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Abstract: An instance of the framework for cryptographic security enhancement of symmetric-key
encryption employing a dedicated error correction encoding is addressed. The main components of
the proposal are: (i) a dedicated error correction coding and (ii) the use of a dedicated simulator of the
noisy channel. The proposed error correction coding is designed for the binary erasure channel where
at most one bit is erased in each codeword byte. The proposed encryption has been evaluated in
the traditional scenario where we consider the advantage of an attacker to correctly decide to which
of two known messages the given ciphertext corresponds. The evaluation shows that the proposed
encryption provides a reduction of the considered attacker’s advantage in comparison with the initial
encryption setting. The implementation complexity of the proposed encryption is considered, and it
implies a suitable trade-off between increased security and increased implementation complexity.

Keywords: encryption; symmetric keys; security enhancement; error correction coding; security
evaluation

1. Introduction

The use of coding and noisy channel-based techniques for the security enhancement
of a given encryption is an important topic. In particular, this approach could significantly
increase the cryptographic security margin of a lightweight encryption scheme. For exam-
ple, in a number of scenarios, we have to employ a given lightweight encryption technique
with a certain security margin but a higher one is required. In such a scenario, enhancing
the security of the given encryption appears to be an appropriate approach. On the other
hand, this approach also implies an additional overhead complexity.

Motivation. It seems to be an interesting issue to design a security enhancement with
a number of parameters that provide control over a desired security enhancement and the
required implementation and execution costs of the encryption.

The main motivation for this paper was to address the security enhancement of a
given encryption scheme that provides an opportunity for a trade-off between the security
margin increase and the required costs. Recently, in [1], a framework for the security
enhancement of encryption was proposed, and it is an interesting issue to propose coding
techniques suitable for developing a particular setting of the considered framework. Our
goal was to design a variant of the encryption from [1], with an instance of their employed
noisy-channel simulator and a suitable error correction code for the erasure channel with
at most one erasure per codeword byte. The coding should provide a reduction of the
decoding complexity as well as a reduction of the required parity bits, for the considered
erasure channel, in comparison with the use of LDPC, polar or RS codes. Accordingly,
for the considered erasure channel, to avoid these shortcomings, we opted for particular
integer block codes (IBCs).
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Summary of the Results. This paper proposes a novel coding scheme and its appli-
cation for the security enhancement of encryption schemes. The enhancement is based
on the use of the proposed IBC error correction coding for certain channels with erasures
that degrade the ciphertext. From the perspective of the legitimate parties who share a
secret key, the degradation appears as a transmission of the ciphertext through a binary
erasure channel. On the other hand, from the perspective of an attacker, the degradation
appears as a transmission of the ciphertext over a binary deletion channel. The degradation
is performed by employing a simulated noisy channel that consists of two subchannels so
that an additional flexibility is provided for the selection of the parameters to achieve the
desired security and the enhancement cost. The proposed IBC coding has a low complexity
and is able to correct one erasure per b-bit of data byte.

Organization of the Paper. The framework for the security enhancement of encryption
schemes recently reported in [1] is summarized in Section 2. A dedicated IBC coding algo-
rithm is proposed in Section 3. A novel scheme for the cryptographic security enhancement
of an encryption scheme employing the proposed error correction coding and simulated
channel that from an attacker’s side appears as a channel with synchronization errors is
given in Section 4. The cryptographic security evaluation and implementation issues are
considered in Sections 5 and 6, respectively. Conclusions are given in Section 7, and the
proof of a Lemma is given in the Appendix A.

2. Related Work and Background on the Security-Enhanced Encryption Scheme
2.1. Related Work and Our Goals

Improving the security margin or enhancing the security of certain cryptographic
primitives employing randomness has been employed in a number of reported designs
(initially in [2,3]), as well as in the context of wiretap coding. Following these approaches,
two main directions can be identified regarding symmetric-keys encryption techniques.
One of the encryption approaches is based on the use of a cryptographic key to control
error correction coding algorithms, and it is reported, for example, in [4–15]. The other
approach is the use of error correction coding and noisy channels for the cryptographic
security enhancement of a given encryption scheme: this approach has been reported, for
example, in [1,16–24]. These security enhancements are based on paradigms of the additive
noisy channel or channels with synchronization errors. The encryption scheme where
encoding and decoding are controlled by the secret key requires very long secret keys
because the error correction coding scheme should be secret. In the class of encryption
schemes where the error correction coding and noisy channel paradigms are employed for
the security enhancement of a given encryption scheme, the required secret keys are much
smaller because in this setting, the coding scheme does not need to be secret.

We point out the following illustrative designs of encryption techniques based on
a secret coding scheme. One of the first results in this direction was reported in [15],
where an approach to design a private-key cryptosystem called RN was proposed which
allowed the use of very simple codes. The encryption was performed by employing the
matrix G∗ = SGP, where S is a random nonsingular invertible matrix, G is a generator
matrix of an (n, k) block code, and P is permutation matrix. The basic ciphertext was
degraded by an error vector of length n, whose average Hamming weight was about n/2
and selected randomly from a syndrome error table. The restricted set of error patterns
implied a vulnerability against a chosen plaintext attack because the security depended on
a Hamming weight and the number of perturbation vectors, and demanded long keys and a
large syndrome error table for a desirable security. In [10], a variant of an RN cryptosystem
using a quasi-cyclic low-density parity-check (QC-LDPC) code was proposed in order to
offer a high security, low encoding complexity, and small key size. A stream ciphering
method based on the linear feedback shift register (LFSR) was incorporated to generate
random error vectors, providing a large number of vectors with good cryptographic
properties. The design included a method to vary the encryption matrix and the intentional
error vector with each message block. A nonlinear RN-like symmetric-key encryption
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scheme was reported in [12], where the design employed QC-LDPC lattice codes. QC-
LDPC codes have also been employed for developing an encryption-based coding as
follows. An encryption approach based on QC-LDPC codes was reported in [4], where the
absence of permutation and scrambling matrices reduced the key size required compared
with similar code-based cryptosystems. In [5], a scheme was proposed which randomly
inserted and deleted bits in the codeword of a QC-LDPC code. It was shown that the
key size was smaller than other code-based cryptosystems based on permutation and
scrambling matrices. The positions of the inserted and deleted bits were determined using
a secret key.

A number of the reported designs are based on polar codes (see, for example, [25,26]).
In [13], an efficient secret-key cryptosystem based on polar codes over the binary erasure
channel was proposed, where the generator matrix of the polar codes was hidden from
an attacker. In [7], a novel approach was employed to keep the generator matrix of a
polar code secret from an active attacker and a polar encoding/encryption algorithm
based on the hidden generator matrix introduced, so that an attacker could not decode the
eavesdropped data without the knowledge of the secret key shared between the legitimate
parties. An encryption scheme [8] based on a polar code for the physical layer encryption
(PLE) with a short key length was reported in [8] together with its security evaluation.
In [9], an encryption algorithm based on polar codes and chaotic sequences allocated to
the frozen bits of polar codes was reported. Since the frozen bits were not known to the
eavesdroppers, it was difficult to perform decoding. The reported results in [14] showed
that using polar codes in conjunction with the learning with errors (LWE)-problem-based
encryption yielded several advantages. A survey on the development of polar-code-based
encryption approaches is reported in [11] including a discussion on the reduction of the
key size in these schemes.

An encryption approach based on the use of a traditional linear block code and a
simulator of a channel with synchronization errors was proposed in [6]. The employed
simulator of the noisy channel performed bits flipping and deletion and random bits
insertion according to the outputs of secret-key-controlled LFSRs, but it was shown in [27]
that this approach is vulnerable.

The use of the noisy channel approach for the security enhancement of a given
encryption has been discussed from a number of perspectives and some of them are
discussed below.

The secrecy enhancement of the Data Encryption Standard (DES) block cipher working
in a cipher feedback model (CFB) when an adjustable noise is introduced into the encrypted
data, was considered in [16]. The main goal was to generate a degraded wiretap channel in
the application layer over which a Wyner-type secrecy encoding was employed. In [28], a
study of the statistical properties of the errors in certain block-ciphered cryptosystems was
reported. These statistics could be employed for the design of block-ciphered cryptosys-
tems, where errors were intentionally introduced to enhance the security against passive
eavesdroppers. On the other hand, the experimental results reported in [29] showed that
the errors in ciphertext did not guarantee a security increase of the modified data encryption
standard (M-DES), where a key-based coded permutation cipher paradigm was employed
to improve the security of the transmission in the wireless channel.

In the following, we discuss the following two paradigms for the security enhancement:
(i) encode → encrypt → degrade paradigm employed for stream ciphers enhancement
in [17,19,21,23,24]; (ii) encrypt→ encode→ degrade paradigm reported in [1,18,20,22].

Certain provably secure symmetric encryption techniques based on the hard learning
problems were reported in [23,24], where the Learning Parity in Noise (LPN) and the
LWE problems were employed for the design of provably secure encryption implied
by strong hardness guarantees. These approaches employed additive noise and error
correction coding to enhance the security of simple keystream generators (such as linear
feedback shift registers). In [17], the security enhancement of given stream cipher was
proposed employing a concatenation of a simulated channel with bit insertions and a
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physical binary symmetric channel (BSC). In a simplified setting where the encryption was
performed using a linear finite state machine, it was shown that the security enhancement
corresponds the hardness of the underlying LPN problem. A general model of a security-
enhanced encryption scheme that followed the encode→ encrypt→ degrade paradigm
was considered from the information-theoretic and computational-complexity points of
view in [19,21], respectively.

In [22], the security enhancement of a DES-based block cipher, operating in a cipher
feedback (CFB) mode, employing an RS code and assuming a BSC noisy channel was
proposed. Additionally, the required number of plaintext–ciphertext pairs for mounting a
known plaintext attack, in the presence of noise in the ciphertexts, as well as the trade-off be-
tween security enhancement and performance degradation, were considered. In [1,18,20],
schemes are proposed for a security-enhanced encryption scheme based on simulators of
certain channels with synchronization errors and LDPC or polar error correction coding.
An approach for the security enhancement employing a simulated noisy channel with bits
insertion was proposed in [18] and the enhancement was evaluated by an information-
theoretic approach. Two approaches for the security enhancement of encryption algorithms
employing simulated noisy binary channels that consisted of the erasure channels for the
legitimate receivers and as the binary deletion channels for an attacker were proposed
in [1,20]. The security enhancement was considered by employing a traditional game-based
evaluation approach to show the reduction of the attacker advantage.

This paper addresses the encryption approach that involves nonsecret error correc-
tion coding. In the considered class, beside the coding, the noisy channel paradigm is
employed to achieve the desired security enhancement of the encryption scheme. The
main components of these schemes are: (i) the initial encryption that is the subject of the
enhancement; (ii) the employed error correction codding; and (iii) the employed paradigm
of the noisy channel. The coding schemes were dedicated to the involved noisy channel.
The following noisy channel models were mainly considered: the additive noisy channel,
erasure channels, channels with synchronization errors, and channels with additive and
synchronization errors. The commonly considered additive noisy channel was the BSC,
and regarding the channels with synchronization errors, the deletion channels and the
insertion channels were considered.

Regarding the error correction coding issues, in this paper, we focused on the recon-
struction of a codeword containing one erasure per data byte. The standard way to solve
this problem would be to use powerful error correction codes, such as LDPC, polar, or
RS codes. However, one such solution would be impractical for two reasons. The first
one is that all the mentioned codes have complex decoding algorithms. In particular, it is
known that LDPC and polar codes have a log-linear decoding complexity [30,31], while
RS codes can be decoded in log-linear time only for certain code lengths [32]. So, whether
implemented in hardware or software, these codes would use a large number of operations,
even to decode short codewords. The second reason why the mentioned codes would be
impractical lies in their redundancy. If, for example, LDPC or polar codes were to be used
to reconstruct the codeword, the number of check bits would have to be close to the number
of data bits. On the other hand, if RS codes were used, the number of check bits would be
significantly smaller, but not negligible (e.g., for data lengths greater than 500 bits, it would
be necessary to use more than 100 check bits). Due to these shortcomings, in this paper, we
considered IBCs that were previously used to correct burst and/or random errors within
the codeword [33–36].

Our goal is to design a variant of the encryption [1] with an instance of their employed
noisy channel simulator and a suitable error correction code for the erasure channel with
at most one erasure per codeword byte. Following the results reported in the discussed
papers, the main goal of this paper was to propose an approach for a security-enhanced
encryption where: (i) the initial encryption scheme belongs to the class of lightweight block
ciphers or certain stream ciphers; (ii) a novel block error correction code for the erasure
channel is employed; and (iii) a dedicated simulator of the noisy channel suitable for the
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developed error correction code is used. The considered channel is a variant of the one
reported in [1], and the use of the developed error correction code appears more suitable
over this channel in comparison with LDPC, polar, or RS codes.

2.2. Main Background

This section shows the cryptographic security enhancement of an encryption scheme
employing error correction coding and the simulator of a channel with synchronization
errors reported in [1] and displayed in Figure 1.

As in [1], we use the following notation. The message, a data vector subject to
encryption is denoted by m ∈ {0, 1}n′ and we assume that it is a realization of the binary
vector variable M. The encrypted form of m is denoted by c ∈ {0, 1}n′ and we assume that
it is a realization of the binary vector variable C,

c = Enck(m) ,

where Enck(·) denotes the encryption mapping controlled by the secret key k. The vector x
denotes the encoded version of c employing an error correction encoding Encode(·), which
performs the mapping {0, 1}n′ → {0, 1}n, n > n′,

x = Encode(Enck(m))

and x is a realization of a random binary variable X.
We consider a channel in which the input sequence is divided into subsequences and

these subsequences are transmitted through independent i.i.d. binary deletion channels,
and the arrived bits after the deletion channels are combined, preserving their order in the
original input sequence. Consequently, the resulting channel is an i.i.d. binary deletion
channel with parameters which depend on the parameters of the considered subchannels.

The simulator of the considered channel is controlled by a vector s generated by the
encryption algorithm which is considered as a realization of a binary random vector S.

An attacker on the encryption scheme from Figure 1 faces the problem of the crypt-
analysis of the known plaintext attack displayed in Figure 2.
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Figure 1. Generic framework for security-enhanced encryption scheme [1].
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Figure 2. Model of encryption for cryptanalysis at the attacker’s side under known plaintext
attack [1].

Note that the legitimate parties face the problem of decoding after a binary erasure
channel, but the attacker faces the much harder problem of dealing with decoding after
a deletion channel. The knowledge of attackers is limited to the following. Each channel
input bit is transmitted through Channel 1 with probability λ, and through Channel 2 with
probability λ̄, independently of each other. If transmitted through Channel 1, a bit is deleted
with the probability d1, and if transmitted through Channel 2, a bit is deleted with the
probability d2. The attacker does not know the specific realization of the “individual channel
selection events”, i.e., they do not know which specific subchannel a bit is transmitted
through, and which specific subchannel each output symbol is received from.

3. Integer Codes Correcting One Erasure per Data Byte

This section proposes an error correction coding and addresses the following three
issues: (i) the considered scenario of the codewords degradation; (ii) the construction of the
code; and (iii) illustrative examples.

3.1. Scenario of Employment

First, we give two definitions that are necessary for understanding the concept of
integer erasure correcting codes.

Definition 1. An error is called a 1/k-erasure if each of the k data bytes is affected by one erasure.

Definition 2. Let Z2b−1 = {0, 1, . . . , 2b − 2} be the ring of integers modulo 2b − 1 and let
Bi = ∑b−1

n=0 an · 2n be the integer representation of a b-bit byte, where an ∈ {0, 1} and 1 ≤ i ≤ k.

Then, the code C (b, k, c), defined as

C(b, k, c)=

{
(B1, B2, . . . , Bk, Bk+1) ∈ Zk+1

2b−1
:

k

∑
i=1

Ci · Bi ≡ Bk+1(mod 2b − 1)

}
(1)

is a (kb + b, kb) integer erasure correcting code, where c = (1, C2, C3, . . . , Ck) ∈ Zk
2b−1 is the

coefficient vector and Bk+1 ∈ Z2b−1 is an integer.

We assume the following: (i) in a simulated noisy channel, the codeword is degraded
by deletion of one bit from each b-bit byte except the last one (so, instead of (k + 1) · b bits,
the sent codeword will have k · b bits (Figure 3)) and (ii) the degradation is controlled by a
secret information shared between sender and receiver.
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Figure 3. The codeword structure after: (a) the encoding process and (b) the deleting process.

When it receives a shortened codeword, the receiver inserts k zeros at the deleted bit
positions. This means that the integer value of each received b-bit data byte either remains
unchanged or is reduced by 2r, where 0 ≤ r ≤ b − 1.

3.2. Code Construction

Definition 3. Let V = {0, 1} and P = {1, 2, . . . , b}. Then, the vectors representing the values and
positions of the deleted bits within each of the k data bytes are, respectively, defined by v = (v1, v2,
. . . , vk) ∈ Vk and p = (p1, p2, . . . , pk) ∈ Pk.

Definition 4. Let x = (B1, B2, . . . , Bk, Bk+1) ∈ Zk+1
2b−1

be the original codeword and let y = (B1,

B2, . . . , Bk, Bk+1) ∈ Zk+1
2b−1

be the received codeword in which one bit (of the known position) within
each of the k data bytes is replaced by a binary zero. Then, the syndrome S of the received codeword
is defined as

S = Bk+1 −
k

∑
i=1

Ci · Bi(mod 2b − 1) =
k

∑
i=1

(Bi − Bi) · Ci(mod 2b − 1) =
k

∑
i=1

ei · Ci(mod 2b − 1) (2)

where ei ∈ {0, 20, 21, 22, . . . , 2b−1}.

From the previous definition, it is clear that the original codeword is instantly recon-
structed if S = 0. Hence, it is reasonable to take the position that the received codeword is
invalid only if S 6= 0. This leads us to the following definition.

Definition 5. The set of syndromes corresponding to 1/k-erasures is defined as

ξ =
2k−1⋃
i=1

si

where
s1=

{
0 + 0 + · · ·+ 0 + ek · Ck (mod 2b − 1)

}
,

s2=
{

0 + 0 + · · ·+ ek−1 · Ck−1 + 0 (mod 2b − 1)
}

,

s3=
{

0 + 0 + · · ·+ ek−1 · Ck−1 + ek · Ck (mod 2b − 1)
}

,

s4=
{

0 + 0 + · · ·+ ek−2 · Ck−2 + 0 + ek · Ck (mod 2b − 1)
}

,
...

s2k−1=
{

e1 · 1 + e2 · C2 + · · ·+ ek−1 · Ck−1 + ek · Ck (mod 2b − 1)
}

.
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Since the receiver does not know the value of the vector v, it must obtain it through the
syndrome S. The simplest way to do this is to use the syndrome table (ST) whose entries
are sets of pairs (S, v) (Figure 4). Such a table can be easily generated if the values of the
vectors c and p are known.

Figure 4. Bit-width of one ST entry.

However, what we do not know is the size of the ST, i.e., how many (S, v) pairs there
are. The answer to this is given by the following theorem.

Theorem 1. The codes defined by (1) can correct a 1/k-erasure if for each vector p = (p1, p2, . . . ,
pk) ∈ Pk, there exists a coefficient vector c = (1, C2, C3, . . . , Ck)∈ Zk

2b−1, such that

|ξ| = 2k − 1,

where | ξ | is the cardinality of ξ.

Proof. The integer code C (b, k, c) is said to be a correctable 1/k-erasure if all its syndromes
are nonzero and mutually different. This condition will be satisfied if for each vector p,
there exists a coefficient vector c such that

s1
⋂

s2
⋂

s3 · · ·
⋂

s2k−1=∅.

Only in that case will the set ξ have

|ξ|=
2k−1

∑
i=1
|si|= 1 · (2k − 1)= 2k − 1

nonzero elements. Q.E.D.
So, the necessary and sufficient condition for the construction of the proposed codes is

that for each vector p, there is at least one vector c. On the other hand, from Definition 3 we
see that there are bk possible values of the vector p. Both these facts lead to the conclusion
that the vector c cannot be generated without using a computer (Figure 5). Once its value is
known, the receiver will generate the ST after which communication can start.
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Figure 5. The pseudocode for generating the vector c.

3.3. The Pseudocodes and Illustrative Examples

Pseudocodes of the encoding, codeword degradation, and decoding procedures at the sender
and receiver.

Figure 6 displays the pseudocodes for the encoding and deletion processes. The
transmitter forms a codeword and then degrades it by deleting one bit from each b-bit byte
except the last one (in the considered illustrative case).

Figure 6. The pseudocode for the encoding and deletion processes.

Figure 7 displays the pseudocodes for the insertion and decoding processes. The
receiver first inserts binary zeros at the deleted positions and then calculates the value of
the syndrome S. If S 6= 0, the receiver looks up the ST to get the value of the vector v.
After that, it modifies the initially reconstructed codeword by XORing the vector v with the
inserted binary zeros.
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Figure 7. The pseudocode for the insertion + decoding processes.

Example 1. Suppose that b = 5 and p = (1, 2, 3, 4). In that case, both the sender and receiver
generate the vector c = (1, 3, 5, 7), while the receiver additionally generates the ST (Table 1). After
that, the communication starts with the sender generating the check-byte Bk+1. If, for example, the
data word has 20 bits, say d = (B1, B2, B3, B4) = (010102, 110102, 111002, 011102) = (10, 26, 28,
14), the value of the check-byte is

Bk+1 = B5 = 1 · 10 + 3 · 26 + 5 · 28 + 7 · 14 (mod 31) = 16 =100002.

As a result, the original codeword has 25 bits, x = (B1, B2, B3, B4, B5) = (010102, 110102,
111002, 011102, 100002) = (10, 26, 28, 14, 16). In the next step, the sender deletes the first bit
from the first byte, the second bit from the second byte, the third bit from the third byte
and the fourth bit from the fourth byte. This means that the sent codeword has 20 bits,
xs = (B1s, B2s, B3s, B4s, B5) = (10102, 10102, 11002, 01102, 100002).

When it receives such a codeword, the receiver first inserts binary zeros at the deleted
positions, y = (010102, 100102, 110002, 011002, 100002) = (10, 18, 24, 12, 16). After that, it
calculates the value of the syndrome S

S = 16 − (1 · 10 + 3 · 18 + 5 · 24 + 7 · 12) (mod 31) = 27.

Since S 6= 0, the receiver looks up the ST to get the value of the vector v. When this
procedure is completed, the receiver modifies the initially reconstructed codeword by
XORing the vector v = (0, 1, 1, 1) with the inserted binary zeros. As a result, the codeword
has the form y = x = (B1, B2, B3, B4, B5) = (010102, 110102, 111002, 011102, 100002).

Table 1. The ST for the (25, 20) integer 4-erasure correcting code when p = (1, 2, 3, 4).

s v s v s v
1 3 0 0 1 1 6 13 0 1 1 0 11 23 1 1 0 1
2 5 1 0 1 0 7 14 0 0 0 1 12 24 0 1 0 0
3 7 0 1 0 1 8 16 1 0 0 0 13 27 0 1 1 1
4 9 1 1 0 0 9 19 1 0 1 1 14 29 1 1 1 0
5 12 1 1 1 1 10 20 0 0 1 0 15 30 1 0 0 1
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Example 2. Suppose that b = 5 and p = (2, 4, 3, 2). As in the previous example, the sender and
receiver generate the vector c = (1, 2, 4, 5), while the receiver additionally generates the ST (Table 2).
If the same 20 bits of data are sent again, d = (B1, B2, B3, B4) = (010102, 110102, 111002, 011102)
= (10, 26, 28, 14), the sender calculates the check-byte

Bk+1 = B5 = 1 · 10 + 2 · 26 + 4 · 28 + 5 · 14 (mod 31) = 27 = 110112

after which the codeword having 25 bits is generated, x = (B1, B2, B3, B4, B5) = (010102, 110102,
111002, 011102, 110112) = (10, 26, 28, 14, 27). In the next step, the sender deletes the second bit
from the first byte, the fourth bit from the second byte, the third bit from the third byte, and the
second bit from the fourth byte. As a result, the sent codeword has 20 bits, xs = (B1s, B2s, B3s, B4s,
B5) = (00102, 11002, 11002, 01102, 110112).

When such a codeword arrives, the receiver first inserts binary zeros at the deleted
positions, y = (000102, 110002, 110002, 001102, 110112) = (2, 24, 24, 6, 27), and then calculates
the value of the syndrome S

S = 27 − (1 · 2 + 2 · 24 + 4 · 24 + 5 · 6) (mod 31) = 6

Since S 6= 0, the receiver looks up the ST to obtain the value of the vector v. After that,
it modifies the initially reconstructed codeword by XORing the vector v = (1, 1, 1, 1) with
the inserted binary zeros. As a result, the codeword has the form y = x = (B1, B2, B3, B4, B5)
= (010102, 110102, 111002, 011102, 100002).

Table 2. The ST for the (25, 20) integer 4-erasure correcting code when p = (2, 4, 3, 2).

s v s v s v
1 2 1 0 1 1 6 12 1 1 0 0 11 21 1 1 0 1
2 4 0 1 0 0 7 13 0 1 0 1 12 24 1 0 1 0
3 6 1 1 1 1 8 16 0 0 1 0 13 25 0 0 1 1
4 8 1 0 0 0 9 17 1 0 0 1 14 28 1 1 1 0
5 9 0 0 0 1 10 20 0 1 1 0 15 29 0 1 1 1

3.4. Evaluation Issues

The only unknown regarding the proposed codes is the dimension of the vector c. The
reason is that it is determined by means of a computer, and hence, it is not possible to know
its dimension in advance. However, the results of all our experiments showed that the
equality kmax . = b − 1 holds regardless of the value of the vector p. One confirmation of this
is the parameters of the codes from Examples 1 and 2. Having this in mind, we can draw
the following statements regarding the proposed codes: (i) the proposed codes use integer
arithmetic, which is supported by all processors. Owing to this, they have the potential
to run very fast in software; (ii) the proposed codes can be decoded in linear time, which
makes them computationally more efficient than the standard ones; (iii) the proposed codes
have much lower redundancy than the standard ones. For example, to reconstruct a data
word having 20 bits (Examples 1 and 2), RS codes would have to use at least 20 check-bits.
Unlike them, the proposed codes require only five check bits; and (iv) the proposed codes
are not suitable for protecting long data streams. The reason is the size of the ST, which
grows exponentially with the number of data bytes (the ST has 2k – 1 entries, where each
entry is (k + b)-bits wide).

4. Security-Enhanced Encryption Scheme

In this section, we propose a particular instance of the framework given in Section 2.
In particular we propose designs for the following two parts of the generic framework:
(i) encryption scheme and (ii) simulated noisy channel. Figure 8 displays the proposed
instance of the generic framework suitable for the use of the coding scheme proposed
in Section 3.
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Figure 8. Proposed security enhanced encryption scheme.

Encryption. Figure 9 displays a model of the encryption box based on a block cipher: The
inputs are the session secret key k and the plaintext message m, where k and m are binary
vectors. The outputs are the binary vectors of ciphertext c and the control sequence u for
the simulated noisy channel.

c m 

u k  

block 
cypher  

output 
function  

Secret  Session Key 
suitable 
internal 
sequence 

Figure 9. Model of encryption based on a block cipher.

Note that the above scheme provides all vectors (sequences) required by the encryption
box in Figure 3, and in particular the binary vector u that controls the simulation of the
noisy channel.
Coding. The error correction code proposed in Section 3 is employed.
Simulated Noisy Channel. The simulated noisy channel box takes the sequence u as input
and performs its mapping block-by-block in order to obtain the sequences required for the
simulated noisy channel composed of two binary channels—one error free and the other a
binary erasure channel. Let u(n) denotes a b-bit segment of u, and let the functions fi(·),
i = 1, 2, perform the following mappings:

f1(·) : {0, 1}b → {0, 1} (3)
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f2(·) : {0, 1}b → {0, 1}a , a = Log2b (4)

generating the following:

λ = f1(u(b)) ,
e = [ei]

b
i=1 = f2(u(b)) ,

and we assume that the probability that λ takes the value 1 is equal to α.
Let x(b) = [xi]

b
i=1 be the codeword byte after the encoding box, and y(b) = [yi]

b
i=1

denotes the codeword byte after the simulated noisy channel according to the following
algorithm.

Algorithm of Simulated Noisy Channel

• Input: b-bit byte x(b) = [xi]
b
i=1, of the codeword x(n) and the parameter λ and the

vector e = [ei]
b
i=1. If the considered byte is the check-byte, preset λ = 0.

• if λ = 1: do i=1, b

– yi = ? if ∑b
j=1 ei2j−1 = i

– yi = xi otherwise

• if λ = 0: do i=1, b

– yi = xi

• Output: b-bit byte y(b) = [yi]
b
i=1

Note that, for the legitimate receiver, y(n) appears as the codeword x(n) after the binary
erasure channel. On the other hand, because the attacker does not know the sequence s, y(n)

appears as the codeword x(n) after the binary deletion channel as displayed in Figure 2.
The proposed approach for the security enhancement is a general one and could be

directly employed for the block cipher encryption techniques assuming block-by-block
processing, as well as in a number of stream ciphers where the ciphertext segments subject
to encoding are self-contained.

5. Security Evaluation of the Enhanced Encryption
5.1. Security Notation

We employed a traditional approach for analyzing the cryptographic security based
on the following two issues: (i) a description of what a “break” of the scheme means, and
(ii) a specification of the assumed power of the adversary. A cryptographic scheme is
considered as a secure one in a computational sense, if for every probabilistic polynomial-
time adversary A performing an attack of some specified type, and for every polynomial
p(n), there exists an integer N such that the probability that A succeeds (where success of
the attack is also well-defined) is less than 1

p(n) for every n > N. Accordingly, the following
two definitions specify a security evaluation scenario and a security statement.

Definition 6 ([37]). The adversarial indistinguishability experiment consists of the following steps:

1. The adversary A chooses a pair of messages (m0; m1) of the same length n and passes them
on to the encryption system for encrypting.

2. A bit b∈{0,1} is chosen uniformly at random, and only one of the two messages (m0; m1),
precisely mb, is encrypted into ciphertext Enc(mb) and returned to A.

3. Upon observing Enc(mb), and without knowledge of b, the adversary A outputs a bit b0.
4. The experiment output is defined to be 1 if b0 = b, and 0 otherwise; if the experiment output

is 1, denoted shortly as the event (A→1), we say that A has succeeded.
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Definition 7 ([37]). An encryption scheme provides indistinguishable encryptions in the presence
of an eavesdropper, if for all probabilistic polynomial-time adversaries A

Pr[A → 1|Enc(mb)] ≤
1
2
+ ε , (5)

where ε = negl(n) is a negligibly small function.

Definitions 6 and 7 are more precisely discussed in [37]. Please note that the employed
encoding is a deterministic algorithm such that it does not affect the security of the entire
encryption scheme. Assuming that the employed decoding algorithm provides error-free
decoding, it also neither increase nor decrease the security of the encryption. An increase
of the security margin is the consequence of the employed noisy channel and the encoding
just provides a correction of the errors on the side of the legitimate receiver.

5.2. Evaluation of the Security Gain

We considered the encryption/decryption scheme proposed in Section 4, which is a
security-enhanced scheme of a certain basic one. Our goal was to estimate the advantage
of A in the indistinguishability game specified by Definition 6 when c← Enc(mb), where
y is a particular realization of Y, assuming that the advantage of A is known when m0 and
m1 are two chosen realizations of M and the corresponding realization yb of Y is given, i.e.,
the advantage of A is known for the basic (security nonenhanced) scheme.

Lemma 1 ([1]). Let the mapping of m into c′ be such that 1
2+ε equals the advantage of the adversary

A (specified by Definition 7) to win the indistinguishability game (specified by Definition 6). Under
these assumptions,

Pr[A → 1|Y = y] =
1
2
+ ε · δ, where

δ
∆
= Pr(X = xb|Y = y) . (6)

Definition 1 implies that the security of an encryption scheme increases as the difference on the
adversary A advantage from 1

2 decreases: the factor δ < 1 shows the reduction rate of the advantage,
and so we call it the advantage reduction factor.

Theorem 2. Let the basic encryption mapping {0, 1}n → {0, 1}n of m into x, be such that 1
2+ε

equals the advantage of the adversary A (specified by Definition 7) to win the indistinguishability
game (specified by Definition 1). Consequently, the advantage of the adversary A, in the security-
enhanced scheme specified in Section 4 is:

Pr[A → 1|Y = y] <
1
2
+

ε ·
kb(α(1− 1

b ) + (1− α) + (1− α
b )log2(1−

α
b )− α(1− 1

b )log2(1−
1
b )− 1) + 1 + log2(2

kb − 1)
log2(2kb − 1)

. (7)

Proof. In the considered statistical model, we assume the following. Let X and Y be
discrete random variables, which correspond to the input and output, respectively, of a
communication channel. Let the possible realizations of X and Y be x, and y, respectively,
and let a decision rule on X when Y is given be considered as the identification of a realiza-
tion x when y is given; we denote by Perr the probability of the identification (classification)
error assuming a classification in one out of v categories. The equivocation, that is the
conditional entropy H(X|Y) represents the average amount of information lost on X when
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Y is given. According to [38] or [39], for example, we have the following general upper
bound on the equivocation:

H(X|Y) ≤ h(Perr) + Perrlog2(v− 1) (8)

where h(·) ≤ 1 is the binary entropy function and Perr = 1− Pr(X = x|Y = y), and the
conditional entropy is defined as

H(X|Y) = ∑
y∈supp(Y)

Pr(Y = y)H(X|Y = y) (9)

where
H(X|Y = y) = ∑

x∈supp(X)

Pr(X = x|Y = y) log2
1

Pr(X = x|Y = y)
, (10)

and Pr(·) denotes the probability of the considered event.
Recall that

H(X|Y) = H(X)− I(X, Y) (11)

where
H(X) = ∑

x∈supp(X)

Pr(X = x) log2
1

Pr(X = x)
, (12)

and the mutual information I(X, Y) is upper-bounded by the capacity Cap of the considered
communication channel as follows:

I(X, Y) ≤ Cap · log2u . (13)

Consequently, in the considered evaluation scenario, (8) can be rewritten as

kb(1− Cap∗) ≤ 1 + Perrlog2(2
bk − 1) (14)

where Cap∗ is the capacity of the employed channel from the attacker’s point of view.
According to Lemma 1,

Perr = 1− Pr(X = xb|Y = Y) (15)

and we obtain

Pr(X = xb|Y = y) <
kb(Cap∗ − 1) + 1 + log2(2

bk − 1)
log2(2kb − 1)

. (16)

On the other hand, according to Theorem 1 from [40] we have

Cap∗ ≤ αCCh1(d) + (1− α) + (1− αd)log2(1− αd)− α(1− d)log2(1− d)

where d = 1
b is the deletion rate in Ch1. Employing the fact that the capacity of a deletion

channel is upper-bounded by the capacity of an erasure channel assuming the same deletion
and erasure rates and that the capacity of the corresponding erasure channel is equal to
1− 1

b , we have

Cap∗ ≤ α(1− 1
b
) + (1− α) + (1− α

b
)log2(1−

α

b
)− α(1− 1

b
)log2(1−

1
b
) . (17)

Finally, (16) yields

Pr(X = xb|Y = y) <
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kb(α(1− 1
b ) + (1− α) + (1− α

b )log2(1−
α
b )− α(1− 1

b )log2(1−
1
b )− 1) + 1 + log2(2

kb − 1)
log2(2kb − 1)

. (18)

A substitution of (18) into the statement of Lemma 1 yields the proof.

Lemma 1 shows that the encryption mapping m→c enhances the security because
the probability that A wins the game becomes closer to 1

2 , which corresponds to random
guessing, by the factor δ, and Theorem 2 shows that the upper bound on δ is < 1. Accord-
ingly, Tables 3 and 4 provide numerical illustrations of the upper bound on δ (18), which
determines the reduction of the advantage of A.

In particular, note the following. Definition 7 shows that in the source encryption
scheme, we face a leakage of information on the message that is the subject of the encryption,
and accordingly at the input of the encoding algorithm, we could detect certain information
about the message. On the other hand, as Theorem 2 shows, this information is reduced
because the channel outputs a degraded version of the encoded ciphertext to an attacker.

Table 3. A numerical illustration of the advantage reduction factor δ upper bound (18), which shows
a minimum reduction of the advantage of A) as a function of the simulated noisy channel parameter
α and the code parameters b and k.

Upper Bound on Upper Bound on Upper Bound on Upper Bound on
α δ δ δ δ

for b = 2, k = 2 for b = 4, k = 3 for b = 8, k = 7 for b = 16, k = 15

1.00 0.7440 0.8333 0.8929 0.9417
0.95 0.7563 0.8433 0.8985 0.9447
0.90 0.7703 0.8535 0.9043 0.9477
0.85 0.7860 0.8640 0.9100 0.9507
0.80 0.8032 0.8748 0.9159 0.9537
0.75 0.8221 0.8859 0.9218 0.9567
0.70 0.8424 0.8973 0.9278 0.9598
0.65 0.8641 0.9089 0.9339 0.9629
0.60 0.8872 0.9208 0.9400 0.9660
0.55 0.9116 0.9330 0.9461 0.9691
0.50 0.9373 0.9454 0.9523 0.9722

Table 4. A numerical illustration of the advantage reduction factor δ upper bound (18), which shows
a minimum reduction of the advantage of A) as a function of the simulated noisy channel parameter
α and the code parameters b and k.

Upper Bound on Upper Bound on Upper Bound on
α δ δ δ

for b = 8, k = 4 for b = 8, k = 8 for b = 16, k = 8

1.00 0.9062 0.8906 0.9453
0.95 0.9119 0.8963 0.9483
0.90 0.9176 0.9020 0.9513
0.85 0.9234 0.9078 0.9543
0.80 0.9293 0.9137 0.9573
0.75 0.9352 0.9196 0.9604
0.70 0.9412 0.9256 0.9634
0.65 0.9472 0.9316 0.9665
0.60 0.9533 0.9377 0.9696
0.55 0.9595 0.9439 0.9727
0.50 0.9657 0.9501 0.9758

6. Implementation Complexity of the Components for Enhancement
6.1. Time Complexity of the Encoding and Decoding Procedures

Informally, the encoding/decoding procedures of the proposed codes are essentially
the same as those from [33–36]. This means that they have a linear time complexity. To
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confirm this, we can analyze the operations performed by the encoder and decoder. First,
let us focus on the encoder. From (1), we see that it performs two types of operations:
multiplication modulo 2b − 1, which requires b2 bit operations, and addition modulo
2b − 1, which takes b bit operations. To generate the check-byte Bk+1, the encoder must
perform k multiplications and k− 1 additions. Since the codeword has n = (k + 1)·b bits, from
the expression O(b2·k + b·k− b)≈O(b2·k)≈O(b·n) = b·O(n) = const.·O(n,) we easily conclude
that the encoding procedure has a linear time complexity. When it comes to the decoder,
from (2), we see that it performs one operation more than the encoder (one subtraction
modulo 2b – 1) in order to generate the syndrome S. If S 6= 0 and if the ST is sorted
in increasing order (according to the values of S), the vector v is found after nc comparisons
(1 ≤ nc ≤ blog2|ξ|c+ 2), [33–36], with each comparison taking b bit operations. After that,
the decoder performs one XOR addition, which requires k bit operations. So, if we sum
up all the mentioned operations, we get the expression O(b2·k + b·k + b·log2(2k – 1) + 2 +
k) ≈ O(b2·k + 2·b·k + k + 2) ≈ O(b2·k) ≈ O(b·n) = b·O(n) = const.·O(n,) from which it can be
concluded that the decoding procedure also has a linear time complexity.

For comparison purposes, we point out the following. For the LDPC codes reported
in [41,42], the time and space complexity are O(nlog2n) and O(n), respectively. In order
to keep the decoding complexity as claimed, the number of errors introduced by the
simulated noisy channel should be below the error capability of the employed code [30].
Otherwise, if we are at the error correcting capability limit, we face an increase of the
decoding complexity. We assume that up to ∆ errors can be corrected with the claimed
complexity. In the particular case reported in [42] (Algorithm C), the time complexity is
O(g2

maxn), where gmax is a parameter, providing the decoding error rate is the same.

6.2. Implementation Complexity of Simulated Channel with Synchronization Errors

The implementation of the simulated noisy channel requires: (i) the implementa-
tion complexity of the output function that provides the sequence u from the encryption
scheme; (ii) the implementation of the functions f1(·) and f2(·); and (iii) the byte-by-byte
implementation of the algorithm “Simulated Noisy Channel”.

The output function that provides the control sequence for the simulation of the noisy
channel could be a simple look-up table that implements a substitution box for example,
and accordingly, it can be efficiently implemented.

The functions f1(·) and f2(·) perform hashing operations over the successive segments
of the sequence u of length a. Taking into account that it is small, one option is to evaluate
these functions employing two look-up tables of dimension 2a. Another option is to employ
as the functions f1(·) and f2(·) those with a low-complexity algebraic evaluation. Finally,
we can employ suitable time–memory-trade-off-based evaluations of f1(·) and f2(·).

The algorithm of the noisy channel simulator directly implies a low complexity of the
implementation.

According to the above discussion, the implementation complexity of the coding
dominates over the implementation of the noisy channel simulation.

7. Conclusions

An approach for cryptographic security enhancement was proposed based on a simu-
lated noisy channel and a low-complexity error correction code. In the enhanced scheme,
the encrypted message was subjected to a suitable error correction encoding and degra-
dation so that certain bits of the codeword were deleted. These deletions consisted of
the passing of the codeword through a simulated noisy channel where the deletions were
controlled by a sequence generated from the secret key. Consequently, an attacker that
did not know the secret key faced the problem of obtaining the ciphertext after a binary
deletion channel.

Employing the traditional security evaluation scenario, where an attacker determines
which of two messages has been received as the ciphertext, we showed in Theorem 2
that the attacker’s advantage to give a correct answer was reduced by a factor δ < 1,
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implying an increase of the security margin. Note that this increase of the security margin
could significantly increase the complexity of breaking the enhanced encryption scheme
in comparison with the original one. An upper bound on the parameter δ was derived
employing certain information-theoretic arguments and the derived upper bound on the
capacity of the employed simulated noisy channel. Note that the derived upper bound did
not show a gain of the complexity of the cryptanalysis but indicated the existence of an
increased hardness of the cryptanalysis. The concept of integer block codes (IBC) was used
to construct low-complexity codes capable of correcting one erasure per b-bit data byte. We
also showed that the newly constructed codes shared many characteristics with standard
IBCs, including the codeword structure and the data encoding/decoding algorithms.

The computational complexity of the entire scheme depended on the following three
particular complexities: the complexity of the source encryption algorithm, the complexity
of the error correction coding algorithm, and the complexity of the simulated noisy channel.
This paper provided a generic framework for the security enhancement of different en-
cryption schemes, and the computational costs of the employed coding and the simulated
noisy channel were discussed in Sections 6.1 and 6.2, respectively, implying that the coding
scheme complexity was dominant. Accordingly, the proposed error correction coding pro-
vides an acceptable trade-off between the security enhancement and the implementation
complexity required for the desired increase of the cryptographic security margin.
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Appendix A

Proof of Lemma A1 ([1]). For simplicity, it is assumed that 1
2+ε equals the advantage of

the adversary A (specified by Definition 2) to win the indistinguishability game. Con-
sequently, let b, which denotes the index of the selected message, be a realization of the
random variable B. We assume that in the corresponding statistical model, m, c, and u
are realizations of the corresponding random variables M, C, and U, respectively, and
the considered encryption scheme is such that I(U, C) = 0 and I(U, C|M) = 0, i.e., the
knowledge of C and M does not leak (provide) any information on U.

The probability Pr(B = b|Y = y) thatAwins the game is determined by the following.

Pr(B = b|Y = y) =
Pr(B = b, Y = y)

Pr(Y = y)

=
∑x Pr(B = b, Y = y, X = x)

Pr(Y = y)

=
∑x Pr(B = b|Y = y, X = x)Pr(Y = y, X = x)

Pr(Y = y)
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=
∑x Pr(B = b|X = x)Pr(Y = y, X = x)

Pr(Y = y)
. (A1)

The lemma assumption implies:

Pr(B = b|C = cb) =
1
2
+ ε , (A2)

where cb corresponds to the selected mb and

Pr(B = b|X = x) =
1
2

for any c 6= cb . (A3)

Note that the encoding mapping c→ x is a deterministic one-to-one mapping and conse-
quently has no impact on the advantage of adversary A, i.e., we have:

Pr[A → 1|X = x] = Pr[A → 1|C = c] =
1
2
+ ε . (A4)

Consequently,
Pr(B = b|Y = y) =

Pr(B = b|X = xb)Pr(Y = y, X = xb)

Pr(Y = y)
+

∑x:x 6=xb
Pr(B = b|X = x)Pr(Y = y, X = x)

Pr(Y = y)
,

Finally, we obtain:
Pr(B = b|Y = y) =

( 1
2 + ε)Pr(Y = y, X = xb)− 1

2 Pr(Y = y, X = xb)

Pr(Y = y)

+
1
2 ∑x Pr(Y = y, X = x)

Pr(Y = y)

=
1
2
+ ε · Pr(X = xb|Y = y) . (A5)
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18. Mihaljević, M.J.; Kavčić, A.; Matsuura, K. An Encryption Technique for Provably Secure Transmission from a High Performance

Computing Entity to a Tiny One. Math. Probl. Eng. 2016, 2016, 7920495.
19. Mihaljevic, M.J.; Oggier, F. Security Evaluation and Design Elements for a Class of Randomized Encryptions. IET Inf. Secur. 2019,

13, 36–47. [CrossRef]
20. Mihaljevic, M.J. A Security Enhanced Encryption Scheme and Evaluation of Its Cryptographic Security. Entropy 2019, 21, 11.

[CrossRef]
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