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Abstract. We propose a new interpretation of objective probability in statistical physics based 
on physical computational complexity. This notion applies to a single physical system (be it 
an experimental set-up in the lab, or a subsystem of the universe), and quantifies (1) the dif- 
ficulty to realize a physical state given another, (2) the ‘distance’ (in terms of physical re- 
sources) between a physical state and another, and (3) the size of the set of time-complexity 
functions that are compatible with the physical resources required to reach a physical state 
from another. This view (a) exorcises ‘ignorance’ from statistical physics, and (b) underlies a 
new interpretation to non-relativistic quantum mechanics. 
Key-words: probability, ignorance, objectivity, subjectivity, statistical mechanics, quantum 
mechanics, complexity. 

 
Riassunto: Contare i passi: un approccio finitista alla probabilità oggettiva in fisica. Viene 
proposta un’interpretazione originale della probabilità oggettiva in fisica basata sul concetto 
di complessità computazionale. Tale nozione è applicabile a un singolo sistema fisico (sia che 
si tratti di un sistema fisico relativo ad un esperimento di laboratorio, sia che ci si riferisca, in 
maniera più generica, ad un arbitrario sottosistema dell’universo), e quantifica (1) la difficoltà 
di realizzare uno stato fisico in relazione ad un altro, (2) la “distanza” (in termini di risorse 
computazionali) tra uno stato fisico e un altro, e (3) la dimensione dell’insieme delle funzioni 
di complessità computazionale che sono compatibili con le risorse fisiche necessarie per rag- 
giungere uno stato fisico a partire da un altro. Questo punto di vista (a) esorcizza l’“ignoranza” 
dalla fisica statistica, e (b) si basa su una nuova interpretazione della meccanica quantistica 
non relativistica. 
Parole-chiave: probabilità, ignoranza, oggettività, soggettività, meccanica statistica, mecca- 
nica quantistica, complessità. 
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Counting Steps: A Finitist Approach to Objective Probability in Physics 
 

1. Introduction 
 

Probabilistic statements in a deterministic dynamical setting are com- 
monly understood as epistemic (Lewis 1986). Since in such a setting a com- 
plete specification of the state of the system at one time – together with the 
dynamics – uniquely determine the state at later times, the inability to predict 
an outcome exactly (with probability 1) is predicated on the notion of igno- 
rance, or incomplete knowledge. Such a subjective interpretation is natural 
in the context of classical statistical mechanics (SM), where a physical state 
is represented as a point on phase space, and the dynamics is a trajectory in 
that space, or in the context of Bohmian mechanics, where the phase space 
is replaced with a configuration space and the ontology is augmented with 
the quantum potential, but recently it has been suggested as a viable option 
also in the context of orthodox non-relativistic quantum mechanics (QM), 
where the state is represented as a vector in the Hilbert space, and the dy- 
namics is a unitary transformation, i.e., a rotation, in that space (Caves, 
Fuchs, Schack 2002). In all three cases the dynamics is strictly deterministic, 
and the only difference – apart from the representation of the state – is in the 
character of the probabilities: in classical SM or Bohmian mechanics they 
are subsets of phase space (or configuration space) obeying a Boolean struc- 
ture; in QM they are angles between subspaces in the Hilbert space obeying 
a non-Boolean structure, whence the famous non-locality, contextuality, and 
the violation of Bell’s inequalities. 

Such an epistemic notion of probability in statistical physics appears to 
many inappropriate. The problem is not how lack of knowledge can bring 
about physical phenomena (Albert 2000, p. 64); it can’t. Neither is it a prob- 
lem about ontological vagueness (Hagar 2003). Rather, the problem is that 
an epistemic interpretation of probability in statistical physics, be it classical 
SM or QM, turns these theories into a type of statistical inference: while ap- 
plied to physical systems, these theories become theories about epistemic 
judgments in the light of incomplete knowledge, and the probabilities therein 
do not represent or influence the physical situation, but only represent our 
state of mind (Frigg 2007; Uffink 2011). 

The paper proposes a new interpretation of objective physical probability 
as an alternative to this epistemic notion, and is structured as follows. In sec- 
tion 2 we spell out the basic assumptions behind our proposal. In section 3 we 
present our new model of objective probability that quantifies how hard it is to 
realize a physical state, and measures (in terms of physical resources) the ‘dis- 
tance’ between any such pair of states. In section 4 we apply our new interpre- 
tation to classical SM, and explain why we believe it is also applicable to QM. 
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In doing so we introduce a new interpretation to the probabilities of QM. Sec- 
tion 5 explains how our finitist approach can distinguish between classical and 
quantum probabilities according to their different complexity-induced 
measures. Section 6 concludes. 

 

 
 

2. Assumption
s 

 
We start by spelling out the five basic assumptions that underlie our mod- 

els. They are Determinism, P ⊂ EXPTIME, Finitism, Discreteness, and Lo- 
cality. These assumptions are working hypotheses in the framework from 
which our interpretation of probability stems, namely, physical computa- 
tional complexity. In this framework (Geroch, Hartle 1986; Pitowsky 1990; 
1996), the performance of physical systems is analyzed with notions and 
concepts that originate in computational complexity theory, by approximat- 
ing dynamical evolutions with a discrete set of computational steps to an 
arbitrary degree of accuracy. These assumptions help us delineate the two 
probability spaces in our models: the space of physically allowable states, 
and the space of physically allowable dynamical evolutions. 

 

 
 

2.1. Determinism 
 

Our model rests on the assumption of strict determinism. This assumption 
follows from the strong physical Church-Turing thesis (PCTT henceforth)1, 
according to which actual dynamical evolutions of physical systems in our 
world can be regarded as computations carried by deterministic Turing ma- 
chines. Agreed, some physical theories do allow in principle for non-Turing- 
computable phase trajectories (trajectories that cannot be represented by re- 
cursive functions), and, in addition, there exists a vast literature on the phys- 
ical possibility of supertasks and ‘hypercomputation’, that aims to show that 
Turing-computability is not a natural property, and need not apply a priori 
in the physical world. Nevertheless, if the strong PCTT holds, then as a con- 
tingent matter of fact, non-Turing-computable trajectories are ruled out, and 
the above, rather contrived, counterexamples are not realizable in the actual 

 
 
 
 
 

1 The physical Church-Turing thesis is logically independent of the original Church-Tu- 
ring thesis. See e.g., Shagrir, Pitowsky (2003). 
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universe2. In what follows we thus disregard naked singularities, closed time- 
like curves, non-globally hyperbolic spacetime models, ill-posed problems, 
divergences, and the like, adhering to the idea that every dynamical evolution 
takes a physical state to one and only one physical state3. 

 
 

2.2. P ⊂ ExpTime 
 

The fact that each computation requires physical resources (energy and 
time) that increase with the size (the number of degrees of freedom) of the 
system allows us to classify different dynamical evolutions as either ‘easy’ 
(i.e., having polynomial time-complexity such as O(nc)) or ‘hard’ (i.e., hav- 
ing exponential time-complexity such as O(cn))4.That there exists a mean- 
ingful difference between different degrees of time-complexity within each 
class is the consequence of the Time Hierarchy Theorems (Hartmanis, 
Stearns 1965). While these theorems provide no means to relate determinis- 
tic and non-deterministic complexity, or time and space complexity, they still 
allow us to assume that given more time, a Turing machine can solve more 
problems. For example, there are problems that can be solved with n2 time 
but not n time. Here we make an even stronger assumption, which is a work- 
ing hypothesis in computer science, that there exists also a meaningful dif- 
ference between the two classes themselves. 

 

 
 

2.3. Finitism 
 

Assumption (2.1) allows us to apply the machinery of complexity theory to 
dynamical evolutions, by treating them as computations. Assumption (2.2) al- 
lows us to classify states (and the dynamical evolutions that realize them) as 
‘easy’ or ‘hard’. Assumption (2.3) allows us to impose upper and lower bounds 
on the set of all possible dynamical evolutions in the actual universe, based on 
the assumption that the total energy in the universe is finite. 

 

 
 
 

2 So far there are two such counterexamples: Pour-el and Richards’s (1989) wave equation 
in 3 dimensions and Pitowsky’s (1990) spacetime model that allows finite-time execution of 
an infinite number of computational steps. See also Hogarth (1994) for an elaboration on the 
latter, and Earman, Norton (1993) for further discussion. 

3 Note that from a strictly dynamical perspective, quantum dynamics is fully deterministic: 
Schrödinger’s equation takes any quantum state to one and only one quantum state. 

4 Here n is the input size – in our case the dimension of the system at hand, and c is a 
(bounded rational, as we shall assume below) coefficient. 
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2.4. Discreteness 
 

Assumption (2.4) allows us to discretize the set of the physically allowa- 
ble dynamical evolutions. Two facts warrant the elimination of real coeffi- 
cients in our classification of dynamical evolutions into time-complexity 
classes. First, each dynamical evolution is governed by a Hamiltonian (the 
total energy function). Second, if energy is finite and bounded from above 
(assumption 2.3), it is impossible to resolve arbitrary energy differences be- 
tween any two Hamiltonians (Hilgevoord 1998, p. 399). Note that here we 
make the finitist claim that limitations on resolution reflect actual discrete- 
ness in nature, and are not simply a matter of practical constraints. 

 

 
 

2.5. Locality 
 

Finally, and consistent with the current state of affairs in physics, in phys- 
ically realizing the Hamiltonians that govern the dynamical evolutions, we 
allow only local interactions. 

 

 
 

3. A Possible Probability Model 
 

The above assumptions allow us to propose a possible model for objective 
physical probability. We do not claim that this model is unique, optimal, or 
in any sense canonical. Our purpose is only to demonstrate that it is possible 
to define a finite notion of objective probability in physics on the basis of 
considerations from physical computational complexity. 

The model is constructed on the space of all possible dynamical evolu- 
tions that connect any two states of a given physical system with a given 
number of degrees of freedom n in a given moment in time t, confined to a 
given energy shell E. This triplet, i.e., the number of degrees of freedom n, 
time t, and energy E is required for the precise definition of probability. 
Given such a triplet, and our assumptions (2.1-2.5), we construct a probabil- 
ity space out of a functional that relates the power (P = E/t) of a computation 
– seen as a dynamical evolution from one state to another – with the relative 
size of the set of the possible dynamical evolutions that are compatible with 
it. Our probability function is thus a distance measure on the above func- 
tional, that quantifies how hard it is to realize a state, or how far a given 
system is from that state, in terms of the physical resources available to it, 
relative to the required resources. 
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With this model we suggest to interpret objective probability as a physical 
magnitude that quantifies how hard it is to realize a physical state, given a 
triplet of physical resources (energy, time, space). Equivalently, this magni- 
tude quantifies how ‘far’ a given physical system is from a certain state in 
terms of the physical resources available to it, relative to those required for 
that state’s realization. The following model captures this interpretation, 
while formally admitting the constraints of probability theory. 

• Take any physical system with dimension n in a given energy state E 
and in a given moment in time t, and let Ω be the bounded and discrete 
set of possible dynamical evolutions obeying the current laws of phys- 
ics, whose time-complexity is either polynomial or exponential (‘easy’ 
or ‘hard’), that may govern the system’s behavior. The set Ω contains 
all possible dynamical evolutions that can realize a single actual state. 

• Given a certain couple (n, P = E), where n is the dimension of the state, 
t 

E is the total possible energy, and t is the total possible time (hence P is 
the power allowed for the computation), we consider the set 

            ∈  Ω /                  P (1) 

where      is a dynamical evolution that for a given n ‘consumes’ at most 
the resources E in time t with the number of computational steps N5. 

• F is the σ-algebra of S, i.e., a non-empty class of subsets of S, contain- 
ing S itself, the empty set, and closed under the formation of comple- 
ments, finite unions, and finite intersections. The elements of F are 
dynamical evolutions with a combined time-complexity, either expo- 
nential or polynomial. F is thus a subset of the power set of S, and is 
bounded and discrete. 

 
 
 
 
 
 
 
 

5 By ‘consumes’ we mean the following. Take an arbitrary computation. Each computa- 
tional step ‘costs’ the same amount of time; but if, as in our case, the total time allowed for 
the computation is fixed, the difference in time-complexity is cashed out in terms of the dif- 
ference in the frequency of the computation, i.e., the time-difference between any two com- 
putational steps. Thus, for a given n and for a given t, the higher the degree of time-complexity 
of the function, the higher the frequency of the computation. Since higher frequency means 
higher power, by setting a bound on P, one immediately sets a bound on N, the number of 
computational steps allowed for the computation, and subsequently, a bound on | | the num- 
ber of time-complexity functions that can realize the computation. 
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Our probability measure p is given by the mapping: 
 

∀ A ∈  F: p  A,PA    A      |A|/|  | (2) 

Where PA is the available power. To calculate this magnitude we embed 
{3 

it in a continuous function of the general convex form P ( 1   ) 
 a , where 

α and β and are free parameters. 
By  construction  p A  ∈  [0,1], p ∅       0, p        1 and  p  is  additive: 

∀ A, B ∈  F such that A ∩  B    ∅ , p A ∪  B      p A  + p B . It can be 
shown 
that under a suitable choice of the parameters α and β, the area below the 

{3 
curve P  ( 1    ) 

 a can be seen as a probability space, satisfying further con- 
straints imposed by the axioms of probability theory (e.g., independence and 
conditional probability). 

 

 
 

4. Ignorance of What? 
 

Consistent with our goal to turn epistemic probability in statistical physics 
into an objective one, the notion of physical probability here proposed has 
nothing to do with one’s credence or degrees of belief. It measures, as we 
have seen, the difficulty (in terms of physical resources) to realize the tran- 
sition from one state to another. The more probable a state, the easier it is to 
reach it from a given state with a given amount of resources. 

To see how this notion of probability can turn subjective ‘ignorance’ in 
statistical physics into an objective feature of the world, we propose the fol- 
lowing intuition. 

 

 
 

4.1. Classical Mechanics 
 

Our probability notion is intimately related to the notion of measurement 
resolution. Take classical statistical mechanics, where one introduces a dis- 
tinction between micro-states and macro-states. The evolution of the former 
on phase space is constrained by Liouville’s theorem, that tells us that a re- 
gion of phase space (call it ‘a blob’), occupied by a set of micro-states all 
compatible with a certain macro-state, may change is shape but not its vol- 
ume. The ‘evolution’ of the latter is dictated by the kind of measurements we 
make, i.e., by the different partitions we impose on phase space. These two 
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evolutions are independent6, and they allow us to define the transition prob- 
ability of a physical system from one macro-state to another as the partial 
overlap between the blobs and the macro-states: 

 

p([M1]tl |[MO]to )  ,u(Btl ∩  [M1]) (3) 

This means that the probability that a system that starts at a macro-state 
[M0] at time t0 (when the size of the dynamical blob B completely saturates 
the volume [M0]) will end in a macro-state [M1]at time t1, is given by the 
partial overlap (the relative size) µ of the dynamical blob B at t1 with the 
macro-state [M1]. Note that there is nothing subjective in this kind of transi- 
tion probability. ‘Ignorance’ here simply means lack of resolution power, 
i.e., lack of precision or lack of control, which is expressed by the relation 
between dynamical blobs and macro-states, both of which are objective fea- 
tures of the physical world7. 

One can describe the evolution of a dynamical system either by following 
its dynamical blob, or, equivalently by following the macro-states to which 
the exact state belongs. In the first description probability signifies lack of 
precision; in the second, lack of control. We have already shown that our 
probability measure describes the amount of missing resources for an exact 
description in the first case. In the second case, we can define our probability 
as an objective physical magnitude, a transition probability between two 
macro-states M0 and M1, that signifies how ‘far’ is M1 from M0 where the 
‘distance’ p(M0,M1) is defined in terms of the physical resources (energy, 
space, and time) that an observer who observes M0 has, relative to what she 
needs in order to observe M1. 

In this sense, probability is an objective measure of the difficulty to pro- 
duce the macro-state M1  from the macro-state M0 given the physical re- 
sources (energy, space, and time) at one’s disposal. Moreover, this measure 
is identical, conceptually and formally, to the one used in the foundations of 

 
 
 

6 See Hemmo, Shenker (2012) for the trouble one gets into when one ignores this inde- 
pendence. 

7 An anonymous referee raises doubts whether the partition of phase space into macro-states 
is an objective feature of the world. In reply, the point here is that the carving of the phase space 
into macro-states is not subjective because it is an objective physical fact about observers like us 
that they are correlated with the world in such a way that leads to such a carving. We assume 
here that the theoretician chooses certain macro-states as meaningful (i.e., measurable) only be- 
cause she is such an observer for which these macro-states are meaningful (i.e., measurable). Of 
course, a complete account of this choice may require a physicalist solution to the mind-body 
problem which we do not attempt to solve here. But note that the objectivity of this choice is 
independent of what such a solution would look like. 
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statistical mechanics, as one can interpret any probability less than 1 as sig- 
nifying the lack of physical resources that can allow one to partition phase 
space into a macro-state more accurately in such a way that it will include 
all of the dynamical blob. 

The empirical conjecture we make, over and above the requirement for 
conformity with the observed relative frequencies, is that this relative volume 
of the dynamical blob in M1 (i.e., p in (3)) should be a function of the physical 
resources we have relative to what we need in order to observe M1 with cer- 
tainty. This conjecture is in principle testable in many scenarios within con- 
trol theory, where one is trying to steer a physical process to a desirable out- 
come. A similar situation holds, we believe, in the case of QM8, which is a 
little more complicated conceptually. 

 

 
 

4.2. Quantum Mechanics 
 

QM uses the mathematical formalism of the Hilbert space (Beltrametti et 
al. 2010; Dalla Chiara et al. 2009 ), which is a vector space over the complex 
numbers equipped with an inner product. How can a finite and discrete model 
such as ours be compatible with such a continuous structure? In particular, 
how can a finite and discrete probability space such as ours even approximate 
the notion of ‘inner product’, which requires transitive ordering? 

Here we do not offer a complete answer, but only allude to existing con- 
sistency proofs that show that such an approximation of the continuous by 
the discrete is not so far fetched as one would have thought. The key point is 
that our model need not reproduce all the continuous structure; it only needs 
to reproduce those parts of the continuum structure that have observable con- 
sequences. 

Such proofs rely on finite fields, also called Galois fields, which are of 
the type GF(pn) (where GF(pn) is the field of integers � mod (pn), p is a prime, 
and n ∈ �) (Van Bendegem 2010). The key challenge in these proofs is to 
find such a finite field, a sufficiently large portion of which is ‘like the real 
number system’ with which one could describe the observable universe, i.e., 
a range between 10-13 and 1027 (the range between one Fermi and the distance 
to the farthest known object in the universe). Clearly there is no difficulty in 
finding enough points from a field GF(pn) provided p is large enough. In 

 

 
8 Albert (2000, Ch. 5) offers a similar conjecture when he proposes that the probabilities 

of SM supervene on transition probabilities of a more fundamental collapse dynamics. Our 
view is deterministic, hence excludes collapse, but we too suggest that probabilities in statis- 
tical physics are dynamical transition probabilities. In our story, however, they supervene on 
time-complexity and relative physical resources. 
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particular (Coire 1959), to fill the range of the observable universe a prime 
p ≈ 1010   is sufficient. 

But to approximate the real number system, such a subset of the finite 
field, no matter how huge, must also be transitively ordered, a very non-triv- 
ial constraint given the periodicity of the finite field. And yet, what has been 
shown is that if the prime is chosen to have the form9: 

 
k 

p   8x n qi - 1  
i=1 

 
k 

where x is an odd integer and ∏ qi is the product of the first k-odd primes, 
i =1 

then -1q is “negative” and 2 and the first k-odd primes are ‘positive’. For such 
a prime the first N integers for large N can be (locally) transitively ordered 
and consequently the geometry in that neighborhood would appear to be like 
ordinary Euclidean plane, up to very large (and down to very small) distances 
(Morris 1974). 

Later work (Reisler, Smith 1969) incorporated these abstract considera- 
tions from number theory into physics by developing concepts such as order, 
norm, metric, and inner product over the above subset of the total finite field 
in which transitive order could be defined. With these ‘extensions’ it became 
clear that a finite discrete space behaves locally (albeit not globally) like the 
standard conventional continuum. This insight, namely that a discrete de- 
scription of physical phenomena in the neighborhood of the ‘ordered’ subset 
of the total field is locally indistinguishable from the standard continuum 
description, was also repeated by J. Schwinger (2001, p. 84), and has recently 
reappeared in attempts to approximate the continuum of the Hilbert space 
with a vector space constructed over a specific Galois field GF(p2) of the sort 
described above (Hanson et al. 2013a). Insofar as this vector space can ap- 
proximate (locally) the notion of an inner product, and can support showcase 
quantum algorithms (Hanson et al. 2013b), these attempts have also suc- 
ceeded in reproducing the empirical content of non relativistic quantum me- 
chanics from an underlying finite and discrete structure. 

Once the conceptual difficulty of approximating (at least locally) the con- 
tinuous with the discrete is removed, our proposal can serve as a basis for a 

 
 

9 The existence of a prime of this form is guaranteed by Dirichlet’s theorem, that states 
that for any two positive co-prime integers a and d, there are infinitely many primes of the 
form a+nd, where n is a non negative integer. In other words, there are infinitely many primes 
which are congruent to a mod d. 
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new interpretation of QM. Recall that on the subjective view of QM, the 
quantum state is treated as a state of knowledge, and quantum probabilities 
(calculated by the Born rule) are interpreted as “gambling bets” of agents on 
results of experiments, à la Ramsey-De Finetti (Fuchs 2010). In contrast, in 
Bohmian mechanics, the alternative epistemic approach in the foundations 
of QM, the probabilities are for particles to have certain positions; they sig- 
nify our ignorance thereof. 

Our new idea about probability simply avoids this debate altogether by 
supplying a possible third way: what quantum probabilities are probabilities 
for is neither the positions of particles, nor the gambling bets of learned ob- 
servers. Rather, quantum probabilities simply quantify how hard it is to real- 
ize a physical state; they measure the ‘distance’ between the current state of 
a physical system and any other state thereof, given the resources (en- 
ergy/time) that are available to that system at that moment. This alternative 
allows us to interpret quantum probabilities as objective deterministic 
chances (and in so doing to turn QM once again into a physical theory about 
the world), without having to support nonlocal hidden variables. 

 

 
 

5. Classical vs. Quantum Probabilities 
 

In the approach presented here, the origins of both quantum and classical 
probabilities is identical – they both stem from objective deterministic 
chances which supervene on time-complexity classes and relative availabil- 
ity of physical resources. The crucial point is that despite the lack of meta- 
physical difference, we can still distinguish between quantum and classical 
probabilities in structural, or formal, terms. Instead of “hidden variables” vs. 
“quantum indefiniteness” we suggest a quantitative difference in measure, 
which in our case is complexity-induced. Indeed, it is a working hypothesis 
within quantum information scientists that any classical computation that 
would be harnessed for the simulation of quantum phenomena would do so 
inefficiently10. 

Our approach can easily accommodate such a putative difference: the no- 
tion of probability we propose here is defined as the relative size of the set 
of time-complexity classes that can realize a physical state. That quantum 
and classical probabilities share the same origins need not entail that for 
every physical state the above relative size is also identical. Quantum dy- 
namical evolutions may “consume” (in the sense developed in fn. (5)) less 

 
 

10 This conjecture was first voiced by Richard Feynman (1982). Computer scientists have 
formalized it as BPP ⊆ BQP (Aaronson 2009). 
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resources than classical ones, and so the probability of some physical states 
may as well be different when realized by quantum or by classical dynamics. 
We suggest to view the violations of Bell’s inequality as designating exactly 
this difference; a difference in complexity, not in metaphysics (Buhrman et 
al. 1998, Beltrametti et al. 2012b). Note, moreover, that such a criterion is 
completely in accord with our current empirical knowledge, and yet, contrary 
to its metaphysical counterpart, it leaves open the question of the universality 
of quantum theory11. 

 

 
 

6. Conclusion: Probability as Distance Measure 
 

The ‘distance’ between any two physical states (in terms of the relative 
physical resources required for such a transition) satisfies Kolmogorov’s ax- 
ioms. At least mathematically, therefore, our model is worthy of the name 
‘probability’. It also explains away ignorance by tying error (in the prepara- 
tion of the initial state) to probability (of the desired state), and by superven- 
ing this probability on time-complexity and physical resources. In the clas- 
sical context, it appears to be a natural physical interpretation of the epis- 
temic probabilities that arise in statistical mechanics. Here we put forward 
the (empirical!) conjecture that such a distance measure reproduces the quan- 
tum Born rule hence can be regarded a novel interpretation of quantum prob- 
abilities. 

We emphasize again that we are only proposing a new interpretation to 
the meaning of probability: instead of interpreting probability as an epistemic 
measure of ignorance (which is the standard way in a deterministic dynam- 
ical context), we propose an interpretation in terms of the distance (in terms 
of the relative physical resources) between an actual state and an ideal one. 
In this sense our proposal is only qualitative. Moreover, we do not pretend 
in any way to go beyond objective probabilities in statistical physics in our 
interpretation. Whatever problems exist in connecting these with the ordi- 
nary notion of probability, namely the connection to relative frequencies, or 
to betting behavior, also exist in our interpretation, and we do not purport to 
solve them here. 

Concluding, we have argued that he amount of physical resources that 
separate two physical states is an objective feature of the world, and that 
computational complexity theory allows us to map this feature onto [0,1]. 
This mapping, we claim, has all the characteristics of a discrete probability 

 
 

11 Our probability measure depends on the dimension of the system, which appears to be 
a key factor in the open problem of scaling-up quantum information processing devices. 
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function, and can be interpreted as a measure of precision and control that 
one has in one’s disposal in the resolution of the physical state during the 
process of measurement. This measure can furthermore ground a new inter- 
pretation of probability in statistical physics, both classical and quantum, as 
an objective, transition probability between any two physical states. 
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