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ABSTRACT

Processing a vast volume of data generated by web, mobile and Internet-enabled devices, ne-

cessitates a scalable and flexible data management system. Database-as-a-Service (DBaaS) is a

new cloud computing paradigm, promising a cost-effective and scalable, fully-managed database

functionality meeting the requirements of online data processing. Although DBaaS offers many

benefits it also introduces new threats and vulnerabilities. While many traditional data processing

threats remain, DBaaS introduces new challenges such as confidentiality violation and information

leakage in the presence of privileged malicious insiders and adds new dimension to the data secu-

rity. We address the problem of building a secure DBaaS for a public cloud infrastructure where,

the Cloud Service Provider (CSP) is not completely trusted by the data owner. We present a high

level description of several architectures combining modern cryptographic primitives for achieving

this goal. A novel searchable security scheme is proposed to leverage secure query processing in

presence of a malicious cloud insider without disclosing sensitive information. A holistic database

security scheme comprised of data confidentiality and information leakage prevention is proposed

in this dissertation. The main contributions of our work are:

(i) A searchable security scheme for non-relational databases of the cloud DBaaS;

(ii) Leakage minimization in the untrusted cloud.

The analysis of experiments that employ a set of established cryptographic techniques to protect

databases and minimize information leakage, proves that the performance of the proposed solution

is bounded by communication cost rather than by the cryptographic computational effort.
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CHAPTER 1: INTRODUCTION

Cloud computing is an appealing alternative for data processing, however it raises serious concerns

regarding the security of sensitive data. Is it feasible to outsource computation without revealing

any private information? This dissertation tries to find a comprehensive and practical answer to

this challenging question through the experimental design and theoretical analysis. One of the most

popular service of cloud computing is Database as a Service (DBaaS), a transformative technology

and ubiquitous in web and mobile applications. Any improvement in data security of DBaaS could

have significant impact on the large set of applications from different area.

The idea of outsourcing storage and processing of private data to a third party is a high-risk decision

that makes applications vulnerable to unauthorized access by an external or by malicious insiders

(MIs). Security and privacy in the cloud environment are critical concerns for cloud users. Most

of the cloud service providers (CSPs) support features that allow system administrators to deploy

a basic level of security controls for hosted datasets. Nevertheless, there is no full-proof accepted

solution to prevent unauthorized access by MIs who have unlimited access to the entire system. The

security and privacy threats associated with cloud computing negatively affect all cloud services

and act as an inhibitor for potential users. Many cloud users have sensitive data related to their

enterprise, so any unauthorized data access will devastate their businesses.

In any cloud based applications, there are three interested parties: the data owners, a cloud service

provider and the users’ applications. In fact, these parties are interacting in the public cloud en-

vironment as a communication framework. Since this work is concentrated on security of DBaaS

therefore, primarily we present the most accepted definition of DBaaS.

Definition 1 (DBaaS)
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DBaaS is a cloud-based service that provides users with database functionality without deploy-

ment of on-premise physical hardware or software.

DBaaS provides two predominant database services in the DBaaS portfolio; relational (RDBMS)

and non-relational (NoSQL).

Cloud relational database service. RDBMS is widely used as a key building block of online

systems in order to support data management for many applications such as On-Line Transaction

Processing (OLTP). Relational databases have been dominant database architecture for decades.

RDBMS is popular because of many benefits such as persistence, integration, SQL, and concur-

rent transactions. Moreover, many IT professionals are trained to implement application using

RDBMS. In the cloud DBaaS, an application developer plays a more important role than the

traditional on-premise computation, due to the fact that cloud eliminates the need for database

administrators. That is another reason for popularity of DBaaS. For those reasons, cloud comput-

ing adopted RDBMS and equipped it with more features and delivers it as a fully managed and

integrated service. Therefore, the cloud RDBMS is ideally suited for complex query-intensive ana-

lytical workloads. Major CSPs such as Amazon Web Services, Microsoft Azure and Google Cloud

Platform offer a broad range of cloud storage and data management that help organizations move

faster from on-premise computing to cloud computing. For instance, Relational Database Service

(RDS) offered by Amazon Web Services (AWS) is a cost-efficient database functionality. AWS

RDS provides six popular database engines to choose from, including Amazon Aurora, Oracle,

Microsoft SQL, PostgreSQL, MySQL and MariaDB.

Cloud NoSQL database service. The name NoSQL given to the storage model is misleading,

NoSQL does not follow the database model of RDBMS and refers as “not only SQL”. Michael

Stonebreaker notes that blinding performance depends on removing overhead. Such overhead
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has nothing to do with SQL, but instead revolves around traditional implementations of ACID1

transactions, multi-threading, and disk management” [1]. The “soft-state” approach in the design

of NoSQL databases allows data to be inconsistent and transfers the task of implementing only

the subset of the ACID properties required by a specific application to the application developer.

The NoSQL ensures that data will be “eventually consistent” at some future point in time, instead

of enforcing consistency at the time when a transaction is “committed”. Data partitioning among

multiple storage servers and data replication are also principles of NoSQL philosophy; that increase

availability, reduce the response time, and enhance scalability.

Scalability and availability are critical requirements for E-commerce, social networks and other

applications dealing with very large data sets. Companies which are heavily involved in cloud

computing and discovered early on the traditional RDBMS, cannot handle the massive amount of

data and the real-time demands of online applications, critical for their business model. RDBMS

schema is of little use for such applications and conversion to NoSQL databases seems to be

a much better approach. Nowadays, NoSQL databases are widely supported by cloud service

providers. Their advantages over traditional databases are critical for big data application. Big

data and mobile applications are the two most important growth area of cloud computing. Big

data growth can be viewed as a three-dimensional phenomenon; it implies the increasing volume

of data, requires an increased processing speed to produce more results, and at the same time, it

involves a diversity of data sources and data types [2]. A delicate balance between data security

and privacy and efficiency of database access is critical for such applications. Many cloud services

used by these applications operate under tight latency constraints. Moreover, these applications

have to deal with extremely high data volumes and are expected to provide reliable services for

very large communities of users.

1ACID (Atomicity, Consistency, Isolation, Durability) properties guarantee that transactions are processed reliably.
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As an example of NoSQL service supported by cloud: AWS offers DynamoDB, a fully managed

fast and flexible NoSQL database service that provides fast performance with consistent scalability.

DynamoDB supports both document and key-value store models, which are very flexible data

models. This feature makes DynamoDB an acceptable choice for mobile, web, gaming and Internet

Of Things (IOT) applications. AWS Management Console or the Amazon DynamoDB Application

Program Interface (API), can be used for scales up or down without downtime or performance

degradation.

1.1 Motivation

Now that the advantages of processing data in cloud is discussed, the principal research challenge

is to answer this question, “Is it possible to delegate processing of your data without getting your

private information revealed?” In other words, the goal of this research is to resolve the conflict

between the availability of data on a public-access cloud and providing the required protection with

an acceptable cost factor. By using traditional cryptosystems, the cloud server needs to decrypt the

data with secret decryption key before being able to process the data; however, this process reveals

users’ private information to adversary or MI. Resolving this issue requires a multidisciplinary

approach that ties computer science and mathematics with application specific knowledge such as

finite field. Therefore, the main objective of current dissertation is to design a secured solution for

cloud-based on-line applications in order to address the corresponding security requirements. The

key contributions and impact of this research are cloud-based large-scale database systems, online

query processing and web applications.

Technology research analysis indicates that a large number of enterprises are using cloud DBaaS

from major CSP. The number of websites hosted on AWS has increased from 6.8M in September

2012 to 11.6M in May 2013, a 71% upsurge [3] [4]. Furthermore, a 67% annual growth rate
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is predicted for DBaaS by 2019. Undoubtedly, an efficient security scheme is required for high

volume of data stored and processed in the cloud considering cloud threat model. Threats of cloud

computing can be analyzed from multiple viewpoints; this work investigates it from the adversarial

prospective which is a holistic multifaceted procedure considering the whole systems’ security end-

to-end. The adversarial threat analysis starts with thinking like a hacker and continues to prepare a

corresponding countermeasure.

While many schemes have been proposed to search encrypted relational databases, less attention

has been paid to NoSQL databases. In this work, we report on the design and the implementation

of a security scheme, called “SecureNoSQL” for searching encrypted cloud NoSQL databases. To

the best of our knowledge, our solution is one of the first efforts covering not only data confiden-

tiality, but also the integrity verification of the datasets residing on cloud servers. In our system,

a secure proxy carries out the required transformations and the cloud server is not modified. The

construction is applicable to all NoSQL data models. In our experiments, we present its application

to a Document-store data model.

The aggregation of large number of databases in cloud, increases the risk of sensitive information

to be compromised even for the encrypted data. The concept of cloud information leakage, resulted

from any cross-referencing attacks in the pool of cloud-hosted databases, is defined and a secure

selective disinformation document padding method is proposed for NoSQL databases to leverage

leakage-resilient data management in the presence of cloud internal and external adversaries.

We propose a solution that satisfies security requirements for applications using non-relational

functionality of cloud DBaaS. In the second part of this work, the problem of minimizing informa-

tion leakage is investigated. The proposed scheme is easily adaptable for a hybrid or a community

cloud environment, where the security risk is lower than the public cloud.
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1.2 Objectives

The primary research interests of this work are at the intersection of cloud computing and infor-

mation security, in an area known as secure computation outsourcing on the third party. We seek

to understand the needs for security and privacy of both individual users, as well as any large or-

ganization in a public cloud environment. The security of users’ data in the cloud computing, as a

large scale distributed computational platform, is a demanding challenge that influences all users.

The evidence shows that the importance of information security in cloud is increasing as more

online systems are moving into to the cloud. This vision motivates us to design security schemes

that enable cloud users to securely receive the productivity and computational benefits of the cloud

DBaaS without compromising security and privacy.

1.3 Problem statement

The data owner has a database containing sensitive information and intends to encrypt and upload

it to a cloud DBaaS and give search permission to a large group of online users. The data owner

wishes to keep the data and users queries private from the CSP. Users should be able to retrieve all

the documents that satisfy specific condition posed by their queries from the encrypted database.

An additional privacy requirement, critical for some applications such as stock market data, is

considered to hide any information about the access pattern from a cloud insider.

The proposed solution requires only one interaction per query with a minimum communication

between users application and DBaaS server. The performance of DBaaS server for processing a

requested query over encrypted database still remains linear in the size of database. We address

both confidentiality and leakage prevention requirement.
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1.4 Dissertation organization

We discuss all of our approaches and solutions to address the problem stated above in the rest of

this dissertation which has been organized as follows: the key required building blocks for pro-

posed approach is presented in Chapter 2. The design and implementation of Order Preserving

Encryption (OPE) and its application for protection of sensitive data is demonstrated in Chapter 3.

The detail design of SecureNoSQL as key aspect of secure query processing and the structure of

security plan and the notation of descriptive language for generation of security plan are discussed

in Chapter 4. Afterwards, the mechanism for information leakage prevention is discussed in Chap-

ter 5. Finally this dissertation is concluded in Chapter 6 with conclusion and ideas for the future

work.
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CHAPTER 2: BACKGROUND

2.1 Architectural challenges of relational database

Object-relational impedance mismatch. An object-relational impedance mismatch1 refers to set

of conceptual problems that can occur when a logical object in the application layer is mapped into

multiple tables in the relational database and vice versa. The referred mismatch is a result of the

differences between object model and relational model. For instance, information of a customer

as a logical object in the object model could be broken down into smaller components such as

address, order detail, personal information and billing details. In normalized relational database,

each of those components have to be stored in different tables.

Mapping logical objects to tables and reverse creates a performance degradation. Most of the times,

a users’ application needs to store/retrieve a logically atomic object in the relational database.

However, the database schema dictates to map a single logical object to multiple tables and vice

versa. Object-relational impedance mismatch imposes significant performance cost especially for

online systems which need interactive speed. The object-relational impedance mismatch is illus-

trated in Figure 2.1.

1 This term comes from an analogy with electrical engineering where input and output impedance match results in
maximum power flow.
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Application
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Data store
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Database(s)
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Figure 2.1: Object-relational impedance mismatch occurs because of differences between object
model and relational model in accessing data.

Scalability of database. Database technology has two fundamental options to address rapid

growth of database workload: (i) Scale-up (vertical scaling) - assign a higher share of local re-

sources; (ii) Scale-out (horizontal scaling) assign more servers to carry out the workload.

Relational databases were started in the era when the volume of data was small and organized

enough to run on a single server. Intrinsically, relational database can only be scaled on single

server; thus, an increase in the data volume necessitates scale-up in hardware by adding more

resources to the server. However, alongside the high cost, scale-up approach has serious limitations

in terms of performance and server density. Instead, scale-out solution, in form of clusters of

smaller commodity machines is optimized for data analytics workloads.
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Business requirements necessitates to store heterogeneous data of each form such as email, voice,

image, chat transcript, profile, etc. This sort of transformation causes huge scalability challenge

for RDMS. To mitigate this challenge, an assortment of improvement is adopted, including using

multi-layer and more complex master-slave architectures, data sharding, and replication. These

innovative improvements certainly made RDBMS more scalable, but, there is always a single point

of failure in the system. Another prohibitive reason for scalability of RDMS is its high setup cost.

On the other hand, NoSQL is designed for scale-out on a large number of inexpensive commodity

machines using distributed file system. In addition, the hardware failure is considered and elim-

inated from the design phase, so that when a node fails other nodes handles its task (see Figure

2.2).

Sc
al

e-
up

(V
er

tic
al

)

Scale-out
(Horizontal)

Figure 2.2: Scale-up and scale-out approaches to scale database with workload growth.
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2.2 New approaches for data processing

Data analytics, enterprise, and multimedia applications, as well as applications in many areas of

science, engineering, and economics, including genomics, structural biology, high energy physics,

astronomy, meteorology, and the study of the environment, take advantage of cloud computing for

processing very large datasets. Companies heavily involved in cloud computing such as Google

and Amazon, e-commerce companies such as eBay, and social media networks such as Facebook,

Twitter, or LinkedIn discovered early on that traditional relational databases cannot handle the

massive amount of data and the real-time demands of online applications critical for their business

model. The relational schema is of little use for such applications and conversion to NoSQL

databases seems a much better approach.

NoSQL describes a fairly large number of NoSQL database technologies, more than 120 by our

count, have been created in recent years2. NoSQL databases are non-relational, distributed, hor-

izontally scalable, and schema-free. They are classified based on their data models. Choosing

a proper data model has an extremely important influence on the performance and scalability of

the data stores. Since, our work has a tight connection to NoSQL data models, we provide brief

definitions for several data models.

Key-value stores. This simple data model resembles an associative map or a dictionary where a

key uniquely identifies the value. The data can be either a primitive data type such as a string, an

integer, an array, or it can be an object. This model is effective for storing distributed data, thus,

it is highly scalable which makes it ideal data model to cloud data management systems. Systems

2For compete list refer http://www.nosql-database.org/
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such as Bigtable [5], Megastore [6], CouchDB 3, DynamoDB [7], MemcacheDB 4 and Redis 5 use

this model. However, key-value store is not appropriate data model for applications demanding

relations or structures.

Column-family stores. In this model, the data is stored in a column-oriented style and the dataset

comprise several rows, and each row is indexed by a unique key, called primary key. Each row

is composed of a set of column families, and different rows can have different column families.

Similarly, to key-value stores, the row key resembles the key, and the set of column families re-

sembles the value represented by the row key. However, each column family further acts as a

key for the one or more columns that it holds, whereas each column consists of a key-value pair.

Hadoop HBase directly implements the Google Bigtable concepts, whereas Amazon SimpleDB

and DynamoDB contain only a set of column name-value pairs in each row, without having col-

umn families. Sometimes, SimpleDB and DynamoDB are classified as key-value stores. Typically,

the data belonging to a row is stored together on the same server node. Cassandra provides the ad-

ditional functionality of super-columns, which are formed by grouping various columns together.

Cassandra can store a single row across multiple server nodes using composite partition keys. In

column-family stores, the configuration of column families is typically performed during start-up.

A column family in each row can contain different columns. A prior definition of columns is not

required and any data type can be stored in this data model. In general, column-family provide

more powerful indexing and querying than key-value stores because they are based on column

families and columns in addition to row keys. Similarly, to key-value stores, any logic requiring

relations must be implemented in the client application.

Document stores. In this model data are stored inside the internal structure, while in the key-

3http://couchdb.apache.org
4http://www.Memcached.org
5http://redis.io
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value store the data are opaque to database. Now the database engine applies meta-data to create

a higher level of granularity and delivers a richer experience for modern programming techniques.

Document-oriented databases are using a key to locate the document inside data store. Most docu-

ment stores use JSON or BSON (Binary JSON). Document stores are suited for applications where

the input data can be represented in a document format. A document can contain complex data

structures such as nested objects. Document store allows document grouping into collections. A

document in a collection should have a unique key. Unlike an RDBMS, where every row in a

table follows the same schema, a document in document stores may have a different structure.

Document stores provide the capability of indexing documents based on the primary key as well

as on the contents of the documents. Like key-value stores, they are inefficient in multiple-key

transactions involving cross-document operations.

Graph databases. This data model based on graphs can be used to represent complex structures

and highly connected data often encountered in real-world applications. In graph databases, the

nodes and edges have individual properties consisting of key-value pairs. Graph databases are a

good alternative for social networking applications, pattern recognition, dependency analysis and

recommendation systems. Some graph databases such as Neo4J 6 support ACID properties. Graph

data stores are not as efficient as other NoSQL data stores and do not scale well horizontally when

related nodes are distributed to different servers.

Dynamic schema. Schema presents the structure of database in formal language by set of rules

known as integrity constraints used to govern a database. Schema expresses the organization of

data and relations among entities, tables, views and other components of a database.

Relational database is fixed-schema, so the schema need to be defined before entering data. The

structure and type of data are predefined ;however, NoSQL databases are built to work with dy-

6http://neo4j.com
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namic schema that enables it to store all type of data. Unlike the solid schema of RDBMS, in

NoSQL data can be read, and schema is forming as reading is in progress. In this way, the data

does not force to fit in the predefined fixed schema like the usual procedure in RDBMS. Now the

data can be stored and processed in variety of formats, and it projects into the schema on the fly.

This feature makes it possible to process complex analytics through having more data granularity

by simpler algorithms.

2.3 Related work

Data encryption is an obvious path to database security but it should by done in a manner that

does not hinder access to data. The first SQL-aware query processing for an encrypted database

was CryptDB [8]. CryptDB satisfies data confidentiality for an SQL relational database. How-

ever, CryptDB cannot perform queries over data encrypted with different keys. One important

application of searching encrypted data [9, 10, 11, 12, 13] is in cloud computing where the clients

outsource their storage and computation. In [9] a practical searchable security scheme is intro-

duced which can search on encrypted data sets in sub-linear time complexity by using different

types of indices; however, it is not practical on NoSQL data sets which are designed to scale to

millions of users doing updates simultaneously [14].

Order-preserving symmetric encryption (OPE) is a deterministic encryption scheme which maps

integers in the range [1,M ] into a much larger range [1, N ] and preserves numerical ordering

of plaintexts [15, 16]. OPE is attractive because fundamental database operations such as sorting,

simple matching (i.e., findingm items in a database), range queries (i.e., finding allm items within

a given range), and search operations can be carried out efficiently over encrypted data. Moreover,

OPE allows query processing to be done as efficiently as for plain data; the database server locates

the desired encrypted data in logarithmic-time via standard tree-based indexing data structures.
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An investigation of OPE security against a known plaintext attack with known N plaintexts is

reported in [17] and [18]; the last research concluded that the ideal OPE module accomplishes one-

wayness security.7 The Shannon entropy8 achieved by an ideal OPE is maximal when the mapping

of integers in the range [1,M ] to a much larger range [1, N ] results in a uniform distribution. The

risk of disclosure caused by main memory attack is quantified by [19] and [20]. An application

of OPE in cloud environment is reported in [21] and [22]. Furthermore, application of classic

cryptography on relational database system for embedded devices was studied in [23].

NoSQL databases are suffering from lack of proper data protection mechanism because these

databases have been designed to support high performance and scalability requirement. In or-

der to protect personal and sensitive information, a privacy and security preserving mechanism is

required in Big data platforms. Integration of privacy aware access control features into existing

Big data is discussed in the [24] and [25]. In [26] and [27] the evolution of Big data Systems from

the perspective of an information security application is studied. As a matter of fact, the proxy is

very important element in the designed structure and from Information Technology prospect view

there should be especial consideration for its protection. A cloud based monitoring and threat de-

tection system proposed by [12] and [28] for critical component to make infrastructure systems

secure.

Sometimes, data is encrypted before a database is stored on a cloud; database queries to the

cloud database are also encrypted. The two systems discussed next do not require modifica-

tions of database services, encrypted data is processed identically as the plaintext data. Database

optimizations such as multi-layer indexing and cache and file management are applied to en-

crypted databases without any modifications. CryptDB [29] can be used for encrypted SQL cloud

7One-way functions are easy to compute, but computationally hard to invert.
8The entropy measures the degree of uncertainty; the Shannon entropy of a discrete random variable X with n

realizations x1, x2, . . . , xn with probabilities p1, p2, . . . , pn, respectively, is: H(X) = −
∑n

i=1 pi log pi.
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databases. The procedure to search encrypted NoSQL databases [30] involving a secure proxy

guarantees that an insider attacker would never obtain the decryption keys. The proxy encrypts

the queries from the clients and decrypts the query responses from the server. The process is

completely transparent to the clients which are not involved in encryption/decryption operations.

The proxy in [30, 22] ensures that an insider attacker could not access sensitive information. How-

ever, an insider attacker can exploit leaked information from multiple databases. Inference attacks

against CryptDB are discussed in [31]. Deterministic and OPE cryptosystems leak critical infor-

mation such as frequency and order of the original data and enable attackers to extract sensitive

information.

Searchable encryption methods such as Oblivious RAM (ORAM) [32, 33] provide an acceptable

level of security. However, the efficiency and high computational cost, as well as the excessive

communication costs between the clients and the server make this method impractical [34].

The information leakage problem raised with advent of cloud database services and as large num-

ber of databases are being collected in DBaaS warehouse. We address this problem in the second

part of this research. Two cloud information leakage prevention methods have been proposed:

(i) restrict the sequence of queries or the query processing time; and (ii) insert disinformation

documents. In the first approach, a quantitative characterization of correlation-based information

leakage, formulated through the capacity of a (n, q)− leakage channel is studied using restriction

on the number of query or query processing time [35]. The n-channel capacity is defined as the

maximum possible depth of query-able information for any user.

The capacity of a n-leakage channel, is defined as the probability of accessing a specific sensitive

document in n trials. In this approach, a group of documents form a chain with track of key-value

pairs, and attacker can locate the head of the chain. By following the footprints, the rest of sensitive
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information can be accessed. The attacker is not only constrained by the number of trials, but also

by the time necessary to achieve his objectives. Thus, query dependency graph is established and

a proxy prevents query execution when the accumulated leaked information reaches the maximum

level of disclosure. This method is vulnerable to collaborative attacks and it is not effective against

insider an attacker [35].

The second approach propose insertion of disinformation in the database. The disinformation in-

formation will provide multiple values to an attribute and mislead an attacker. This solution drasti-

cally increases the number of total documents, the search time, and the communication costs[36].

However, multi-level indexing could reduce the query processing time in this case.

An exact leakage analysis in a cloud warehouse with hundreds of thousands of datasets with mil-

lions of documents each, is computationally unfeasible. Besides, exact answers for the aggregation

queries for classification and cross-correlation analysis are not always required and a specific level

of error is tolerable, so often fast approximation are preferable to a slow and accurate answer. The

sample-based AQP method which offers answers coupled with error bars is investigated in [37, 38]

An analysis of cross-correlation among multiple databases is a process that has an exponential time

and space complexity; therefore, AQP can be applied to obtain approximation in orders of magni-

tude faster than exact answers. However, uniform sampling cannot provide accurate response for

correlated databases. Thus different methods of sampling known as biased sampling are proposed

for providing better approximation [39, 40].

2.4 A cloud computing threat model

A threat model describes the threats against a system. The threat model of cloud computing can

be analyzed from multiple viewpoints and we investigate it from an adversarial prospective. The
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adversarial threat model for the Database as a Service (DBaaS) is a holistic process based on end-

to-end security. The model identifies two classes of threats, as external and internal attackers.

External attacker. An attacker from the outside of cloud environment might obtain unauthorized

access to the hosted databases by applying techniques or tools to monitor the communication be-

tween clients and the cloud servers. External attackers have to bypass firewalls, intrusion detection

systems and other defensive tools without any authorization.

Malicious insiders. An insider attacker has different level of access to cloud resources. Unau-

thorized access by malicious insiders who can bypass most or all data protection mechanisms is

a major source of concern for cloud users. Encrypted data and a secure proxy construction such

as SecureNoSQL, guarantees that malicious insiders cannot access user data. The proxy encrypt-

s/decrypts data and query/response between clients and cloud. There is still the residual risk of

information leakage from encrypted datasets. A malicious insider could exploit the leaked infor-

mation to organize more extensive attacks and amplify the information leakage.

Digital data can be in three states: at-rest (storage), in-process, or in-transit. Data at-rest refers

to data stored in cloud persistent storage while data in-process refers to data being processed by

CPU or in the memory, and data in-transit is denoted as data that flows over network equipment

and cables. A comprehensive security protection strategy must be able to provide strong protection

in all of the three states. In the past decades, research has been conducted on protection of data

at-rest and in-transit. Cloud computing has emerged in the past few years as a new paradigm that

provides data processing as a service. Recently security of data in-process has become a critical

issue in cloud-based applications. The aim of our research is to present a new approach to securely

outsource data processing to the cloud NoSQL database service.
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2.5 Cloud data encryption schemes

Cloud data can be in three states at-rest, transit, or process and any comprehensive data security

mechanism must protect data in any of these three states. The communication channels can be

secured using standard HTTP over the SSL (Secure Socket Layer) communication protocol. Most

CSPs provide an API for the web service that enables developers to use both the standard HTTP

and the secure version of the HTTPS protocol. The security requirements of data in transit state can

be fully satisfied using HTTPS for communication with cloud. The endpoint authentication feature

SSL makes it possible to ensure that the clients are communicating with an authentic cloud server.

The basic idea to maintain data confidentiality of data in at-rest and process is using cryptosystems,

however, for processing the decryption key should disclose to the server which is a maximum

confidentiality violation. Therefore, in this model, a new set of cryptography is required to secure

data; meanwhile, exercising all features of cloud computing.

Random (RND). In a RND type encryption scheme, a message is coupled with a key k and a

random Initial Vector (IV). This scheme is non-deterministic, encryption of the same message with

the same key yields different ciphertext. This randomness provides the highest level of security.

The randomness property is achievable with different cryptosystems, Advanced Encryption Stan-

dard (AES) at Cipher Block Chaining (CBC) mode is one the most secure RND encryption. AES

is a symmetric block cipher algorithm with a key size of 128,192 or 256 bits and with a block

size of 128 bits. RND type schemes are semantically secure against chosen plaintext attacks and

hides all kinds of information about ciphertext. Thus, RND scheme does not allow any efficient

computation on the ciphertext. Equation 2.1 describes the encryption and decryption of a block
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cipher in CBC mode.

for j = 2 . . . n
C1 = Ek(P1 ⊕ IV ), P1 = IV ⊕Dk(C1)

Cj = Ek(Pj ⊕ Cj−1), Pj = Cj−1 ⊕Dk(Cj)

(2.1)

Deterministic (DET). A DET encryption scheme produces the same ciphertext for an identical

pair of plaintext and key. Block ciphers in Electronic Code Book (ECB) mode, with a constant

initialization vector are deterministic (DET). Deterministic encryption scheme preserves equality;

therefore, the frequencies information of the searched keywords leaks to the third party.

AES scheme in ECB mode is used for DET encryption over document-oriented NoSQL databases.

DET scheme enables server to process pipeline aggregation stages such as group, count, retrieving

distinct values and equality match 9 on the fields within an embedded document. The embedded

document can maintain the link with the primary document through application of DET encryption.

Equation 2.2 describes the encryption and decryption operation in a DET.

for j = 1, .., n; Cj = Ek(Pj); Pj = Dk(Cj) (2.2)

Where: Ek is the encryption algorithm, Dk is the Decryption algorithm, k is the secret key, P is a

block of plaintext data and C is a block of ciphered data.

Order-Preserving Encryption (OPE). OPE is a deterministic cryptosystem where ciphertext pre-

serves the ordering of the plaintext data. Aggregate queries such as comparison, min, and max

9Equality matches over specific common fields in an embedded document will select documents in the collection
where the embedded document contains the specified fields with the specified values.
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can be executed on OPE-encrypted datasets. OPE offers less protection than Full Homomor-

phic Encryption (FHE) and leaks critical information about the plaintext data. Even Modular

Order-Preserving Encryption (MOPE) [16] which is an extension to the basic OPE for security

improvement, there is information leakage. An efficient inequality comparisons on the encrypted

data elements can be performed by applying OPE which supports range queries, comparison, min

and max on the ciphertext. We use the algorithm introduced in [15] and implemented in [21] for

cloud database service. Equation 2.3 shows the preservation of order relation of plaintext in the

ciphertext.

∀x, y |x, y ∈ Data Domain :

x < y =⇒ OPEk(x) < OPEk(y)

(2.3)

Where: OPEk is key-based OPE.

Full Homomorphic Encryption (FHE). FHE enables any kind of general computation to be done

on encrypted data with high semantic security which means there is no leakage about encrypted

data [41]. However, it is inefficient and after lots of improvement still FHE is orders of magnitude

slower than plaintext computation. Another reason for impracticality of FHE is that the user has to

express any single query in form of circuit over entire dataset. Due to practical issues of FHE we

applied Additive Homomorphic Encryption (AHOM). AHOM is partially homomorphic cryptosys-

tem that allows the server to conduct homomorphic addition and multiplication computations on

ciphertext with the result that is decrypted at the proxy. We select Paillier AHOME cryptosystem

[42]. The homomorphic addition is formulated in Equation 2.4, where m1,m2 ∈ Zn are plaintext

messages, r1, r2 ∈ Z∗n are randomly selected, and n is product of two large primes.

Dk(Ek(m1, r1).Ek(m2, r2)modn
2) = m1 +m2 (mod n) (2.4)
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Data granularity indicates the level of detail, the more detail, the higher granularity level. Encryp-

tion can be applied for datasets at various granularity level from high granularity data, like atomic

level data element to low level granularity in aggregated atomic data items. For a data store en-

cryption, it is conceivable to consider different encryption granularity levels per the corresponding

data granularity. The higher level of encryption granularity, the higher the information leakage.

For example, encryption of a single attribute leaks frequency information, while encryption of the

entire document and collection as a single unit leaks less information. In the work reported in this

study we use different encryption granularity per the data granularity level.

Protection of attributes as the lowest level of data granularity necessitates application of cryptosys-

tems. RND cryptosystems leak minimum information from the encrypted attributes. The RND

encryption function can be constructed from a DET one, simply by concatenation of a fixed length

random number r to each input. Equation 2.5 outlines how a RND encryption function Ek(x) is

built from a DET cryptosystem.

Ek(x) = E ′k(x || r) (2.5)

Where: k is the encryption key; E ′ is a DET encryption; r is a random number.

Data security and integrity are important factors when choosing a database for cloud applications.

They are particularly critical for applications running on public clouds where multiple virtual ma-

chines (VMs) often share the same physical platform [43, 44, 45]. The importance of database

security and its impact on a large number of individuals are illustrated by the consequences of

three major security breaches: [46]; and [47]. In November 2013 approximately 40 million records

were stolen from an unencrypted database used by Target stores. The compromised information

included personally identifiable information (PII) and credit card data. According to a SEC (Se-
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curities and Exchange Commission) report, two months later a cyber-attack on JP Morgan Chase,

compromised PII records of some 76 million households and 7 million small businesses. More

recently, in July 2017, massive data breach was discovered in Equifax and private information of

143 million people was exposed to the attackers. The leaked information includes social security

numbers, birthdays, address and credit card numbers.

Traditional cryptography primitives can protect data while at-rest (storage), but plaintext data is

vulnerable to insider interference during the processing time. This is particularly troubling when

searching databases containing personal information such as healthcare or financial records [48], as

the entire database is exposed to such attacks. These limitations motivate us to investigate methods

for searching encrypted NoSQL databases. Though general computations with encrypted data are

theoretically feasible using FHE, this is by no means a practical solution at this time. Existing FHE

increase the processing time of encrypted data by many orders of magnitude compared with the

processing of plaintext data. A recent implementation of FHE [49, 50] requires about six minutes

per batch; the processing time for a simple operation on encrypted data dropped to almost one

second after improvements [51]. Related areas of research are: Learning With Errors (LWE) [52]

and Lattice-based encryption [53, 54] and Attribute-based Encryption [55].
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CHAPTER 3: ORDER PRESERVING ENCRYPTION IN A HYBRID

CLOUD

In this work, we argue that hybrid clouds provide an ideal environment for applications which

require cooperation of multiple organizations; each organization has to coordinate some aspects of

its activity and share some data with several other organizations, yet has strict security requirements

for its own private data. Such applications could benefit from a hybrid cloud environment. Ideally,

“big data” should be encrypted and stored on the public cloud. Private data should be migrated

and processed on the private cloud while non-confidential data should be processed on the public

cloud. We apply Order Preserving Encryption (OPE) for the sensitive information in hybrid cloud

environment. To illustrate our approach, we discuss an implementation of the OPE and present a

hybrid cloud solution for the control of a smart power grid. This work was reported in International

Parallel and Distributed Processing Symposium (IPDPS 2014).

3.1 Motivation

The obvious approach to ensure security is to encrypt all data stored on the public cloud. This

solution incurs a significant overhead as we consider vast amounts of data, in the petabyte range;

moreover, data has to be decrypted before processing thus, it is exposed even for short time to

insider attacks. In this study we discuss order preserving encryption for the sensitive fields of

a data record and argue that this solution balances security concerns with efficiency for many

applications [56, 15, 29]. It can be applied to many cases when most of the time only a relatively

small range of encrypted data has to shipped back to a trusted system, in our case the private cloud,

for processing.
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Typically, very large data sets are generated by vast arrays of sensors monitoring the environment,

sensors monitoring vital signs of outpatients, or by services offered to large groups of individuals

when information is partially collected by humans and partially generated automatically. In most

cases only some elements of the data records must be kept confidential. This is true for healthcare

systems, financial systems, or systems used by utility companies where only personal data must be

kept confidential. Some operations on partially encrypted data require access only to the plaintext

elements of individual records. The most frequent operation is in fact searching the database to

identify the record or records that satisfy a query. So a major challenge for the applications we

consider for hybrid clouds is an efficient encryption scheme which allows searching encrypted

data. Order preserving encryption allows efficient range queries on ciphertexts when the data is

stored on an untrusted server, in our case the public cloud. The data is stored in encrypted form,

but indexing and query processing is done exactly as for plaintext data.

3.2 Order Preserving Encryption

In this section we overview symmetric order-preserving encryption, give its intuitive justification,

reflect on its relationship with the negative hypergeometric distribution, and discuss its security

limitations. A symmetric encryption scheme S with the plaintext space P and the ciphertext C

consists of three algorithms:

(a) The key generation algorithm K used to generate the encryption key K; this is a randomized

algorithm.

(b) The encryption algorithm E which produces a ciphertext c given a plaintext message m

c = E(K,P , C,m).
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(c) The deterministic decryption algorithm D which given a ciphertext c produces either the mes-

sage m or a symbol ⊥ indicating that c is invalid

m = D(K,P , C, c).

The correctness condition of the algorithm requires that

m = D[(K,P , C, E(K,P , C,m)] ∀K and ∀m ∈ P .

The intuition for order preserving encryption which maps a range of integers say [1,M ] into a

much larger range of integers 1, N is supported by the following proposition [15]:

Proposition: There is a one-to-one and onto mapping (a bijection) from the set of all order pre-

serving functions from a domainM of size M to domainN of a much larger size, N >> M to set

of all possible combinations of M out of N ordered items.

The basic idea of the proof can be illustrated using two orthogonal axes; on the x-axis we depict

the set of ordered integersM = [1,M ] and on the y-axis the ordered set of integers N = [1, N ].

We can construct an order preserving mappings f : N 7→ M by picking up a subset S ⊂ N and

mapping the i-th smallest element ofM to the smallest i-th smallest element of S. The function f

is an order-preserving function fromM to S; moreover an order-preserving function corresponds

to a unique M out of N combinations, namely a particular choice of the set S. Given M,N ∈ N,

x, x+ 1 ∈M, and y ∈ N the following equation defines a probability density function:

Pr
[
f(x) ≤ y ≤ f(x+ 1) : f

S←− OPFM,N

]
=

(y
x)·(

N−y
M−x)

(N
M)

.
(3.1)

Let us know consider a statistics experiment: we have N balls, y are white/marked and (N − y)
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are black/unmaked. We draw balls without replacement and ask ourselves what is the probability

that we get x white/marked balls in M trials. This probability, f(x) is the ratio of total number of

successes to the total number of ways we can conduct the M trials. A success in M trials requires

us to get specific numbers of white balls and black balls. The number of ways we can choose x

out of y white balls is
(
y
x

)
; the number of ways to choose (M − x) out of (N − y) black balls is(

N−y
M−x

)
. There are

(
N
M

)
ways to conduct M trials when there are a total of N balls. It follows that

p(x) =

(
y
x

)
·
(
N−y
M−x

)(
N
M

) . (3.2)

p(x) is a probability density function

N∑
x=0

p(x) = 1. (3.3)

We use the Vandermonde identity

N∑
x=0

(
p

x

)(
q

r − x

)
=

(
p+ q

r

)
. (3.4)

In our case p = y, q = N − y, and r = M thus

N∑
x=0

(
y

x

)
·
(
N − y
M − x

)
=

(
N

M

)
. (3.5)

It follows that

N∑
x=0

(
y
x

)
·
(
N−y
M−x

)(
N
M

) =

(
N
M

)(
N
M

) = 1. (3.6)
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The statistics experiment presented here is characterized by a hypergeometric distribution when

the probability density function p(x) gives the number of successes in a sequence of M draws

without replacement from a population of size N when the total number of successes is y.

Equations 3.1 and 3.2 justify our intuition that a random order-preserving function can be con-

structed using a hypergeometric distribution. An efficient way to do so is use the hypergeometric

distribution to lazy sample a random order-preserving function as described later in the study.

The OPE scheme described here is deterministic and leaks the order relations among the plain-

texts. OPE algorithms satisfy a condition called pseudo-random order-preserving function against

chosen-plaintext attack. This means that no adversary can distinguish between oracle access to the

encryption algorithm and a random order-preserving function with the same domain and range.

3.3 OPE Algorithms

Without loss of generality, we consider the plaintext spaceM as the set of integers {1, 2, ...,M}

and the ciphertext space N as {1, 2, ..., N}. Recall that an Order Preserving Encryption scheme,

(OPE) can be viewed as a deterministic function f :M→N which preserves the numerical order

ofM when mapped into N . The function f randomly selects M integers in the set N and orders

them. Then, to encrypt m ∈ M, f selects the mth element of this list. The cardinality of N is

many orders of magnitude larger than M thus, a direct realization of this idea is impractical.

A practical implementation OPE algorithm is based on a process called lazy sampling of a Hyper

Geometric Distribution (HDG). The elements of range N of f can be classified as marked and

unmarked; when an element ofN is selected by f it is said to be marked, otherwise it is unmarked.

This process resembles the statistical experiment with marked and unmarked balls discussed in

Section 3.2. If we draw balls without replacement, the number x of marked balls drawn after y

28



samplings is described by HDG, see Equation 3.2. The correspondence between OPF and HGD

enables us to determine how many points of our OPF mapping lie under a given point of the range;

we treat the points in the rangeN as the number of samples in a hypergeometric experiment where

the number of marked balls is M = |M| and number of unmarked balls is N −M = |N | − |M|.

The algorithms for encryption and decryption use the following notations:

| x |: the length in bits of the string x.

x | y: a unique encoding of the concatenation of strings x and y when the concatenated string is

restorable.

1`, ` ∈ N: the string of ` 1 bits.

x
$←− S: x is selected uniformly at random from set S.

a
$←− A(x, y, ...): the value assigned to a by the random algorithm A when the input is x, y, ....

[a]: the set {0,1,..,a} when a ∈ N.

⊥: symbol indicating that the ciphertext was invalid so, there is not a corresponding plaintext m.

w
cc←− S: means that w is assigned a value sampled uniformly at random from set S using coins cc

of length `S , where `S denotes the number coins needed.

`1 = `(D,R, y): the number of coins needed by HGD on inputs D,R, y

Given y,M,N we could sample effectively the HGD distribution by drawing a random coin cc.

Then let the random integer x represent the count of marked balls in a sample of size y. Given

m ∈ M and the key k ∈ K we can sample OPF and produce a cipher n ∈ N by searching
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the domain and the range of the function f in a recursive manner. Pseudo-random integers with

a number of bits dictated by the length of the block are produced by a pseudo-random gener-

ating function PRF . In each iteration of binary search the parameters of the HGD sampling

algorithm are changing thus However, we need a variable length PRF . The proposed variable

length pseudo-random function(V L PRF ) is composed of a Variable Output Length Pseudo-

random Function(V OL PRF ) with a consistent Variable Input Length Pseudo-random Function

V IL PRF as follows

V L PRF = V OL PRF (1ell, V IL PRF (K, x)).

The parameters of V L PRF (k, 1`, D,R, b‖z) are: key k ∈ K, size of output, Domain, Range, and

b, a indicator for specifying the working set given by

b =

 0 z ∈ R

1 z ∈ D
(3.7)

The algorithm described below is based on the one in [15]:

(1) Start with the entire domain D =M and range R = N .

(2) Chose y ← max(N )
2

as the pivot in range.

(3) Use a key k ∈ K to produce a pseudo-random bit sequence.

(4) Pass the pseudo-random bit sequence to the HGD sampling routine along with y,M, and N .

(5) The sampling function HGD returns x such that x ≤ y and we name x as a pivot of domain.

This x describes the number of points of order-preserving function that are less than y.
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(6) The mth point of our OPF is the ciphertext of m, so we compare x and m

• If m < x then repeat the process for the points of the domain less than or equal to x and less

than or equal to y.

• If m > x then repeat the process for the points of the domain greater than x and y.

(7) The termination condition is to have one element in the domain; then we pick one of the points

in range as a accompanying ciphertext.

Algorithm 1: The encryption algorithm
1: procedure ENC(D,R,m) M ← |D|;

N ← |R|;
d← min(D)− 1;
r ← min(R)− 1;
y ← r + dN

2
e;

if |D| = 1 then
cc

$←− VL-PRF(K,1`R,(D,R, 1‖m));
c

cc←− R;
return c;

cc
$←− VL-PRF(K,1`1,(D,R, 0‖y));

x
$←− HGD(D,R,y;cc);

if m ≤ x then
D ← d+ 1, ..., x;
R← r + 1, ..., y;
else

D ← x+ 1, ..., d+M ;
R← y + 1, ..., r +N ;
return Enc(D,R,m);

2: end procedure
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Algorithm 2: The decryption algorithm
1: procedure DEC(D,R,K,c) M ← |D|;

N ← |R|;
d← min(D)− 1;
r ← min(R)− 1;
y ← r + dN

2
e;

if |D| = 1 then
m← min(D);

cc
$←− VL-PRF(K,1`R,(D,R, 1‖m));

w
cc←− R if w = c then
return m;
else

return ⊥;

cc
$←− VL-PRF(K,1`1,(D,R, 0‖y));

x
$←− HGD(D,R,y;cc);

if c ≤ y then
D ← d+ 1, ..., x;
R← r + 1, ..., y;
else

D ← x+ 1, ..., d+M ;
R← y + 1, ..., r +N ;
return Dec(D,R,K,m);

2: end procedure

3.4 A case study, the application of OPE to data protection in a smart power grid

A smart power grid (SmartPG) is an infrastructure for the production and distribution of electric

power where wired and wireless communication channels, sensors, and distributed networks of

computer systems are used to improve the efficiency, reliability, economics, and sustainability of

energy production and distribution [57, 58]. A smart power grid includes a network of energy

producers from renewable sources, such as solar, wind, and geothermal which help reduce the

demand for power from the power stations burning fossil fuels. A smart power grid will reduce the

carbon emissions and, at the same time, lower the cost for energy generation and transport.
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The control of a smart grid is data-intensive, involves fairly complex workflows, consists of tasks

with different performance and timing requirements. Each utility company must collect a fair

amount of data regarding both producers and consumers of energy, process the data and using

the results control the power generation and distribution. At the same time, each electric power

company has to trade energy and share some resources with its peers.

A SmartPG is a system which includes intelligent components to optimize electric power gen-

eration and distribution [57, 58]. A national SmartPG will integrate resources of several utility

companies which supply electricity to different regions of the country. The main features of a

smart grid are [59, 60]:

(i) Increased reliability due to fault detection, self-healing, and flexibility in network topology. The

smart grid will support bidirectional energy flows allowing excess energy generated locally to be

pumped back into the grid.

(ii) Increased efficiency and lower costs for energy production due to greater utilization of gen-

erators. The distributed generation will reduce the demand for power from the power stations,

reduce the carbon emissions due to burning of fossil fuels, and the cost for energy generation and

transport.

(iii) Efficient management; a smart grid infrastructure could warn larger consumers to reduce the

load temporarily and give the power stations the time to startup new generators when the consump-

tion is very high.

(iv) Economic benefits; the producers and the consumers could be informed about the energy costs

in real time and can develop optimal strategies to minimize cost; for example, the consumers could

pay the peak energy prices only for critical loads. Peak curtailment or peak leveling - the prices of

electricity are increased during high demand periods, and decreased during low demand periods.
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A SmartPG has a large number of components subject to intricate interactions among the com-

ponents. In addition to large power stations a smart power grid will include distributed solar and

wind power generators, fuel cells, and other sources of energy located at customer premises. A

complex systems of sensors and intelligent meters will provide real-time information that has to

be analyzed to optimize the generation and distribution of the electric power in a smart grid.

3.5 Workload partitioning

Two of the most challenging questions in the design of a hybrid cloud are how to: distribute the

workload between the public and the private clouds and how to ensure privacy and security for the

data on the public cloud. The two questions are related to one another; the public cloud should

process and store the most data-intensive tasks, but the more data we store and process on the

public cloud the more difficult it is to guarantee the data security and privacy, while supporting

efficient algorithms for data analysis some carried out by the public cloud and others by the private

clouds of individual utilities.

In case of a smart power grid the smart meters and the sensors scattered throughout the smart grid

produce a vast amounts of data. The very large number of smart meters located at the customers

premises combined with an equally large number of sensors monitoring the power stations, the

transmission lines, and the power distribution centers generate data at different rates. Some of the

sensors have to be monitored every few seconds, a few critical ones even more frequently, while

smart meters will probably be monitored every few minutes. It seems reasonable to assume that

the data collected every hour will be of the order of petabytes and that it should be collected by

applications running on the public cloud.

The strategy for workload distribution discussed in this section has several advantages:
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(1) Allows utility companies to share the resources of a public cloud while guaranteeing the secu-

rity of private information.

(2) Reduces the probability of a denial of service attack on the private cloud of the utility companies

as the high traffic is directed to the public cloud.

(3) Reduces the storage and processing requirements for the private cloud without compromising

security.

(4) Enables a the rapid retrieval of the information for to a particular utility company, power distri-

bution center, and customer as we shall discuss later.

(5) Supports a high utilization of the public cloud clusters dedicated to the smart grid operation;

this is possible because the actual data acquisition rates are known and the data analysis done

on the public cloud is predictable. The high server utilization has a positive effect on the energy

efficiency and, at the same time reduces the costs for the cloud service provider and for the utility

companies. At the same time, it allows an effective load balancing among the servers.

We assume that the data collected falls into several categories:

a. Data from smart meters - the measurement data is encrypted with the private key of the utility

company and indexed by information reflecting the Id of the public utility, the Id of the power

distribution center, and the Id of the customer. The timestamp and possibly other information is

sent as plaintext. The data from smart senors is used by an utility company for:

(PM) - Power management. It is done periodically or when a special event triggers the need; it

requires only data for a specific time interval and a range of power distribution centers. When

such data is needed an application running on the public cloud extracts the data and sends it to the

private cloud of the utility where it is decrypted and sent to the power management and analysis
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application.

(B) - Billing. It is done at the end of a billing cycle and requires the readings of the smart meters

at that time. An applications running on the public cloud extracts the data for all customers and

identifies the record corresponding to the end of the billing cycle and sends the data to the private

cloud of the utility. The private cloud decrypts the data and sends it to the billing application.

(CEC) - Customer Energy Consumption. It is done at customer request; it provides the profile of

energy consumption. An application on the public cloud extracts the data for a given customer and

for the limited time interval, e.g., one or more days, and sends it to the private cloud. The private

cloud decrypts the data and sends it to the energy profiling application.

Figure 3.1(a) shows an encrypted record produced by a smart meter. The 128 bits include:

1. The UtilityId (UId) - an integer in the range [0− 255] (8 bits).

2. The DistributionCenterId (DCId)- an integer in the range [0− 32, 767] (16 bits).

3. The CustomerId (CId) - an integer in the range [0− 4, 294, 967, 295] (32 bits).

4. Smart meter data (72 bits)

(a) Energy from the grid - an integer in the range [0− 4, 294, 967, 295] (32 bits).

(b) Energy supplied to the grid - an integer in the range [0− 1, 048, 576] (20 bits).

(c) Energy generated locally - an integer in the range [0− 1, 048, 576] (20 bits).

IIx, is the encrypted Internal Index of a customer, a concatenation of UId, DCId, and CId. This

construction guarantees the global uniqueness of the IIx and a strict ordering based on the UId,

DCId, and CId. This strict ordering facilitates the data retrieval as we shall see next. When the
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UId DCId CId From the grid

128 bits
7232168

To the grid
Locally

generated

Smart meter energy dataIIx Internal index
The pair (IIx, column) indices uniquely identify a cell consisting of

multiple versions of the same data type ordered by their timestamps.

Column Index

D
a

ta
1

D
a

ta
2

D
a

ta
3

IIx

(a) (b)

Figure 3.1: (a) An encrypted record for the data provided by a smart sensor consists of 128 bits
and includes the internal index and the data from the smart meter. The internal index, IIx, con-
catenates UId, DCId, and CId. (b) The storage for smart meter data; multiple data fields provide
data regarding the energy consumed from the grid, the energy pumped into the grid, and energy
generated locally.

public cloud smart meeter application receives a data record from a smart meter it uses the leftmost

56 bits as an index and stores the smart meter data it in a data structure similar to the one in Figure

3.1(b). When a (PM), (B) or (CDC) application running on the private cloud needs data from the

public cloud for it provides a range of Internal Indexes (IIx) and a range of timestamps. The basic

organization of the data collected and stored on the public cloud resembles the Bigtable [5] the

distributed storage system from Google. For example, Figure 3.1(b) shows the organization of the

data collected from the smart meters [2].

b. Data from utility sensors - provide utility-sensitive data regarding the energy produced by the

power generators, the “green” energy producers scattered throughout the power distribution net-

work of each utility, the backbone of the power grid, and the power transport lines connecting

customers with distribution centers. Such data is periodically analyzed by the utility company to

determine the cost of a KWh in different regions, to anticipate power shortage or power surplus

and to trade power with companies. The measurement data is encrypted with the private key of
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the utility company and indexed by information reflecting the Id of the public utility and the Id of

the sensor. The data for a specific group of sensors and a given time interval is collected by an

application running on the public cloud and it is send to the private cloud of the utility company.

c. Data required for grid management is reported by strategically placed sensors the measurement

data and the identity of the sensor are sent as plaintext and is processed on the public cloud.

3.6 Experimental results

To evaluate the performance of OPE we created a benchmark running on a public cloud. We

wish to compare the response time of the OP-encrypted database with the one when the database

contains plaintext records. We also want to study the scalability of the OPE algorithm.

Our experiments are carried out on the Amazon Cloud and we use Amazon Web Services (AWS)

[61]. An EC2 instance runs a MySQL database server which accesses two databases, one with

plaintext data and one with OPE-encrypted data,both databases contain 5× 105 records. The EC2

instance runs on a medium server with a 32-bit architecture, 5 ECU (1 ECU is the equivalent CPU

capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor) and 1.7 GB of RAM.

We use MySQL 5.5.34 and add an OPE module to MySQL-proxy 0.8.3 to translate queries to

encrypted query and to retrieve response in client side. MySQL Proxy is an open source software

that can monitor, analyze, or transform the communication between the clients and the server(s);

its flexibility allows for a wide variety of uses, including adding security modules, load balancing,

failover, query analyze, and query filtering and modification.

The response time includes the communication time from client to server and back, the encryption

time at the client side, the search time on the server, and the decryption time of the response at the
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client side. We expect the response time for the OP-encrypted database to increase as the number

of records in a response increases due to the increased decryption time. The communication time

between the client running on a local PC and the AWS varies. To have a more accurate comparison

between the two scenarios we repeat each query and compute the average response time.

To study the scalability of the OPE algorithm we compare the response time to queries to the two

databases, the OP-encrypted and plaintext one. The number of records in a query response are:

1, 2, 3, 4 and 5× 105. Each query is sent 1, 000 times and the average response time is determined.

To accurately reflect the search time we disable the query cache of the MySQL; otherwise the

database server will automatically save the result of a query and the next query will not involve

a database search. We performed 40 different tests with different configuration with plain and

encrypted databases. The response time for all 40 tests are shown in Figure 3.2 (a). As expected,

we see a rather drastic increase in the response time as the number of records in the response

increases due to the overhead of decrypting the response.

According to [62] the number of records in the response to a query is a critical parameter for

production database systems. For example, in more than 92 % of queries the response contains

0− 100 records while less than 1% of queries response contains more than 10, 000 records. Figure

3.2 (b) shows a close-up of the region of interest, when the response to a query contains at most

1, 000 records.

Figure 3.3 shows the ratio of response time for plainttext versus an OP-encrypted database function

of the number of records in the response to a query. It shows that OP-encrypted databases perform

well in the most common cases.
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(a) (b)

Figure 3.2: (a) A comparison of the response time in milliseconds for the OP-encrypted database
with plain database. The number of records in the response to a query is: 1, 2, 3, 4 and 5× 105. (b)
A close-up of the region of interest, when the response to a query contains at most 1, 000 records.

Figure 3.3: Percentages of queries function of the number of records in the response.
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3.7 Conclusion

There is no general solution for secure processing of “big data” on a public cloud are feasible at this

time, we can identify a class of applications when we can support secure data processing. These

are applications requiring cooperation of multiple organizations; each organization shares some

data with several other organizations, yet has strict security requirements for its own private data.

Application in healthcare, transportation, finance, government, and other areas fit this profile. Such

applications could benefit from a hybrid cloud environment; they could store and process massive

amounts of data on the public cloud and process private information on a private cloud.

The method proposed in this work can be applied to cases when most of the time only a relatively

small range of encrypted data has to shipped back to a trusted system, in our case the private cloud,

for processing. Our evaluation carried out on a relatively large database proves that OPE can

support a range of operations on the encrypted data such as: comparison, MIN(), MAX(), Group

by, Order by and Join. The overhead for using a OP-encrypted database is only of 10−15% higher

than that of using a plaintext one for the common database usage. In our experiments we use a

traditional data base, though most “big data” applications use NoSql databases.

We implemented an Order Preserving Encryption algorithm and applied OPE to an application

involving a smart power. In this case a vast array of smart sensors generate a very large amount

of data which is stored on the public cloud. Sensitive data from individual records are then sent

and processed on the private cloud of each utility company. This scheme is only feasible when the

amount of sensitive data is relatively small.
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CHAPTER 4: SEARCHABLE SECURITY SCHEME FOR NoSQL

CLOUD DATABASES

While many schemes have been proposed to search encrypted relational databases, less attention

has been paid to NoSQL databases. In this research we report on the design and the implementation

of a security scheme called “SecureNoSQL” for searching encrypted cloud NoSQL databases. Our

solution is one of the first efforts covering not only data confidentiality, but also the integrity of

the datasets residing on a cloud server. In our system a secure proxy carries out the required

transformations and the cloud server is not modified. The construction is applicable to all NoSQL

data models and, in our experiments, we present its application to a Document-store data model.

The contributions of this study include: (1) a descriptive language based on a subset of JSON

notations; (2) a tool to create and parse a security plan consisting of cryptographic modules, data

elements, and mappings of cryptographic modules to the data fields; and (3) a query and data

validation mechanism based on the security plan.

4.1 Motivation

The primary motivation of search on encrypted data is originated from the fact that in spit of grow-

ing popularity of cloud NoSQL database services. Few researchers have addressed the fundamental

issue of data security. Previous work has mainly focused on secure search on encrypted relational

databases. Our research provides considerable insight into security of NoSQL database services.

Data is the most valuable asset for the most data owners, even legal restriction apply to outsource

customers data off-site without proper privacy protection mechanism. We consider this issue and

try to build secure DBaaS service on top of a public cloud settings where, the cloud service itself

42



is not fully trusted. Our work is one step forward to protect processing of sensitive information

against reasonably internal or external threats.

4.2 System organization

We restrict our discussion to query processing particularly over encrypted NoSQL databases. A

secure proxy called “SecureNoSQL” for accessing cloud remote servers and applying efficient

cryptographic primitives for query, response and data encryption/decryption is introduced. We

also designed a descriptive language using JSON1 notation which enables its users to generate a

security plan. The security plan has four sections which elaborately introduce the data elements,

cryptographic modules and the mappings between them. The main contributions of this research

are:

• A JSON-based language for users to: (i) create a security plan for the database; (ii) describe

the security parameters; and (iii) assign proper cryptographic primitives to the data elements.

• A multi-key, multi-level security mechanism for policy enforcement. This feature is essential

because the encryption key is subject to more frequent changes than the crypto-module.

Furthermore, keys are assigned for a single data element, while encryption algorithms could

be applied for several data elements with several keys. This separation allows a more efficient

enforcement of security policy and of key management.

• An effective validation process for the security plan. This validation process enables users

to initially evaluate all requests locally, rather than forwarding large numbers of fallacious

1JSON (JavaScript Object Notation), is a lightweight text-based syntax for storing and exchanging data objects
consisting of key-value pairs. It is used primarily to transmit data between a server and a web application. JSON’s
popularity is due to the fact that it is self-describing and easy to understand by human and machine. For more infor-
mation, visit: http://www.json.org
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key-value pairs to a cloud server. It also limits the cloud server workload and reduces the

response time latency.

• Support for a comprehensive, flexible protection. The solution is open-ended; users can add

new customized cryptographic modules simply by using the designed descriptive language.

• A balanced system with a security level-proportional overhead; the overhead is proportional

to the desired level of security.

• A secure proxy which translates queries to run over encrypted data on the remote cloud server

with respect to semantics of queries. The cloud database server is not modified and treats

encrypted documents in the same way as a plaintext database. Properties of the distributed

database such as replication hold for encrypted data.

• Support for cloud data integrity and protection against an insider attack.

The organization of the system is presented in Section 4.2 and structure of the security plan and

the notation of the descriptive language for generation of security plan is discussed in Section 4.3.

Then the mechanism of query processing is investigated in Section 4.4. Finally, in Section 4.6

we report on, measurements of the database response time to different types of queries and on the

encryption and decryption time for OPE encryptions with output lengths of 64, 128, 256, 512 and

1024-bit.

This section introduces a framework to incorporate data confidentiality and information leakage

prevention algorithms. SecureNoSQL leverages secure query processing for web and mobile ap-

plications using DBaaS. Two different system organizations can address our design objectives. The

first is suitable when all database users belong to the same organization. Then the proxy runs on a

trusted server behind a firewall and the communication between clients and the proxy is secure.
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When the clients access the cloud using the Internet the second organization is advisable. In this

case, either the client software includes a copy of the proxy and only encrypted data is transmitted

over public communication lines, or the Secure Sockets Layer(SSL) protocol is used to establish a

secure connection to the proxy. Figure 4.1 illustrates the high-level architecture of SecureNoSQL

as a secure proxy between user’s applications and cloud NoSQL database server. The system we

report on was designed with several objectives in mind:

• Support multi-user access to an encrypted NoSQL database. Enforce confidentiality, privacy

of transactions and data integrity.

• Hide from the end-users the complexity of the security mechanisms; the database access

should be transparent and the user’s access should be the same as for an unencrypted database.

• Avoid transmission of unencrypted data over public communication lines.

• Do not require any modification of the NoSQL database management system.

• Create an open-ended system; allow the inclusion of cryptographic modules best suited for

an application.

These objectives led us to design a system where a proxy mitigates the client access to the cloud

remote server running an unmodified NoSQL database processing system. In this system the pro-

cessing of a query involves three phases:

1. Client-side query encoding in JSON format carried out by the client software;

2. Query encryption and decryption done by a trusted proxy; and

3. Server-side query processing performed by an unmodified NoSQL database server.
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Data Query Security plan Query Response Query Response

Security Layer
Data Integrity

Leakage prevention

Query Language

Data Model
Storage Engine

Data store Replica set

Data Owner Client1 Clientn

QueryResponse

Application layer

SecureNoSQL Proxy

Cloud NoSQL service

Figure 4.1: The organization of the SecureNoSQL.

SecureNoSQL is based on general principles of NoSQL database products. We introduce a new

concept, the security plan, materialized as a JSON description of data elements, metadata and

parameter configuration of cryptosystems. A descriptive language is introduced to generate and

parse the security plan automatically. JSON, a dominant format in NoSQL databases, is selected

to express the designed security plan. We used a subset of JSON notation readable by human and

machine.

Document databases, such as MongoDB, store documents inside the collection by JSON repre-
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sentation in a similar way as tables and records in relational database systems. A query and the

corresponding response are also represented in the JSON format; therefore, the governing format

in document database is JSON. BSON, a binary extension of JSON, is used by document-oriented

databases for efficient encoding/decoding.

JSON query model is a functional, declarative notation, designed especially for working with

large volumes of structured, semi-structured and unstructured JSON documents. The data owner

develops the security plan that outlines and maps out the determined crypto-primitive with specific

parameters to a particular data element.

4.3 Descriptive language for security plan

We introduce a new construction henceforth named Security plan to bind appropriate cryptosys-

tems to the data elements of a NoSQL database. The notations of JavaScript are employed to

create a descriptive language for expressing parameters of cryptosystems, defining data elements

and mapping between these two. More details on security plan and descriptive language will be

given in this section.

Database security plan. The security plan identifies the mechanism to maintain the security of

the data elements in a database. It also determines how to interpret queries issued by a specific

application. The security plan has four sections, see Figure 4.2, describing the security rules for

the data elements and for meta-data such as the field-name (Key) and the collection name. These

sections are the building blocks of the security plan showing how the rules are enforced. The

sections and their roles are:

1. Collection: includes the name of a collection and a reference to the encryption module used

to encrypt the name of the collection and the name of fields (metadata).
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2. Cryptographic modules: lists the cryptographic modules for encrypting the fields of the

database entries in the query.

3. Data elements: lists the properties of each data field including the data type; the data type

determines the cryptographic modules to be applied to each field.

4. Mapping cryptographic modules to the fields: assigns the cryptographic modules to data

fields; proxy uses this information to encrypt and decrypt the data elements.

Security Plan

Collection

Cryptographic modules

Data elements
Mapping cryptographic modules to the

fields

Figure 4.2: The high level structure of the security plan.

Collection. A collection is defined as a group of NoSQL documents, the equivalent of relational

database table, see Figure 4.3. The name of the collection must be encrypted. The listing 4.3b

illustrates how to secure a sample collection using the description language.
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Collection

name

encryption

ref

key

iv

fieldName

encryption

ref

key

iv

(a)

{

"$collection" : {

"name" : "Personnel",

"$encryption":{"$ref":"/AES-DET",

"key":"02468acebdf135790369cf258be147ad",

"iv":"2468ace0" }

},

"$fieldName": {

"$encryption": {

"$ref":"/AES-DET",

"key":"0123456789abcdef0123456789abcdef",

"iv":"ffeeddcc"}

}

}

(b)

Figure 4.3: The structure of a collection: (a) The chart outlines the structure of a collection con-
taining the name of collection and name of all attributes which are considered as a meta-data, and
should be protected with proper cryptographic module. (b) The description of a collection and se-
curity parameters in designed JSON based language. In this specific case the Advanced Encryption
Standard in deterministic (AES-DET) mode with a 128-bit key and an initialization vector (IV) is
assigned to encrypt the name of the collection and the fields name.

The key-value pairs (KVP) are the primary data model for a NoSQL database. The key is used as

an index to access the associated value of the data pointed by the reference ref. The initialization

vector (IV) is a fixed-size, random input to the cryptographic module encryption. Additionally, a

collection exists within a single database. Documents within a collection can have different fields.

Typically, all documents in a collection are related with one another.
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Cryptographic modules. The choice of a particular cryptosystem depends on the security policy

of application. Multiple criteria for algorithm selection include: (i) the security against theoretical

attacks; (ii) the cost of implementation; (iii) the performance; and (iv) whether the encryption

and decryption can be parallelized. Other factors involved in the selection of an algorithm are the

memory requirements and the integration in the overall system design.

The Cryptographic modules introduce all encryption modules and their parameters such as key,

key-size, initialization vector and output-size. The structure of this section is shown in Figure 4.4a

complemented by the listing in Figure 4.4b presenting the second section of security plan for the

previous example.

Our proof of concept uses the parametric Order Preserving Encryption (OPE) and the Advanced

Encryption Standard (AES) modules. The system is open-ended; users can add the cryptosys-

tems best suited to the security requirements of their application. In our design the definitions of

the cryptographic modules and of the pairs, encryption key and initialization value, are separated

following the so-called key separation principle [63]. This security practice is based on the obser-

vations that users have long- and short-term security policies. The cryptographic modules are less

likely to change while the key and the initialization value change frequently.

The data elements. The third section of security plan, the data elements and their properties are

covered. Figure 4.5 presents the structure and description of Data element section of Security plan.

The listing displayed in Figure 4.5b displays data elements and its JSON description for previous

example. To ensure the desired level of security the security plan should provide the description of

all sensitive data elements of database in third section of security plan.

Mapping cryptographic modules to the fields. The last section of security plan is for binding

cryptographic modules to the sensitive data fields. Figure 4.6 and the listing presented in Figure

4.6b presents a mapping for a sample document in our designed descriptive JSON-based language.
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Cryptographic modules

Module #1

name

type

keySize

key

inputSize

outputSize

Module #2

name

type

keySize

key

inputSize

outputSize

(a)

{
"OPE" : {
"properties" : {
"encryptionMethod" : {
"type" : "string",
"enum" : [ "OPE" ] },
"keySize" : {
"type" : "integer",
"minimum" : 64,
"maximum" : 4096,
"default" : 128 },
"key" : {
"type" : "string",
"pattern" : "ˆ([0-9a-fA-F]{2})+$" },
"inputSize" : {
"type" : "integer",
"minimum" : 8,
"maximum" : 128,
"default" : 32 },
"outputSize" : {
"type" : "integer",
"minimum" : 64,
"default" : 128 } },
"required" : [ "key", "

encryptionMethod" ],
"additionalProperties" : false
}
}

(b)

Figure 4.4: The structure and function of Cryptographic modules: (a) The Security Plan with the
second section, the cryptographic module, expanded. The attributes included for each module
are: name, type, key size, key, input and output size. (b) The OPE encryption including the
cryptosystems and their attributes. The proxy applies these modules using the key-value pairs
(KVP).
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Data elements

Field #1

name

type

value

Field #2

name

type

value

(a)

{
"id":{ "type":"integer" },
"name":{ "type":"string" },
"salary"{ "type":"integer" },
"balance"{ "type":"integer" },
"ccn"{ "type":"integer" },
"ssn"{ "type":"integer" },
"email":{ "type":"string" }
"required":["id","name","email","

salary"]
}

(b)

Figure 4.5: Structure and description of Data element: (a) The chart outlines the structure of Data
elements containing attributes of data elements such as name, type and value for of collection and
name and then introduces security parameters for each data element. (b) The data element section
of a sample database which is represented in designed notation. A data item has 7 fields: id, name,
salary, balance, ccn, ssn, and email. The id, name, email, and salary are required fields.

The method presented in this research can be easily extended to the other NoSQL data models

discussed in Section 2.3. Figure 4.7 shows how this extension from the key-value pair to the

document store model can be carried out.

Query and data validation The proxy validates the data and the query as a JSON-formatted input

with the reference security plan. Then the proxy enforces the crypto-primitives, and generates

new query following the NoSQL query semantics. During this process the proxy applies to each

field the cryptographic modules. Finally, the proxy forwards the newly encrypted query/data to the

NoSQL database server. Figure 4.8 depicts the schema validation process.

For better illustration, consider listings depicted in Figure 4.9a as an input data; after running

validation process the output is generated (see Figure 4.9b). The output of validation process is a

single file which contains descriptive information for data and meta-data in designed format and
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Mapping cryptographic
modules to the Fields

Field #1

Cryptographic module
m

Field #2

Cryptographic module
n

(a)

{
"id":{ "$ref": "#/ope128" },
"name":{ "$ref": "#/AES-DET" },
"email":{ "$ref": "#/AES-DET" },
"salary":{ "$ref": "#/ope256" },
"ssn":{ "$ref": "#/ope256" },
"ccn":{ "$ref": "#/ope256" },
"balance":{ "$ref": "#/ope256" }
}

(b)

Figure 4.6: The structure and description of Mapping cryptographic modules to the Data element:
(a) Security plan with the fourth section expanded. This section establishes a correspondence
between the data fields and the cryptographic modules used to encrypt and decrypt the data fields.
(b) The mapping section of the schema for a sample database with 7 fields. For example, the id
and the name will be encrypted with OPE 128 bit and AES-DET, respectively.

ready to execute on the SecureNoSQL.

The output of validation process is a single file containing descriptive information for data and

meta-data expressed in the required format and ready to execute. The output of validation process

for the example is illustrated in Figure 4.9b. As it was noted earlier, the schema reflects the desired

security level expressed by the security plan for the database. Table 4.1 shows the overhead for

several parameters and crypto-primitives.

Table 4.1: The overhead of encryption for several encryption schemes.

Database Plain OPE64 OPE128 OPE256 OPE512

Size (MB) 170 430 508 662 1000
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Cryptographic module z

Key1 V alue1

... ...

Keyn V aluen

Cryptographic module1

...

Cryptographic modulen

(a)

Collection name

Cryptographic module x

Document ID

Cryptographic module y

Cryptographic module z

Key1 V alue1

... ...

Keyn V aluen

Cryptographic module1

...

Cryptographic modulen

(b)

Figure 4.7: SecureNoSQL applied to: (a) The key-value data model; Key1, . . . , Keyn are all en-
crypted using the cryptographic module z while the corresponding values, V alue1, . . . , V aluen
are encrypted with cryptographic modules 1, 2, . . . , n, respectively. (b) The document store data
model; the meta-data such as collection name encrypted as well as attributes with assigned crypto-
graphic modules.

4.4 Processing queries on encrypted data

According to the proposed scheme, in order to process queries over encrypted data the queries

should transfer to the encrypted version with respect to security plan, and this task is designed to

be conduct in the proxy. The security plan discussed in Section 4.3, supplies the parameters of

the cryptographic modules to be applied for the data elements involved in the query. Figure 4.10

displays the processing and rewriting of a sample query.

For better understanding the query encryption, in table4.2 you can find some sample encrypted
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Data/Query in
JSON format

Reference
JSON schema

Validation of data elements (format matching)

Extraction of encryption parameters

Applying cryptographic modules to data and metadata

Forward encrypted Data/Query to cloud NoSQL server

NoSQL server

Figure 4.8: The validation process of input data against security plan in the client side.

queries after enforcing security plan. As it can be seen, data elements and immediate values are

encrypted; however, the output is consistent with NoSQL semantics.

4.5 Integrity verification of data/query/response

Integrity and confidentiality are two critical components of data security. Integrity refers to the

consistency of the outsourced data. The proposed integrity verification algorithm in SecureNoSQL

guarantees the integrity of data/queries (see Algorithm 3 and Figure 4.11). Data owner first ap-

plies encryption scheme on the documents, and then calculates Hashed Message Authentication

Code (HMAC) for each one of encrypted documents. A hash value of any given document is a

fixed-length of 512 bit and data owner concatenates a unique document identifier (ID) with hash

value and stores the results in efficient structure like HashTable which has constant looks-up time
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{
"id": 1,
"name":"Mohammad Ahmadian",
"email": "ahmadian@ucf.edu",
"salary":17000,
"ssn": 433042664,
"ccn":"47162552387",
"balance":1320
}

(a)

{
"id": {
"$encryption": {
"encryptionMethod": "op2128",
"key":"ADBDBC3B439DB495A81DA1BE56ACA"},
"value": 1 },
"name": {
"$encryption": {
"encryptionMethod": "AES-DET",
"key":"001122334455667899aAbBcCdDeEfF"},
"value":"Mohammad Ahmadian"},
"email": {
"$encryption": {
"encryptionMethod": "AES-DET",
"key":"001122334455678899aAbBcCdDeEfF"},
"value": "ahmadian@ucf.edu"},
"balance":{
"$encryption": {
"encryptionMethod": "ope256",
"key":"A75C644DF2E4EFE5328BB35E3C636"},
"value": 1320 }
}

(b)

Figure 4.9: The security plan for the sample database: (a) The data element section of sample
security plan. (b) The output of the JSON data validation for the sample database.

O (log n). Next, data owner transfers the encrypted dataset to the cloud and sends HashTable con-

taining hash values to the proxy. Once the proxy receives the query response from the server, it

initiates the verification process to check the authenticity of the documents by recalculating the
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and

≥

salary 5000

≤

balance 2000

(a)

and

≥

9mnGu8Q2
VDstE+T9

jFw2wQ==

398641078639
872397894164

1627711702

≤

5pgAxn6B
F08WtM7z

yuYaKg==

16137426767
48000824315

33686937402

(b)

Figure 4.10: The query db.customers.find({salary:{$gt:5000}, balance:{$lt:2000}}) received
from an application. (a) The parsing tree of the query. (b) The defined cryptographic modules
are applied to the data elements and the encrypted equivalent is created.

hash values. This process is illustrated in Figure 4.11.

Algorithm 3: Document Integrity Verification Algorithm in the Proxy
Input: Plaintext query q from client application ci

Output: Are the documents in the response authentic? Yes/No

1 qenc = Encrypt(q);

2 qenc
forward
====⇒ to cloud database server;

3 Renc
receive⇐==== from cloud database server;

4 repeat

5 Hd = HMAC(Renc[i], key);

6 if (HashTable[useri] 6= Hd) then

7 return false

8 until (There is a document in Renc);

9 return true;

In this configuration the data owners just trust the proxy (SecureNoSQL) and cloud servers are not
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Table 4.2: Sample queries and their corresponding encrypted version

Query Encrypted equivalent query

1 db.customers.find({ssn:936136916})
db[”k/IevnbanDMQHNkb9cRgUg==”].find({”5pgAxn6BF08WtM7zyu
YaKg==”:74172405478441908041711118833862143778})

2
db.customers.find({balance:{$gte:
5084610},balance:{$lte:9911843}})

db[”k/IevnbanDMQHNkb9cRgUg==”].find({”3iXpo2l8xZpW7J7TezFde
A==”:{$gte:402982988013604629517872370128473753},”3iXpo21
8xZpW7J7TezFdeA==”{$lte:7855963556987175927802686333694542
31}})

3
db.customers.aggregate([{$group:{ id
:null,minBalance:{$min:”$balance”}}}])

db[”k/IevnbanDMQHNkb9cRgUg==”].aggregate([{$group:{ id:
null,EncMinBalance:{$min:”$3iXpo2l8xZpW7J7TezFdeA==”}}}])

4
db.customers.aggregate([{$group:{ id:
null,maxBalance:{$max:”$balance”}}}])

db[”k/IevnbanDMQHNkb9cRgUg==”].aggregate([{$group:{ id:null
,EncmaxBalance:{$max:”$3iXpo2l8xZpW7J7TezFdeA==” }}}])

5
db.customers.find({$or:[{Salary:{$gt:
516046}},{balance:{$lt:285462}}]})

db[”k/IevnbanDMQHNkb9cRgUg==”].find({ $or: [ { ”9mnGu8Q2V
DstE+T9jFw2wQ==”: { $gt: 40994186216785746613193244129885849
}},{”3iXpo2l8xZpW7J7TezFdeA==”:{$lt:226574304531446346797
91167652174833}}]})

trustworthy. Thus, a result of data integrity verification, all active attacks conducted by internal or

external attacker will be detected by the proposed approach. The Message Authentication Code

(MAC) is created by using the keyed Hash Message Authentication Code (HMAC) as rephrased in

Eq. 4.1.

HMAC(K, document) = H((K ⊕ okeyPad)‖H((K ⊕ ikeyPad)‖document) (4.1)

Where:

H represents the hash function

okeyPad is one-block-long outer pad

⊕ is the XOR operator

ikeyPad is one-block-long inner key pad
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Algorithm 4 presents the pseudo-code of the HMAC function for a block size of 64 bytes. The

computed hash values with correspondent document’s unique identifier can be stored in the form

of key-value pair in a hash-table thus, allowing the proxy to carry the lookup in constant time

during the verification process.

Algorithm 4: Keyed Hash Message Authentication Code (HMAC) generation.
Input: Document: d, user key: k
Output: hash value

1 if (length(key) > blocksize) then
2 key = hash(key);

3 if (length(key) < blocksize) then
4 key = key || [0x00 ∗ (blocksize− length(key))];

5 okeyPad = [0x5c ∗ (blocksize)]⊕ k;
6 ikeyPad = [0x36 ∗ (blocksize)]⊕ k;
7 return hash(okeyPad||hash(ikeyPad || d));

client Proxy

Hash DB

Server

1

2
3 4

56

Figure 4.11: Integrity verification of data/query/response: (1) Data owner transfers the encrypted
database to the cloud server. (2) Data owner sends the Hash database to proxy. (3) Clients send
plain queries to the proxy. (4) The proxy translates queries to the encrypted version, and forwards
them to the cloud server. (5) The cloud server returns the query response set. (6) The proxy runs a
hash verification process on the query response set, and then based on the result either forwards to
the decrypted response or reports integrity violation to the client.
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4.6 Results and discussion

The response time of a query to an encrypted NoSQL database has several components:

1. the time to encode the query in JSON format;

2. the time to encrypt and decrypt the data;

3. the communication time to/from the server;

4. the database response time.

For our experiments we first created a sample database with one million records and then deter-

mined the overhead of searching an encrypted database. To do so we measured the database re-

sponse time for queries when the records were unencrypted versus when records were encrypted.

Then, we measured the encryption and the decryption time for different sizes of the ciphertext. We

wanted to isolate the different components of the response time dominated by the communication

time.

The environment used for testing was set up on the Linux operating system. We chose MongoDB

[64], classified as a NoSQL document store database 3.0.2. The random data generator in JS, PHP,

and MySQL format was generated by using a tools [65] to generate a one million record plaintext

data set. Each record had seven different data fields including name, email, salary, as shown in

Listing 4.9b.

We applied OPE 64, 128, 256 and 512 bit to numeric data type, and the AES-DET 128 bit for the

string data type of the plaintext data set and generated four encrypted data sets of one million

records each. Finally, we uploaded the five datasets and created five MongoDB databases, one

with the unencrypted data, and four with the encrypted data. Once the MongoDB databases were
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created we run several types of queries including equality, greater than, less than, greater than or

equal to, less than or equal to, and OR logical operations.

The experiments to measure the query time must be carefully designed. To construct average

query processing time each experiment has to be carried out repeatedly. We noticed a significant

reduction of database management response time after the first execution of a query, a sign that

MongoDB is optimized and caches the results of the most recent queries. A solution is to disable

the cache, or if this is not feasible, to clear the cache before repeating the query. Another important

observation is that modern processors have a 64-bit architecture and are optimized for operations

on 64-bit integers. For three of the five types of queries, Q2 (Range query), Q3 (equality), and

Q4 (logical), database response time is slightly shorter for the encrypted database than for the

unencrypted one when the keys are 32-bit integers. A plausible explanation for this is most likely

related to the cache management.

The results reported in Table 4.3 and in Figure 4.12 show the database response time for the five

MongoDB experiments. Each query was carried out 100 times with disabled query cache and

the average query response in milliseconds was calculated. We also measured the encryption and

the decryption time and the results are reported in Figure 4.13. The measurement process was

automated, and it was running under the control of a script which generated the data and reported

the processing time.

Our measurements show that the response time of the NoSQL database to encrypted data depends

on the type of the query. The shortest and longest database response time occur for Q1 (compari-

son) andQ5 (aggregated queries), respectively; for these two extremes the time for the unencrypted

database was almost double, but the time for encrypted databases increases only by 70− 80%. As

expected, the query processing type for a given type of query increases, but only slightly, less than

5% when the key length increases from 64, to 128, 256, and 512 bit.
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Table 4.3: The query processing time in milliseconds (ms) for the plaintext and for the ciphertext.
32-bit plaintext integers are encrypted as 64, 128, 256 and 512-bit integers. The record count gives
the number of records retrieved by each one of the five types of queries, Q1−Q5.

Query Number of 32-bit 64-bit 128-bit 256-bit 512-bit
type matching record(s) plaintext ciphertext ciphertext ciphertext ciphertext
Q1: Comparison 461,688 340 310 355 370 380
Q2: Equality 1 340 380 390 400 410
Q3: Range 991,225 370 350 360 380 400
Q4: Logical 551380 500 540 550 555 560
Q5: Aggregation 1 600 660 670 680 690
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Figure 4.12: The query processing time in milliseconds (ms) for the unencrypted database and for
the encrypted databases when the 32-bit keys are encrypted as 64, 128, 256 and 512-bit integers.

The OPE encryption time increases significantly with the size of the encryption space; it increases

almost tenfold when the size of the encrypted output increases from 64-bit to 1024-bit and it is

about 10 ms for 256-bit. The decryption time is considerably smaller; it increases only slightly

from 0.11 ms to 0.17 when the size of the encrypted key increases from 64-bit to 1024 bit.
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Figure 4.13: Execution time of the OPE module when the key is encrypted as 64, 256, 512, and
1024 bit

Secure proxy is an important element for the proposed architecture; therefore, the potential attacks

that could affect the proxy, also should be taken into consideration. In general, two major possible

attacks on proxy are Denial of Service (DoS) and unauthorized access. In DoS attack, the attacker

sends so many network traffic to the proxy, that the system is not capable of process within the

expected time frame. Successful DoS attacks can turn the proxy to a bottleneck of the system. In

unauthorized access attacks, attackers use a proxy to mask their connections while attacking the

different targets.

Several solutions exist for improving the security of proxy against DoS attacks and reducing the

consecutive impacts, including blocking the undesired packets or using multiple proxies with load

balancers. Moreover, for prevention of unauthorized access attacks, it is required to use best fit

authorization to access the proxy. User authentication based on group membership with different

authorizations are the best practical solutions.
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4.7 Conclusions and future work

Though the OPE encryption scheme has known security vulnerabilities it can be very useful for

NoSQL database query processing for the data models discussed in Section 2.3. While the key is

encrypted using OPE, the other fields of a record can be encrypted using strong encryption, thus

reducing the vulnerability of the data attacks. Strong encryption of the value fields could increase

the encryption time but will have little effect on the decryption time.

An important observation is an increase in size of co-domain of the OPE mapping function from

264 to 2128, 2256, and to 2512 results in an increase of database response time up to 5%, except for

Q3-type queries when the increase is significant. The penalty for using encrypted, rather than plain

NoSQL databases such as MongoDB is less than 5% for Q2, Q4, and Q5 which is relatively small.

Moreover, the overall query response time is dominated by the communication time.

The secure proxy is a critical component of the system. The proxy is multi-threaded and its cache

management is non-trivial. The management of the security attributes is rather involved. On the

other hand, a proxy integrated in the client-side software can be light-weight and considerably

simpler. We are currently implementing the two versions of proxy. Experimental results for mul-

tiple large datasets with up to one million documents show that SecureNoSQL is rather efficient.

Our approach can be extended to a multi-proxy structure for Big Data applications. We are now

implementing a sophisticated mechanism for maintaining consistency of hash values database in

the proxies datasets based on the PAXOS algorithm [66, 2].
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CHAPTER 5: LEAKAGE PREVENTION

Web and mobile applications take advantage of the Database as a Service (DBaaS) to access cloud

databases. The popularity of DBaaS amplifies the security risks for cloud stored data and exposes

an information leakage channel that can be exploited by cross-referencing cloud-hosted databases,

even if encrypted. Cloud databases include data with various degrees of sensitivity. The sensitivity

analysis introduced in this research identifies the most valuable information that must be protected

for limiting the effects of information leakage. Then the proposed method is extended to leakage

analysis in the DBaaS warehouse by leveraging the Approximate Query Processing (AQP) tech-

nique. This approach, compromises between orders of magnitude processing time improvement to

the limited inaccuracy in response. We report on experiments conducted to assess the effectiveness

of AQP for preventing information leakage.

5.1 Motivation

Information leakage is the inadvertent disclosure of sensitive information. Information leakage

in a cloud environment enables an attacker to infer sensitive information either through multiple

database searches, or cross-correlations among databases. The threat posed by information leakage

is amplified as public cloud data warehouses maintain numerous databases from many organiza-

tions.

The ability to link individual items of information from different sources poses a new type of threat

to cloud users. An attacker could link low-risk items of information to extract sensitive informa-

tion. For example, cross-correlation of information from a metro card connected to user’s debit

card for auto-refill could reveal sensitive financial information. Moreover, personal information
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from the financial record could be linked to the health record of an individual.

Nowadays, many enterprises use DBaaS offered by major Cloud Service Providers (CSPs) to ac-

cess an increasingly larger number of cloud hosted databases [2]. A 67% annual growth rate is

predicted for DBaaS by 2019. CSPs guarantee availability and scalability, but the data confiden-

tiality poses significant challenges in the face of new threats. Some of the threats emanate from

insider attackers who have the ability to correlate information from multiple cloud databases.

Data encryption provides data and query privacy but, contrary to the common belief, encrypted

cloud data and encrypted queries are vulnerable to information leakage. Encryption does not pro-

tect all information about the encrypted data. The leakage can be exploited by external, as well

as insider agents. A malicious insider can infer sensitive information through cross-referencing

databases in the data warehouse. Moreover, the collection name, the attribute name (or table, field

name in RDBMS), the number of attributes involved in a query, and the query length often reveal

sensitive information about the encrypted data.

A motivating sequence of events illustrate the effects of data correlation and, implicitly of informa-

tion leakage. In August 2006, AOL, a global on-line mass media corporation, released search logs

of over 650 000 users for research purposes. The data included searches conducted over a period

of three months with user names changed to random ID numbers. An analysis of the searches

conducted by a user, made him/her uniquely identifiable. Correlating data released by AOL with

publicly available datasets revealed additional private information about AOL users.

The discussion in this report is restricted to NoSQL databases with a flexible schema. A NoSQL

database is a collection of documents D = d1, . . . , dn. A document is a set of key-value pairs

keyi, valuei, each representing an attribute of an object. Enforcing partial security mechanism

which covers only a subset of attributes, may not provide comprehensive protection as protected

information could be inferred using low-risk datasets hosted by the same cloud.
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The number of documents in cloud databases limits the ability to analyze in real-time the dangers

posed by information leakage. The alternative we propose is based on random sampling and error

estimation regarding information leakage. This solution dramatically cuts the analysis time, espe-

cially, whenever the sample size is small enough to fit in the main memory of the database servers.

As expected, approximate measurements based on data sampling exhibit different levels of errors.

Sampling-based Approximate Query Processing (AQP) provides bounds on the error caused by

sampling [37, 67].

We propose insertion of disinformation documents into the collection. A secure proxy like the one

in [30] mediates the interaction between clients and the DBaaS server. The proxy intercepts the

client queries, transfers them to the encrypted queries and passes them to the cloud DBaaS server

which responds with a combination of valid and forged documents.

Eventually, the proxy decrypts the query response and filters out the disinformation documents

and forwards the desired document to the user’s application. The Selective Disinformation Doc-

ument Padding (SDDP) is proposed to avoid the overhead of disinformation document padding

in the dataset. We also investigate an Encrypted Data Indexing features for minimizing the query

processing time of augmented ciphertext datasets. The contributions of this research are:

1. A method to quantify exact volume of information leakage because of explicit and implicit

attribute cross-correlations in a cloud data warehouse.

2. A selective disinformation document padding method to reduce information leakage with lim-

ited overhead.

3. A scalable leakage assessment and parameter extraction algorithm for very large databases

based on approximate query processing.
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5.2 System Models and Assumptions

The threat model. This study is focused on system end-to-end security based on an adversarial

perspective. An adversarial threat analysis starts with thinking like an attacker and continues to

prepare the corresponding countermeasure. Two classes of threats, external and internal attacks

are identified by the model. External attacks can be conducted after obtaining unauthorized access

to data or by using tools to monitor the communication between the clients and the cloud servers.

External attackers face a more complex task since they need to bypass firewalls, intrusion detection

systems, and other protection mechanisms.

Insider attacks can be conducted by the employees and the contractors of large data centers with

access to the software, the hardware, and the data. A malicious insider could leak highly sensitive

documents or use it for nefarious activities. There is also the risk of an intruder gaining the same

level of access using the credentials of a legitimate employee.

The cloud database service cross-correlation model. Consider WDBaaS the set of collections

managed by a DBaaS as: W =
{
C1, C2, . . . , Cm

}
. Each collection Ci,∀i ∈ [1,m] consists of an

arbitrary number q of documents: Ci :
{
d1, . . . , dq

}
. A document dj = {A1, . . . , Al} includes an

arbitrary number l of 〈key, value〉 pairs known as attributes.

Consider the scenario where a target entity T has several documents in the multiple data collections

hosted by the same DBaaS. Assume a cloud malicious insider knows only one document d1 about

T. In this setting, the reference document R is defined as a document that contains all attributes of

entity T. Any cross-correlation relationships can be exploited to extract more information about

target T by cloud malicious insider. Set L contains all attributes that are extracted as a result of

cross-correlation function call. Although computationally it is very challenging to obtain complete

information of T, the attacker tries to get as close as possible to the reference document. The
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cross-correlation function, ΨT(Ci, Cj) and the leaked attributes set L about an entity T are defined

in Equation 5.1, also in Section 5.5 the concept of cross-correlation function is implemented by

NoSQL query language.

ΨT(Ci, Cj) :

∀ d ∈ Ci ∧ ∀ d′ ∈ Cj

if(µ(d, d′) == True) =⇒ L = {Att | ∀Att ∈ d′ ∧ Att /∈ d}

(5.1)

The feasibility function µ in Equation 5.1 determines if a given pair of documents are belongs to

the same entity, and can be merged according the type of shared attribute. The µ function is defined

in Equation 5.2. Note that Atti, Attj are identifier type attributes.

µ(d, d′) :
True iff ∃Atti ∈ d ∧ ∃Attj ∈ d′ |

[(Atti.key == Attj.key) ∧ (Atti.value == Attj.value)]

False Otherwise

(5.2)

An insider can bypass internal protection mechanism and pose serious risks to data confidentiality,

integrity and inference violations. The list of possible insider attacker actions are denoted as A =

{C, I,Ψ} respectively.

The risk factors and the corresponding solutions as well as the advantages and disadvantages of

the proposed solution are summarized in Figure5.1.

An insider has read/write access in the data warehouse and activity log files and could target sensi-

tive information about entity T stored as a set of 〈key, value〉 pair(s). The attacker has one initial
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Figure 5.1: Risk factors posed by malicious insiders, and the corresponding solutions with advan-
tages and disadvantages.

document stored in collection Ci and his goal is to obtain sensitive attributes of T through the

cross-correlation among other collections.

Confidentiality violation risk. The attacker misuses her existing privileges to gain further access to

sensitive information without any trace of intrusion. Such attacks are very hard to detect because

the attacker is authorized to carry out the operation used for intrusion.

Mitigation: Cryptographic schemes can be used to encrypt data before cloud outsourcing. Process-

ing encrypted data without decryption restrict the selection of cryptographic schemes selection.

An insider attacker can extract an encrypted sensitive attribute Â = 〈Ek(key), Ek(value)〉 related

to an entity of interest T stored in collection Ci by iteratively calling the cross-correlation function

Ψ(Ci, Cj), ∀j ∈ [1, n]. Two collections Ci and Cj may initially not share any documents, but they

may be linked by cross-correlation that each one of them has with other collections.

Integrity violation (active attack) risk. Integrity verification ensures that data is only modified by an

authorized user and identifies integrity violation done by an intruder. Query integrity verification

is a tamper-resistant algorithm built on Message Authentication Codes (MAC). We append a new
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attribute named eTag to each document containing a keyed hash value of the entire document. The

data owner generates the augmented attribute 〈eTag, Ek(di)〉 for any document di.

As stated in the semantic security principle, all documents should be indistinguishable. Thus, the

same procedure for generation of eTag conducted for the disinformation documents. In particular,

a sensitive attribute can be seen as an equivalent class for V attributes that have diverse values

for attributes to prevent disclosure. Finally, the attributes of real and disinformation documents

are encrypted as stated in the security plan and forwarded to the DBaaS in the cloud. Figure 5.2

illustrates the process of eTag attribute production for documents.

Info doc

Key1 V alue1

... ...

Keyn V aluen

Disinfo doc

Key1 V alue1

... ...

Keyn V aluen

Digest = Hash{Document}
eTag : Ek{Token‖Digest}

Encryption

Ek(Key1) : Ek(V alue1)
..
Ek(Keyn) : Ek(V aluen)

Encrypted doc

eTag value

Ek(Key1) Ek(V alue1)

... ...

Ek(Keyn) Ek(V aluen)

Encrypted doc

eTag value

Ek(Key1) Ek(V alue1)

... ...

Ek(Keyn) Ek(V aluen)

Figure 5.2: The high level description for eTag attribute creation.

Query integrity verification. The augmented eTag attribute is useful in two ways, including data in-

tegrity verification, and distinguishing disinformation documents from query response. The proxy

decrypts eTag value with the decryption key and verifies the tag of original documents from the

query response and filters out the disinformation documents. The proxy verifies the authenticity

of whole document with recalculation and verification with eTag value. Having eTag attribute im-
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poses a small overhead to the documents, however it guarantees the document never gets modified

by cloud insiders. Intuitively, eTag is not involved in a query processing and this attribute will

be used for the internal structure for providing integrity of data store. The verification process

grantees the integrity of any given document d as presented in Equation 5.3.

eTag
′
= MACk(d);


if(eTag == eTag

′
) : d valid

else : d invalid.

(5.3)

The crypto-hash functions are building blocks of the introduced query integrity verification algo-

rithm, and therefore, having an efficient hash function leads to low latency integrity verification.

We examined the performance of four popular hash functions with respect to the variety of docu-

ment size. The result is displayed in Figure 5.3. Considering the performance and security metrics,

we select SHA1 over other hash functions including MD5, RIPEMD and SHA256 to be used in

eTag algorithm. As it can be observed from Figure 5.3, the reason of selection of SHA1 is its high

performance (speed) at different input documents sizes.

The dynamic nature of a dataset as a persistent storage necessitate to have basic operations to

create, read, update and delete (known as CRUD). The augmented dataset (with disinformation

documents), naturally are subjected to CRUD operations. The create and read operations act on

the augmented dataset in a similar way to a normal dataset, while the update/delete operations on

the original documents should be projected on the corresponding disinformation documents. For

the performance purpose, the update/delete operations on the related disinformation documents,

can be processed immediately or in lazy fashion, postponed to the next period of the data analysis.

Furthermore, the garbage collector service, run by the proxy, can be developed to delete any un-

related disinformation from the dataset. Design and development of such a service is beyond the

scope of this work.
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Figure 5.3: Performance of four popular cryptographic hash functions in respect to document size.

5.3 DBaaS Leakage Management

Two basic methods for quantifying information leakage due to cross-correlation among the databases

and collection are discussed in this section. These methods require searching the entire databases

for exact matching of attributes, a time-consuming proposition, only feasible for small size databases.

The attributes of a document are categorized in three classes: (1) Identifier attribute, uniquely

identifies a single document in the database, e.g. social security number, phone number, or email

address. (2) Semi-identifier attributes which do not uniquely identify a document, but collectively

can distinguish a document, e.g. combination of name, department name, gender and age may

identify an individual. (3) Feature attribute expresses a characteristic of an object by giving sen-

sitive information. For example, account balance in a finance database, or the name of a person’s

disease in a health record.
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a. Explicit correlation. A shared identifier attribute among the possible databases perform join

between two databases using an explicit equality match of shared identifier attribute. This cir-

cumstance is described as explicit correlation. A correlation function in Equation 5.1 assigns a

non-negative real number value as correlation score to a each involved datasets.

A fundamental requirement to manage the amount of information leakage, is to introduce measure-

ment metrics. Two concepts, precision and recall adopted from data retrieval are used to measure

the information leakage. Precision is denoted by Pdi as the ratio of the weighted value of true infor-

mation in di to value of all attributes in di. Similarly, the recall value for any document represented

byRdi which reflects the ratio of true information in document to value of information in reference

document. In this study weights of attributes are a function of the attribute class, while in [36] all

attributes have an equal weight. Equation 5.4 will be used to quantify the value of information for

a given document d consisting of n attributes, where ωi is the assigned weight for i-th attribute.

Ω(d) =
n∑
1

ωi; Such that ωi ∈ [0, 1]

Pd =
Ω(d ∩ R)

Ω(d)
;Rd =

Ω(d ∩ R)

Ω(R)
;F1 =

2× Pd ×Rd

Pd +Rd

(5.4)

To manage the cross-correlation leakage, we intentionally insert documents containing false or

misleading values for sensitive attributes denoted as disinformation document which includes com-

mon attributes shared with the original document. Because of disinformation document insertion,

the extraction of new attributes value from correlation will be more expensive for an attacker by

factor of the number of disinformation per original document.

EXAMPLE 1. Consider five documents from different databases selected from the DBaaS ware-

house, belonging to two target individuals named “Kate Jones”, and “Mike Smith”. The goal is

to extract leaked attribute using Equations 5.1, 5.2, and 5.4. The attribute classification and their
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assigned weights are given in table 5.1.

Table 5.1: Weights of attributes

Attribute name Type ωi

Zip Semi-identifier 0.3
Address Semi-identifier 0.5
Phone Identifier 1.0
Account Identifier 1.0
Name Semi-identifier 0.6
Age Feature 0.1
Income Feature 0.1
SSN Identifier 1.0
Email Identifier 1.0

d1 = {zip : 456, address : “2512Uni.NY ”,phone : 111}

d2 = {ssn : 123, age : 33, account : 222}

d3 = {name : “Kate Jones”, age : 30, address : “abc”

, email : “kj@a.com”}

d4 = {name : “MikeSmith”, income : 70k, ssn : 123

,phone : 111}

d5 = {name : “Kate Jones”, email : “kj@a.com”, ssn : 777}

In the above example, RMikeSmith, RKate Jones are reference documents for two target entities. The

extractable information through the correlation are as follows:

75



µ(d1, d2) = FALSE;L = {zip, address, phone}

µ(d1, d3) = FALSE;L = {zip, address, phone}

µ(d1, d4) = TRUE;

L = {zip, address, phone, name, income, ssn}

Back Track

µ(d1, d2) = TRUE;

L = {zip, address, phone, name, income, ssn, age, account}

µ(d1, d3) = FALSE;

L = {zip, address, phone, name, income, ssn, age, account}

µ(d1, d5) = FALSE;

L = {zip, address, phone, name, income, ssn, age, account}

RMikeSmith = {zip, address, phone, name, income, ssn, age

, account}

RKate Jones = {name, age, address, email, ssn}

The recall value for these documents can be calculated by using Equation 5.4:

Rd1 =
1.7

5.4
≈ 0.31, Rd2 =

2.1

5.4
≈ 0.39, Rd3 =

2.2

3.2
= 0.69,

Rd4 =
2.6

5.4
= 0.48 and Rd5 =

2.5

3.2
= 0.78
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In the example above, the disinformation documents (ρ1, .., ρ6,) with low precision are created

as bellow. After inserting them into the original collections, the cloud insider has double values

for each sensitive attributes. Therefore, the real value for attributes cannot be extracted with high

confidence.

ρ1 = {zip : 654, address : “1500PlaceAZ”, income : 60k

, ssn : 321,phone : 111}

ρ2 = {ssn : 321, age : 43, address : “abcAZ”,phone : 876}

ρ3 = {ssn : 321, account : 444}

Similarly for “Kate Jones” we have :

ρ4 = {age : 20, address : “efd”, email : “kj@a.com”}

ρ5 = {name : “ClaireShepard”, ssn : 543, email : “kj@a.com”}

ρ6 = {ssn : 543, email : “xy@b.com”}

Pρ1 =
1

2.9
= 0.34;Pρ2 =

0

2.6
= 0;Pρ3 =

0

2
= 0

Pρ4 =
1

1.6
≈ 0.62;Pρ5 =

1

2.5
≈ 0.4;Pρ6 = 0

In short, it is more desirable to have low recall and precision values reflecting more uncertainty,

and consequently less information leakage. Furthermore, other probabilistic means are required to

measure the information leakage due to statistical properties of attributes in very large databases.

Under those circumstances, we introduce our second method to measure leaked information due

to statistical correlations.
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Implicit correlation. Sometimes there is a hidden mutual dependency between two data elements

and then observation of one data item could result in inferring meaningful information about the

other. The mutual dependency leaks out sensitive information about secret data which was sup-

posed to be confidential. Identifying implicit and semantically correlated subset of attributes with

different data types is a challenging work. The information theoretical methods are used to quan-

tify implicit correlations. To facilitate discussion, an example of statistical property correlation of

attributes is given below.

EXAMPLE 2. An on-line stock exchange website stores the information of share in the cloud

DBaaS. One simple analysis indicates there are correlation between number of buyers, the quantity

of buy orders and quantity of sell orders1. In the scenario of this example, the price trend is derived

from the statistical properties of two different attributes.

Performance cost and mitigations of disinformation. Insertion of disinformation documents

increases the size of database and it can negatively affect the query execution time. To quantify

the query latency in cloud DBaaS, an iterative method is employed to evaluate latency of several

simple queries on the different databases that contain specific number of documents. In this way,

we only focus on a single variable, which is the size of the database. The benchmark initially

removes all documents from all databases and repopulates those with the required dataset size.

Subsequently, two different tests are performed, with and without index. Five major query classes,

including equality check, comparison, logic, range and aggregate are considered for query process-

ing benchmark shown in Figure 5.4. To eliminate cache boost-up in the tests, the query caching is

disabled. This process is repeated for all the specified database sizes and the measurement for the

benchmark without using index is displayed in Figure 5.4a.

1If there are more buyers than sellers, it signifies a price increase; on the other hand, more sellers and high volume
indicates a price drop.
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The approach discussed in this work does not modify standard database servers thus, benefits from

database technology features including indexing. Indexing allows to perform more sophisticated

search on data, such as binary tree search, reducing the maximum search space drastically from

O(n) to O(logn), a remarkable performance improvement. Figure 5.4b presents the improvement

of the same queries execution time. The chart for a simple query on the non-indexed databases

demonstrates that query latency steadily increases with rise of database size. However, the trend of

query processing time remains steady, and shows no significant variations with increasing the size

of indexed database. The indexed attributes guarantee an insignificant change in query processing

time, especially for the encrypted databases which have the augmented size in comparison with

the plaintext non-indexed database. This experiment is designed to examine indexing over ten

ciphered and expanded databases with disinformation. Then, we measured query processing time

with indexed encrypted database. The measurement process in both cases were automated and

run under the control of the designed script which collected the processing time. The results are

discussed in the next subsection.
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Figure 5.4: The performance analysis of five different types of queries as a function of database
size: (a) databases without indexes; (b) databases with indexes
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Results and discussion. Typical cloud database services ensure advanced availability and scala-

bility, but the data confidentiality and integrity are yet an area of interest to be explored further.

The problem of secure processing of outsourced datasets with limited leakage is investigated in this

study. The sensitive data in a single dataset can be protected with using crypto-systems. However,

in the cloud DBaaS settings which is a pool of thousands of datasets, the aggregation of datasets in-

troduces a new source of information leakage. A first challenge is to measure and limit the volume

of information that an untrusted cloud database service can learn from the accumulation of data

belonging to a group of users. The risks associated with an untrusted cloud DBaaS are investigated

and a mitigation solution is proposed.

The second problem is that user applications expect to receive valid and accurate information in

response of the issued queries, not the fake information. Most NoSQL databases have a different

performance with processing the same query over different database size. Our experimental results

show no significant variations in performance for a linear increase in database size, the performance

penalty is negligible. This can be explained by the multilevel indexing which are utilized by

NoSQL databases to provide a fast access time and short latency for query processing over larger

databases. To overcome the second challenge, we propose and analyze an efficient algorithm based

on the digital signature scheme to filter out the noisy documents.

5.4 Disinformation, Sensitivity Analysis, and Approximate Query Processing

Disinformation. A last resort method for information leakage prevention is disinformation, repli-

cation of collection documents with altered sensitive fields. The replication index is the cardinality

of the set of documents created to hide the sensitive information in an original document. The

larger the replication index, the more difficult it is for an attacker to identify the sensitive informa-

tion, but the larger storage is required for the expanded collection.
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The indiscriminate replication of all collection documents, not only increases the collection storage

space dramatically, but also increases the response time for aggregate queries by a factor at least

equal to the replication index. For example, a 100 TB collection becomes 1 PB collection when

the replication index of every document in the collection is equal to ten; the query response time

increases in average by an order of magnitude.

On-Line Analytical Processing (OLAP) applications extract information from massive datasets.

The response time to a query posed to a very large collection can be prohibitive and limit the

usefulness of data analytics. Many OLAP applications are latency sensitive and in some cases,

e.g., in care of exploratory investigations, it is preferable to have an approximate answer to a query

sooner than an accurate answer later. In such cases the Approximate Query Processing (AQP)

solution proposed in [37] offers a tempting alternative and, as shown in this section, can also be

useful for limiting information leakage.

AQP is based on a sampling technique for providing approximate responses to aggregated queries

alongside an estimation of the implicit error produced by this method. An aggregate query is a

query that calls aggregate functions to return a meaningful computed summary of specific attributes

of a group of documents. Common aggregate functions are: Average, Max, Min, and Count.

An AQP system supplies confidence intervals indicating the uncertainty of approximate answers.

Indeed, an approximate answer without the specification of the errors involved would not be useful.

The documents in a collection have different levels of sensitivity, therefore an indiscriminate repli-

cation of all documents is not warranted. The solution proposed in this research requires a sen-

sitivity analysis of the collection documents. Sensitivity analysis enables us to selectively apply

disinformation to the collection documents. We choose AQP to carry out efficiently the collection

sensitivity analysis.

82



Sensitivity analysis, samples, and errors. Sensitivity analysis has two stages: (i) establish sen-

sitivity levels and (ii) determine the number of collection documents at each sensitivity level. The

second stage of the sensitivity analysis requires an examination of all collection documents, a

rather slow process. To facilitate fast sensitivity analysis, we shall use samples of the collection

and report the estimation errors as required by AQP.

Collection samples consist of randomly selected documents from the original collection. Queries

can be conducted in parallel on such samples. Given the set of documents in collection C, and S,

the set of documents in a sample used by the AQP method, the scaling factor, σ, is defined as:

σ =
| C |
| Ŝ |

. (5.5)

The smaller the sample size, the larger is σ, and the shorter is the response time to a query posed

to the sample, but also the larger are the estimation errors based on this sample.

Let S be a set of n sensitivity classes of documents in C, S = {s1, s2, . . . , sn}. Call ci the count

of documents classified in sensitivity class si with C =
∑n

i=1 ci. Given the aggregate query θ, let

θ̂ be the corresponding approximate query carried out using the documents in sample S.

The response to the approximate query θ̂ may only include documents in m ≤ n sensitivity classes

ŝi of the set Ŝ = {ŝ1, ŝ2, . . . , ŝn}. Call ĉi ≤ ci the count of documents classified in sensitivity class

ŝi. Then | Ŝ |=
∑m

i=1 ĉi. The sampling error for sensitivity class si is

êi = 100
ci − ĉi
ci

. (5.6)

83



The error vector due to sampling is

E = (ê1, ê2, . . . , ên). (5.7)

In a uniform random sampling n−m classes may not appear in the response so components of the

error vector for missing classes are 100%.

The Sampling-based Approximate Query Processing (S-AQP) with guaranteed accuracy provides

bounds on the error caused by sampling [37]. A key element of any AQP system is to provide error

bounds for the approximative results, allowing the user to decide whether the results are acceptable.

Confidence Intervals (CI) represent the range of values centered at a known sample mean and used

to calculate error bounds.

We use a close-form Central Limit Theorem(CLT) and Markov and Chebyshev inequalities to get

the tightest bounds. As the number of elements in the sample n goes to infinity, the distribution

converges into the standard normal random distribution N(0, 1).

The tightness of the bounds resulted from the three aforementioned approaches are illustrated in

Figure 5.5. Markov inequality provides larger deviation bounds than Chebyshev inequality. Close-

form CLT provides the tightest bound among these three approaches [68].
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Figure 5.5: Bound tightness comparison obtained by using Markov, Chebyshev inequalities and
close-form CLT.

If the estimation produced by AQP has the error percentage higher than the acceptable level sample

size should be increased. This technique is known as bootstrapping. Sampling can be done with or

without replacement. In sampling without replacement (disjoint samples), any two samples are in-

dependent whereas in sampling with replacement, sample values are dependent. Sampling without

or with replacement is conducted during the sampling phase. The obtained results by resampling

without replacement from the larger sample set are dependent on the original sample set, however

it leads to a slightly more accurate estimation. The resampling process can be repeated to address

user constraints related to acceptable approximation errors and response time latency [37, 40].

A bootstrap like resampling method is required to create a multi-layer sample set to meet different

expectations. Assume θ is the query which is posed to process on the very large database D. With

AQP the new query θ̂ will be composed to approximate the answer of θ using proper sample set.

To rewrite an aggregate query θ to θ̂, one of the critical parameter is the scaling factor, denoted

as δ = |D|
|sample| which is the ratio of the cardinality of the original database to cardinality of the

sample. Figure 5.6 presents our resampling method.
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Figure 5.6: Execution of an aggregate query θ̂ on multiple random samples. The level of resam-
pling is proportional to users’ expectation in terms of error rate and latency.

Experimental results. Our experiments were conducted on a cluster of 100 AWS EC2 instances

(t2.large) with two vCPU, 8 GB memory, and the Linux kernel version 4.4.0-59-generic. Mon-

goBD version 3.2.7 was used as the NoSQL server. MongoDB supports variety of storage engines

designed and optimized for various workloads. The storage engine is responsible for data storage

both in memory and on disk; we chose WiredTiger storage engine. The OPE and AHOM cryp-

tosystems are implemented locally and other crypto modules are imported from OpenSSL version

1.0.2g.

First, we measured the effect of the sample size on the estimation error. We created four sets of

random samples from the original collection of 107 documents. Each set included 100 random
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samples with 102, 103, 104, and 105 documents. The samples are selected with and without re-

placement. Figure 5.7 displays the error percentage for different sample size for the two different

sampling modes. The measurement results show that samples without replacement exhibit slightly

more accurate results than samples with replacement. For instance, the average error percentage is

0.22% for the largest sample of 105 documents, whereas the error is 5.08% for the smallest sample

size of 100 documents. We concluded that a scaling factor of 1000 is perfectly suitable. The is

likely to reduce the average response time to a query by two orders of magnitude.
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Figure 5.7: Estimation errors and confidence intervals for a collection with 107 documents. Re-
sults are shown for 102, 103, 104, and 105 documents per sample. Sampling without replacement
consistently exhibit slightly more accurate results than sampling with replacement.

Next, we investigated sensitivity analysis. The first step of the sensitivity analysis is the determina-

tion the number of documents in each sensitivity class. The second step is the decision regarding

the number of disinformation documents for each sensitivity class. In this experiment, we used a

collection of ten million documents. Table 5.2 shows the eight sensitivity classes and the count

and percentage of documents in each sensitivity class.
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Table 5.2: Document counts in eight sensitivity classes for a collection with 107 documents.

Class (si) Cardinality(ci) Percentage

Top Secret 782 471 7.823
Secret 1 475 118 14.751
Information 3 134 844 31.348
Official 1 475 603 14.756
Unclassified 783 443 7.834
Clearance 783 024 7.830
Confidential 782 698 7.826
Restricted 782 799 7.828

Total 10 000 000 100.00%

The ultimate objective of the sensitivity analysis is to reduce the query response time, defined as

the interval between the time when the sever receives a query and the time it starts forwarding

the query result. Most database servers cache the most recently used data to reduce the response

time. In our experiments, we disabled query caching and prefetching in order to force the query

optimizer to serve the next matching queries directly from the database not cache memory. The

aggregate query displayed in Figure 5.8 is used for computation of cardinality and percentage of

each sensitivity class.

db[collection].aggregate([

{"$group":{" id":{"clearance":"$clearance"}, "count":{"$sum":1}}},
{"$project": { "count": 1, "percentage":{
"$concat":[{"$substr":[{"$multiply":[{"$divide":["$count",
{"$literal":Sample size }]},100]}, 0,6]},"", "%"]} } } ]);

Figure 5.8: Aggregate query for sensitivity analysis of collection. This query will be executed on
the original database and 100 sample databases.
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Figure 5.9: The performance of AQP based classification over 100 samples set with 105, 104, 103

and 102 documents: (a) the processing time of aggregate query; (b) speedup obtained of AQP based
classification.

The results show that the average speedup due to AQP is better than linear and the estimation
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errors are quite low. Both metrics are plotted for the four sample size in Figure 5.9. For the largest

sample of 105 documents, the average processing time is 93 ms, whereas for the original collection

(including 107 documents) the processing time of the same query is 14 000 ms, a speedup of 150.

Table 5.3, displays the estimation for cardinality of each class , when the sample size is 104 and

scaling factor of σ = 103. In this case the speedup is 1 300 and the error is about 1%. It is worth

comparing the approximate result with the exact values in Table 5.2.

Table 5.3: The effect of sampling on the number of documents in each sensitivity class when the
sample size 104. The column labeled Deviation shows the cardinality differences between the
sample and the original collection.

Class(s′i) Cardinality(c′i) Percentage Deviation

Top Secret 785 600 7.856 -3 129
Secret 1 462 000 14.620 13 118
Information 3 152 200 31.522 -17 356
Official 1 463 700 14.637 11 903
Unclassified 787 200 7.872 -3 757
Clearance 784 800 7.848 -1 776
Confidential 783 900 7.839 -1 202
Restricted 780 300 7.803 -2 499

Total 9 945 260 99.4526 54 740

After running the approximate sensitivity classification, the disinformation replication factor V

can be assigned for each class according to their sensitivity class. For example, knowing the ap-

proximated cardinality value c′i, replication factors of 100, 25, 0, 5, 10, 0, 50 and 15 are considered

for ”Top Secret”, ”Secret”, ”Information”, ”Official”, ”Unclassified”, ”Clearance”, ”Confidential”,

and ”Restricted” classes, respectively, from Table 5.3. The expansion factor E is defined as the

ratio of the cardinality of the collection with disinformation to the original collection. In this

example, the expansion factor using SDDP method is E = 0.18 while indiscriminate disinforma-

tion insertion leads to an expansion factor E = 100. The overhead is drastically reduced while
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providing a similar leakage prevention level.

We concluded that AQP is a powerful method to substantially reduce query latency with bounded

and small estimation errors. AQP with uniform random sampling provides sensible results for

classification aggregate query workload, with a sensible compromise between sample size and

query latency. However, for queries with different workloads such as aggregate functions that

involve multiple correlated collections, the uniform sampling cannot provide accurate responses

and we designed a new technique for biased sampling solution for this problem. In the next section,

we highlight approximated answers for correlated collections.

5.5 Warehouse Information Leakage

Can the attribute correlation method discussed in Section 5.3 be extended to a cloud data warehouse

hosting a large number of databases? Leakage prevention in case of a data warehouse requires

an exhaustive cross-correlations analysis among all cloud datasets. For a warehouse hosting n

databases, each one with m collections, each with q documents will require N = (m × n × q)2

operations. For example, when m = 103, n = 106, and q = 109 then N = 1036. The solution we

propose is also based on AQP.

Cross-correlation size estimation. The approximation method has two phases: first, identify-

ing the correlated keys; second, devising an optimum sampling method appropriate for cross-

correlation cardinality approximation. We elaborate each phase as follows.

Phase 1: Correlated keys identification. The underlying idea is to create a graph of collections

which has common attribute keys using the selected samples. In the resulting graph, the vertices i

and j are connected through an edge if they both have the same identifier attribute. The identifier
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attribute could be postal address, phone number, social security number, patient ID, and so on for

any collection related to healthcare, utilities, financial records, etc.

Exploring connected components in an undirected graph can be done with graph search algorithms

such as Depth First Search (DFS) or Breadth First Search (BFS) starting from every unvisited ver-

tex. As a result, the nodes with higher degree indicate attributes that cause more cross-correlations.

The sorted list of vertices based on their degree exposes the attributes that cause more cross-

correlation in a pool of cloud databases.

To facilitate the discussion, we first consider a 2-way cross-correlation which is an unintentional

join relation between two collections C1 and C2. This relation is a result of a common identifier

attribute, namely linkage attribute. Intuitively, a k-way (k > 2) cross-correlation relation is a k-way

join relation between a sequence of k correlated collections C1,C2, . . . ,Ck which is equivalent to

a combination of several 2-way cross-correlations [39, 69].

Approximation of cross-correlation cardinality based on the uniform random samples suffers from

a large error, which is addressed in our new sampling method. Along with accuracy, quality assess-

ment of the approximated answer is another essential constituent which is a crucial property for

any approximation method. In this section, we focus on the new sampling method that produces

confidence intervals to capture the exact cardinality of cross-correlation with high probability.

In particular, the confidence interval obtained from the sample sets were drawn by the sampling

method define a range for estimated cardinality values (C̃± α) such that the exact value of cross-

correlation cardinality C lies within the range with probability of at least 1− ε, where 0 < ε� 1.

Phase 2: Heterogeneous biased sampling. The heterogeneous biased sampling is inspired by a

recently improved sampling technique which takes the frequency of values into consideration [70].

Biased sampling creates sample sets with respect to the repetition frequency of each value of the
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intended attribute. The higher frequency value, the higher selectivity probability which means it is

more likely to be included in the sample set. Furthermore, infrequent values from both collections

have small contribution in the sample set, however, if there are large number of infrequent values

their impact adds up.

We customized the biased sampling algorithm consistent with cross-correlation analysis queries

which are join-driven to probe and extract the leaked attributes from the given collections. For any

2-way join query there are two collections: the left and the right collection. The cross-correlation

analytical query returns new set of attributes from the right collection based upon the evaluation

result of the join-predicate.

To balance between sample size and accuracy, a tunable threshold Ti for each collection Ci is

defined, so that the values with frequency of fv > Ti are definitely added to the sample, otherwise

they will be included with probability of pv = fv
Ti

. Higher values of Ti result in smaller sample

set. The cross-correlation approximation, using biased sampling for an attribute value v between

two collections CL and CR with the corresponding threshold parameters TL and TR, respectively,

is demonstrated in Equation 5.8.

cv :



fL(v).fR(v) if fL(v) ≥ TL and fR(v) ≥ TR

TL.fR(v) if fL(v) < TL and fR(v) ≥ TR

fL(v).TR if fL(v) ≥ TL and fR(v) < TR

fL(v).fR(v).max( TL
fL(v)

, TR
fR(v)

) if fL(v) < TL and fR(v) < TR

(5.8)

We modify the threshold parameters of biased sampling algorithm to generate a larger sample set

taken from the right collection than that of the left collection. We manage the threshold value
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of right collection TR to be significantly smaller than TL to increase selectivity possibility which

results in a larger sample size. By this adjustment, two samples are heterogeneous in terms of

their size. Next, the cross-correlation analysis query is performed over the samples. An instance

of cross-correlation extractor query which is implementation of Equation 5.1 is displayed in Fig-

ure 5.10.

db[Left].aggregate([
{$lookup :{from :Right,
localField:value,foreignField:value,
as :"correlation" }},
{$match :{"correlation":{$ne :[]}}},
{ $out : saveToCollection }]);

Figure 5.10: The aggregation join query for discovery of attributes from the Right collection based
on evaluation of equality check on the value of the common attribute.

After samples are created, the 2-way cross-correlation analysis query is processed over the samples

instead of the original data. The sampling probability for collection Ci is pi = |Si|
|Ci| , where SL and

SR are sample set are taken from CL and CR respectively. The exact cross-correlation between CL,

CR is denoted by CLR while SLR is the approximated value computed for SL and SR. Utilizing

the biased sampling, the cross-correlation size approximation is computed by C̃ =
∑

v cv. The

scaling factor 1
min(pL,pR)

is used to scale up the result from the size of samples to the size of original

dataset.

Experimental results. We use four cross-correlated databases from different areas consisting of

social media profiles, phone directory, medical and financial records. Each collection includes 107

documents. The pairwise exact cross-correlation cardinalities are known in advance, as displayed

in Figure 5.11.

94



The proposed estimation method based on heterogeneous biased sampling is evaluated on the dif-

ferent datasets and compared with the random sample selection method. The optimized biased

sampling method can provide more accurate response in the speed of interactive time. Although,

the proposed method requires more precomputation regarding the frequency of values, it can be

done offline. In contrast to the other independent sampling methods, approximation using the

heterogeneous biased sampling provides more accurate cross-correlation size estimation with the

same sample size within interactive time budget. The comparison between random sampling and

the proposed method is illustrated in Figure 5.12.

Figure 5.11: Four datasets containing 107 documents with a pre-defined level of cross-correlations
are used by the estimation algorithm.
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Figure 5.12: Approximation of cross-correlation cardinality using two sampling methods.

The calculation time of the exact cross-correlation cardinality between social media and phone

directory collections requires almost 12 000 seconds of processing time. However, with the pro-

posed approximation method, it is done in 1.5 seconds in trade-off with 1% error. This method

significantly improves time complexity of leakage analysis in a cloud DBaaS warehouse.

5.6 Conclusion

Information leakage is a new type of threat to public clouds where data warehouses maintain nu-

merous databases from many organizations. The sensitivity analysis based on approximate query

processing introduced in this work identifies the most valuable information to be protected. In-

sertion of disinformation documents can reduce the information leakage resulting from attribute

cross-correlations among a group of datasets. Yet, indiscriminate insertion of disinformation in-

creases dramatically the size of the datasets and the query response time. Thus, the need for
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sensitivity analysis is a fundamentally important requirement.

Attribute cross-correlation between hosted databases in a cloud warehouse, involves accessing

enormous amounts of data, information leakage analysis is prohibitively time consuming. To mit-

igate this process, an approximation method is presented to estimate the size of cross-correlation

using heterogeneous biased sampling with reasonable level of inaccuracy. The optimum sample

size results in substantial speed up in cross-correlation cardinality analysis with closer answer to

the exact value.

The solution discussed in Section 5.5 suggest introduction of leakage detection cloud services

that can offer organizations guidance on how to better protect their data and minimize the risks

of information leakage. Such recommendations include the use of data encryption for particular

fields, or other nonlinear transformations diminishing cross-correlation leakage.

Future work. Sensitivity and cross-correlation analysis at cloud warehouse level can only be

conducted by a CSP with access to all datasets. We suggest individual Service Level Agreements

that include a clause related to information leakage protection, allowing the CSPs to periodically

compute Cross-Correlation Indexes (CCIs).
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CHAPTER 6: CONCLUSION

Fine-grained encryption schemes add another layer of protection for data stored in the third-party

storage; however, most applications in the cloud platform desire not only secure storage, but also

processing functionality on the encrypted data sets. The primary hurdle that restricts utilization of

schemes that only protect data at-rest is that encrypted data can not be queried which is very crucial

for most applications. Intuitively, for processing encrypted data in a cloud service, the decryption

key must be compromised, which is a big security violation. This is considered a big conflict of

cloud computing, and using traditional cryptosystems. Motivated by these limitations a new set

of cryptosystems is needed to exercise in the cloud settings to maintain data security meanwhile

taking advantages of cloud platform. This issue is addressed in our study by investigating new

cryptosystems that support computation on the ciphertext.

Theoretically, FHE is considered the safest cryptosystem that allows all type of general compu-

tation to be performed on the encrypted data. FHE also has great semantic security and it leaks

almost nothing about the data. However, it is prohibitively inefficient even after lots of improve-

ment on practicality of FHE still it is nine orders of magnitude slower than plaintext computation.

Beside, the huge cryptographic overhead of FHE, another main reason for impracticality of FHE

is the query should be expressed as circuit over the entire database. This means, for every single

query the entire database must be processed while in plain database by using indexes only small

fraction of data need to be scanned. We tried to come up with intermediate point ideally, almost as

fast as plaintext while at the same time having high degree of security.

One main contribution of our solution is its modest overhead which is roughly below 20% through-

put (number of query per second that server can execute) loss in comparison with plaintext database.

Interestingly, SecureNoSQL makes changes neither in the existing database service nor in the ap-
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plications. Thus, the sever use special data structure such as indexes to run queries on encrypted

data in a short amount of time. Also, the application can run on top of SecureNoSQL without get-

ting involved in the complexity of encryption/decryption operations. The insight of SecureNoSQL

is that in fact most queries posed by clients are using limited set of query operators, so we tried to

support those operations on the encrypted data.

Impracticality of FHE motivated us to use specific kind of homomorphism that supports some

operations such as summation and multiplication. First, DET encryption was used to support

equality check and full-word search operations; therefore, a group of operations such as Count

($count), Group by ($group), Equality match ($eq), Not equal ($ne), and Selects if value specified

is in the array ($in). We used OPE to support large number of operations that are dealing with

the order of data such as Greater than ($ge), Less than ($lt), $orderby, $sort, $max, and $min

as well as range queries on encrypted data. OPE encryption is suitable for data fields with high

entropy where the order of values does not leak much, so OPE is still provides an acceptable level

of protection.

For protection of data in transit we rely on Secure Socket Layer (SSL) and Transport Layer Security

(TLS) protocols, especially data already have been encrypted with variety of the schemes.

Aggregation of large number of databases in a cloud data warehouse poses a new type of security

risk called information leakage threatens sensitive information even in a encrypted database. The

sensitivity analysis of a very large scale NoSQL databases based on approximated query processing

is presented in which provides classification information in interactive speed. The result provided

by this method usually comes with negligible deviation from the exact result. The output of fast

classification method can be used to focus on the security of documents which are classified in the

top sensitivity class.

The concept of information leakage resulted from attribute cross-correlation in the pool of cloud-
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hosted databases investigated in this work. For leakage management, insertion of disinformation

documents studied to limit leakage among a group of datasets. Meanwhile, indiscriminate in-

sertion of disinformation introduces two disadvantages to the systems. First, the growth in data

overhead causes system performance degradation. Second, there will be a substantial increase in

communication cost between the DBaaS sever and the clients’ applications.

To overcome these challenges, two mitigation solutions were presented. First, the leakage quanti-

tative methods to detect the documents that have more leaked information in datasets. A fast sen-

sitivity analysis method based on approximate query processing for any dataset with multi-level

sensitivity was presented. To enhance the performance and speed up of the AQP based classifica-

tion, we used multi-layer sampling technique to provide different sizes to deliver query response

with variety of acceptable error rates. Using AQP, elevates the scalability of sensitivity analysis to

any database size in the interactive speed. With the proposed method, the large latency of analyt-

ical aggregate queries which severely limits the feasibility of many analysis applications will be

resolved.

Second, we have extend application of AQP to design a method to approximate cross-correlation

cardinality in the cloud DBaaS warehouse level with enormous number of BP level databases.

With the presented method, the attribute cross-correlation can be discovered in almost interactive

speed. The proposed technique to estimate the size of cross-correlation using biased sampling

showed both theoretically and empirically effectiveness of our method. They main reason for

taking this approach is that in this way the optimum sample size results in substantial speed up in

cross-correlation analysis with closer answer to the real value.
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