46 research outputs found

    Security Enhanced Symmetric Key Encryption Employing an Integer Code for the Erasure Channel

    Get PDF
    An instance of the framework for cryptographic security enhancement of symmetric-key encryption employing a dedicated error correction encoding is addressed. The main components of the proposal are: (i) a dedicated error correction coding and (ii) the use of a dedicated simulator of the noisy channel. The proposed error correction coding is designed for the binary erasure channel where at most one bit is erased in each codeword byte. The proposed encryption has been evaluated in the traditional scenario where we consider the advantage of an attacker to correctly decide to which of two known messages the given ciphertext corresponds. The evaluation shows that the proposed encryption provides a reduction of the considered attacker’s advantage in comparison with the initial encryption setting. The implementation complexity of the proposed encryption is considered, and it implies a suitable trade-off between increased security and increased implementation complexity

    Ciphered BCH Codes for PAPR Reduction in the OFDM in Underwater Acoustic Channels

    Get PDF
    We propose an effective, low complexity and multifaceted scheme for peak-to-average power ratio (PAPR) reduction in the orthogonal frequency division multiplexing (OFDM) system for underwater acoustic (UWA) channels. In UWA OFDM systems, PAPR reduction is a challenging task due to low bandwidth availability along with computational and power limitations. The proposed scheme takes advantage of XOR ciphering and generates ciphered Bose–Chaudhuri–Hocquenghem (BCH) codes that have low PAPR. This scheme is based upon an algorithm that computes several keys offline, such that when the BCH codes are XOR-ciphered with these keys, it lowers the PAPR of BCH-encoded signals. The subsequent low PAPR modified BCH codes produced using the chosen keys are used in transmission. This technique is ideal for UWA systems as it does not require additional computational power at the transceiver during live transmission. The advantage of the proposed scheme is threefold. First, it reduces the PAPR; second, since it uses BCH codes, the bit error rate (BER) of the system improves; and third, a level of encryption is introduced via XOR ciphering, enabling secure communication. Simulations were performed in a realistic UWA channel, and the results demonstrated that the proposed scheme could indeed achieve all three objectives with minimum computational powerThis research was funded by a grant from the Spanish Ministry of Science and Innovation in the framework of the project “NAUTILUS: Swarms of underwater autonomous vehicles guided by artificial intelligence: its time has come” (PID2020-112502RB / AEI / 10.13039/501100011033). Partial funding for open access charge: Universidad de Málag

    Self-synchronized Encryption for Physical Layer in 10Gbps Optical Links

    Get PDF
    In this work a new self-synchronized encryption method for 10 Gigabit optical links is proposed and developed. Necessary modifications to introduce this kind of encryption in physical layers based on 64b/66b encoding, such as 10GBase-R, have been considered. The proposed scheme encrypts directly the 64b/66b blocks by using a symmetric stream cipher based on an FPE (Format Preserving Encryption) block cipher operating in PSCFB (Pipelined Statistical Cipher Feedback) mode. One of the main novelties in this paper is the security analysis done for this mode. For the first time, an expression for the IND-CPA (Indistinguishability under Chosen-Plaintext Attack) advantage of any adversary over this scheme has been derived. Moreover, it has been concluded that this mode can be considered secure in the same way of traditional modes are. In addition, the overall system has been simulated and implemented in an FPGA (Field Programmable Gate Array). An encrypted optical link has been tested with Ethernet data frames, concluding that it is possible to cipher traffic at this level, getting maximum throughput and hiding traffic pattern from passive eavesdroppers

    On the security of NoSQL cloud database services

    Get PDF
    Processing a vast volume of data generated by web, mobile and Internet-enabled devices, necessitates a scalable and flexible data management system. Database-as-a-Service (DBaaS) is a new cloud computing paradigm, promising a cost-effective and scalable, fully-managed database functionality meeting the requirements of online data processing. Although DBaaS offers many benefits it also introduces new threats and vulnerabilities. While many traditional data processing threats remain, DBaaS introduces new challenges such as confidentiality violation and information leakage in the presence of privileged malicious insiders and adds new dimension to the data security. We address the problem of building a secure DBaaS for a public cloud infrastructure where, the Cloud Service Provider (CSP) is not completely trusted by the data owner. We present a high level description of several architectures combining modern cryptographic primitives for achieving this goal. A novel searchable security scheme is proposed to leverage secure query processing in presence of a malicious cloud insider without disclosing sensitive information. A holistic database security scheme comprised of data confidentiality and information leakage prevention is proposed in this dissertation. The main contributions of our work are: (i) A searchable security scheme for non-relational databases of the cloud DBaaS; (ii) Leakage minimization in the untrusted cloud. The analysis of experiments that employ a set of established cryptographic techniques to protect databases and minimize information leakage, proves that the performance of the proposed solution is bounded by communication cost rather than by the cryptographic computational effort

    Design and implementation of a multi-modal sensor with on-chip security

    Get PDF
    With the advancement of technology, wearable devices for fitness tracking, patient monitoring, diagnosis, and disease prevention are finding ways to be woven into modern world reality. CMOS sensors are known to be compact, with low power consumption, making them an inseparable part of wireless medical applications and Internet of Things (IoT). Digital/semi-digital output, by the translation of transmitting data into the frequency domain, takes advantages of both the analog and digital world. However, one of the most critical measures of communication, security, is ignored and not considered for fabrication of an integrated chip. With the advancement of Moore\u27s law and the possibility of having a higher number of transistors and more complex circuits, the feasibility of having on-chip security measures is drawing more attention. One of the fundamental means of secure communication is real-time encryption. Encryption/ciphering occurs when we encode a signal or data, and prevents unauthorized parties from reading or understanding this information. Encryption is the process of transmitting sensitive data securely and with privacy. This measure of security is essential since in biomedical devices, the attacker/hacker can endanger users of IoT or wearable sensors (e.g. attacks at implanted biosensors can cause fatal harm to the user). This work develops 1) A low power and compact multi-modal sensor that can measure temperature and impedance with a quasi-digital output and 2) a low power on-chip signal cipher for real-time data transfer

    Encriptación sobre Capa Física para Ethernet Óptico de Alta Velocidad

    Get PDF
    INTRODUCCIÓN-------------------------Hoy en día, los enlaces ópticos con tasas de transmisión de hasta 100 Gbps y superiores son ya una realidad. Gracias a los avances logrados en las comunicaciones ópticas durante las últimas décadas es posible afrontar anchos de banda cada vez mayores, lo que satisface las demandas de las aplicaciones más exigentes [CIS16], como por ejemplo las basadas en cloud computing o big data. Por otro lado, la seguridad en la información sigue siendo un asunto de gran importancia en las comunicaciones ya que el volumen de amenazas en la red se ha incrementado durante los últimos años [CIS18]. Los fallos en la seguridad podrían llevar al mal funcionamiento de un servicio o la pérdida de confidencialidad en datos críticos de los clientes. En un sistema de comunicaciones por capas, como por ejemplo en el modelo OSI (Open System Interconnection) o TCP/IP (Transmission Control Protocol/Internet Protocol), se pueden llevar a cabo tanto ataques pasivos como activos en los diferentes niveles de la comunicación. Dependiendo de las capas de comunicación utilizadas, distintos mecanismos pueden ser adoptados para lograr la seguridad de la información. Por ejemplo, protocolos estandarizados tales como MACsec [IEE06] o IPsec [KEN05] son empleados normalmente en la capa 2 (capa de enlace de datos) y capa 3 (capa de red), respectivamente. En ambos casos la encriptación es llevada a cabo en cada trama o paquete de datos de forma individual. Para el caso particular de las redes ópticas, el análisis de las amenazas en su capa 1 (capa física) también es considerado crítico para garantizar unas comunicaciones seguras [SKO16], [FUR14]. En este caso se pueden destacar tres tipos de ataques: ataques de inserción de señal, ataques por splitting y ataques a las infraestructuras físicas. Los ataques por splitting son normalmente empleados para espionaje pasivo o para producir degradación en la señal [SKO16], estos se pueden llevar a cabo fácilmente gracias a técnicas de derivación en la fibra. De hecho, hoy en día ya existen métodos de bajo coste para interceptar la señal óptica gracias a dispositivos de acoplamiento óptico y conversores electroópticos sin la necesidad de interferir perceptiblemente en las comunicaciones [ZAF11]. Con el fin de tratar estas amenazas y proteger la confidencialidad de los datos en la capa física, varios mecanismos relacionados con tecnologías fotónicas han sido propuestos [FOK11], por ejemplo OCDM (Optical Code Division Multiplexing) [JI17], SCOC (Secure Communications using Optical Chaos) [HIZ10] o QKD (Quantum Key Distribution) [ELK13]. Otras técnicas, también relacionadas con protocolos de capa física, cifran la información a nivel de bit independientemente de la tecnología fotónica empleada, como la encriptación de los datos del payload en las tramas OTN (Optical Transport Network) [GUA16]. Algunas de las ventajas reivindicadas por estas técnicas de encriptación consisten en cifrar la información “al vuelo” introduciendo un overhead nulo en los datos y una latencia muy baja (en el rango de nanosegundos) en la información transmitida [GUA16]. De hecho, hoy en día ya están disponibles en el mercado equipos de comunicaciones OTN que realizan el cifrado a la velocidad de línea sin mermar el throughput, es decir consiguiendo un rendimiento de la transmisión del 100% [MIC16]. Esto contrasta con lo que hacen ciertos protocolos en otras capas de comunicación [KOL13], [XEN06]. Por ejemplo, IPsec generalmente introduce latencias en el rango de milisegundos. Además, el overhead introducido por IPsec durante el cifrado limita el rendimiento de transmisión a valores entre el 20% y el 90% de la máxima tasa de datos posible sin encriptación [TRO05], [KOL13]. Aparte de lograr la confidencialidad, alguno de los métodos mencionados anteriormente también es capaz de conseguir privacidad contra intrusos pasivos [FOK11], entendiendo esta como la amenaza cuando dichos intrusos pueden detectar simplemente la presencia de comunicaciones, aunque sean incapaces de descifrar el contenido de la información de las mismas. Esta habilidad puede ofrecer seguridad contra ataques basados en el análisis de los patrones del tráfico, que permitirían revelar información del comportamiento de una compañía o instalación. Dentro de los estándares de comunicaciones ópticas, Ethernet es uno de los más empleados hoy día. Un claro ejemplo es el acceso a las redes de transporte ópticas donde este estándar es utilizado normalmente cuando las tasas de acceso superan el gigabit por segundo. Tal y como se muestra en la Fig.1-1, algunas tecnologías de acceso en los tramos de última milla de las CEN (Carrier Ethernet Networks) son Ethernet sobre fibra (Fibra Directa con Ethernet, Ethernet sobre SONET/SDH, Ethernet sobre PON), Ethernet sobre PDH o Ethernet inalámbrico [MET09]. Dos de los estándares ópticos Ethernet más empleados hoy en día son los denominados 1000Base-X y 10GBase-R con tasas de transmisión de 1 Gbps y 10 Gbps, respectivamente.OBJETIVOS-------------------En el caso de las comunicaciones sobre Ethernet óptico no existe ningún mecanismo que logre la mencionada privacidad al mismo tiempo que la confidencialidad, sin que además introduzca un overhead o latencias indeseadas. El objetivo de esta tesis es el de proporcionar soluciones a dos de los estándares ópticos Ethernet más empleados, tales como 1000Base-X o 10GBase-R, logrando las características citadas anteriormente. En general los principales aspectos que se pretenden desarrollar en esta tesis son los siguientes: • Realizar propuestas viables de modificación de ambos estándares, 1000Base-X y 10GBase-R, de forma que se pueda llevar a cabo la encriptación en la capa física. • Lograr la compatibilidad de las nuevas arquitecturas de encriptación con dichos estándares de forma que el hardware electrónico más dependiente del medio de transmisión, como los módulos ópticos SFP, los SERDES o los circuitos de recuperación de reloj y datos, no necesite modificaciones adicionales. • Realizar un estudio de los posibles esquemas de encriptación por streaming que sean capaces de cifrar datos a velocidades superiores a 1 Gbps y adaptarlos a las arquitecturas propuestas. • Estudiar posibles mecanismos para llevar a cabo la sincronización de los módulos de encriptación entre dos terminales remotos.• Lograr que las soluciones propuestas lleven a cabo la encriptación introduciendo la menor latencia posible, al menos en un orden de magnitud igual o inferior al de soluciones en otros estándares de comunicaciones como OTN. • Llevar a cabo un análisis de la seguridad de las soluciones propuestas, incluyendo el estudio de la capacidad de privacidad en las comunicaciones. • Proponer un esquema de chequeo de integridad, autenticación y refresco de claves a nivel de capa física. • Llevar a cabo la implementación y verificación física de las soluciones propuestas.PUBLICACIONES----------------------------[PER19a] A. Pérez-Resa, M. Garcia-Bosque, C. Sánchez-Azqueta, and S. Celma. "Chaotic Encryption Applied to Optical Ethernet in Industrial Control Systems". IEEE Transactions on Instrumentation and Measurement, 68(12):4876–4886, Dec 2019. [PER19b] A. Pérez-Resa, M. Garcia-Bosque, C. Sánchez-Azqueta, and S. Celma. "Physical Layer Encryption for Industrial Ethernet in Gigabit Optical Links". IEEE Transactions on Industrial Electronics, 66(4):3287–3295, April 2019. [PER19c] A. Pérez-Resa, M. Garcia-Bosque, C. Sánchez-Azqueta, and S. Celma. "Chaotic Encryption for 10-Gb Ethernet Optical Links". IEEE Transactions on Circuits and Systems I: Regular Papers, 66(2):859–868, Feb. 2019. [PER19d] A. Pérez-Resa, M. Garcia-Bosque, C. Sánchez-Azqueta, and S. Celma. "Self-Synchronized Encryption for Physical Layer in 10Gbps Optical Links". IEEE Transactions on Computers, 68(6):899–911, June 2019. [PER19e] A. Pérez-Resa, M. Garcia-Bosque, C. Sánchez-Azqueta, and S. Celma. "Self-Synchronized Encryption Using an FPE Block Cipher for Gigabit Ethernet". In 2019 15th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), pages 81–84, Lausanne, Switzerland, July 2019. [PER20a] A. Pérez-Resa, M. Garcia-Bosque, C. Sánchez-Azqueta, and S. Celma. "A New Method for Format Preserving Encryption in High-Data Rate Communications". IEEE Access, 8:21003–21016, 2020. [PER20b] A. Pérez-Resa, M. Garcia-Bosque, C. Sánchez-Azqueta, and S. Celma. "Self-synchronized Encryption for Physical Layer in 1Gbps Ethernet Optical Links". IEEE Access, Pending Acceptance.<br /

    Securing Critical Infrastructures

    Get PDF
    1noL'abstract è presente nell'allegato / the abstract is in the attachmentopen677. INGEGNERIA INFORMATInoopenCarelli, Albert

    Digital Design of New Chaotic Ciphers for Ethernet Traffic

    Get PDF
    Durante los últimos años, ha habido un gran desarrollo en el campo de la criptografía, y muchos algoritmos de encriptado así como otras funciones criptográficas han sido propuestos.Sin embargo, a pesar de este desarrollo, hoy en día todavía existe un gran interés en crear nuevas primitivas criptográficas o mejorar las ya existentes. Algunas de las razones son las siguientes:• Primero, debido el desarrollo de las tecnologías de la comunicación, la cantidad de información que se transmite está constantemente incrementándose. En este contexto, existen numerosas aplicaciones que requieren encriptar una gran cantidad de datos en tiempo real o en un intervalo de tiempo muy reducido. Un ejemplo de ello puede ser el encriptado de videos de alta resolución en tiempo real. Desafortunadamente, la mayoría de los algoritmos de encriptado usados hoy en día no son capaces de encriptar una gran cantidad de datos a alta velocidad mientras mantienen altos estándares de seguridad.• Debido al gran aumento de la potencia de cálculo de los ordenadores, muchos algoritmos que tradicionalmente se consideraban seguros, actualmente pueden ser atacados por métodos de “fuerza bruta” en una cantidad de tiempo razonable. Por ejemplo, cuando el algoritmo de encriptado DES (Data Encryption Standard) fue lanzado por primera vez, el tamaño de la clave era sólo de 56 bits mientras que, hoy en día, el NIST (National Institute of Standards and Technology) recomienda que los algoritmos de encriptado simétricos tengan una clave de, al menos, 112 bits. Por otro lado, actualmente se está investigando y logrando avances significativos en el campo de la computación cuántica y se espera que, en el futuro, se desarrollen ordenadores cuánticos a gran escala. De ser así, se ha demostrado que algunos algoritmos que se usan actualmente como el RSA (Rivest Shamir Adleman) podrían ser atacados con éxito.• Junto al desarrollo en el campo de la criptografía, también ha habido un gran desarrollo en el campo del criptoanálisis. Por tanto, se están encontrando nuevas vulnerabilidades y proponiendo nuevos ataques constantemente. Por consiguiente, es necesario buscar nuevos algoritmos que sean robustos frente a todos los ataques conocidos para sustituir a los algoritmos en los que se han encontrado vulnerabilidades. En este aspecto, cabe destacar que algunos algoritmos como el RSA y ElGamal están basados en la suposición de que algunos problemas como la factorización del producto de dos números primos o el cálculo de logaritmos discretos son difíciles de resolver. Sin embargo, no se ha descartado que, en el futuro, se puedan desarrollar algoritmos que resuelvan estos problemas de manera rápida (en tiempo polinomial).• Idealmente, las claves usadas para encriptar los datos deberían ser generadas de manera aleatoria para ser completamente impredecibles. Dado que las secuencias generadas por generadores pseudoaleatorios, PRNGs (Pseudo Random Number Generators) son predecibles, son potencialmente vulnerables al criptoanálisis. Por tanto, las claves suelen ser generadas usando generadores de números aleatorios verdaderos, TRNGs (True Random Number Generators). Desafortunadamente, los TRNGs normalmente generan los bits a menor velocidad que los PRNGs y, además, las secuencias generadas suelen tener peores propiedades estadísticas, lo que hace necesario que pasen por una etapa de post-procesado. El usar un TRNG de baja calidad para generar claves, puede comprometer la seguridad de todo el sistema de encriptado, como ya ha ocurrido en algunas ocasiones. Por tanto, el diseño de nuevos TRNGs con buenas propiedades estadísticas es un tema de gran interés.En resumen, es claro que existen numerosas líneas de investigación en el ámbito de la criptografía de gran importancia. Dado que el campo de la criptografía es muy amplio, esta tesis se ha centra en tres líneas de investigación: el diseño de nuevos TRNGs, el diseño de nuevos cifradores de flujo caóticos rápidos y seguros y, finalmente, la implementación de nuevos criptosistemas para comunicaciones ópticas Gigabit Ethernet a velocidades de 1 Gbps y 10 Gbps. Dichos criptosistemas han estado basados en los algoritmos caóticos propuestos, pero se han adaptado para poder realizar el encriptado en la capa física, manteniendo el formato de la codificación. De esta forma, se ha logrado que estos sistemas sean capaces no sólo de encriptar los datos sino que, además, un atacante no pueda saber si se está produciendo una comunicación o no. Los principales aspectos cubiertos en esta tesis son los siguientes:• Estudio del estado del arte, incluyendo los algoritmos de encriptado que se usan actualmente. En esta parte se analizan los principales problemas que presentan los algoritmos de encriptado standard actuales y qué soluciones han sido propuestas. Este estudio es necesario para poder diseñar nuevos algoritmos que resuelvan estos problemas.• Propuesta de nuevos TRNGs adecuados para la generación de claves. Se exploran dos diferentes posibilidades: el uso del ruido generado por un acelerómetro MEMS (Microelectromechanical Systems) y el ruido generado por DNOs (Digital Nonlinear Oscillators). Ambos casos se analizan en detalle realizando varios análisis estadísticos a secuencias obtenidas a distintas frecuencias de muestreo. También se propone y se implementa un algoritmo de post-procesado simple para mejorar la aleatoriedad de las secuencias generadas. Finalmente, se discute la posibilidad de usar estos TRNGs como generadores de claves. • Se proponen nuevos algoritmos de encriptado que son rápidos, seguros y que pueden implementarse usando una cantidad reducida de recursos. De entre todas las posibilidades, esta tesis se centra en los sistemas caóticos ya que, gracias a sus propiedades intrínsecas como la ergodicidad o su comportamiento similar al comportamiento aleatorio, pueden ser una buena alternativa a los sistemas de encriptado clásicos. Para superar los problemas que surgen cuando estos sistemas son digitalizados, se proponen y estudian diversas estrategias: usar un sistema de multi-encriptado, cambiar los parámetros de control de los sistemas caóticos y perturbar las órbitas caóticas.• Se implementan los algoritmos propuestos. Para ello, se usa una FPGA Virtex 7. Las distintas implementaciones son analizadas y comparadas, teniendo en cuenta diversos aspectos tales como el consumo de potencia, uso de área, velocidad de encriptado y nivel de seguridad obtenido. Uno de estos diseños, se elige para ser implementado en un ASIC (Application Specific Integrate Circuit) usando una tecnología de 0,18 um. En cualquier caso, las soluciones propuestas pueden ser también implementadas en otras plataformas y otras tecnologías.• Finalmente, los algoritmos propuestos se adaptan y aplican a comunicaciones ópticas Gigabit Ethernet. En particular, se implementan criptosistemas que realizan el encriptado al nivel de la capa física para velocidades de 1 Gbps y 10 Gbps. Para realizar el encriptado en la capa física, los algoritmos propuestos en las secciones anteriores se adaptan para que preserven el formato de la codificación, 8b/10b en el caso de 1 Gb Ethernet y 64b/10b en el caso de 10 Gb Ethernet. En ambos casos, los criptosistemas se implementan en una FPGA Virtex 7 y se diseña un set experimental, que incluye dos módulos SFP (Small Form-factor Pluggable) capaces de transmitir a una velocidad de hasta 10.3125 Gbps sobre una fibra multimodo de 850 nm. Con este set experimental, se comprueba que los sistemas de encriptado funcionan correctamente y de manera síncrona. Además, se comprueba que el encriptado es bueno (pasa todos los test de seguridad) y que el patrón del tráfico de datos está oculto.<br /

    New Security Definitions, Constructions and Applications of Proxy Re-Encryption

    Get PDF
    La externalización de la gestión de la información es una práctica cada vez más común, siendo la computación en la nube (en inglés, cloud computing) el paradigma más representativo. Sin embargo, este enfoque genera también preocupación con respecto a la seguridad y privacidad debido a la inherente pérdida del control sobre los datos. Las soluciones tradicionales, principalmente basadas en la aplicación de políticas y estrategias de control de acceso, solo reducen el problema a una cuestión de confianza, que puede romperse fácilmente por los proveedores de servicio, tanto de forma accidental como intencionada. Por lo tanto, proteger la información externalizada, y al mismo tiempo, reducir la confianza que es necesario establecer con los proveedores de servicio, se convierte en un objetivo inmediato. Las soluciones basadas en criptografía son un mecanismo crucial de cara a este fin. Esta tesis está dedicada al estudio de un criptosistema llamado recifrado delegado (en inglés, proxy re-encryption), que constituye una solución práctica a este problema, tanto desde el punto de vista funcional como de eficiencia. El recifrado delegado es un tipo de cifrado de clave pública que permite delegar en una entidad la capacidad de transformar textos cifrados de una clave pública a otra, sin que pueda obtener ninguna información sobre el mensaje subyacente. Desde un punto de vista funcional, el recifrado delegado puede verse como un medio de delegación segura de acceso a información cifrada, por lo que representa un candidato natural para construir mecanismos de control de acceso criptográficos. Aparte de esto, este tipo de cifrado es, en sí mismo, de gran interés teórico, ya que sus definiciones de seguridad deben balancear al mismo tiempo la seguridad de los textos cifrados con la posibilidad de transformarlos mediante el recifrado, lo que supone una estimulante dicotomía. Las contribuciones de esta tesis siguen un enfoque transversal, ya que van desde las propias definiciones de seguridad del recifrado delegado, hasta los detalles específicos de potenciales aplicaciones, pasando por construcciones concretas
    corecore