296 research outputs found

    The Astro-WISE approach to quality control for astronomical data

    Get PDF
    We present a novel approach to quality control during the processing of astronomical data. Quality control in the Astro-WISE Information System is integral to all aspects of data handing and provides transparent access to quality estimators for all stages of data reduction from the raw image to the final catalog. The implementation of quality control mechanisms relies on the core features in this Astro-WISE Environment (AWE): an object-oriented framework, full data lineage, and both forward and backward chaining. Quality control information can be accessed via the command-line awe-prompt and the web-based Quality-WISE service. The quality control system is described and qualified using archive data from the 8-CCD Wide Field Imager (WFI) instrument (http://www.eso.org/lasilla/instruments/wfi/) on the 2.2-m MPG/ESO telescope at La Silla and (pre-)survey data from the 32-CCD OmegaCAM instrument (http://www.astro-wise.org/~omegacam/) on the VST telescope at Paranal.Comment: Accepted for publication in topical issue of Experimental Astronomy on Astro-WISE information syste

    Counting Steps: A Finitist Approach to Objective Probability in Physics

    Get PDF
    We propose a new interpretation of objective probability in statistical physics based on physical computational complexity. This notion applies to a single physical system (be it an experimental set-up in the lab, or a subsystem of the universe), and quantifies (1) the difficulty to realize a physical state given another, (2) the 'distance' (in terms of physical resources) between a physical state and another, and (3) the size of the set of time-complexity functions that are compatible with the physical resources required to reach a physical state from another. This view (a) exorcises 'ignorance' from statistical physics, and (b) underlies a new interpretation to non-relativistic quantum mechanics

    A Description Logic Framework for Commonsense Conceptual Combination Integrating Typicality, Probabilities and Cognitive Heuristics

    Get PDF
    We propose a nonmonotonic Description Logic of typicality able to account for the phenomenon of concept combination of prototypical concepts. The proposed logic relies on the logic of typicality ALC TR, whose semantics is based on the notion of rational closure, as well as on the distributed semantics of probabilistic Description Logics, and is equipped with a cognitive heuristic used by humans for concept composition. We first extend the logic of typicality ALC TR by typicality inclusions whose intuitive meaning is that "there is probability p about the fact that typical Cs are Ds". As in the distributed semantics, we define different scenarios containing only some typicality inclusions, each one having a suitable probability. We then focus on those scenarios whose probabilities belong to a given and fixed range, and we exploit such scenarios in order to ascribe typical properties to a concept C obtained as the combination of two prototypical concepts. We also show that reasoning in the proposed Description Logic is EXPTIME-complete as for the underlying ALC.Comment: 39 pages, 3 figure

    The High A(V) Quasar Survey: Reddened quasi-stellar objects selected from optical/near-infrared photometry - II

    Full text link
    Quasi-stellar objects (QSOs) whose spectral energy distributions (SEDs) are reddened by dust either in their host galaxies or in intervening absorber galaxies are to a large degree missed by optical color selection criteria like the one used by the Sloan Digital Sky Survey (SDSS). To overcome this bias against red QSOs, we employ a combined optical and near-infrared color selection. In this paper, we present a spectroscopic follow-up campaign of a sample of red candidate QSOs which were selected from the SDSS and the UKIRT Infrared Deep Sky Survey (UKIDSS). The spectroscopic data and SDSS/UKIDSS photometry are supplemented by mid-infrared photometry from the Wide-field Infrared Survey Explorer. In our sample of 159 candidates, 154 (97%) are confirmed to be QSOs. We use a statistical algorithm to identify sightlines with plausible intervening absorption systems and identify nine such cases assuming dust in the absorber similar to Large Magellanic Cloud sightlines. We find absorption systems toward 30 QSOs, 2 of which are consistent with the best-fit absorber redshift from the statistical modeling. Furthermore, we observe a broad range in SED properties of the QSOs as probed by the rest-frame 2 {\mu}m flux. We find QSOs with a strong excess as well as QSOs with a large deficit at rest-frame 2 {\mu}m relative to a QSO template. Potential solutions to these discrepancies are discussed. Overall, our study demonstrates the high efficiency of the optical/near-infrared selection of red QSOs.Comment: 64 pages, 18 figures, 16 pages of tables. Accepted to ApJ

    Stochastic Shortest Path with Energy Constraints in POMDPs

    Full text link
    We consider partially observable Markov decision processes (POMDPs) with a set of target states and positive integer costs associated with every transition. The traditional optimization objective (stochastic shortest path) asks to minimize the expected total cost until the target set is reached. We extend the traditional framework of POMDPs to model energy consumption, which represents a hard constraint. The energy levels may increase and decrease with transitions, and the hard constraint requires that the energy level must remain positive in all steps till the target is reached. First, we present a novel algorithm for solving POMDPs with energy levels, developing on existing POMDP solvers and using RTDP as its main method. Our second contribution is related to policy representation. For larger POMDP instances the policies computed by existing solvers are too large to be understandable. We present an automated procedure based on machine learning techniques that automatically extracts important decisions of the policy allowing us to compute succinct human readable policies. Finally, we show experimentally that our algorithm performs well and computes succinct policies on a number of POMDP instances from the literature that were naturally enhanced with energy levels.Comment: Technical report accompanying a paper published in proceedings of AAMAS 201

    Probabilistic description logics for subjective uncertainty

    Get PDF
    We propose a family of probabilistic description logics (DLs) that are derived in a principled way from Halpern's probabilistic first-order logic. The resulting probabilistic DLs have a two-dimensional semantics similar to temporal DLs and are well-suited for representing subjective probabilities. We carry out a detailed study of reasoning in the new family of logics, concentrating on probabilistic extensions of the DLs ALC and EL, and showing that the complexity ranges from PTime via ExpTime and 2ExpTime to undecidable

    Using Ontologies to Query Probabilistic Numerical Data: Extended Version

    Get PDF
    We consider ontology-based query answering in a setting where some of the data are numerical and of a probabilistic nature, such as data obtained from uncertain sensor readings. The uncertainty for such numerical values can be more precisely represented by continuous probability distributions than by discrete probabilities for numerical facts concerning exact values. For this reason, we extend existing approaches using discrete probability distributions over facts by continuous probability distributions over numerical values. We determine the exact (data and combined) complexity of query answering in extensions of the well-known description logics EL and ALC with numerical comparison operators in this probabilistic setting.This is an extended version of the article in: Proceedings of the 11th International Symposium on Frontiers of Combining Systems. This version has been revised based on the comments of the reviewers

    The solutions of the 3rd and 4th Clay Millennium problems

    Full text link
    In this treatise I present the solutions of the third Clay Millennium problem in the computational complexity and the fourth Clay Millennium problem in classical fluid dynamics.Comment: arXiv admin note: text overlap with arXiv:1108.1165 by other author
    • …
    corecore