise way. Such a two-step procedure is recommended, because straight-

forward paired tests on multiple methods often make little sense: When so

many tests are made, a certain proportion of the null hypotheses might get

rejected due to random chance [20]. The Friedman test is based on the aver-

age ranks (for each problem, the methods are ranked in decreasing order of

performance, and the ranks thus obtained are averaged over the problems)

as shown in the bottom lines in Table 4.2. At a significance level of 0.05,

the Friedman test rejects the null hypothesis in all three cases, suggesting

significant differences among these five methods. Pairwise comparisons be-

tween them are then summarized in terms of win statistics in Table 4.3. The

critical value for the two-tailed sign test at the significance level 0.05 is 12

in our case. It means, a method is significantly better than another if it

performs better on at least 12 out of all 16 data sets.

CC IB-M IB-PL LL RPC

CC – 6 5 15 6
IB-M 10 – 11 12 10
IB-PL 11 5 – 13 11
LL 1 4 3 – 1
RPC 10 6 5 15 –

CC – 8 8 15 7
IB-M 8 – 5 9 7
IB-PL 8 11 – 11 8
LL 1 7 5 – 1
RPC 9 9 8 15 –

CC – 11 11 12 5
IB-M 5 – 5 6 4
IB-PL 5 11 – 8 4
LL 4 10 8 – 3
RPC 11 12 12 13 –

Table 4.3: Win statistics (number of data sets on which the first method is
better than the second one) for complete rankings, 30% missing labels, and
60% missing labels, from top to bottom.
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Comparing two instance-based approaches, IB-M has a better perfor-

mance in the case of complete rankings, while when the ratio of missing

labels becomes higher, IB-PL surpasses IB-M. With incomplete rankings,

as already discussed in Section 4.1, computational challenges arise by the

Mallows model and non-trivial approximations are required, which somehow

compromise its performance. On the other hand, the PL model is more

capable of dealing with incomplete rankings, due to its stagewise nature.

Among the three reduction approaches, CC and RPC have achieved quite

comparable performance across different data sets on all settings, while the

results are not in favor of LL. These results are in agreement with some

previous studies [36].

The comparison between local and reduction approaches is of particular

interest. As mentioned earlier, we hypothesize that, since our instance-based

methods for label ranking fit local models to the data, they are especially

useful for problems requiring complex decision boundaries. Some evidence

supporting this hypothesis is indeed provided by the learning curves depict-

ing the performance as a function of the fraction of missing label informa-

tion. While the learning curves of CC, LL, and RPC are often rather flat,

showing a kind of saturation effect, they are much steeper for IB-M and IB-

PL. This suggests that additional label information is still beneficial for the

instance-based methods even when the reduction approaches, due to a lack

of flexibility, are no longer able to exploit and adapt to extra data. As an

illustration, the learning curves of IB-M and RPC on the housing data are

shown in Figure 4.1, which nicely demonstrate this typical difference between

the instance-based approach and the reduction approach.

We conclude this section with short remarks on two issues. First, as to

the computational complexity of the label ranking methods, a direct compar-

ison is complicated by the fact that IB-M and IB-PL are lazy learners, with

almost no cost at training time but higher cost at prediction time. Anyway,

in the current implementation, they are very efficient and quite comparable,

in terms of runtime, to the corresponding counterpart for classification. This
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Figure 4.1: Ranking performance (in terms of Kendall’s tau) as a function
of the missing label rate on the housing data.

is true despite the more complex local estimation procedures: the approxi-

mate EM procedure in IB-M and the MM procedure in IB-PL converge very

quickly.

Second, as mentioned earlier, an advantage of our probabilistic methods

is that it delivers, as a byproduct, natural measures of the reliability of a pre-

diction. In particular, the estimated spread θ̂ in the Mallows model is such a

measure, which showed a very high correlation with the quality of prediction

(in terms of Kendall’s tau), suggesting that it is indeed a reasonable indicator

of the uncertainty of a prediction. In general, the most straightforward mea-

sure of this kind is perhaps the probability of the prediction itself, namely

p̂ = Pr(σ |ω). To illustrate, we use it to compute a kind of accuracy-rejection

curve: Using IB-PL in a leave-one-out cross validation, we compute the accu-

racy of the prediction (in terms of Kendall’s tau) and its reliability (in terms

of p̂) for each instance x. Subsequent to sorting the instances in decreasing

order of reliability, we plot the function t 7→ f(t), where f(t) is the mean

accuracy of the top t percent of the instances. Given that p̂ is indeed a good

indicator of reliability, this curve should be decreasing, because the higher t,

the more instances with a low reliability are taken into consideration. This

expectation is confirmed with our data sets. Figure 4.2 shows the exemplary

curve for the housing data.
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Figure 4.2: The accuracy-rejection curve computed on the basis of Pr(σ |ω)
using the housing data.

4.4 Chapter Conclusions

In this chapter, we have introduced an instance-based framework for label

ranking. While the basic inference principle is a consistent extension of

the nearest neighbor estimation principle, as used previously for well-known

learning problems such as classification and regression, this framework is

based on sound probabilistic models for rankings: Assuming that the condi-

tional probability distribution of the output given the query is locally con-

stant, we derive the maximum likelihood estimations based on the Mallows

model and the PL model. The empirical results are quite promising and

suggest that our approach is particularly strong in terms of predictive ac-

curacy. Specifically, as instance-based methods are able to produce quite

flexible models, our method appears to be especially advantageous for prob-

lems requiring complex decision boundaries. Besides, it has some further

advantages, as it does not only produce a single ranking as an estimation

but instead delivers a probability distribution over all rankings. This distri-

bution can be used, e.g., to quantify the reliability of the predicted ranking.

Since a single model are arguably more transparent than an ensemble of

models, the proposed method might be preferred to existing approaches for

reasons of interpretability.
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- Weiwei Cheng and Eyke Hüllermeier. A new instance-based label rank-

ing approach using the Mallows model. In Wen Yu, Haibo He, and

Nian Zhang, editors, Proceedings of the 6th International Symposium

on Neural Networks, pages 707-716. Springer, 2009.

- Weiwei Cheng, Krzysztof Dembczyński, and Eyke Hüllermeier. La-
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Chapter 5

Probabilistic Label Ranking

Models: A Global Extension

The learning method proposed in the previous chapter is local and lazy in

the sense that an individual probabilistic model, i.e., an individual parameter

vector ω, is estimated for each query instance x ∈ X based on a part of the

entire training data. (Recall that, in the Mallows model, the parameter

vector corresponds to the center ranking and the spread, while in the PL

model it corresponds to the skill vector.) In general, three choices one could

make when designing a probabilistic method for label ranking.

- The (parameterized) probabilistic model that generates the rankings,

e.g., the PL model.

- The dependency between the parameters of the probabilistic model and

the input attributes, e.g., a linear dependency.

- How the parameters are learned. The parameters can be fit either

locally or globally.

In Chapter 4 for example, we have studied the local learning methods with

the Mallows and the PL model, where the instances and the model parameter

have an implicit non-linear dependency. In this chapter we briefly discuss

the learning of a global label ranking function as an alternative, in which
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the model parameters are learned in an eager way. To this end, the model

parameters are defined as a function of attributes describing an instance,

namely ω = f(α,x). While this extension is seemingly complicated in the

case of the Mallows model, it is fairly intuitive for the PL model, as we shall

see in the subsequent sections.

This chapter is organized as follows. We first propose a generalized linear

method based on the PL model and discuss the parameter estimation in

Section 5.1. An experimental evaluation is then presented in Section 5.2.

Section 5.3 concludes this chapter.

5.1 Generalized Linear Models

We define the PL parameters vi, quantifying the propensity for the i-th label

yi, as a linear function of the input attributes. Despite its simplicity, such a

linear model is often more interpretable than its non-linear counterpart. To

guarantee the non-negativity of the parameters, we model their logarithm as

a linear function:

vi = exp

(
d∑
j=1

α
(i)
j · xj

)
, (5.1)

where we assume an instance to be represented in terms of a feature vector

x = (x1, . . . , xd) ∈ X = Rd.

The model parameters to be estimated are now the α
(i)
j (1 ≤ i ≤ n, 1 ≤

j ≤ d). Given a training data set

T =
{(
x(q), π(q)

)}m
q=1

(5.2)

with x(q) =
(
x

(q)
1 , . . . , x

(q)
d

)
, the log-likelihood function is given by

L =
m∑
q=1

nq∑
i=1

[
log
(
v
(
(π(q))−1(i), q

))
− log

nq∑
j=i

v
(
(π(q))−1(j), q

)]
, (5.3)
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where nq is the number of labels in the ranking π(q), and

v(i, q) = exp

(
d∑
j=1

α
(i)
j · x

(q)
j

)
. (5.4)

The first derivatives of L are given by

∂L

∂α
(a)
p

=
m∑
q=1

δ(p, q, 1) · x(q)
p −

m∑
q=1

nq∑
i=1

δ(a, q, i) · v(a, q) · x(q)
p∑nq

j=i v ((π(q))−1(j), q)
, (5.5)

where

δ(a, q, i) =

{
1 π(q)(a) ≥ i

0 otherwise
. (5.6)

Moreover, the second derivatives (for a 6= b, p 6= `) are as follows:

∂2L

∂
(
α

(a)
p

)2 =−
m∑
q=1

nq∑
i=1

δ(a, q, i) · v(a, q) ·
(
x(q)
p

)2

·
[∑nq

j=i v
(
(π(q))−1(j), q

)
− v(a, q)

](∑nq

j=i v ((π(q))−1(j), q)
)2 ,

∂2L

∂α
(a)
p ∂α

(a)
`

=−
m∑
q=1

nq∑
i=1

δ(a, q, i) · v(a, q) · x(q)
p · x

(q)
`

·
[∑nq

j=i v
(
(π(q))−1(j), q

)
− v(a, q)

](∑nq

j=i v ((π(q))−1(j), q)
)2 ,

∂2L

∂α
(a)
p ∂α

(b)
`

=
m∑
q=1

nq∑
i=1

δ(a, q, i) · δ(b, q, i)

· v(a, q) · x(q)
p · v(b, q) · x(q)

`(∑nq

j=1 v ((π(q))−1(j), q)
)2 .

(5.7)

Note that ∂2L/∂(α
(a)
q )2 ≤ 0 for all 1 ≤ a ≤ n and 1 ≤ p ≤ d. Based on these

derivatives, the maximization of the log-likelihood can be accomplished by

means of gradient-based optimization methods. In our implementation, we
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use a standard stochastic gradient descent algorithm [7] that is, in terms of

efficiency, compared quite favorably with other gradient-based methods.

5.2 Experiments

In this section, we present an empirical evaluation of our generalized linear

approach (Lin-PL) to label ranking using the PL model. For comparison,

Lin-PL is tested against the instance-based method with the PL model (IB-

PL) discussed in Chapter 4. Results are given in Table 5.1. We have tested

these two approaches on the same data sets with an identical experimental

setting as in Section 4.3. So the results in Table 5.1 can be directly compared

with the ones we reported there. The numbers of wins for each method are

summarized at the bottom of the table.

complete ranking 30% missing labels 60% missing labels
IB-PL Lin-PL IB-PL Lin-PL IB-PL Lin-PL

authorship .936 .930 .927 .899 .886 .846
bodyfat .230 .272 .204 .266 .151 .222
calhousing .326 .220 .303 .229 .259 .229
cpu-small .495 .426 .477 .418 .437 .412
elevators .721 .712 .702 .706 .633 .704
fried .894 .996 .861 .993 .797 .990
glass .841 .825 .809 .825 .675 .807
housing .711 .659 .654 .658 .492 .636
iris .960 .832 .926 .823 .868 .778
pendigits .939 .909 .918 .909 .794 .907
segment .950 .902 .874 .895 .674 .888
stock .922 .710 .877 .701 .740 .687
vehicle .859 .838 .838 .817 .765 .804
vowel .851 .586 .785 .581 .588 .575
wine .947 .954 .926 .931 .907 .915
wisconsin .479 .635 .453 .615 .381 .585

# wins 12 4 8 8 6 10

Table 5.1: Performance of label ranking methods in terms of Kendall’s tau.

Since we now compare two methods, the results can be directly analyzed

with a two-tailed sign test. At the significance level 0.05, the critical value for
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Figure 5.1: Ranking performance (in terms of Kendall’s tau) as a function
of the missing label rate on the housing data.

this test is 12, meaning that a method is significantly better than the other

if it outperforms on at least 12 out of all 16 data sets. Despite being sta-

tistically non-significant in some cases, the results are still quite informative

and show an important trend (which are likely to become significant when

increasing the number of data sets): The instance-based approach IB-PL

performs better in the complete ranking scenario, but its performance drops

more quickly when missing label information.

This observation is plausible and coherent with the complementary nature

of global and local methods. Like in the case of conventional classification,

instance-based methods are advantageous for problems requiring complex

decision boundaries, for which the strong bias of linear methods prevents

them from achieving a good separation. On the other hand, if the linearity

assumption is (at least approximately) valid, better models can be learned

with fewer data. Correspondingly, instance-based learners are more sensi-

tive toward the amount of training data. Some evidence supporting this

hypothesis is provided by the learning curves depicting the performance as a

function of the fraction of missing label information. The learning curves for

the housing data in Figure 5.1 have demonstrated this typical observation.
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5.3 Chapter Conclusions

The basic idea of this chapter is to parameterize the coefficients of a proba-

bilistic model and expressing them as functions of the input attributes. By

doing so, we end up with global probabilistic models, which often have lower

variance compared with the methods we proposed in Chapter 4. Although

the general principle of this idea holds for every probabilistic model for rank-

ings, it should be noted that for some models, to parameterize the coefficients

by the input attributes is not straightforward. For example in the case of the

Mallows model, it is cumbersome to explicitly express the center ranking and

the spread as a function of the input attributes. While for some other models,

such as the order statistic model and the PL model, the parameterization is

much more intuitive. In this chapter, we have demonstrated this idea with

the PL model and it leads to fitting a model in the form of log-linear (utility)

functions. Empirically, we have compared this global method with the local

method that is also based on the PL model. The results have confirmed

the bias-variance trade-off we expected. Finally, let us remark that, since

the global method we discussed here is based on a probabilistic model for

rankings as well, it comes with a very natural way to measure the reliability

of the predictions. From this perspective, it shares the same merits with the

methods in Chapter 4.
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bel ranking methods based on the Plackett-Luce model. In Johannes

Fürnkranz and Thorsten Joachims, editors, Proceedings of the 27th

International Conference on Machine Learning, pages 215-222. Omni-

press, 2010.

60



Chapter 6

A Label Ranking Approach to

Multi-Label Classification

This chapter addresses the application of instance-based label ranking in

multi-label classification. In conventional classification, each instance is as-

sumed to belong to exactly one among a finite set of candidate classes. As

opposed to this, the setting of multi-label classification allows an instance

to belong to several classes simultaneously or, say, to attach more than one

label to an instance.

Even though quite a number of sophisticated methods for multi-label

classification has been proposed in the literature, the application of instance-

based learning has not been studied very deeply in this context. This is a

bit surprising, given that the instance-based learning algorithms based on

the nearest neighbor estimation principle have been applied quite success-

fully in classification and pattern recognition [1]. A notable exception is the

multi-label k-nearest neighbor (MLKNN) method that was proposed in [68],

where it was shown to be competitive to state-of-the-art multi-label learning

methods.

In this chapter, we introduce an instance-based approach to multi-label

classification, which is based on calibrated label ranking, a recently proposed
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framework that unifies multi-label classification and label ranking (see Sec-

tion 6.1). Within this framework, instance-based prediction is realized in the

form of a maximum a posteriori (MAP) estimation, assuming a ranking dis-

tribution follows the Mallows model (see Section 6.2). After the discussion

of the related work (see Section 6.3), we provide an empirical study of this

approach focusing on its predictive accuracy (see Section 6.4).

6.1 Multi-Label Classification as Calibrated

Label Ranking

Let X denote an instance space and let Y = {y1, . . . , yn} be a finite set of

class labels. Moreover, suppose that each instance x ∈ X can be associated

with a subset of labels Y ∈ 2Y ; this subset is often called the set of relevant

labels, while the complement Y\Y is considered as irrelevant for x. Given the

training data, i.e., a finite set of observations in the form of tuples (x, Yx) ∈
X × 2Y , typically assumed to be drawn independently from an (unknown)

probability distribution on X × 2Y , the goal in multi-label classification is to

learn a classifier h : X → 2Y that generalizes well beyond these observations

in the sense of minimizing the expected prediction loss with respect to a

specific loss function.

Note that multi-label classification can be reduced to a conventional clas-

sification problem in a straightforward way, namely by considering each label

subset Y ∈ 2Y as a distinct (meta-)class. This approach is referred to as la-

bel powerset in the literature [8]. An obvious drawback of this approach

is the potentially large number of classes that one has to deal with in the

newly generated problem. Another way of reducing multi-label to conven-

tional classification is offered by the binary relevance (BR) approach. Here,

a single binary classifier hi is trained for each label yi ∈ Y . For a query

instance x, this classifier is supposed to predict whether yi is relevant for x

(hi(x) = 1) or not (hi(x) = 0). A multi-label prediction for x is then given

by h(x) = {yi ∈ Y |hi(x) = 1}. Since binary relevance learning treats every
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label independently of all other labels, an obvious disadvantage of this ap-

proach is that it ignores potential correlations and interdependencies between

labels.

Some of the more sophisticated approaches learn a multi-label classifier

h in an indirect way via a scoring function f : X × Y → R that assigns a

real number to each instance-label combination. Such a function does not

only allow one to make multi-label predictions (via thresholding the scores),

but also offers the possibility to produce a ranking of the class labels, simply

by ordering them according to their scores. Sometimes, this ranking is even

more desirable as a prediction, and indeed, there are several widely-used

evaluation metrics that compare a true label subset with a predicted ranking

instead of a predicted label subset.

Despite the tight relation between a label ranking and a multi-label clas-

sification (label subset), label ranking methods cannot be directly applied

to multi-label learning, since a label ranking provides information about the

relative preference for labels, but not about the absolute preference or, say,

relevance of a label. To combine the information offered by these two, the

concept of a calibrated label ranking has been proposed in [28]. A calibrated

label ranking is a ranking of the label set Ω extended by a neutral label y0.

The idea is that y0 splits a ranking into two parts, the positive (relevant) part

consisting of those labels yi preceding y0, i.e., yi �x y0, and the negative (ir-

relevant) part given by those labels yj ranked lower than y0, i.e., y0 �x yj. In

this way, a multi-label prediction can be derived from a predicted calibrated

label ranking.

The other way around, a multi-label set Yx translates into the set of

pairwise preferences {y �x y′ | y ∈ Yx, y
′ ∈ Y \ Yx}, and can hence be

considered as incomplete information about an underlying calibrated label

ranking. More specifically, Yx is consistent with the set of label rankings

E(Yx) given by those permutations π ∈ Ω that rank all labels in Yx higher

and all labels in Y \ Yx lower than the neutral label y0. In the rest of

this chapter, when we speak about a ranking, we always mean a calibrated
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ranking (i.e., Ω contains the neutral label y0).

6.2 Instance-Based Multi-Label Classification

Coming back to the label ranking problem and the idea of instance-based

learning, i.e., local prediction based on the nearest neighbor estimation prin-

ciple, consider a query instance x ∈ X and let x1, . . . ,xk denote the nearest

neighbors of x (according to an underlying distance measure on X ) in the

training set, where k ∈ N is a fixed integer. Each neighbor xi is associated

with a subset Yxi
⊆ Y of labels. In analogy to the conventional settings

of classification and regression, we assume that the probability distribution

Pr(· |x) on Ω is (at least approximately) locally constant around the query

x, so that the neighbors can be considered as a sample on the basis of which

Pr(· |x) can be estimated.

Thus, assuming an underlying (calibrated) label ranking, the probability

to observe Yxi
is given by

Pr(E(Yxi
)) =

∑
σ∈E(Yxi )

Pr(σ | θ, π) , (6.1)

where E(Yxi
) denotes the set of all label rankings consistent with Yxi

. Making

a simplifying assumption of independence under the Mallows model (4.1),

the probability of the complete set of observations Y = {Yx1 , . . . , Yxk
} then

becomes

Pr(Y | θ, π) =
k∏
i=1

Pr(E(Yxi
) | θ, π)

=
k∏
i=1

∑
σ∈E(Yxi )

Pr(σ | θ, π) (6.2)

=

∏k
i=1

∑
σ∈E(Yxi )

exp (−θT (σ, π))(∏n
j=1

1−exp(−jθ)
1−exp(−θ)

)k .
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Instance-based prediction of the label ranking Yx can now be posed as a max-

imum likelihood problem, namely as finding the MLE of π (and θ) in (6.2).

This problem is extremely difficult in general. Fortunately, in the context of

multi-label classification, we are able to exploit the special structure of the

observations. More specifically, based on the results of Section 4.2.1 we can

show the following theorem.

Theorem 6. For each label yi ∈ Y, let f(yi) denote the frequency of occur-

rence of this label in the neighborhood of x, i.e., f(yi) = #{j | yi ∈ Yxj
}/k.

Moreover, let f(y0) = 1/2 by definition. Then, a ranking π ∈ Ω is an MLE

in (6.2) iff it guarantees that f(yi) > f(yj) implies π(i) < π(j).

According to this result, an optimal ranking and, hence, an optimal multi-

label prediction can be simply found by sorting the labels according to their

frequency of occurrence in the neighborhood. A disadvantage of this esti-

mation is its ambiguity in the presence of ties: If two labels have the same

frequency, they can be ordered in either way. We can remove this ambiguity

by replacing the MLE by the MAP estimation.

Corollary 2. Let g(yi) denote the frequency of occurrence of the label yi in

the complete training set. There exists a prior distribution Pr on Ω such that,

for large enough k, a ranking π ∈ Ω is an MAP estimation iff it guarantees

the following: If f(yi) > f(yj) or f(yi) = f(yj) and g(yi) > g(yj), then

π(i) < π(j).

This result suggests a very simple prediction procedure: Labels are sorted

according to their frequency in the neighborhood of the query, and ties are

broken by resorting to global information outside the neighborhood, namely

the label frequency in the complete training data (which serve as estimates

of the unconditional probability of a label).
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6.3 Related Work in Multi-Label Classifica-

tion

Multi-label classification has received a great deal of attention in machine

learning in recent years, and a number of methods has been developed, often

motivated by specific types of applications such as text categorization [52, 60,

40, 67], computer vision [8], and bioinformatics [12, 24, 67]. Besides, several

well-established methods for conventional classification have been extended

to the multi-label case, including support vector machines [30, 24, 8], neural

networks [67], and decision trees [62]. Detailed discussions of multi-label

learning methods can be referred to [18].

Our interest in instance-based multi-label classification is largely moti-

vated by the multi-label k-nearest neighbor (MLKNN) method that has re-

cently been proposed in [68]. In that paper, the authors show that MLKNN

performs quite well in practice. In the concrete experiments presented,

MLKNN outperformed some state-of-the-art model-based approaches to multi-

label classification, including RankSVM and AdaBoost.MH [24, 14].

MLKNN is a binary relevance learner, i.e., it learns a single classifier hi

for each label yi ∈ Y . However, instead of using the standard KNN classifier

as a base learner, it implements the hi by means of a combination of KNN

and Bayesian inference: Given a query instance x with unknown multi-label

classification Y ⊆ Y , it finds the k nearest neighbors of x in the training

data and counts the number of occurrences of yi among these neighbors.

Considering this number, c, as information in the form of a realization of a

random variable C, the posterior probability of yi ∈ Y is given by

Pr(yi ∈ Y |C = c) =
Pr(C = c | yi ∈ Y ) · Pr(yi ∈ Y )

Pr(C = c)
, (6.3)
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which leads to the decision rule

hi(x) =

{
1 if Pr(C = c | yi ∈ Y ) Pr(yi ∈ Y ) ≥ Pr(C = c | yi 6∈ Y ) Pr(yi 6∈ Y )

0 otherwise

(6.4)

The prior probabilities Pr(yi ∈ Y ) and Pr(yi 6∈ Y ) as well as the conditional

probabilities Pr(C = c | yi ∈ Y ) and Pr(C = c | yi 6∈ Y ) are estimated from

the training data in terms of corresponding relative frequencies. While the

estimation of the former probabilities is uncritical from a computational point

of view, the estimation of the conditional probabilities can become quite

expensive. Essentially, it requires the consideration of all k-neighborhoods of

all training instances, and the counting of the number of occurrences of each

label within these neighborhoods. Implementing nearest neighbor search

in a naive way, namely by linear search, this would mean a complexity of

O(kn), where n is the size of the training data. Of course, this complexity

can be reduced by using more efficient algorithms and data structures for

nearest neighbor search; for example, the all nearest neighbors problem, i.e.,

the problem to find the (first) nearest neighbor for each element of a data

set, can be solved in time O(k log n) [61]. Nevertheless, the computational

overhead produced by this kind of preprocessing on the training data will

remain a dominating factor for the overall runtime of the method.

6.4 Experiments

This section is devoted to experimental studies that we conducted to get a

concrete idea of the performance of our method. Before presenting results, we

give some information about the learning algorithms and data sets included

in the study, as well as the criteria used for evaluation.
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data set domain # instances # attributes # labels cardinality
emotions music 593 72 6 1.87
image vision 2000 135 5 1.24
genbase biology 662 1186∗ 27 1.25
mediamill multimedia 5000 120 101 4.27
reuters text 7119 243 7 1.24
scene vision 2407 294 6 1.07
yeast biology 2417 103 14 4.24

Table 6.1: Statistics for the multi-label data sets used in the experiments.
The symbol * indicates that the data set contains nominal features; the
cardinality is the average number of labels per instance.

6.4.1 Learning Algorithms

For the reasons mentioned previously, our main interest is focused on MLKNN,

which is the state-of-the-art in instance-based multi-label ranking; we used

its implementation in the MULAN package [59].1 MLKNN is parameterized

by the size of the neighborhood, for which we adopted the value k = 10.

This value is recommended in [68], where it was found to yield the best

performance. For the sake of fairness, we use the same neighborhood size

for our method (MallowsML). In both cases, the Euclidean metric (on the

complete normalized attribute space) was used as a distance function. As an

additional baseline, we used binary relevance learning (BR) with C4.5 (the

WEKA [65] implementation J48 in its default setting) as a base learner.

6.4.2 Data Sets

Benchmark data for multi-label classification is not as abundant as for con-

ventional classification, and indeed, experiments in this field are often re-

stricted to a very few or even only a single data set. For our experimental

study, we have collected a comparatively large number of seven data sets

from different domains; an overview is given in Table 6.1.2

1http://mlkd.csd.auth.gr/multi-label.html
2Data sets are public available at http://mlkd.csd.auth.gr/multi-label.html

and http://lamda.nju.edu.cn/data.htm.
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The emotions data was created from a selection of songs from 233 musi-

cal albums [58]. From each song, a sequence of 30 seconds after the initial

30 seconds was extracted. The resulting sound clips were stored and con-

verted into wave files of 22050 Hz sampling rate, 16-bit per sample and mono.

From each wave file, 72 features have been extracted, falling into two cate-

gories: rhythmic and timbre. Then, in the emotion labeling process, 6 main

emotional clusters are retained corresponding to the Tellegen-Watson-Clark

model of mood: amazed-surprised, happy-pleased, relaxing-clam, quiet-still,

sad-lonely, and angry-aggressive.

Image and scene are semantic scene classification data sets proposed,

respectively, by [69] and [8], in which a picture can be categorized into one or

more classes. In the scene data, for example, pictures can have the following

classes: beach, sunset, foliage, field, mountain, and urban. Features of this

data set correspond to spatial color moments in the LUV space. Color as well

as spatial information have been shown to be fairly effective in distinguishing

between certain types of outdoor scenes: bright and warm colors at the top

of a picture may correspond to a sunset, while those at the bottom may

correspond to a desert rock. Features of the image data set are generated

by the SBN method [46] and essentially correspond to attributes in an RGB

color space.

From the biological field, we have chosen the two data sets yeast and gen-

base. The yeast data set is about predicting the functional classes of genes in

the Yeast Saccharomyces cerevisiae. Each gene is described by the concate-

nation of micro-array expression data and a phylogenetic profile, and is asso-

ciated with a set of 14 functional classes. The data set contains 2417 genes

in total, and each gene is represented by a 103-dimensional feature vector. In

the genbase data, 27 important protein families are considered, including, for

example, PDOC00064 (a class of oxydoreductases) and PDOC00154 (a class

of isomerases). After the preprocessing, a training set is exported, consisting

of 662 proteins that belong to one or more of these 27 classes.

From the text processing field, we have chosen a subset of the widely
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studied Reuters-21578 collection [54]. The seven most frequent categories

are considered. After removing documents whose label sets or main texts are

empty, 8866 documents are retained where only 3.37% of them are associated

with more than one class label. After randomly removing documents with

only one label, a text categorization data set containing 2000 documents

is obtained. Functional words are removed from the vocabulary and the

remaining words are stemmed. Instances adopt the bag-of-words representa-

tion based on term frequencies. Without loss of effectiveness, dimensionality

reduction is performed by retaining the top 2% words with highest document

frequency. Thereafter, each instance is represented as a 243-dimensional fea-

ture vector.

The mediamill data set is from the field of multimedia indexing and origi-

nates from the well-known TREC Video Retrieval Evaluation data (TRECVID

2005/2006) initiated by American National Institute of Standards and Tech-

nology (NIST), which contains 85 hours of international broadcast news data.

The task in this data set is the automated detection of a lexicon of 101 se-

mantic concepts in videos. Every instance of this data set has 120 numeric

features including visual, textual, as well as fusion information. The trained

classifier should be able to categorize an unseen instance to some of these

101 labels, e.g., face, car, male, soccer, and so on. More details about this

data set can be found at [56].

6.4.3 Evaluation Measures

To evaluate the performance of multi-label classification methods, a number

of criteria and metrics have been proposed in the literature. For a classifier

h, let h(x) ⊆ Y denote its multi-label prediction for an instance x, and let

Yx denote the true set of relevant labels. The Hamming loss computes the

percentage of labels whose relevance is predicted incorrectly:

HamLoss(h) =
1

|Y|
∣∣h(x) ∆Yx

∣∣ , (6.5)
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data set MLKNN MallowsML BR MLKNN MallowsML BR

emotions 0.261 0.197 0.253 0.262 0.163 0.352
genbase 0.005 0.003 0.001 0.006 0.006 0.006
image 0.193 0.192 0.243 0.214 0.208 0.398
mediamill 0.027 0.027 0.032 0.037 0.036 0.189
reuters 0.073 0.085 0.057 0.068 0.087 0.089
scene 0.087 0.094 0.131 0.077 0.088 0.300
yeast 0.194 0.197 0.249 0.168 0.165 0.360

Table 6.2: Experimental results in terms of Hamming loss (left) and rank
loss (right).

where ∆ is the symmetric difference between two sets.

To measure the ranking performance, we used the rank loss, which com-

putes the average fraction of label pairs that are not correctly ordered:

RankLoss(π) =
#{(y, y′) | πx(y) ≤ πx(y′), (y, y′) ∈ Yx × Y x}

|Yx||Y x|
, (6.6)

where πx(y) denotes the position assigned to label y for instance x, and

Y x = Y \ Yx is the set of irrelevant labels.

A detailed analysis of these two losses can be found in [18]. It turns

out, both our approach MallowsML and MLKNN are theoretically optimal

in terms of minimizing these two losses.

6.4.4 Results

The results of a cross validation study (10-fold, 5 repeats) are summarized

in Table 6.2. As can be seen, both instance-based approaches perform quite

strongly in comparison to the baseline, which is apparently not competitive.

The instance-based approaches themselves are more or less en par, with a

slight though statistically non-significant advantage for our method.

As discussed in the previous section, MLKNN is expected to be less effi-

cient from a computational point of view, and this expectation was confirmed

by our experiments. Indeed, our approach scales much better than MLKNN.
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Figure 6.1: Runtime of the methods on the image data.

A typical example is shown in Figure 6.1, where the runtime (total time

needed to conduct a 10-fold cross validation) is plotted as a function of the

size of the data. To obtain data sets of different size, we sampled from the

image data.

6.5 Chapter Conclusion

In this chapter, we have presented an alternative instance-based multi-label

classifier, which is (at least) competitive in terms of predictive accuracy, while

being computationally more efficient than MLKNN, which is considered as a

state-of-the-art approach in instance-based multi-label classification. In fact,

our approach comes down to a very simple prediction procedure, in which

labels are sorted according to their local frequency in the neighborhood of the

query, and ties are broken by global frequencies. Despite its simplicity, this

approach is well justified with the underlying theoretical framework based

on the Mallows model and the calibrated label ranking method.
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Chapter 7

Ranking with Abstention

A ranking is commonly understood as a strict total order, i.e., an irreflexive,

asymmetric, and transitive relation. In this chapter, we propose a general-

ization of the standard setting, allowing a model to make predictions in the

form of partial instead of total orders. We interpret such kind of prediction

as a ranking with partial abstention: If the ranker is not sufficiently certain

regarding the relative order of two alternatives and, therefore, cannot reliably

decide whether the former should precede the latter or the other way around,

it may abstain from this decision and instead declare these alternatives as

being incomparable.

The notion of abstention is already well-known for conventional classifi-

cation, and the corresponding extension is usually referred to as classification

with a reject option [34, 6]: The classifier is allowed to abstain from a pre-

diction for a query instance in case it is not sure enough. An abstention

of this kind is an obvious means to avoid unreliable predictions. Needless

to say, the same idea makes sense also in the context of ranking. In fact,

one may even argue that a reject option becomes even more interesting here:

While a conventional classifier has only two choices, namely to predict a class

or to abstain, a ranker can abstain to a certain degree: The order relation

predicted by the ranker can be more or less complete or, stated differently,

more or less partial, ranging from a total order (conventional ranking) to
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the empty relation in which all alternatives are incomparable. Later on, we

will express the degree of abstention of a ranker more precisely in terms of a

degree of completeness of the partial order it predicts.

This chapter proposes two approaches to label ranking with partial ab-

stention. The first approach, a distribution-free approach, consists of two

main steps. First, a preference relation is derived that specifies, for each pair

of labels yi and yj, a degree of preference for yi over yj and, vice versa, a

degree of preference for yj over yi. The idea is that, the more similar these

two degrees are, the more uncertain the learner is. Then, in a second step, a

partial order maximally compatible with this preference relation, in a sense

to be specified later on, is derived as a prediction. The second approach

assumes the degree of preference for the pairs are induced from a certain

probabilistic models for rankings, i.e., it is assumed the underlying rankings

of the labels are generated from a particular parameterized probability dis-

tribution. By making such a stronger model assumption, this approach is

able to avoid inconsistencies that may occur in the first approach and hence

simplifies the construction of consistent partial order relations.

The remainder of the chapter is organized as follows. Our approaches to

label ranking with partial abstention are detailed in the next two section. In

Section 7.3, we address the question of how to evaluate predictions in the form

of partial orders and propose suitable performance metrics for measuring the

correctness and completeness of such predictions. Section 7.4 is devoted

to experimental studies. We show that our approaches are indeed able to

achieve a reasonable trade-off between these two criteria. The chapter ends

with a couple of concluding remarks in Section 7.5.

7.1 Ranking with Partial Abstention

The set of labels Y to be ordered by a ranker depends on the type of ranking

problem. A ranking on Y is an irreflexive, total, and transitive relation �,

specifying for all pairs yi, yj ∈ Y whether yi precedes yj, denoted yi � yj, or
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yj precedes yi. The key property of transitivity can be seen as a principle of

consistency: If yi is preferred to yj and yj is preferred to yk, then yi must be

preferred to yk.

A partial order A on Y is a generalization that sticks to this consistency

principle but is not necessarily total. If, for two alternatives yi and yj, neither

yi A yj nor yj A yi, then these alternatives are considered as incomparable,

written as yi⊥yj. Note that, in the following, we still assume irreflexivity of

A, even if this is not always mentioned explicitly.

7.1.1 Partial Orders in Learning to Rank

As mentioned before, our idea is to make use of the concept of a partial

order in a machine learning context, namely to generalize the problem of

learning to rank. More specifically, the idea is that, for each pair of labels

yi and yj, the ranker can decide whether to make a prediction about the

order relation between these labels, namely to hypothesize that yi precedes

yj or that yj precedes yi, or to abstain from this prediction. We call a ranker

having this possibility of abstention a ranker with partial reject option. Note

that, for different pairs of alternatives, the reject decisions cannot be made

independently of each other. Instead, the pairwise predictions should be of

course consistent in the sense of being transitive and acyclic. In other words,

a ranker with a (partial) reject option is expected to make a prediction in

the form of a (strict) partial order A on the set of alternatives. This partial

order is considered as an incomplete estimation of an underlying (ground-

truth) order relation �: For labels yi, yj ∈ Y , yi A yj corresponds to the

prediction that yi � yj (and not yj � yi) holds, whereas yi⊥yj indicates an

abstention on this pair of alternatives.

In the following sections, we propose a method that enables a ranker to

make predictions of such kind. Roughly speaking, this approach consists of

two main steps:

- The first step is the prediction of a preference relation P that specifies,

for each pair of labels yi and yj, a degree of uncertainty regarding their
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relative comparison.

- In the second step, a (strict) partial order maximally compatible with

this preference relation is derived.

7.1.2 Prediction of a Binary Preference Relation

Let P be an Y×Y → [0, 1] mapping, so that P (yi, yj) is a measure of support

for the order (preference) relation yi � yj. We assume P to be reciprocal,

i.e.,

P (yj, yi) = 1− P (yi, yj) (7.1)

for all yi, yj ∈ Y . A relation of that kind can be produced in different ways.

For example, some ranking methods explicitly train models that compare

alternatives in a pairwise way, e.g., by training a single classifier for each

pair of labels [36]. If these models are able to make probabilistic predictions,

these can be used directly as preference degrees P (yi, yj).

However, since probability estimation is known to be a difficult problem,

we like to emphasize that the method we introduce here only assumes an

ordinal structure of the relation P . In fact, as will be seen below, the partial

order induced by P is invariant toward monotone transformations of P . In

other words, only the order relation of preference degrees is important, not

the degrees themselves: If P (yi, yj) > P (ys, yt), then yi � yj is considered as

more certain than ys � yt.

Here, we propose a generic approach that allows one to turn every ranker

into a partial ranker. To this end, we resort to the idea of ensembling, al-

though other possibilities are also conceivable. Let L be a learning algorithm

that, given a set of training data, induces a model M that in turn makes

predictions in the form of rankings (total orders) � of a set of labels Y .

Now, instead of training a single model, our idea is to train k such mod-

els M1, . . . ,Mk by resampling from the original data set, i.e., by creating k

bootstrap samples and giving them as input to L. Consequently, by querying

all these models, k rankings �1, . . . ,�k will be produced instead of a single
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prediction.1

For each pair of alternatives yi and yj, we then define the degree of pref-

erence P (yi, yj) in terms of the fraction of rankings in which yi precedes

yj:

P (yi, yj) =
1

k

∣∣ {t | yi �t yj} ∣∣ . (7.2)

Thus, P (yi, yj) = 1 suggests a consensus among the ensemble members, since

all of them agree that yi should precede yj. On the other hand, P (yi, yj) ≈
1/2 indicates a highly uncertain situation.

7.1.3 Prediction of a Strict Partial Order Relation

On the basis of the preference relation P , we seek to induce a (partial) order

relation A on Y , that we shall subsequently also denote by R. Thus, R
is an Y × Y → {0, 1} mapping or, equivalently, a subset of Y × Y , where

R(yi, yj) = 1, also written as (yi, yj) ∈ R or yiR yj, indicates that yi A yj.

The simplest idea is to let yiR yj iff P (yi, yj) = 1. The relation R thus

defined indeed leads to a (strict) partial order, but since a perfect consensus

(P (yi, yj) ∈ {0, 1}) is a strong requirement, most alternatives will be declared

incomparable. Seeking a prediction that is as informative as possible, it is

therefore natural to reduce the required degree of consensus. We therefore

proceed from an “α-cut” of the relation P , defined as

Rα = {(yi, yj) | P (yi, yj) > α} (7.3)

for 1/2 ≤ α ≤ 1. A cut of that kind provides a reasonable point of departure,

as it comprises the most certain preference statements while ignoring those

comparisons (yi, yj) with P (yi, yj) ≤ α. However, it is not necessarily transi-

tive and may even contain cycles. For example, suppose yi �1 yj �1 yk, yj �2

yk �2 yi and yk �3 yi �3 yj. Clearly, P (yi, yj) = P (yj, yk) = P (yk, yi) = 2/3,

rendering R2/3 a cyclical relation. While transitivity is easily enforced by

1In the case of an instance-based label ranker, instead of using the ensemble, such k
rankings can also be provided by the k nearest neighbors of the query instance.
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computing the transitive closure of Rα, absence of cycles is not as easily

obtained. Intuitively, it seems natural that for larger α, cycles become less

probable. However, as the example shows, for α > 1/2, cycles can still occur.

Furthermore, the larger α, the less informative the corresponding Rα.

Consequently, we propose to look for a minimal α (denote it as α∗) such

that the transitive closure of Rα (denote it as Rα) is a strict partial order

relation [50]. This Rα∗ will be the predicted strict partial order relation R,

and we call α∗ the consensus threshold. By minimizing this threshold, we

maximize Rα as well as its transitive closure Rα, and thereby also the infor-

mation extracted from the ensemble on the basis of which P was computed.

In what follows, we deal with the problem of computing α∗ in an efficient

way.

7.1.4 Determination of an Optimal Threshold

Suppose that P can assume only a finite number of values. In our case,

according to (7.2), this set is given by D = {0, 1/k, 2/k, . . . , 1}, and its

cardinality by k + 1, where k is the ensemble size. Obviously, the domain

of α can then be restricted to D. The simplest approach, therefore, is to

test each value in D, i.e., to check for each value whether Rα is acyclic, and

hence Rα a partial order. Of course, instead of trying all values successively,

it makes sense to exploit a monotonicity property: If Rα is not acyclic, then

Rβ cannot be acyclic either, unless β > α. Consequently, α∗ can be found in

at most log2(k + 1) steps using bisection. More specifically, by noting that

α∗ is lower-bounded by

αl =
1

k
+ max

yi,yj
min (P (yi, yj), P (yj, yi)) (7.4)

(which is larger than 1/2) and trivially upper-bounded by αu = 1, one can

repeatedly update the bounds as follows, until αu − αl < 1/k:

1. set α to the middle point between αl and αu
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2. compute Rα

3. compute Rα (e.g., using the Floyd-Warshall’s algorithm [63])

4. if Rα is a partial order, set αu to α

5. else set αl to α

This procedure stops with α∗ = αl. The complexity of this procedure is not

worse than the transitive closure operation, i.e., it is at most O(|Y|3).

As shown in [50], the same result can be computed with another algorithm

that is conceptually simpler (though equally costly in terms of complexity,

at least theoretically). This algorithm operates on an |Y| × |Y| matrix R

initialized with the entries P (yi, yj) (recall that Y is the set of alternatives).

It repeatedly performs a transitive closure operation on all the levels of D

simultaneously:

R(yi, yj)← max

(
R(yi, yj),max

yk∈Y
( min(R(yi, yk),R(yk, yj)) )

)
(7.5)

for all yi, yj ∈ Y , until no further changes occur. These transitive closure

operations can be seen as a correction of inconsistences in P (yi is to some

degree preferred to yj, which in turn is to some degree preferred to yk, but yi

is not sufficiently preferred to yk). Since these inconsistencies do not occur

very often, the number of update operations needed to stabilize R is normally

quite small. In practice, we found that we rarely need more than one or two

iterations.

By construction, thresholding the final relation R at a level α will yield

the transitive closure of relation Rα in (7.3). Therefore, α∗ can be taken as

α∗ =
1

k
+ max (R(yi, yj) |R(yi, yj) ≤ R(yj, yi)) , (7.6)

which is obviously the smallest α that avoids cycles. The whole procedure is

summarized in Algorithm 4.
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Algorithm 4

Require: training data T as defined in Table 2.3, a test instance x, ensemble
size k, base learner L

Ensure: a matrix R encoding partial order information of labels for x
(R(i, j) = 1 means yi �x yj, where yi, yj ∈ Y)

1: initialize R as zero matrix, α := 1/2
2: generate k bootstrap samples from T
3: constitute the ensemble with k rankers trained using L
4: get k rankings of labels for x
5: for each of k rankings do
6: for every pair yi, yj in the ranking do
7: if yi � yj then
8: set R(i, j) := R(i, j) + 1/k
9: end if

10: end for
11: end for
12: repeat
13: for every entry in R do
14: R(i, j) := max

(
R(i, j),maxk∈{1,...,|Y|}( min(R(i, k),R(k, j)) )

)
15: end for
16: until No entry in R is changed.
17: for every entry in R do
18: if α < min(R(i, j),R(j, i)) then
19: α := min(R(i, j),R(j, i))
20: end if
21: end for
22: for every entry in R do
23: if R(i, j) > α then
24: R(i, j) := 1
25: end if
26: end for
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Finally, we note that, as postulated above, α∗ in (7.6) yields a maximal

partial order as a prediction. In principle, of course, any larger value can

be used as well, producing a less complete relation and, therefore, a more

“cautious” prediction. We shall come back to this issue in Section 7.3.

7.1.5 An Illustrative Example

To illustrate the idea of using ensemble approach, we demonstrate it by

means of a small two-dimensional toy example for bipartite ranking, where

the goal is to rank positive classes ahead of the negative classes (see Ta-

ble 2.2).2 Suppose that the conditional class distributions of the positive and

the negative class are two overlapping Gaussians. A training data set may

then look like the one depicted in Figure 7.1 (left), with positive examples

as black and negative examples as white dots. Given a new set of query

instances X to be ranked, one may expect that a learner will be uncertain

for those instances lying close to the overlap region, and may hence prefer to

abstain from comparing them.

86 94 71 2 3 5 {1,2,3,4,5} Â {6,7,8,9}

8 972 3 5

84 71 2 3 5

86 94 71 2 5

9

…

{1,2,3} Â {4,6} ~ {5,7} Â {8,9}

1

3

2 5

4

1 3

2

5

4
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1

0.5

0.75

Figure 7.1: Left: training data and ensemble models; right: partial order
predicted for a set of five query instances.

Specifically, suppose that a linear model is used to train a ranker. Roughly

speaking, this means fitting a separating line and sorting instances according

to their distance from the decision boundary. Figure 7.1 (left) shows several

such models that may result from different bootstrap samples. Now, consider

the five query instances shown in the right picture of Figure 7.1. While all

2We use the bipartite ranking problem as it is much easy to visualize. Algorithm 4
can be applied to a bipartite ranking problem with minor changes.
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these models will rank instance 1 ahead of 2, 3 and 4, and these in turn

ahead of 5, instances 2, 3 and 4 will be put in various orders. Applying

our approach as outlined before, with a proper choice of the threshold α,

may then yield the strict partial order indicated by the arrows in the right

picture of Figure 7.1. A prediction of that kind agrees with our expectation:

Instance 1 is ranked first and instance 5 last; instances 2, 3 and 4 are put in

the middle, but the learner abstains from comparing them in a mutual way.

7.2 Abstention by Thresholding Probability

Distributions in Label Ranking

The method proposed in Section 7.1 consists of two main steps and can be

considered as a pairwise approach in the sense that, as a point of departure,

a valued preference relation P : Y × Y → [0, 1] is produced, where P (yi, yj)

is interpreted as a measure of support of the pairwise preference yi � yj.

Support is commonly interpreted in terms of probability, hence P is assumed

to follow (7.1), that is, to be reciprocal for all yi, yj ∈ Y . Then, in a second

step, a partial order R is derived from P via thresholding: R(yi, yj) = 1

if P (yi, yj) > α and R(yi, yj) = 0 otherwise, where 1/2 ≤ α < 1 is a

threshold. Thus, the idea is to predict only those pairwise preferences that are

sufficiently likely, while abstaining on pairs (yi, yj) for which the probability

P (yi, yj) is too close to 1/2.

The first step of deriving the relation P is realized by means of an ensem-

ble learning technique, and the preference degrees P (yi, yj) are essentially

independent of each other. Or, stated differently, they do not guarantee any

specific properties of the relation P except being reciprocal. For the relation

R derived from P via thresholding, this has two important consequences:

- If the threshold α is not large enough, then R may have cycles. Thus,

not all thresholds in [1/2, 1) are actually feasible. In particular, if

α = 1/2 cannot be chosen, this also implies that the method may not
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be able to predict a total order as a special case.

- Even if R does not have cycles, it is not guaranteed to be transitive.

In order to tackle the above problems in the label ranking setting, the idea

we discuss here is to restrict the relation P so as to exclude the possibility of

cycles and violations of transitivity from the very beginning. To this end, we

take advantage of methods for label ranking that produce (parameterized)

probability distributions over Ω as predictions. Our main theoretical result is

to show that thresholding pairwise preferences induced by such distributions

yields preference relations with the desired properties, that is, partial order

relations R.

Given a probability distribution on the set of rankings Ω, the probability

of a pairwise preference yi � yj (and hence the corresponding entry in the

preference relation P ) can be derived through marginalization:

P (i, j) = Pr(yi � yj) =
∑

π∈E(i,j)

Pr(π) , (7.7)

where E(i, j) denotes the set of linear extensions of the incomplete ranking

yi � yj, i.e., the set of all rankings π ∈ Ω in which yi precedes yj. Our main

theoretical result states that thresholding (7.7) yields a proper partial order

relation R, both for the Mallows and the PL model.

Theorem 7. Let Pr in (7.7) be the Mallows model (4.1), with a distance D

having the so-called transposition property, or the PL model (4.5). Moreover,

let R be defined by the thresholded relation R(yi, yj) = 1 if P (yi, yj) > α and

R(yi, yj) = 0 otherwise. Then R defines a proper partial order relation for

all α ∈ [1/2, 1).

Definition 1. A distance D on rankings is said to have the transposition

property, if the following holds: Let π and π′ be rankings and let (i, j) be a

conflict pair, i.e., (i, j) ∈ {1, . . . , n}2 such that i < j and (π(i)−π(j))(π′(i)−
π′(j)) < 0. Let the ranking π′′ be constructed from π by swapping yi and
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yj, that is, π′′(i) = π′(j), π′′(j) = π′(i) and π′′(m) = π′(m) for all m ∈
{1, . . . , n} \ {i, j}. Then, D(π, π′′) ≤ D(π, π′).

Lemma 2. The Kendall distance T , the Spearman distance S, and the Spear-

man footrule F satisfy the transposition property.

Proof. See [16].

Lemma 3. Suppose that, in the Mallows model, D satisfies the transposition

property, and that yi precedes yj in the center ranking π0. Then, Pr(yi �
yj) ≥ 1/2.

Proof. For every ranking π ∈ Ω, let b(π) = π if yi precedes yj in π; otherwise,

b(π) is defined by swapping yi and yj in π. Obviously, b(·) defines a bijec-

tion between E(i, j) and E(j, i). Moreover, since D has the transposition

property, D(b(π), π0) ≤ D(π, π0) for all π ∈ Ω. Therefore, according to the

Mallows model, Pr(b(π)) ≥ Pr(π), and hence

Pr(yi � yj) =
∑

π∈E(i,j)

Pr(π)

≥
∑

π∈E(i,j)

Pr(b−1(π))

=
∑

π∈E(j,i)

Pr(π)

= Pr(yj � yi) .

(7.8)

Since, moreover, Pr(yi � yj) = 1− Pr(yj � yi), it follows that Pr(yi � yj) ≥
1/2.

Lemma 4. Suppose that, in the Mallows model, D satisfies the transposition

property, and that Pr(yi � yj) > α ≥ 1/2. Then, yi precedes yj in the center

ranking π0.

Proof. It follows from Lemma 3 by contradiction: If yj would precede yj, then

Pr(yj � yi) ≥ 1/2, and therefore Pr(yi � yj) = 1− Pr(yj � yi) ≤ 1/2.
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Lemma 5. Suppose that, in the Mallows model, D satisfies the transposition

property. Moreover, suppose that yi precedes yj and yj precedes yk in the

center ranking π0. Then,

Pr(yi � yk) ≥ max (Pr(yi � yj),Pr(yj � yk)) . (7.9)

Proof. We show that Pr(yi � yk) ≥ Pr(yi � yj). The second inequality

Pr(yi � yk) ≥ Pr(yj � yk) can be shown analogously.

Let E(i, j, k) denote the set of linear extensions of yi � yj � yk, i.e., the

set of rankings π ∈ Ω in which yi precedes yj and yj precedes yk.

Now, for every π ∈ E(k, j, i), define b(π) by first swapping yk and yj and

then yk and yi in π. Obviously, b(·) defines a bijection between E(k, j, i)

and E(j, i, k). Moreover, due to the transposition property, D(b(π), π0) ≤
D(π, π0), and therefore Pr(b(π)) ≥ Pr(π) under the Mallows model. Conse-

quently, since

E(i, j) = E(i, j, k) ∪ E(i, k, j) ∪ E(k, i, j) , (7.10)

E(i, k) = E(i, k, j) ∪ E(i, j, k) ∪ E(j, i, k) , (7.11)

it follows that

Pr(yi � yk)− Pr(yi � yj) =
∑

π∈E(i,k)\E(i,j)

Pr(π)

=
∑

π∈E(j,i,k)

Pr(π)−
∑

π∈E(k,j,i)

Pr(π)

=
∑

π∈E(k,j,i)

Pr(b(π))− Pr(π)︸ ︷︷ ︸
≥0

≥ 0 .

(7.12)

Lemma 6. Suppose that, in the Mallows model, D satisfies the transposition

property. Then, the relation P defined by P (i, j) = Pr(yi � yj) satisfies the
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following property (closely related to strong stochastic transitivity):

(
(P (i, j) > α)∧ (P (j, k) > α)

)
⇒ P (i, k) ≥ max(P (i, j), P (j, k)) (7.13)

for all α ≥ 1/2 and all i, j, k ∈ {1, . . . , n}.

Proof. This follows from Lemmas 3, 4 and 5.

The proof of Theorem 7 for the Mallows model follows immediately: Since

Pr(yi � yj) = 1−Pr(yj � yi), it follows thatR(yi, yj) = 1 impliesR(yj, yi) =

0. Moreover, Lemma 6 implies that R is transitive. Consequently, R defines

a proper partial order relation.

The proof of Theorem 7 for the PL model is more straightforward: For

α ≥ 1/2, R being irreflexive is directly obtained due to (4.6) and its transi-

tivity can be shown by the following lemma.

Lemma 7. For any i, j, k ∈ {1, . . . , n}, 1/2 ≤ α < 1, if vi
vi+vj

> α and
vj

vj+vk
> α, we have vi

vi+vk
> α.

Proof. Since vi
vi+vj

> α, we have

1− α
α

vi > vj . (7.14)

Analogously,
1− α
α

vj > vk . (7.15)

From (7.14) and (7.15), we have

vi
vi + vk

=
1

1 + vk
vi

>
1

1 + (1−α
α

)2
(7.16)

For 1/2 ≤ α < 1, since

1

1 + (1−α
α

)2
− α ≥ 0 ⇐⇒ (1− α)(1− 2α) ≤ 0 (7.17)

always holds, it leads to vi
vi+vk

> α.
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Since the results of ranking are invariant towards relabeling of the labels

and, correspondingly, the indexes of v, Lemma 7 effectively means that,

under the PL model, any threshold larger than or equal to 1/2 guarantees

an transitive relation obtained by P .

7.3 Evaluation Measures

If a model is allowed to abstain from making predictions, it is expected to

reduce its error rate. In fact, it can trivially do so, namely by rejecting

all predictions, in which case it avoids any mistake. Clearly, this is not a

desirable solution. Indeed, in the setting of prediction with reject option,

there is always a trade-off between two criteria: correctness on the one side

and completeness on the other side. An ideal learner is correct in the sense of

making few mistakes, but also complete in the sense of abstaining but rarely.

The two criteria are normally conflicting: increasing completeness typically

comes along with reducing correctness and vice versa.

7.3.1 Correctness

As a measure of correctness, we propose a quantity that is also known as the

gamma rank correlation [32] in statistics, although it is not applied to partial

orders. Instead, it is used as a measure of correlation between rankings (with

ties). As will be seen, however, it can also be used in a more general way.

Let �∗ be the ground-true relation on the set of labels Y . This relation

is a total order, so yi �∗ yj if yi precedes yj and yj �∗ yi if yj precedes yi;

exactly one of these two cases is true, i.e., we never have yi⊥∗yj. Now, let A

be a predicted (strict) partial order, i.e., a prediction of �∗. We call a pair

of labels yi and yj concordant if they are compared in the correct way, that

is,

(yi �∗ yj ∧ yi A yj) ∨ (yj �∗ yi ∧ yj A yi) . (7.18)
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Likewise, we call yi and yj discordant if the comparison is incorrect, that is,

(yi �∗ yj ∧ yj A yi) ∨ (yj �∗ yi ∧ yi A yj) . (7.19)

Given these notions of concordance and discordance, we can define

CR(A,�∗) =
|C| − |D|
|C|+ |D|

, (7.20)

where C and D denote, respectively, the set of concordant and discordant

pairs of labels. Obviously, CR(A,�∗) = 1 for �∗=A and CR(A,�∗) = −1 if

A is the inversion of �∗.
Note that (7.20) reduces to commonly used Kendall’s tau (2.3) in the

complete (non-partial) case, that is, when A is a total order.

7.3.2 Completeness

To measure the degree of completeness of a prediction, a straightforward idea

is to punish the abstention from comparisons that should actually be made.

This leads to the following measure of completeness:

CP(A) =
|C|+ |D|
| �∗ |

=
2

n(n− 1)
(|C|+ |D|) , (7.21)

where n = |Y| is the number of labels to be ranked.

7.4 Experiments

In this section, we empirically evaluate these two proposed approaches, where

we have tested on a selection of label ranking data sets presented in Chap-

ter 4. We performed five repetitions of the 10-fold cross-validation and used

an ensemble size of 10. As a label ranking method, we used the RPC ap-

proach with logistic regression as a base learner.
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The averaged results of the approach proposed in Section 7.1 are sum-

marized in Table 7.1. It can be seen that our approach of partial abstention

leads to improved performance. In fact, it is never worse and sometimes

yields better results with significant margins. Moreover, this gain in perfor-

mance comes with an acceptable loss in terms of completeness. The degrees

of completeness are quite high throughout, significantly above 90%.

correctness correctness
data set #attr. #cls. #inst. with abstention w/o abstention completeness
iris 4 3 150 0.910±0.062 0.885±0.068 0.991±0.063
wine 13 3 178 0.940±0.051 0.921±0.053 0.988±0.067
glass 9 6 214 0.892±0.039 0.882±0.042 0.990±0.030
vowel 10 11 528 0.657±0.019 0.647±0.019 0.988±0.016
vehicle 18 4 846 0.858±0.026 0.854±0.025 0.992±0.039
authorship 70 4 841 0.941±0.016 0.910±0.015 0.989±0.043
pendigits 16 10 10992 0.933±0.002 0.932±0.002 0.999±0.005
segment 18 7 2310 0.938±0.006 0.934±0.006 0.998±0.011

Table 7.1: Results for label ranking: mean values and standard deviations
for correctness and completeness.

We conducted a second experiment with the aim to investigate the trade-

off between correctness and completeness. As was mentioned earlier, and to

some extent already confirmed by our first experiment, we expect a com-

promise between both criteria insofar as it should be possible to increase

correctness at the cost of completeness. To verify this conjecture, we var-

ied the threshold α in (7.3) in the range [α∗, 1]. Compared to α∗, larger

thresholds will make the predictions increasingly incomplete; at the same

time, however, they should also become more correct. Indeed, the results we

obtained are well in agreement with these expectations. Figure 7.2 shows

typical examples of the trade-off between correctness and completeness for

two data sets.

For the alternative approach we proposed in Section 7.2 for the label

ranking problem, it should be noticed that this approach, despite being ap-

pealing from the theoretical point of view, does not automatically imply a

practical advantage, especially since it makes strong model assumptions (in
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Figure 7.2: Label ranking with partial abstention: Trade-off between cor-
rectness and completeness for selected data sets.

terms of the Mallows or PL model) that are not necessarily satisfied. There-

fore, we complement our theoretical results by an empirical study shown in

Figure 7.3.

The main conclusion can be drawn from our results is that, as expected,

the probabilistic approach does indeed achieve a better trade-off between

completeness and correctness, especially in the sense that it spans a wider

range of values for the former. Besides, we often observe that the level of

correctness is increased, too.

7.5 Chapter Conclusion

In this chapter, we have addressed the problem of reliable prediction in the

context of learning to rank. Based on the idea of allowing a learner to abstain

from an uncertain comparison of alternatives, together with the requirement
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Figure 7.3: Trade-off between completeness and correctness for a label rank-
ing variant of the UCI benchmark data set vowel: The pairwise method pro-
posed in Section 7.1 (solid line) versus the approach based on probabilistic
models proposed in Secion 7.2 (dashed line).

that predictions are consistent, we have proposed a relaxation of the conven-

tional setting in which predictions are given in terms of partial instead of

total orders. We have proposed a generic approach to predicting partial or-

ders or, according to our interpretation, ranking with partial abstention. We

have also proposed a method based on the idea of thresholding the probabil-

ities of pairwise preferences between labels. It can be shown that, when such

pairwise preferences are induced by some particular probability distribution

on rankings, thresholding can be safely done in a sense that it guarantees that

a proper partial order relation is predicted. To evaluate the performance of a

ranker with (partial) reject option, measures of correctness and completeness

are introduced. Empirically, we have shown that our methods are indeed able

to trade off accuracy against completeness: The correctness of a prediction

can be increased at the cost of reducing the number of alternatives that are

compared.

The extension from predicting total to predicting partial orders as pro-

posed in this chapter opens the door for a multitude of further studies. In

this chapter, we have essentially assumed that the target is a complete order,

and a prediction in terms of a partial order A is an incomplete estimation

thereof. Therefore, we do not penalize the case where yi A yj even though
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yi⊥∗yj. Now, if A∗ is a true partial order, it clearly makes sense to request,

not only the correct prediction of order relations yi A∗ yj between alterna-

tives, but also of incomparability relations yi⊥∗yj. Although the difference

may look subtle at first sight, the changes will go beyond the evaluation of

predictions and instead call for different learning algorithms. In particular,

in this latter scenario, yi⊥yj will be interpreted as a prediction that yi and

yj are incomparable (yi⊥∗yj), and not as a rejection of the decision whether

yi A∗ yj or yj A∗ yi. Nevertheless, the two settings are of course related, and

their connection is worth a deep study in the future work.
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- Weiwei Cheng, Michaël Rademaker, Bernard De Baets, and Eyke Hüllermeier.
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Chapter 8

Conclusion

The topic of label ranking has attracted increasing attention in the recent

machine learning literature [27, 36, 33, 17, 10]. It is a particular preference

learning scenario, studies the problem of learning a mapping from instances

to rankings of over a finite number of predefined labels. This setting is

versatile and generalizes a number of different other learning settings. When

only the top ranked label is requests, label ranking reduces to a conventional

classification problem; when a calibrated label is introduced, the output of

label ranking can be considered as a multi-label prediction. Because of the

versatility, label ranking has its application in a lot of learning tasks, such

as natural language processing, customer modeling, bioinformatics, etc. [27]

Not surprisingly, quite a number of label ranking algorithms have been

proposed in the literature, where two main general frameworks exist, namely

label ranking by learning utility functions and label ranking by learning pref-

erence relations. In Chapter 3 we have discussed some of them. As we

showed, most of the existing approaches use reduction techniques to approach

label ranking problem indirectly by solving a set of classification problems.

Reduction techniques have shown promising performance in experimental

studies. Moreover, the reduction of the label ranking problem to the simpler

problem of classification is appealing for several reasons. Notably, it makes
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the label ranking problem amenable to the large repertoire of (binary) clas-

sification methods and existing algorithms in this field. On the other hand,

reduction techniques also come with some disadvantages. In particular, the-

oretical assumptions on the sought “ranking-valued” mapping, which may

serve as a proper learning bias, may not be easily translated into correspond-

ing assumptions for the classification problems. Likewise, it is often not clear

(and mostly even wrong) that minimizing the classification error, or a related

loss function, on the binary problems is equivalent to maximizing the (ex-

pected) performance of the label ranking model in terms of the desired loss

function on rankings. In this thesis, to avoid these problems to some extent,

we propose the label ranking methods on the basis of statistical models for

ranking data, that is, parameterized (conditional) probability distributions

on the class of all rankings. Given assumptions of that kind, the learning

problem can be posed as a problem of maximum likelihood estimation and

thus be solved in a theoretically sound way. In particular, in Chapter 4 we

have made use of the Mallows and Plackett-Luce model and developed an

instance-based (nearest neighbor) learning algorithm to estimate the mod-

els in a local way. Moreover, apart from the estimation of locally constant

models suitable for instance-based learning, we also develop a method for

estimating generalized linear models based on the Plackett-Luce model in

Chapter 5. An advantage of using probabilistic methods is that it delivers,

as a byproduct, natural measures of the reliability of a prediction, which are

often not directly provided by existing approaches. Moreover, due to the

versatility of the label ranking setting, the use of probabilistic methods also

provides means to analyze other learning problems. In Chapter 6, a sim-

ple yet powerful algorithm for multi-label learning is proposed, based on the

theoretical analysis with the Mallows model.

Unlike classification, a lot of aspects in label ranking have not yet been

addressed in the literature and worth further investigation. For example,

Chapter 7 dedicates to learning with reject option, which is a well-studied

topic in classification but not in label ranking so far. As we argued earlier,
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this setting is even more interesting and challenging in label ranking, since

the learner can reject to a certain degree. Moreover, in order to guarantee

the outputs are proper rankings, i.e., partial orders, the abstention of com-

parisons between labels cannot be made independently. In that chapter, two

approaches have been proposed to solve this problem.

As we already discussed in the beginning of the thesis, the ranking of

different alternatives can often be interpreted as preference information, and

indeed the label ranking problem is intensively studied as a sub-field of pref-

erence learning [27]. Roughly speaking, preference learning is about inducing

predictive preference models from empirical data. In Chapter 2, we have out-

lined three intensively studied preference learning problems, object ranking,

instance ranking, and label ranking. Although this thesis studies label rank-

ing exclusively, many developed techniques for label ranking apply to the

other two settings as well. In fact, the theoretical analysis of relationships

between these settings and unifying different learning to rank problems in a

sound way are valuable future research topics in preference learning.
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optimal multi-label classification via probabilistic classifier chains. In

Johannes Fürnkranz and Thorsten Joachims, editors, Proceedings of

the 27th International Conference on Machine Learning, pages 279–286.

Omnipress, 2010.

[19] Arthur Dempster, Nan Laird, and Donald Rubin. Maximum likelihood

from incomplete data via the EM algorithm. Journal of the Royal Sta-

tistical Society B, 39(1):1–38, 1977.

[20] Janez Dems̆ar. Statistical comparisons of classifiers over multiple data

sets. Journal of Machine Learning Research, 7:1–30, 2006.

[21] Persi Diaconis and Ronald Graham. Spearman’s footrule as a measure

of disarray. Journal of the Royal Statistical Society Series B, 39(2):262–

268, 1977.

[22] John Duchi, Lester Mackey, and Michael Jordan. On the consistency

of ranking algorithms. In Johannes Fürnkranz and Thorsten Joachims,

editors, Proceedings of the 27th International Conference on Machine

Learning, pages 327–334. Omnipress, 2010.

99



[23] Cynthia Dwork, Ravi Kumary, Moni Naorz, and D. Sivakumar. Rank

aggregation methods for the web. In Vincent Shen, Nobuo Saito, Michael

Lyu, and Mary Zurko, editors, Proceedings of the 10th International

Conference on World Wide Web, pages 613–622. ACM P, 2001.
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[36] Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, and Klaus

Brinker. Label ranking by learning pairwise preferences. Artificial In-

telligence, 172(16-17):1897–1916, 2008.

[37] David Hunter. MM algorithms for generalized Bradley-Terry models.

The Annals of Statistics, 32(1):386–408, 2004.

[38] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based eval-
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Proceedings of the 26th International Conference on Machine Learning (ICML-09): 
161-168, Omnipress 
Montreal, Canada ICML scholarship 
 

May 2009 Weiwei Cheng, Eyke Hüllermeier 
A new instance-based label ranking approach using the Mallows model 
LNCS 5551 Advances in Neural Networks: 707-716, Springer  
The 6th International Symposium on Neural Networks (ISNN-09) 
Wuhan, China 
 

Oct. 2008 
 

Weiwei Cheng, Eyke Hüllermeier 
Ranking skylines using active learning techniques 
Proceedings of Chinese Intelligent Systems Engineering 2008 (CNISE-08) 
Chengdu, China 
 

Sep. 2008 Weiwei Cheng, Eyke Hüllermeier 
Instance-based label ranking using the Mallows model 
Workshop Proceedings of Preference Learning 2008 (PL-08) 
European Conference on Machine Learning and Principles and Practice of 
Knowledge Discovery in Databases (ECMLPKDD-08)  
Antwerp, Belgium 
 

Sep. 2008 Weiwei Cheng, Eyke Hüllermeier 
Instance-based label ranking using the Mallows model 
Workshop Proceedings of ECCBR-08: 143-157 
Uncertainty and Knowledge Discovery in CBR 
The 9th European Conference on Case-Based Reasoning (ECCBR-08) 
Trier, Germany 
 

Sep. 2008 Weiwei Cheng, Eyke Hüllermeier 
Learning similarity functions from qualitative feedback 
LNAI 5239 Advances in Case-Based Reasoning: 120-134, Springer  
The 9th European Conference on Case-Based Reasoning (ECCBR-08) 
Trier, Germany nominated for best paper award 
 

Aug. 2008 Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, Klaus Brinker 
Label ranking by learning pairwise preferences 
Artificial Intelligence 172: 1897-1916, Elsevier listed in Most Cited Artificial 
Intelligence Articles 2007-2012 
 

Oct. 2007 Weiwei Cheng 
Interactive ranking of skylines using machine learning techniques 
Master's thesis summa cum laude 
Faculty of Computer Science, Otto-von-Guericke University Magdeburg 
Magdeburg, Germany 
 

Sep. 2007 Weiwei Cheng, Eyke Hüllermeier, Bernhard Seeger, Ilya Vladimirskiy 
Interactive ranking of skylines using machine learning techniques 
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Proceedings of Lernen-Wissen-Adaptivität 2007 (LWA-07): 141-148, Martin Luther 
University  
Halle, Germany 
 
 

TALKS & TUTORIALS  
 

Jul. 2012 Preference-based reinforcement learning 
The 25th European Conference on Operational Research (EURO-2012) 
Vilnius, Lithuania DAAD conference  scholarship 
 

Sep. 2011 Learning monotone nonlinear models using the Choquet integral  
Lernen-Wissen-Adaptivität (LWA-11) 
Magdeburg, Germany 
 

Dec. 2010 The RipOff! game: a tutorial of cooperative game theory  
with Yoram Bachrach 
Think Computer Science 
Cambridge, UK 
 

Sep. 2010 Graded multi-label classification: the ordinal case 
Lernen-Wissen-Adaptivität (LWA-10) 
Kassel, Germany 
 

Jun. 2010 Acceptance speech of 2009 Chinese Government Award for Outstanding 
Self-Financed Students Abroad 
Embassy of China, Berlin, Germany 
 

Nov. 2009 Text classification: concepts and methods 
Association of Chinese Computer Scientists in Germany (GCI) Annual Conference 
Fürth, Germany 
 

Nov. 2009 Text classification: a back-to-school tutorial 
GTO IES Audit & Risk Management Department, Deutsche Bank 
Frankfurt, Germany 
 

Oct. 2009 Human vs. computer: case studies 
Association of Chinese Scholars and Students in Magdeburg (VCWSM e.V.) 
Magdeburg, Germany 
 

Oct. 2009 Multi-label classification: a new machine learning problem 
Lightning Talk, the 4th Annual Google Test Automation Conference (GTAC-09) 
Zurich, Switzerland 
 

Sep. 2009 Combining instance-based learning and logistic regression for multi-
label classification 
Lernen-Wissen-Adaptivität (LWA-09) 
Darmstadt, Germany 
 

Sep. 2009 Human-computation in Internet 
Association of Chinese Computer Scientists in Germany (GCI) IT Strategy Workshop 
Schwetzingen, Germany 
 

Nov. 2008 Ranking the skyline: an application of preference learning 
Association of Chinese Computer Scientists in Germany (GCI) Annual Conference 
Lahnstein, Germany 
 

Sep. 2008 Instance-based label ranking 
Student Talk, the 10th Machine Learning Summer School (MLSS-08) 
Ile De Re, France MLSS scholarship 
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Mar. 2007 A brief introduction to preference handling 

Colloquium for Graduate Students in Mathematics and Computer Science 
Philipps University Marburg, Germany 
 
 

PROFESSIONAL ACTIVITIES 
 
Membership 
 

 Association for Computing Machinery (ACM) 
Association of Chinese Computer Scientists in Germany (GCI)  
Institute of Electrical and Electronics Engineers (IEEE) 
International Machine Learning Society (IMLS) 
 

Journal reviewer 
 

 Neural Processing Letters (Springer) 
Artificial Intelligence  (Elsevier) 
Engineering Applications of Artificial Intelligence (Elsevier) 
IEEE Transactions on Fuzzy Systems (IEEE) 
Information Retrieval (Springer) 
Journal of Algorithms (Elsevier) 
Journal of Artificial Intelligence Research (AAAI Press) 
Journal of Machine Learning Research (Microtome Publishing) 
Machine Learning (Springer) 
Pattern Recognition (Elsevier) 
Soft Computing (Springer) 
Uncertainty, Fuzziness and Knowledge-Based Systems (World Scientific) 
 

Program committee membership 
 

Feb. 2012 Knowledge Discovery and Data Mining Meets Linked Open Data workshop at the 9th 
Extended Semantic Web Conference (ESWC-12) 
 

Jan. 2012 European Conference on Machine Learning and Principles and Practice of 
Knowledge Discovery in Databases (ECMLPKDD-12) 
 

Jan. 2012 The 20th European Conference on Artificial Intelligence (ECAI-2012) 
 

Mar. 2011 European Conference on Machine Learning and Principles and Practice of 
Knowledge Discovery in Databases (ECMLPKDD-11) 
 

Sep. 2009 Preference Learning workshop at European Conference on Machine Learning and 
Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD-09) 
 

Jul. 2009 International Fuzzy Systems Association World Congress and European Society for  
Fuzzy Logic and Technology Conference (IFSA/EUSFLAT-09) 
 

Sep. 2008 Preference Learning workshop at European Conference on Machine Learning and 
Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD-08) 

 
Conference reviewer  
 

    Mar. 2012 The 29th International Conference on Machine Learning (ICML-12) 
 

Feb. 2012 The 14th International Conference on Information Processing and Management of 
Uncertainty in Knowledge-Based Systems (IPMU-12) 
 

Nov. 2011 2012 SIAM International Conference on Data Mining (SDM-12) 
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Nov. 2011 The 16th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-
12) 
 

Jun. 2011 The 20th ACM Conference on Information and Knowledge Management (CIKM-11) 
 

May 2011 The 5th International Conference on Scalable Uncertainty Management (SUM-11) 
 

      Mar. 2011 The 11th European Conference on Symbolic and Quantitative Approaches to 
Reasoning with Uncertainty (ECSQARU-11) 
 

  Jul. 2010 2010 IEEE International Conference on Data Mining (IEEEICDM-10) 
 

Jul. 2010 The 19th ACM International Conference on Information and Knowledge Management 
(CIKM-10) 
 

May 2010 The 11th International Conference on Parallel Problem Solving from Nature (PPSN-
10) 
 

Mar. 2010 The 10th Industrial Conference on Data Mining (ICDM-10) 
 

Mar. 2010 The 36th Annual Convention of the Society for the Study of Artificial Intelligence and 
Simulation of Behaviour (AISB-10) 
 

Feb. 2010 The 27th International Conference on Machine Learning (ICML-10) 
 

Aug. 2009 
 

The 26th IEEE International Conference on Data Engineering (ICDE-10) 
 

Jul. 2009  2009 IEEE International Conference on Data Mining (IEEEICDM-09) 
 

Jun. 2009 The 32nd Annual Conference on Artificial Intelligence (KI-09) 
 

May 2009 European Conference on Machine Learning and Principles and Practice of 
Knowledge Discovery in Databases (ECMLPKDD-09) 
 

Apr. 2009 The 8th International Symposium on Intelligent Data Analysis (IDA-09) 
 

Nov. 2008 2009 IEEE Symposium on Computational Intelligence and Data Mining (CIDM-09) 
 

Jul. 2008 Advances in Data Analysis, Data Handling and Business Intelligence – 32nd Annual 
Conference of the German Classification Society, Joint Conference with the British 
Classification Society and the Dutch/Flemish Classification Society (GfKl-08) 
 

May 2008 The 34th International Conference on Very Large Data Bases (VLDB-08) 
 
 
TEACHING EXPERIENCE 
 

2008 – 2010 Machine Learning 
 
 
HONORS & AWARDS 
 
Awards 
 

Apr. 2012 Data mining competition award 
The 2nd place at JRS 2012 Data Mining Competition 
Chengdu, China 
 

Jul. 2011 Nomination for best student paper award 
The 7th Conference of the European Society for Fuzzy Logic and Technology,  
Aix-les-Bains, France 
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Jun. 2010 Outstanding Chinese student award 
Chinese Government Award for Outstanding Self-Financed Students Abroad 
Ministry of Education, China 
 

Sep. 2009 Best paper award 
Machine Learning Journal Best Student Paper Award 
The 19th European Conference on Machine Learning, Bled, Slovenia 
 

Oct. 2008 Best graduate award 
Best Graduate 2007/2008 in Master of Data and Knowledge Engineering 
Otto-von-Guericke University Magdeburg, Germany 
 

Sep. 2008 Nomination for best paper award 
The 9th European Conference on Case-Based Reasoning, Trier, Germany 
 

Jun. 2002 Best debater award 
The 1st Varsity Debate Tournament of Henan, China 
 

Aug. 1999 Speech contest award 
The 3rd prize at Speech Contest “The 50 Years”, Anqing, China 
 

Scholarships & Grants 
 

Jul. 2012 DAAD conference scholarship 
German Academic Exchange Service (DAAD) 
Vilnius, Lithuania, July, 2012 
 

Dec. 2011 NIPS travel grant 
Sponsored by Winton Capital, etc. 
The 25th Annual Conference on Neural Information Processing Systems, Granada, 
Spain 
 

Apr. 2011 DAAD STIBET scholarship 
Sponsored by German Academic Exchange Service (DAAD) 
Marburg University Research Academy (MARA) 
 

Sep. 2010 UNESCO ECMLPKDD conference grant 
Sponsored by UNESCO Chair in Data Privacy 
European Conference on Machine Learning and Principles and Practice of 
Knowledge Discovery in Databases, Barcelona, Spain 
 

Jun. 2010 ICML scholarship 
Sponsored by IBM, National Science Foundation (NSF), etc. 
The 27th International Conference on Machine Learning, Haifa, Israel 
 

Jun. 2009 ICML scholarship 
Sponsored by National Science Foundation (NSF), etc. 
The 26th International Conference on Machine Learning, Montreal, Canada 
 

Sep. 2008 MLSS scholarship 
Sponsored by Predict & Control and Lille's Computer Science Laboratory (LIFL) 
The 10th Machine Learning Summer School, Ile De Re, France 
 

Oct. 2006 Outstanding international student scholarship 
Ministry of Education and Cultural Affairs of Saxony-Anhalt, Germany 

 
 
INTERESTS & SKILLS 
 

Programming Java, MATLAB, Octave, Python, C#, C, HTML, SQL, SAP's ABAP, etc. 
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Languages Chinese, English, German 

 
Hobbies Mandarin debate, investing, electronic sports, table tennis, etc. 

 
 
SOME LINKS 
 

Research work.chengweiwei.com 
 

 

Blog blog.chengweiwei.com 
 

 

Photos photo.chengweiwei.com 
 

 

Twitter twitter.com/chengweiwei 
 

 

Video lectures videos.chengweiwei.com 
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