677 research outputs found

    Assessment of different models for bathymetry calculation using SPOT multispectral images in a high-turbidity area: the mouth of the Guadiana Estuary

    Get PDF
    Periodic calculation of coastal bathymetries can show the evolution of geomorpholo- gical features in active areas such as mesotidal estuary mouths. Bathymetries in shallow coastal areas have been addressed mainly by two technologies, lidar and optical remote sensing. Lidar provides good accuracy, but is an expensive technique, requiring planned flights for each region and dates of interest. Optical remote sensing acquires images periodically but its results are limited by water turbidity. Here we use a lidar bathymetry to compare different bathymetry computation methods using a SPOT optical image from a nearby date. Three statistical models (green-band, PCA correlations, and GLM) were applied to obtain mathematical expressions to estimate bathymetry from that image: all gave errors lower than 1 m in an area with depths ranging from 0 to 6 m. These algorithms were then applied to images from three different dates, correcting the effects caused by different tidal and atmospheric condi- tions. We show how this allows the study of morphological changes. We discuss the accuracy obtained with respect to the reference bathymetry (0.9 m on average, but less than 0.5 m in low-turbidity areas), the effects of the turbidity on our estimations, and compare both with previously published results. The results show that this approach is effective and allows identification of known features of coastal dynamics, and thus it would be an important step towards short-term bathymetry monitoring based on optical satellite remote sensing.Ministerio de Ciencia e Innovación CSO2010-15807Consejería de Innovación, Ciencia y Empresa P10-RNM-620

    The value of remote sensing techniques in supporting effective extrapolation across multiple marine spatial scales

    Get PDF
    The reporting of ecological phenomena and environmental status routinely required point observations, collected with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional spatial coverage for observing the marine environment. This review provides guidance on (i) the structures and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation illustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the production of high-quality assessments of ecological phenomena and the regional reporting of environmental status. Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also make full use of the techniques and data sets that expedite this process

    Remote sensing for three-dimensional modelling of hydromorphology

    Get PDF
    Successful management of rivers requires an understanding of the fluvial processes that govern them. This, in turn cannot be achieved without a means of quantifying their geomorphology and hydrology and the spatio-temporal interactions between them, that is, their hydromorphology. For a long time, it has been laborious and time-consuming to measure river topography, especially in the submerged part of the channel. The measurement of the flow field has been challenging as well, and hence, such measurements have long been sparse in natural environments. Technological advancements in the field of remote sensing in the recent years have opened up new possibilities for capturing synoptic information on river environments. This thesis presents new developments in fluvial remote sensing of both topography and water flow. A set of close-range remote sensing methods is employed to eventually construct a high-resolution unified empirical hydromorphological model, that is, river channel and floodplain topography and three-dimensional areal flow field. Empirical as well as hydraulic theory-based optical remote sensing methods are tested and evaluated using normal colour aerial photographs and sonar calibration and reference measurements on a rocky-bed sub-Arctic river. The empirical optical bathymetry model is developed further by the introduction of a deep-water radiance parameter estimation algorithm that extends the field of application of the model to shallow streams. The effect of this parameter on the model is also assessed in a study of a sandy-bed sub-Arctic river using close-range high-resolution aerial photography, presenting one of the first examples of fluvial bathymetry modelling from unmanned aerial vehicles (UAV). Further close-range remote sensing methods are added to complete the topography integrating the river bed with the floodplain to create a seamless high-resolution topography. Boat- cart- and backpack-based mobile laser scanning (MLS) are used to measure the topography of the dry part of the channel at a high resolution and accuracy. Multitemporal MLS is evaluated along with UAV-based photogrammetry against terrestrial laser scanning reference data and merged with UAV-based bathymetry to create a two-year series of seamless digital terrain models. These allow the evaluation of the methodology for conducting high-resolution change analysis of the entire channel. The remote sensing based model of hydromorphology is completed by a new methodology for mapping the flow field in 3D. An acoustic Doppler current profiler (ADCP) is deployed on a remote-controlled boat with a survey-grade global navigation satellite system (GNSS) receiver, allowing the positioning of the areally sampled 3D flow vectors in 3D space as a point cloud and its interpolation into a 3D matrix allows a quantitative volumetric flow analysis. Multitemporal areal 3D flow field data show the evolution of the flow field during a snow-melt flood event. The combination of the underwater and dry topography with the flow field yields a compete model of river hydromorphology at the reach scale.Jokien onnistunut hallinta edellyttää virtavesien prosessien ymmärtämistä. Tämä ei ole mahdollista ilman jokien geomorfologian ja hydrologian kvantifiointia sekä niiden spatiotemporaalisten suhteiden tutkimista, eli jokien hydromorfologiaa. Joen topografian mittaaminen, varsinkin uoman vedenalaisen osalle on pitkään ollut työlästä ja aikaa vievää. Virtauskentän kattava mittaaminen on myös ollut haastavaa, sillä seurauksella, että niitä on tehty harvakseltaan luonnollisessa ympäristössä. Viimeaikainen teknologinen kehitys kaukokartoituksessa on mahdollistanut synoptisen tiedon mittaamisen jokiympäristöissä. Tässä väitöstutkimuksessa on kehitetty virtavesien kaukokartoitusta sekä jokien topografian että virtausmittauksen alalla. Useita eri lähikaukokartoitusmenetelmiä yhdistämällä on tehty korkean resoluution yhtenäinen empiirinen malli joen hydromorfologiasta, eli joen uoman ja tulvatasangon topografiasta ja kolmiulotteisesta virtaamakentästä. Empiriaan ja hydrauliseen teoriaan perustuvat optisen kaukokartoituksen menetelmiä testattiin ja arvioitiin käyttämällä normaaliväri-ilmakuvia, kaikuluotain kalibrointia ja referenssimittauksia kivipohjaisessa subarktisessa joessa. Empiiristä optista syvyysmallia kehitettiin edelleen lisäämällä syvän veden säteilyparametrin arviointialgoritmi, joka mahdollisti mallin käytön myös matalavetisissä jokiuomissa. Parametrin vaikutus malliin arvioitiin korkean resoluution matalailmakuvista hiekkapohjaisessa subarktisessa joessa yhdessä ensimmäisistä syvyysmalleista, joka on tehty käyttäen kauko-ohjattua minihelikopteria (eng.UAV, Unmanned Aerial Vehicle). Lähietäisyyden kaukokartoitusmenetelmiä käytettiin edelleen topografisen mallin täydentämiseen, integroimalla joen uoma ja tulvatasanko yhtenäiseksi korkean resoluution topografiaksi. Mobiilia laserkeilausta käytettiin vedenpinnan yläpuolisen osan topografian mittaamiseen korkealla resoluutiolla vene- kärry- ja reppupohjaisten kartoitusalustojen avulla. Monen ajankohdan mobiilin laserkeilauksen ja UAVfotogrammetrian tarkkuutta arvioitiin maalaserikeilausaineiston avulla. Laserkeilattu ja fotogrammetrinen aineisto yhdistettiin, jolloin saatiin kahden vuoden ajalta saumaton digitaalinen maastomalli. Mallin avulla oli mahdollista arvioida koko joen uoman korkean resoluution muutosanalyysin metodologiaa. Kaukokartoitukseen perustuvaa hydromorfologista mallia täydennettiin uniikilla virtauskentän kolmiulotteisella kartoitusaineistolla. Kauko-ohjattavaan veneeseen asennettu akustinen virtausmittauslaite yhdessä tarkan satelliittipaikannusjärjestelmän kanssa mahdollistivat alueellisesti valikoitujen kolmiulotteisten virtausvektoreiden sijainnin määrittämisen kolmiulotteisessa avaruudessa pistepilvenä. Tämän aineiston kolmiulotteinen interpolaatio matriisiksi mahdollisti edelleen volymetrisen virtausanalyysin. Monen ajankohdan alueellinen kolmiulotteinen virtauskenttä osoitti virtausolosuhteiden evoluution kevättulvassa. Vedenalaisen ja kuivan maan topografia yhdessä jokiuoman virtauskenttien kanssa muodosti kattavan mallin joen hydromorfologiasta.Siirretty Doriast

    Characterising the ocean frontier : a review of marine geomorphometry

    Get PDF
    Geomorphometry, the science that quantitatively describes terrains, has traditionally focused on the investigation of terrestrial landscapes. However, the dramatic increase in the availability of digital bathymetric data and the increasing ease by which geomorphometry can be investigated using Geographic Information Systems (GIS) has prompted interest in employing geomorphometric techniques to investigate the marine environment. Over the last decade, a suite of geomorphometric techniques have been applied (e.g. terrain attributes, feature extraction, automated classification) to investigate the characterisation of seabed terrain from the coastal zone to the deep sea. Geomorphometric techniques are, however, not as varied, nor as extensively applied, in marine as they are in terrestrial environments. This is at least partly due to difficulties associated with capturing, classifying, and validating terrain characteristics underwater. There is nevertheless much common ground between terrestrial and marine geomorphology applications and it is important that, in developing the science and application of marine geomorphometry, we build on the lessons learned from terrestrial studies. We note, however, that not all terrestrial solutions can be adopted by marine geomorphometric studies since the dynamic, four- dimensional nature of the marine environment causes its own issues, boosting the need for a dedicated scientific effort in marine geomorphometry. This contribution offers the first comprehensive review of marine geomorphometry to date. It addresses all the five main steps of geomorphometry, from data collection to the application of terrain attributes and features. We focus on how these steps are relevant to marine geomorphometry and also highlight differences from terrestrial geomorphometry. We conclude with recommendations and reflections on the future of marine geomorphometry.peer-reviewe

    Optical Satellite Remote Sensing of the Coastal Zone Environment — An Overview

    Get PDF
    Optical remote-sensing data are a powerful source of information for monitoring the coastal environment. Due to the high complexity of coastal environments, where different natural and anthropogenic phenomenon interact, the selection of the most appropriate sensor(s) is related to the applications required, and the different types of resolutions available (spatial, spectral, radiometric, and temporal) need to be considered. The development of specific techniques and tools based on the processing of optical satellite images makes possible the production of information useful for coastal environment management, without any destructive impacts. This chapter will highlight different subjects related to coastal environments: shoreline change detection, ocean color, water quality, river plumes, coral reef, alga bloom, bathymetry, wetland mapping, and coastal hazards/vulnerability. The main objective of this chapter is not an exhaustive description of the image processing methods/algorithms employed in coastal environmental studies, but focus in the range of applications available. Several limitations were identified. The major challenge still is to have remote-sensing techniques adopted as a routine tool in assessment of change in the coastal zone. Continuing research is required into the techniques employed for assessing change in the coastal environment

    BATHYMETRY DATA EXTRACTION ANALYSIS USING LANDSAT 8 DATA

    Get PDF
    The remote sensing technique can be used to produce bathymetric map. Bathymetric mapping is important for the coastal zone and watershed management. In the previous study conducted in Menjangan Island of Bali, bathymetric extractin information from the top of the atmosphere (TOA) reflectance image of Landsat ETM+  data has R2 = 0.620. Not optimal  correlation value produced is highly influenced by the reflectance image of Landsat ETM+ data, were used, hence the lack of the research which became the basis of the present study. The study was on the Karang Lebar water of Thousand Islands, Jakarta. And the aim was to determine whether there was an increased correlation coefficient value of bathymetry extraction information generated from Surface reflectance and TOA reflectance imager of Landsat 8 data acquired on August 12, 2014. The method of extraction was done using algorithms Van Hengel and Spitzer (1991). Extraction   absolute depth information obtained from the model logarithm of Landsat 8 surface reflectance images and pictures TOA produce a correlation value of R2 = 0.663 and R2 = 0.712

    A review of marine geomorphometry, the quantitative study of the seafloor

    Get PDF
    Geomorphometry, the science of quantitative terrain characterization, has traditionally focused on the investigation of terrestrial landscapes. However, the dramatic increase in the availability of digital bathymetric data and the increasing ease by which geomorphometry can be investigated using geographic information systems (GISs) and spatial analysis software has prompted interest in employing geomorphometric techniques to investigate the marine environment. Over the last decade or so, a multitude of geomorphometric techniques (e.g. terrain attributes, feature extraction, automated classification) have been applied to characterize seabed terrain from the coastal zone to the deep sea. Geomorphometric techniques are, however, not as varied, nor as extensively applied, in marine as they are in terrestrial environments. This is at least partly due to difficulties associated with capturing, classifying, and validating terrain characteristics underwater. There is, nevertheless, much common ground between terrestrial and marine geomorphometry applications and it is important that, in developing marine geomorphometry, we learn from experiences in terrestrial studies. However, not all terrestrial solutions can be adopted by marine geomorphometric studies since the dynamic, four-dimensional (4-D) nature of the marine environment causes its own issues throughout the geomorphometry workflow. For instance, issues with underwater positioning, variations in sound velocity in the water column affecting acousticbased mapping, and our inability to directly observe and measure depth and morphological features on the seafloor are all issues specific to the application of geomorphometry in the marine environment. Such issues fuel the need for a dedicated scientific effort in marine geomorphometry. This review aims to highlight the relatively recent growth of marine geomorphometry as a distinct discipline, and offers the first comprehensive overview of marine geomorphometry to date. We address all the five main steps of geomorphometry, from data collection to the application of terrain attributes and features. We focus on how these steps are relevant to marine geomorphometry and also highlight differences and similarities from terrestrial geomorphometry. We conclude with recommendations and reflections on the future of marine geomorphometry. To ensure that geomorphometry is used and developed to its full potential, there is a need to increase awareness of (1) marine geomorphometry amongst scientists already engaged in terrestrial geomorphometry, and of (2) geomorphometry as a science amongst marine scientists with a wide range of backgrounds and experiences.peer-reviewe

    Seabed mapping in coastal shallow waters using high resolution multispectral and hyperspectral imagery

    Get PDF
    Coastal ecosystems experience multiple anthropogenic and climate change pressures. To monitor the variability of the benthic habitats in shallow waters, the implementation of effective strategies is required to support coastal planning. In this context, high-resolution remote sensing data can be of fundamental importance to generate precise seabed maps in coastal shallow water areas. In this work, satellite and airborne multispectral and hyperspectral imagery were used to map benthic habitats in a complex ecosystem. In it, submerged green aquatic vegetation meadows have low density, are located at depths up to 20 m, and the sea surface is regularly affected by persistent local winds. A robust mapping methodology has been identified after a comprehensive analysis of different corrections, feature extraction, and classification approaches. In particular, atmospheric, sunglint, and water column corrections were tested. In addition, to increase the mapping accuracy, we assessed the use of derived information from rotation transforms, texture parameters, and abundance maps produced by linear unmixing algorithms. Finally, maximum likelihood (ML), spectral angle mapper (SAM), and support vector machine (SVM) classification algorithms were considered at the pixel and object levels. In summary, a complete processing methodology was implemented, and results demonstrate the better performance of SVM but the higher robustness of ML to the nature of information and the number of bands considered. Hyperspectral data increases the overall accuracy with respect to the multispectral bands (4.7% for ML and 9.5% for SVM) but the inclusion of additional features, in general, did not significantly improve the seabed map quality.Peer ReviewedPostprint (published version
    corecore