1,648 research outputs found

    Statistical Analysis of Reduced Round Compression Functions of SHA-3 Second Round Candidates

    Get PDF
    National Institute of Standards and Technology announced a competition in 2008, of which the winner will be acknowledged as the new hash standard SHA-3. There are 14 second round candidates which are selected among 51 first round algorithms. In this paper, we apply statistical analysis to the second round candidate algorithms by using two different methods, and observe how conservative the algorithms are in terms of randomness. The first method evaluates 256-bit outputs, obtained from reduced round versions of the algorithms, through statistical randomness tests. On the other hand, the second method evaluates the randomness of the reduced round compression functions based on certain cryptographic properties. This analysis gives a rough idea on the security factor of the compression functions

    Security of the SHA-3 candidates Keccak and Blue Midnight Wish: Zero-sum property

    Get PDF
    The SHA-3 competition for the new cryptographic standard was initiated by National Institute of Standards and Technology (NIST) in 2007. In the following years, the event grew to one of the top areas currently being researched by the CS and cryptographic communities. The first objective of this thesis is to overview, analyse, and critique the SHA-3 competition. The second one is to perform an in-depth study of the security of two candidate hash functions, the finalist Keccak and the second round candidate Blue Midnight Wish. The study shall primarily focus on zero-sum distinguishers. First we attempt to attack reduced versions of these hash functions and see if any vulnerabilities can be detected. This is followed by attacks on their full versions. In the process, a novel approach is utilized in the search of zero-sum distinguishers by employing SAT solvers. We conclude that while such complex attacks can theoretically uncover undesired properties of the two hash functions presented, such attacks are still far from being fully realized due to current limitations in computing power

    Improved cryptanalysis of skein

    Get PDF
    The hash function Skein is the submission of Ferguson et al. to the NIST Hash Competition, and is arguably a serious candidate for selection as SHA-3. This paper presents the rst third-party analysis of Skein, with an extensive study of its main component: the block cipher Three sh. We notably investigate near collisions, distinguishers, impossible di erentials, key recovery using related-key di erential and boomerang attacks. In particular, we present near collisions on up to 17 rounds, an impossible di erential on 21 rounds, a related-key boomerang distinguisher on 34 rounds, a known-related-key boomerang distinguisher on 35 rounds, and key recovery attacks on up to 32 rounds, out of 72 in total for Threefish-512. None of our attacks directly extends to the full Skein hash. However, the pseudorandomness of Threefish is required to validate the security proofs on Skein, and our results conclude that at least 3

    09031 Abstracts Collection -- Symmetric Cryptography

    Get PDF
    From 11.01.09 to 16.01.09, the Seminar 09031 in ``Symmetric Cryptography \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Design and Analysis of Cryptographic Hash Functions

    Get PDF
    Wydział Matematyki i InformatykiKryptograficzne funkcje haszujące stanowią element składowy wielu algorytmów kryptograficznych. Przykładowymi zastosowaniami kryptograficznych funkcji haszujących są podpisy cyfrowe oraz kody uwierzytelniania wiadomości. Ich własności kryptograficzne mają znaczący wpływ na poziom bezpieczeństwa systemów kryptograficznych wykorzystujących haszowanie. W dysertacji analizowane są kryptograficzne funkcje haszujące oraz omówione główne zasady tworzenia bezpiecznych kryptograficznych funkcji haszujących. Analizujemy bezpieczeństwo dedykowanych funkcji haszujących (BMW, Shabal, SIMD, BLAKE2, Skein) oraz funkcji haszujących zbudowanych z szyfrów blokowych (Crypton, Hierocrypt-3, IDEA, SAFER++, Square). Głównymi metodami kryptoanalizy użytymi są skrócona analiza różnicowa, analiza rotacyjna i przesuwna. Uzyskane wyniki pokazują słabości analizowanych konstrukcji.Cryptographic Hash Functions (CHFs) are building blocks of many cryptographic algorithms. For instance, they are indispensable tools for efficient digital signature and authentication tags. Their security properties have tremendous impact on the security level of systems, which use cryptographic hashing. This thesis analyzes CHFs and studies the design principles for construction of secure and efficient CHFs. The dissertation investigates security of both dedicated hash functions (BMW, Shabal, SIMD, BLAKE2, Skein) and hash functions based on block ciphers (Crypton, Hierocrypt-3, IDEA, SAFER++, Square). The main cryptographic tools applied are truncated differentials, rotational and shift analysis. The findings show weaknesses in the designs

    Optimization of Tree Modes for Parallel Hash Functions: A Case Study

    Full text link
    This paper focuses on parallel hash functions based on tree modes of operation for an inner Variable-Input-Length function. This inner function can be either a single-block-length (SBL) and prefix-free MD hash function, or a sponge-based hash function. We discuss the various forms of optimality that can be obtained when designing parallel hash functions based on trees where all leaves have the same depth. The first result is a scheme which optimizes the tree topology in order to decrease the running time. Then, without affecting the optimal running time we show that we can slightly change the corresponding tree topology so as to minimize the number of required processors as well. Consequently, the resulting scheme decreases in the first place the running time and in the second place the number of required processors.Comment: Preprint version. Added citations, IEEE Transactions on Computers, 201

    Security analysis of NIST-LWC contest finalists

    Get PDF
    Dissertação de mestrado integrado em Informatics EngineeringTraditional cryptographic standards are designed with a desktop and server environment in mind, so, with the relatively recent proliferation of small, resource constrained devices in the Internet of Things, sensor networks, embedded systems, and more, there has been a call for lightweight cryptographic standards with security, performance and resource requirements tailored for the highly-constrained environments these devices find themselves in. In 2015 the National Institute of Standards and Technology began a Standardization Process in order to select one or more Lightweight Cryptographic algorithms. Out of the original 57 submissions ten finalists remain, with ASCON and Romulus being among the most scrutinized out of them. In this dissertation I will introduce some concepts required for easy understanding of the body of work, do an up-to-date revision on the current situation on the standardization process from a security and performance standpoint, a description of ASCON and Romulus, and new best known analysis, and a comparison of the two, with their advantages, drawbacks, and unique traits.Os padrões criptográficos tradicionais foram elaborados com um ambiente de computador e servidor em mente. Com a proliferação de dispositivos de pequenas dimensões tanto na Internet of Things, redes de sensores e sistemas embutidos, apareceu uma necessidade para se definir padrões para algoritmos de criptografia leve, com prioridades de segurança, performance e gasto de recursos equilibrados para os ambientes altamente limitados em que estes dispositivos operam. Em 2015 o National Institute of Standards and Technology lançou um processo de estandardização com o objectivo de escolher um ou mais algoritmos de criptografia leve. Das cinquenta e sete candidaturas originais sobram apenas dez finalistas, sendo ASCON e Romulus dois desses finalistas mais examinados. Nesta dissertação irei introduzir alguns conceitos necessários para uma fácil compreensão do corpo deste trabalho, assim como uma revisão atualizada da situação atual do processo de estandardização de um ponto de vista tanto de segurança como de performance, uma descrição do ASCON e do Romulus assim como as suas melhores análises recentes e uma comparação entre os dois, frisando as suas vantagens, desvantagens e aspectos únicos

    Hardware Architectures for Post-Quantum Cryptography

    Get PDF
    The rapid development of quantum computers poses severe threats to many commonly-used cryptographic algorithms that are embedded in different hardware devices to ensure the security and privacy of data and communication. Seeking for new solutions that are potentially resistant against attacks from quantum computers, a new research field called Post-Quantum Cryptography (PQC) has emerged, that is, cryptosystems deployed in classical computers conjectured to be secure against attacks utilizing large-scale quantum computers. In order to secure data during storage or communication, and many other applications in the future, this dissertation focuses on the design, implementation, and evaluation of efficient PQC schemes in hardware. Four PQC algorithms, each from a different family, are studied in this dissertation. The first hardware architecture presented in this dissertation is focused on the code-based scheme Classic McEliece. The research presented in this dissertation is the first that builds the hardware architecture for the Classic McEliece cryptosystem. This research successfully demonstrated that complex code-based PQC algorithm can be run efficiently on hardware. Furthermore, this dissertation shows that implementation of this scheme on hardware can be easily tuned to different configurations by implementing support for flexible choices of security parameters as well as configurable hardware performance parameters. The successful prototype of the Classic McEliece scheme on hardware increased confidence in this scheme, and helped Classic McEliece to get recognized as one of seven finalists in the third round of the NIST PQC standardization process. While Classic McEliece serves as a ready-to-use candidate for many high-end applications, PQC solutions are also needed for low-end embedded devices. Embedded devices play an important role in our daily life. Despite their typically constrained resources, these devices require strong security measures to protect them against cyber attacks. Towards securing this type of devices, the second research presented in this dissertation focuses on the hash-based digital signature scheme XMSS. This research is the first that explores and presents practical hardware based XMSS solution for low-end embedded devices. In the design of XMSS hardware, a heterogenous software-hardware co-design approach was adopted, which combined the flexibility of the soft core with the acceleration from the hard core. The practicability and efficiency of the XMSS software-hardware co-design is further demonstrated by providing a hardware prototype on an open-source RISC-V based System-on-a-Chip (SoC) platform. The third research direction covered in this dissertation focuses on lattice-based cryptography, which represents one of the most promising and popular alternatives to today\u27s widely adopted public key solutions. Prior research has presented hardware designs targeting the computing blocks that are necessary for the implementation of lattice-based systems. However, a recurrent issue in most existing designs is that these hardware designs are not fully scalable or parameterized, hence limited to specific cryptographic primitives and security parameter sets. The research presented in this dissertation is the first that develops hardware accelerators that are designed to be fully parameterized to support different lattice-based schemes and parameters. Further, these accelerators are utilized to realize the first software-harware co-design of provably-secure instances of qTESLA, which is a lattice-based digital signature scheme. This dissertation demonstrates that even demanding, provably-secure schemes can be realized efficiently with proper use of software-hardware co-design. The final research presented in this dissertation is focused on the isogeny-based scheme SIKE, which recently made it to the final round of the PQC standardization process. This research shows that hardware accelerators can be designed to offload compute-intensive elliptic curve and isogeny computations to hardware in a versatile fashion. These hardware accelerators are designed to be fully parameterized to support different security parameter sets of SIKE as well as flexible hardware configurations targeting different user applications. This research is the first that presents versatile hardware accelerators for SIKE that can be mapped efficiently to both FPGA and ASIC platforms. Based on these accelerators, an efficient software-hardwareco-design is constructed for speeding up SIKE. In the end, this dissertation demonstrates that, despite being embedded with expensive arithmetic, the isogeny-based SIKE scheme can be run efficiently by exploiting specialized hardware. These four research directions combined demonstrate the practicability of building efficient hardware architectures for complex PQC algorithms. The exploration of efficient PQC solutions for different hardware platforms will eventually help migrate high-end servers and low-end embedded devices towards the post-quantum era
    corecore