We consider partially observable Markov decision processes (POMDPs) with a
set of target states and positive integer costs associated with every
transition. The traditional optimization objective (stochastic shortest path)
asks to minimize the expected total cost until the target set is reached. We
extend the traditional framework of POMDPs to model energy consumption, which
represents a hard constraint. The energy levels may increase and decrease with
transitions, and the hard constraint requires that the energy level must remain
positive in all steps till the target is reached. First, we present a novel
algorithm for solving POMDPs with energy levels, developing on existing POMDP
solvers and using RTDP as its main method. Our second contribution is related
to policy representation. For larger POMDP instances the policies computed by
existing solvers are too large to be understandable. We present an automated
procedure based on machine learning techniques that automatically extracts
important decisions of the policy allowing us to compute succinct human
readable policies. Finally, we show experimentally that our algorithm performs
well and computes succinct policies on a number of POMDP instances from the
literature that were naturally enhanced with energy levels.Comment: Technical report accompanying a paper published in proceedings of
AAMAS 201