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1. Introduction

Abstract. In February 2000 the NESSIE project has launched an open
call for the next generation of cryptographic algorithms. These algorithms
should offer a higher security and/or confidence level than existing ones,
and should be better suited for the constraints of future hardware and
software environments. The NESSIE project has received 39 algorithms,
many of these from major players. In October 2001, the project com-
pleted the first phase of the evaluation and has selected 24 algorithms
for the second phase. The selection of the portfolio of 17 recommended
algorithms has been announced in February 2003. This article presents
an introduction to the NESSIE project.

NESSIE (New European Schemes for Signature, Integrity, and Encryption) is a
research project within the Information Societies Technology (IST) Programme
of the European Commission. The participants of the project are:

– Katholieke Universiteit Leuven (Belgium), coordinator;
– Ecole Normale Supérieure (France);
– Royal Holloway, University of London (U.K.);
– Siemens Aktiengesellschaft (Germany);
– Technion - Israel Institute of Technology (Israel);
– Université Catholique de Louvain (Belgium); and
– Universitetet i Bergen (Norway).

NESSIE is a 3-year project, which started on January 1, 2000. This paper presents
the state of the project, and it is organized as follows. Section 2 discusses the
NESSIE call and its results. Section 3 discusses the tools which the project is
developing to support the evaluation process. Sections 4 and 5 deal with the se-
curity and performance evaluation respectively, and Sect. 6 discusses the selection
of algorithms for the 2nd phase. Section 7 raises some intellectual property issues.
The NESSIE approach towards dissemination and standardization is presented
in Section 8. Finally, conclusions are put forward in Section 9.

Detailed and up to date information on the NESSIE project is available at
the project web site http://cryptonessie.org/.

† Bart Preneel
Katholieke Univ. Leuven, Dept. Electrical Engineering-ESAT,
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
bart.preneel@esat.kuleuven.ac.be
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2. NESSIE Call

In the first year of the project, an open call for the submission of cryptographic
algorithms, as well as for evaluation methodologies for these algorithms has been
launched. The scope of this call has been defined together with the project indus-
try board (PIB) (cf. Sect. 8), and it was published in February 2000. The deadline
for submissions was September 29, 2000. In response to this call NESSIE received
40 submissions, all of which met the submission requirements.

2.1 Contents of the NESSIE Call

The NESSIE call includes a request for a broad set of algorithms providing date
confidentiality, data authentication, and entity authentication. These algorithms
include block ciphers, stream ciphers, hash functions, MAC algorithms, digital
signature schemes, and public-key encryption and identification schemes (for def-
initions of these algorithms, see [441]). In addition, the NESSIE call asks for
evaluation methodologies for these algorithms. While key establishment proto-
cols are also very important, it was felt that they should be excluded from the
call, as the scope of the call is already rather broad.

The scope of the NESSIE call is much wider than that of the AES call launched
by NIST [630], which was restricted to 128-bit block ciphers. It is comparable
to that of the RACE Project RIPE (Race Integrity Primitives Evaluation, 1988-
1992) [116] (confidentiality algorithms were excluded from RIPE for political rea-
sons) and that of the Japanese CRYPTREC project [631] (which also includes
key establishment protocols and pseudo-random number generation). Another
difference is that both AES and CRYPTREC intend to produce algorithms for
government standards. The results of NESSIE will not be adopted by any gov-
ernment or by the European commission. However, the intention is that relevant
standardization bodies will adopt these results. As an example, algorithms for dig-
ital signature and hash functions may be included in the EESSI standardization
documents which specify algorithms recommended for the European Electronic
Signature Directive.

The call also specifies the main selection criteria which will be used to eval-
uate the proposals. These criteria are long-term security, market requirements,
efficiency, and flexibility. Primitives can be targeted towards a specific environ-
ment (such as 8-bit smart cards or high-end 64-bit processors), but it is clearly
an advantage to offer a wide flexibility of use. Security is put forward as the
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most important criterion, as security of a cryptographic algorithm is essential to
achieve confidence and to build consensus.

For the security requirements of symmetric algorithms, two main security
levels are specified, named normal and high. The minimal requirements for a
symmetric algorithm to attain either the normal or high security level depend
on the key length, internal memory, or output length of the algorithm. For block
ciphers a third security level, normal-legacy , is specified, with a block size of 64
bits compared to 128 bits for the normal and high security level. The motivation
for this request are applications such as UMTS/3GPP, which intend to use 64-bit
block ciphers for the next 10-15 years. For the asymmetric algorithms, a varying
security level is accepted, with as minimum about 280 3-DES encryptions.

If selected by NESSIE, the algorithm should preferably be available royalty-
free. If this is not possible, then access should be non-discriminatory. The submit-
ter should state the position concerning intellectual property and should update
it when necessary.

The submission requirements are much less stringent than for AES, particu-
larly in terms of the requirement for software implementations (only ‘portable C’
is mandatory).

2.2 Response to the NESSIE Call

The cryptographic community has responded very enthusiastically to the call.
Thirty nine algorithms have been received, as well as one proposal for a test-
ing methodology. After an interaction process, which took about one month, all
submissions comply with the requirements of the call. There are 26 symmetric
algorithms:

– seventeen block ciphers, which is probably not a surprise given the increased
attention to block cipher design and evaluation as a consequence of the AES
competition organized by NIST. They are divided as follows:
– six 64-bit block ciphers: CS-Cipher, Hierocrypt-L1, IDEA, Khazad,

MISTY1, and Nimbus;
– seven 128-bit block ciphers: Anubis, Camellia, Grand Cru, Hierocrypt-3,

Noekeon, Q, and SC2000 (none of these seven come from the AES process);
– one 160-bit block cipher: Shacal; and
– three block ciphers with a variable block length: NUSH (64, 128, and 256

bits), RC6 (at least 128 bits), and SAFER++ (64 and 128 bits).
– six synchronous stream ciphers: BMGL, Leviathan, LILI-128, SNOW,

SOBER-t16, and SOBER-t32.
– two MAC algorithms: Two-Track-MAC and UMAC; and
– one collision-resistant hash function: Whirlpool.

Thirteen asymmetric algorithms have been submitted:

– five asymmetric encryption schemes: ACE Encrypt, ECIES, EPOC, PSEC, and
RSA-OAEP (both EPOC and PSEC have three variants);
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– seven digital signature algorithms: ACE Sign, ECDSA, ESIGN, FLASH,
QUARTZ, RSA-PSS, and SFLASH; and

– one identification scheme: GPS.

Approximately1 seventeen submissions originated within Europe (6 from
France, 4 from Belgium, 3 from Switzerland, 2 from Sweden), nine in North Amer-
ica (7 USA, 2 from Canada), nine in Asia (8 from Japan), three in Australia and
three in South America (Brazil). The majority of submissions originated within
industry (27); seven came from academia, and six are the result of a joint effort
between industry and academia. Note however that the submitter of the algo-
rithm may not be the inventor, hence the share of academic research is probably
underestimated by these numbers.

On November 13–14, 2000 the first NESSIE workshop was organized in Leuven
(Belgium), where most submissions were presented. All submissions are available
on the NESSIE web site [633].

1 Fractional numbers have been used to take into account algorithms with submitters
over several continents/countries – the totals here are approximations by integers,
hence they do not add up to 40.
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3. Tools

It is clear that modern computers and sophisticated software tools cannot replace
human cryptanalysis. Nevertheless, software tools can play an important role in
modern cryptanalysis. In most cases, the attacks found by the cryptanalyst re-
quire a large number of computational steps, hence the actual computation of
the attack is performed on a computer. However, software and software tools can
also be essential to find a successful way to attack a symmetric cryptographic al-
gorithm; examples include differential and linear cryptanalysis, dependence tests,
and statistical tests.

Within NESSIE, we distinguish two classes of tools. The general tools are
not specific for the algorithms to be analyzed. Special tools, which are specific
for the analysis of one algorithm, are implemented when, in the course of the
cryptanalysis of an algorithm, the need for such a tool turns up.

For the evaluation of the symmetric submissions, a comprehensive set of gen-
eral tools is available within the project. These tools are in part based on an
improved version of the tools developed by the RIPE (RACE Integrity Primitives
Evaluation) project [116]. These test include: the frequency test, the collision test,
the overlapping m-tuple test, the gap test, the constant runs test, the coupon col-
lector’s test, Maurer’s universal test [429], the poker test, the spectral test, the
correlation test, the rank test, the linear, non-linear, and dyadic complexity test,
the Ziv-Lempel complexity test, the dependence test, the percolation test, the
linear equation, linear approximation and correlation immunity test, the linear
factors test, and a cycle detection tool.

The NESSIE project is also developing a new generic tool to analyze block
ciphers with differential [78] and linear cryptanalysis [422]. This tool is based on
a general description language for block ciphers.

In September 2000, the US NIST published a suite of statistical tests for the
evaluation of sequences of random or pseudo-random bits; this document has been
revised in December 2000 [469]. A careful comparison has been made between
the RIPE and NIST test suites.

The software for these tools will not be made available outside the project,
but all the results obtained using these tools will be made public in full detail.
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4. Security Evaluation

We first describe the internal process within NESSIE used to assess submissions.
Initially each submission was assigned to a NESSIE partner, who performed ba-
sic checks on the submission, such as compliance with the call, working software,
obvious weaknesses etc. The aim of this initial check was mainly to ensure that
submissions were specified in a consistent and cogent form in time for the Novem-
ber 2000 workshop. It is vital for proper security assessments that the algorithms
are fully and unambiguously described. This process required interaction with
some submitters to ensure that the submissions were in the required form.

The next internal stage (November 2000) was to assign each submission to a
pair of NESSIE partners for an initial detailed evaluation. Each submission has
then been subject to two independent initial assessments. After the two initial
assessments of a submission have taken place, the two NESSIE partners have pro-
duced a joint summary of their assessments concerning that submission. Based
on this initial evaluation, algorithms were dismissed or subjected to further ded-
icated analysis.

Next, an open workshop was organized in Egham (UK) on September 12-13,
2001 to discuss the security and performance analysis of the submissions. The
presenters include both researchers from the NESSIE project, but also submitters,
members from the NESSIE PIB, and members from the cryptographic community
at large.

Following this workshop, a comprehensive security evaluation report has been
published [478]. The document gives an overview of generic attacks on the dif-
ferent type of algorithms. Moreover, for each symmetric algorithm it presents a
short description, the security claims by the designers, and the reported weak-
nesses and attacks. The part on asymmetric algorithms contains a discussion of
security assumptions, security models, and of the methodology to evaluate the
security. For each algorithm, a short description is followed by a discussion of the
provable security (which security properties are proved under which assumptions)
and of the concrete security reduction.
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5. Performance Evaluation

Performance evaluation is an essential part in the assessment of a cryptographic
algorithm: efficiency is a very important criterion in deciding for the adoption of
an algorithm.

The candidates will be used on several platforms (PCs, smart cards, dedicated
hardware) and for various applications. Some applications have tight timing con-
straints (e.g., payment applications, cellular phones); for other applications a high
throughput is essential (e.g., high speed networking, hard disk encryption).

First a framework has been defined to compare the performance of algorithms
on a fair and equal basis. It will be used for all evaluations of submitted candi-
dates. First of all a theoretical approach has been established. Each algorithm is
dissected into three parts: setup (independent of key and data), precomputations
(independent of data, e.g., key schedule) and the algorithm itself (that must be
repeated for every use). Next a set of four test platforms has been defined on
which each candidate may be tested. These platforms are smart cards, 32-bit
PCs, 64-bit machines, and Field Programmable Gate Arrays (FPGAs).

Then rules have been defined which specify how performance should be mea-
sured on these platforms. The implementation parameters depend on the plat-
form, but may include RAM, speed, code size, chip area, and power consumption.
On smart cards, only the following parameters will be taken into account, in de-
creasing order of importance: RAM usage, speed, code size. On PCs, RAM has
very little impact, and speed is the main concern. On FPGAs, throughput, la-
tency, chip area and power consumption will be considered. Unfortunately, the
limited resources of the project will not allow for the evaluation of dedicated
hardware implementations (ASICs), but it may well be that teams outside the
project can offer assistance for certain algorithms.

The project will also consider the resistance of implementations to physical
attacks such as timing attacks [374], fault analysis [79, 104], and power analysis
[375]. For non constant-time algorithms (data or key dependence, asymmetry
between encryption and decryption) the data or key dependence will be analyzed;
other elements that will be taken into account include the difference between
encryption and decryption, and between signature and verification operation.
For symmetric algorithms, the key agility will also be considered.

This approach will result in the definition of a platform dependent test and
in several platform dependent rekeying scenarios. Low-cost smart cards will only
be used for block ciphers, MACs, hash functions, stream ciphers, pseudo-random
number generation, and identification schemes.
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In order to present performance information in a consistent way within the
NESSIE project, a performance ‘template’ has been developed. The goal of this
template is to collect intrinsic information related to the performance of the
submitted candidates. A first part describes parameters such as word size, mem-
ory requirement, key size and code size. Next the basic operations are analyzed,
such as shift/rotations, table look-ups, permutations, multiplications, additions,
modular reduction, exponentiation, inversion,. . . . Then the nature and speed
of precomputations (setup, key schedule, etc.) are described. Elements such as
the dependence on the keys and on the inputs determine whether the code is
constant-time or not. Alternative representations of the algorithms are explored
when feasible.

The result of the preliminary performance evaluation are presented in [477].
This document contains an overview of the performance claimed by the designers,
a theoretical evaluation, and performance measurements of optimized C-code on
a PC and a workstation. However, due to limited resources and the large number
of algorithms, it was not possible to guarantee full optimization for all algorithms.
Nevertheless, it was felt that these results provide sufficient information to make
a selection of algorithms for the 2nd phase of the project.
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6. Selection for the 2nd Phase

On September 24, 2001, the NESSIE project has announced the selection of can-
didates for the 2nd phase of the project. Central to the decision process has been
the project goal, that is, to come up with a portfolio of strong cryptographic
algorithms. Moreover, there was also a consensus that every algorithm in this
portfolio should have a unique competitive advantage that is relevant to an ap-
plication.

It is thus clear that an algorithm could not be selected if it failed to meet the
security level required in the call. A second element could be that the algorithm
failed to meet a security claim made by the designer. A third reason to elimi-
nate an algorithm could be that a similar algorithm exists with better security
(for comparable performance) or with significantly better performance (for com-
parable security). In retrospect, very few algorithms were eliminated because of
performance reasons. It should also be noted that the selection was more compet-
itive in the area of block ciphers, where many strong contenders were considered.
The motivation for the decisions is given in [476].

Designers of submitted algorithms were allowed to make small alterations
to their algorithms; the main criterion to accept these alterations is that they
should improve the algorithm and not substantially invalidate the existing secu-
rity analysis. More information on the alterations can be found on the NESSIE
webpages [633].

The selected algorithms are listed below; altered algorithms are indicated with
a ∗. Block ciphers:

– IDEA: MediaCrypt AG, Switzerland;
– Khazad∗: Scopus Tecnologia S.A., Brazil and K.U.Leuven, Belgium;
– MISTY1: Mitsubishi Electric Corp., Japan;
– SAFER++64, SAFE++128: Cylink Corp., USA, ETH Zurich, Switzerland,

National Academy of Sciences, Armenia;
– Camellia: Nippon Telegraph and Telephone Corp., Japan and Mitsubishi Elec-

tric, Japan;
– RC6: RSA Laboratories Europe, Sweden and RSA Laboratories, USA;
– Shacal: Gemplus, France.

Here IDEA, Khazad, MISTY1 and SAFER++64 are 64-bit block ciphers. Camel-
lia, SAFER++128 and RC6 are 128-bit block ciphers, which will be compared to
AES/Rijndael [181,470]. Shacal is a 160-bit block cipher based on SHA-1 [465]. A
256-bit version of Shacal based on SHA-256 [472] has also been introduced in the
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second phase; this algorithm will be compared to an RC-6 and a Rijndael [181]
variant with a block length of 256 bits (note that this variant is not included in
the AES standard). The motivation for this choice is that certain applications
(such as the stream cipher BMGL and certain hash functions) can benefit from
a secure 256-bit block cipher.
Synchronous stream ciphers:

– SOBER-t16, SOBER-t32: Qualcomm International, Australia;
– SNOW∗: Lund Univ., Sweden;
– BMGL∗: Royal Institute of Technology, Stockholm and Ericsson Research, Swe-

den.

MAC algorithms and hash functions:

– Two-Track-MAC: K.U.Leuven, Belgium and debis AG, Germany;
– UMAC: Intel Corp., USA, Univ. of Nevada at Reno, USA, IBM Research Lab-

oratory, USA, Technion, Israel, and Univ. of California at Davis, USA;
– Whirlpool∗: Scopus Tecnologia S.A., Brazil and K.U.Leuven, Belgium.

The hash function Whirlpool will be compared to the new FIPS proposals SHA-
256, SHA-384 and SHA-512 [472].
Public-key encryption algorithms:

– ACE-KEM∗: IBM Zurich Research Laboratory, Switzerland (derived from ACE
Encrypt);

– EPOC-2∗: Nippon Telegraph and Telephone Corp., Japan;
– PSEC-KEM∗: Nippon Telegraph and Telephone Corp., Japan (derived from

PSEC-2);
– ECIES∗: Certicom Corp., USA and Certicom Corp., Canada
– RSA-OAEP∗: RSA Laboratories Europe, Sweden and RSA Laboratories, USA.

Digital signature algorithms:

– ECDSA: Certicom Corp., USA and Certicom Corp., Canada;
– ESIGN∗: Nippon Telegraph and Telephone Corp., Japan;
– RSA-PSS: RSA Laboratories Europe, Sweden and RSA Laboratories, USA;
– SFLASH∗: BULL CP8, France;
– QUARTZ∗: BULL CP8, France.

Identification scheme:

– GPS∗: Ecole Normale Supérieure, Paris, BULL CP8, France Télécom and La
Poste, France.

Many of the asymmetric algorithms have been updated at the beginning of
phase 2. For the asymmetric encryption schemes, these changes were driven in
part by the recent cryptanalytic developments, which occurred after the NESSIE
submission deadline [243, 414, 583]. A second reason for these changes is the
progress of standardization within ISO/IEC JTC1/SC27 [584]. The standards
seem to evolve towards defining a hybrid encryption scheme, consisting of two
components: a KEM (Key Encapsulation Mechanism), where the asymmetric
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encryption is used to encrypt a symmetric key, and a DEM (Data Encapsula-
tion Mechanism), which protects both secrecy and integrity of the bulk data
with symmetric techniques (a “digital envelope”). This approach is slightly more
complicated for encryption of a short plaintext, but it offers a more general solu-
tion with clear advantages. Three of the five NESSIE algorithms (ACE Encrypt,
ECIES and PSEC-2) have been modified to take into account this development.
At the same time some other improvements have been introduced; as an example,
ACE-KEM can be based on any abstract group, which was not the case for the
original submission ACE Encrypt. Other submitters decided not to alter their
submissions at this stage. For further details, the reader is referred to the exten-
sive ISO/IEC draft document authored by V. Shoup [584]. The NESSIE project
will closely monitor these developments. Depending on the progress, variants such
as RSA-KEM defined in [584] may be studied by the NESSIE project.

For the digital signature schemes, three out of five schemes (ESIGN, QUARTZ
and SFLASH) have been altered. In this case, there are particular reasons for
each algorithm (correction for the security proof to apply, improve performance,
or preclude a new attack). The other two have not been modified. It should also
be noted that PSS-R, which offers very small storage overhead for the signature,
has not been submitted to NESSIE.
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7. Intellectual Property

An important element in the evaluation is the intellectual property status. While
it would be ideal for users of the NESSIE results that all algorithms recommended
by NESSIE were in the public domain, it is clear that this is for the time being not
realistic. The users in the NESSIE PIB have clearly stated that they prefer to see
royalty-free algorithms, preferably combined with open source implementations.
However, providers of intellectual property typically have different views.

One observation is that in the past, there has always been a very large differ-
ence between symmetric and asymmetric cryptographic algorithms. Therefore it
is not so surprising that NIST was able to require that the designers of the block
cipher selected for the AES would give away all their rights, if their algorithm
was selected; it is clear that this is not a realistic expectation for the NESSIE
project.

In this section we will attempt to summarize the intellectual property state-
ments of the submissions retained for the 2nd phase. Note however that this
interpretation is only indicative; for the final answer the reader is referred to
the intellectual property statement on the NESSIE web page [633], and to the
submitters themselves.

Twelve out of 24 algorithms are in the public domain, or the submitters
indicate that a royalty-free license will be given. These are the block ciphers
Khazad, Misty1, Shacal, Safer++, the stream ciphers BMGL, SNOW, Sober-
t16 and Sober-t32, the MAC algorithms Two-Track-MAC and UMAC, the hash
function Whirlpool, and the public-key algorithms RSA-OAEP2 (public-key en-
cryption) and RSA-PSS1 (digital signature scheme).

Royalty-free licenses will be given for the block cipher Camellia, for the public-
key encryption algorithms EPOC-2 and PSEC-KEM, and for the digital signature
scheme ESIGN, provided that other companies with IPR to the NESSIE portfolio
reciprocate.

The block cipher IDEA is free for non-commercial use only; for commercial
applications a license is required.

Licenses under reasonable and non-discriminatory terms will be given for
ACE-KEM (the detailed license conditions are rather complex). Additions to
the ‘reasonable and non-discriminatory’ terms are required for the public-key al-
gorithms ECDSA and ECIES; it is required that the license holder reciprocates
some of his rights.

1 This statement does not hold for the variants of RSA with more than two primes.
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For the digital signature schemes SFLASH and QUARTZ the licensing con-
ditions are expected to be non-discriminatory, but no decision has been made
yet. A similar statement holds for the identification scheme GPS, but in this case
certain applications in France may be excluded from the license.

Finally, the submitters of RC6 are willing to negotiate licenses on reasonable
terms and conditions.

It is clear that intellectual property is always a complex issue, and it will not
be possible to resolve this completely within the framework of NESSIE. However,
IPR issues may play an important role in the final selection process.
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8. Dissemination and Standardization

8.1 An Open Evaluation Process

The NESSIE project intends to be an open project, which implies that the mem-
bers of the public are invited to contribute to the evaluation process. In order to
facilitate this process, all submissions are available on the NESSIE website, and
comments are distributed through this website. In addition, three open work-
shops are organized during the project: the first two workshops have taken place
in November 2000 and September 2001; the third one has been scheduled for
November 2002.

8.2 The Project Industry Board

The Project Industry Board (PIB) was established to ensure that the project
addresses real needs and requirements of industry dealing with the provision and
use of cryptographic techniques and cryptographic products. The goals for the
Board may be summarized as follows:

– contribute to dissemination: outwards through a member’s contacts with indus-
try and users, and also through passing NESSIE information into the member’s
own organization influencing products and directions;

– collaboration with the Project in formulation of the call and its goals and
requirements;

– contribution to consensus building through influence and contacts in the in-
dustry and marketplace;

– identification of industry requirements from market needs and corporate strate-
gies;

– guidance and judgment on the acceptability and relevance of submissions and
evaluation results;

– support in standardization of NESSIE results;
– contribution to Project workshops;
– practical contributions to analysis and evaluation of submissions;
– identification of gaps in the scope of the submissions;
– ongoing guidance during the evaluation of the processes and validity of results.

Two meetings are held per year, but the PIB may request additional meetings
to address specific issues or concerns that may arise. Membership was originally
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by invitation, but subsequently a number of additional companies have requested
and obtained membership. Currently the PIB consists of about twenty leading
companies which are users or suppliers of cryptology.

8.3 Standardization

Together with the NESSIE PIB, the project will establish a standardization strat-
egy. It is not our intention to establish a new standardization body or mech-
anism, but to channel the NESSIE results to the appropriate standardization
bodies, such as, ISO/IEC, IETF, IEEE and EESSI. We believe that the NESSIE
approach of open evaluation is complementary to the approach taken by stan-
dardization bodies. Indeed, these bodies typically do not have the resources to
perform any substantial security evaluation, which may be one of the reasons
why standardization in security progresses often more slowly than anticipated.

The NESSIE project will also take into account existing and emerging stan-
dards, even if these have not been formally submitted to the NESSIE project.
Two recent examples in this context come from the standardization efforts run by
NIST: AES/Rijndael [181,470] will be used as a benchmark for the other 128-bit
block ciphers, and the NESSIE project will study the security and performance
of the new SHA variants with results between 256 and 512 bits [472].
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9. Conclusion

We believe that after two years, the NESSIE project has made important steps
towards achieving its goals. This can be deduced from the high quality submis-
sions received from key players in the community, and by the active participation
to the workshops.

The first two years of the NESSIE project have also shown that initiatives
of this type (such as AES, RIPE, CRYPTREC) can bring a clear benefit to
the cryptographic research community and to the users and implementors of
cryptographic algorithms. By asking cryptographers to design concrete and fully
specified schemes, they are forced to make choices, to think about real life opti-
mizations, and to consider all the practical implications of their research. While
leaving many options and variants in a construction may be very desirable in a
research paper, it is often confusing for a practitioner. Implementors and users
can clearly benefit from the availability of a set of well defined algorithms, that
are described in a standardized way.

The developments in the last years have also shown that this approach can
result in a better understanding of the security of cryptographic algorithms. We
have also learned that concrete security proofs are an essential tool to build
confidence, particularly for public key cryptography (where constructions can be
reduced to mathematical problems believed to be hard) and for constructions
that reduce the security of a scheme to other cryptographic algorithms. At the
same time, we have learned that it is essential to study proofs for their correctness
and to evaluate the efficiency of such reductions.
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1. Call for Cryptographic Primitives

Version 2.2, 8th March 2000

Introduction

NESSIE (New European Schemes for Signature, Integrity, and Encryption) is
a project within the Information Societies Technology (IST) Programme of the
European Commission. The participants of the project are

Participant name Country
Katholieke Universiteit Leuven Belgium
École Normale Supérieure France
Fondazione Ugo Bordoni Italy
Royal Holloway, University of London U.K.
Siemens Aktiengesellschaft Germany
Technion - Israel Institute of Technology Israel
Université Catholique de Louvain Belgium
Universitetet i Bergen Norway

NESSIE is a 3-year project, which started on 1st January 2000. Further in-
formation about NESSIE is available at http://cryptonessie.org.

The main objective of the project is to put forward a portfolio of strong
cryptographic primitives for a number of different platforms. These primitives
will be obtained after an open call and evaluated using a transparent and open
process. They should be the building blocks of the future standard protocols for
the information society.

The deadline for the submission of primitives will be 29th Septem-
ber 2000. A workshop will be organised for submitters to present their primitives
on 13-14 November 2000 in Leuven, Belgium.

Background

In the information society, cryptology has become a key enabling technology to
provide secure electronic commerce and electronic business, secure communica-

This call was widely dissemniated and published on the NESSIE web site http://www.
cosic.esat.kuleuven.ac.be/nessie/call/.
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tions, secure payments, and the protection of the privacy of the citizen. Cryp-
tology is a field that evolves quickly, and society needs robust primitives that
provide long term security (15 to 20 years or more), rather than ad hoc solu-
tions that need to be frequently replaced. With the current state of the art in
cryptology, it is not possible to have provably secure solutions, although there is
a trend to prove more and more security properties of primitives. However, for
use in real applications, sufficient confidence in a primitive can only be achieved
when primitives have been subjected to an open and independent evaluation for
a sufficient amount of time.

The procedure of an open call followed by an evaluation process has been
previously used in the selection process for the DES, the RIPE project, and the
AES. The scope of this call for primitives is wider than the NIST call for AES. The
information society needs other cryptographic primitives than just block ciphers.
Thus the NESSIE call seeks cryptographic primitives in many areas, such as:

– Stream ciphers: for applications with high throughput requirements or tight
performance constraints etc.

– MACs: for high-speed authentication of packets etc.
– Families of Pseudo-random functions: for key derivation, entity authentication

and encryption etc.
– Digital signatures and hash functions: for electronic commerce, business and

payment etc.
– Asymmetric encryption schemes.
– Asymmetric identification schemes.

Furthermore, there is a wide range of environments in which cryptographic prim-
itives are used. Thus the NESSIE project will consider primitives designed for use
in specific environments (though flexibility is clearly desirable). The NESSIE call
also asks for testing methodologies of these primitives (such as statistical tests).

The results of this call will then be subjected to a thorough and open evalua-
tion process. In addition to the responses to the call, the project will also consider
a selection from existing standards containing such primitives. The main selection
criteria will be long-term security, market requirements, efficiency (performance),
and flexibility.

It is also a goal of the project to disseminate widely the results of the project,
and to build a consensus based on these results. In order to achieve this, an In-
dustry Group has been established. The Industry Group consists of about twenty
leading European companies in this area and will be consulted on a regular basis
throughout the project. It is expected that the Industry Group will provide input
concerning the nature of the final call (requirements and definitions for primi-
tives), the relevance of the selection criteria, and the standardisation strategy. An
important part of the dissemination will be the introduction of these primitives
into standardisation bodies (ISO, ISO/IEC, CEN, IEEE, IETF), based in part
on the consensus achieved within the project. It is anticipated that the results of
the project will also be published in scientific publications.
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General Requirements

This section discusses the general selection criteria, the type of primitives re-
quired, and the security requirements for each primitive.

Selection Criteria

The main selection criteria will be long-term security, market requirements, effi-
ciency (performance) and flexibility.

– Security is the most important criterion, because security of a cryptographic
primitive is essential to achieve confidence and to build consensus. It is antici-
pated that this evaluation process will be influenced by developments outside
the project (such as new attacks or analysis techniques).

– A second criterion relates to market requirements. Market requirements are
related to the need for a primitive, its usability, and the possibility for world-
wide use.

– A third criterion is the performance of the primitive in the specified environ-
ment. For software, the range of environments considered include 8-bit proces-
sors (as found in inexpensive smart cards), 32-bit processors (e.g., the Pentium
family) to the modern 64-bit processors. For hardware, both FPGAs and ASICs
will be considered.

– A fourth criterion is the flexibility of the primitive. It is clearly desirable for a
primitive to be suitable for use in a wide-range of environments.

Type of Primitives

The NESSIE project is seeking submissions of strong cryptographic primitives
in the categories given below. The NESSIE project is particularly interested in
receiving submissions in categories that have not received much standardisation
effort.

1. Block ciphers
2. Synchronous stream ciphers
3. Self-synchronising stream ciphers
4. Message Authentication Codes (MACs)
5. Collision-resistant hash functions
6. One-way hash functions
7. Families of pseudo-random functions
8. Asymmetric encryption schemes
9. Asymmetric digital signature schemes

10. Asymmetric identification schemes

Definitions are broadly as given in the Handbook of Applied Cryptography (ISBN:
0-8493-8523-7).
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Security Requirements for Each Primitive

Symmetric Primitives (Primitives 1-7)

There are two main security levels for symmetric primitives. These are named
normal and high. For block ciphers, normal-legacy is also provided. The minimal
requirements for a symmetric primitive to attain a security level are given below.

1. Block ciphers.
a) High. Key length of at least 256 bits. Block length at least 128 bits
b) Normal. Key length of at least 128 bits. Block length at least 128 bits.
c) Normal-Legacy. Key length of at least 128 bits. Block length 64 bits

2. Synchronous stream ciphers.
a) High. Key length of at least 256 bits. Internal memory of at least 256

bits.
b) Normal. Key length of at least 128 bits. Internal memory of at least 128

bits.
3. Self-synchronising stream ciphers.

a) High. Key length of at least 256 bits. Internal memory of at least 256
bits.

b) Normal. Key length of at least 128 bits. Internal memory of at least 128
bits.

4. Message Authentication Codes (MACs). The primitive should support
all output lengths (in multiples of 32 bits) up to the key length (inclusive).
a) High. Key length of at least 256 bits.
b) Normal. Key length of at least 128 bits.

5. Collision-Resistant Hash functions.
a) High. Output length of at least 512 bits.
b) Normal. Output length of at least 256 bits.

6. One-Way Hash functions. These hash functions shall be preimage resis-
tant and second preimage resistant.
a) High. Output length of at least 256 bits.
b) Normal. Output length of at least 128 bits.

7. Families of Pseudo-random functions. Fixed block length of at least 128
bits.
a) High. Key length of at least 256 bits.
b) Normal. Key length of at least 128 bits.

Asymmetric Primitives (Primitives 8-10)

The security parameters should be chosen such that the most efficient attack
on the primitive requires a computational effort of the order of 280 3-DES en-
cryptions. Furthermore, a table giving the security levels in terms of the security
parameters should be provided.

8. Asymmetric encryption schemes (deterministic or randomised).
The minimal computational effort for an attack should be of the order of
280 3-DES encryptions.
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9. Asymmetric digital signature schemes. The minimal computational ef-
fort for an attack should be of the order of 280 3-DES encryptions.

10. Asymmetric identification schemes. The minimal computational effort
for an attack should be of the order of 280 3-DES encryptions. The probability
of impersonation should be smaller than 2−32.

Evaluation of Proposals

Detailed Evaluation Criteria

Security Criteria

– An attack should be at least as difficult as the generic attacks against the type
of primitive (exhaustive search, birthday attack etc.).

– Primitives will be evaluated against the security claims of the submitter. An at-
tack requiring lower computing resources than claimed would usually disqualify
the submission.

– Primitives will be evaluated within the stated environment. Thus, consideration
of vulnerability to side channel attacks (e.g., timing attacks, power analysis)
may be appropriate.

Implementation Criteria

– Software and hardware efficiency will be compared with similar submissions
and existing primitives.

– Execution code and memory sizes will be assessed according to their relevance
in different contexts. Special attention will be paid to smart cards.

– Submitted primitives will be assessed against claimed performance, though it
is clearly preferable for primitives to offer wide flexibility of use.

Other Criteria

– Simplicity and clarity of design are important considerations. Variable param-
eter sizes are less important.

Licensing Requirements

– Submitted primitives should, if selected by NESSIE, be available royalty-free.
If this is not possible, then access is non-discriminatory.

– The submitter should state the position concerning intellectual property. This
statement should be updated when necessary.

The Evaluation Process

The NESSIE project reserves the right to reject submitted primitives that are
not clearly specified and easily comprehensible or that fail to meet the NESSIE
requirements in some way.

The NESSIE evaluation process is an open process. Thus as part of the eval-
uation process, the NESSIE project welcomes comments about both submitted
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primitives and the evaluation process, including evaluation methodologies. To fa-
cilitate this process, three NESSIE workshops will be organised; the first will be
on 13-14 November 2000, shortly after the deadline for submission of primitives.
As part of the evaluation process, the NESSIE partners will give security and per-
formance assessments of the submitted primitives. At the end of the evaluation
process, the NESSIE project may recommend certain submissions for standardi-
sation. The NESSIE project is to have two phases. A timetable for the NESSIE
project is given below.

2000 January Beginning of first phase of NESSIE
2000 January Creation of Industry Board
2000 March Call for Cryptographic Primitives
2000 September Submission deadline
2000 November First NESSIE workshop
2001 June Preliminary assessment of submissions
2001 June End of first phase of NESSIE

2001 July Beginning of second phase of NESSIE
2001 September Second NESSIE workshop
2002 February Preliminary selection of submissions
2002 February Standardisation Plan
2002 October Third NESSIE workshop
2002 December Final selection of submissions
2002 December Final report of NESSIE project
2002 December End of second phase of NESSIE

Formal Submission Requirements

The following are to be provided with any submission:

A. Cover sheet with the following information
1. Name of submitted algorithm
2. Type of submitted algorithm, proposed security level, and proposed environ-

ment.
3. Principal submitter’s name, telephone, fax, organization, postal address, e-

mail address
4. Name(s) of auxiliary submitter(s)
5. Name of algorithm inventor(s)/developer(s)
6. Name of owner, if any, of the algorithm (normally expected to be the same

as the submitter)
7. Signature of submitter
8. (optional) Backup point of contact (telephone, fax, postal address, e-mail)

B. Primitive specification and supporting documentation
1. A complete and unambiguous description of the primitive in the most suit-

able forms, such as a mathematical description, a textual description with
diagrams, or pseudo-code. The specification of a primitive using code is not



Dra
ft

Apr
il
19

, 2
00

4

1. Call for Cryptographic Primitives 35

permitted. Input and output should be in the form of binary strings. For
asymmetric algorithms, a method for key generation and parameter selec-
tion needs to be specified.

2. A statement that there are no hidden weaknesses inserted by the designers.
3. A statement of the claimed security properties and expected security level,

together with an analysis of the primitive with respect to standard cryptan-
alytic attacks. Weak keys should also be considered.

4. A statement giving the strengths and advantages of the primitive.
5. A design rationale explaining design choices.
6. A statement of the estimated computational efficiency in software. Estimates

are required for different sub-operations like key setup, primitive setup, and
encryption/decryption (as far as applicable). The efficiency should be esti-
mated both in cycles per byte and cycles per block, indicating the processor
type and memory. If performance varies with the size of the inputs, then val-
ues for some typical sizes should be provided. Optionally the designers may
provide estimates for performance in hardware (area, speed, gate count, a
description in VHDL).

7. A description of the basic techniques for implementers to avoid implemen-
tation weaknesses.

C. Implementations and test values
1. A reference implementation, in portable C. For symmetric primitives, NESSIE

has specified an API, published on the NESSIE web site. For asymmetric
primitives, it is allowed to use a ‘standard’ library for mathematical func-
tions, such as multi-precision arithmetic (e.g., Lydia). See here for more
information.

2. A sufficient number of test vectors. The NESSIE project will supply software
to generate test vectors for symmetric primitives.

3. Optionally, an optimized implementation for some architectures, a JAVA
implementation, an assembly language implementation.

D. Intellectual property statement
– A statement that gives the position concerning intellectual property position

and the royalty policy for the primitive (if selected). This statement should
include an undertaking to update the NESSIE project when necessary.

Requirements:

– Items A, B, and D shall be supplied in paper form and in electronic form
(Adobe PDF or PostScript on one or more diskettes).

– Item C shall be supplied in electronic form only (diskette).
– Item A, B, C and D shall be supplied on separate 3,5”1.44 MB floppy diskettes,

formatted for use on an IBM-compatible PC. Every diskette shall be labeled
with the submitter’s name, the name of the primitive, the number, and the
date. Every diskette shall contain an ASCII file labeled ”README”, that lists
all files included on the diskette and provides a brief description of the content
of each file.

– All submissions must be in English.
– Classified and/or proprietary submissions shall not be considered.
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– Paper submissions and diskettes shall be sent to the following address:

Prof. Bart Preneel
NESSIE Project Coordinator
Katholieke Universiteit Leuven
Dept. Electrical Engineering-ESAT/COSIC
Kard. Mercierlaan 94,
B-3001 Heverlee
BELGIUM

They should arrive on or before 29th September 2000.
– Optionally, an electronic version may be sent to submissions@cryptonessie.
org.

An acknowledgment will be sent by email and by regular mail within 5 working
days.

General questions for clarification of the formal submission requirements and
of the evaluation criteria can be sent to info@cryptonessie.org. Answers to
questions that are relevant to other submissions will be made available at http:
//www.cryptonessie.org/. The NESSIE project will endeavour to answer all
relevant questions in a timely manner.

Call for Evaluation Criteria

In addition to the criteria given above, the NESSIE project also invites sug-
gestions for Evaluation Criteria, such as testing methodologies (eg. statistical
testing).

Further Information

Email: info@cryptonessie.org.
Website: http://www.cryptonessie.org/.
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Block ciphers

– Anubis. [37]
Submitted by Paulo S.L.M. Barreto and Vincent Rijmen.

– Camellia. [24]
Submitted by Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru
Matsui, Shiho Moriai, Junko Nakajima and Toshio Tokita, on behalf of NTT
Corp.

– CS-cipher. [234]
Submitted by Pierre-Alain Fouque, Jacques Stern and Serge Vaudenay, on
behalf of CS Communication & Systèmes.

– Grand Cru. [112]
Submitted by Johan Borst.

– Hierocrypt. [493] – Hierocrypt-L1 and Hierocrypt-3.
Submitted by Kenji Ohkuma, Fumihiko Sano, Hirofumi Muratani, Masahiko
Motoyama and Shinichi Kawamura, on behalf of Toshiba Corp.

– IDEA. [387]
Submitted by Richard Straub, on behalf of MediaCrypt AG.

– Khazad. [39]
Submitted by Paulo S.L.M. Barreto and Vincent Rijmen.

– MISTY1. [426]
Submitted by Eisaku Takeda, on behalf of Mitsubishi.

– Nimbus. [410]
Submitted by Alexis W. Machado.

– Noekeon. [180]
Submitted by Joan Daemen, Michael Peeters, Gilles van Assche and Vincent
Rijmen.

– NUSH. [391]
Submitted by Anatoly N. Lebedev and Alexey A. Volchkov, on behalf of LAN
Crypto, Int.

– Q. [434]
Submitted by Leslie McBride, on behalf of Mack One Software.

– RC6. [324]
Submitted by Jakob Jonsson and Burton S. Kaliski, Jr, on behalf of RSA.
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– SAFER++. [420]
Submitted by James L. Massey, Gurgen Khachatrian and Melsik K. Kuregian,
on behalf of Cylink Corp.

– SC2000. [569]
Submitted by Takeshi Shimoyama, Hitoshi Yanami, Kazuhiro Yokoyama,
Masahiko Takenaka, Kouichi Itoh, Jun Yajima, Naoya Torii and Hidema
Tanaka, on behalf of Fujitsu Laboratories LTD.

– SHACAL. [281] – SHACAL-1 and SHACAL-2.
Submitted by Helena Handschuh and David Naccache, on behalf of Gemplus.

Stream ciphers and pseudo-random number generators

– BMGL. [285]
Submitted by Johan H̊astad and Mats Nāslund.

– SNOW. [214]
Submitted by Patrick Ekdahl and Thomas Johansson.

– SOBER. [289] – SOBER-t16 and SOBER-t32.
Submitted by Philip Hawkes and Gregory G. Rose, on behalf of Qualcomm
International.

– LEVIATHAN. [435]
Submitted by David McGrew and Scott R. Fluhrer, on behalf of Cisco Systems,
Inc.

– LILI-128. [187]
Submitted by Ed Dawson, William Millan, Lyta Penna, Leone Simpson and
Jovan Dj. Golic.

Hash functions

– Whirlpool. [38]
Submitted by Paulo S.L.M. Barreto and Vincent Rijmen.

Message authentication codes

– UMAC. [379]
Submitted by Ted Krovetz, John Black, Shai Halevi, Alejandro Hevia, Hugo
Krawczyk and Phillip Rogaway.

– Two-Track-MAC. [609]
Submitted by Bart Van Rompay and Bert Den Boer.

Asymmetric encryption schemes

– ACE-KEM. [563] – Upgrade of ACE-Encrypt.
Submitted by Thomas Schweinberger and Victor Shoup, on behalf of IBM.
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– EPOC. [239] – EPOC-1, EPOC-2 and EPOC-3.
Submitted by Eiichiro Fujisaki, Tetsutaro Kobayashi, Hikaru Morita, Hiroaki
Oguro, Tatsuaki Okamoto, Satomi Okazaki, David Pointcheval and Shigenori
Uchiyama, on behalf of NTT Corp.

– ECIES. [320]
Submitted by Don B. Johnson and Simon Blake-Wilson, on behalf of Certicom.

– PSEC. [238] – PSEC-1, PSEC-2, PSEC-3 and PSEC-KEM
Submitted by Eiichiro Fujisaki, Tetsutaro Kobayashi, Hikaru Morita, Hiroaki
Oguro, Tatsuaki Okamoto, Satomi Okazaki, David Pointcheval and Shigenori
Uchiyama, on behalf of NTT Corp.

– RSA-OAEP. [325] – Revised to RSA-KEM [584]
Submitted by Jakob Jonsson and Burton S. Kaliski, Jr, on behalf of RSA.

Digital signature schemes

– ACE Sign. [563]
Submitted by Thomas Schweinberger and Victor Shoup, on behalf of IBM.

– ECDSA. [319]
Submitted by Don B. Johnson and Simon Blake-Wilson, on behalf of Certicom.

– ESIGN. [244]
Submitted by Eiichiro Fujisaki, Tetsutaro Kobayashi, Hikaru Morita, Hiroaki
Oguro, Tatsuaki Okamoto and Satomi Okazaki on behalf of NTT Corp.

– FLASH and SFLASH. [514]
Submitted by Jacques Patarin and others, on behalf of Schlumberger.

– QUARTZ. [161]
Submitted by Jacques Patarin and others, on behalf of Schlumberger.

– RSA-PSS. [326]
Submitted by Jakob Jonsson and Burton S. Kaliski, Jr, on behalf of RSA.

Digital identification schemes

– GPS. [525]
Submitted by Guillaume Poupard and others, on behalf of France Telecom, La
Poste and ENS.

Evaluation methodologies

– General Next Bit Predictor. [294]
Submitted by Julio César Hernández, José Maŕıa Sierra, J. C. Mex-Perera,
Daniel Borrajo, Arturo Ribagorda and Pedro Isasi.
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Part B

Security evaluation

Book II Part B of this final report was first published under the name ”NESSIE security
report” as Deliverable D20 of NESSIE.
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1. Introduction

1.1 NESSIE project

The NESSIE project is a three year project (2000-2002) that is funded by the Eu-
ropean Union’s Fifth Framework Programme. The main objective of the NESSIE
project is to put forward a portfolio of strong cryptographic primitives of various
types. Further details about the NESSIE project can be found at the NESSIE
website http://www.cryptonessie.org/.

The start of the NESSIE project was an open call [475] for the submission of
cryptographic primitives as well as for evaluation methodologies for these primi-
tives. This call includes a request for the submission of block ciphers (as for the
AES call), but also of other cryptographic primitives including hash functions,
stream ciphers, and digital signature algorithms. The call also asked for evalu-
ation methodologies for these primitives. The scope of the call was defined in
conjunction with the project industry board, and was published in March 2000.
This call resulted in forty submissions. The NESSIE project aims to assess these
submissions with the goal of producing a portfolio of cryptographic primitives
for use in different environments. The NESSIE project proposes to disseminate
the project results widely and to build consensus based on these results by using
the appropriate bodies: a project industry board, NESSIE workshops, the 5th
Framework programme, and various standardisation bodies.

The NESSIE project has been divided into two phases. In the first phase of
the security evaluation, the submissions were analysed by the NESSIE partners.
The NESSIE partners also received external comments for some submissions. The
outcome of the first phase was a preliminary assessment of all submissions: a secu-
rity evaluation [478] and a performance evaluation [477]. This was used to decide
which of the submissions were to be considered in the second phase [476]. In the
second phase, the remaining submissions were subject to more detailed scrutiny
to produce the portfolio. This report summarises all the security evaluation of
the submissions and is the conclusion of the second phase of security evaluation.
The NESSIE project also compiles a performance evaluation of the submissions.
This security report together with the performance report form the basis of the
decision as to which primitives should be part of the NESSIE portfolio.

The NESSIE evaluation process is an open process. Thus as part of the eval-
uation process, the NESSIE project welcomes comments about the submitted
primitives and the evaluation process, including this report. To facilitate the open
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evaluation process, there are to be four NESSIE workshops. The first NESSIE
workshop, in which the submitted primitives were presented, took place on 13-14
November 2000 at Katholieke Universiteit Leuven (Belgium). The second NESSIE
workshop, in which early results concerning the primitives were presented, took
place on 12-13 September 2001 at Royal Holloway, University of London (UK).
The third NESSIE workshop, in which new results concerning the primitives were
presented, took place on 6-7 November 2002 at Siemens AG, Munich (Germany).
The fourth NESSIE workshop, which disseminated the results of the project, took
place on 26 February 2003 in Lund (Sweden).

1.2 Security evaluation methodology

The NESSIE project has attempted to define a high–level methodology to com-
pare in a fair and acceptable way the submitted primitives. This methodology
may evolve according to technical advances, remarks of the NESSIE members, In-
dustry Board or cryptographic experts, and with problems encountered. However
it should be noted that it is impossible to produce a definitive security method-
ology. Cryptographic primitives with completely inadequate security can often
be identified, but for other cryptographic primitives, the situation is much less
clear-cut. There is neither an automatic method of assessing the security of such a
primitive nor a general consensus on the relative importance of different security
criteria. The few previous initiatives that have undertaken a similar task to the
NESSIE project, such as AES, have been more limited in scope and have reached
a subjective judgement by experts on the security of such primitives. We first
give the evaluation criteria specified in the NESSIE call [475] and then a list of
important issues that NESSIE has considered in making its security evaluations
of a submitted primitive. This list is extensive but not complete.

1.2.1 Evaluation criteria in NESSIE call

1. An attack should be at least as difficult as the generic attacks against the
type of primitive (exhaustive search, birthday attack, etc.)

2. Primitives will be evaluated against the security claims of the submitter.
An attack requiring lower computing resources than claimed would usually
disqualify the submission.

3. Primitives will be evaluated within the stated environment. Thus, consid-
eration of vulnerability to side channel attacks (e.g. timing attacks, power
analysis) may be appropriate.

1.2.2 Methodological issues

Resistance to cryptanalysis. Clearly, any submission should be resistant at
the relevant security level to cryptanalytic attacks. Indeed, in the NESSIE call
for submissions [475], it is stressed that failure to be resistant to such an attack
would usually disqualify a submission. However, when assessing the relevance of a
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cryptanalytic attack, other factors such as the volume and type of data required
to mount the attack will be considered.

Design philosophy and transparency. An important consideration when as-
sessing the security of a cryptographic primitive is the design philosophy and
transparency of the design of that primitive. It is easier to have confidence in the
assessment of the security of a primitive if the design is clear and straightforward,
and is based on well-understood mathematical and cryptographic principles. This
is particularly relevant when making relative comparisons between primitives (see
below).

Strength of modified primitives. One common technique used to assess the
strength of a primitive is to assess a modified primitive, for example by changing
or removing a component or reducing the number of rounds. Conclusions about
the original primitive based on an assessment of the modified primitives have to
be carefully considered as the inference may or may not be straightforward.

Relative security. When assessing primitives designed to operate to the same
security level in similar environments, it is natural to wish to compare their
security. However, care has to be taken when making such comparisons. One
measure that has been suggested for primitives based on an iterative algorithm
is the security margin, which measures the gap between the maximum number of
broken rounds and the total number of rounds, but there is no general consensus
about its definition or use. Furthermore, whilst the NESSIE project tries to ensure
that each submitted primitive receives equivalent cryptanalysis, it is the case that
some designs are easier to analyse than others (as discussed above). However, it
is felt that there should be some security margin to protect against cryptanalytic
advances.

Cryptographic environment. In certain cryptographic environments, a cryp-
tographic primitive may have been designed to possess intrinsic security advan-
tages or disadvantages. An example would be a primitive that is resistant to
power or timing attacks when implemented on a smart card. Such properties
would be considered when assessing the security of a primitive.

Statistical testing. The NESSIE project is carrying out statistical testing of
submitted primitives (where relevant). The purpose of this statistical testing
is to highlight anomalies in the operation of the primitive that may indicate
cryptographic weakness and require further investigation.

1.3 Structure of the Report

This report is split into distinct chapters for distinct categories of primitives. For
a reader with some knowledge in cryptology, each chapter is intended to be self-
contained. However, this report is not a course on cryptology; the reader should
refer to textbooks [265,270,441,598]. Each chapter has the following sections:

1. Introduction.
The introduction defines what is the category of primitives that is considered.
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2. Security requirements.
The security model and common attacks are explained. The assessment pro-
cess by NESSIE is described.

3. Overview of the common designs.
Common designs are described, and how the primitives submitted to NESSIE
fit in with these. Current standards are reviewed.

4. Analysis of all primitives submitted to NESSIE.
The analysis of each primitive submitted to NESSIE is summarised. Primi-
tives that were not selected for Phase II have a shorter review than the ones
that were studied during the whole NESSIE process.

5. Conclusion.
Recommendations are made for a choice of primitives that should be part of
the NESSIE portfolio.

The categories of primitives considered in this report are slightly different from
the categories defined in the call. This is more consistent with the list of primitives
submitted to NESSIE and with the way in which these primitives were analysed.
They are:

Ch. 2. Block ciphers
Ch. 3. Stream ciphers and pseudo-random number generators
Ch. 4. Hash functions
Ch. 5. Message authentication codes
Ch. 6. Asymmetric encryption
Ch. 7. Digital signature schemes
Ch. 8. Digital identification schemes

An appendix on side-channel attacks and the bibliography conclude this report.

1.4 The submissions received by NESSIE

– Block ciphers
– Anubis. [37] – has been tweaked
– Camellia. [24]
– CS-cipher. [234]
– Grand Cru. [112]
– Hierocrypt. [493] – Hierocrypt-L1 and Hierocrypt-3
– IDEA. [387]
– Khazad. [39] – has been tweaked
– MISTY1. [426]
– Nimbus. [410]
– Noekeon. [180]
– NUSH. [391]
– Q. [434]
– RC6. [324]
– SAFER++. [420]
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– SC2000. [569]
– SHACAL. [281] – SHACAL-1 and SHACAL-2.

– Stream ciphers and pseudo-random number generators
– BMGL. [285]
– SNOW. [214]
– SOBER. [289] – SOBER-t16 and SOBER-t32
– LEVIATHAN. [435]
– LILI-128. [187]

– Hash functions
– Whirlpool. [38] – has been tweaked

– Message authentication codes
– UMAC. [379]
– Two-Track-MAC. [609]

– Asymmetric encryption
– ACE-KEM. [563] – Upgrade of ACE-Encrypt
– EPOC. [239] – EPOC-1, EPOC-2 and EPOC-3
– ECIES. [320]
– PSEC. [238] – PSEC-1, PSEC-2, PSEC-3 and PSEC-KEM
– RSA-OAEP. [325] – Revised to RSA-KEM [584]

– Digital signature schemes
– ACE Sign. [563]
– ECDSA. [319]
– ESIGN. [244]
– FLASH family. [514] – FLASH and SFLASH (has been tweaked)
– QUARTZ. [161]
– RSA-PSS. [326]

– Digital identification schemes
– GPS. [525]

– Evaluation methodologies
– General Next Bit Predictor [294]

This evaluation methodology appeared to be useless [200], it will not be
further mentioned in this report.
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1.5 Some mathematical notations

Z the set of integers
Z/nZ the set of integers modulo n
(Z/nZ)∗ the non-zero elements of Z/nZ
(Z/nZ)× the invertible elements of Z/nZ,

which form a multiplicative group with φ(n) elements
QRn the squares in (Z/nZ)× (quadratic residues)
Fq the finite field with q elements
(Fp)n the n-dimensional vector space on Fp
〈G〉 the cyclic group generated by G
1λ a bitstring of length λ of all 1, used as a security parameter
ϕ Euler phi function, defined by ϕ(

∏
i p
ni
i ) =

∏
i(pi − 1)pni−1

i

f = O(g) f is dominated by g, which means that |f/g| is upper bounded
f = o(g) f is negligible in g, which means that f/g → 0
f � g alternate notation for f = o(g)

NB: if p is prime then Fp = Z/pZ and (Z/pZ)∗ = (Z/pZ)×.



Dra
ft

Apr
il
19

, 2
00

4

2. Block ciphers

2.1 Introduction

Block cipher encryption provides confidentiality by transforming a plaintext mes-
sage into a secure ciphertext message, where the precise function implemented by
the block cipher is determined by a secret key. This secret key, or series of keys,
is only known by legitimate users of the block cipher. Whereas a stream cipher
contains a memory, embodied in its current state, a block cipher is memoryless
outside its current block and therefore has no current state. A mode of operation
of a block cipher partitions a plaintext message into a series of blocks which are
then encrypted one block at a time, although a block cipher can be used as a
component in a stream cipher, and also for pseudorandom number generators,
MACs, hash functions, and signature schemes. Block cipher encryption is the
most well-known form of symmetric-key encryption — the word symmetric im-
plies that both transmitter and receiver of the ciphertext have knowledge of the
secret key. Block ciphers have been around in one form or another for a very long
time, for instance the substitution cipher, and the transposition cipher. However,
many of the ideas that permeate modern block cipher design were inspired by
the work of Shannon [567] around 1949. He first elucidated the concepts of con-
fusion and diffusion that are still primary design criteria for any state-of-the-art
block cipher. The rate at which cryptographic and information theory have de-
veloped has accelerated over the last thirty years or so, with the result that many
rules for block cipher design are now well-accepted amongst the majority of cryp-
tographers [354]. However, it remains the case that no practical block cipher is
provably secure and, consequently, new design criteria are still being discovered,
these often as a response to emerging novel attacks on block ciphers. Typically,
a block cipher design is proposed according to well-accepted and well-founded
rules, and this inevitably forces the cryptanalyst to attempt to attack the cipher
in some unforeseen way. These unforeseen attacks, if successful, lead in turn to
the extending of the canon of design criteria — and so the discipline progresses.
It should therefore come as no surprise that, during the three-year lifespan of
NESSIE, new designs and new attack methods have been proposed, and new
questions raised. To some extent, some of the block cipher designs submitted to
NESSIE have been influenced by the knowledge gained from the search for the
new Advanced Encryption Standard (AES), immediately prior to NESSIE. In

0 Coordinator for this chapter: UiB — Matthew Parker
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particular the inclusion of high-diffusion ciphers in both AES and NESSIE has
encouraged the development of algebraic and non-statistical attacks on block ci-
phers. It should be emphasised that most of the block ciphers submitted to the
NESSIE project appear to be secure, acceptably efficient, and practical for use in
real systems. The criteria for selection for the NESSIE portfolio therefore rests,
to some extent, on secondary considerations, in particular on the identification
of potential weaknesses and expected performance on different platforms. In this
chapter, attacks on the various block ciphers submitted will be described, and
potential security weaknesses of the candidates identified.

It should also be noted that there are four usual modes of operation for
a block cipher. The most common mode is called Electronic Codebook Mode
(ECB) which takes disjoint plaintexts and outputs disjoint ciphertexts. There
is also Cipher Block Chaining (CBC) mode, where the encryption of a block
depends on the encryptions of previous blocks. Then there is Cipher Feedback
(CFB) mode which is the first of the two stream cipher modes, where one m-
bit character at a time is encrypted. Finally there is Output Feedback (OFB)
mode where, in contrast to CFB mode, the stream bits are not dependent on the
previous plaintexts, i.e. only the stream bits are fed back, not the ciphertext as in
CFB mode. NIST has now published a new standard for block cipher modes [632],
and Counter Mode (CTR) has been added.

2.1.1 Block Cipher — A Formal Definition

Before discussing security aspects we first give a more precise definition of a block
cipher [270]. A block cipher is a function E : {0, 1}K × {0, 1}N → {0, 1}N that
takes two inputs, a K-bit key k and an N -bit plaintext P , to return an N -bit
ciphertext C = E(k, P ). For any block cipher, and any key k, the function Ek
is a permutation on {0, 1}N . This means that it is a bijection, i.e. a one-to-one
function of {0, 1}N to {0, 1}N . Accordingly, it has an inverse, E−1

k . Both the
cipher and its inverse E−1 should be easily computable, meaning that given k, P
we can compute E(k, P ), and given k,C we can compute E−1(k,C).

2.2 Security requirements

Block cipher encryption is a method to transform a plaintext message of block-
length N bits by encrypting it to a ciphertext message of blocklength N bits,
where the encryption operation is determined by a secret key string of length K
bits, where the key is often chosen uniformly at random. The inverse operation,
block cipher decryption, takes the N -bit ciphertext and decrypts it back to the
N -bit plaintext using the same secret key string of length K bits. The aim is
to make it practically impossible to retrieve the plaintext from the ciphertext
without knowledge of the K-bit secret key. Decryption is only possible if the en-
cryption function is invertible (i.e. if it is a bijection) and this restricts the choice
of possible N -bit block ciphers to one of (2N )! block ciphers. However, parame-
terisation by a secret key of length K bits further restricts the set of block ciphers
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realised by a particular design to a maximum of 2K block ciphers (which, for any
reasonable N and K, is an infinitesimally small fraction of the complete space of
(2N )! block ciphers). The problem of block cipher design is to determine which set
of 2K block ciphers to choose such that, for an unknown fixed key, it is virtually
impossible to say anything about the ciphertext resulting from a known or cho-
sen plaintext, or to say anything about the fixed key, given prior knowledge of a
few plaintext/ciphertext pairs. Note that, if the plaintext contains exploitable re-
dundancy, then one may be able to attack the cipher using ciphertext only. Any
effective block cipher scheme must be realised efficiently in time and space, with
as little implementation cost as possible. The practical trade-off is therefore to
design a block cipher which is both sufficiently secure, and satisfactorily efficient
in terms of hardware/software space and time resources. It should be empha-
sised that the complete design of the block cipher, along with all ciphertexts,
is considered public knowledge, with only the secret key remaining unknown to
attackers of the system. Clearly, knowledge of the secret key implies knowledge
of the plaintexts that were encrypted using that secret key. A block cipher with
a secret key is considered perfect if, for all plaintexts, P , and ciphertexts, C, it
holds that Pr(P ) =Pr(P |C) [567]. If, for a fixed K-bit key, an N -bit block cipher
is used to encrypt

⌊
K
N

⌋
plaintexts, then the cipher can always be chosen to be

the one-time pad so that, in this special case, the encryption is provably secure
and the block cipher perfect — a one-time pad is a symmetric key block cipher
where K key bits are used, only once, to encrypt K plaintext bits, where the
K corresponding ciphertext bits are the XOR of the plaintext bits with the key
bits. In such a situation the ciphertext and plaintext are statistically indepen-
dent. However, in most situations the one-time pad is impractical as far too many
secret keys must be used. Therefore it is highly desirable to securely encrypt T
plaintexts using the same, fixed K-bit secret key, where T �

⌊
K
N

⌋
. Most modern

block ciphers seek to maximise T , whilst still achieving an acceptable security,
via a combination of confusion, which makes the relationship between key and
ciphertext as complicated as possible, and diffusion which seeks to eliminate any
redundancy in the plaintext. Diffusion also makes it difficult for any attacker to
partially approximate the cipher.

Theoretically the ideal block cipher, from a security viewpoint, would involve
one very large, well-chosen N -bit Substitution Box (S-Box), keyed by K key
bits and, ideally, it would be impossible to decompose this S-box into smaller
sub-units. However this immediately implies a huge implementation complexity,
so any practical block cipher will, instead, combine relatively small sub-units to
confuse (e.g. S-boxes) and diffuse (e.g. linear transformation layers) the plain-
text. Moreover, these sub-units will be applied iteratively as keyed rounds, pa-
rameterised by sub-keys which are derived from the master K-bit key. This de-
composition into practical sub-units constitutes a trade-off between security and
acceptable complexity. All the block ciphers submitted to NESSIE are iterated
over multiple rounds, and all of them utilise a key-schedule to derive round keys
from a master key. It is this decomposition into sub-processes that provides the
cryptanalyst with ammunition for an attack. In spite of the above compromises,
it is an accepted design principle that encryption using a block cipher, selected
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via a randomly-chosen key, should look like encryption by a randomly-chosen
invertible function over N bits.

2.2.1 Security model

It is the nature of scientific discovery that the initial models are, to a large extent,
heuristic — intended security against well-known attacks. These heuristics later
give way to formal proof of security versus resources needed. What is certain is
that, with respect to practical block cipher security, very little can (yet) be proved
to any high-degree of accuracy — hence the existence of NESSIE. However, there
exist a number of accepted security models which can tell us something about
the block cipher under consideration:

– Unconditional Security (Perfect Secrecy). Shannon assumed that an ad-
versary has unlimited computational resources. In his model, secure encryption
only exists if the size of the key is as large as the number of secret bits to be
exchanged remotely using the encryption system. Perfect secrecy is possible
only if no more than

⌊
K
N

⌋
plaintexts are enciphered using a fixed key (e.g. the

one-time pad), so unconditional security is not a useful model for practical
block ciphers.

– Security Against Polynomial Attack. In contrast to Uncondition Secu-
rity, modern cryptography assumes the adversary’s computation is resource-
bounded. Specifically, it is assumed that the adversary is a probabilistic al-
gorithm which runs in polynomial time, and security is claimed with respect
to the feasibility of breaking the cryptosystem. This model arises out of com-
plexity theory considerations where adversaries are assumed to possess only
polynomial computational resources — polynomial in the size of the input to
the cipher in bits. The model typically conducts worst-case and asymptotic
analyses to determine whether polynomial attacks on a cipher exist. Even if
they do exist, it is not guaranteed that such attacks are practical. This secu-
rity model tends to provide an understanding as to the type (class) of problem
embodied by a block cipher, without providing exact figures.

– “Provable” Security. Typically this can mean one of two things. Firstly, if it
can be shown that breaking a block cipher is as difficult as solving some well-
known hard problem (e.g. discrete log or factoring) then the cipher is considered
provably secure. This is, of course, misleading as the hard problem on which it
is based is usually not provably hard. This relates to a very fundamental open
question in computer science as to whether these hard problems are in P or in
NP. In fact, provable security requires a proof that P 6= NP, and the existence
of one-way functions which are hard on the average, but which can be solved
quickly given some extra information [267] (pages 27-28). Note that these are
asymptotic complexity measures — one is assessing the level of complexity
as the input size, in bits, asymptotes to infinity. The strategy of mapping
cryptosystems to hard problems is very useful for practical analysis of the
cipher, although this model is more often applied to public-key cryptosystems.
Secondly, a block cipher may be shown to be provably secure against a known



Dra
ft

Apr
il
19

, 2
00

4

2. Block ciphers — 2.2 Security requirements 59

sub-class of attacks. One example of this is the provable security against linear
and differential cryptanalysis used, for example, by the designers of MISTY1.
It should be emphasised however that this obviously does not mean that the
cipher is secure against all attacks.

– Practical Security. In this model a block cipher is considered computation-
ally secure if the best-known attack requires too much resource by an acceptable
margin. This is a very practical model as one can test the cipher with different
known attacks, probing for weakness, and then give an assessment of the ci-
pher’s strength against such attacks in terms of time/space resources needed.
This model tends to provide the most answers, and most of the analysis in
NESSIE was of this type. However, it says nothing about the security level
with respect to yet unknown attacks.

– Historical Security. It is quite useful to assess the security level of a block
cipher according to how much cryptanalytic attention the cipher has attracted
over the years. For example, both Cipher A and Cipher B could be consid-
ered excellent cipher designs. But Cipher A may be ten years older and has
therefore been under scrutiny for many more years than Cipher B without any
serious security flaws found in it. This inevitably inspires a certain confidence
in the older cipher and suggests that the time-scale over which projects such
as NESSIE and AES operate is only sufficient to draw preliminary conclusions
as to the security of a completely new cipher. However, it should also be noted
that the effort spent on breaking a cipher cannot always be measured reliably
from the time passed.

2.2.2 The Block Cipher as a Pseudorandom Permutation

It is natural to consider a block cipher as a set of permutations. In this context
we can consider a distinguisher which differentiates between a randomly-selected
pseudorandom permutation and a permutation which is randomly selected from
the set of permutations generated by the block cipher. This section investigates
this approach in more detail, considering the asymptotic limit as the size of
the input and output to and from the block cipher approaches infinity. (We
here summarise and paraphrase some of the definitions given by Goldwasser and
Bellare [270] and others [265].)
Definition: Let UN denote a random variable uniformly distributed over
{0, 1}N . A pseudorandom function is one of an infinite set of functions with
increasing input sizes, {f(UN ,K)}, N = 1, . . . ,∞, with the property that the
input-output behaviour of a random instance of the set is computationally indis-
tinguishable from that of a random function. Pseudorandom permutations can be
described similarly.

A block cipher, E(k, P ), can be considered as a set of 2K permutations on the
message space, each instance, Ek(P ), of the set being a distinct permutation and
obtained by fixing the key k. In this setting one can model the following attacks
on the cipher. Let g be a function drawn at random from the set of all N -bit
permutations, as N →∞. The adversary gets an oracle for g, and can also get an
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oracle for g−1, these relating to chosen plaintext and chosen ciphertext attacks,
respectively.
Definition: A one-way function, f : {0, 1}∗ → {0, 1}∗, is a function which
is easy to compute but hard to invert. By easy we mean that f can be computed
by a deterministic polynomial time algorithm, and by hard we mean that any
probabilistic polynomial time algorithm attempting to invert f will succeed with
negligible average probability (where the average probability is taken over the
elements in the domain of the function f). More formally, for every probabilistic
polynomial time algorithm, A′, every polynomial p(·), and all sufficiently large
N ’s,

Pr(A′(f(UN ), 1N ) ∈ f−1f(UN )) <
1

p(N)
where UN denotes a random variable uniformly distributed over {0, 1}N , and 1N

is some auxiliary input to the algorithm A′.
The block cipher can be considered secure if it can be shown to be equivalent,

asymptotically, to a set of pseudorandom functions or pseudorandom permuta-
tions. In other words, we cannot distinguish the output ciphertext bits from ran-
dom output. This allows us to relate block ciphers to one-way functions as follows.
Given an N -bit plaintext message, P , and a K-bit key, k, the block cipher func-
tion, E, produces an N -bit ciphertext output message, C, where C = E(k, P ).
Then, for P fixed to p, we can define f such that f(k) = E(k, P = p). Luby and
Rackoff show how to build a pseudorandom permutation from a pseudorandom
function using a few rounds of a Feistel construction [404], and in [405] they prove
that, asymptotically, f is a one-way function on the assumption that E is a set
of pseudorandom functions. Therefore, retrieving the key, k, using k = f−1, is
proven to be hard. However, the notion of a one-way function is weaker than the
notion of a secure block cipher. For example, a one-way function may leak half
of its input and still be one-way (non-invertible). This demonstrates the need to
introduce the idea of ’hard-core’ bits of a function. Given an efficient algorithm
to predict the value of a hard-core bit, one can construct an algorithm inverting
the one-way function. For a secure block cipher all bits have to be hard-core bits.
Distinguishing Attacks. By viewing a block cipher as a set of permutations
we can develop a distinguisher which compares and differentiates between the
block cipher and the ‘ideal’ set of random permutations. This is done as follows.

Let g be a function drawn at random from the set, D, of all N -bit permuta-
tions. Let g′ be a function drawn at random from the set of N -bit permutations,
E(k, P ). In practice this is achieved by drawing a K-bit key, k, at random from
the set of all 2K K-bit keys. The adversary, A, is a given a series of N -bit per-
mutations, g′′, and its job is to determine whether its series of g′′ are a series
of permutations, g, or a series of permutations, g′. To achieve this the adversary
uses an algorithm Ag

′′
that takes a function, g′′, as input, and returns a bit, d.

The advantage of the adversary who uses algorithm Ag
′′

is given by,

advantageE,A = |Pr(Ag = 1)− Pr(Ag
′
= 1)|

and this advantage measures the ability of algorithm Ag
′′

to distinguish between
a function g taken at random from D and a function g′ taken at random from the
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set of N -bit permutations, E(k, P ). If we now consider the set of all algorithms
{Ag′′}t,q,µ having time complexity at most t, making at most q oracle queries,
such that the sum of the lengths of these queries is at most µ bits, then we can
define the pseudorandom permutation advantage (prpadvantage) of E as follows,

prpadvantageE(t, q, µ) = max
{Ag′′}t,q,µ

{advantageE,A}

where the maximum is over the set {Ag′′}t,q,µ. We can say that a set, E(k, P ),
which represents a block cipher, is a secure pseudorandom function if
prpadvantageE(t, q, µ) is small for practical values of the resource parameters,
t, q, µ.

In this section we have defined the security of a block cipher in terms of a
secure pseudorandom function. The scenario is that of a chosen-plaintext attack
where the attacker is assumed to have control over the input plaintext, P . A
similar scenario can be developed for a chosen-ciphertext attack, and in [270], the
chosen-ciphertext attack is also assumed to give the adversary more power: not
only can it query g, but it can directly query g−1. In the above we have assumed
that an ideal block cipher is a set of permutations (more generally, functions) with
the property that the input-output behaviour of a random instance of the fam-
ily is, asymptotically, computationally indistinguishable from that of a random
permutation (function). This is a much stronger assumption than just assuming
the block cipher is secure against key recovery. However, distinguishing attacks
typically use a distinguisher similar to that defined above to recover a subset of
key bits. But there could exist better attacks that break the cipher as a pseu-
dorandom permutation (function) without recovering the key, although no such
attacks are currently known. Conversely, [270] proves that any function family
that is insecure under key-recovery is also insecure as a pseudorandom permuta-
tion (function).

2.2.3 Classification of attacks

As stated previously, most of the analysis done by NESSIE falls into the Practical
Security model. The success-level of an attack is usually measured according to
time, memory, and data complexities needed:

– Time complexity needed for an attack on a block cipher is the number of
steps required for the attack algorithm. This often reduces to the number
of decryptions. However this unit is not always appropriate, for instance the
Gaussian elimination used to solve a system of equations describing the cipher
will use very different units of time complexity.

– Memory complexity needed for an attack on a block cipher is typically mea-
sured in terms of the amount of storage required for the attack algorithm.

– Data complexity is the number of texts the attacker gets from the encryption
oracle.

Typically, Memory is much more expensive than Time, for example an attack
that requires 264 Memory is very expensive in comparison to 264 steps of an
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algorithm. Data is also considered expensive and should be minimised. Various
tradeoffs are possible, and the complexity of the attack is usually taken as the
max(Time,Data). For more practical attacks it may be useful to trade Data
for Time. An attack is considered successful in theory, and the block cipher
considered broken if the Time complexity required is of order < 2K , where K
is the number of key bits used to parameterise the cipher. In this case one says
that the block cipher is broken if the K key bits can be guessed in time faster
than exhaustive key search, and partially broken if some of the plaintext bits
can be discovered in time faster than exhaustive key search. Also, for a fixed
key, the complete cipher can be characterised if all 2N different plaintexts are
encrypted. This puts an upper bound on the Data Complexity required to mount
an attack to 2N . A block cipher is considered secure if no attack requires both
Time and Data complexity significantly less than 2K and 2N , respectively. Very
often it is difficult to mount an attack on the complete R-round cipher so many
(most) attacks break reduced-round versions of the cipher. Therefore another way
to assess the security of a cipher is to quote the maximum number of rounds of
the cipher that have currently been broken. It is the aim of the block cipher
designer to make the cipher look as much like a random bijection as possible.
Therefore any process which can, for a fixed key, distinguish the cipher from
a random cipher, constitutes an attack on the cipher. Such attacks are called
Distinguishing attacks, which encompass many of the most effective attacks used
today.

The types of attack that can be performed depend on what resources are
available to the adversary. They can be classified as follows:

– Ciphertext-only attacks. The adversary has access to a set of ciphertexts and
also knows something about the nature of the plaintext.

– Known plaintext attack. The adversary has access to a set of plaintext-
ciphertext pairs.

– Chosen plaintext attack. The adversary is able to choose a series of plaintexts
and has access to the resultant ciphertexts.

– Adaptively chosen plaintext attack. The adversary is able to choose a series of
plaintexts, where the choice of each new plaintext is influenced by the cipher-
texts obtained from the previous plaintexts.

– Chosen ciphertext attacks. Similar to chosen and adaptively chosen plaintext
attacks, but with the roles of plaintext and ciphertext reversed.

– Combined chosen plaintext/ciphertext attacks. In this case the adversary is
able to choose both plaintexts and ciphertexts. The Boomerang attack is an
example of such an attack.

The chosen text attacks are always the most powerful attacks but, of course, are
often less realistic in a practical context. Ideally the designer or analyst should
try to prove that the cipher is secure against adaptively chosen attacks.

Because of the birthday attack on, for instance, Cipher Block Chaining, and
Accumulated Block Chaining modes, it is recommended that a single key is used
to encrypt at most 2N/2 ciphertexts [354]. This is because one only requires about
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2N/2 ciphertexts to obtain a matching pair of ciphertexts with probability > 1
2 .

It should be noted that this restriction is independent of key size.
Attacks typically fall into two main groups, firstly those that are statistical

in nature, and secondly those that are largely non-statistical. However we do not
distinguish these two types of attacks here as most attack strategies that work
with probability one can also be envisaged in a scenario with probability strictly
less than one. We now briefly describe the best-known attacks.

2.2.3.1 Exhaustive Key Search

Applicable to all ciphers, the attack only needs a few known plaintext-ciphertext
pairs. The adversary tries all keys one by one to check whether the given plaintext
encrypts to the given ciphertext. The attack requires only approximately

⌈
K
N

⌉
pairs to determine the key.

2.2.3.2 Differential Cryptanalysis

This chosen plaintext attack was first applied to DES by Biham and Shamir [77].
It was the first attack which could (theoretically) recover DES keys in time less
than exhaustive search. Typically, pairs of chosen plaintexts, (P0, P1) with a fixed
difference, ∆ = P0 − P1 are chosen, where the difference operation “−” is usu-
ally chosen to be the group operation that is used to add the fixed round key.
Thus ∆ = (P0 + k) − (P1 + k), so the important point is that the difference,
∆, is independent of the key, k, chosen. Moreover, the difference is chosen so
that with some acceptably high probability, this difference, ∆, propagates to an
output difference ∆′ at the output of the round. If one can propagate differ-
ences through all rounds with sufficiently high probability, then this allows one
to devise a key-invariant approximation to the core (central) rounds of the cipher
which can establish a non-random difference relationship between bits specified
by the mask, I, near to the input, and bits specified by the mask, O, near to
the output of the cipher. This in turn enables the adversary to guess round key
bits of the first and last round, and compute the differences at bits specified by I
and O according to this guess. If the guess is correct then the differences at pair
(I,O) will agree with the guess for the differences at (I,O) with probability p. If
p is large enough then choosing enough plaintext-ciphertext pairs will enable the
adversary to determine whether the guess was correct. In this way the adversary
can determine the round key bits of outer layers of the cipher and work inwards.
The processing complexity of a differential attack is approximately c

p , where c is a
small constant. For many block ciphers the round key is added using XOR. In this
case the notion of difference between plaintexts also uses XOR, thereby ensuring
key-independence for the approximation. However, other notions of difference can
also be useful. One should distinguish between a characteristic and a differential.
Whereas a characteristic specifies one particular evolution of differences through
the cipher, a differential takes into account all possible paths through the cipher
that would yield the same output difference and sums their combined probabil-
ities [388]. Therefore Differential Cryptanalysis using differentials as opposed to
just characteristics always achieves higher probabilities. However, the gain is not
always significant. Maximum Average Differential Probability is also sometimes
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used to assess the goodness of Differential Cryptanalysis. Differential Cryptanal-
ysis typically uses the concept of a Markov Cipher [388] where the characteristic
probability is independent of the actual round inputs and is computed over all
possible choices of the round key. Moreover, it was shown by Lai et al. [388] that,
if the round keys are independent, then so are the characteristic probabilities, and
this allows these probabilities to be combined relatively simply. However, typi-
cally the attacker gets multiple encryptions under the same key, which means the
round keys may appear dependent. Fortunately the Markov assumption can be
shown to hold approximately for virtually all keys [383].

2.2.3.3 Truncated Differential Cryptanalysis

Instead of trying to propagate a complete difference through every cipher round,
one can aim to propagate only part of the difference — hence truncated differ-
entials [352]. The advantage here is that the partial difference propagations may
occur with much higher probability than full difference propagations.

2.2.3.4 Impossible Differential Cryptanalysis

Here the aim is to find a differential that occurs with zero probability over a
number of rounds of the cipher. Then by key guessing outside the core approx-
imated rounds one can rule out certain key guesses if they allow the forbidden
differential to occur. Such attacks have been applied by Knudsen [353], and by
Biham et al. [65]. One particularly useful fact in [65,353] is that any Feistel cipher
with bijective round functions has an impossible differential after 5 rounds (see
Sect. 2.3.1 for a definition of Feistel).

2.2.3.5 Higher Order Differential Cryptanalysis

This is a recursive extension of differential cryptanalysis where one looks to es-
tablish probabilistic nested differences across rounds of the cipher [385]. Thus an
s-th order differential requires sets of 2s chosen plaintexts with fixed pairwise dif-
ference between members of the set [352,384]. It follows that an (s+ 1)-th order
differential of a function of nonlinear order d is zero. This attack was successfully
applied by Nyberg and Knudsen against the cipher of [488] which is provably
secure against differential attack. The boomerang attack of Wagner [616] can be
viewed as a special type of second-order differential attack, and is suited to ci-
phers where one first-order differential applies to the first half of the cipher, and
another first-order differential applies to the second half of the cipher.

2.2.3.6 Linear Cryptanalysis

This known plaintext attack was first applied to FEAL by Matsui and Yamag-
ishi [427] and to DES by Matsui [421]. It is conceptually similar to differential
cryptanalysis as the aim is to establish essentially key-invariant approximations.
This follows because if the linear relationship x = y holds with probability 1

2 + δ,
then x = y+ k holds with probability 1

2 ± δ. Thus the bias of the approximation
away from 1

2 is still δ and is unaffected by key change. One approximates sub-
units of the cipher by linear approximations which hold with some probability
different from 1

2 . If these approximations can be connected up over all core rounds
of the cipher then one can establish linear relationships between bits specified by
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the mask, I, near the input, and bits specified by the mask, O, near the output of
the cipher. This in turn enables the adversary to guess round key bits of the first
and last round, and compute bits at I and O according to this guess. If the guess
is correct then the pair (I,O) will agree with the guess at (I,O) with probability
1
2 ± b. If the bias, b, is large enough then choosing enough plaintext-ciphertext
pairs will enable the adversary to determine whether the guess was correct. In
this way the adversary can determine the round key bits of outer layers of the
cipher and work inwards. The complexity of a linear attack is approximately
c · 1

|b|2 for some constant, c, where b is called the bias. Linear hulls are an exten-
sion of the above technique [487] and exploit the fact that there may be more
than one linear characteristic (propagation route) through a cipher that begins
and ends at the same place. This allows one to sum up the individual biases
for each characteristic, although it is possible that the individual characteristics
can cancel each other out. The Maximum Average Linear Hull Probability is
also sometimes used as a metric to assess the goodness of linear cryptanalysis.
A similar development of linear cryptanalysis is to re-use the data one already
possesses in different ways, by applying different linear approximations and pool-
ing the information one receives about the key. This technique is referred to as
Multiple Linear Approximations [143,335]. The technique is particularly useful if
two or more of the best linear approximations have comparable biases. A further
generalisation of linear cryptanalysis looks for nonlinear approximations through
parts of the cipher. Although these nonlinear approximations typically exist with
higher probability than linear approximations they do not usually preserve key-
invariance, so are typically used at either end of the cipher to positively enhance
linear biases [361,370].

2.2.3.7 Differential-Linear Cryptanalysis

Many attack techniques can be combined to form a hybrid attack on a cipher.
An example of this is Differential-Linear cryptanalysis. In [389] a differential is
established through part of the cipher and used to create a linear approximation
with probability 1. This technique is also used in [70, 75] where the differential
part is used to create linear approximations which have probability strictly less
than 1.

2.2.3.8 Boomerang Attacks

This attack is based on differential techniques and was first described by Wag-
ner [616]. Boomerang attacks allow for a more extensive use of structures than
is available in conventional differential attacks. More specifically, the boomerang
attack is a differential attack that attempts to generate a quartet structure at
an intermediate value halfway through the cipher. This quartet structure is illus-
trated in Fig 2.1.

The aim, as shown in Fig 2.1, is to cover the plaintext pair P, P ′ with the
differential characteristic for E0, and to cover the plaintext pairs P,Q and P ′, Q′

with the differential characteristic for E−1
1 . In this case it can be shown that

the plaintext pair Q,Q′ is perfectly set up to use the differential characteristic
∆∗ → ∆ for E−1

0 . We can summarise this scenario as follows:
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Fig. 2.1. A Typical Boomerang Attack

E0(Q)⊕ E0(Q′)
= E0(P )⊕ E0(P ′)⊕ E0(P )⊕ E0(Q)⊕ E0(P ′)⊕ E0(Q′)
= E0(P )⊕ E0(P ′)⊕ E−1

1 (C)⊕ E−1
1 (D)⊕ E−1

1 (C ′)⊕ E−1
1 (D′)

= ∆∗ ⊕∇∗ ⊕∇∗
= ∆∗

Thus one will have the same difference in the plaintexts Q,Q′ as found in the
original plaintexts, P, P ′, which is why the attack is called the boomerang attack.
To set up this quartet one can generate P ′ = P ⊕∆, then obtain the encryptions
C,C ′ of P, P ′ with two chosen-plaintext queries. Then one generates D,D′ as
D = C⊕∇ and D′ = C ′⊕∇. Finally D,D′ are decrypted to obtain the plaintexts
Q,Q′ with two adaptive chosen-ciphertext queries.

2.2.3.9 Mod n Cryptanalysis

This attack by Kelsey et al. [346] is a generalisation of a linear attack, and uses
the property that some bit groupings (words) within the cipher may be biased
modulo n, where n is typically some small integer. It has been shown that ciphers
that use only bitwise rotations and additions, mod 232 are particularly vulnerable
to such attacks.

2.2.3.10 Weak-Key Classes

A weak-key class refers to any subset of size 2s of the key space such that, for
this class, an attack is known requiring fewer key guesses than exhaustive search,
where exhaustive search here means 2s−1 key guesses. For instance, for some
block ciphers the round key is added using integer addition or even multiplication
of some form. And some block ciphers use even more general keyed nonlinear
components. In these cases, differential and linear cryptanalysis may benefit from
a consideration of a sub-class of the complete space of keyed block ciphers for
this particular design — a weak-key class. Typically this class will be defined
by fixing a well-chosen subset of the key bits so that the residual cipher is then
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open to attack. This is a useful way of assessing whether the cipher is secure for
all possible keys. Block ciphers which add the key using XOR are more immune
to weak-key class attacks than block ciphers which add some or all of the key
nonlinearly [453]. A stronger form of the attack demands that the attacker can
identify whether the key used is in the weak-key class. This is known as the
key-class membership test, and a practical attack should use a low complexity
membership test. For instance, Wagner [616] uses a boomerang attack as a weak-
key class identifier.

2.2.3.11 Related-Key Attacks

There are several variants of this attack depending on the privileges of the adver-
sary. Either the adversary obtains encryptions under one fixed key, or he obtains
encryptions under several keys where there is either a known or a chosen relation
between the keys. The fixed key variant was first used by Knudsen in [350] to
establish a chosen plaintext attack, reducing an exhaustive key search by four
times. The version using several keys was developed in [59, 345, 351]. It is noted
by Biham [59] that the related-key attacks discussed in that paper are completely
independent of the number of rounds of the cipher. Slide attacks can be a variant
of related-key attacks, and these are discussed later.

2.2.3.12 Interpolation Attack

The interpolation attack was proposed by Jakobsen and Knudsen in [315, 316].
This attack is interesting in that one need not recover the key to break the cipher
as the attack seeks to construct a polynomial relationship between plaintext and
ciphertext given a set of known plaintext-ciphertext pairs. The attack is often
easier if components of the cipher have a straightforward mathematical descrip-
tion or if the polynomial to be approximated is of relatively low degree and with
relatively few non-zero coefficients. The number of plaintext-ciphertext pairs re-
quired depends directly on the degree of the constructed polynomial — the lower
the better. The technique of choice is Lagrange Interpolation. The attack also en-
ables the recovery of round keys once the polynomial is constructed. For instance,
although an interpolation attack can predict the ciphertext from the plaintext
without knowledge of the key, it can also be used to predict the output from the
last but one round of the cipher and this, in turn, allows recovery of the last
round key. Meet-in-the-middle techniques can be used to reduce the degree of
the polynomial to be interpolated [315].

A probabilistic version of the interpolation attack has also been proposed
by Jakobsen [314], which views the attack as a problem in coding theory and
applies Sudan’s algorithm for decoding Reed-Solomon codes [600]. The paper
[628] further investigates ways of minimising the degree of the polynomial to be
interpolated by changing the irreducible polynomial over which the S-boxes of
the block cipher are described.

It is shown by Kurosawa et al. [382] how to use Rabin’s root finding algorithm
in conjunction with the Interpolation Attack so as to find all the possible last
round keys that satisfy the interpolated polynomial.
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2.2.3.13 Non-Surjective Attack

This attack [541] is applicable to Feistel ciphers where the round function is non-
surjective. (See Sect. 2.3.1 for a definition of Feistel). It uses the possibility that
the F-function of the Feistel cipher may be non-bijective. This is true for DES,
and this attack breaks DES faster than exhaustive search [64,185].

2.2.3.14 Slide Attack

Slide attacks [90] developed out of related-key attacks [59, 350] and exploit a
weakness in ciphers that use identical or periodic round functions. These attacks
are, in many cases, independent of the number of rounds of a cipher, and indepen-
dent of the exact properties of the iterated round function. Let Fr ◦Fr−1 ◦ . . .◦F1

denote an r-round iterated cipher, where the Fis are identical or periodically re-
lated through the rounds. The adversary looks for pairs of plaintexts P, P ∗ and
their corresponding ciphertexts C,C∗ such that F1(P ) = P ∗ and Fr(C) = C∗.
This gives an adversary two input-output pairs of one round of the cipher. One
can expect, by the birthday paradox, to find such pairs of texts after about 2N/2

plaintexts. But, for Feistel ciphers, where the round function modifies only half
the block, there is also a chosen-plaintext variant which can often cut the com-
plexity down to 2N/4 plaintexts. The basic slide attack is shown in Fig 2.2.

F

F

F F

F F

1 2 r

1 2 r

P

P*

C

C*

Fig. 2.2. A Typical Slide Attack

For the slide attack to work, Fi should be very weak against known-plaintext
attack with two plaintext-ciphertext pairs. Some ciphers include the addition
of randomised constants into the key schedule and/or round irregularities, and
these protect, to some extent, against a slide attack. For instance, a slide attack by
Biryukov and Wagner on MISTY1 is prevented by the inclusion of the nonlinear
FL layers after every six rounds of MISTY1 [90].

2.2.3.15 Integral/Multiset Cryptanalysis

There are, in fact, a number of different attack techniques which fall under the
umbrella of Integral or Multiset attacks, these being Square attacks [178,179], In-
tegral attacks [371], Multiset attacks [88], and Saturation attacks [408]. They also
appeared in the birthday cryptanalysis of Ladder-DES [61]. Saturation attacks
assume only permutations are used, and Multiset attacks cover both Saturation
and Integral attacks. In fact, Gilbert-Minier’s collision attack is an example of a
Multiset attack [258]. Whereas in differential cryptanalysis one considers differ-
ences of pairs of plaintexts, in integral cryptanalysis [371] one considers sums of
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plaintexts (integrals) to exploit the degree of balance of the output. The Square
attack, which was first applied to the Square cipher by Daemen et al. [178, 179]
and then to Rijndael [181], is an example of integral cryptanalysis. Integrals are
particularly suited to the analysis of ciphers with mainly bijective components.
Until now, most integrals that have been developed have probability one, and
probabilistic integrals have not been examined in depth. Typically, integral at-
tacks set up a path through the cipher where at any position in the path the
collection of texts produces either a set of words which are all different (A), or all
the same (C), or such that the sum of the words is S (where S = 0 is common),
or indeterminate (?). One can then follow interacting paths of A, C, S, and ?
through the cipher and predict the form of the set of words after as many rounds
as possible. It is interesting to note that [371] successfully combines integral at-
tacks with interpolation attacks, where one half of the cipher is covered by an
integral, and the other half is approximated by a low-degree polynomial. In [88],
Multiset attacks were used by Biryukov and Shamir to structurally cryptanalyse
a block cipher. In this context, one does not exploit the weaknesses of a particular
cipher, (such as bad differentials) but, instead, studies the security of cryptosys-
tems described by generic block diagrams. Such attacks are therefore applicable
to a large class of cryptosystems, and multiset strategies are particulary suited
to such attacks.
2.2.3.16 χ2 Attack

The χ2 attack quantifies the statistical significance of certain input-output de-
pendencies for a certain cipher approximation. It was probably first suggested
in the context of a statistical cryptanalysis of DES by Vaudenay [611]. The idea
has been developed as an extension of linear cryptanalysis with a more sensitive
distinguisher at the output, where quantification is achieved by means of a χ2

analysis [42,359,366]. If the block cipher is truly random then no set of plaintext-
ciphertext pairs will produce any significant deviation from a random relationship
between plaintext and ciphertext. Conversely, any deviation from random acts as
a distinguisher that can then form the basis for an attack on the cipher.
2.2.3.17 Attacks Using Exact Systems of Multivariate Equations

Recent block cipher designs have discouraged the application of linear and differ-
ential cryptanalysis by deliberately designing against them. This has prompted
cryptanalysts to look elsewhere for effective attack methods. One interesting new
direction is also one of the most direct. Every component of a cipher can be de-
scribed by means of a set of algebraic equations. These component descriptions
can then be collected together to form a large system of equations which define
the complete cipher. If this system of equations can be solved faster than exhaus-
tive search then the cipher is broken. Clearly an arbitrary construction of the
system will be impossible to solve as it will contain far too many variables and
equations of too high a degree. However, by careful search one can find systems of
low degree equations in relatively few variables. In particular, the critical compo-
nent for many ciphers is the S-box, and careful search of state-of-the-art S-boxes
has found that the S-box can be exactly represented by surprisingly few low-
degree equations, and recent research has led to constructions of sparse systems



Dra
ft

Apr
il
19

, 2
00

4

70 Book II. Evaluation — Part B. Security evaluation

of quadratic equations. Whereas, say, linear cryptanalysis uses approximations
with relatively low probability, the equation system holds with probability one.
These algebraic attacks differ in several respects from the standard statistical
approaches to cryptanalysis. In particular, these new attacks require only a few
known-plaintext queries and, also, the attack complexity does not seem to grow
exponentially with the number of rounds of the cipher. It has further been found
that well-chosen, sparse, overdefined systems are often easier to solve than criti-
cally defined systems. Cryptanalytic methods have been developed by using such
systems of equations, where nonlinear terms are treated as independent linear
variables in a process called relinearisation [566] (by Shamir and Kipnis — a de-
velopment from linearisation), and Extended Linearisation (XL) by Courtois et
al. [164]. These methods, and a variant of XL called Extended Sparse Linearisa-
tion (XSL) may perhaps lead to a successful attack on Rijndael (amongst others)
— in theory at least, although this is by no means clear at the moment [165,449].
The main strategy relating to these developing techniques appears to be to find
as many equations in as few variables as possible, and of as low degree as pos-
sible [82]. The aim is to minimise the number of free terms, where a set of free
terms is a set of monomials of any degree that are linearly independent. The
number of free terms is given as the number of distinct terms minus the num-
ber of equations — a term in an equation can be of any degree, in particular for
quadratic multivariate equation systems, a term is of degree one or two. Recently,
Murphy and Robshaw [452] have embedded Rijndael in a large cipher called the
Big Encryption System (BES), which expands Rijndael by its conjugates. The
work of Murphy and Robshaw [452, 454] found a system of equations from BES
that is simpler than the one developed by Courtois and Pieprzyk [165] for Ri-
jndael, and this suggests that the technique of embedding a cipher in a larger
cipher can sometimes lead to simpler equation systems. The paper [165] has also
observed that, for the block ciphers they analysed, it is possible that the security
of these ciphers does not grow exponentially with the number of rounds. However,
it should be noted that some experts do not consider this to be possible.

2.2.3.18 Exploiting Relations Between the Bit-Functions of S-Boxes

A very recent paper by Fuller and Millan [245] has observed that all output
bits of the Rijndael S-box, written as Boolean functions of the input bits, can
be transformed to one another by means of an affine transformation of the input
bits. In other words, let bi and bj be two distinct output functions of the Rijndael
S-box. Then we can always find a Boolean matrix, A, and a Boolean vector, B,
such that,

bi(x) = bj(Ax+ B)

This surprising result means that the Rijndael block cipher only uses one S-box
from eight bits to one bit (used 128 times in each round). At the time of writing
this symmetry has not led to an attack on Rijndael but we include this observa-
tion in this section as it is possible that it may lead to attacks in the future. Note
however that, if this symmetry does not lead to an attack, then it could in fact
be beneficial, leading to more efficient software and hardware implementations of
the cipher. Since [245] was posted, Youssef and Tavares [629] proved this result
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by making use of dual bases over GF(2n) and trace functions, and generalised
the observation to include all S-boxes that utilise bijective monomials. They also
extended the result to show that all coordinate (bit) functions of the Rijndael
round function are equivalent under affine transformation of the input to the
round function. Further to this, Biham [62] has shown that such bit-affine rela-
tions exist for many of the S-boxes of the block ciphers submitted to NESSIE. In
particular, for the S-box, S9, of MISTY1, the rotation of the input by any num-
ber of bits does not affect the least significant bit of the output. Tables which
summarise these results can be found in Sect. 2.9. Also, Biryukov, De Cannière,
Braeken, and Preneel [83] have developed an algorithm to solve the linear and
affine equivalence problem for pairs of arbitrary S-boxes where, for n×n S-boxes,
the affine algorithm hascomplexity O(n322n), allowing a comparison of S-boxes
up to about size 32 × 32. This algorithm uses an exponential amplification of
the guesses by exploiting the linearity of the potential affine mapping. The algo-
rithm has a certain similarity to the ’to-and-fro’ algorithm of Patarin, Goubin,
and Courtois [516] used to solve polynomial isomorphisms. The affine equivalence
algorithm of [83] can also be used to decompose an S-box in terms of SPNs that
use layers of smaller S-boxes and, for an 8 × 8 S-box it is found that, typically,
at least 20 layers of 4× 4 S-box SPNs are necessary.
2.2.3.19 Exploiting the Permutation Cycle Structure of a Cipher

This cannot yet be considered an attack technique on a cipher. However, it sug-
gests that one may be able to use the cycle structure of the permutation that
defines part or all of the cipher to distinguish the cipher from a cipher chosen
at random. In [81] Biryukov and Preneel show that such a technique is particu-
larly suited to ciphers which utilise many involutional elements. The observation
was motivated by the submission to NESSIE of Khazad. Khazad is built en-
tirely from involutions which means that one can choose to replace a constituent
permutation by its inverse, so allowing the conjugation of some permutations,
where conjugation preserves isomorphism of permutations and, therefore, the cy-
cle structure of a permutation. This conjugation can be used to determine sections
of the cipher over which the permutation cycle structure is invariant. It follows
that a significant number of rounds of the cipher can take on the same cycle
structure as the linearly keyed S-box, and, in the future, it may be possible to
use this fact to distinguish the cipher from a random cipher.
2.2.3.20 Side-Channel Attacks

Side-channel attacks are a major thread for all implementations of cryptographic
algorithms. Annex A is devoted to this subject and addresses the application of
side-channel attacks and their countermeasures for block ciphers. Summarizing
annex A and [509], algorithms such as Rijndael, Khazad and Camellia seem to
be the most suited for implementations resistant to side-channel attacks.

2.2.4 Assessment process

The block cipher submissions were assessed with reference to the above generic
common block cipher attacks. Clearly, although some of these attacks are univer-
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sal, some of them have more relevance to certain block ciphers than others. Thus
the block ciphers were assessed against the attacks that seemed most relevant.
Furthermore, some block ciphers were analysed using techniques specific to that
primitive.

Local statistical testing was applied to components of the block ciphers in
order to demonstrate that they have good statistical properties. Global statistical
testing was applied to the input-output of the block cipher submissions to show
that the data demonstrated good statistical properties. In addition, these tests
were also applied on reduced round versions of the block ciphers in order to
determine the number of rounds needed to achieve good statistical properties.
Further details can be found in [479]. None of the block ciphers tested exhibited
any anomalous behaviour. We now summarise the two toolboxes developed by
NESSIE.

2.2.4.1 The NESSIE statistical toolbox for block ciphers

This toolbox is part of the general NESSIE test suite for the evaluation of statis-
tical properties of the submissions. We summarise the available tests as follows:

NESSIE Stream Cipher Tests. The block cipher can be used in OFB Mode
or Counter Mode. In such cases it produces a stream output and can be viewed
as a stream cipher. In these modes it can therefore be tested using the NESSIE
stream cipher tests. In both modes the following tests are applied:

– Frequency Test. Splits up the bit sequence into disjoint m-tuples whose distri-
butions are then evaluated statistically.

– Collision Test. The collision test splits up the bit sequence into blocks of a
fixed size. A collision occurs if the same block appears more than once. The
test statistically evaluates the number of collisions.

– Overlapping m-tuple Test. Shifted windows of m-tuples of words of fixed
wordlength are examined and statistically tested along with cyclic shifts of
the original sequence.

– Gap Test. Splits up the bit sequence into disjoint m-tuples which are then
interpreted as binary integer representations. The length of gaps, where the
numbers are not within a numerical range given as a parameter of the test, are
evaluated statistically. This test is also applied to cyclic shifts of the original
sequence.

– Run Test. Splits up the bit sequence into disjoint m-tuples which are then
interpreted as binary integer representations. The lengths of subsequences of
consecutive, strictly increasing numbers are evaluated statistically.

– Coupon Collector’s Test. Splits up the bit sequence into disjoint m-tuples. The
number of subsequence m-tuples it takes until all possible 2m m-tuples have
appeared, is evaluated statistically. The test is also applied to cyclic shifts of
the original sequence.

– Universal Maurer Test. Splits up the bit sequence into disjoint m-tuples and
evaluates statistically how many m-tuples later an m-tuple re-appears in the
sequence. The result of this test is closely related to the entropy of the bit
sequence.
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– Poker Test. Splits up the bit sequence into disjoint m-tuples, and this sequence
of m-tuples is then split up into subsequent disjoint k-tuples of m-tuples. The
poker test statistically evaluates how many of the m-tuples in a k-tuple are
equal. The test is also applied to cyclic shifts of the original sequence.

– Fast Spectral Test. Applies the fast Walsh transform to the given sequence and
uses the spectral results to assess the randomness of the sequence.

– Correlation Test. Determines in how many places the original sequence and
the sequence shifted by n bits have the same value for shifts up to the length
of the original sequence.

– Rank Test. Sequence bits are used to fill square matrices and the rank of the
matrices over GF(2) is evaluated statistically.

– Linear Complexity Test. The Berlekamp Massey algorithm is used to determine
the length of the shortest linear feedback shift register which can produce the
given bit sequence. For the linear complexity profile, this is done for the first
1,2,3.. bits of the sequence.

– Maximum Order Complexity (MOC) Test. Determines the length of the short-
est possibly non-linear feedback shift register which can produce the given
bit sequence For the MOC profile, this is done for the first 1,2,3.. bits of the
sequence.

– Ziv Lempel Complexity Test. Measures how well a bit sequence can be recon-
structed from earlier parts of the bit sequence.

– Dyadic Complexity Test. The Dyadic Complexity Test is an implementation of
the complexity measure suggested by Goresky and Klapper [348] for sequences
of bits. It determine the length of the shortest feedback shift register with carry
which can produce the given bit sequence.

– The Percolation Test is the simulation of a forest fire. The bit sequence to be
tested determines where trees are standing in the simulated forest. The test
evaluates statistically how fast a fire propagates in the simulated forest.

– Constant Runs Test. For the constant runs test, the sequence of bits is subdi-
vided into runs, that is maximal disjoint subsequences of consecutive 0s and 1s.
The frequencies of these runs of the various lengths are evaluated statistically.

These stream cipher tests were applied to the block cipher submissions, and
none of the block ciphers exhibited any anomalous behaviour. The detailed results
of the statistical tests are available as NESSIE public reports.

NESSIE Block Cipher Tests. NESSIE has also developed a test suite to test
the block ciphers as block ciphers. Details can be found in [479,565]. The following
tests are applied:

– Dependence Test. Evaluates the dependence matrix and the distance matrix
of the cipher. The degree of completeness, the avalanche effect, and the Strict
Avalanche Criterion (SAC) are also computed. We now define these criteria:
– A function is complete if each output bit depends on each input bit.
– The avalanche effect occurs when, on average, approximately one half of the

output bits change whenever a single input bit is complemented.
– The SAC is satisfied if each output bit changes with probability one half

whenever a single bit is complemented.
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– Linear Factors Test. Used to determine whether there are any linear combina-
tions of output bits which, for all keys and plaintexts, are independent of one
or more key or plaintext bits. Such a combination is called a linear factor. It
is impossible to do this for all keys and plaintexts, so the test is only applied
to a sufficiently large number of pairs of random keys and plaintexts.

The above block cipher tests were applied to the full cipher, and then to reduced-
round versions to determine the minimum number of rounds for which the various
criteria were all satisfied.

These block cipher tests were applied to the block cipher submissions, and
none of the block ciphers exhibited any anomalous behaviour. The detailed results
of the statistical tests are available as NESSIE public reports.

2.2.4.2 The NESSIE toolbox for differential and linear cryptanalysis

NESSIE has developed a software toolbox to aid in the analysis of block ciphers.
This is described in detail in [57]. The system currently examines the block cipher
on three levels.

1. Statistical properties of the basic building blocks are found.
2. Properties of complete rounds are found.
3. Properties are found over several rounds.

It is intended to extend the system to include aspects of cryptanalysis of the full
cipher at a later date. We now describe the analysis for each of the above three
categories.

Building Blocks. Any re-arrangement mapping and any nonlinear S-box map-
ping between an input vector of bits and an output vector of bits can be analysed,
where the input and output vectors need not be of the same size. The mapping
can be validated for one-to-one mapping, tested for the period of inherent per-
mutation cycles and the existence or otherwise of fixed-points in any inherent
permutations, and checked for output balance/distribution.

The system also provides difference distribution tables and linear approxima-
tion tables for the inherent S-boxes, for use in differential and linear cryptanalysis,
respectively.

One Round. The system identifies dependencies between the output bits of
round i and the output bits of round i + 1, and provides an example for linear
and differential one-round characteristics and their probability.

Several Rounds. The system identifies the most important 3-round charac-
teristics, and suggestions for good 5-round characteristics, with corresponding
probabilities.

2.3 Overview of the common designs

Modern-day ciphers are designed to withstand known cryptanalytic attacks. How-
ever there is not complete agreement as to the best design philosophy to use, hence
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the variety of designs submitted to NESSIE. We now summarise some of the most
important of these design philosophies, where any given cipher may utilise one
or more of these philosophies.

2.3.1 Feistel ciphers

A basic Feistel cipher takes 2t plaintext bits, and is a permutation, F , which uses
m round permutations, Fi, so that,

F = F0 ◦ F1 ◦ . . . ◦ Fm−1

where ’◦’ means composition.
Round i acts on half the input bits, the t bits, R, by means of the keyed

function, fi, and XORs the result with the other half of the bits, the t bits, L. It
then swaps the left and right halves. Thus we have,

[L′, R′] = Fi[L,R] = [R,L⊕ fi(R)]

where [L′R′] becomes the new input [LR] to round i + 1. Although F and
the Fi must be permutations, the fi need not be. It takes two rounds before all
plaintext bits have been acted on in a nonlinear way. DES, MISTY1, and Camellia
are all essentially Feistel ciphers. The Feistel structure allows decryption to be
accomplished using the same process, but with the sub-keys used in reverse order.
Sometimes the Feistel structure may be nested such that individual components
also have a Feistel structure. This is the case for MISTY1.

2.3.2 Substitution-Permutation Networks (SPNs)

A substitution-permutation network (SPN) separates the role of confusion (sub-
stitution) and diffusion (permutation) in the cipher. As with most ciphers, the
cipher is decomposed into iterative rounds where each round comprises a layer of
S-boxes, followed by a permutation/diffusion layer. The S-box layer provides the
nonlinearity (confusion), and the permutation layer provides the rapid diffusion.
In fact, the SPN has more recently come to include ciphers where the diffusion
layer is not a permutation (re-wiring) but is a linear or affine transformation.
Moreover these linear transformations are often derived from Maximum-Distance-
Separable (MDS) error-correcting codes, where the high minimum distance of the
code implies a high diffusion rate. The separating of the tasks of confusion and
diffusion allows the designer to maximise nonlinearity for the S-box, and max-
imise information spread for the diffusion layer. Rijndael, Khazad, Hierocrypt,
and SAFER++are all examples of SPNs. In fact a Feistel cipher is also a type
of SPN. Sometimes the SPN structure may be nested, such that the individual
S-boxes are themselves SPNs. Hierocrypt is an example of such a cipher, and
Rijndael can also be described in this way [41]. In fact, one can always compose
a large S-box as a number of layers of smaller S-boxes — and this is the case for
the S-boxes of Khazad and Anubis.
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2.3.3 Resistance against differential and linear cryptanalysis

Many recent block cipher designs have attempted to maximise the resistance of
the cipher to differential and linear attack. This is usually achieved in two ways:

– Firstly, the elemental S-boxes are designed to be highly nonlinear, i.e. so that
they can only be poorly approximated by linear equations, and so that dif-
ferential characteristics can only be propagated through the S-box with small
probability. These design criteria are evident in the parameters of low linear
bias and low differential probability associated with the cipher.

– Secondly, the diffusion components are designed to spread the information
to the whole cipher block as rapidly as possible. This rapidity is sometimes
measured in terms of the branch number or minimum distance of the diffu-
sion layer. The resilience of the component functions of the S-box is also a
measure of the diffusion properties of the S-box, where Resilience t indicates
that the component function is completely independent of any t or fewer of
its constituent variables. The result of rapid diffusion is that, in any linear or
differential attack, which essentially uses elemental approximations, too many
of the elements of the block cipher must be approximated, thereby rendering
the attack useless.

For some recent ciphers, e.g. Khazad, the emphasis on extremely rapid dif-
fusion has reduced the perceived need for optimal nonlinearity of the S-box —
reasonably good nonlinearity is considered good enough. This has enabled the
S-box to be chosen randomly from a suitable subspace of the set of S-boxes, un-
like, for instance, the S-boxes of Rijndael, Camellia, or MISTY1, which optimise
nonlinearity at the price of, in the case of Rijndael and Camellia, a non-random,
algebraic S-box which may lay itself open to algebraic attack.

2.3.4 Mini-ciphers and reduced rounds

Although the attacks on block ciphers described in this chapter provide a means
of assessing the security of a cipher, it is still the case that cryptanalysis of a
real cipher is an extremely big task. As an aid to analysis, some cipher designs
naturally allow the description of mini-versions of their cipher over a reduced
wordsize and reduced plaintext and key blocksize. One can then analyse these
small versions of the cipher and extrapolate the conclusions to the larger real
cipher. Ciphers which naturally support mini-versions include RC6, SAFER++,
IDEA, Khazad, Rijndael, and numerous others. In fact, most ciphers already
incorporate this philosophy in the sense that they decompose the cipher into
iterated round functions. This leads to attacks on reduced rounds which can
then be extrapolated to the full-round cipher. Recently, [357] has suggested a
very rough rule-of-thumb computation for the minimum number of rounds, R,
required to make a block cipher secure, given by R ≥ dN

w where w is the minimum
word size input to a confusion stage in the cipher (for instance this could be the
size of the smallest S-box used), d is the maximum number of rounds it takes for
one word to be input to a confusion stage (for a Feistel cipher, d = 2), and N is
the size of the plaintext input to the cipher, in bits.
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2.3.5 Simple as opposed to complicated designs

Some ciphers are deliberately very difficult to analyse. Others are deliberately
relatively simple to analyse, being built out of conceptually simple primitives. For
example, ciphers that add in the key via XOR are often easier to analyse than
ciphers that use nonlinear key input. The security of ciphers that use nonlinear
keying can often be far more key-dependent than the security of ciphers that use
linear keying. This makes them harder to analyse but also makes it more likely
that there are weak keys for which the enciphering function is weak [453]. The
current trend is towards ciphers that are simple to describe and analyse, as a
cipher that cannot be analysed cannot be declared secure. Of course there are
different notions of simplicity, for instance, although RC6 and Khazad are both
simple designs, they are not simple in the same way.

2.3.6 A separate key-schedule

Virtually all modern block cipher designs separate the key-schedule from the
enciphering/deciphering process. Typically the cipher will take in a master key
and, from this key, generate round keys which will then be used to key the rounds
of the encryption process. Thus there are usually two parallel processes in a block
cipher. One encrypts, whilst the other generates the key-schedule.

2.3.7 The use or otherwise of S-boxes

The use of S-boxes in block ciphers is mainly as a means of introducing nonlin-
earity. They are usually envisaged as large look-up tables, substituting one value
for another. Examples of the type of cipher that uses S-boxes are DES, MISTY1,
Rijndael, Camellia. In contrast, some ciphers do not use explicit S-boxes but in-
troduce nonlinearity by means of well-known algebraic operations such as integer
addition, integer multiplication, log, or exponentiation. Examples of these ciphers
are RC6, IDEA, and SAFER++. However, this distinction is a bit tenuous as,
for example, a log function or a multiplication can be viewed as an S-box, and
the S-box used by Rijndael and Camellia is essentially x−1 over GF(28). A more
significant distinction is between key-dependent and non-key-dependent S-boxes
— for instance, whereas multiplication by a constant can be implemented using
a fixed look-up table, multiplication by a key cannot. Another useful design dis-
tinction is that some ciphers use large S-boxes (e.g. 8 by 8 or bigger), and some
ciphers use smaller S-boxes (e.g. 4 by 4). It has recently been argued that the use
of S-boxes that are too small is not a good idea [165].

2.3.8 Ciphers which are developed from well-studied precursors

It is an accepted fact that block ciphers need many years of analysis before they
can be labelled secure. It is therefore common for block cipher designers to in-
crementally improve their own previous designs and/or incorporate aspects of
previous block cipher designs. This is a cautious strategy which seeks to add to



Dra
ft

Apr
il
19

, 2
00

4

78 Book II. Evaluation — Part B. Security evaluation

the perceived security of the new design. For instance, an attack on the key-
schedule of a previous version of SAFER [351, 356], and an improved diffusion
layer, have led to upgrades which have been incorporated in SAFER++. (Note,
however, that it could be argued that the designers have made drastic changes
in designing SAFER++from previous designs which, to some extent, invalidate
previous analysis — for instance they completely changed and reduced the com-
plexity of the mixing layers). As another example, RC6 uses exactly the same
key schedule as RC5.

2.3.9 Making encryption and decryption identical

It is clearly desirable for the encryption and decryption processes of a cipher to
be identical in as many ways as possible, as this enables the re-use of hardware or
software resources. Feistel ciphers are designed in this way. Moreover, any cipher
component which is an involution will be, by definition, the same in reverse.
Khazad uses only involutions so encryption and decryption are identical for such
a cipher (apart from the order of the sub-keys). In contrast, Rijndael uses different
encryption and decryption operations, although the encryption and decryption
speeds for Rijndael are virtually identical in software, differing only slightly for
8-bit machines. In hardware, the speed of both operations for Rijndael is the
same, decryption requiring just a little bit more hardware.

2.3.10 Hash functions as block ciphers

A hash function is usually not intended to be used as a block cipher, but it can
be. The hash function will take a K-bit message and hash an initial N -bit value
to a final N -bit value which is called the hash of the message. The hash function
is designed so that it is impossible to ascertain the K-bit message from the N -bit
hash. K is always bigger than N . If we redefine the K-bit message as a K-bit key,
and the N -bit initial value as the input plaintext, then the output hash becomes
the N -bit output ciphertext. For example, SHACAL-1 and SHACAL-2 are block
cipher submissions to NESSIE and are block ciphers built from the hash functions,
SHA-1 and SHA-256, respectively. A secure hash function should ideally minimise
the number of (inevitable) N -bit output hash collisions for different initial K-
bit messages, given that the initial N -bit value is fixed. This is called collision-
resistance. Transferring this criterion to the block cipher regime implies that,
given a fixed input plaintext, a secure block cipher should seek to minimise the
number of ciphertext collisions for different key inputs. However, it is not at all
clear at present whether weaknesses in collision-resistance for the hash function
translate into attacks on the associated block cipher. It is an open problem.

2.3.11 Current standards

The Data Encryption Standard, DES, is now considered to have too small a key
space for today’s security requirements. Triple-DES (DES encryption, followed
by DES decryption, followed by DES encryption) uses a 3×56 = 168-bit key and
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is considered to be a practical solution to the security weakness of DES. Triple-
DES has been included in the NESSIE evaluation as a benchmark cipher with
which to compare the other block cipher submissions, although it is somewhat
inefficient in comparison.

The new Advanced Encryption Standard, AES [470], also known as Rijndael,
has also been included in the NESSIE evaluation, both Rijndael-128 and Rijndael-
256, once again to act as a benchmark with which to compare the other block
cipher submissions. Note also that RC6, one of the five AES finalists, has also
been submitted to NESSIE, as has SAFER++which is a modified version of
SAFER+ which was in the AES.

Currently there is an ongoing assessment of new cryptographic primitives
to be adopted as the new ISO standard. The block ciphers being considered
are as follows: For 64-bit plaintext, TDEA (Triple-DES) — 128 or 192-bit key,
MISTY1 — 128-bit key, and Khazad — 128-bit key. For 128-bit plaintext, the
AES (Rijndael) — 128, 192, or 256-bit key, Camellia — 128, 192, or 256-bit key,
SEED — 128-bit key, RC6 — 16 - 256-byte key, and CAST-128.

2.3.12 Block cipher primitives

The deadline for submissions to the NESSIE project was September 29, 2000,
just before NIST’s announcement that the AES block cipher was to be Rijndael.
Nevertheless, there were 17 block ciphers submitted to NESSIE.

The NESSIE call for primitives specified the following security levels for block
ciphers.

– High. Key length of at least 256 bits. Block length at least 128 bits.
– Normal. Key length of at least 128 bits. Block length at least 128 bits.
– Normal-Legacy. Key length of at least 128 bits. Block length 64 bits.

There have been two phases to the evaluation process, Phase I and Phase
II. In total, 8 ciphers were selected for Phase II, with SAFER++and RC6 both
being selected for two security levels.

The submissions are classified in the table below according to the security
levels specified in the NESSIE call, and those selected for Phase II of NESSIE
are indicated.
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Name of cipher Block Size (bits) High Normal Normal-Legacy Phase II
CS-Cipher 64 X
Hierocrypt-L1 64 X
IDEA 64 X

√

Khazad 64 X
√

MISTY1 64 X
√

Nimbus 64 X
NUSH 64 128 256 X X X
SAFER++ 64 128 X X X

√ √

Grand Cru 128 X
Noekeon 128 X
Hierocrypt-3 128 X X
Q 128 X X
RC6 128 X X

√ √

SC2000 128 X X
Anubis 128 X
Camellia 128 X

√

SHACAL-1 160 X
√

SHACAL-2 256 X
√

NUSH was designed with three different block sizes: 64 bits, 128 bits, and 256 bits.
RC6 has a variable block length 4w bits, where w ≥ 32 is recommended by the
designers.
SAFER++has two variants, one with 64-bit blocks and one with 128-bit blocks.

2.4 64-bit block ciphers considered during Phase II

The 64-bit block ciphers selected for Phase II of NESSIE were IDEA, Khazad,
MISTY1, SAFER++ (64-bit block), and Triple-DES. None of these ciphers has
been broken so the following security evaluation identifies weaknesses that occur
in reduced-round versions of the ciphers, and identifies weaknesses that may lead
to more effective attacks in the future. We first describe each cipher in some
detail, along with the most important attacks known on each cipher. Note that
the algorithms given here are not complete specifications, but references are given
to complete specifications which may be found on the NESSIE website. After
discussing each cipher we summarise and compare some of the distinguishing
features of the ciphers, identifying potential weaknesses and noting the best-
known attacks, as shown in Tables 2.14 and 2.15 of Sect. 2.9.1.

2.4.1 IDEA

2.4.1.1 The design

IDEA [387] operates on 64-bit blocks of plaintext and ciphertext and is controlled
by a 128-bit key. It is specified to require 8.5 encryption rounds to achieve an
acceptable security margin. It claims to achieve high security by concatenated
use of three arithmetic operations from two dissimilar algebraic groups (two of
the groups are isomorphic), namely:

– Addition mod 216.
– Multiplication mod 216 + 1 (where the all 0 bit word is interpreted as 216).
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– Bitwise exclusive OR.

Note that (since 216 + 1 is prime) the multiplication operation is isomorphic to
the addition operation. The combined use of these operations is used to achieve
high nonlinearity and completely replace the more conventional use of S-boxes for
this task. This can often result in relatively efficient implementations, in software
because many processors have special-purpose multiplication operators, and in
certain hardware scenarios where memory is at a premium, as S-boxes usually
require large look-up tables. Although the software realisation of modular multi-
plication can be optimised [63], hardware implementation of multiplication will
always cost many gates, and this means that hardware implementations of IDEA
are not compact. The cipher is designed so that encryption and decryption are
identical apart from key input. The encryption operation is shown in Fig. 2.3,
and comprises 8 identical steps (rounds) followed by an output transformation.
Round 1 is shown in detail in Fig. 2.3.

First
Round

Output
Transform
(9th round)

16−bit16−bit16−bit16−bit

16−bit16−bit16−bit16−bit

Z(1) Z(1) Z(1)
Z(1)

Z(1)

Z(9) Z(9) Z(9) Z(9)

Z(1)

Bitwise XOR of two
16−bit subblocks

Multiplication mod
2^16 + 1 of two 16−bit
integers (subblock of all

Ciphertext (64 bit)

Plaintext (64 bit)

}

}
7 More Rounds

1

1

2

2

3

3

4

4

6

5
Addition mod 2^16 of
two 16−bit integers

zeroes corresponds to 2^16

Fig. 2.3. The IDEA Block Cipher

The 64 bits of plaintext are partitioned into four 16-bit subblocks and all
encryption operations take 16-bit inputs and produce 16-bit outputs. The Z’s of
Fig. 2.3 refer to six 16-bit key subblocks per round (with four 16-bit key subblocks
for the subsequent output transformation). A total of 8 · 6 + 4 = 52 different 16-
bit subblocks are generated from the 128-bit key. We describe this key schedule
below.

It should be noted from Fig. 2.3 that after each round the 16-bit partitions
are re-ordered before commencing the next round. The process of round one is
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repeated for 7 more rounds, and after 8 rounds the output transformation is
combined with the final four of the key subblocks, as shown in Fig. 2.3.

A fundamental design criterion is the following:
At no point during the encryption process is the same algebraic group operation
used contiguously.

It has been shown by Wernsdorf [619] that the multiply-addition box at the
centre of the round of IDEA generates the alternating group on {0, 1}32 and [619]
conjectures that the alternating group is also generated by the complete round
of IDEA. These large groups exclude the possibility of several types of regularity
for IDEA.

The key schedule takes a 128-bit key and turns it into 52 16-bit key subblocks,
as follows:

– First, the 128-bit key is partitioned into eight 16-bit subblocks and these form
the first eight key subblocks.

– The 128-bit key is then cyclically shifted to the left by 25 positions, after which
the resulting 128-bit block is once again partitioned into eight 16-bit subblocks
and these form the next eight key subblocks.

– The above process is then repeated until all required 52 16-bit key subblocks
have been generated.

Decryption is identical to encryption apart from the use of different key sub-
blocks, where these 52 16-bit key subblocks are as follows: each subblock used for
decryption is the inverse of the key subblock that was used for encryption, where
the inverse is taken with respect to the algebraic group operation associated with
that particular key subblock. Moreover, these key subblocks must be applied in
reverse order to the order in which they were used for encryption.

2.4.1.2 Security analysis

IDEA has been widely studied for over a decade and few security flaws have been
found. In fact, no attack against 5 or more of its 8.5 rounds has been found.
However, IDEA does exhibit weak key classes of substantial size, and it can be
argued that a flawless cipher should have no weak keys at all. IDEA has been
included in the popular cryptographic package, PGP, although not for some time,
and is one of the best known and most widely used ciphers. The following at-
tacks are some of those that have been applied to IDEA prior to and during
NESSIE. Meier proposed a differential attack on 2.5 rounds [437], where it was
observed that, if a+ b < 216, then a+ b mod 216 = a+ b mod 216 + 1, and this
in turn implies that that multiply-addition part of IDEA is linear about 1

4 of the
time. The paper of Borst et al. [113] developed a truncated differential attack
on 3.5 rounds, and a miss-in-the-middle attack on 4.5 rounds was proposed by
Biham et al. [66]. Moreover, it has been shown [86, 176, 288, 383] that certain
weak-key classes exist for IDEA. For instance, [176] exploited the observation
that −x mod 216 + 1 = x ⊕ 11 . . . 101 whenever x1, the second least significant
bit of x, is 1. In fact, attacks which exploit potential weaknesses in the modular
multiplication, mod 216 + 1, are of particular interest for IDEA, for instance,
Harpes et al. [283] attack IDEA by applying a quadratic residue homomorphism
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between (Z/nZ)∗ and Z/2Z, where n = 216 + 1, and a recent paper by Borisov
et al. [111] further exploits homomorphisms between modular multiplication and
XOR to identify large weak key classes for certain variants of IDEA where ad-
dition has been replaced with XOR. They show that for 2112 of the keys there
exists a multiplicative differential characteristic over 8 rounds that holds with
probability 2−32. Recently, Raddum [538] has demonstrated a better attack on
this variant of IDEA, called IDEA-X, using a similar technique, but this time us-
ing XOR-differentials. The advantages of the attack in [538] are that it works for
all keys, and it is only necessary to change the first two additions in each round
to XORs. In [538] a differential characteristic has been found that holds with
probability 2−30 over 8 rounds and exploits the fact that Z216 and GF(216 + 1)∗

are both cyclic groups, and therefore isomorphic. Essentially, each element a in
GF(216 + 1)∗ can be written uniquely as,

a = gx15
15 · g

x14
14 · . . . g

x15
0

where · means field multiplication, xi ∈ {0, 1}, g0 is a primitive element of
GF(216 + 1), and gi = g2

i−1. We write this as a = gx. Then φ(a) = x is an
isomorphism, mapping multiplication, mod 216 + 1, for a to addition, mod 216,
for x. For a, b ∈ GF(216 + 1), ab = φ−1(φ(a) + φ(b)). The above isomorphism is
then used to pass an input XOR difference through the mod 216 + 1 multiplier,
then unchanged through a subsequent (integer) additive key bit, and finally back
to an XOR difference. The complete XOR to XOR difference holds with probabil-
ity 1

4 . This characteristic is used to attack IDEA-X as defined by [111]. However,
the attack of [538] in fact requires fewer of the integer additions to be changed to
XORs so the cipher it attacks is closer to the real IDEA than the cipher of [111].

Until the commencement of NESSIE the best attack on IDEA was by Biham
et al. [66] on 4.5 out of 8.5 rounds of IDEA.

Nakahara et al. [457] report on variants of the SQUARE attack applied to
reduced-round versions of the PES and IDEA block ciphers (PES is a forerunner
of IDEA). Attacks on 2.5 rounds of IDEA require 3 · 216 chosen-plaintexts and
recover 78 key bits. A SQUARE related-key attack is applied on 2.5 rounds of
IDEA and recovers 32 key bits, with 2 chosen-plaintexts and 217 related keys.
Implementations of the attacks on 32-bit block mini-versions of both ciphers
confirmed the expected computational complexity. Although the attacks do not
improve on previous approaches, this report shows new variants of the SQUARE
attack on word-oriented block ciphers like IDEA and PES.

Biryukov et al. [86] present a large collection of new weak-key classes on the
full 8.5 round IDEA cipher proposed, using the property that some multiplica-
tive keys which are 0 or 1 turn modular multiplication into a linear operation.
The weak-key classes in this paper contain 253 - 264 weak keys. The novelty
of the approach is in the use of the boomerang distinguisher for the weak-key
class membership test, as developed by Wagner [616]. Large weak-key classes for
reduced-round versions of IDEA are also shown. It appears that the existence of
relatively large weak key classes for IDEA is due to the use of modular multipli-
cation as the main nonlinear part of the cipher, and because the key schedule is
also a linear process. The results suggest a redesign of the key schedule of IDEA.
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Finally, statistical evaluation of IDEA [537], following the recommendations
of the NESSIE statistical evaluation process for block cipher submissions, does
not indicate a deviation from random behaviour.

Table 2.1. Comparison of attack requirements on reduced-round IDEA

Attack Type Year Reference
#Attacked

Rounds
Data †

Complexity
Time

Complexity

Differential 1993 [437] 2 210 242

Improved-Square 2002 [191] 2 23 264

Differential 1993 [175] 2.5 210 232

Differential 1993 [437] 2.5 210 2106

Square attack 2000 [457] 2.5 3 · 216 258

Square attack 2000 [457] 2.5 232 259

Square 2000 [457] 2.5 248 279

Related-Key Square 2001 [457] 2.5 2 233

Improved-Square 2002 [191] 2.5 55 281

Differential-Linear 1996 [113] 3 229 0.75 · 244

Improved-Square 2002 [191] 3 71 271

Improved-Square 2002 [191] 3 233 282

Truncated
Differential

1997 [369] 3.5 256 267

Miss-in-the-middle 1999 [66] 3.5 238.5 253

Improved-Square 2002 [191] 3.5 103 2103

Improved-Square 2002 [191] 3.5 234 282

Miss-in-the-middle 1999 [66] 4 238 270

Related-Key ‡

Differential-Linear
1998 [288] 4 38.3 38

Improved-Square 2002 [191] 4 234 2114

Miss-in-the-Middle 1999 [66] 4.5 264 2112

† number of chosen texts.
‡ the differential-linear attack requires two related keys.

In view of the comparatively large amount of cryptanalysis undertaken on
IDEA, Tables 2.1 and 2.2 summarise many of the known chosen-plaintext and
weak-key attacks on IDEA, respectively. The most effective of these attacks are
then included in the summary table, Table 2.14, in Sect. 2.9.1 at the end of this
chapter.

2.4.2 Khazad

2.4.2.1 The design

Khazad [39] is a 64-bit Substitution-Permutation (SPN) block cipher with a
128-bit key and is designed to operate over 8 rounds. Khazad has many simi-
larities to Rijndael, but works on 64-bit plaintext blocks. A primary selling-point
of Khazad is that all components of the algorithm use involutions. This invo-
lutional structure is important for implementations and to make encryption and
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Table 2.2. Comparison of attack requirements on IDEA for weak-key classes.

Attack Type Year Reference
#Attacked

Rounds
Weak-key
Class Size

Data †

Complexity
Time

Complexity

Differential 1993 [176] 8.5 251 2 212

Differential-Linear 1998 [288] 8.5 263 20 4
Boomerang 2002 [86] 4.5 2101 218 218

Boomerang 2002 [86] 5 297 210 210

Boomerang 2002 [86] 5 295 4 4
Boomerang 2002 [86] 8.5 253 4 4
Boomerang 2002 [86] 8.5 257 211 211

Boomerang 2002 [86] 8.5 264 216 216

† number of chosen texts.

decryption equivalent operations apart from the order of the key schedule. This
also implies equal security for encryption and decryption. These involutions in-
clude the S-box, S, (i.e. S[S[x]] = x), and the 64-bit linear diffusion mapping,
based on an MDS code and represented by a matrix H, (i.e. H2 = I). The ma-
trix H that realises this diffusion is also chosen to have lowest possible Hamming
Weight and, for smart-card implementation, lowest possible integer weight over
8-bit words. The cipher also emphasises the Wide-Trail Design Strategy [174]
as the linear diffusion layer is based on a Maximum-Distance-Separable (MDS)
code with a high branch number of 9. This ensures that there is full mixing after
a single round. This, in combination with a reasonably nonlinear S-box ensures
strong resistance to linear and differential attacks, and to related-key attacks. In
the original submission the 8 × 8-bit S-box was randomly chosen to avoid any
obvious internal structure. However, this made the S-box costly to implement in
hardware so the authors have modified the submission by replacing this S-box
with another S-box which is more amenable to hardware implementation. This
replacement was also made in order to correct a small security flaw where the
maximum bias of a linear characteristic through the S-box was slightly under-
estimated (this did not lead to any security failure, as the high diffusion of the
round more than compensates for this). The S-box has also been chosen to have
no fixed point and is made out of six 4× 4-bit smaller S-boxes, P and Q, which
are involutions with optimal nonlinearity characteristics, as shown in Fig. 2.4.
The designers expect that the hardware required to implement this S-box should
be around 1

5 of that for the Rijndael S-box, which is also an 8× 8-bit S-box. Es-
sentially, this potential reduction in implementation cost is bought at the price of
slightly weaker nonlinear characteristics. However it should be noted that, unlike
in Camellia or Rijndael, the avoidance of an S-box using x−1 may increase the
minimal size of any potential set of sparse quadratic equations on which to base
an attack of the form proposed by Courtois and Pieprzyk in [165] or by Murphy
and Robshaw in [452]. Preliminary evidence for this claim is given by Biryukov
and de Cannière [82], where a description of the 8× 8 Khazad S-box requires 28
quadratic equations, but a description of the 8× 8 Rijndael S-box only requires
23 quadratic equations

Key addition is achieved via XOR (which is also an involution). This has
the advantage that no weak keys exist as the nonlinearity operations are key-
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Fig. 2.4. Structure of the Khazad S-box. Both P and Q are pseudo-randomly generated
involutions; the output from the upper and middle nonlinear layers are mixed through
a simple linear shuffling.

independent. The Khazad key schedule uses a 9-round 128-bit Feistel scheme
with an internal F -function being a round of Khazad with constants used as
the 64-bit key. The user-specified 128-bit key is used as a plaintext and the
intermediate 64-bit values after each round become the subkeys of Khazad. The
key schedule expands the 128-bit key into 64-bit round keys, K0,K1, . . . ,KR,
plus two initial round keys K−2 and K−1, and these round keys are generated
as follows:

Kr = ρ[cr](Kr−1)⊕Kr−2 0 ≤ r ≤ R
where ρ[cr](K) is the round function of Khazad which takes as input parameters
the pre-chosen constant cr and round key input, K.

Running R rounds of the complete cipher apply the operation αR[K0 . . . KR]
to the plaintext, where,

αR[K0 . . . KR] = σ[KR] ◦ γ ◦ (©r=R−1
1 ρ[Kr]) ◦ σ[K0]

where σ, γ, and ρ are the operations of key addition, nonlinear substitution and
the full round function, respectively.

2.4.2.2 Security analysis

The designers [39] state that, for Khazad, there is no 2-round differential char-
acteristic with probability higher than 2−45 and no 2-round linear approxima-
tion with bias of more than approximately 2−20.7. Related-key attacks were also
claimed to be infeasible. A SQUARE attack on 3 rounds of Khazad is described
by Barreto and Rijmen in [39], requiring 28 key guesses × 28 chosen plaintexts
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= 216 S-box look-ups to recover one key-byte. A variant on this requires 29 chosen
plaintexts, 216 S-box look-ups, and 64-bit key guessing, which can be extended to
an attack on 4 rounds requiring 280 S-box look-ups. An extension of the Biham-
Keller impossible differential attack on 5 rounds of Rijndael [74] can be applied
to 3 rounds of Khazad, requiring 213 chosen plaintexts and 264 encryptions.
The designers [39] also claim security against truncated differential attacks after
4 rounds, and against Interpolation attacks and Boomerang attacks. Analysis by
Biham et al. [67] supports these claims. However, further analysis reveals 4 linear
characteristics with bias ' 17

256 , whereas [39] originally claimed a maximal abso-
lute bias of 13

256 . This resulted in the tweak to the S-box mentioned earlier. The
Gilbert-Minier collision attack, which works better than the SQUARE attack on
Rijndael, will not work for Khazad since it requires full 64-bit collisions, whereas
Rijndael only requires 4-byte collisions owing to slower mixing (diffusion).

Generalised linear characteristics for Khazad with maximum and minimum
bias are also found by Parker in [511]. It is found that Khazad already has a
moderately low-bias characteristic with Peak-to-Average Power Ratio = 16.0 with
respect to the Walsh-Hadamard Transform, and this confirms the bias quoted by
the designers. But, as with all S-boxes, this bias increases significantly when
approximated by more general linear expressions, where a more general linear
expression is here meant to mean ωf(x), where ω is an rth complex root of 1,
and f(x) is a linear expression in the variables, xi, mod r. For r � 2 this set
of linear expressions is much larger than for binary linear expressions, so much
closer approximations can be found.

One advantage that Khazad may have over Rijndael is that the S-box of
Khazad does not depend on a simple mathematical function, namely x−1, which
is potentially open to attack. However, the nonlinearity of the Rijndael S-box is
stronger. Moreover, although the S-box of Khazad is claimed by the designers
to be implementable with about 1

5 of the hardware of that needed for Rijndael, a
recent paper by Fuller and Millan [245] shows that the output functions of Rijn-
dael are all affine transformations of the same function. This suggests a potential
extra hardware saving for the Rijndael S-box, although this simplification may
perhaps later be exploited as a security weakness, as all the output bits of the
S-box are simply affine relations of one another. In contrast, the Khazad S-box
is relatively unstructured and therefore less of a candidate for potential algebraic
attacks. Furthermore, Biham [62] has shown that no such affine relationships ex-
ist for the Khazad S-box (see Sect. 2.9.1). However, using the affine-equivalence
algorithm developed by Biryukov, De Cannière, Braeken, and Preneel [83], it was
found that the P and Q S-boxes of Khazad are both self and mutually-affine
equivalent. This implies that the complete Khazad cipher can be described using
affine mappings and a single non-linear 4 × 4-bit look-up table. Note that this
is not necessarily as bad as it sounds: each cipher can be described with affine
mappings and a single non-linear 2× 1 bit AND.

One of the major hindrances to cryptanalysis of Khazad is the extremely high
rate of diffusion for the cipher and it may be that new attacks on such ciphers
have to exploit more global iterative properties of the cipher, such as its permu-
tation structure. Recently some new techniques which analyse the permutation
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cycle structure of Khazad have been proposed by Biryukov and Preneel [81],
suggesting promising avenues for future attacks on such ciphers. The techniques
exploit the involution structure of Khazad by showing that the involutions main-
tain the permutation cycle structure through successive rounds of Khazad. We
can write 5-round Khazad as follows:

k0SMk1SMk2SMk3SMk4Sk5

where the ki are the key XORs, S is the nonlinear S-box layer, and M is the MDS
linear diffusion layer. By passing the k through M we can rewrite the above as

k0Sk
′
1[MSM ]k2Sk

′
3[MSM ]k4Sk5.

[81] first investigates the permutation cycle structure of MSM , noting that, as
M = M−1 (an involution), MSM = MSM−1 = A, where A is a permutation
isomorphic to S. Secondly, [81] shows that the permutation cycle structure of
k1Sk2, for arbitrary k1 and k2, depends only on the difference ∆k1k2 = k1 ⊕ k2.
Moreover each cycle length appears in the permutation k1Sk2 an even number of
times. It follows that k1Sk2 consists of more than 28

∏
i li cycles, where 2li is the

number of cycles of the ith permutation of the eight parallel 8-bit permutations
which comprise the k1Sk2 layer. Using these results it can be shown that, for two
randomly chosen points x = (x1, x2, . . . , x8) and y = (y1, y2, . . . , y8), the GCD of
the cycle sizes has a good chance of being big (unlike a random permutation).
The probability that the xis and yis will belong to the same cycle or to two
different cycles of the same size is more than 2li

256 . By collecting and factoring
cycle lengths we can obtain information about ∆k1k2 . Next, [81] shows that,

[MSM ]k1Sk2[MSM ] = Ak1Sk2A = B (covering 3.5 rounds)

Because of the involutional structure of Khazad, B is an isomorphic permutation
of A, so it has the same cycle structure as discussed earlier. In particular, it has
the same cycle structure as k1Sk2. Therefore it is enough to study the fixed points
of S(x) ⊕∆k1k2 . It follows that, for a randomly chosen k1, k2, Ak1Sk2A has no
fixed points with probability greater than 1 − 2−8. However, if it has a single
fixed point then it must have more than 28 fixed points. Finally, [81] examines

kSk[MSM ]kSk[MSM ]ksk 5 rounds.

It is possible to show that,

(KH5(x)⊕∆k)n = k0SM(KH3)nMSk5

where ∆k = k0 ⊕ k5 and KHj(x) means j rounds of Khazad. In other words
we have a very strong relationship, due to the involutional structure, between 3
rounds and 5 rounds of Khazad. It follows that if one can detect peculiarities
in the cycle structure of 3-round Khazad in less than 264 steps, then this will
provide a distinguishing attack on 5-round Khazad faster than exhaustive key
search.
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The paper by Biryukov and de Cannière [82] compares minimal systems of
multivariate polynomials which completely define certain block ciphers, including
Khazad. The work is motivated by the recent papers [165] and [452,454] which
propose attacks on block ciphers using overdefined systems of linear, quadratic
and low degree equations. For Khazad the P S-box consists of 4 quadratic equa-
tions in 16 terms, and the Q S-box consists of 6 equations in 18 terms. These
equations are used to define 30 equations in 32 linear and 28 quadratic terms for
the 8-bit S-box of Khazad and, along with a set of linear equations to define the
linear layers, the whole of the block cipher can be described by 2496 equations
in 2048 variables using 3840 linear and quadratic terms. Similarly, the key sched-
ule can be described by 2672 equations in 2638 variables using 4384 linear and
quadratic terms. As the cipher takes a 64-bit plaintext input and a 128-bit key, 2
plaintext/ciphertext pairs are required to solve the system, implying a doubling
of the number of state equations, variables, and terms for the cipher. However
the number of equations for the key schedule remains unchanged, as the same
schedule is used for both encryptions. In total [82] estimates that 7664 equations
in 6464 variables using 12064 linear and quadratic terms are required. Roughly
speaking it is desirable to keep the number of free terms as low as possible so as to
maximise the solution speed for such a system (see Sect. 2.2.3.17). For Khazad
there are 4400 free terms. It is found that twice as many free terms are required for
MISTY1, suggesting that MISTY1 is more secure than Khazad [82]. However,
this is perhaps misleading because, as [82] points out, they restrict themselves
to quadratic equations for their count whereas S-box S7 of MISTY1 has a much
more concise representation using cubic equations. If cubic equations are included
in the count then MISTY1 may appear less secure than Khazad.

2.4.3 MISTY1

2.4.3.1 The design

MISTY1 was first published in 1996, is a Feistel network based on a 32-bit non-
linear function, takes 64-bit plaintext and a 128-bit key, and is recommended for
8 rounds (more generally a multiple of 4 rounds). Moreover, each pair of rounds
is separated by a layer of two 32-bit FL-blocks. MISTY1 can be implemented in
situations where resources are heavily constrained, and the constituent lookup
tables are optimised for hardware performance. The entire algorithm is built
from recursive components such that at each level the structure is again a secure
Feistel-like structure. The recursive design adds a lot of complexity to the cipher,
making analysis hard. The additional FL or FL−1 functions every odd round,
for encryption or decryption respectively, take 32-bit input and output as well as
taking a 32-bit subkey as input. The FL layers are added to avoid attacks other
than differential and linear cryptanalysis. The modified Feistel structure uses an
FO function which has 32-bit input and output as well as taking a 64-bit sub-
key and another 48-bit subkey. This FO function contains an FI function which
has 16-bit input and output as well as taking a 16-bit subkey. The FI function
contains 7 × 7-bit, and 9 × 9-bit S-boxes. This encryption structure is shown in
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Fig. 2.5, where the 64-bit plaintext is first split into two 32-bit left and right parts,
and then converted to ciphertext via bitwise XOR, FO and FL/FL−1 operations.
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Fig. 2.5. Encryption for MISTY1

The rounds are summarised algebraically as follows:

odd rounds Ri = FLi(Li−1, KLi) Li = FLi+1(Ri−1, KLi+1)⊕ FOi(Ri, KOi, KIi)
even rounds Ri = Li−1 Li = Ri−1 ⊕ FOi(Ri, KOi, KIi)

with a final FL operation after the last round, to ensure that decryption is like
encryption apart from a reverse of the subkey order and the interchange of FL
and FL−1. The KL’s, KO’s and KI’s in the above round expressions are subkeys
which are derived from the 128-bit key by using the following key schedule. We
first partition the 128-bit key into eight consecutive 16-bit key values K1, . . . ,K8.
We then generate K ′

i subkeys by using the FI function as follows,

K ′
i = FI(Ki,Ki+1)

where the indices are taken cyclically. Then using these subkeys we can derive
the subkeys used in the round functions by applying the subkey mapping table of
Table 2.3:

The subkeys of Table 2.3 are then used in the functions FL, FO, and FI, as
shown in Figs 2.6, 2.7, and 2.8 (the FL−1 function is similar to the FL function).

The input to the FL function comprises a 32-bit data input X(32) and a 32-bit
subkey KLi(32). Note that ∩ means bitwise AND, and ∪ means bitwise OR. The
input data is split into two 16-bit halves, XL(16) and XR(16) where,
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Table 2.3. Subkey Mapping Table

Round KOi1 KOi2 KOi3 KOi4 KIi1 KIi2 KIi3 KIiL KIiR

Actual Ki Ki+2 Ki+7 Ki+4 K′
i+5 K′

i+1 K′
i+3 K i+1

2
odd i K′

i+1
2 +6

odd i

K′
i
2+2

even i K i
2+4 even i

X

Y

KL

KL

X

Y

(32)

R(16)

R(16)

(32)

YL(16)

iR(16)

iL(16)

Fig. 2.6. FL function for MISTY1

X(32) = XL(16)|XR(16)

The subkey is split into two 16-bit subkeys, KLiL(16) and KLiR(16) where,

KLi(32) = KLiL(16)|KLiR(16)

The FL function is then defined as,

YR(16) = (XL(16) ∩KLiL(16))⊕XR(16)

YL(16) = (YR(16) ∪KLiR(16))⊕XL(16)

where the output is Y(32) = YL(16)|YR(16).
The input to the FO function comprises a 32-bit data input X(32) and two

sets of subkeys, a 64-bit subkey KOi(64) and a 48-bit subkey KIi(48). The input
data is split into two 16-bit halves, L0 and R0 where,

Xi(32) = L0(16)|R0(16)

The subkeys are divided into 16-bit subkeys where

KOi(64) = KOi1(16)|KOi2(16)|KOi3(16)|KOi4(16)
KIi(48) = KIi1(16)|KIi2(16)|KIi3(16)

Then for each integer j with 1 ≤ j ≤ 3 we define:

Rj = FIij(Lj−1 ⊕KOij ,KIij)⊕Rj−1

Lj = Rj−1

Finally, L3(16) is XORed with KOi4 and concatenated with R3(16). The function
returns Yi(32) = (L3(16) ⊕KOi4)|R3(16).
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Fig. 2.7. FO function for MISTY1

The function FIj takes a 16-bit data inputXj(16) and a 16-bit subkeyKIij(16).
The input data is split into two unequal components, a 9-bit left half L0(9) and
a 7-bit right half R0(7) where Xj(16) = L0(9)|R0(7). The key KIij(16) is similarly
split into two unequal components. FI uses two S-boxes, S7 and S9, mapping
7 bits to 7 bits, and 9 bits to 9 bits respectively. FI also uses two additional
functions ZE() and TR(). These are defined as follows,

y(9) = ZE(x(7)) ZE takes the 7-bit x(7) and converts it to a 9-bit value y(9)
by adding two zero bits to the most significant end.

y(7) = TR(x9) TR takes the 9-bit x(9) and converts it to a 7-bit value y(7)
by discarding the two leftmost bits.

Then FI is defined by the following operations.

L1(7) = R0(7) R1(9) = S9(L0(9))⊕ ZE(R0(7))
L2(9) = R1(9) ⊕KIijR(9) R2(7) = S7(L1(7))⊕ TR(R1(9))⊕KIijL(7)

L3(7) = R2(7) R3(9) = S9(L2(9))⊕ ZE(R2(7))

Finally, L3(7) and R3(9) are concatenated to give Y(16) = L3(7)|R3(9).
The S-boxes which are contained in the FI function are designed to be effi-

cient for both combinational logic and look-up table implementations, owing to
the relatively small numbers of terms in the Algebraic Normal Forms (ANFs) of
the constituent functions of the S-boxes. This results in small hardware imple-
mentation cost and short delay time.

Both 7 and 9-bit S-boxes are chosen to optimise the provable security of
MISTY1 against differential and linear cryptanalysis, and both S-boxes achieve
the minimum possible differential and linear biases for S-boxes of their size.
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Fig. 2.8. FI function for MISTY1

2.4.3.2 Security analysis

MISTY1 [426] has been widely studied for five years and no serious security flaws
have been found. It should be noted that a variant of MISTY1, namely KASUMI,
has been chosen for the 3GPP standard. Therefore many attacks on MISTY1 may
also be relevant to KASUMI, and vice versa. Both MISTY1 and KASUMI use
nonlinear invertible FL functions to introduce AND and OR operations to the
cipher. However, unlike MISTY1, KASUMI is a pure 8-round Feistel cipher, where
in the odd rounds we first apply FO then FL, and in the even rounds we first
apply FL then FO. Moreover, unlike KASUMI, in MISTY1 after the final swap
there is an additional XOR with the subkey on the left-hand side. The S7 and
S9 S-boxes of MISTY1 and KASUMI are not identical but are very similar and
both exhibit affine relationships between the bit outputs [62] (see Sect. 2.9.1). In
particular, for the S-box, S9, of MISTY1, the rotation of the input by any number
of bits does not affect the least significant bit of the output (see Sect. 2.9.1) —
this is, perhaps, a surprising result. It is considered that KASUMI has a weaker
key schedule than MISTY1, as the key schedule of MISTY1 is nonlinear whereas
that of KASUMI is linear. Further details of the differences between MISTY1
and KASUMI can be found in [210]. There is also a block cipher called MISTY2
by the same designers. MISTY2 is also a 64-bit block cipher using 128-bit key.
This cipher has a newer structure than MISTY1 and recommends the use of 12
rounds as opposed to 8 rounds for MISTY1.

Attacks on MISTY1 without the FL operations have been accomplished up to
five rounds. The low algebraic degree of the constituent functions of the MISTY1
S-boxes has invited higher order differential attacks by Lai [385] and Knud-
sen [352] on MISTY1 without FL functions. A higher order differential attack
on MISTY1 without FL functions has also been presented by Tanaka et al. [604].
However, it appears that the key action in the FL function can significantly mod-
ify the algebraic degree of MISTY1. The Slide attack has been proposed against
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MISTY1 by Biryukov and Wagner [90] where the same subkey is applied to every
nth round, and this is appropriate to MISTY1 because of its simple key sched-
ule. It turns out that without the FL functions, the slide attack works when one
of 65536 keys is used. However, MISTY1 maintains some resistance to slide at-
tacks, and this is because one of the design criteria for MISTY1 was resistance
to related-key attacks. It has been shown by Biham et al. [65] and Knudsen [353]
that any Feistel cipher with a bijective round function has impossible differentials
in 5 rounds, and MISTY1 without FL layers falls into this category. However,
Impossible differential attacks appear to be inappropriate for MISTY1 as the FL
functions add extra dependency on the particular key at each round. MISTY1 is
designed to have provable security against differential and linear cryptanalysis,
and this proof is achieved by bounding the average differential/linear probabilities
for the recursive layers of MISTY1; if the average differential/linear probability
of each layer is p then the complete cipher has probability upper-bounded by p4.
It is claimed by the designers that the unequal division of the S-boxes into 7 bits
and 9 bits has an advantage against differential and linear cryptanalysis, as the
probability bound can be made lower for S-boxes that use odd as opposed to even
numbers of bits. But there are hardware and software penalties resulting from
this asymmetry. Knudsen and Moen have recently applied Integral Cryptanal-
ysis [371, 448] to MISTY1 including FL functions. This includes 4 round and 5
round attacks. The integral attacks exploit the Sakurai-Zheng property that was
initially applied to MISTY2. This property is as follows. Let F (x, y) denote the
left half and right half of the output after three rounds of MISTY2 on plaintext
< x, y >. Then F (x, y) = f(x)⊕ g(y) where f and g are key-dependent bijective
mappings. Therefore, for any two arbitrary sets of 32-bit values, S and T, we
have,

∑
<x,y>∈S×T F (x, y) = 0. This is a three-round integral for MISTY2. This

property can also be applied to MISTY1. The 5-round attack by Knudsen and
Wagner in [371] uses the Sakurai-Zheng property once, and the 4-round attack
uses the property twice. It requires a data complexity of 234 and a time/memory
complexity of 248. Also a new attack, the Slicing Attack by Kuhn [380, 381] has
been applied to the 4-round version of MISTY1, making use of the special struc-
ture and position of the key-dependent linear FL functions. These FL functions
present a subtle weakness in the 4-round version of the cipher. Both this attack
and that of [371] are particularly interesting as they include the FL layers, unlike
many other attacks which ignore the FL layer.

Generalised linear characteristics through both the 7-bit and 9-bit S-boxes
of MISTY1 with maximum and minimum bias are searched for in [511]. It is
found that, although both S-Boxes have an optimally low bias relative to the
Walsh-Hadamard Transform (WHT), with PAR = 2.0, the bias increases signifi-
cantly with respect to many generalised linear approximations, in particular those
covered by the HI transform, where the PAR = 16.0 and 32.0 for 7 and 9-bit
S-boxes respectively. This suggests that, whereas the odd-length S-box width (7
and 9) minimises the possible linear characteristic with respect to the WHT, the
odd-length restriction in fact weakens the S-box with respect to certain gener-
alised linear approximations, to give a PAR of 2d

n
2 e, where n = 7 or 9. This is a

counter-argument to the argument proposed by the designer for using odd-length
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S-boxes — more general linear approximations suggest that even-length S-boxes
may be better (although such generalised linear approximations have not yet led
to an attack).

As discussed in the security analysis for Khazad, Biryukov and De Can-
nière [82] compare minimal systems of multivariate polynomials which completely
define certain block ciphers, including MISTY1. For MISTY1 S9 is designed as
a system of 9 quadratic equations in 54 terms. S7 is designed as a system of 7
cubic equations in 65 terms, but can also be defined by 11 quadratic equations
in 93 terms. The quadratic representations are utilised and, along with a set of
linear equations to define the linear layers, the whole of the block cipher can be
described by 1824 equations in 1664 variables using 5848 linear and quadratic
terms [82]. Similarly, the key schedule can be described by 432 equations in 528
variables using 1848 linear and quadratic terms. Two plaintext/ciphertext pairs
are required to solve the system, implying a doubling of the cipher count, but not
for the key schedule. In total [82] estimates that 4080 equations in 3856 variables
using 13544 linear and quadratic terms are required. This gives the number of free
terms as the number of terms minus the number of equations (see Sect. 2.2.3.17).
For MISTY1 this is 9464 free terms. When compared with Khazad this seems
large, but the count may decrease significantly if cubic representations are con-
sidered for S7 of MISTY1.

The main advantage of MISTY1 is its provable security against differential
and linear cryptanalysis.

2.4.4 SAFER++ (64-bit block)

2.4.4.1 The design

SAFER++ [420] is a development from the existing SAFER family of ciphers and
uses a combination of substitution and linear transformation to achieve confu-
sion and diffusion, respectively. Recently, the 128-bit plaintext version has been
adopted for use in the authentication scheme in Bluetooth, the wireless com-
munication protocol. We consider here the legacy version which takes in 64-bit
plaintext and 128-bit key, and outputs 64-bit ciphertext. The designers recom-
mend this version be used with 8 rounds to achieve sufficient security. SAFER+
was a submission to the AES, and it is claimed that SAFER++is simpler and
faster than SAFER+, and at least as strong, cryptographically. The main new
feature in SAFER++, as compared to all earlier versions of SAFER (including
SAFER+), is the use of a 4-point Pseudo-Hadamard Transform (PHT), instead
of the 2-point PHT. SAFER++uses the 4-point PHT to achieve fast, rapid diffu-
sion at low complexity. One 16-byte subkey is used with each round, along with
one post-cipher output transformation which is a final 8-byte subkey addition.
Another aspect of the cipher is its use of two incompatible group additions to
achieve key addition, namely bitwise XOR (mod 2), and bytewise addition, mod
256. Moreover, the S-boxes are exponential and logarithmic functions, mod 257,
which are combined with the two addition operations in such a way as to thwart
potential homomorphisms. One round of the encryption is shown in Fig. 2.9, and
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an alternative view of the encryption round is given in Fig. 2.10. The decryp-
tion round is similar; however even if one does not consider the key schedule,
decryption is not identical to encryption for SAFER++.

1

4−PHT4−PHT4−PHT4−PHT

2

exp log

add xor addxor xor add add xor

log log logexp

Round Output (8 bytes)
87654321

Drop Lower Half Bytes and Merge to Form Bytes

Mid−Shuffle [9,6,3,16,1,14,11,8,5,2,15,12,13,10,7,4]

Pre−Shuffle [9,6,3,16,1,14,11,8,5,2,15,12,13,10,7,4]

expexp

xor

Round Input (8 bytes)
876543

addaddxorxoraddaddxor

4−PHT

Select Bytes

Select Bytes

iK

9,10,....16

1,2,...8

13121110987654321 14
Spread to upper half bytes with lower half bytes all−zero

15 16

4−PHT4−PHT4−PHT

Fig. 2.9. Encryption Round for SAFER++ (64-bit block)

Key addition for a round is bytewise and uses two different (incompatible)
group operations, where subkey bytes 1,4,5,8 are added using bitwise XOR, and
subkey bytes 2,3,6,7 are added using bytewise addition, mod 256. After 8 rounds
of Fig. 2.9 there is a final 8-byte key addition whose operations are identical to the
first addition in each round. The decryption process follows the same structure
as encryption with the round keys used in reverse order, the PHT replaced with
the inverse PHT, the shuffle replaced with the inverse shuffle, addition replaced
with subtraction, and exp (log) replaced with log (exp). The 4-PHT matrix, H4,
which is used to achieve linear diffusion is as follows,

H4 =


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 1

 mod 256
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X L L X X L L X
K1

2r K2
2r K3

2r K4
2r K5

2r K6
2r K7

2r K8
2r

K 1
2r−1 K 2

2r−1 K 3
2r−1 K 4

2r−1 K 5
2r−1 K 6

2r−1 2r−1K 7 K 8
2r−1

Fig. 2.10. Alternative View of Encryption Round for SAFER++ (64-bit block)

where each element of the matrix represents an 8-bit byte, and H4 acts on a
vector with 8-bit byte entries, mod 256. This PHT matrix can be implemented
efficiently, as H4 is a matrix of low weight. The shuffle permutation has also
been chosen to maximise diffusion in conjunction with the PHT. H4 is not an
involution and the inverse of H4, which is used for decryption to implement the
inverse PHT, is as follows,

H4 =


1 0 0 −1
0 1 0 −1
0 0 1 −1
−1 −1 −1 4

 mod 256

H−1
4 is also easy to implement, as it also has low weight. The advantage of the

PHT method of diffusion is that a linear diffusion matrix, M , of dimensions
16 × 16 bytes is implemented by means of smaller, simpler 4 × 4 byte 4-PHT
matrices. Moreover, the designers argue that because each row of M contains at
least ten 1’s, the diffusion of the cipher is wide and fast.

The nonlinear layer of the cipher is achieved by means of two S-boxes, exp
and log. exp realises the function y = 45x mod 257 for bytes 1,4,5,8, and log
realises the function y = log45(x) mod 257 for bytes 2,3,6,7, where log45(0) =
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128 by convention. The exp operation is juxtaposed with XOR, and these two
operations do not admit a homomorphism, explicity 45x1⊕x2 6= 45x145x2 . This
incompatibility between exp and XOR enhances the security of the system. A
similar incompatibility exists between log and add, which are also juxtaposed in
the cipher. One reason for choosing S-boxes based on exp and log is that their
associated ANF (Algebraic Normal Form - i.e. boolean expression) descriptions
relating input and output look random, are of high degree, and contain many
terms. This is a different philosophy than that used to design the S-boxes for
MISTY1, where the ANF functions contain relatively few terms so as to simplify
implementation complexity.

The key schedule for SAFER++ (64-bit block) uses 9 16-byte bias words in
order to randomize the produced subkeys so as to help to avoid weak keys. These
bias words, Bj , are determined by,

Bi,j = 45(4517i+j mod 257) mod 257

where Bi,j is the ith byte of Bj .
The odd-index 16-byte subkeys are generated using the method outlined in

Fig. 2.11, and given in detail in Fig. 2.12. A similar strategy holds for the even-
index subkeys.

For SAFER++ (64-bit block), only subkeys K1, . . . ,K9 are used. Another
interesting aspect of SAFER++is that it is possible to develop mini-versions of
the cipher with, e.g. 4-bit nibble wordlengths, which still retain the main features
of the cipher, and this enables the thorough testing of different attack strategies
before extrapolating them to the larger, real cipher. Also one should note that
the spreading of 64 bits to 128 bits, and the subsequent dropping of 128 bits
down to 64 bits is an unusual feature of SAFER++which distinguishes it from
many other block ciphers.

2.4.4.2 Security analysis

No security flaws have been found with SAFER++ (64-bit block) [420] and it has
many similarities to SAFER++ (128-bit block). One weakness found in previous
versions of the SAFER family by Knudsen was in the key-schedules [351, 356],
but these weaknesses have been dealt with in SAFER++. Other pre-NESSIE
attacks on the SAFER family include truncated differentials by Knudsen and
Berson [362], and Murphy [451] identifies a potential algebraic weakness regard-
ing the existence of invariant Z-modules within the PHT layer. These modules
and their cosets are not diffused by the PHT layer, and so provide a way to cope
with diffusion in SAFER, regardless of the key schedule. One attack in [451] which
used this property enabled a projection of the message/ciphertext space onto a
4-byte Z-submodule so that the probability of any message projection giving any
ciphertext projection is independent of 1

4 of the key bytes. This result, along with
the results of [351] led to a change in the SAFER key schedule. In [619] Werns-
dorf shows that the round functions of SAFER++ (64-bit block) generate the
alternating group over the set {0, 1}128, eliminating some potential weaknesses of
SAFER++ (64-bit block), e.g. non-trivial factor groups (the alternating group is
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Fig. 2.11. Generation of Odd-Index Subkeys in the SAFER++ (64-bit block) Key
Schedules.

P
denotes bytewise summation, mod 256

a large, simple, primitive and (2128 − 2)-transitive group). The designers recom-
mend 8 rounds to ensure security for the cipher and not fewer than 7 rounds, and
they claim that one of the main reasons for the security of the cipher against dif-
ferential and linear cryptanalysis is the high diffusion PHT layer. The designers
conclude that SAFER++with six or more rounds is secure against differential
cryptanalysis, and with two and a half or more rounds is secure against lin-
ear cryptanalysis. Note also that, in [356], Knudsen identified a differential such
that, if X is the exponentiation function of SAFER, then X(a)+X(a+128) = 1(
mod 256) holds with probability 1, and Nakahara has extended this observation
to relate not only the msb of the input to the lsb of the output, but also to the
2nd lsb of the output [327,456]. Moreover, in [327,456], Nakahara generalises to
other exponents, not just 45. Recently Nakahara et al. [459] applied techniques
that were first used to more generally attack the SAFER family in [458], and [459]
showed that three and a half rounds of SAFER++ (64-bit block) can be attacked
requiring 233 known plaintexts. The reason for this discrepancy between the two
and a half rounds claimed by the designers and the three to four rounds claimed
by [459] is largely because the designers restricted themselves to homomorphic
attacks, whereas [459] applies strictly non-homomorphic attacks where some key
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Fig. 2.12. Detailed Generation of Odd-Index Subkeys in the SAFER++ (64-bit block)
Key Schedules

bits are assumed fixed. Therefore the results of [459] must be seen in the context
of a weak-key class. Table 2.4 gives a summary of the complexity of linear attacks
on SAFER++ [459].

Table 2.4. Complexity of Linear Attacks on SAFER++ (64-bit block)

# Rounds Linear # Known # Subkey Bits Attack Fraction of
Attacked Relation Plaintexts Explored Complexity Keys

2 (1) 25 37 242 ♣

3.5 (3) 233 88 2121 ♣ 2−6

♣ The attack applies to all key sizes defined for SAFER++.

One important point to note with regard to the linear attack of [459] is that it
identifies a surprisingly small byte and bit branch number for the PHT diffusion
layer. Whereas the designers of SAFER++use the fact that the lowest row weight
of the matrix M is 10, implying a high diffusion, a more detailed examination of
the matrix reveals a byte branch number ≤ 7 and a bit branch number ≤ 5. More-
over the S-box defined by y = 45x mod 257 contains a linear relationship which
holds with probability 1. In other words, we can write y0 = f(x0, x1, . . . , x6)+x7,
where y0 is one of the output bits of the S-box, and depends linearly on the input,
x7. This moderated diffusion combined with a high linear characteristic is what
enables this linear attack on three to four rounds of SAFER++.
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It is also interesting to note that affine relationships exist between the bit
outputs of the S-box, both for exp45 and log45 [62] (see Sect. 2.9.1).

2.4.5 Triple-DES

2.4.5.1 The design

One variant of Triple-DES which is in widespread use is called two-key Triple-
DES. It takes a 64-bit plaintext and a 2×56 = 112-bit key. It occurs as a natural
extension of the existing standard DES, where security has been increased, in
particular the key input size, by repeating the cipher three times and the key
twice. Note that double-DES is not an option due to a meet-in-the-middle at-
tack which renders double-DES with no greater security than single DES. To
allow for backwards-compatibility, two-key Triple-DES was suggested in the form
encrypt-decrypt-encrypt although, in fact, the form encrypt-encrypt-encrypt can
also revert to single DES encryption by using the all-zero key in the first two
encryptions, and a single-DES key in the third encryption (the all-zero key being
self-dual). There is also three-key Triple-DES (3DES), which takes 64-bit plain-
texts and a 168-bit key, and this is also in widespread use. It is considered to be a
lot more secure than two-key Triple-DES and can also be made backwards com-
patible with DES by making all three keys the same in encrypt-decrypt-encrypt
mode. One should also mention DESX which also takes three keys but is rela-
tively efficient compared to Triple-DES, requiring only a single DES encryption
preceded by XOR with another key, and completed by XOR with a third key.

A round of DES is summarised in Fig. 2.13. DES is a Feistel cipher. L and
R are the left and right splittings of the 64-bit plaintext, and C and D are the
left and right splittings of the 56-bit key. The key is input linearly via XOR and
there are 8 6-bit in, 4-bit out S-boxes which are applied in parallel to the 48-bit
input to give 32-bit output.

R DL C

R DL C

XOR

XOR

Left Shift(s) Left Shift(s)

32 bits 32 bits 28 bits 28 bits

i−1 i−1 i−1 i−1

i i i i

Permutation
(P)

S−Box

Expansion/permutation

Permutation/contraction
Ki

F 48

32

32

48

48

Fig. 2.13. A Round of DES
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Essentially the DES standard recommends 16 rounds, and three-key Triple
DES is simply a concatenation of three instances of DES, where a different key
is input for each instance of DES to give a total key input of 3× 56 = 168 bits.

2.4.5.2 Security analysis

The security of Triple-DES is significantly less than the 128 bits required for
this cipher category and its performance on workstations is rather bad. However
Triple-DES will still be considered as a benchmark for other algorithms. It has
been shown by Merkle and Hellman in [442] that two-key triple encryption can
be broken using 256 chosen plaintexts, and 2112 single encryptions. The standard
way to attack triple-DES is to use the meet-in-the-middle attack [441], requiring
3 plaintext/ciphertext pairs, and 2112 single encryptions. Advanced meet-in-the-
middle attacks for two-key triple encryption have been proposed by Van Oorschot
and Wiener in [608]. Two-key Triple-DES is generally considered weaker than
three-key Triple-DES.

Clearly, any attack on DES is relevant to an attack on Triple-DES and in fact
the best attacks on reduced variants of Triple DES are the attacks on DES. A well-
known weakness of DES is the complementation property. Specifically, let p and
k be plaintext and key inputs to DES, respectively. Then the complementation
property is summarised as follows:

DESk(p) = DESk(p)

where ∗ denotes the complement of the bit-string, ∗. However, this evident de-
viation from a random cipher does not comprise the cipher to any great extent,
only enabling an improvement from 3 known plaintexts and 2112 complexity to 6
known plaintexts and 2111 complexity. It has been shown that differential crypt-
analysis can cover as many as 18 rounds of DES, and it is suspected that this
may also be so for linear cryptanalysis. Moreover, due to the no-swap between
rounds 16 and 17, it may be possible to gain one more round. It is also interesting
to note that affine relationships exist between the bit outputs of the S-box, for
the first seven S-boxes of DES [62] (see Sect. 2.9.1).

Kelsey et al. used related-key techniques [345] to attack three-key triple-DES,
and Biham [60] encrypts the same plaintext 228 times using Triple-DES under 228

different keys, allowing the attacker to recover one of the 228 keys using 284 steps
and 284 single encryptions. In [406] a more efficient meet-in-the-middle attack is
presented by Lucks which can break three-key triple DES with about 1.3× 2104

single encryption steps, and 232 known plaintext/ciphertext pairs. The attack
works by saving single encryption steps and exploiting known and/or chosen
plaintext/ciphertext pairs, the complementation property weakness of DES and
a certain number of weak keys.

2.5 128-bit block ciphers considered during Phase II

The 128-bit block ciphers selected for phase II of NESSIE were Camellia,
RC6, and SAFER++ (128-bit block). We also continued to study the AES, in
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order to compare the submitted ciphers with a current standard. None of the
ciphers considered have been broken so the following security evaluation identifies
weaknesses that occur in reduced-round versions of the ciphers, and weaknesses
that may lead to more effective attacks in the future. We first describe each
cipher in some detail, along with the most important attacks known on each
cipher. Note that the algorithms given here are not complete specifications, but
references are given to complete specifications which may be found on the NESSIE
website. After discussing each cipher we summarise and compare some of the
distinguishing features of the ciphers, identifying potential weaknesses and noting
the best-known attacks, as shown in Tables 2.16 and 2.17 of Sect. 2.9.2.

2.5.1 Camellia

2.5.1.1 The design

Camellia [24] is an 18-round 128-bit block cipher which supports 128-, 192-,
and 256-bit key lengths, with two layers of two 64-bit FL-blocks after the 6th
and 12th rounds. It is a byte-oriented 18-round Feistel cipher with a particular
emphasis on low-cost hardware applications, and is designed to be resistant to
differential and linear cryptanalysis with linear bias and differential probabilities
both ≤ 2−128. Camellia has recently been selected by CRYPTREC. Camellia
uses four 8 × 8-bit S-boxes with input and output affine transformations and
logical operations. However there is no 32-bit integer addition, so as to avoid
the possibility of a long critical path (longest inherent sequential computation)
due to the carry propagation associated with addition. The diffusion layer uses
a linear transformation based on a Maximum-Distance-Separable code with a
branch number of 5 (activity on t input bytes to the linear transformation layer
will diffuse to activity on at least 5−t output bytes from the linear transformation
layer). Camellia also uses FL and FL−1 functions which are inserted every 6
rounds so as to enhance irregularity of the cipher. The FL functions are similar
to those of MISTY1, except that Camellia also uses a 1-bit rotation so as to
make bytewise cryptanalysis harder. The entire structure of Camellia is given in
Fig. 2.14. The FL and FL−1 functions are shown in Fig. 2.15.

The design of Camellia is based on E2 which was a previous block cipher by
the same designers and was a submission to the AES. The main difference between
E2 and Camellia is the adoption, for Camellia, of the 1-round SPN, not the 2-
round SPN of E2, leading to an expected improvement in speed for Camellia. The
design of the F-function of Camellia follows that of E2. The F-function transforms
a 64-bit input, X64, to a 64-bit output, Y64, using a 64-bit subkey k64, given by
Y64 = F (X64, k64). More specifically, the F function is described by,

F : L× L→ L
(X64, k64)→ Y64 = P (S(X64 ⊕ k64))

where L denotes a vector-space of 64 bits, P is a byte-linear transformation,
and S operates in parallel on 8-bit segments of the 64-bit input, with each 8-bit
segment being subject to an 8×8 S-box transformation (one of 4 S-boxes, so that
S is given by s1, s2, s3, s4, s2, s3, s4, s1). Each of the 8×8-bit S-boxes, s1, s2, s3, s4
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Fig. 2.14. Camellia

is affine equivalent to x−1 over GF(28) — which is similar to the Rijndael design.
The P transformation is designed to have an optimal branch number and can be
represented as follows,

z8
z7
. . .
z1

→


z′8
z′7
. . .
z′1

 = P


z8
z7
. . .
z1


where,

P =



0 1 1 1 1 0 0 1
1 0 1 1 1 1 0 0
1 1 0 1 0 1 1 0
1 1 1 0 0 0 1 1
0 1 1 1 1 1 1 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1


The key schedule of Camellia makes use of the F-function of the encryption
module, and is the same for encryption and decryption. The user key is encrypted
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Fig. 2.15. FL and FL−1 Functions for Camellia

by means of the F-function using pre-fixed constants, where these constants,∑
i, are defined as continuous values from the hexadecimal representation of the

square root of the ith prime. The subkeys are then generated partly from rotated
values of the user-input key, K (where K = KL(128), K = KL(128)||KRL(64), or
K = KL(128)||KR(128), for a 128-bit, 192-bit, or 256-bit key, K, respectively), and
partly from rotated values of the encrypted keys, KA and KB . Fig. 2.16 shows
how to generate these encrypted keys.
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Fig. 2.16. Key Schedule for Camellia

We refer the reader to the documentation of Camellia [24] for a more detailed
description.
2.5.1.2 Security analysis

No security flaws have been found for Camellia and it has an interesting design.
The designers [25] claim that for Camellia no differential/linear characteristics ex-
ist with linear bias and differential probabilities > 2−128 over 12 rounds and 2−132

over 15 rounds. This claim is due to the use of four S-boxes which are affine trans-
formations of x−1 over GF(28). This particular mathematical function ensures
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optimal differential and linear characteristics through the S-box (irrespective of
the affine transformation) of 2−6. Another reason for the strong resistance of the
cipher to differential and linear cryptanalysis is the use of a linear transformation
for the diffusion layer with a high branch number of 5. The affine transforma-
tions which modify the input and output to the S-boxes are designed to provide
resistance to interpolation attacks by making each S-box less algebraic in charac-
ter. The designers also claim that 10 rounds is indistinguishable from a random
permutation with respect to truncated differential and linear cryptanalysis. As
with all Feistel ciphers with bijective F -function, an impossible differential attack
exists over 5 rounds of Camellia [353], but the designers have not found any other
attacks of this type. The designers also claim security against interpolation, linear
sum, and Square attacks. Iterated ciphers with identical rounds are susceptible
to the Slide attack, and this is one reason why the FL functions are inserted in
the cipher every 6 rounds, so as to introduce irregularity and resistance to Slide
attacks.

The security of Camellia against the Square attack is discussed by Yeom et al.
in [627]. A 4-round distinguisher allows for a Square attack (see Sect. 2.2.3.15),
and four-round Camellia can be attacked by guessing a one byte subkey and using
216 chosen plaintexts. This attack may be extended up to 9 rounds including the
first FL/FL−1 layer by considering the key schedule. In [578] Shirai et al. discuss
the security of Camellia against differential and linear attack, and the security is
evaluated against the upper bounds of maximum differential characteristic prob-
ability (MDCP) and maximum linear characteristic probability (MLCP), calcu-
lated by determining the least numbers of active S-boxes, found by search. An
evaluation method for truncated differential and linear paths is used to discard
wrong paths. Using the above techniques, tighter upper bounds on MDCP and
MLCP were found for reduced-round Camellia. Consequently, 10-round Camellia
without FL/FL−1 has no differential and linear characteristic with probability
higher than 2−128. Shirai developed these attacks further in [577], proposing dif-
ferential and linear attacks on Camellia without FL/FL−1 layers, and boomerang
and rectangle attacks on Camellia with FL/FL−1 layers. The search complexity
for the attacks of [577] is reduced by distinguishing between dependent and inde-
pendent variables in the multi-round characteristics. Shirai obtains a differential
attack on 11 rounds without FL/FL−1 layers using an 8-round characteristic,
and a linear attack on 12 rounds without FL/FL−1 layers using a 9-round lin-
ear approximation. The boomerang and rectangle attacks are on 9 and 10-round
Camellia , respectively, with FL/FL−1 layers, and use a technique developed by
Biham et al. [68,69], where a cipher is described as Ef ◦E1◦E0◦Eb, such that the
FL/FL−1 layer occurs between E1 and E0. Truncated and impossible differential
cryptanalysis of Camellia (without FL/FL−1 functions) is described by Sugita et
al. in [602], improving on the best known truncated and impossible differential
cryptanalysis. A 9-round bytewise characteristic is shown that may lead to an
attack on reduced-round Camellia without FL/FL−1 in a chosen plaintext sce-
nario. A 7-round impossible differential is also shown by [602] on Camellia without
FL/FL−1 functions. However, the designers of Camellia suspect that the FL and
FL−1 functions will make attacking Camellia using impossible differentials dif-
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ficult, since the functions change differential paths depending on key values. A
Square attack on Camellia is proposed by He and Qing in [292], requiring 2112

encryptions and 13× 28 plaintexts, over 6 rounds. The designers propose an 18-
round cipher, but claim that even a 10-round variant is secure. However, they do
not describe attacks on reduced variants of Camellia. A 3-round iterative differ-
ential characteristic with probability 2−52 has been found by Biham et al. in [67],
which can be iterated to further rounds. They also found 5 additional 7-round
characteristics with probability 2−104. A 9-round variant of Camellia (without
FL layers) was attacked using 2105 chosen plaintexts. Also, a one-round trun-
cated iterative differential was found which over 7 rounds has probability 2−112

(assuming no FL layer). This can be extended to 8 rounds with probability 2−112.
This differential has the added advantage that it passes through the FL/FL−1

layers with probability 2−8. Linear cryptanalysis of Camellia did not produce any
efficient results — the best linear approximation of the S-boxes being 1

2 ±
1
16 . A

higher-order differential attack on 10 rounds of 256-bit key Camellia without FL
rounds is performed by Kawabata and Kaneko in [339]. This also leads to an
attack on 9 rounds for a 192-bit key and an attack on 8 rounds for a 128-bit key.

A recent embedding by Murphy and Robshaw of the AES, Rijndael, in a
larger block cipher, the Big Encryption System (BES) [452,454] has led to ques-
tions regarding future potential attacks on the AES. Camellia uses the same x−1

function for the S-box as Rijndael, and hence is open to the same form of at-
tack. However, Camellia also inserts FL and FL−1 layers every six rounds, and
an initial estimate of the extra complexity needed to overcome these layers for
a BES-style redescription is at most 216. In short, if an attack using BES and
a system of overdefined quadratic equations was ever successful on AES, then
it might also be quite successful on Camellia. BES is discussed further in the
section on Rijndael-128 of this report. As discussed in the security analyses for
Khazad and MISTY1, Biryukov and De Cannière [82] compare minimal sys-
tems of multivariate polynomials which completely define certain block ciphers,
including Camellia. As pointed out in [165], the Camellia (and Rijndael) S-box
can be described by a system of 23 quadratic equations in 80 terms. Quadratic
representations are utilised in [82] and, along with a set of linear equations to
define the linear layers, the whole of the block cipher can be described by 5104
equations in 2816 variables using 14592 linear and quadratic terms. Similarly,
the key schedule can be described by 1120 equations in 768 variables using 3328
linear and quadratic terms. In total [82] estimates that 6224 equations in 3584
variables using 17920 linear and quadratic terms are required. This gives the
number of free terms as the number of terms minus the number of equations (See
Sect. 2.2.3.17). For Camellia this is 11696 free terms. Roughly the same figures
occur for Rijndael.

Finally, Fuller and Millan [245] recently observed that the bit-output func-
tions of the S-box which is x−1 over GF(28) are all affine transformations of the
same function. This observation was given in relation to the Rijndael S-box, but
Camellia uses essentially the same S-box. This observation of [245] suggests a
potential extra hardware saving for the Camellia S-box, although this may later
also be seen as a security weakness (see Sect. 2.9.2).
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2.5.2 RC6

2.5.2.1 The design

We consider here the version of RC6 [324] which takes 128-bit plaintext and key-
lengths from 0 to 256 bytes, although the most useful variants may be versions
with 16, 24, or 32-byte keys. 20 rounds are recommended. RC6 is quite a simple
cipher to describe and it is a natural progression from the cipher RC5 which
has undergone cryptanalysis for around 8 years without serious breaks or major
security weaknesses being identified (although it is interesting to note that a key
was recently found for 64-bit RC5 using a distributed internet exhaustive key
search (see Sect. 2.2.3.1) involving over 300000 people over 5 years — the aim
of a distributed internet search is to partition the exhaustive key search problem
into many small subproblems which are then solved independently by participants
in the search). However, RC5 was broken in a series of three papers which each
improved the previous paper’s result by a factor of about 1000 [85,336,365]. These
attacks are generally based on the fact that the rotation amounts in RC5 do not
depend on all the bits in a register. These attacks led to a redesign of RC5 into
RC6 prior to submission of RC6 to the AES. The designers [324] claim that RC6
is an improvement on RC5, because of the introduction of fixed rotations and an
extra quadratic function to enhance diffusion and resistance to differential and
linear cryptanalysis. The key schedule is inherited from RC5, is quite involved
and is considered strong. The cipher is fully-parameterised so that mini-versions
(e.g. 4-bit, 8-bit, 16-bit) can be implemented and analysed, and this helps for the
security analysis of the full 128-bit cipher. For a 128-bit block size, the word size
is w = 128/4 = 32 bits, and r = 20 rounds. RC6 uses a 32-bit multiplication, mod
2w, to enhance security, and therefore benefits greatly from software/hardware
implementations with optimised multiplication. A round in RC6 is a bit like a
round in DES, where half of the data is updated by the other half, and then the
two halves are swapped. In fact, [568] reconfigures RC6 as a Feistel-like cipher
by swapping the B and C registers. The full encryption procedure is as follows:

Input: Plaintext in A,B,C,D
Output: Ciphertext in A,B,C,D
Key: S[0, 1, . . . , 2r + 3], r rounds
Procedure:
B = B + S[0] + is addition mod 2w

D = D + S[1]
for i = 1 to r do
{
t = (B × (2B + 1)) <<< log2(w) × is mult. mod 2w

u = (D × (2D + 1)) <<< log2(w) <<< is rotate left
A = ((A⊕ t) <<< u) + S[2i] ⊕ is bitwise addition mod 2
C = ((C ⊕ u) <<< t) + S[2i+ 1]
(A,B,C,D) = (B,C,D,A)
}
A = A+ S[2r + 2]
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C = C + S[2r + 3]

Decryption is similar to encryption, but not the same — for instance addition
is replaced with subtraction, and rotate right operations are used.

Two constants are added into the key schedule. The constants are Pw and
Qw, which are binary expansions of e− 2 and φ− 1, respectively, where e is the
natural logarithm, and φ is the Golden Ratio. The key schedule is as follows:

Input: User-supplied b byte key preloaded into the c-word
Array L[0, . . . , c− 1]
Number r of rounds

Output: w-bit round keys S[0, . . . , 2r + 3]
Procedure:
S[0] = Pw
for i = 1 to 2r + 3 do
S[i] = S[i− 1] +Qw

A = B = i = j = 0
v = 3×max{c, 2r + 4}
for s = 1 to v do
{
A = S[i] = (S[i] +A+B) <<< 3
B = L[j] = (L[j] +A+B) <<< (A+B)
i = (i+ 1) mod (2r + 4)
j = (j + 1) mod c
}

2.5.2.2 Security analysis

No security flaws have been found for RC6 and it has resisted cryptanalysis during
and after the AES process. It is specified over 20 rounds although the fact that 15
of the 20 rounds were broken meant that NIST did not consider that 20 rounds
gave a sufficient security margin.

The designers performed extensive differential and linear cryptanalysis of RC6
in [143] and conclude that RC6 is highly resistant to both attacks. Table 2.5 shows
non-exhaustive estimates for the numbers of plaintexts necessary to attack RC6
as quoted in [143], although some of the figures on the right-hand side of the
table exceed 2128 which is the total number of possible plaintexts.

Table 2.5. Differential/Linear Cryptanalysis of RC6 [143]

# Rnds
attack 8 12 16 20 24
diff. crypt. 256 2117 2190 2238 2299

lin. crypt. 247 283 2119 2155 2191
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The two most obvious notions of difference for RC6 are XOR and subtraction,
mod 2w, and [143] claims that difference using subtraction gives a more effective
attack. An aim of this type of attack will be to try to use differences that do not
provide different rotation amounts, thereby minimising the avalanche effect. The
purpose of the introduction of the quadratic function f(x) = x(2x + 1) in RC6,
a feature not in RC5, is to increase dependency of the data-dependent rotations,
and to speed-up diffusion. Both these effects improve the resistance of the cipher
to differential and linear cryptanalysis. The most manageable differential and lin-
ear attacks use one-bit characteristics as, although multiple-bit characteristics do
exist with higher probability, it is difficult to connect them up into a differential
or linear trail. The most effective type of linear approximation appears to exploit
approximation across the data-dependent rotations. The paper of [143] identifies
such approximations of the form A · Γa = B · Γb ⊕C · Γc for the data-dependent
rotation, A = B <<< C, where single-bit masks work best across the integer
addition and the quadratic functions. Moreover, the best approximation across
y = (f(x) <<< 5) is y[5] = x[0] with probability 1. In order to further protect
against the theoretical risk of multiple linear approximations and linear hull at-
tacks, the designers propose a minimum number of 20 rounds for RC6. Table 2.6
provides figures for the estimated number of plaintexts needed for a potential
multiple linear approximation attack, with or without linear hulls [143].

Table 2.6. Multiple Linear Cryptanalysis of RC6 [143]

# Rnds
attack 8 12 16 20 24
basic linear attack 262 2102 2142 2182 2222

+ mult. linear approx. 251 291 2131 2171 2211

+ mult. linear approx. + linear hulls 247 283 2119 2155 2191

Jonsson and Kaliski construct 6-round characteristics for RC6 [324], so as
to attack 8 rounds, and this leads to 276 chosen plaintext pairs for differential
cryptanalysis of 8 rounds, and 260 known plaintexts for linear cryptanalysis of
8 rounds. Shimoyama et al. [568] develop further the multiple linear attack ap-
proach for RC6 with a 256-bit key, where they generalise the Piling-Up Lemma
using a certain Matrix Representation. They achieve a 14-round key recovery at-
tack using 2120 known plaintexts and 2186 round computations. They also achieve
an 18-round key recovery attack on a fraction of 2−90 of the keys with 2127 known
plaintexts, 264 memory, and 2193 round computations.

As mentioned previously, the key schedule for RC6 is the same as that for RC5.
No weak keys or related-key attacks have been found for RC5, perhaps owing to
the key schedule being quite complicated — the design of the key schedule is
somewhat incompatible with the encryption structure of RC5 or RC6.

One of the most effective attacks on RC6 is by Knudsen and Meier [366]
showing that, by means of a chosen-plaintext attack, RC6 can be distinguished
from a random permutation with up to 15 rounds, and for 1 in 280 keys up to
17 rounds can be distinguished. Moreover, key-recovery attacks can be mounted
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on RC6 with up to 15 rounds faster than exhaustive search for the key. To do
this, [366] considers two round iterations of a form quite different from [143].
Instead of exploiting bitwise linear approximations, input-output dependencies
are considered by fixing the least-significant 5 bits in the first and third words of
the input block, A and C. The correlations of the corresponding two 5-bit integer
values at the output every two rounds later can then be effectively measured by
χ2 tests. This gives a considerable improvement over the basic linear attack. The
attack of [366] has similarities to that considered by Baudron et al. [42], and by
Gilbert et al. [257]. The approach of [366] is motivated by the fact that the least
significant log(w) = 5 bits in A and C are not changed by the XOR and data-
dependent rotation, if both rotation amounts are zero. Small negative rotation
events (e.g. <<< 30, or <<< 31) are also exploited in [366]. The paper [366]
also analyses mini-versions of RC6 to verify the experimental evidence, and the
15-17 round attacks are extrapolated from experimental evidence computed on
up to 6 rounds of RC6, where it is estimated that 214 more plaintexts are needed
in going from s to s + 2 rounds. Furthermore weak key classes are exploited
for RC6 in [366], and these exist because RC6 uses addition mod 232, which
introduces carry propagation into the cipher. The results of these χ2 attacks on
RC6 provide further evidence for the strength of RC6, as the results suggest that
the χ2 attacks tend to attain the same level of complexity as previous differential
and linear attacks [114], and other attacks [346].

In summary, the attacks currently known on RC6 suggest that 20 rounds is
secure, although the security margin may be somewhat narrow.

2.5.3 AES (Rijndael)

2.5.3.1 The design

128-bit plaintext block Rijndael has a 128, 192, or 256-bit key over 10, 12, or 14
rounds, respectively. Rijndael [181] has recently been selected as the Advanced
Encryption Standard AES and has therefore been subject to intensive study in
the last few years. Rijndael is a variant of the Square block cipher [178]. The
cipher is non-Feistel, and emphasises a combination of optimal diffusion [182]
with optimal nonlinearity for the S-box. The key is added linearly via XOR.
Encryption is similar but not identical to decryption. In software, decryption has
exactly the same speed as encryption, except on 8-bit machines when decryption
is slightly slower. In hardware the speed of encryption and decryption operations
is the same, but decryption requires slightly more hardware. A round of Rijndael
can be written as follows,

Round(State,RoundKey)
{

ByteSub(State)
ShiftRow(State)
MixColumn(State)
AddRoundKey(State,RoundKey)

}
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ByteSub is the optimally nonlinear 8×8-bit S-box operation, which is x−1 over
GF(28), followed by an affine transformation. ShiftRow is a bytewise permutation
over GF(28)4, MixColumn is a 4-byte bytewise affine transform over GF(2)32, in
fact an MDS code, and AddRoundKey is the XOR of the key onto the output of
the round. The diffusion layer is a linear transformation and comprises ShiftRow
and MixColumn, and it can be shown that this diffusion has an optimum branch
number of 5, and activates at least 25 bytes over 4 rounds.

The key schedule of 128-bit Rijndael over 10 rounds takes in a 128-bit key
and generates 128× 11 = 1408 round key bits in the form of 11 128-bit subkeys,
one for each round, and one at the beginning [470]. The initial subkey is set to
the key, and the remainder of the subkeys are generated iteratively using the
following Key Expansion algorithm for a 128-bit key,

for i = 0 to 3
W [i] = Key[i]

for j = 4 to 40 (in steps of 4)
{
W [j] = W [j − 4]⊕ SubWord(Rotl(W [j − 1])) ⊕ Rcon[j/4]
for i = 1 to 3
W [i+ j] = W [i+ j − 4]⊕W [i+ j − 1]

}

where ’Rotl’ means rotate left, ’Rcon’ means round constant, W [0, 1, . . . , 10] is
an array of 32-bit subkeys, and SubWord() is a function that takes a four-byte
input word and applies the AES S-box to each of the four input bytes to produce
the output word. Note that the key-schedule uses the S-box of the enciphering
process.

2.5.3.2 Security analysis

Rijndael has been selected by the NIST as the new AES. No security flaws have
been found. It has been chosen for Phase II of NESSIE as a benchmark against
which to evaluate other submissions.

Rijndael attracted much public attention after it became the AES [74, 82,
146, 158, 164, 165, 178, 227, 228, 245, 258, 342, 367, 371, 407, 433, 449, 452, 454, 495,
620]. However, this is also because the cipher is particularly elegant and easy
to describe, using highly algebraic components — its simplicity invites analysis,
and this was one of the philosophies on which Rijndael was based. The use of
optimal nonlinearity followed by optimal diffusion using an MDS-based linear
transformation helps to give high resistance to differential and linear attacks for
Rijndael.

One of the most successful attacks against Rijndael is the Square attack [181],
which is a form of integral cryptanalysis [371] originally used by Daemen et al.
to attack the Square block cipher [178]. The Square attack exploits the relatively
slow avalanche of the sparse affine mapping (linear mixing along rows and columns
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of some matrix followed by subkey addition). It is a chosen plaintext attack of
up to 6 rounds on key sizes 128, 192, and 256, which makes use of a distinguisher
on 3 Rijndael rounds. For this distinguisher some input bytes are chosen to take
all 256 values over 256 input chosen plaintexts so that one can predict the bytes
which will take all 256 values (active bytes), the bytes which are constant (passive
bytes), and the bytes which are balanced (⊕ sum is zero) in future rounds. The
Square attack requires 232 plaintexts, 272 cipher encryptions, and 232 memory.
Primarily, the Square attack follows the balance of certain data bytes as they
progress through the cipher.

No attack is known on more than 7-8 rounds of Rijndael [227, 258, 407], the
best attack being the collision attack by Gilbert and Minier which breaks up to
7 rounds [258] for key sizes 128, 192, and 256. This attack requires 232 chosen
plaintexts and, for key sizes 192 and 256, requires a time complexity of about
2140. For key size 128 the complexity required is marginally less than exhaustive
search. The attack makes use of a 4-round distinguisher which exploits, by means
of the birthday paradox, the existence of collisions between some partial functions
introduced by the cipher. The attack by Lucks [407] extends the Square attack
to Rijndael variants with 192 and 256-bit keys, and achieves an attack on seven
rounds by simply guessing the 16 bytes of the last round key and exploiting minor
weaknesses in the key schedule. The attack requires 232 chosen plaintexts and 2176

or 2192 encryptions for 192 and 256-bit keys, respectively. The attacks of Ferguson
et al. [227] include a 6-round improved Square attack with time complexity about
244 which is an improvement on the original 272, at the price of about 6 · 232

plaintexts. The improvement makes use of a partial-sum technique to reduce
the workfactor over the original Square attack. There is also an improvement
on the 7-round attack of [407] in [227] which requires 2155 or 2172 encryptions
for 192 or 256-bit keys, respectively. There is also an alternative extension to
7 rounds by Ferguson et al. [227] that can break all key sizes with encryption
complexity 2120 but which requires virtually the entire codebook of plaintexts
(2128−2119 plaintexts). Moreover, one may even break 8 rounds of Rijndael with
2128 − 2119 plaintexts, requiring 2188 or 2204 encryptions for 192 or 256-bit keys,
respectively [227].

After two rounds, Rijndael provides full diffusion, i.e. every state bit depends
on all state bits two rounds ago. This is due to the uniform structure of Rijndael,
and the high diffusion. The designers [181] claim that no 4-round differential
characteristic exists with probability greater than 2−150, and no 4-round lin-
ear characteristic exists with a correlation greater than 2−75. An analysis of the
propagation of activity patterns in [181] leads to the conclusion that any linear
or differential characteristic over 4 rounds must activate at least 25 bytes. Im-
proved upper bounds are given by Keliher et al. on the maximum average linear
hull probability for Rijndael by noting that the linear hull effect for Rijndael is
significant [342]. An upper bound on the probability is given, namely 2−75 for 7
rounds. In a subsequent paper the same authors improve on this result by taking
into account more details of the linear characteristics of the Rijndael S-box. They
improve their upper bound on maximum average linear hull probability to 2−92

for 9 rounds. Related work by Ohkuma et al. [495] upper bounds the maximum
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average differential and linear hull probabilities by 2−96 for 4 rounds of Rijndael.
In [495] it is also shown how to represent Rijndael as a two-level nested Sub-
stitution Permutation Network (SPN) where each level uses an MDS layer for
diffusion. There is also an impossible differential attack on 5 rounds by Biham
and Keller, requiring 229.5 plaintext-ciphertext pairs and 231 time [74], and an
extension to 6 rounds has been presented by Cheon et al. [140].

In [620] Wernsdorf shows that the round functions of Rijndael generate the
alternating group over the set {0, 1}128, eliminating some potential weaknesses of
Rijndael, e.g. non-trivial factor groups (the alternating group is a large, simple,
primitive and (2128 − 2)-transitive group).

With respect to the key schedule of Rijndael, Ferguson et al. [227] exploit
weaknesses in the expanded key of Rijndael by proposing a related-key attack
on 9 rounds which is a variant of the Square attack and use 256 related keys
that differ in a single byte in the fourth round key. Plaintext differences are used
to cancel out earlier round key differences, resulting in three bytes at the end
of round 6 that sum to zero when taken over the 256 encryptions. Key bytes of
the last three rounds are then guessed and used to compute backwards from the
ciphertext to detect this property. This 9-round attack on Rijndael with 256-bit
keys requires 277 plaintexts under 256 related keys, and 2224 encryptions.

May et al. [433] provide a modified key-schedule for Rijndael with improved
diffusion and nonlinearity, whilst keeping a reasonably fast speed for the key-
schedule. More generally, the key schedule has a much slower diffusion than the
cipher and contains relatively few nonlinear elements.

It has recently been observed by Fuller and Millan [245] that the output
functions of the Rijndael S-box are all affine transformations of the same function.
This observation suggests a potential extra hardware saving for the Rijndael S-
box, although, perhaps more importantly, this may later also be seen as a security
weakness (see Sect. 2.9.2). In other words, let bi and bj be two distinct output
bit functions of the Rijndael S-box. Then we can always find a Boolean matrix,
A, and a Boolean vector, B, such that,

bi(x) = bj(Ax+ B)

This surprising result means that the Rijndael block cipher only uses one Boolean
function from eight bits to one bit (used 128 times in each round). Since [245] was
posted, Youssef and Tavares [629] have proved this result by making use of dual
bases over GF(2n) and trace functions, and showed that the result holds for any
S-box based on a bijective monomial. They also extended the result to show that
all coordinate (bit) functions of the Rijndael round function are equivalent under
affine transformation of the input to the round function. Following on from [245],
Biham [62] has shown that affine relationships exist between the output bits of
many S-boxes, not just the Rijndael S-box (see Sect. 2.9.2). Another simplified
algebraic formulation for Rijndael was presented by Ferguson et al. in [228]. This
paper argues that the security of Rijndael is based on a new hardness assumption
for the solution of an algebraic formulation of the type derived in [228].

A recent redefinition of Rijndael has raised many questions regarding the
security of the cipher. The Big Encryption System (BES) has been defined by
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Murphy and Robshaw in [452], where the AES can be regarded as being identical
to the BES with a restricted message space and key space. Whereas the AES uses
operations over GF(28) and GF(2), the BES only uses operations over GF(28)
and this raises the question of algebraic attacks on AES. The key idea for BES
is to map every GF(28) byte, a of AES to (a20

, a21
, . . . , a27

) for BES, where this
vector comprises a and its conjugates over GF(28). The central application of this
mapping is to convert the GF(2) linear operation in the S-box of AES (an 8× 8
binary matrix) to an 8× 8 matrix mapping over GF(28) which linearly operates
on a and its conjugates. This ensures that all operations of BES occur in GF(28),
and one can write the ith round function of BES as:

RoundB(b ki) = MB(b(−1)) + ki

where b is the input to the round, MB is a matrix with elements from GF(28) and
ki is the ith round key in BES. It should be noted that the key schedule can also be
written completely over GF(28). MB can always be converted to its Jordan Form,
RB , where RB = P−1

B ·MB ·PB is a particularly well-structured representation for
an AES round. The paper [452] identifies Related-Key and Differential attacks
on BES which exhibit characteristics with probability one through a round, in
spite of the high diffusion. But these attacks are not directly applicable to AES
as they do not preserve the conjugacy relation which is necessary for the inverse
mapping back to AES. One of the most interesting future lines of inquiry for
BES is to combine it with the techniques of the type suggested by Courtois and
Pieprzyk [158,164,165] for solving the type of multivariate quadratic systems that
arise from block ciphers. A preliminary analysis [452,454] of the complexity of an
attack based on the estimates of Courtois and Pieprzyk [165] suggests an attack
considerably faster than exhaustive key search. However, there are inaccuracies
in these estimates [145,146,454] It has been noted by Knudsen and Raddum [367]
that its mathematical elegance makes Rijndael more vulnerable to a devastating
attack as there are no random-looking elements in the cipher.

As discussed in the security analyses for Khazad, MISTY1, and Camellia,
Biryukov and De Cannière [82] compare minimal systems of multivariate poly-
nomials which completely define certain block ciphers, including Rijndael-128.
As pointed out in [165], the Rijndael S-box can be described by a system of 23
quadratic equations in 80 terms. It is estimated in [82] that the block cipher and
key schedule can be described by 6296 equations in 3296 variables using 19296
linear and quadratic terms. For Rijndael-128 this means that there are 13000
free terms (see Sect. 2.2.3.17). Roughly the same figures occur for Camellia-128.
Note that there are 37 quadratic equations in total for the AES S-box, whereas
a randomly-chosen 8-bit S-box would expect to have zero quadratic equations
associated with it. However, it should be noted that this system of equations is
far larger than the multivariate quadratic system provided with BES.

Recent work by Barkan and Biham [36] has developed the concept of the
Dual Cipher. Specifically, let the ciphertext, C, be the result of encrypting the
plaintext, P , using the cipher, E, where E is dependent on the secret key, k.
We write this as C = Ek(P ). Then [36] has stated that, given any invertible
functions, f , g, and h, E′ is a dual cipher to E if
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∀P, k f(Ek(P )) = E′g(k)(h(P )).

The dual cipher, E′, is equivalent to the original cipher, E, in all aspects. One
can therefore analyse and attack the dual cipher instead of the original cipher.
Moreover, one can actually implement the dual cipher instead of the original
cipher. For Rijndael, [36] demonstrates the existence of Square-Dual ciphers in
the sense that every component of the original Rijndael cipher has been squared
(or conjugated). Thus, Rijndael has 7 dual ciphers of this form. Moreover, one
can replace the irreducible polynomial used by Rijndael with another one, and
this too leads to another set of dual ciphers — 240 in total. Also, the components
of Rijndael can be replaced with their logs to give a set of Log-Dual ciphers, 128
in total. Finally, [36] shows that by straightforward modifications of Rijndael,
one can create Self-Dual ciphers which exhibit cryptographic weakness although
this does not imply weakness in Rijndael itself. It should be noted that this dual
cipher analysis also holds for Khazad, and Anubis, and can also be applied to
Camellia and SAFER++.

2.5.4 SAFER++ (128-bit block)

2.5.4.1 The design

SAFER++ [420] is a development from the existing SAFER family of ciphers and
uses a combination of substitution and linear transformation to achieve confusion
and diffusion, respectively. We here consider the normal and high versions which
take in 128-bit plaintexts and require 128-bit or 256-bit keys, respectively. The
designers recommend 7 rounds for the 128-bit key version, and 10 rounds for the
256-bit key version.

Figure. 2.17 shows an encryption round for SAFER++ (128-bit block). This
figure should be compared with Fig. 2.9 for SAFER++ (64-bit block). It is evident
that, whereas SAFER++ (64-bit block) requires zero-padding and merging of the
round input, prior to and following the linear transformation, SAFER++ (128-
bit block) does not require this, as the round input is already of size 128 bits. For
a more detailed discussion, please refer to the section commenting on SAFER++
(64-bit block). Its design has many interesting properties.

2.5.4.2 Security Analysis

No security flaws have been found with SAFER++ (128-bit block) [420] and it has
many similarities to SAFER++ (64-bit block). One weakness found in previous
versions of the SAFER family by Knudsen was in the key-schedules [351,356], but
these weaknesses have been dealt with in SAFER++ (128-bit block). Other pre-
NESSIE attacks on the SAFER family include truncated differentials by Knud-
sen and Berson [362], and Murphy [451] identifies a potential algebraic weakness
regarding the existence of invariant Z-modules within the PHT layer. These mod-
ules and their cosets are not diffused by the PHT layer, and so provide a way to
cope with diffusion in SAFER, regardless of the key schedule. One attack in [451]
which used this property enabled a projection of the message/ciphertext space
onto a 4-byte Z-submodule so that the probability of any message projection
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loglogexp

addxor xoraddaddxorxoradd

Round Input (16 bytes)

exp

Mid−Shuffle [9,6,3,16,1,14,11,8,5,2,15,12,13,10,7,4]

Pre−Shuffle [9,6,3,16,1,14,11,8,5,2,15,12,13,10,7,4]

Round Output (16 bytes)

Input to Invertible Linear Transformation (16 bytes)

log loglog expexpexp loglogexp log expexp

4−PHT 4−PHT

4−PHT4−PHT4−PHT4−PHT

4−PHT4−PHT

7654321

1615141211 131098

8

87654321

1615141211 13109

7

xoraddaddxorxoradd addxor

xoraddaddxorxoradd addxor

xor

654321

2i−1K

2iKxoraddaddxorxoradd add

9 1615141211 1310

Fig. 2.17. Encryption Round for SAFER++ (128-bit block).

giving any ciphertext projection is independent of 1
4 of the key bytes. This re-

sult, along with the results of [351] led to a change in the SAFER key schedule.
In [619] Wernsdorf shows that the round functions of SAFER++ (128-bit block)
generate the alternating group over the set {0, 1}128, eliminating some poten-
tial weaknesses of SAFER++ (128-bit block), e.g. non-trivial factor groups (the
alternating group is a large, simple, primitive and (2128 − 2)-transitive group).
The designers claim that one of the main reasons for the security of the cipher
against differential and linear cryptanalysis is the high diffusion PHT layer. The
designers conclude that SAFER++with six or more rounds is secure against dif-
ferential cryptanalysis, and with two and a half or more rounds is secure against
linear cryptanalysis. Note also that, in [356], Knudsen identified a differential such
that, if X is the exponentiation function of SAFER, then X(a)+X(a+128) = 1(
mod 256) holds with probability 1, and Nakahara has extended this observation
to relate not only the msb of the input to the lsb of the output, but also to the
2nd lsb of the output [327, 456]. Moreover, in [327, 456], Nakahara generalises
to other exponents, not just 45. Recently Nakahara et al. [459] applied tech-
niques that were first used to more generally attack the SAFER family in [458],
and [459] showed that, for the 256-bit key version, up to 3.75 rounds can be at-
tacked by linear cryptanalysis, with less effort than exhaustive search, requiring
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281 known plaintexts. The reason for this discrepancy between the two and a half
rounds claimed by the designers and the three to four rounds claimed by [459]
is largely because the designers restricted themselves to homomorphic attacks,
whereas [459] applies strictly non-homomorphic attacks where some key bits are
assumed fixed. Therefore the results of [459] must be seen in the context of a
weak-key class. Table 2.7 gives a summary of the complexity of linear attacks on
SAFER++ [459]. One important point to note with regard to the linear attack
of [459] is that it identifies a surprisingly small byte and bit branch number for
the PHT diffusion layer. Whereas the designers of SAFER++use the fact that
the lowest row weight of the matrix M is 10, implying a high diffusion, a more
detailed examination of the matrix reveals a byte branch number ≤ 7 and a bit
branch number ≤ 5. Moreover the S-box defined by y = 45x mod 257 contains a
linear relationship which holds with probability 1. In other words, we can write
y0 = f(x0, x1, . . . , x6) + x7, where y0 is one of the output bits of the S-box, and
depends linearly on the input, x7. This moderated diffusion combined with a high
linear characteristic is what enables this linear attack on three to four rounds of
SAFER++. Table 2.7 supplements Table 2.4 by stating the complexity of linear
attacks on SAFER++that apply to 256-bit keys.

Table 2.7. Complexity of Linear Attacks on SAFER++

# Rounds # Known # Subkey Bits Attack Fraction of
Attacked Plaintexts Explored Complexity Keys

2 25 37 242 ♣

3.5 233 88 2121 ♣ 2−6

3.75 281 97 2176 ♠ 2−13

291 76 2167 ♠ 2−11

♣ The attack applies to all key sizes defined for SAFER++.
♠ This attack applies to 256-bit keys only.

It is also interesting to note that affine relationships exist between the bit
outputs, both for exp45 and log45 [62] (see Sect. 2.9.1).

Impossible Differential and Square attacks have also been demonstrated on
SAFER++ (128-bit block) by Nakahara et al. [460], and Nakahara [456], respec-
tively, over 2.75 to 3.25 rounds. Table 2.8 details these attacks along with further
attacks on similar ciphers from the SAFER family.

SAFER++ (128-bit block) is a Substitution-Permutation Network (SPN),
and five-layer SPN’s are susceptible to structural analysis leading to integral or
multiset attacks. Piret [520] describes a (classical) integral distinguisher over 2
rounds of SAFER++(in the encryption direction). This allows a practical attack
against 3 rounds of SAFER++ (128-bit block), as well as attacks on 4 rounds of
SAFER++ (128-bit block) and SAFER++ (256-bit block) (always without the
last key addition layer), under the chosen-plaintext hypothesis. As a side result,
Piret proves that the byte-branch number of the linear transform of SAFER++is
precisely 5. Concrete figures for these attacks are given in Table 2.9.
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Table 2.8. Attacks by Nakahara et al. for SAFER++ (128-bit block) and Similar
Designs

Cipher Attack #Rounds Data Memory Time Ref
SAFER++ Imp. Diff. 2.75 264 CP 297 260 [460]

Square 3.25 29.6 CP 29.6 270 [456]
Linear 3.25 281 KP 281 2101 [459]

SAFER SK128 Imp. Diff. 2.75 239 CP 258 264 [460]
Square 3.25 210.3 CP 210.3 238 [456]
Linear 4.75 263 KP 263 290 [458]

SAFER+128 Imp. Diff. 2.75 264 CP 297 260 [460]
Square 3.25 29.6 CP 29.6 270 [456]

SAFER+192 Linear 3.25 2100 KP 2100 2137 [459]
SAFER+256 Linear 3.75 281 KP 281 2176 [459]

KP: known plaintext, CP: chosen plaintext

Table 2.9. Piret’s Integral Attacks on SAFER++ (128-bit block).

Key Size #Rounds #Plaintexts Time Compl. Space Compl.
128 3 216 216 216

128 4 264 2112 264

128 4 264 2120 216 (different tradeoff)
256 4 264 2144 264

Even stronger multiset attacks have recently been presented by Biryukov et
al. [84]. The general method can be applied to any SPN network with incomplete
diffusion, and the method of [84] is also a collision attack, inspired by the attacks
of Gilbert and Minier on Rijndael [258]. The multiset attacks of [84] can break
up to 4.5 rounds of SAFER++ (128-bit block) in 248 chosen plaintexts and 294

steps. Biryukov et al. [84] also present a Boomerang attack on SAFER++ (128-bit
block) which exploits the incomplete diffusion of SAFER++[128] and also certain
special properties of the SAFER S-boxes. In this way they have constructed a
5 round attack on SAFER++[128] using 275 chosen plaintexts/ adaptive chosen
plaintexts and 275 time complexity. The attack completely recovers the 128-bit
secret key of the cipher and has a 86% probability of success. The attack can be
extended to 5.5 rounds by guessing 46 bits of the secret key. The attacks of [84]
are summarised in Table 2.10.

2.6 Large block ciphers considered during Phase II

The large block ciphers selected for phase II of NESSIE were RC6, Rijndael,
SHACAL-1, and SHACAL-2. None of these ciphers has been broken so the follow-
ing security evaluation identifies weaknesses that occur in reduced-round versions
of the ciphers, and identifies weaknesses that may lead to more effective attacks
in the future. We first describe each cipher in some detail, along with the most
important attacks known on each cipher. Note that the algorithms given here
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Table 2.10. Multiset and Boomerang Attacks on SAFER++ (128-bit block) by
Biryukov et al.

Attack Key Size #Rounds Data Workload Memory
Multiset 128 4 248 270 248

Multiset 128 4.5 248 294 248

Boomerang 128 4 241 241 241

Boomerang 128 5 275 275 248

Boomerang 128 5.5 2121 2121 248

Workload expressed in equivalent number of encryptions.

are not complete specifications, but references are given to complete specifica-
tions which may be found on the NESSIE website. After discussing each cipher
we summarise and compare some of the distinguishing features of the ciphers,
identifying potential weaknesses and noting the best-known attacks, as shown in
Table 2.18 of Sect. 2.9.3.

2.6.1 RC6

2.6.1.1 The design

We consider here the version of RC6 [324] which takes 256-bit plaintexts and
key-lengths from 128 to 256 bits. For the 128-bit plaintext version the designers
recommended 20 rounds, but for the 256-bit plaintext version, the recommended
number of rounds is not specified. A detailed discussion of RC6 is given in the
section on 128-bit block ciphers.

2.6.1.2 Security analysis

Until very recently, no security flaws have been found in RC6, and the 128-bit
block variant of RC6 on which the 256-bit variant is based has been well studied.

Recently, Knudsen has detected correlations in 256-bit block RC6 using the
χ2-attack method [359]. From tests on RC6 with 256-bit blocks and three rounds
together with other test results, [359] is able to extrapolate an estimated require-
ment for the number of plaintexts needed for this attack up to 25 rounds. It is
estimated that for 3 + 2s rounds a χ2 test would distinguish 256-bit block RC6
from random using 216+20s plaintexts. This constitutes a successful attack up to
25 rounds where it is expected that the χ2 attack will require only 2236 plaintexts.
The attack exploits the least significant five bits in the words A and C of the
input of one round, and investigates the statistics of the 10-bit integer obtained
by concatenating the least significant five bits in the words A′′ and C ′′ every two
rounds later. This is motivated by the fact that the least significant five bits in A
and C are not changed by the XOR and data dependent rotation if both rotation
amounts are zero. More generally, one can expect a bias for amounts smaller than
five, and these strong biases can be iterated over many rounds in the same way
as linear approximations.
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2.6.2 AES Variant (Rijndael-256)

2.6.2.1 The design

We here consider a variant of the NIST AES standard, 256-bit plaintext block
Rijndael, with a 256-bit key over 14 rounds. Whereas 128-bit Rijndael uses 16
8-bit S-boxes per round, 256-bit Rijndael uses 32 8-bit S-boxes per round. A
detailed discussion of Rijndael is given in the section on 128-bit block ciphers.

2.6.2.2 Security analysis

No security flaws have been found, and the 128-bit block variant on which it is
based was selected as the AES and has been well-studied. Although similar in
structure to the 128-bit block Rijndael, the 256-bit block variant still warrants a
separate analysis as the byte alignments of this variant are different from those
of the 128-bit block variant.

2.6.3 SHACAL-1

2.6.3.1 The design

SHACAL
[281] is a 160-bit (20-byte) block cipher using a 0 to 512-bit (64-byte) key that

is based on the well known Hash Function FIPS standard, SHA. SHACAL-1 is
based on SHA-1, a more recent FIPS standard, which is a minor modification
of SHA-0 in the message expansion. It is considered to have very fast imple-
mentations. In hash function mode, SHA takes a 512-bit message with a 128-bit
initial value. In encryption mode (block cipher), the message becomes the key,
and the initial value is replaced by the plaintext. SHA mixes group operations,
+ mod 232 and XOR, with nonlinear logical functions. SHACAL-1 places the
160-bit plaintext in 5 concatenated 32-bit variables, A,B,C,D,E, and updates
these five variables on each of 80 consecutive steps, so that the final ciphertext
is contained in A,B,C,D,E after 80 steps. In the process, the 512-bit key is ex-
panded to 2560 bits. SHACAL-1 is shown in Fig. 2.18, where ROL means rotate
left, + means addition mod 232, and f is a different linear or nonlinear function
for steps bi/20c.

The encryption algorithm for SHACAL-1 is as follows.

Put the 160-bit plaintext in 32-bit variables ABC DE.
For 80 steps do
Ai+1 = W i + ROL5(Ai) + f i(Bi CiDi) + Ei +Ki.
Bi+1 = Ai.
Ci+1 = ROL30(Bi).
Di+1 = Ci.
Ei+1 = Di.

where the W i are 32-bit step keys, the Ki are round-dependent constants, and
fi(X Y Z) is one of three functions defined below, where the function chosen is
dependent on the round.
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Fig. 2.18. Encryption for SHACAL-1

fif = (X AND Y ) OR (X̄ AND Z) 0 ≤ i < 20
fxor = (X ⊕ Y ⊕ Z) 20 ≤ i < 40, 60 ≤ i < 80
fmaj = ((X AND Y ) OR (X AND Z) OR (Y AND Z)) 40 ≤ i < 60

where ⊕ is bitwise XOR, AND and OR are both bitwise logical operations, and
∗̄ is complement. Each set of 20 steps, r ≤ i < r + 20 constitutes a round of the
cipher. In order for SHACAL-1 to be invertible the final addition of the initial
value, which occurs in the hash mode of SHA-1, is omitted.

The message expansion is different for SHA-0 and SHA-1. For SHACAL-1 the
key schedule (message expansion) is linear, it expands the 512-bit key (Master
Key) to 2560 bits, and can be described as follows,

– The Master key is a concatenation of 16 32-bit words: [W 0|W 1| . . . |W 15].
– W i = ROL1(W i−3 ⊕W i−8 ⊕W i−14 ⊕W i−16), 16 ≤ i < 80.

Keys shorter than 512 bits may be accomodated by padding the key input up to
512 bits.

2.6.3.2 Security analysis

NESSIE considers that the security margins of SHACAL-1 are very large. It
also has the interesting property of being able to share most of the code of the
SHA-1 hash function. The best attack known on SHA-0 is that of Chabaud and
Joux [138] who obtain collisions using 261 encryptions by tracking perturbations
through the hash function in combination with differential masks. However, it was
found by the authors of [138] that they could not extend the attack to SHA-1
because SHA-1 interleaves bits in the message expansion so that it is not possible
to split the expansion into 32 little expansions. The idea of the attack was to
study the propagation of local perturbations in a linear variation of SHA-0 in
order to discriminate between the role of the bare architecture and that of the
elementary building blocks. The attack then looks for differential characteristic
masks that can be added to the input word with non-trivial probability of keeping
the output of the compression function unchanged. One first proposes a variant
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of SHA-0 called SHI1 which keeps all the rotations on blocks but replaces ADD
with XOR, and makes the fi functions XOR. Single bit errors or perturbations
are then introduced to the input of SHI1 and the perturbation is traced through
the cipher. These perturbations are made to disappear by introducing five other
perturbations. This allows an attack on SHI1 via differential masking. A second
variant on SHA-0, SHI2 is then analysed, where SHI2 replaces ADD with XOR
but this time keeps the nonlinear fi. However we can still view fi as acting like
⊕ with some probability, and the probability of a successful perturbation attack
can be computed. A third variant of SHA-0, SHI3, is then analysed, where SHI3
uses ADD as in SHA-0, but uses XOR instead of the nonlinear fi. In this case the
addition mod 232 causes the perturbations to spread out due to carry propagation.
However one is still able to devise a perturbation attack on SHI3 with probability
2−44. Finally SHA-0 itself is analysed by taking into account the analyses of SHI2
and SHI3, and this leads to a perturbation based attack on SHA-0 requiring 261

plaintexts. It should be emphasised that, although SHA-1 and SHA-0 are so
similar, this attack does not carry over to SHA-1 or, consequently, SHACAL-1.

Ad-hoc linear and differential cryptanalysis of SHA-1 by Handscuh et al. has
suggested that such attacks will not be effective against SHACAL-1 [280, 281].
Both attacks are complicated by the integer addition and the fi functions of
SHACAL-1. It is noted [280, 281] that Z = A + S can be written bitwise as
zj = aj + sj + σj−1 and σj = ajsj + ajσj−1 + sjσj−1, where σj−1 is the carry
bit, and σ−1 = 0. This bitwise way of expressing addition is used extensively
in the analysis of [280, 281]. Linear cryptanalysis mostly uses single-bit approx-
imations as heavier linear approximations are difficult to connect together. The
cyclic structure of SHACAL-1 means that in all four rounds we can readily iden-
tify a family of linear approximations that always hold over four steps. A perfect
(probability 1) linear approximation exists over both 4 and 7 steps. There is a
10-step linear approximation for rounds 2 and 4 which is valid over 40 steps
with an estimated bias of 2−21, and from these characteristics it is estimated
that at least 280 known plaintexts are required, although this cannot be con-
sidered a break as it is a very loose lower bound. For differential cryptanalysis
there exists a 5-step characteristic over any 5 steps with probability 1, and it is
conjectured that over 80 steps, the full cipher, the best differential characteristic
has probability around 2−116. It is emphasised in [280,281] that their estimations
are over-favourable to the cryptanalyst as it would be impossible to connect up
all the constituent characteristics so as to achieve these biases. Neither is it ex-
pected that the more refined techniques involving linear hulls, multiple linear
approximations, differentials, . . . will make much difference.

Van Den Bogaert and Rijmen [606] search for optimal differential characteris-
tics for reduced round SHACAL-1. The search is performed under the requirement
that the Hamming Weight of every 32-bit word of the input is upper bounded by
2. It is found that there are two 10-step characteristics for fif with probability
2−12 (this is a factor of 2 better than [281]), a 10-step characteristics for fxor
with best case probability 2−12, and a 20-step characteristic for fif and fmaj
with probabilities 2−42 and 2−41 respectively (these figures agree with [281]).
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Recently Saarinen [553] has noted that a slide attack can be mounted on
SHA-1 with about 232 effort. This attack is described in detail in Chapter 4
on hash functions in this report, with respect to a security analysis of SHA-1.
The analysis demonstrates an unexpected property of the compression function of
SHA-1, namely that the procedure for message expansion can be slid. However, it
is not clear that this weakness can be exploited in the context of SHACAL-1. Also,
in [553], Saarinen shows that the slide attack on SHA-1 points to a weakness in
the key schedule of SHACAL-1, and this can be exploited in a related-key attack.
Given access to two SHACAL-1 encryption oracles whose keys are “slid” (in the
same way that the message expansion can be slid for the hash function) the cipher
can be distinguished from a randomly chosen 160-bit permutation. This requires
about 2128 chosen plaintexts. When certain properties hold for the (related) keys,
the complexity can be further reduced to about 296 chosen plaintexts. Differential
cryptanalysis including boomerang attacks [347] and rectangle attacks [76] have
also been applied to SHACAL-1. The best known attack works for 49 steps of
the compression function with a data complexity of 2151.9 chosen plaintexts and
a time complexity of 2508.5 [76].

2.6.4 SHACAL-2

2.6.4.1 The design

SHACAL-2
is based on SHA-256, which was introduced by NIST in 2000 [468,472]. In spite of
similarity in name to SHACAL-1, SHACAL-2 is a completely different function.
It is a 256-bit block cipher with a 512-bit key, although it can also be configured
to take 512-bit blocks when based on SHA-512. SHA-256 operates in a similar
way to SHA-1 but with some notable differences.

The encryption algorithm for SHACAL-2 is as follows.

– Put the 256-bit plaintext in eight 32-bit variables ABC DE F GH .
– For 64 steps do
– T1 = H +

∑
1(E) + Ch(E F G) +Ki +W i .

– T2 =
∑

0(A) +Maj(ABC) .
– Hi+1 = Gi .
– Gi+1 = F i .
– F i+1 = Ei .
– Ei+1 = Di + T1 .
– Di+1 = Ci .
– Ci+1 = Bi .
– Bi+1 = Ai .
– Ai+1 = T1 + T2 .

where the W i are 32-bit step keys, the Ki are constants, different in each step,
and
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Ch(X Y Z) = (X AND Y )⊕ (X̄ AND Z)
Maj(X Y Z) = (X AND Y )⊕ (X AND Z)⊕ (Y AND Z)∑

0(X) = S2(X)⊕ S13(X)⊕ S22(X)∑
1(X) = S6(X)⊕ S11(X)⊕ S25(X)

where Si means right rotation by i bits.
In order for SHACAL-2 to be invertible the final addition of the initial value,

which occurs in hash mode for SHA-256, is omitted.
For SHACAL-2 the key schedule (message expansion) expands the 512-bit

key (Master Key) to 2048 bits, and is as follows,

– The Master Key is a concatenation of 16 32-bit words: [W 0|W 1| . . . |W 15] .
– W i = σ1(W i−2) +W i−7 + σ0(W i−15) +W i−16 16 ≤ i < 64 .

where σ0 and σ1 are defined as:

σ0(x) = S7(x)⊕ S18(x)⊕R3(x)
σ1(x) = S17(x)⊕ S19(x)⊕R10(x)

where Ri means right shift by i bits. Keys shorter than 512 bits may be accomo-
dated by padding the key input up to 512 bits.

2.6.4.2 Security analysis

No security flaws have been found in SHACAL-2. It also has the interesting
property of being able to share most of the code of the SHA-256 hash function.
Saarinen [553] has noted that the Slide attack on SHA-1 does not carry over
to SHA-256, and hence does not consitute a threat for SHACAL-2. SHA-256 is
a recently designed primitive, so more time is needed to perform a careful and
thorough security evaluation of both SHA-256 and, consequently, SHACAL-2.

2.7 64-bit block ciphers not selected for Phase II

The 64-bit block ciphers not selected for phase II of NESSIE were CS-Cipher,
Hierocrypt-L1, Nimbus, and NUSH. After discussing each cipher briefly we sum-
marise and compare some of the distinguishing features of the ciphers, identifying
potential weaknesses and noting the best-known attacks, as shown in Table 2.19
of Sect. 2.9.4. Note that the algorithms given here are not complete specifications,
but references are given to complete specifications which may be found on the
NESSIE website.

2.7.1 CS-cipher

2.7.1.1 The design

CS-Cipher is a 64-bit block, 128-bit key SPN cipher over 8 rounds [234]. Each
round starts with a subkey XOR, followed by a layer of four 16-bit non-linear
mixing transformations, M , and a byte permutation which is based on the Fast
Fourier Transform (FFT) graph. This is repeated twice more in each round, but
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with constants used instead of the subkey in the initial XOR. There is a final key
XOR after the last round. Whereas many ciphers use separate nonlinear (confu-
sion) layers and linear (diffusion) layers, CS-Cipher also uses a nonlinear diffusion
primitive within the nonlinear layer. The encryption process is summarised as,

k8 ⊕ E(k7 ⊕ . . . E(k1 ⊕ E(k0 ⊕m)) . . .)

where ki are the subkeys, m is the plaintext, and E is the round encryption
function. The key schedule generates 9 subkeys of 64 bits each, is Feistel, and is
summarised by,

ki = ki−2 ⊕ Fci
(ki−1) Fci

(x) = T (P (x⊕ ci))

where T is transposition, P is permutation, and the ci are constants. Further
design details may be found in [234].

2.7.1.2 Security analysis

Two successive applications of an FFT graph have been shown to give very good
diffusion properties. TheM transformation implements a multi-permutation [561]
which here means that fixing either of the two 8-bit inputs arbitrarily makes
both 8-bit outputs permutations of each other. This makes E a mixing function
so that, if we arbitrarily fix seven of the eight 8-bit inputs, all outputs become
permutations of the remaining free input. This gives good diffusion. Also each
byte in the output of one round depends on all eight input bytes to that round.
The non-linear transformation of the encryption takes two bytes of input, and
has the following property: if one takes 256 inputs that are constant in one byte
and take on all values once in the other byte, then each byte value occurs once in
each of the two output bytes. This nonlinear transformation includes reasonably
nonlinear involutions, P , and the designers show that at least five P boxes must
be active per round, and this implies a satisfactory resistance to differential or
linear cryptanalysis.

In [613] the designers prove, by counting the number of active S-boxes, that
a modified version of CS-cipher with all constants and round keys replaced by
independent random values is secure against linear and differential cryptanalysis.
The designers [613] claim that these results carry over to the real CS-cipher and
that 5 1

3 rounds of CS-cipher is therefore secure against linear and differential
cryptanalysis.

No weaknesses or attacks have been reported on CS-cipher.

2.7.2 Hierocrypt-L1

Attacks on Hierocrypt-L1 significantly reducing the security margin have been
found that the submitters were not aware of [41].

2.7.2.1 The design

Hierocrypt-LI (HC-L1) is a 64-bit block, 128-bit key SPN block cipher over 6
rounds [493]. It is hierarchical in structure with an SPN structure itself built
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of smaller SPN structures. Each round consists of a layer with two parallel XS-
boxes each operating on a 32-bit input, followed (except in the last round) by a
linear diffusion layer with a 64-bit input based on a bytewise MDS matrix. An
XS-box consists of an upper subkey mixing layer, an upper S-box layer, a linear
MDS-based diffusion layer (with a 32-bit input), a lower subkey mixing layer, and
a lower S-box layer. The subkeys are XORed in, and the S-box used has 8-bit
inputs and outputs. After the last round an output transformation introduces
another subkey.

The key-schedule consists of two processes, namely the intermediate-key-
generation and the round-key generation. The former generates intermediate keys
out of the secret key, while the latter generates a round key out of each interme-
diate key. There are two ways to generate round keys; one is for a certain number
of rounds close to the plaintext, and the other is for the remaining rounds nearer
to the ciphertext. Most intermediate keys are used to generate one plaintext-
side and one ciphertext-side round key. The schedule algorithms adopt a Feistel
structure with a linear key scheduling in order to update intermediate keys, so
that intermediate keys are supposed to be partially randomised in a non-linear
manner.

For further details of the design refer to [493].

2.7.2.2 Security analysis

In the submission [493] the designers give a plausible argument that 6 rounds of
Hierocrypt-L1 is secure against differential and linear cryptanalysis. They claim
integral attacks for consistency work only up to 5 S-box layers (2.5 rounds)
and that truncated differential attacks work only up to 5 rounds. During the
2nd NESSIE workshop the designers gave bounds not just on the best differen-
tial/linear characteristic, but also on the best differential and linear hull [495].
For 4-round Hierocrypt-L1, the upper bound on the probability of both is 2−48.

Improved integral attacks for consistency on Hierocrypt-L1, for 6 or 7 S-
box layers (3 or 3.5 rounds) have been found. This is not a real threat to the
security of the cipher, but it is a better attack than the designers claimed exists.
During the NESSIE assessment phase, an integral attack for consistency on 3.5
rounds was found by Barreto et al. [41]. Another such attack was also found
by the designers. However, although a Gilbert-Minier distinguisher-type attack
was successfully applied to 7 rounds of Rijndael by Gilbert and Minier [258],
the alternation of upper and lower MDS diffusion layers effectively prohibits the
construction of a 5-round Gilbert-Minier-type distinguisher on Hierocrypt.

It is also interesting to note that, as Hierocrypt uses essentially the same S-box
as Rijndael, affine relationships exist between the bit outputs of the S-box [62,245]
(see Sect. 2.9.5).

Further to this, Furuya and Rijmen [247] discovered linear relationships be-
tween the master key and several of the round subkeys. These flaws are common
to key scheduling of all members of the Hierocrypt family. The attack of [247]
exploits the fact that all intermediate keys of the key schedule are used to gen-
erate round keys, whereas the randomising effect of a Feistel structure requires
that only half the intermediate keys are used. This flaw results in simple linear
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relations between intermediate keys. Also it turns out that the right halves of
certain intermediate keys can be calculated from the right half of the padded se-
cret key. Finally, because the Hierocrypt key schedule is similar to that of DES,
it exhibits significant deterministic iterative differentials.

A summary of the designers’ known attack requirements compared to the
attack requirements found by NESSIE is given in Table 2.11.

Table 2.11. Attack Requirements for Hierocrypt-3 and Hierocrypt-L1

Attack #S-box Layers #Chosen-Plaintexts #Subkey-Guesses
HC-3
Designers 5 213 2168

NESSIE 6 6× 232 240

NESSIE 7 22× 232 2168

HC-L1
Designers 5 232 272

NESSIE 6 6× 232 240

NESSIE 7 14× 232 2104

2.7.3 Nimbus

There is a very practical attack on Nimbus by Biham and Furman [72].

2.7.3.1 The design

Nimbus is a 64-bit block cipher with a key of at least 128 bits over 5 rounds [410].
It is not an SPN. Each round consists of a subkey XOR, multiplication by another
subkey, mod 264, and then bit-reversal of the data word. An encryption round is
given by,

Yi = Kodd
i · g(Yi−1 ⊕Ki)

where Ki and Kodd
i are subkeys (Kodd

i is always odd), ⊕ is XOR, g is the bit-
reversal function, and · is multiplication mod 264. Y0 is the plaintext, and Y5 is
the ciphertext.

The key schedule generates ten 64-bit subkeys, with two new subkeys used in
each round. These ten subkeys are generated from the user input key, which is
at least 128 bits, by means of nested Nimbus encryption operations on successive
64-bit blocks of the user input key, with the encryption key being a constant
derived from π.

For further details of the design please refer to [410].

2.7.3.2 Security analysis

The designer claims that Nimbus is secure against differential and linear crypt-
analysis, interpolation attacks, impossible differential attacks, saturation attacks
and related key attacks, and also claims that there is no effective attack on more
than 4 rounds. Two new iterative differentials for multiplication operations with
probability about 1

2 have been found. By applying one of these differentials to
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Nimbus, a 1-round iterative differential characteristic with probability 1
2 can be

obtained. Iterating this to the full 5-round cipher, a differential characteristic
with probability 2−5 is obtained. This characteristic was used by Furman [246]
to devise an attack on full Nimbus using 256 chosen plaintexts and 210 com-
plexity. Recently, Borisov et al. [111] summarised the attack of [246] using the
language of multiplicative differentials, redefining the differential pairs of [246] as
(x, x∗) where x∗ = −x mod 263 but x∗ 6= −x mod 264, a property that survives
multiplication by the relevant key bits.

2.7.4 NUSH

2.7.4.1 The design

We here consider the version of NUSH which is a 64-bit block cipher, with a 128,
192, or 256-bit key over 9 rounds [391]. 128-bit and 256-bit block sizes were also
submitted to NESSIE. Each round consists of four iterations. In each iteration
two of four variables are updated using a subkey, while the other two are changed
in a non-linear manner. Then the four registers are cycled round (byte-wise) in
a Feistel way. NUSH does not use S-boxes and, to introduce nonlinearity, there
are four different kinds of operations, using XOR, OR, AND, and bit rotations.
Like IDEA, NUSH depends on the mixing of non-commutative operations for
confusion and diffusion. The cipher also has a pre-whitening step and a post-
whitening step where a subkey is added via XOR.

The key schedule of NUSH simply takes the user input key and partitions this
key into different subkeys for use in the encryption algorithm. No nonlinearity is
used in the key schedule. For further details of the design please refer to [391].

2.7.4.2 Security analysis

In the submission [391], the designers mention resistance against differential and
linear cryptanalysis, weak key and related key attacks as well as other attacks,
but do not include any details of their analysis.

A linear attack with complexity less than that of exhaustive key search for
the different variants of NUSH has been reported by Wenling and Dengguo [618].
NESSIE has confirmed that there is such a linear approximation. This approxima-
tion is effective over the full cipher and holds with probability 1

4 or 3
4 depending

on whether AND or OR is chosen in the iteration. Specifically, the linear approx-
imation is of the form,

Ai[0]⊕Bi[0]⊕Di[0] ' Ai−1[0]⊕Bi−1[0]⊕Di−1[0]

where A,B,C,D are 16-bit partitions of the input/output block. But NESSIE
has found some flaws in the further analysis. NESSIE has devised attacks on
NUSH with 64-bit or 128-bit block size based on this linear approximation. These
attacks are slightly faster than exhaustive search (by a factor of 2) for all key
sizes. Furthermore, removing the first two rounds leaves all nine variants of NUSH
vulnerable to a linear attack, suggesting a very limited security margin for the
cipher.
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2.8 128-bit block ciphers not selected for Phase II

The 128-bit block ciphers not selected for phase II of NESSIE were Anubis,
Grand Cru, Hierocrypt-3, Noekeon, NUSH, Q, and SC2000. After discussing each
cipher briefly we summarise and compare some of the distinguishing features of
the ciphers, identifying potential weaknesses and noting the best-known attacks,
as shown in Tables 2.20 and 2.21 of Sect. 2.9.5. Note that the algorithms given here
are not complete specifications, but references are given to complete specifications
which may be found on the NESSIE website.

2.8.1 Anubis

No security flaws have been found in the tweaked version of Anubis, and it is
very similar to Rijndael.

2.8.1.1 The design

Anubis is a 128-bit SPN block cipher which accepts keys of length 32N bits (a
minimum of 128 bits) and uses 8 + N rounds depending on the key size — a
minimum of 12 rounds [37]. Each round consists of a subkey addition, 16 S-boxes
(8-bit to 8-bit) and a linear transformation (presented as a matrix transpose
operation). As in Khazad, all round components were chosen to be involutions
in order to guarantee that encryption and decryption are identical but with the
order of the subkeys reversed. Confusion and diffusion layers are kept separate,
with the diffusion layer realised as a matrix transposition followed by a linear
transformation designed to be an MDS code. In the original submission the S-
boxes were randomly generated to avoid any internal structure. This tended to
have a high cost in hardware, hence the tweaked submission used an S-box which
could be decomposed into 3 layers of 4 × 4 mini-S-boxes, the same S-box as for
Khazad (see Fig. 2.4 for Khazad), which has a complexity estimated to be one
fifth of that for Rijndael [40].

The key schedule of Anubis is complicated and appears to be quite strong. It
expands the cipher key into a series of round subkeys and uses a two-stage key-
evolution and key-selection function. The schedule makes use of the encryption
S-box combined with permutation, linear transformations based on MDS codes,
and the addition of constants. For further details of the design refer to [37].

2.8.1.2 Security analysis

The designers claim [37] that no 4-round differential characteristic with probabil-
ity higher than 2−125 exists and that no 4-round linear approximation with bias
of more than 2−57.5 exists. They claim that related key attacks, interpolation
attacks and boomerang attacks are infeasible, that truncated differential attacks
only work up to 6 rounds and that saturation attacks work only up to 6 rounds.
Such a saturation attack requires 6 × 232 chosen-plaintexts, 224 bits of storage
(in addition to the memory required for storing the plaintext-ciphertext pairs)
and time equivalent to 6× 248 S-box lookups. Extending the attack to 7 rounds
requires almost the entire code book, 264 bits of additional storage and analysis
time equivalent to about 2120 encryptions. For 8 rounds, 2104 storage bits and
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analysis time of 2204 encryptions is required (with the same data complexity).
The designers claim [37] that the Gilbert-Minier attack can break 7 rounds using
232 chosen -plaintexts and about 2140 S-box lookups. The designers claim [37]
that the best impossible differential attack is on 5 rounds and uses 229.5 chosen-
plaintexts and 231 analysis time.
Other than a small error in the calculation of linear approximation biases (the
maximal bias is 17/256 instead of 13/256) that seems to have no effect on the
overall security, no weaknesses or attacks have been reported. Apart from this
mistake,it seems that the rest of the claims are correct, and that even the linear
weakness cannot be exploited.

A summary of the known attacks according to the designers is given in Ta-
ble 2.12.

Table 2.12. Designers Claims of Security — Known Attacks

Attack Rounds Key Size Complexity
Data Memory Time

Saturation 6 all 6.232 CP 224 bits 6.248

7 all 2119 CP 264 bits 2104

8 > 204 2119 CP 2104 bits 2204

Gilbert-Minier 7 > 140 232 2140

Imp. Diff. 5 all 229.5 231

2.8.2 Grand Cru

2.8.2.1 The design

Grand Cru is a 128-bit block SPN block cipher over 10 rounds, requiring a key
of at least 128 bits [112]. Grand Cru can be viewed as an enhanced version of
Rijndael [181]. Rijndael encryption for a 128-bit key, K0, can be described by,

σK0
10
◦ π ◦ γ ◦ σK0

9
◦

0∏
i=8

(θ ◦ π ◦ γ ◦ σK0
i
)

where σ is round key addition, γ is nonlinear substitution, π is a byte permutation,
and θ is a linear transformation on a subset of the bytes. Grand Cru adds three
keyed operations to give a four layered cipher (comprising four subciphers):

ψK3
1
◦ ν−1 ◦ σK0

10
◦ βK2

9
◦ πK1

9
◦ γ ◦ σK0

9
◦

0∏
i=8

(βK2
i
◦ θ ◦ πK1

i
◦ γ ◦ σK0

i
) ◦ ν ◦ ψK3

0

where πK1 is now a keyed permutation, where the round subkey K1
i can take on

(4!)5 possible values, βK2 is a keyed byte-wise rotation, where K2
i can take on 248

values, and two outer round key additions, ψK3 , are appended, using addition
mod 28. ν is an extra diffusion layer. Note that the S-box is identical to that used
in [181], as is the 4× 4 matrix over GF(28) described by θ.
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The cipher requires four 128-bit keys to derive the subkeys for the different
keyed operations. When the user-selected key is shorter than 512 bits, these four
keys are derived using a function claimed to be one-way. All round subkeys are
derived using the Rijndael key schedule. Further details of the design can be
found in [112].

2.8.2.2 Security analysis

Grand Cru is a cipher that implements multiple layered security. The idea behind
this is to mix several ciphers in such a way that if all but one of them are broken,
one is still left with a secure cipher. The designer shows that introducing the
keyed operations not found in Rijndael does not reduce the security compared to
Rijndael [112]. There is also a short analysis of the different ciphers that emerge
when all but one set of the subkeys are known or chosen. It should be noted
that Rijndael is very close to being one of these ciphers. Hence the designer
claims that any attack that breaks Grand Cru also breaks Rijndael. Only in the
case of weak keys for the permutation subcipher, π, and the rotation subcipher,
β, may Grand Cru be weaker than Rijndael. The effectiveness of the different
subciphers can be examined by assuming that the other subcipher keys are known
or chosen. The designer shows that for the permutation subcipher there is a meet-
in-the-middle attack requiring 2110 operations and storage (faster than exhaustive
search).

No attacks or weaknesses have been reported by NESSIE on Grand Cru.

2.8.3 Hierocrypt-3

Attacks on Hierocrypt-3 significantly reducing the security margin have been
found by Barreto et al. that the submitters were not aware of [41].

2.8.3.1 The design

Hierocrypt-3 (HC-3) is a 128-bit block SPN cipher taking 128-bit, 192-bit, or 256-
bit keys, and operating over 6, 7, or 8 rounds, depending on the key size [493].
Like HC-L1, HC-3 has a hierarchical structure. At the highest level, an HC-3
round consists of, in order:

– A layer of four simultaneous applications of 32×32-bit keyed substitution boxes
(XS-boxes).

– A diffusion layer consisting of a bytewise linear transform defined by the MDSH
matrix.

Within each round a similar structure exists. A 32-bit XS-box consists of, in
order:

– An upper subkey mixing layer which XORs 32-bit input data with four subkey
bytes.

– An upper (key-independent and nonlinear) S-box layer composed of the parallel
application of four 8× 8-bit S-boxes.

– A diffusion layer consisting of a bytewise linear transform defined by the MDSL
matrix.
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– A lower subkey mixing layer.
– A lower S-box layer.

The output transformation is composed of an XS-box layer followed by an
XOR layer with the last 128-bit subkey. The key schedule for Hierocrypt-3 follows
the same algorithm as for Hierocrypt-L1, which is discussed under 64-bit block
ciphers. More details of the design can be found in [493].

2.8.3.2 Security analysis

In the submission [493], the designers show that Hierocrypt-3 is secure against
differential and linear cryptanalysis using conservative estimates. They also stud-
ied integral (Square) attacks for consistency and claim they work only up to 4
S-box layers (2 rounds) for a 128-bit key and up to 5 S-box layers (2.5 rounds)
for a 192-bit or 256-bit key. They claim that 5 rounds is secure against truncated
differentials. During the 2nd NESSIE workshop the designers gave bounds not
just on the best differential and linear characteristics, but also on the best dif-
ferential and linear hull [495]. For 4-round Hierocrypt-3, the upper bound on the
probability of either is 2−96.

During the NESSIE assessment phase, an integral attack for consistency was
found on 7 S-box layers (3.5 rounds) by Barreto et al. [41]. Another such attack
was also found by the designers. The attack requirements are summarised in
Table 2.11 which is located in the subsection related to Hierocrypt-L1, Sect. 2.7.2,
along with further comments regarding the security of Hierocrypt-3.

2.8.4 Noekeon

Both key schedules of Noekeon were found, by Knudsen and Raddum [368], to
be susceptible to related key attacks.

2.8.4.1 The design

Noekeon is a 128-bit block, 128-bit key SPN cipher over 16 rounds [180]. Each
round operates on four 32-bit words, a0, a1, a2, a3 and starts with the addition of
a round constant to a0. Then a0 and a2 are XORed together to make the word w,
and two copies of w are made. One of the copies is rotated 8 bits to the left, and
the other is rotated 8 bits to the right. These rotated copies are then XORed back
onto w, and w is XORed onto a1 and a3. After this the 128-bit working key (see
below) is added to the four words. Then a1 and a3 are used to create a temporary
w in the same way as described above, and this word is XORed onto a0 and a2.
The words a1, a2 and a3 are then rotated 1, 5, and 2 bits, respectively, to the left.
Then, for all 32 positions in a word, the bits that are in the same position in the
different words are passed through a 4-bit S-box (32 parallel S-boxes in total).
Finally, the round ends with the words a1, a2, a3 being rotated 1, 5 and 2 bits,
respectively, to the right. After the last round, the linear operations described
before the rotations of a1, a2, a3 are repeated one more time. The encryption and
decryption routines are very similar.

Noekeon has two key schedules, one for applications where related-key attacks
are not considered dangerous and one for applications where related-key attacks
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can be mounted. The stronger key schedule consists of taking the user selected
key and encrypting it once with the all zero key. The ciphertext is then used as
the so-called working key. The simpler key schedule simply uses the user selected
key as the working key.

More details of the design can be found in [180].

2.8.4.2 Security analysis

The designers [180] claim resistance against linear and differential cryptanalysis.
For linear attacks they claim that no 4-round linear characteristic with correlation
coefficient higher than 2−24 exists. For differential attacks, the designers give a
plausible argument that no 4-round differential with probability higher than 2−48

exists. The bounds are sufficient to conclude resistance against both attacks.
The designers’ reasoning that Noekeon is not vulnerable to attacks based on
truncated differentials and to the interpolation attack also seems to be correct.
Note, however, that the constituent functions of the S-box include the identity
function on four of the sixteen different inputs.

In [368] Knudsen and Raddum show that there exist many related keys for
which plaintexts of certain differences result in ciphertexts of certain differences
with high probabilities independent of the key schedule used. It is also shown in
[368] that for six of seven S-boxes which satisfy the design criteria of the Noekeon
designers, the resulting block ciphers are vulnerable to either a differential attack,
a linear attack or both. It is concluded that Noekeon is not designed according
to an optimal diffusion strategy [368].

2.8.5 NUSH

2.8.5.1 The design

This version of NUSH is a 128-bit block cipher, with a 128, 192, or 256-bit key
over 9 rounds [391]. 64-bit and 256-bit block sizes were also submitted to NESSIE.

More details of the design can be found in [391].

2.8.5.2 Security analysis

NUSH has no security margin [478] as it was broken. Details of the algorithm and
security analysis can be found in Sect. 2.7.4 which describes the 64-bit version of
NUSH.

2.8.6 Q

There are attacks on Q by Biham et al. and Keliher et al. both faster than
exhaustive search [73,341].

2.8.6.1 The design

Q is a 128-bit block cipher with a key size of 128, 192, or 256 bits over 8 rounds
for ’low security’ and over 9 rounds for ’high security’ [434]. It was designed to be
faster than Serpent and also to be immune to differential and linear cryptanalysis.
The data is divided into sixteen 8-bit words (a 4 × 4 matrix of bytes). At the
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beginning of each round, a subkey word is XORed in, then an 8 × 8 S-box is
applied 16 times (for each of the 16 data bytes) and an additional subkey XOR is
performed. A 4× 4 S-box is then applied 32 times, the round key is XORed in, a
byte permutation is performed, and the 4× 4 S-box is again used 32 times. After
the last round, there is additional subkey XOR, an 8 × 8 S-box layer, a subkey
XOR and an additional subkey XOR (post-whitening). Two of the three subkeys
used in each round are the same, and are equal for all rounds and also for the
last half round.

The key schedule applies an operation similar to encryption to the low order
half of a 256-bit key (which may be a zero-padded 128-bit key. It includes an XOR
with a round counter and an XOR with a constant derived from the Golden Ratio.

More details of the design can be found in [434].

2.8.6.2 Security analysis

The designers have claimed [434] that there are no differentials with probability
larger than 2−120 after 7 rounds, and that there is no differential attack on the full
Q. An equivalent claim is made regarding linear cryptanalysis. The designers also
claim security against key-related attacks, slide attacks, Davies-Murphy attacks,
boomerang attacks, approximation attacks and impossible differential attacks.

During the NESSIE assessment phase, a differential with higher probability
than the upper limit claimed by the designers was found by Biham et al. and
used to break the full Q. These results were presented at FSE 2001 [73]. A paper
performing linear cryptanalysis of the full Q, with a significantly better attack
than this differential attack, was presented by Keliher et al. at the 2nd NESSIE
workshop [341]. The differential attack on full Q with 128-bit keys requires 2105

chosen plaintexts and has a time complexity of 277 encryptions. The best attack
on the full Q with larger key sizes requires 2125 chosen ciphertexts, and has a
time complexity of 296 for 192-bit keys, and 2128 for 256-bit keys. Table 2.13
summarizes these results.

Table 2.13. Data/Time Complexity of Attacks on Q for Different Key Sizes

Key Size Number of Chosen Complexity
(bits) Rounds Plaintexts (encryptions)
128 8 2105 277

192 9 2125 296

256 9 2125 2128

2.8.7 SC2000

2.8.7.1 The design

SC2000 is a 128-bit block cipher taking a 128, 192, or 256-bit key over 6.5 or 7.5
rounds [569]. It is a mixture of a Feistel cipher and an SPN. The round function
of SC2000 consists of a layer of 32 parallel 4-bit S-boxes followed by two rounds
of a Feistel network. The round keys are XORed with the cipher block before and
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after the application of the S-boxes. The last half round consists of key additions
and S-box look-ups. The F -function in the Feistel network consists of a layer of
four 6-bit S-boxes and eight 5-bit S-boxes, multiplication by a fixed 32 × 32 bit
matrix and a final mixing of the words with each other using the AND operation
with a constant and XOR. This produces two words of output from the function
in the Feistel network. This two-round Feistel structure is the last operation on
one round of SC2000. The key schedule is a complex transformation of the key
selected by the user, in such a way that every 32-bit word of the round keys
depends on the whole key.

More details of the design can be found in [569].

2.8.7.2 Security analysis

The designers [569] have studied the efficiency of the key avalanche and conclude
that the complexity is that of exhaustive search if one tries to bypass one round
in the beginning and end by guessing some of the key bits. A differential attack
on 4.5 rounds has been reported by the designers. This attack finds 28 bits in
the first and last round key. The key schedule in SC2000 appears to be very
strong. The knowledge of one round key doesn’t seem to leak any information
about any of the other round keys or the key selected by the user, so the key
schedule prevents the attacker from searching exhaustively for the remaining key
bits. However, the success of this attack raises some questions about the design
of SC2000. In [570] the designers present differential characteristics with higher
probabilities than those found in their submission to NESSIE.

Raddum and Knudsen [539] and Dunkelman and Keller [211] both report
attacks on SC2000 when the number of rounds is reduced to 3.5 or 4.5 from
the original 6.5. In [539] two different 3.5-round differential characteristics with
probabilities 2−106 and 2−107 are given. These characteristics have higher prob-
abilities than those reported in [457]. The characteristics can be used to extract
up to 32 bits of the first and last round keys in a 4.5-round variant of SC2000.
In [211] distinguishers for 2.5 and 3 rounds are found and used to attack a 3.5
round variant of the cipher. These results on SC2000 were presented at the 2nd
NESSIE workshop.

It is also interesting to note that affine relationships exist between the bit
outputs of the S-box, for all three S-boxes, S4, S5, and S6 [62] (see Sect. 2.9.5).

2.9 Comparison of studied block ciphers

2.9.1 64-bit block ciphers considered during Phase II

Table 2.14 highlights the best attacks known on the block ciphers considered in
this section. It identifies some unusual features of each cipher and some of its
potential weaknesses, and gives a list of the best attacks, including the number
of rounds broken, data and time complexities, and references for the attacks.
MISTY2 and KASUMI are not part of NESSIE but are included for comparison
with MISTY1.



Dra
ft

Apr
il
19

, 2
00

4

2. Block ciphers — 2.9 Comparison of studied block ciphers 137

Table 2.15 shows affine bit-relations between output bits of the S-boxes, i.e.
the number of equations of the form,

bi(x) = bj(Ax+ B) + c

for the vector of S-box input bits, x, a Boolean matrix A, a Boolean vector B, and
a constant, c ∈ {0, 1}. The submatrices of A which are permutation or rotation
matrices are also enumerated [62].

2.9.2 128-bit block ciphers considered during Phase II

Table 2.16 highlights the best attacks known on the block ciphers considered in
this section. It identifies some unusual features of each cipher and some of its
potential weaknesses, and gives a list of the best attacks, including the number
of rounds broken, data and time complexities, and references for the attacks.

Table 2.17 shows affine bit-relations between output bits of the S-boxes, i.e.
the number of equations of the form,

bi(x) = bj(Ax+ B) + c

for the vector of S-box input bits, x, a Boolean matrix A, a Boolean vector B, and
a constant, c ∈ {0, 1}. The submatrices of A which are permutation or rotation
matrices are also enumerated [62].

2.9.3 Large block ciphers considered during Phase II

Table 2.18 highlights the best attacks known on the block ciphers considered in
this section. It identifies some unusual features of each cipher and some of its
potential weaknesses, and gives a list of the best attacks, including the number
of rounds broken, data and time complexities, and references for the attacks.

2.9.4 64-bit block ciphers not selected for Phase II

Table 2.19 highlights the best attacks known on the block ciphers considered
in this section, identifying the number of rounds over which they operate, some
unusual features of the cipher, some potential weaknesses of the cipher, and a
list of the best attacks, including the number of rounds broken, data and time
complexities, and references for the attacks.

2.9.5 128-bit block ciphers not selected for Phase II

Table 2.20 highlights the best attacks known on the block ciphers considered
in this section, identifying the number of rounds over which they operate, some
unusual features of the cipher, some potential weaknesses of the cipher, and a
list of the best attacks, including the number of rounds broken, data and time
complexities, and references for the attacks.
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Table 2.21 shows affine bit-relations between output bits of the S-boxes, i.e.
the number of equations of the form, bi(x) = bj(Ax + B) + c for the vector of
S-box input bits, x, a Boolean matrix A, a Boolean vector B, and a constant,
c ∈ {0, 1}. The submatrices of A which are permutation or rotation matrices are
also enumerated [62].
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Table 2.15. Affine relations for the S-boxes of some Phase II 64-bit block ciphers

Sbox Inverse Sbox
Cipher Sbo Size # Aff. Eqns Perm Rot Total Perm Rot
Khazad-tweak 8× 8 - - - - - -
Khazad-orig 8× 8 - - - - - -
MISTY1 S7 7× 7 > 2000 - - > 2000 - -

S9 9× 9 > 100000 20 32 720 - -
SAFER++ (64-bit block) exp45 8× 8 256 - - (log45) 7 - -
DES S1 6× 4 1 - - not invertible

S2 6× 4 3 - - not invertible
S3 6× 4 4 - - not invertible
S4 6× 4 28 - - not invertible
S5 6× 4 3 - - not invertible
S6 6× 4 3 - - not invertible
S7 6× 4 6 1 - not invertible
S8 6× 4 - - - not invertible
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Table 2.17. Affine relations for the S-boxes of some Phase II 128-bit block ciphers

Sbox Inverse Sbox
Cipher Sbox Size # Aff. Eqns Perm Rot Total Perm Rot
Camellia 8× 8 504 - - 504 - -
AES-Rijndael 8× 8 504 - - 504 - -
SAFER++ (128-bit block) exp45 8× 8 256 - - (log45) 7 - -
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Table 2.21. Affine relations for the S-boxes of some 128-bit block ciphers not selected
for Phase II

Sbox Inverse Sbox
Cipher Sbox Size # Aff. Eqns Perm Rot Total Perm Rot
Hierocrypt-3 8× 8 504 - - 504 - -
SC2000 S4 4× 4 > 1000 7 - > 1000 7 -

S5 5× 5 > 1000 - > 3000 8 -
S6 6× 6 210 - 210 8 -
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3. Stream ciphers

3.1 Introduction

A stream cipher is an algorithm for encrypting a sequence of elements or char-
acters from a plaintext alphabet, usually the binary alphabet {0, 1}. Stream ci-
phers are commonly classified as being synchronous or self-synchronising. In a
synchronous stream cipher the keystream is generated independently of the plain-
text and ciphertext, so the keystream depends only on the key. In contrast, the
keystream of a self-synchronising stream cipher depends on the key and a fixed
amount of the previously generated ciphertext. Most stream ciphers can be classi-
fied as additive stream ciphers. An additive stream cipher is a synchronous cipher
in which the ciphertext is the XOR of the plaintext and the keystream. None of
the submissions is a self-synchronising stream cipher, therefore only synchronous
stream ciphers are considered.

In specific applications, stream ciphers are more appropriate than block ci-
phers:

– Stream ciphers are generally faster than block ciphers, especially in hardware.
– Stream ciphers have less hardware complexity.
– Stream ciphers process the plaintext character by character, so no buffering is

required to accumulate a full plaintext block (unlike block ciphers).
– Synchronous stream ciphers have no error propagation.

Most stream ciphers are based on simple devices that are easy to implement
and run efficiently. A common example of such a device is the linear feedback shift
register (LFSR) [551]. Such simple devices produce predictable output given some
previous output. Thus, the output of such devices is typically used as the input
to a function that produces the keystream. Keystreams can also be produced by
using certain modes of operation of a block cipher.

Many of the common uses of stream ciphers require frequent key reinitializa-
tion or rekeying. A full definition of a stream cipher intended for such uses should
give details of how the cipher should be rekeyed. The original NESSIE call for
primitives did not require stream ciphers to be accompanied by a rekeying sched-
ule. Only the two SOBER stream ciphers provided a rekeying schedule with the
original schedule, though rekeying schedules have subsequently been provided for
the other submissions.

0 Coordinator for this chapter: SAG — Marcus Schafheutle, Stefan Pyka
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3.2 Security requirements

The techniques used to analyse stream ciphers use mathematical and statistical
properties of the generator or approximations to it. In particular, the keystream
generator should produce a memoryless balanced sequence of bits, which are
modelled as a sequence of independent identically distributed Bernoulli random
variables with parameter 0.5 (fair coin tosses). Stream cipher analysis is essen-
tially concerned with analysing the keystream generator to find deviations from
this statistical model. It is customary when analysing stream ciphers to consider
known plaintext attacks. This essentially means assuming that a large amount of
keystream is known. The statistical deviations are exploited to give methods for
attacking the stream cipher based on the known keystream. Such methods are
usually classified in one of the following three ways:

1. Distinguishing Attack.
A method for distinguishing output from the keystream generator from a
‘random’ sequence of the same length.

2. Prediction.
A method for predicting output from the keystream generator more accu-
rately than guessing

3. Key Recovery.
A method for recovering the key from the output of the keystream generator.

Key recovery is clearly the most powerful of these three methods as it enables
both prediction and a distinguishing attack. Prediction also clearly enables a
distinguishing attack. However, a distinguishing attack can be thought of as a
type of prediction. This is because a distinguishing attack makes statements that
certain sequences from a keystream generator are more or less likely to occur
than they would if produced ‘at random’, thus making predictions about the
keystream sequence that are more accurate than guessing.

3.2.1 Classification of attacks

Stream ciphers tend not to use iterated functions in the same way as block ciphers,
so the classification of attack techniques is more difficult. However, the most
common techniques are discussed below.

Exhaustive key search

This attack is the most general type of attack that can be applied to any stream
cipher. Given a keystream sequence generated by an unknown key, an attacker
simply tries all possible keys and checks whether the generated keystream matches
the given keystream sequence. For exhaustive key search for stream ciphers there
exist very efficient time-memory tradeoff techniques as described in [87]. In a
time-memory tradeoff attack, some key-output relations are precomputed and
stored in memory. In the real-time phase of the attack, the given output data is
searched until a stored output pattern is found. The attacker has then found the
corresponding key. The time complexity for exhaustive key search is split into a
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time and a memory complexity. The name ‘time-memory tradeoff’ results from
this idea.

Periodic and Statistical Attacks

If the period of a keystream generator is too small, then the keystream will repeat
itself, so enabling easy prediction. The period must be large enough to ensure
that the keystream is not repeated. More generally, if the keystream deviates in
an obvious way from the memoryless Bernoulli distribution discussed above, then
there is an obvious prediction technique available.

Linear Complexity

The linear complexity of a sequence is the length of the shortest LFSR that can
produce that sequence. The linear complexity of a sequence is easily calculated
using the Berlekamp-Massey algorithm [419]. If this linear complexity is too small,
then an attacker can reproduce the sequence on an LFSR.

Maximum Order Complexity

The Maximum Order Complexity (MOC) Test determines the length of the short-
est possibly non-linear feedback shift register which can produce the given bit se-
quence For the MOC profile, this is done for the first 1,2,3.. bits of the sequence.

Correlation Attacks

Correlation attacks are the most important general attacks on LFSR-based
stream ciphers. In a correlation attack, the output of a keystream generator is
correlated in some manner with the output of a much simpler device, such as a
component LFSR of the generator. This correlation can sometimes be exploited to
determine the key. The first ideas were described by Thomas Siegenthaler [585].
Meier and Staffelbach [438] and others subsequently improved these ideas by
developing fast correlation attacks.

Higher Order Correlation attacks

Many stream ciphers are built of a linear sequence generator and a non-linear
output function f . Correlation attacks try to find a linear approximation of f .
Equivalenty higher order approximations are possible. With the aid of the ap-
proximations an overdefined system of multivariate equations can be defined. The
XL method [164] can be adapted to solve these equations. This kind of attack is
not well examined, but a more detailed description can be found in [154].

Divide-and-Conquer Attacks

In such attacks a portion of the key (or of the internal state) is guessed. The
constraints now placed on the keystream may allow the determination of the
remainder of the key faster than searching this remainder exhaustively.

Rekeying Attacks

There are many applications in which a stream cipher is frequently rekeyed. It is
sometimes possible to exploit this rekeying in order to find the key.
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Sidechannel attacks

Using sidechannel attacks one exploits the behaviour of primitives in use, for
example different performances or different power consumption for different keys
or internal states. For a complete description of sidechannel attacks see the annex.

3.2.2 Assessment process

The stream cipher submissions were assessed with reference to the above generic
common stream cipher attack techniques. Furthermore, some stream cipher sub-
missions were analysed using techniques specific to that primitive.

Statistical testing is a vital part of stream cipher analysis in order to pro-
vide assurance that the generator possesses the required statistical properties.
The NESSIE toolbox provides extensive tools for stream cipher and block cipher
testing. A list of these tools used in stream cipher assessment is given below, and
further details can be found in [479]. It is emphasized that properties like large
period, large linear complexity and a good statistical behaviour are necessary but
not sufficient conditions for a stream cipher to be considered cryptographically
secure.

3.2.2.1 The NESSIE statistical toolbox for stream ciphers

The NESSIE toolbox provides several tests in order to assess the statistical prop-
erties of output sequences from the keystream generator of a stream cipher:

– Collision Test
The collision test splits up the bit sequence into blocks of a fixed size. A collision
occurs if the same block appears more than once. The test statistically evaluates
the number of collisions.

– Constant Runs Test
For the constant runs test, the sequence of bits is subdivided into runs, that
is maximal disjoint subsequences of consecutive 0s and 1s. The frequencies of
these runs of the various lengths are evaluated statistically.

– Correlation Test
The correlation test statistically evaluates the correlation between a sequence
and shifts of the sequence.

– Coupon Collector’s Test
The coupon collector’s test splits up the bit sequence into blocks of a fixed size.
The test statistically evaluates the number of blocks required until all possible
blocks have appeared. The coupon test is also applied to cyclic shifts of the
original sequence.

– Dyadic Complexity Test
The dyadic complexity test is an implementation of the complexity measure
suggested by Goretzky and Klapper [348] for sequences of bits. This measure
is cryptologically relevant because feedback shift registers with carry, also de-
scribed in [348], have low dyadic complexity.

– The Fast Spectral Test
The fast spectral test applies the fast Walsh transform to the bit sequence. It
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uses two values derived from the transform to assess the randomness of the
sequence.

– Frequency Test
The frequency test splits up the bit sequence into blocks of a fixed size. The
frequencies of these blocks are evaluated statistically.

– Gap Test
The gap test splits up the bit sequence into blocks of a fixed size. The blocks
are interpreted as binary representations of numbers, to give a sequence of
numbers. A gap is a maximal subsequence containing no members in a certain
numerical range, and the lengths of gaps are evaluated statistically. This test
is also applied to cyclic shifts of the original sequence.

– Linear Complexity Test
The linear complexity test uses the Berlekamp–Massey algorithm to determine
the length of the shortest linear feedback shift register which can produce the
given bit sequence. The linear complexity profile is also evaluated.

– Maximum Order Complexity Test
The maximum order complexity test determines the length of the shortest
possibly nonlinear feedback shift register which can produce the given bit se-
quence. For the maximum order complexity profile, this is done for the first
1,2,3... bits of the sequence.

– Overlapping m-tuple Test
The overlapping m-tuple test splits up the bit sequence into overlapping sub-
sequences of length m. The frequency of these (dependent) subsequences is
evaluated statistically. This test is also applied to cyclic shifts of the original
sequence.

– Percolation Test
The percolation test is the simulation of a forest fire. The bit sequence to be
tested determines where trees are standing in the simulated forest. The test
evaluates statistically how fast a fire propagates in the simulated forest.

– Poker Test
The poker test splits up the bit sequence into groups of k successive blocks
of a fixed size, known as (poker) hands. The poker test statistically evaluates
the frequencies of these hands. This test is also applied to cyclic shifts of the
original sequence.

– Rank Test
In the rank test, the bits of the sequence to test are used to fill square matrices.
The bits are treated as elements of the field GF(2), and the ranks of the matrices
are evaluated statistically.

– Run Test
The run test splits up the bit sequence into blocks of a fixed size. These blocks
are interpreted as binary representations of numbers, to give a sequence of
numbers. A run is a maximal subsequence of strictly increasing numbers, and
the lengths of runs are evaluated statistically.

– Universal Maurer Test
The universal Maurer test splits up the bit sequence into disjoint subsequences
of bits. The test statistically evaluates the distances between identical subse-
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quences. The test result of the Maurer test is closely related to the entropy of
the bit sequence.

– Ziv-Lempel Complexity Test
The Ziv-Lempel complexity test is based on a measure of the rate at which
new patterns occur in the sequence.

These tests were applied to all of the stream cipher submissions, but no sub-
mission exhibited anomalous behaviour. Detailed results of the statistical tests
are available as NESSIE public reports.

Some block cipher tests were also used for stream cipher analysis. As an
example, the following tests were applied to analyse the key loading (initializa-
tion vector loading) process used in the stream ciphers SNOW, SOBER-t16 and
SOBER-t32:

– Dependence Test
The dependence test evaluates the dependence matrix and the distance matrix
of a function. Furthermore, the degree of completeness, the degree of avalanche
effect and the degree of strict avalanche criterion of the function are computed.

– Linear Factors Test
The linear factors test is used to find out whether there are any linear com-
binations of output bits which, for all keys and plaintexts, are independent of
one or more key or plaintext bits. Such a linear combination is called a linear
factor.

These tests detected linearity properties in the key loading of SOBER-t32 [199].

3.3 Overview of the common designs

In this section we give an overview of stream cipher design techniques which are
most commonly used today in practice. Because of the broad field of stream cipher
design, only a brief overview is presented in order to give a rough classification
of the stream cipher submissions.

3.3.1 Stream ciphers based on feedback shift registers

Feedback shift registers, in particular LFSRs, are widely used as building blocks
for stream ciphers. LFSRs produce sequences having large periods and good sta-
tistical properties, they are well-suited for hardware implementations and there
are mathematical techniques to analyse them. Unfortunately, the output sequence
of an LFSR is linear and so is easily predictable. When LFSRs are used as com-
ponents for keystream generators, it is very important that the output sequence
does not inherit linearity properties from the output sequences of the component
LFSRs. Some methodologies with this objective are briefly discussed in the next
sections.

The submitted ciphers SNOW, LILI-128, SOBER-t16 and SOBER-t32 are all
based on LFSRs.
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Nonlinear combination generators

A nonlinear combination generator uses a number of LFSRs. The keystream is
generated as a nonlinear function f of the outputs of these LFSRs.
Nonlinear filter generators

In this construction, the keystream is generated as a nonlinear function f of the
stages of a single LFSR.
Clock-controlled generators

An irregularly clocked LFSR does not exhibit the same linearity properties as one
that is regularly clocked. Thus a common technique is to use one LFSR sequence
to control the clocking of another LFSR. A more general form of clock-control is
the irregular decimation of the output sequence of one device by another device.
For each generated sequence bit from the first device, the second device decides
whether the generated bit should be used as a keystream bit or discarded.

The stream cipher submissions LILI-128, SOBER-t16 and SOBER-t32 use
LFSRs, nonlinear filters and irregular clocking as main components.

3.3.2 Stream ciphers based on block ciphers

Some modes of operation of block ciphers can be used to generate a keystream se-
quence, such as the Output Feedback (OFB) Mode, the Cipher Feedback (CFB)
Mode and the Counter Mode (CTR). The BMGL stream cipher submission to
NESSIE is in reality a block cipher mode of operation. Note that stream ci-
phers based on block cipher modes of operation can potentially be attacked by
cryptanalysis of the underlying block cipher. There are also generic distinguishing
attacks on block ciphers in OFB and Counter Mode. For a block cipher with block
size b, 2b/2 blocks of keystream are sufficient to distinguish the keystream from
a truly random sequence. This is achieved by looking for repeated occurrences of
blocks, which are not possible when the stream is generated by a block cipher in
OFB or Counter Mode (unless the sequence has started to repeat itself).

3.3.3 Pseudorandom number generators based on modular arithmetic

The security of these generators is based on the presumed intractability of an un-
derlying number-theoretic problem. Popular examples of this class are the RSA
generator and the Blum-Blum-Shub generator [100]. The required modular arith-
metic makes these generators extremely slow compared to other keystream gener-
ators, so such generators are primarily used as pseudorandom number generators.

3.3.4 Other stream ciphers

Stream ciphers based on LFSRs are well-suited for hardware. Some recent stream
ciphers have been designed particularly for efficient software implementation,
and are not based on LFSRs. Examples include the stream ciphers RC4 [542],
SEAL [544] and SCREAM [279], and the NESSIE stream cipher submission
LEVIATHAN.
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3.3.5 Current standards

At present a standard for dedicated stream ciphers, such as the AES standard for
block ciphers, does not exist. One probable reason is that most stream ciphers in
use are either secret or proprietary designs.

The standard ISO 10116 (2nd edition) specifies modes of operation for 64-bit
block ciphers that give keystream generators, in particular the Cipher Feedback
Mode and the Output Feedback Mode. Several other standards (ANSI X9.52,
FIPS 81) specify modes of operation for the DES and triple-DES cipher. Re-
cently, the National Institute of Standards and Technology (NIST) held two
public workshops on block cipher modes of operation. Some of the proposed
modes are suitable for stream cipher design, for example the Counter Mode and
the Key Feedback Mode (BMGL is based on this mode). In the NIST publica-
tion SP800-30A, modes of operation that could be used as keystream generators,
such as Cipher Feedback Mode, Output Feedback Mode and Counter Mode are
recommended. However, as described in section 3.3.2, block ciphers in OFB and
Counter Mode might be vulnerable to distinguishing attacks. When speaking of
OFB mode, one usually considers the OFB mode with full feedback in contrast
to the OFB mode with r-bit (r < n) feedback. With full feedback the complete
output word from the last encryption step is used for feedback, while with r-bit
feedback only r bits are used for feedback. In the first case the feedback function
can be treated as a random permutation with expected cycle length of about
2n−1, while in the second case the feedback function is a random function with
expected cycle length 2n/2. This is the reason why OFB is used in full feedback
mode, and why it is vulnerable to distinguishing attacks. On the other hand
there is a simple way to remove this drawback. If the block size is twice as big
as the key size, then one needs as many output words as the key space size to
mount a distinguishing attack, which is not better than brute force. So if one
uses a 256-bit block cipher with a 128-bit key, then this configuration provides
adequate security in the normal category.

3.4 Stream cipher primitives considered during Phase II

3.4.1 BMGL

BMGL is a stream cipher designed by Johan H̊astad and Mats Näslund [285]
and submitted to the NESSIE project. BMGL provides key sizes as for Rijndael
(128-bit, 192-bit and 256-bit). Furthermore, the tweaked version of BMGL allows
rekeying with an 128-bit initialization vector.

3.4.1.1 Design

The construction of BMGL is based on so called hardcore functions for one-
way permutations and on the possibility to construct pseudo random number
generators with the aid of them. Given a one-way function f , a set of binary
functions {br} is called a family of hardcore functions, if for any r the output
br(x) cannot be distinguished computationally from a random bit.
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Given the seeds x0 and r and the one-way permutation f , one can construct
a random number generator g by xi+1 = f(xi) and g(x0, r) = br(x1), br(x2), . . ..
One can show, that if there is an efficient algorithm D that distinguishes with
non-negligible advantage g(x, r) from a random string (with given r), then there
is an efficient algorithm P that given r, f(x) predicts br(x) with non-negligible
advantage [101]. Furthermore Goldreich and Levin [269] have shown, that in this
case, there is an efficient algorithm B, that inverts f(x) on random x with non-
negligible probability. They also could prove, that for every one-way function
f , hardcore functions exist. The set {br} can be defined by the inner product
br(x) := x · r mod 2 of n-bit strings x and r. This also holds for extending the
inner product on matrix products, in order to generate several bits at once. Let
Mn
m be the set of all m × n-matrices and let R ∈ Mn

m. Then one can define
hardcore functions

BmR (x) =


r11 r12 . . . r1n
r21 r22 . . . r2n
. . . . . . . . .
rm1 rm2 . . . rmn

 ·

x1

x2

. . .
xn

 .

This results in the basic construction of BMGL:
Let f : {0, 1}n → {0, 1}n be a one-way function and let n, m and λ be

integers. Then the generator BMGLn,m,λm(f) is defined as follows: The input of
the generator is x0 ∈ {0, 1}n and R ∈ Mn

m. Let xi = f(xi−1). Then the output
of the generator is defined by {BmR (xi)}λi=1.

In the BMGL submission for the NESSIE project the authors have defined
the function f as the block cipher Rijndael. The construction of BMGL is based
on theoretical results for one-way functions. Therefore the security of BMGL
with Rijndael as one-way function has to be related to these theoretical results.
The authors show, that if Rijndael is secure, then their construction of BMGL is
secure.

In the BMGL submission Rijndael is used in a new mode of operation called
key feedback mode (KFB). The idea is not to feedback the ciphertext as new
plaintext input in the next iteration step, but as a new key. In some sense it is a
“dual” to OFB mode. The plaintext and the random matrix R may be publicly
known and need not be a part of the secret key.

3.4.1.2 Security analysis

The security of the construction results from the assumption that the one-way
function used in the BMGL generator does not lose its one-wayness property
even if the function is iterated many times. Based on previous papers about the
reduction of the security of generators of pseudorandom bits to the existence of
one-way functions [269, 284], the designers show formally in the model of exact
security that a non-trival attack on BMGL gives a black-box reduction to an
attack on the underlying iterated one-way function, i.e. Rijndael. The analysis
allows us to quantify the loss of security. The security and correctness of the
overall construction has been verified several times before in the case of one-way
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permutations [265, 266, 269, 284, 402]. All proofs given in the submission were
carefully checked.

In [286] the submitters generalize the generator in order to allow keystream
synchronization with random access properties. Furthermore, they present a
sketch for a security proof based on the assumption that the iterated Rijndael
mapping is hard to invert even if an attacker has a number of extra plaintext-
ciphertext pairs.

We note that BMGL is in reality a mode of use of a block cipher, in this
case Rijndael. This means that certain “generic attacks” on modes of use are
applicable as noted by Babbage [29]. The type of generic attacks described there
is a time-memory tradeoff for stream ciphers, where the internal state size is not
much bigger than the key space size. Babbage recommends that the internal state
size of the key stream generator should be at least two times bigger than the key
space size to prevent time-memory tradeoffs. For the stream cipher BMGL this
is not the case.

3.4.2 SNOW

SNOW is a synchronous stream cipher designed by Patrick Ekdahl and Thomas
Johansson [214] and submitted to the NESSIE project. It uses a 128-bit or 256-
bit key and has an internal memory of 576 bits. The tweaked version of SNOW
allows rekeying with a 64-bit initialization vector.

3.4.2.1 The design

SNOW consists of an LFSR and a Finite State Machine, the states of which are
words in GF (232). We denote addition in GF (232) by the symbol ⊕, addition
modulo 232 by the symbol +, and the ith bit of the element x in the field by x[i].
SNOW uses an LFSR of length 16 defined by the recurrence relation

st+16 = α(st ⊕ st+3 ⊕ st+9)

where α ∈ GF (232) is given in the NESSIE submission. The Finite State Machine
consists of two registers whose values at time t we will denote by at and bt
respectively. Let

at+1 = at ⊕R(ft + bt)
bt+1 = S(at)
ft = (st+15 + at)⊕ bt
zt = ft ⊕ st,

where R denotes a 7-bit left (towards the most significant bit) rotation and S
is a 32-bit to 32-bit S-box given in the NESSIE submission. The sequence (zt)
is used as the keystream. There is a key initialisation process described in the
submission.
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3.4.2.2 Security analysis

A distinguishing attack. Coppersmith, Halevi and Jutla [147] have observed
that if σt = st+15[15] ⊕ st+15[16] ⊕ st+16[22] ⊕ st+16[23] ⊕ ft[15] ⊕ ft+1[23] then
σt has bias ε = 2−8.3.

For a sequence (vt) and polynomial q(X) =
∑N
i=0 ciX

i, let T jq (vt) denote∑N
i=0 civj+i. They also show that there are about 2100 weight six polynomials

which are divisible by the linear feedback polynomial given above. If p is such a
polynomial, then T jp (st) = 0 for each j. For each such p, T jp (σt) = T jp (ft[15]) ⊕
T jp (ft[23]), so we can obtain T jp (σt) since we know the ft. However, T jp (σt) has
bias ε6 = 2−49.8 since p has weight 6. As there are about 2100 such polynomials
p, we can find 2100 such T jp (σt), each with a bias of 2−49.8.

The mean of the sum of these 2100 values is 299 + 275 and the standard devi-
ation approximately 249 +224. The mean of a sum of 2100 ‘random’ values would
be 299 and the standard deviation 249. We can assume that the distributions of
these sums are normal, so most (about 95%) realisations of these sums lie within
two standard deviations of the mean. Thus it is clear we can distinguish the
two distributions. This leads to a distinguishing attack on SNOW requiring 295

observed bits of keystream and workload about 2100.

Guess and determine attacks. Hawkes and Rose [290] present two attacks
on SNOW, the first requiring 264 observed bits of keystream with workload 2256

(so no faster than exhaustive key search) and the second 2224 observed bits of
keystream with workload 295.

For the basic attack we fix t and assume that bt = S(at ⊕ 1) and bt+14 =
S(at+14 ⊕ 1) where 1 = 232 − 1. We guess st, st+1, st+2, st+3, at and at+14

(192 bits in total) and can then determine the shift register state based on these
assumptions and test if this shift register state is correct by comparing its output
with the keystream. If no guesses give the correct keystream for this value of t,
we repeat this with another value of t. As the probability that these assumptions
hold is 2−64, we expect to have to try about 264 values of t. The details of how
to determine the shift register state from each guess are given in [290]. This gives
an attack requiring 264 observed bits of keystream with workload 2256.

We can improve the workload of this attack by also assuming that at+1 is
either 0 or 1 as well as bt = S(at ⊕ 1) and bt+14 = S(at+14 ⊕ 1) as before. We
guess st, st+1, at, at+14 and whether at+3 is 0 or 1 (129 bits in total) and can
then determine the shift register state and test whether this state is correct. The
probability that these assumptions are correct is 2−95, so we expect to have to
repeat this for about 295 values of t. As before, the details of how to determine
the shift register state from each guess are given in [290]. This gives us an attack
requiring 2224 observed bits of keystream with workload 295.

3.4.3 SOBER-t16

SOBER-t16 is a synchronous stream cipher designed by Philip Hawkes and Greg
Rose [289] and submitted to the NESSIE project. SOBER-t16 uses a 128-bit key
and has an internal memory of 272 bits. SOBER-t16 allows rekeying with an
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initialization vector. Hawkes and Rose also submitted to NESSIE SOBER-t32, a
similar stream cipher but with a 256-bit key (see Section 3.4.4).

3.4.3.1 Description of SOBER-t16

SOBER-t16 is based on an LSFR of length 17 over the field GF (216). This LFSR
is ‘stuttered’ as described below. We represent elements of this field with 216

elements by 16-bit binary vectors corresponding to polynomials modulo the irre-
ducible polynomial

x16 + x14 + x7 + x6 + x4 + x2 + x+ 1.

We denote addition in GF (216) by the symbol ⊕, addition modulo 216 by the
symbol + and the ith bit of the element x in the field by x[i].

The linear feedback shift register. SOBER-t16 uses an LFSR of length 17
over GF (216) given by the recurrence relation

st+17 = αst+15 ⊕ st+4 ⊕ βst

where α = 0XE382 and β = 0X67C3.

The nonlinear filter. If the shift register output is given by the sequence (st),
then the nonlinear filter (NLF) used by SOBER-t16 is given by

vt = ((f(st + st+16) + st+1 + st+6)⊕K) + st+13

where
f(a) = S(ā)⊕ (a− ā)

and ā denotes the 8 most significant bits of a, so a − ā is the 8 least significant
bits of a. The value K is a 16-bit key-dependent constant initialised by the key
loading and S is an 8-bit to 16-bit substitution box specified in the submission.

The stuttering. This pair of shift register and nonlinear filter are stuttered as
follows. The first output word v1 of the nonlinear filter is the first ‘stutter control
word’ and is partitioned into 8 pairs of bits. Starting with the least significant
pair, these pairs determine the stuttering according to the table below, where
C = 0X6996, and ∼ C is the bitwise complement of C. When all the pairs have
been used, the shift register is clocked and the output of the nonlinear filter
becomes the next stutter control word. This procedure is repeated until sufficient
keystream has been produced.
00 Clock LFSR.
01 Clock LFSR. Output XOR of C with NLF output to the keystream. Clock LFSR.
10 Clock LFSR twice. Output the NLF output to the keystream.
11 Clock LFSR. Output XOR of ∼ C with NLF output to the keystream.

Key loading and rekeying. The 17 states r1, . . . , r17 of the shift register are
set to the first 17 Fibonacci numbers. The key loading uses two operations: the
‘Include’ operation and the ‘Diffuse’ operation. The Include operation consists
of adding a given word to r15 modulo 216. The Diffuse operation consists of
clocking the shift register and replacing r4 with the XOR of r4 with the nonlinear
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filter output. To load the key, the Include operation is applied with each key
word in turn, with each Include being followed by the Diffuse operation. When
this has been completed, the Include operation is then performed using the key
length as input and the Diffuse operation is applied 17 times. The shift register
is then clocked and K set to the nonlinear filter output.

It is also possible to rekey the cipher by using a public ‘frame key’. This is
done by loading the frame key after the secret key in the same manner.
3.4.3.2 Observations on SOBER-t16

We first consider a simplified version of SOBER-t16 in which the stuttering
is not used. Ekdahl and Johansson [215] have found a distinguishing attack
on this unstuttered SOBER-t16, which we now briefly describe. Let wt =
vt ⊕ st ⊕ st+1 ⊕ st+6 ⊕ st+16 ⊕ st+13 and Wt = wt+17 ⊕ αwt+15 ⊕ wt+4 ⊕ βwt.
Then Wt = zt+17⊕αzt+15⊕ zt+4⊕ βzt so we can obtain the sequence (Wt) from
the keystream. The distribution of wt (for fixed K) can be estimated by simu-
lation and is non-uniform for all the values of K for which this has been done.
The error in the distribution obtained this way can also be estimated. We can
then use this distribution to calculate the distribution of Wt (for fixed K). The
Neyman-Pearson lemma then tells us that (in the worst case scenario) we need
292 keystream words to distinguish between keystream from the cipher and a
random keystream with probability of error 2−32. The computational complexity
of this distinguishing attack is 292.

Ekdahl and Johansson [215] have also found a distinguishing attack on
SOBER-t16 (including stuttering). Let E be the event that if zn = Co ⊕ vt
then zn+2 = C1 ⊕ vt+4, zn+7 = C2 ⊕ vt+15 and zn+8 = C3 ⊕ vt+17, where
C1, C2, C3 ∈ {C,∼ C, 0}. We can calculate the most probable position in the
keystream for each of (vt, vt+4, vt+15, vt+17) so we can show that E happens with
probability 2−5.5. Let W ′

t = Wt ⊕C3 ⊕ αC2 ⊕C1 ⊕ βC0. If the event E happens,
then W ′

t = zn+8 ⊕ αzn+7 ⊕ zn+2 ⊕ βzn so we can calculate the sequence (W ′
t )

from the keystream. If we assume that the distribution is uniform when E does
not occur, then we can calculate the distribution of W ′

t . The Neyman-Pearson
lemma then tells us that we need 2111 keystream words to distinguish between
keystream from the cipher and a random keystream with probability of error
2−32. The computational complexity of this distinguishing attack is 2111.

Pyka [534] has independently found a bias in each bit of wt (other than the
0th, 1st, 2nd and 4th bits) when K = 0. For K 6= 0 the correlations change
their values depending on the bits of K. He also pointed out that for unstuttered
SOBER-t16, the distribution of wt for a given K can be calculated precisely,
since the bias of f(st + st+16) ⊕ st ⊕ st+16 can be determined by looking at all
the possibilities for st and st+16. The bias of each bit can then be determined by
looking at the probabilities of the carry values.

Besides those attacks, SOBER-t16 is vulnerable to timing attacks and power
attacks due to its irregular decimation [289].
3.4.3.3 Comments from the submitters

The submitters have made some comments on the relevance of these results about
SOBER-t16 and about the results about SOBER-t32, discussed below. These
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comments are briefly summarised in Section 3.4.4.3, in the discussion of SOBER-
t32.

3.4.3.4 Conclusions

There is a distinguishing attack on SOBER-t16, as well as a much faster one on
the unstuttered version of SOBER-t16. The nonlinear filter also exhibits signifi-
cant biases. Furthermore, SOBER-t16 is vulnerable to timing and power attacks.

3.4.4 SOBER-t32

SOBER-t32 is a synchronous stream cipher designed by Philip Hawkes and Greg
Rose [289] and submitted to the NESSIE project. SOBER-t32 uses a 256-bit key
and has an internal memory of 544 bits. SOBER-t32 allows rekeying with an
initialization vector. Hawkes and Rose also submitted SOBER-t16 to NESSIE, a
similar stream cipher but with a 128-bit key (see Section 3.4.3).

3.4.4.1 Description of SOBER-t32

SOBER-t32 is based on an LSFR of length 17 over the field GF (232). This LFSR
is ‘stuttered’ as described below. We represent elements of this field with 232

elements by 32-bit binary vectors corresponding to polynomials modulo the irre-
ducible polynomial

x32 + (x24 + x16 + x8 + 1)(x6 + x5 + x2 + 1).

We denote addition in GF (232) by the symbol ⊕, addition modulo 232 by the
symbol + and the ith bit of the element x in the field by x[i].

The linear feedback shift register. SOBER-t32 uses an LFSR of length 17
over GF (232) given by the recurrence relation

st+17 = st+15 ⊕ st+4 ⊕ αst

where α = 0XC2DB2AA3.

The nonlinear filter. If the shift register output is given by the sequence (st),
then the nonlinear filter (NLF) used by SOBER-t32 is given by

vt = ((f(st + st+16) + st+1 + st+6)⊕K) + st+13

where
f(a) = S(ā)⊕ (a− ā)

and ā denotes the 8 most significant bits of a, so a− ā is the 24 least significant
bits of a. The value K is a 32-bit key-dependent constant initialised by the key
loading and S is an 8-bit to 32-bit substitution box specified in the submission.
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The stuttering. This pair of shift register and nonlinear filter are stuttered as
follows. The first output word v1 of the nonlinear filter is the first ‘stutter control
word’ and is partitioned into 16 pairs of bits. Starting with the least significant
pair, these pairs determine the stuttering according to the table below, where
C = 0X6996C53A, and ∼ C is the bitwise complement of C. When all the pairs
have been used, the shift register is clocked and the output of the nonlinear filter
becomes the next stutter control word. This procedure is repeated until sufficient
keystream has been produced.
00 Clock LFSR.
01 Clock LFSR. Output XOR of C with NLF output to the keystream. Clock LFSR.
10 Clock LFSR twice. Output the NLF output to the keystream.
11 Clock LFSR. Output XOR of ∼ C with NLF output to the keystream.

Key loading and rekeying. The 17 states r1, . . . , r17 of the shift register are
set to the first 17 Fibonacci numbers. The key loading uses two operations: the
‘Include’ operation and the ‘Diffuse’ operation. The Include operation consists
of adding a given word to r15 modulo 232. The Diffuse operation consists of
clocking the shift register and replacing r4 with the XOR of r4 with the nonlinear
filter output. To load the key, the Include operation is applied with each key
word in turn, with each Include being followed by the Diffuse operation. When
this has been completed, the Include operation is then performed using the key
length as input and the Diffuse operation is applied 17 times. The shift register
is then clocked and K set to the nonlinear filter output. It is also possible to
rekey the cipher by using a public ‘frame key’. This is done by loading the frame
key after the secret key in the same manner.
3.4.4.2 Observations on SOBER-t32

We first consider a simplified version of SOBER-t32 in which the stuttering is
not used. Ekdahl and Johansson [215] have found a distinguishing attack on this
unstuttered version of SOBER-t32, which we now briefly describe. Let wt = vt⊕
st⊕st+1⊕st+6⊕st+16⊕st+13 (as for SOBER-t16). Although we cannot estimate
the distribution of wt, we can estimate the distribution of wt[i]⊕wt[i−1] for each
i by simulation. It can be shown that st+τ5⊕st+τ4⊕st+τ3⊕st+τ2⊕st+τ1⊕st = 0
where τ1 = 11, τ2 = 13, τ3 = 4 · 232 − 4, τ4 = 15 · 232 − 4, τ5 = 7 · 232 − 4.
Thus if we let Zt = wt+τ5 ⊕ wt+τ4 ⊕ wt+τ3 ⊕ wt+τ2 ⊕ wt+τ1 ⊕ wt then Zt =
zt+τ5 ⊕ zt+τ4 ⊕ zt+τ3 ⊕ zt+τ2 ⊕ zt+τ1 ⊕ zt so the sequence (Zt) can be calculated
from the keystream. Since we know the distribution of wt[i]⊕ wt[i− 1] for each
value of i, we can calculate the distribution of Zt[i]⊕Zt[i−1]. For certain values of
i this has bias 2−40.5. The Neyman-Pearson lemma then tells us that (in the worst
case scenario) we need 286.5 keystream words to distinguish between keystream
from the cipher and a random keystream with probability of error 2−32. The
computational complexity of this distinguishing attack is 286.5.

De Cannière, Lano, Preneel and Vandewalle [189] enhanced the attack de-
scribed in [215] by adapting the attack on SOBER-t16 so that it works for
SOBER-t32. This attack results in a distinguishing attack on full SOBER-t32
of complexity 2153.

The designers of SOBER-t32 describe a guess-and-determine attack on un-
stuttered SOBER-t32 with complexity 2320 [289]. This attack is extended by de
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Cannière to improve the complexity to 2304 [188]. The unstuttered version of
SOBER-t32 may also be analysed by noting that the 8 most significant bits of ā
determine the 8 most significant bits of f(a). Babbage and Lano [30] also describe
a guess-and-determine attack based on this observation on unstuttered SOBER-
t32 with complexity 2244 and also indicate that their approach might be adapted
to SOBER-t32 by using timing information to find an unstuttered part of the
keystream that their approach requires.

The observation that the 8 most significant bits of f(a) are determined solely
by the 8 most significant bits of ā is also the basis of some comments about the
nonlinear filter function. This results in poor diffusion properties for the nonlinear
filter, as the only means of diffusion of the 24 least significant bits of the input is
by carry propagation. However, long carry chains only occur with low probability.
In particular Dichtl and Schafheutle [199] specify a sum of bits from the initial
state of the shift register that remains constant with very high probability when
the last key bit is inverted. They have also identified other such sums that remain
constant for inversion of each of the 11 least significant key bits of the last key
word and for each of 8 of the 9 least significant bits of the second to last key
word. For more significant positions, carry propagation seems to be sufficiently
high to destroy such linearity properties. This property of the key loading could
be destroyed by increasing the number of Diffuse steps. Similarly, they show
that there is a correlation between the initial states derived from different frame
keys but the same key. In particular, they give a sum of bits of the initial state
that does not change with very high probability if the least significant bit of
the last key frame word is inverted. As the frame key is a binary counter this is
particularly relevant.

Besides those attacks, SOBER-t32 is vulnerable to timing attacks and power
attacks owing to its irregular decimation [289].

3.4.4.3 Comments from the submitters

The submitters have made some comments on the relevance of these results,
which also apply to SOBER-t16. These comments are briefly summarised here.

– There is a distinguishing attack on the unstuttered version of SOBER-t32.
The submitters in their comments state that irregular stuttering is an essential
part of the security of SOBER. However, the NESSIE project believes that
the original SOBER submissions clearly state the SOBER stream ciphers are
secure without the stuttering.

– The submitters question the rejection of a cipher based solely on distinguishing
attacks based on large known plaintext, which is faster than exhaustive key
search [291]. The submitters argue that there are many stream ciphers in use
for which distinguishing attacks exist (such as a block cipher used in a standard
mode that gives a stream cipher) and that the distinguishing attacks presented
for the SOBER ciphers do not yield any information about the state, so do not
translate into key recovery or prediction attacks.



Dra
ft

Apr
il
19

, 2
00

4

3. Stream ciphers and PRNG — 3.5 Phase I-only stream ciphers 167

3.4.4.4 NESSIE response to the comments from the submitters

– Distinguishing attacks on full SOBER-t16 and SOBER-t32 have been found
since the comments from the submitters were received.

– Distinguishing attacks do not currently give a method for determining the
keystream for SOBER-t16 and SOBER-t32. However, the NESSIE consortium
believes that the SOBER distinguishing attacks mean that a recommendation
is inadvisable.

– The SOBER design raises other security issues not discussed by the submitters.

3.4.4.5 SOBER-t32 Conclusions

There are distinguishing and guess-and-determine attacks on the unstuttered ver-
sion of SOBER-t32, and recently distinguishing attacks for full SOBER-t32 have
been found. For the guess-and-determine attack there are reasons for believing
that it could be extended to SOBER-t32. The nonlinear filter exhibits poor diffu-
sion and has significant biases. Furthermore, SOBER-t32 is vulnerable to timing
and power attacks.

3.5 Stream cipher primitives not selected for Phase II

3.5.1 LEVIATHAN

LEVIATHAN is a synchronous additive stream cipher submitted by Cisco and de-
signed so that it can efficiently find arbitrary locations in the keystream. Though
LEVIATHAN may work with arbitrary output size and an arbitrary number of
key bytes, owing to standardization the key should be either 128 bits or 256 bits
and the output size should be 32 bits. It was submitted to NESSIE, but not
considered during Phase II of the project.

3.5.1.1 Design

The key scheduling. Let K[i] be the ith byte of the key of length m bytes,
and let j ∈ {0, 1, 2, 3}. We define a sequence (kr) of integers modulo 256 and a
sequence (πr) of byte permutations (i.e. permutations of the set {0, . . . , 255}) as
follows.

Let π0 be the identity permutation, and k0 = j. For r 6= 257 let

kr+1 = kr +K[i mod m] + πr(r mod 256) mod 256.

If r = 257, define k257 = j+ k1 +K[i mod m] +π256(0 mod 256). The permu-
tations (πr) are updated as follows:

πr+1(i) =


πr(kr+1) if i = r mod 256
πr(r) if i = kr+1

πr(i) else
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We then let σj = π512. So to define σj , we are repeating a loop twice in which
we take a permutation and then swap certain pairs of images of elements under
the permutation to obtain a new permutation.

Finally we define byte permutations S0 = σ3, S1 = σ2σ3, S2 = σ1σ2σ3 and
S3 = σ0σ1σ2σ3.

The key stream generation. LEVIATHAN is defined by a set of binary tree
structures of height 16. Each node of each tree is associated with a triple of words
(each of four bytes) z|y|x. The triple at the root of the jth tree is 1|0|j/216. Key-
dependent functions a and b map the triple s at a node to a triple at each of
its two descendants, so that its lefthand descendant is a(s) while its righthand
descendant is b(s), where a(s) in the kth level is chosen, if the kth bit of j is zero.
Otherwise b(s) is chosen.

We apply a function c to the triple at each leaf of each tree to give a word
and use the words thus obtained as the keystream.

The functions a, b and c are defined as follows:

f(z|y|x) = 2z|SRSRy|LSLSx
g(z|y|x) = 2z + 1|LSLSy|SRSR(x̄)
d(z|y|x) = z|x+ y + z|2x+ y + z

c(z|y|x) = x⊕ y
a = f ◦ d
b = g ◦ d

where L and R denote rotation left and right respectively by one byte, x̄ denotes
the complement of x and S denotes a key-dependent S-box given below.

The permutation S is defined as follows. Let the word y consist of the bytes
y0, y1, y2 and y3. Then the image of y under S is defined by

y0 7→ S0(y0)
y1 7→ y1 ⊕ S1(y0)
y2 7→ y2 ⊕ S2(y0)
y3 7→ y3 ⊕ S3(y0)

where the byte permutations S0, S1, S2 and S3 are defined in the key scheduling.

3.5.1.2 Security analysis

There is a distinguishing attack on LEVIATHAN faster than exhaustive key
search [172]. It shows, that the probability of a collision in 64 bit output words is
doubled compared to a random function. Hence LEVIATHAN was not selected
for further study in phase II.
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3.5.2 LILI-128

LILI-128
is a synchronous stream cipher designed by Ed Dawson and submitted to the
NESSIE project. It uses a 128-bit key and an internal memory of 128 bits.
LILI-128 was not considered during Phase II of the project.

3.5.2.1 Design

LILI-128
consists of two components, one used for clock control and the other for data
generation. Each component consists of an LFSR (LFSRc and LFSRd) and a
function f (fc and fd) tapping the LFSRs. LILI-128 can be viewed as a clock-
controlled nonlinear filter generator.

The key scheduling. During key scheduling the 128 key bits are loaded directly
into the LFSRs. The first 39 key bits are loaded into LFSRc, and the last 89 key
bits into LFSRd. Neither LFSRc nor LFSRd may be zero.

The clock control component. The clock control component consists of the
regularly clocked LFSRc of length 39 and the function fc. The feedback poyno-
mial of LFSRc is

x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1

and it produces a maximum length sequence.
LFSRc is clocked once, then the function fc takes the contents of the stages

12 and 20 as input and produces an output integer by

c = fc(x12, x20) = 2x12 + x20 + 1.

The data generation component. LFSRd of length 89 produces a maximum
length sequence. Its feedback polynomial is

x89 + x83 + x80 + x55 + x53 + x42 + x39 + x+ 1.

After the clock control component has produced the integer c, LFSRd is
clocked c times. The nonlinear function fd defined by a truth table takes the
content of 10 stages of LFSRd as input and calculates an output bit. This output
bit is taken as the new keystream bit.

3.5.2.2 Security analysis

The key of LILI-128 can be recovered faster than exhaustive key by several kinds
of time-memory tradoff attacks [28,552] or a fast correlation attack [321]. The last
attack has a complexity around 271 bit operations assuming a received sequence
of length around 230 bits and a precomputation phase of complexity 279 table
lookups. Hence LILI-128 was not selected for further study in phase II.



Dra
ft

Apr
il
19

, 2
00

4

170 Book II. Evaluation — Part B. Security evaluation

3.5.3 RC4

RC4 is the de facto standard for stream ciphers (see [542] for a detailed de-
scription). The second output byte of RC4 can be easily distinguished from a
random one [415]. Although this can be easily overcome, the keystream still can
be distinguished from a random output [233] and the key schedule has severe
weaknesses [232]. There is also no form of rekeying defined for RC4. Therefore
RC4 was not considered by NESSIE.
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4. Hash functions

4.1 Introduction

Hash functions are used as a building block in various cryptographic applications.
The most important uses are in the protection of information authentication and
as a tool for digital signature schemes (see Chapter 7). A hash function is a
function that maps an input of arbitrary length into a fixed number of output
bits, the hash value. In order to be useful for cryptographic applications, a hash
function needs to satisfy some additional requirements. Hash functions can be
further divided into one-way hash functions and collision-resistant hash functions.
We informally give the conditions we require of these different types:

– A one-way hash function should be preimage and second preimage resistant,
that is, it should be ‘hard’ to find a message with a given hash value (preimage)
and it should be ‘hard’ to find a message that hashes to the same value as a
given message (second preimage).

– A collision-resistant hash function is a one-way hash function for which
it is ‘hard’ to find two distinct messages that hash to the same value.

In some applications additional properties may be required for a hash func-
tion, for example pseudo-randomness of the generated output. Note that, in con-
trast to other cryptographic primitives, the computation of a hash function does
not depend on any secret information.

Before presenting a detailed analysis of the hash functions studied by the
NESSIE project, we first discuss the security requirements and give an overview
of common designs and current standards. For a more comprehensive overview
of cryptographic primitives for information authentication (including hash func-
tions) we refer to the treatment by Preneel in [530].

4.2 Security requirements

In this section we give practical and formal definitions for one-way and collision-
resistant hash functions and describe the general model of an iterated hash func-
tion. We then discuss different types of attacks on hash functions and describe
the assessment process followed by the project.

0 Coordinator for this chapter: KUL — Bart Van Rompay
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4.2.1 Security model

The following informal definitions for one-way and collision-resistant hash func-
tions were given by Preneel in [530].

A one-way hash function is a function h satisfying the following conditions:

1. The argument X can be of arbitrary length and the result h(X) has a fixed
length of n bits.

2. The hash function must be one-way in the sense that given a Y in the image of
h, it is ‘hard’ to find a message X such that h(X) = Y (preimage-resistance)
and given X and h(X) it is ‘hard’ to find a message X ′ 6= X such that
h(X ′) = h(X) (second preimage-resistance).

A collision-resistant hash function is a function h satisfying the following
conditions:

1. The argument X can be of arbitrary length and the result h(X) has a fixed
length of n bits.

2. The hash function must be one-way, i.e., preimage-resistant and second
preimage-resistant.

3. The hash function must be collision-resistant: this means that it is ‘hard’ to
find two distinct messages that hash to the same result (i.e., find X and X ′

(X ′ 6= X) such that h(X) = h(X ′)).

Note that if an attacker can find a second preimage, he can also find a collision.
Therefore the second preimage condition in this definition is redundant. However,
preimage-resistance is not always implied by collision resistance.

Most hash functions are iterated constructions, in the sense that they are
based on a compression function with fixed size inputs; they process every message
block in a similar way. The input X is padded by an unambiguous padding rule
to a multiple of the block size. Typically this also includes adding the total length
in bits of the input. The padded input is then divided into t blocks denoted X1

through Xt. The hash function involves a compression function f and a chaining
variable Hi between stage i− 1 and stage i:

H0 = IV ,

Hi = f(Hi−1, Xi) , 1 ≤ i ≤ t ,
h(X) = g(Ht) .

Here IV denotes the Initial Value (a constant which should be defined as part
of the description of the hash function) and g denotes the (optional) output
transformation. A collision-resistant compression function can be extended to a
collision-resistant hash function taking arbitrary length inputs. For a detailed
discussion on the relation between a compression function and a hash function
that is built from it, we refer to [530].
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4.2.1.1 Formal definitions

Before discussing security aspects we first give more precise definitions of a hash
function and its cryptographic properties. The following formal definitions for
a hash function, a compression function and an iterated hash construction are
similar to those given by Black et al. in [93].

Definition 4.1. A hash function is a function h : D → R where the domain
D = {0, 1}∗ and the range R = {0, 1}n for some n ≥ 1.

Definition 4.2. A compression function is a function f : D → R where
D = {0, 1}a × {0, 1}b and R = {0, 1}n for some a, b, n ≥ 1 with a+ b ≥ n.

Definition 4.3. The iterated hash of the compression function f : ({0, 1}n ×
{0, 1}b) → {0, 1}n is the hash function h : ({0, 1}b)∗ → {0, 1}n defined by
h(X1 . . . Xt) = Ht where Hi = f(Hi−1, Xi) for 1 ≤ i ≤ t (set H0 = IV ).

The following definitions for (second) preimage-resistance and for collision-
resistance were given by Brown in [126]. These definitions are somewhat simpli-
fied because we consider a fixed hash function rather than a family of hash func-
tions. Therefore our assumptions, particularly the assumption about collision-
resistance, are stronger than the usual assumptions for families of hash functions.

Definition 4.4 (Preimage-resistance). A hash function h : {0, 1}∗ → R is
preimage-resistant of strength (t, ε) if there exists no probabilistic algorithm Ih
that accepts input Y ∈R R and outputs a value X ∈ {0, 1}∗ in running time at
most t, where h(X) = Y with probability at least ε, assessed over the random
choices of both Y and Ih.

Definition 4.5 (Second preimage-resistance). Let S be a finite subset of
{0, 1}∗. A hash function h : {0, 1}∗ → R is second preimage-resistant of strength
(t, ε,S) if there exists no probabilistic algorithm Sh that accepts input X ∈R S
and outputs a value X ′ ∈ {0, 1}∗ in running time at most t, where X ′ 6= X and
h(X ′) = h(X) with probability at least ε, assessed over the random choices of both
X and Sh.

Note: One can define a stronger notion of (second) preimage resistance, where
the value Y ∈ R (or the value X ∈ S) is a fixed point rather than a random
point, and where one maximises over all such points.

Definition 4.6 (Collision-resistance). A hash function h : {0, 1}∗ → R is
collision-resistant of strength (t, ε) if no probabilistic algorithm Ch is known that
outputs values X,X ′ ∈ {0, 1}∗ in running time at most t, where X ′ 6= X and
h(X) = h(X ′) with probability at least ε, assessed over the random choices of Ch.

Note: Since {0, 1}∗ is infinite andR is finite, collisions for h do exist. And since Ch
has no input, there exists a very efficient algorithm, namely one that immediately
outputs (X,X ′) for some fixed collision. Nevertheless, for a good hash function
with R = {0, 1}n, the best collision-finding algorithm known with high success
probability should have a running time of about 2n/2 (see Sect. 4.2.2).
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4.2.2 Classification of attacks

For one-way and collision-resistant hash functions the computation of the function
does not involve any secret information. Hence, it is not meaningful to distinguish
attacks depending on the information available to an attacker. The goal of the
attacker is to find a preimage or second preimage for the hash function, or to
generate a collision. Collision-resistance is not required in all applications (the
most important case where it is required is in conjunction with digital signatures),
which is the reason for the separate category of one-way hash functions. Also it
can be noted that some attacks find a preimage or collision only for random
messages, while others leave the attacker enough freedom to choose (part of) the
messages.

Note that the security of a hash function can be examined through analysis
of its compression function. A collision-resistant compression function can be
extended to a collision-resistant hash function taking arbitrary length inputs. On
the other hand, attacks on the compression function do not necessarily mean
attacks on the hash function: an attack that finds preimages or collisions for f
with chosen Hi−1 leads to an attack on h, but an attack that finds preimages or
collisions for f with a random Hi−1 does not yield an attack on h (unless when
the IV can be changed). Another example is an attack that finds collisions for
the compression function where the initial chaining value is not the same for both
messages (Hi−1 6= H ′

i−1). Attacks on the compression function which cannot be
extended are seen as certificational weaknesses of the hash function involved.

We now briefly describe the best known attacks on hash functions as in [530].

Random (Second) Preimage Attack

This attack can be applied to any hash function and depends only on the size n
in bits of the hash result. An attacker simply selects a random message and hopes
that a given hash result occurs. If the hash function has the required “random”
behaviour, his probability of success equals 1/2n. This attack can be carried out
off-line and in parallel. It is expected that a (second) preimage can be found in
approximately 2n operations.

Birthday Attack

This attack can be applied to any hash function and depends only on the size n in
bits of the hash result. The birthday paradox states that for a group of 23 people,
the probability that at least two people have a common birthday exceeds 1/2.
Intuitively one expects that the probability is much lower. This can be exploited
to find collisions for a hash function in the following way: an adversary generates
r1 variations on a bogus message and r2 variations on a genuine message. The
expected number of collisions equals r1 ·r2/2n. The probability of finding a bogus
message and a genuine message that hash to the same result is given by 1 −
exp(−r1·r2/2n), which is about 63% when r = r1 = r2 = 2

n
2 . Finding the collision

does not require r2 operations: after sorting the data, which requires O(r log r)
operations, comparison is easy. One can reduce the memory requirements for



Dra
ft

Apr
il
19

, 2
00

4

4. Hash functions — 4.2 Security requirements 175

collision search by translating the problem to the detection of a cycle in an
iterated mapping.

Meet-in-the-Middle Attack

This attack — as well as the attacks described below — depends on some prop-
erties of the compression function. It is a variation on the birthday attack, but
instead of comparing the hash result, one compares intermediate chaining vari-
ables. If the attack can be applied to a hash function, it enables an adversary to
construct a (second) preimage, which is not possible for a simple birthday attack.
The opponent generates r1 variations on the first part of a bogus message and r2
variations on the last part. Starting from the initial value and going backwards
from the hash result, the probability for a matching intermediate variable is again
given by 1−exp(−r1 ·r2/2n). The cycle finding algorithm can be used to perform
a meet-in-the-middle attack with negligible storage.

Correcting Block Attack

This attack consists of substituting all blocks of the message except for one or
more blocks. For a (second) preimage attack, one chooses an arbitrary message
X and finds one or more correcting blocks Y such that h(X‖Y ) takes a certain
value. For a collision attack, one starts with two arbitrary messages X and X ′

and appends one or more correcting blocks denoted with Y and Y ′, such that
the extended messages X‖Y and X ′‖Y ′ have the same hash result.

Fixed Point Attack

The idea of this attack is to look for aHi−1 andXi such that f(Hi−1, Xi) = Hi−1.
If the chaining variable is equal to Hi−1, it is possible to insert an arbitrary
number of blocks equal to Xi without modifying the hash result. Producing
collisions or a second preimage with this attack is only possible if the chaining
variable can be made equal to Hi−1: this is the case if IV can be chosen equal
to a specific value, or if a large number of fixed points can be constructed (i.e., if
one can find an Xi for a significant fraction of Hi−1’s). Of course this attack can
be extended to fixed points that occur after more than one iteration.

Differential Attacks

Differential cryptanalysis [78] is a powerful tool for the analysis of not only block
ciphers (see Chapter 2) but also of hash functions. This attack method exam-
ines input differences to a compression function and the corresponding output
differences. A collision is obtained if the output difference is zero.

Analytical Weaknesses

A large number of attacks have been based on blocking the diffusion of the data
input to the hash function: this means that changes have no effect or can be
cancelled out easily in a next stage. Among the most remarkable attacks in this
class are the attacks developed by Dobbertin on the MDx-family [204,205]. They
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combine conventional optimisation techniques (simulated annealing, genetic al-
gorithms) with conventional cryptanalytic techniques. Another property of these
attacks is that differences are only controlled in certain points of the algorithms;
this in contrast to differential cryptanalysis, where typically all intermediate dif-
ferences are controlled to a certain extent.

Side-Channel Attacks

Side-channel attacks are a major threat for all implementations of cryptographic
algorithms. Hash functions are only vulnerable to this type of attack when part
of the input to the function is secret, for example when a hash function is used in
a construction for a message authentication code (MAC) as described in Chap-
ter 5, or when it is used in a key derivation function (KDF) as described in
Chapter 6. In such a case side-channel attacks on hash functions are similar as
for other symmetric primitives. For a detailed discussion on side-channel attacks
and countermeasures that can be applied to protect an implementation we refer
to Annex A.

4.2.3 Assessment process

The hash function submissions were assessed with reference to the above generic
common hash function attacks and by specific attacks when appropriate. Sta-
tistical analysis was carried out for various input lengths. Hash functions were
submitted to the dependence test and linear factors test described in Sect. 2.2.4.
If the NESSIE submissions were based on compression functions, these were also
submitted to the two tests. Furthermore the stream cipher tests described in
Sect. 2.2.4 were also applied to the hashes both in output feedback and counter
mode. None of the hash functions tested exhibited any anomalous behaviour.

4.3 Overview of the common designs

In this section we give an overview of those hash functions which are most com-
monly used in practice today. Most known hash functions are iterated construc-
tions that are based on a compression function with fixed size input. Sometimes,
this compression function is based on a block cipher or on modular arithmetic; in
other cases it is built from scratch specifically for the purpose of hashing. We con-
clude the section with a summary of the procedures which have been undertaken
by several organisations for the standardisation of hash functions.

4.3.1 Hash functions based on block ciphers

In systems where a block cipher implementation is already available, a hash func-
tion can be obtained at little extra cost (in design, evaluation and implementa-
tion) by constructing it from the underlying block cipher. A disadvantage is that
these hash functions are usually slower than the dedicated proposals (especially
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when the block cipher used has a slow key schedule). Furthermore, the use of a
block cipher in a different context may reveal weaknesses which are not relevant
to encryption (it is still an open problem which requirements for a block cipher
are sufficient in order to produce a secure hash function).

Most block cipher based hash functions belong to one of two classes: those
producing a hash value of single block length and those producing a hash value
of double block length. In case the AES (Advanced Encryption Standard, see
Chapter 2) is used as underlying block cipher, the resulting output lengths of
these hash function classes are 128 and 256 bits respectively. Another relevant
characteristic is the rate of the hash function, which is equal to the number of
blocks that are hashed for each computation of the encryption function.

There are several single block length hash functions of rate 1 with provable
black-box security (assuming the underlying block cipher satisfies the required
randomness properties). Two dual constructions are those attributed to Matyas-
Meyer-Oseas and Davies-Meyer. In each step of the iteration the previous value of
the chaining variable (Hi−1) and the message block to be processed (Xi) serve as
key and plaintext of the encryption function (or vice versa), and there is an extra
feed-forward with the purpose of making the compression function uninvertible.
For a block cipher EK(X) (with keyK and plaintextX) the compression function
of the two constructions is as follows:

– Matyas-Meyer-Oseas: Hi = Eg(Hi−1)(Xi)⊕Xi ,
– Davies-Meyer: Hi = EXi

(Hi−1)⊕Hi−1 .

Here g is a function that maps Hi−1 to a key suitable for E. The Miyaguchi-
Preneel hashing scheme is a variation on Matyas-Meyer-Oseas, where the only
difference is that the output Hi−1 from the previous stage is also XORed to that
of the current stage.

– Miyaguchi-Preneel: Hi = Eg(Hi−1)(Xi)⊕Xi ⊕Hi−1 .

The most common double block length hash functions are MDC-2 and MDC-4
with a rate of respectively 1/2 and 1/4 (all proposed schemes with rate 1 have
been broken [364]). MDC-2 requires two parallel block encryptions in each itera-
tion step, and the compression function of MDC-4 has two sequential executions
of the MDC-2 compression function. The level of security of these two schemes
is less than suggested by the output size.

The Matyas-Meyer-Oseas scheme and MDC-2 are included in ISO/IEC 10118-
2 [305], a standard for hash functions using an (unspecified) block cipher. The
NESSIE submission Whirlpool (see Sect. 4.4.1) is based on the Miyaguchi-
Preneel hashing mode of an internal block cipher.

4.3.2 Hash functions based on modular arithmetic

A hash function can also use modular arithmetic as the basis of its compression
function, allowing the re-use of existing implementations of modular arithmetic
(such as in public-key systems). The biggest disadvantage is the low speed of these
constructions (especially compared to dedicated hash functions). Many of the
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proposals which use modular arithmetic have been broken. The experience with
these attacks has led to the design of the MASH-1 and MASH-2 hash functions.

The compression function of MASH-1 is based on a modular squaring op-
eration, where the modulus M is chosen as a composite of sufficient bitlength
m (making it infeasible to factor M). The message block input Xi is first ex-
panded with redundancy bits to a block Yi of double length. The block Yi is then
added bitwise to the previous value of the chaining variable Hi−1 (both Yi and
Hi−1 have bitlength n, chosen as the largest multiple of 16 less than m). After
the squaring operation a feed-forward is applied with Hi−1. This results in the
following equation for the compression function:

Hi = ((((Hi−1 ⊕ Yi) ∨A)2 mod M) a n)⊕Hi−1 ,

where A is a constant forcing the four most significant bits to 1, prior to squaring;
and a n denotes truncation of the result of the squaring operation to the n least
significant bits.

The security of this construction depends in part on the difficulty of extracting
modular roots (for a composite of unknown factorisation). The redundancy bits
are vital as well, resulting in the following security level: matching a given hash
value requires 2n/2 operations; finding a collision requires n× 2n/4 operations.

MASH-2 is a variant of MASH-1, the only difference is that it uses a modular
exponentiation with exponent e = 28 + 1 (instead of modular squaring with
e = 2). Both MASH-1 and MASH-2 are included in ISO/IEC 10118-4 [307], a
standard for hash functions using modular arithmetic. This standard also defines
an additional output transformation that must be used to reduce the length of
the hash value to n/2 bits or less.

4.3.3 Dedicated hash functions

Dedicated hash functions are functions specifically designed for the purpose of
hashing, with optimised performance in mind. The hash functions of this class
which have received the most attention are those based on the design of the MD4
algorithm. While MD4, which dates from 1990, has been broken with respect
to collision-resistance, the algorithms derived from it have benefited from the
experience gained with the cryptanalysis of this type of hash functions.

The MD4-based algorithms generally divide the message block Xi and the
chaining variable Hi−1 in words of 32 bits (or 64 bits for some of the new pro-
posals). The compression function updates the chaining variable to a new value
Hi, making use of the current message block. The computation is divided into a
number of sequential steps, where each step updates the value of one register —
containing one word of the chaining variable — applying one message word (and
depending on the other registers). The compression function can also be divided
into a number of rounds, where in general each round uses all words from the
message block exactly once.

As an example we describe the step operation of MD4, which is of the following
form:
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A = (A+ f(B,C,D) +X[j] + y)<<s[j] .

Here (A,B,C,D) are the registers containing the four 32-bit words of the chaining
variable. The notation + means addition modulo 232 and (·)<<s means bitwise
rotation (circular shift) over s positions to the left. f is a non-linear function
working at bit level, X[j] is the message word applied in step j, y an addi-
tive constant and s[j] a rotation constant. The function f and constant y differ
in different rounds (MD4 has three rounds using the multiplexer, majority and
exclusive-or functions), as does the ordering in which the message words are
applied throughout the steps of one round.

The step operations are reversible (one can calculate backwards easily), but
at the end of the compression function there is a feed-forward operation which
adds the initial value of the registers to their final value in order to compute
the chaining variable Hi. This makes the compression function uninvertible. The
chaining variable derived by the last application of the compression function
(which works on a message block with padding and length information) serves as
the result of the hash function.

Several algorithms have been derived from MD4, applying different ideas in
order to increase the security against preimage and collision attacks. These ideas
include the use of more rounds, slightly different step operations and longer chain-
ing variables (which also means a longer hash result). In particular, the SHA
family1 uses a procedure for expansion of the message block in order to calcu-
late a different word for every step (instead of just reordering the message words
between different rounds). The RIPEMD family uses two parallel lines of com-
putation consisting of modified versions of MD4. In Table 4.22 we summarise the
main differences between the different algorithms.

Table 4.22. Summary of selected MD4-based hash functions. All sizes are given in bits.
Note that for SHA-256, SHA-384 and SHA-512 there is no clear distinction in rounds.

Algorithm output size block size word size rounds × steps per round
MD4 128 512 32 3× 16
MD5 128 512 32 4× 16
RIPEMD-128 128 512 32 4× 16 twice (in parallel)
RIPEMD-160 160 512 32 5× 16 twice (in parallel)
SHA-1 160 512 32 4× 20
SHA-256 256 512 32 1× 64
SHA-384 384 1024 64 1× 80
SHA-512 512 1024 64 1× 80

4.3.4 Current standards

Several organisations have taken initiatives for the standardisation of hash func-
tions. The SHA-1 hash function is a U.S. government standard, developed by
NIST as Federal Information Processing Standard (FIPS) 180-1, and it can be
1 A detailed description of these hash functions is given in Sect. 4.4.2 and Sect. 4.4.3.



Dra
ft

Apr
il
19

, 2
00

4

180 Book II. Evaluation — Part B. Security evaluation

used in conjunction with the DSA standard for digital signatures. Recently NIST
has updated this standard to FIPS 180-2 [472] which includes, besides SHA-1,
also three new hash functions — SHA-256, SHA-384 and SHA-512 — with longer
output lengths (in order to match the security level of the new block cipher stan-
dard AES). ANSI has adopted hash functions in its public-key based banking
standards: standard X9.30 [19] specifies SHA-1 to be used in conjunction with
DSA; standard X9.31 [20] specifies MDC-2 to be used in conjunction with an
RSA-based signature scheme.

ISO/IEC has developed standard 10118 for hash functions, with separate
parts for different classes of hash functions. Part 10118-2 [305] details hash func-
tions based on block ciphers, more specifically the Matyas-Meyer-Oseas construc-
tion, a block cipher independent MDC-2 and two more functions producing a hash
value of double and triple block length respectively. Part 10118-3 [306] specifies
three dedicated algorithms: RIPEMD-128, RIPEMD-160 and SHA-1. This part
of the standard is currently being revised, with an ongoing assessment of new
cryptographic primitives to be adopted as ISO standards. Besides the original
three algorithms, the following hash functions are being considered: SHA-256,
SHA-384, SHA-512 and Whirlpool. Part 10118-4 [307] describes the MASH-1
and MASH-2 hash functions which use modular arithmetic.

4.4 Hash functions considered during Phase II

The Whirlpool algorithm was submitted to NESSIE and selected for study
during phase II of the NESSIE project. Furthermore, because they are standards
of NIST [472], and under discussion in ISO [306], the algorithms SHA-1 and
SHA-256, SHA-384 and SHA-512 were selected for study during NESSIE phase
II.

4.4.1 Whirlpool

Whirlpool is a hash function designed by Paulo Barreto and Vincent Rijmen
[38] and submitted to the NESSIE project as a (conjectured) collision-resistant
hash function. The algorithm is byte-oriented and operates on blocks of 512 bits,
producing a message digest (hash value) of 512 bits.

4.4.1.1 The design

The design of Whirlpool consists of the iterative application of a compression
function which is based on an underlying dedicated 512-bit block cipher that
uses a 512-bit key and runs in 10 rounds. In the following we first describe the
individual components that build up Whirlpool, and then specify the complete
hash function in terms of these components.

Input and output.
The hash state is internally viewed as a matrix inM8×8[GF(28)]. Therefore, 512-
bit data blocks (externally represented as byte arrays by sequentially grouping
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the bits in 8-bit chunks) must be mapped to and from this matrix format. This
is done by the function µ : GF(28)64 →M8×8[GF(28)] and its inverse:

µ(a) = b ⇔ bij = a8i+j , 0 6 i, j 6 7.

The nonlinear layer γ.
The function γ :M8×8[GF(28)] →M8×8[GF(28)] consists of the parallel appli-
cation of a nonlinear substitution box S : GF(28) → GF(28), x 7→ S[x] to all
bytes of the argument individually:

γ(a) = b⇔ bij = S[aij ], 0 6 i, j 6 7.

The substitution box proposed in the tweaked version of Whirlpool is dif-
ferent from the one proposed in the original version. It is built in a simple way
from smaller 4-bit substitution boxes. For its description we refer to the new
algorithm specification [38].

The cyclical permutation π.
The permutation π :M8×8[GF(28)] →M8×8[GF(28)] cyclically shifts each col-
umn of its argument independently, so that column j is shifted downwards by j
positions:

π(a) = b⇔ bij = a(i−j) mod 8,j , 0 6 i, j 6 7.

The purpose of π is to disperse the bytes of each row among all rows.

The linear diffusion layer θ.
The diffusion layer θ :M8×8[GF(28)]→M8×8[GF(28)] is a linear mapping based
on the [16, 8, 9] code with generator matrix GC = [I C] where

C =



01x 01x 03x 01x 05x 08x 09x 05x
05x 01x 01x 03x 01x 05x 08x 09x
09x 05x 01x 01x 03x 01x 05x 08x
08x 09x 05x 01x 01x 03x 01x 05x
05x 08x 09x 05x 01x 01x 03x 01x
01x 05x 08x 09x 05x 01x 01x 03x
03x 01x 05x 08x 09x 05x 01x 01x
01x 03x 01x 05x 08x 09x 05x 01x


,

so that θ(a) = b⇔ b = a ·C. The effect of θ is to mix the bytes in each state row.

The key addition σ[k].
The affine key addition σ[k] : M8×8[GF(28)] → M8×8[GF(28)] consists of the
bitwise addition (exor) of a key matrix k ∈M8×8[GF(28)]:

σ[k](a) = b⇔ bij = aij ⊕ kij , 0 6 i, j 6 7.

This mapping is also used to introduce round constants in the key schedule.
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The round constants cr.
The round constant for the r-th round, r > 0, is a matrix cr ∈ M8×8[GF(28)],
defined as:

cr0j ≡ S[8(r − 1) + j], 0 6 j 6 7,
crij ≡ 0, 1 6 i 6 7, 0 6 j 6 7.

The round function ρ[k].
The r-th round function is the composite mapping ρ[k] : M8×8[GF(28)] →
M8×8[GF(28)], parameterised by the key matrix k ∈ M8×8[GF(28)] and given
by:

ρ[k] ≡ σ[k] ◦ θ ◦ π ◦ γ.

The key schedule.
The key schedule expands the 512-bit cipher key K ∈ M8×8[GF(28)] onto a
sequence of round keys K0, . . . ,K10:

K0 = K,

Kr = ρ[cr](Kr−1), 1 6 r 6 10,

The internal block cipher W .
The dedicated 512-bit block cipher WK : M8×8[GF(28)] → M8×8[GF(28)], pa-
rameterised by the 512-bit cipher key K, is defined as

WK =
(
r=10

©
1
ρ[Kr]

)
◦ σ[K0],

where the round keys K0, . . . ,K10 are derived from K by the key schedule.

Padding and MD-strengthening.
Before being subjected to the hashing operation, a message M of bit length
L < 2256 is padded with a 1-bit, then with as few 0-bits as necessary to obtain
a bit string whose length is an odd multiple of 256, and finally with the 256-bit
right-justified binary representation of L, resulting in the padded message m,
partitioned in t 512-bit blocks m1, . . . ,mt.

The compression function.
Whirlpool iterates the Miyaguchi-Preneel hashing scheme over the t padded
message blocks mi, 1 6 i 6 t, using the dedicated 512-bit block cipher W :

ηi = µ(mi), 1 6 i 6 t

H0 = µ(IV ),
Hi = WHi−1(ηi)⊕ ηi ⊕Hi−1, 1 6 i 6 t,

where IV (the initialisation vector) is a string of 512 0-bits.
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Message digest computation.
The Whirlpool message digest for message M is defined as the output Ht of
the compression function, mapped back to a bit string:

Whirlpool(M) ≡ µ−1(Ht).

4.4.1.2 Security analysis

The Miyaguchi-Preneel scheme is one of the few still unbroken methods to con-
struct a hash function from an underlying block cipher. In particular, it is “prov-
ably secure” if certain ideal properties hold for the underlying block cipher (in [93]
Black et al. prove tight upper and lower bounds for the collision-resistance and
preimage-resistance of this construction, based on a black-box model of the en-
cryption algorithm).

The block cipher W that forms the basis of Whirlpool is very similar to the
AES algorithm Rijndael. The main difference between W and Rijndael is that
Rijndael supports blocklengths of 128, 192 and 256 bits, while W only works on
512-bit blocks. Rijndael has received quite a bit of analysis during and after the
AES process, and given the similarities between Rijndael and W , some of it may
carry over to Whirlpool. The designers state three criteria that define the level
of security. Assume we take as hash result any n-bit substring of the output of
Whirlpool, then the criteria are:

– The workload of generating a collision is expected to be of the order 2n/2

(collision-resistant).
– Given an n-bit value, the workload of finding a message that hashes to that

value is of the order 2n (preimage-resistant).
– Given a message (and its hash result), the workload of finding a different mes-

sage that has the same hash value is of the order 2n (second preimage-resistant).

No attacks have been reported on Whirlpool that falsify these statements.
In the following we discuss some observations that have been made and an attack
on a reduced round version of Whirlpool.

Choice of the substitution box.
In its nonlinear layer Whirlpool uses a substitution box to map 8-bit inputs

into 8-bit outputs. The originally submitted form of Whirlpool used a pseudo-
randomly generated substitution box, chosen to satisfy certain conditions with
respect to differential and linear analysis, and with respect to the non-linear order.
However, a flaw that went unnoticed caused the value of the linear parameter to
be incorrectly reported. Therefore, in the tweaked version of Whirlpool an
alternative substitution box was described satisfying the design conditions. This
new substitution box is built in a simple way from smaller 4-bit substitution
boxes.2

2 The new substitution box also leads to more efficient hardware implementations.
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Non-random properties of reduced-round Whirlpool.
In [360] it is shown that a variant of the hash function Whirlpool where the

number of rounds in the compression function is reduced from ten to six (or less),
exhibits some non-random properties. The observations have not shown to be a
weakness for Whirlpool. In the following we summarise the analysis of [360].

Consider a collection of 256 texts, which have different values in one byte and
equal values in each of the remaining 63 bytes. Then it follows that after two
rounds of encryption the texts take all 256 values in each of the 64 bytes, and
that after three rounds of encryption the sum of the 256 bytes in each position is
zero. Such a structure has been called an integral (see Sect. 2.2.3.15). Also, note
that there are 63 other similar structures, since the position of the non-constant
byte in the plaintexts can be in any of the 64 positions.

The three-round integral described above can be extended to four rounds by
considering a structure with 264 texts. The main observation is that after one
round one has all 264 values in the top row and that the remaining three rounds
can be seen as a collection of 256 variants of the 3-round integral. Since the texts
in each integral sum to zero in any byte after the fourth round, so does the sum
of all 264 texts.

In much the same manner, one can define a three-round backwards integral
through three rounds of the inverse cipher of W . In versions of W reduced to six
rounds one can then combine the first three rounds of the four-round forwards
integral and the three-round backwards integral to cover all rounds of the cipher
with probability one. We do this by starting our computation after the third round
of W . By a first glance it appears that the two three-round integrals cannot be
combined.

However, choose a structure of 2120 texts such that the fifteen bytes consisting
of the eight bytes of the top row and byte j in row 8 − j for j = 1 . . . 7 take all
possible values. One can view these texts as a collection of 256 3-round forwards
integrals, but one can also view this as a collection of 256 3-round backwards
integrals. Therefore, both when one computes forward three rounds and backward
three rounds, the resulting texts will take the values in each byte equally many
times.

Thus, with time complexity 2120 one can find a collection of 2120 inputs to W
reduced to six rounds, such that each byte in both the inputs and outputs takes
all values equally many times. It is claimed that this distinguishes W reduced to
six rounds from a randomly chosen 512-bit permutation. We conjecture that to
find a structure of 2120 texts with properties similar to the ones outlined for W
reduced to six rounds will require the generation of at least 2128 outputs and a
considerable amount of memory.

In versions of W reduced to seven rounds one can combine the full four-round
forwards integral and the three-round backwards integral to cover seven rounds
with probability one. However it is unclear whether such an integral can be used
to effectively distinguish W reduced to seven rounds from a randomly chosen
512-bit permutation. In recent work David Wagner shows techniques for solving
a generalised birthday problem. Although these techniques do not seem to apply
directly to our problem, it is possible that they can be adapted hereto.
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Quadratic relations in Whirlpool.
In [361] it is examined whether there exist quadratic relations with certainty

over the input and output bits of the substitution boxes of Whirlpool. It has
been shown by Courtois and Pieprzyk [165] that for the substitution boxes of
Rijndael and Serpent there exist quadratic equations in the input and output
bits which hold with probability one. Such equations always exist for n-bit to
n-bit S-boxes where n ≤ 6, but not in general for n > 6.

Therefore we have investigated whether such quadratic relations exist for the
S-box of Whirlpool. This S-box is a permutation of eight bits. There are 137
possible terms of degree at most two in a multivariate expression of the eight input
and output bits. It is a simple matter to check whether such equations exist simply
by computing the kernel of a 256 times 137 binary matrix. We implemented this
in Maple. It was found that there are no quadratic relations for the full S-box
of Whirlpool. However, after the tweak, the S-box of Whirlpool is built in
a simple way from 4-bit S-boxes. This makes it easy to write a small system
of multivariate quadratic equations for Whirlpool. Security of Whirlpool
against algebraic attacks is a matter of further research.

Branch number and updated diffusion matrix.
In [579] Shirai and Shibutani announced a flaw in the Whirlpool diffusion

matrix, that makes its branch number suboptimal (in other words, the underlying
code is not an MDS code). Although this flaw per se does not seem to introduce
an effective vulnerability, the designers decided to propose a replacement matrix
displaying optimal branch number (and thus keeping the existing security analysis
unchanged).

The diffusion matrix is used in the linear diffusion layer θ. The new matrix is
based on the [16, 8, 9] MDS code with generator matrix GC = [I C], where:

C =



01x 01x 04x 01x 08x 05x 02x 09x
09x 01x 01x 04x 01x 08x 05x 02x
02x 09x 01x 01x 04x 01x 08x 05x
05x 02x 09x 01x 01x 04x 01x 08x
08x 05x 02x 09x 01x 01x 04x 01x
01x 08x 05x 02x 09x 01x 01x 04x
04x 01x 08x 05x 02x 09x 01x 01x
01x 04x 01x 08x 05x 02x 09x 01x


.

4.4.2 SHA-1

SHA-1 [472] has been a NIST hash function standard (FIPS 180-1, recently up-
dated to FIPS 180-2) since 1995, and is also included in the ISO/IEC standard
10118-3. Although the output length of 160 bits is too short for a collision-
resistant hash function as requested by the NESSIE call for primitives, many
current applications (such as digital signature schemes) use a 160-bit hash func-
tion. Therefore SHA-1 is studied as a legacy hash function. The algorithm op-
erates on 512-bit message blocks divided in words of 32 bits, and produces a
message digest (hash value) of 160 bits.
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4.4.2.1 The design

SHA-1 is a dedicated hash function, clearly influenced by the design of MD4
but a strengthened version of this algorithm. It is defined as the iteration of a
compression function which we specify below. The computation starts with the
initial value

IV = 67452301x efcdab89x 98badcfex 10325476x c3d2e1f0x .

Each application of the compression function uses five words as initial values
and 16 words of the message as input and it gives five words output, which are
then used as initial values for the next application. The final output is the hash
value. This works because there is a padding rule which adds bits to the message
(including a representation of the message length) so that its length becomes a
multiple of 512 bits.

Compression function of SHA-1.
Let the message block of 512 bits be denoted M = [W0 ‖W1 ‖ . . . ‖W15], where
Wi are 32-bit words. SHA-1 uses an expansion procedure which is defined as

Wi = (Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16)<<1 , 16 ≤ i ≤ 79 .

Define the following constants

Ki = 5a827999x , 0 ≤ i ≤ 19 ,

Ki = 6ed9eba1x , 20 ≤ i ≤ 39 ,

Ki = 8f1bbcdcx , 40 ≤ i ≤ 59 ,

Ki = ca62c1d6x , 60 ≤ i ≤ 79 ,

and the boolean functions

fi(X,Y, Z) = fif (X,Y, Z) = (X &Y ) | (X̄ &Z) , 0 ≤ i ≤ 19 ,

fi(X,Y, Z) = fxor(X,Y, Z) = X ⊕ Y ⊕ Z , 20 ≤ i ≤ 39 , 60 ≤ i ≤ 79 ,

fi(X,Y, Z) = fmaj(X,Y, Z) = (X &Y ) | (X &Z) | (Y &Z) , 40 ≤ i ≤ 59 .

Suppose now that the initial values A0, B0, C0, D0, E0 are given. Then the
compression function proceeds by the following steps for 0 ≤ i ≤ 79 (additions
are mod 232):

Ai+1 = A<<5
i + fi(Bi, Ci, Di) + Ei +Wi +Ki ,

Bi+1 = Ai ,

Ci+1 = B<<30
i ,

Di+1 = Ci ,

Ei+1 = Di .

Finally compute the output of the compression function as

A = A0 +A80 , B = B0 +B80 , C = C0 +C80 , D = D0 +D80 , E = E0 +E80 .
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4.4.2.2 Security analysis

SHA-1 is conjectured to be a collision-resistant hash function. For an output
length of 160 bits this means that the expected workload of generating a collision
is of the order 280. The workload of finding a (second) preimage should be of the
order 2160. There have not been reported any attacks on SHA-1 falsifying these
statements. An important effect of the expansion of the 16-word message block
to 80 words in the compression function, is that for any two distinct 16-word
blocks, the resulting 80-word values differ in a large number of bit positions. This
makes the attack strategy that has been used on other algorithms of the MDx-
family very difficult and certainly increases the strength of the algorithm. In the
following we discuss some observations that have been made and an attack on a
previous version of SHA.

Collisions for SHA-0.
An earlier version of SHA — commonly known as SHA-0 — has been crypt-
analysed by Chabaud and Joux [138], resulting in a theoretical attack finding
collisions (two messages hashing to the same value) with a complexity of about
261 evaluations of the compression function. The only difference between these
two versions of SHA is in the expansion procedure which is defined for SHA-0 by

Wi = Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16 , 16 ≤ i ≤ 79

(in contrast to SHA-1 there is no rotation by one bit position to the left).
The general idea of the attack on SHA-0 is to track the propagation of local

perturbations and to look for differential masks that can be added to the input
block with non-trivial probability of keeping the output of the compression func-
tion unchanged. In [138] Chabaud and Joux have first studied a simplified variant
of SHA-0 called SHI1 which replaces the modular additions (+) and the nonlin-
ear functions (fi) by bitwise addition (⊕). Single bit errors or perturbations are
introduced to the input of SHI1 and the perturbations are traced through the
compression function. These perturbations are made to disappear by introducing
five other bit errors or corrections. This allows an attack on SHI1 via differential
masking. A second variant of SHA-0 called SHI2 is then analysed, where SHI2
replaces modular addition by ⊕ but this time keeps the nonlinear functions fi.
However we can still view fi as acting like ⊕ with some probability, and the
probability of a successful perturbation attack can be computed as 2−24. A third
variant of SHA-0, SHI3, is then analysed, where SHI3 uses modular addition as in
SHA-0, but uses ⊕ instead of the nonlinear fi. In this case the additions mod 232

cause the perturbations to spread out due to carry propagation. However one is
still able to devise a perturbation attack on SHI3 with probability 2−44. Finally
SHA-0 itself is analysed by taking into account the analyses of SHI2 and SHI3,
and this leads to a perturbation based attack on SHA-0 requiring 261 evaluations
of the compression function.

It should be emphasised that, although SHA-1 and SHA-0 are similar, this
attack does not carry over to SHA-1. The rotation by one bit position to the
left which is added in the expansion procedure of SHA-1 means that the linear
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code of the expansion no longer operates on bit level: a modification of a single
bit influences bits at other positions in the words as well. This makes the attack
strategy of [138] completely ineffective and provides strong evidence that the
transition from SHA-0 to SHA-1 raised the level of security.

Slid pairs in SHA-1.
Recently Saarinen [553] has noted that a slide attack can be mounted on SHA-
1 with about 232 effort. Although it is difficult to see how this attack could
be exploited to find collisions or preimages for the hash function, the analysis
demonstrates an unexpected property of the compression function. Consider two
messages M = [W0 ‖W1 ‖ . . . ‖W15] and M ′ = [W ′

0 ‖W ′
1 ‖ . . . ‖W ′

15]. The main
observation is that the procedure for message expansion can be slid. We simply
choose W ′

i = Wi+1 for 0 ≤ i ≤ 14 and W ′
15 = (W0 ⊕ W2 ⊕ W8 ⊕ W13)<<1.

After message expansion the following is true: W ′
i = Wi+1 for 0 ≤ i ≤ 78. The

second observation is that for 20 steps in each round of the compression function,
the boolean function fi and the additive constant Ki are unchanged. Hence any
two consecutive steps (step i and step i + 1) of the compression function are
similar, except for three transitions between different rounds (this happens for
i = 19, 39, 59).

Suppose now that the hashing computation for M and M ′ starts from ini-
tial values A,B,C,D,E and A′, B′, C ′, D′, E′ respectively, which are related as
follows:

B′ = A , C ′ = B>>30 , D′ = C , E′ = D .

Then the purpose of the attack is to find messages and initial values for which
the same relation (between the chaining variables) still holds at the end of the
compression function. Such a pair of messages and corresponding initial values is
called a “slid pair”. The method for finding a slid pair is rather technical but the
general strategy is to choose suitable values for the chaining variables in steps
i = 19 and i = 39, and perform a meet-in-the-middle match. This procedure is
repeated until the transition for i = 59 is also dealt with, which happens with
probability 2−32. The overall time and space complexity of the attack are of the
order 232.

Differential analysis.
Differential cryptanalysis has been applied to the encryption mode of SHA-1 (see
below) and is relevant for the hash function as well. Although the propagation
of a difference in the initial value through the compression function does not
immediately help in finding preimages or collisions for the hash function, it may
point to unwanted properties of the compression function.

For SHA-1, there exists a 5-step differential characteristic over any 5 steps
in the compression function with probability 1. Handschuh and Naccache [281]
conjecture that over 80 steps the best differential characteristic has probabil-
ity around 2−116. It is emphasised that this estimation is over-favourable to the
cryptanalyst as it would be impossible to connect up all the constituent charac-
teristics so as to achieve these biases. Van den Bogaert and Rijmen [606] have
searched for optimal differential characteristics under the requirement that the
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Hamming weight of every 32-bit word of the input is upper bounded by 2. It was
found that there are two 10-step characteristics for fif with probability 2−12 (this
is a factor of 2 better than [281]), a 10-step characteristic for fxor with best case
probability 2−12, and a 20-step characteristic for fif and fmaj with probabilities
2−42 and 2−41 respectively (these figures agree with [281]).

Kim et al. [347] have found a 28-step differential characteristic with proba-
bility 2−107, and a 30-step differential characteristic with probability 2−138. This
shows that when the number of steps increases, the probability of a differen-
tial characteristic decreases rapidly (this is due to the fact that the Hamming
weight in the difference words grows larger). Overall the security margin of SHA-
1 against this type of analysis appears very large.

Encryption mode of SHA-1.
The SHA-1 compression function can also be used in encryption mode, by in-
serting a key as message (so the expansion procedure is used as key schedule)
and a plaintext as initial value, while leaving out the feed-forward operation at
the end of the compression function. The resulting 160-bit block cipher, called
SHACAL-1, has been submitted to NESSIE (see Chapter 2). One may also view
SHA-1 as a Davies-Meyer hashing scheme based on SHACAL-1.

In the submission document Handschuh and Naccache [281] conjecture that
a linear cryptanalytic attack on SHACAL-1 would require at least 280 known
plaintexts and that a differential attack would require at least 2116 chosen plain-
texts. These estimations cannot be considered a break of the algorithm because
Handschuh and Naccache construct very loose lower bounds. Differential crypt-
analysis including boomerang attacks [347] and rectangle attacks [76] have been
applied to SHACAL-1. The best known attack works for 49 steps of the com-
pression function with a data complexity of 2151.9 chosen plaintexts and a time
complexity of 2508.5 [76].

Saarinen [553] recently showed that the slide attack on SHA-1 also points
to a weakness in the key schedule of SHACAL-1, and this can be exploited in
a related-key attack. Given access to two SHACAL-1 encryption oracles whose
keys are “slid” (in the same way that the message expansion can be slid for the
hash function) the cipher can be distinguished from a randomly chosen 160-bit
permutation. This requires about 2128 chosen plaintexts. When certain properties
hold for the (related) keys, the complexity can be further reduced to about 296

chosen plaintexts.

4.4.3 SHA-256, SHA-384 and SHA-512

These three hash functions have recently been included in the new NIST hash
function standard (FIPS 180-2 [472]), and generate hash values of 256, 384 or
512 bits. The main reason for the new standard is to provide a security level
comparable to the security level of the new NIST block cipher standard AES
(with keylength of 128, 192 or 256 bits respectively). Therefore, they will serve
as a benchmark for the submissions in this category.



Dra
ft

Apr
il
19

, 2
00

4

190 Book II. Evaluation — Part B. Security evaluation

4.4.3.1 SHA-256

The SHA-256 hash function operates on blocks of 512 bits divided in words of
32 bits and produces a message digest (hash value) of 256 bits. The algorithm is
defined as the iteration of a compression function which we specify below. The
computation starts with the initial value

IV = 6a09e667x bb67ae85x 3c6ef372x a54ff53ax

510e527fx 9b05688cx 1f83d9abx 5be0cd19x .

Each application of the compression function uses eight words as initial values
and 16 words of the message as input and it gives eight words output, which are
then used as initial values for the next application. The final output is the hash
value. This works because there is a padding rule which adds bits to the message
(including a representation of the message length) so that its length becomes a
multiple of 512 bits.

Compression function of SHA-256.
Let the message block of 512 bits be denoted M = [W0 ‖W1 ‖ . . . ‖W15], where
Wi are 32-bit words. SHA-256 uses an expansion procedure defined by

Wi = σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 , 16 ≤ i ≤ 63 ,

with σ0 and σ1 defined as follows (where (·)> denotes shift and (·)>> rotation or
circular shift to the right):

σ0(X) = X>>7 ⊕X>>18 ⊕X>3 ,

σ1(X) = X>>17 ⊕X>>19 ⊕X>10 .

Define the following functions:

Ch(X,Y, Z) = (X &Y )⊕ (X̄ &Z) ,
Maj(X,Y, Z) = (X &Y )⊕ (X &Z)⊕ (Y &Z) ,

Σ0(X) = X>>2 ⊕X>>13 ⊕X>>22 ,

Σ1(X) = X>>6 ⊕X>>11 ⊕X>>25 .

Suppose now that the initial values A0, B0, C0, D0, E0, F0, G0,H0 are given.
Then the compression function proceeds by the following steps for 0 ≤ i ≤ 63
(additions are mod 232):

Ai+1 = Σ0(Ai) + Maj(Ai, Bi, Ci) + Σ1(Ei) + Ch(Ei, Fi, Gi) + Hi + Wi + Ki ,

Bi+1 = Ai ,

Ci+1 = Bi ,

Di+1 = Ci ,

Ei+1 = Di + Σ1(Ei) + Ch(Ei, Fi, Gi) + Hi + Wi + Ki ,

Fi+1 = Ei ,

Gi+1 = Fi ,

Hi+1 = Gi .
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The 32-bit constants Ki are different in each of the 64 steps. We refer to the
description of SHA-256 [472] for their exact value. Finally compute the output
of the compression function as

A = A0 +A64 , B = B0 +B64 , C = C0 + C64 , D = D0 +D64 ,

E = E0 + E64 , F = F0 + F64 , G = G0 +G64 , H = H0 +H64 .

4.4.3.2 SHA-512

The main difference between SHA-256 and SHA-512 is that the latter uses a
wordlength of 64 bits (instead of 32 bits). This allows the computation of a
message digest which is twice as long compared to SHA-256, without changing
the structure of the algorithm. Another distinction is that the number of steps in
the compression function has been changed from 64 to 80. Hence, the SHA-512
hash function operates on blocks of 1024 bits divided in words of 64 bits and
produces a message digest (hash value) of 512 bits. The algorithm is defined as
the iteration of a compression function which we specify below. The computation
starts with the initial value

IV = 6a09e667f3bcc908x bb67ae8584caa73bx 3c6ef372fe94f82bx a54ff53a5f1d36f1x

510e527fade682d1x 9b05688c2b3e6c1fx 1f83d9abfb41bd6bx 5be0cd19137e2179x .

Each application of the compression function uses eight words as initial values
and 16 words of the message as input and it gives eight words output, which are
then used as initial values for the next application. The final output is the hash
value. This works because there is a padding rule which adds bits to the message
(including a representation of the message length) so that its length becomes a
multiple of 1024 bits.

Compression function of SHA-512.
Let the message block of 1024 bits be denoted M = [W0 ‖W1 ‖ . . . ‖W15], where
Wi are 64-bit words. SHA-512 uses an expansion procedure defined by

Wi = σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 , 16 ≤ i ≤ 79 ,

with σ0 and σ1 defined as follows (where (·)> denotes shift and (·)>> rotation or
circular shift to the right):

σ0(X) = X>>1 ⊕X>>8 ⊕X>7 ,

σ1(X) = X>>19 ⊕X>>61 ⊕X>6 .

Define the following functions:

Ch(X,Y, Z) = (X &Y )⊕ (X̄ &Z) ,
Maj(X,Y, Z) = (X &Y )⊕ (X &Z)⊕ (Y &Z) ,

Σ0(X) = X>>28 ⊕X>>34 ⊕X>>39 ,

Σ1(X) = X>>14 ⊕X>>18 ⊕X>>41 .
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Suppose now that the initial values A0, B0, C0, D0, E0, F0, G0,H0 are given.
Then the compression function proceeds by the following steps for 0 ≤ i ≤ 79
(additions are mod 264):

Ai+1 = Σ0(Ai) + Maj(Ai, Bi, Ci) + Σ1(Ei) + Ch(Ei, Fi, Gi) + Hi + Wi + Ki ,

Bi+1 = Ai ,

Ci+1 = Bi ,

Di+1 = Ci ,

Ei+1 = Di + Σ1(Ei) + Ch(Ei, Fi, Gi) + Hi + Wi + Ki ,

Fi+1 = Ei ,

Gi+1 = Fi ,

Hi+1 = Gi .

The 64-bit constants Ki are different in each of the 80 steps. We refer to the
description of SHA-512 [472] for their exact value. Finally compute the output
of the compression function as

A = A0 +A80 , B = B0 +B80 , C = C0 + C80 , D = D0 +D80 ,

E = E0 + E80 , F = F0 + F80 , G = G0 +G80 , H = H0 +H80 .

4.4.3.3 SHA-384

The SHA-384 hash function is defined in the exact same manner as SHA-512
with the following two exceptions:

The computation starts with a different initial value:

IV = cbbb9d5dc1059ed8x 629a292a367cd507x 9159015a3070dd17x 152fecd8f70e5939x

67332667ffc00b31x 8eb44a8768581511x db0c2e0d64f98fa7x 47b5481dbefa4fa4x .

The 384-bit message digest is obtained by truncating the final hash value to its
left-most 384 bits.

4.4.3.4 Security analysis

SHA-256, SHA-384 and SHA-512 are conjectured to be collision-resistant hash
functions. This means that the expected workload of generating a collision is of
the order 2n/2 and that the workload of finding a (second) preimage should be of
the order 2n, where n denotes the output length which, for these hash function,
is equal to 256, 384 or 512 bits respectively. There have not been reported any
attacks falsifying this statement.

These new hash standards are a new design that has some similarities to SHA-
1, but there are important differences in the structure. We may note that for the
256-bit version the number of steps in the compression function is lower than for
SHA-1 (64 steps compared to 80). On the other hand, two variables are updated
in every step of the compression function where for SHA-1 only one variable is
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updated in a step. With respect to differential cryptanalysis, there exists a 4-step
characteristic over any 4 steps in the compression function with probability 1.
The probability of differential characteristics appears to decrease faster than for
SHA-1. This is due to the multiple rotations in the functions Σ0(·) and Σ1(·). The
slide attack on SHA-1 does not extend to SHA-256, SHA-384 or SHA-512 because
every step of the compression function uses a unique additive constant. They are
recently designed primitives of which the design strategy was not made public,
so more time is needed to perform a careful and thorough security evaluation.

Encryption mode of SHA-256 and SHA-512.
The SHA-256 and SHA-512 compression functions can also be used in encryption
mode, by inserting a key as message (so the expansion procedure is used as key
schedule) and a plaintext as initial value, while leaving out the feed-forward
operation at the end of the compression function. For SHA-256 this results in a
256-bit block cipher, called SHACAL-2, which has been submitted to NESSIE
(see Chapter 2). One may also view SHA-256 as a Davies-Meyer hashing scheme
based on SHACAL-2. No security flaws have been identified for SHACAL-2. The
weakness in the key schedule of SHACAL-1 does not extend to SHACAL-2.

4.5 Conclusion

The NESSIE project has studied the submitted algorithm Whirlpool and has
also studied the NIST hash function standards SHA-1 and SHA-256, SHA-384
and SHA-512. No significant security weaknesses have been found for any of these
hash functions. The best result on Whirlpool is an attack which finds non-
random properties in versions of Whirlpool where the compression function is
reduced to six rounds or less (the complete function uses ten rounds). For SHA-
1 a slide attack has been found that demonstrates an unexpected property of
the compression function, but this is not a threat for any normal use of the hash
function. However, this attack also points to a weakness in the key schedule of the
encryption mode of SHA-1. SHA-256, SHA-384 and SHA-512 are a new design
with significant differences from SHA-1; no weaknesses have been reported for it.
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5. Message authentication codes

5.1 Introduction

Message Authentication Codes, also known as MACs, are cryptographic prim-
itives used for information authentication. A MAC is a function that takes an
input of arbitrary length and produces an output of a fixed length. Contrary to
hash functions, the computation of a MAC depends on a secret key. In practical
applications this key has to be shared between two parties (a sender and a re-
ceiver) so MACs are used in a symmetric setting, contrary to digital signatures
(see Chapter 7) which are used for authentication in asymmetric settings. We
informally give the conditions we require of a message authentication code:

– A MAC with an unknown key should be “hard” to forge on a new message,
even when many messages and corresponding MAC values are known.

Before presenting a detailed analysis of the message authentication codes stud-
ied by the NESSIE project, we first discuss the security requirements and give an
overview of common designs and current standards. For a more comprehensive
overview of cryptographic primitives for information authentication (including
message authentication codes) we refer to the treatment by Preneel in [530].

5.2 Security requirements

In this section we give practical and formal definitions for message authentication
codes and describe the general model of an iterated MAC. We then discuss differ-
ent types of attacks on message authentication codes and describe the assessment
process followed by the project.

5.2.1 Security model

The following informal definition for message authentication codes was given by
Preneel in [530]. A MAC is a function h satisfying the following conditions:

1. The argument X can be of arbitrary length and the result h(K,X) has a
fixed length of n bits, where the secondary input K denotes the secret key.

0 Coordinator for this chapter: KUL — Bart Van Rompay
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2. Given a message X (but with unknown K), it must be ‘hard’ to determine
h(K,X). Even when a large set of pairs {Xi, h(K,Xi)} is known, it is ‘hard’ to
determine the key K or to compute h(K,X ′) for any new message X ′ 6= Xi.

Most MACs are iterated constructions, in the sense that they are based on
a compression function with fixed size inputs; they process every message block
in a similar way. The input X is padded by an unambiguous padding rule to a
multiple of the block size. Typically this also includes adding the total length
in bits of the input. The padded input is then divided into t blocks denoted X1

through Xt. The MAC involves a compression function f and a chaining variable
Hi between stage i− 1 and stage i:

H0 = IVK ,

Hi = fK(Hi−1, Xi) , 1 ≤ i ≤ t ,
h(K,X) = gK(Ht) .

Here IV denotes the Initial Value and g the output transformation. The secret
key K may be employed in the IV , in the compression function, and/or in the
output transformation.

5.2.1.1 Formal definitions

Before discussing security aspects we first give more precise definitions of a MAC
and its cryptographic strength. These definitions are similar to the definitions
given by Krovetz in [378]. For an iterated construction similar definitions can be
given as for iterated hash functions in Sect. 4.2.1.1 (taking into account the MAC
key, and the fact that there usually is an additional output transformation). It
is assumed that the adversary already knows the MAC values corresponding to
a certain set of messages, and that his goal is to forge a MAC value for a new
message, that is, a message not included in this set.

Definition 5.1. A MAC is a function h : K ×M → R where the key space
K = {0, 1}k, the message spaceM = {0, 1}∗ and the range R = {0, 1}n for some
k, n ≥ 1. When given a key K ∈ K and a message X ∈M, the function produces
a MAC value Y ∈ R.

Definition 5.2 (Unforgeability). An adversary has forged a message for a
MAC h if, without knowledge of a random key K, he is able to produce a new
message X and MAC value Y such that h(K,X) = Y . A MAC h : K ×M→ R
is (t, ε, q)-secure if, under a randomly chosen key K, an adversary cannot forge
a new message in time t with probability better than ε even if he is provided with
the MAC values of q other messages of his choice.

5.2.2 Classification of attacks

Depending on the information available to an adversary, the following types of
attacks are distinguished for MACs:

– Known text attack. An attacker is able to examine some plaintexts and their
corresponding MAC values.
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– Chosen text attack. An attacker is able to select a set of texts and subsequently
obtains a list of MAC values corresponding to these texts.

– Adaptive chosen text attack. This is a chosen text attack but where an attacker
can make the choice of a text depend on the outcome of previous queries.

“Breaking” a MAC algorithm can have different meanings:

– Existential forgery. An attacker can determine the MAC value for at least one
text. As he has no control over this text, it may be random or nonsensical.

– Selective forgery. An attacker can determine the MAC value for a particular
text chosen a priori by him. Note that practical attacks often require that a
forgery is verifiable, which means that the attacker knows that the forged MAC
is correct with probability close to 1.

– Key recovery. This means that an attacker can determine the secret key K.
Such a break is more powerful than a forgery, since it allows for arbitrary
selective forgeries.

In practice, an adaptive chosen text attack may not always be feasible; more-
over, forgeries typically need to have specific redundancy to be of any practical
use. However, it is in general better to be conservative and to require that MAC
algorithms resist against the strongest attacks possible. We now briefly describe
the best known attacks on message authentication codes (see [530]).

Guessing of the MAC

A straightforward attack on a MAC algorithm consists of choosing an arbitrary
new message, and subsequently guessing the MAC value. This can be done in
two ways: either one guesses the MAC value directly, with a success probability
of 2−n, or one guesses the key, and then computes the MAC value, with success
probability 2−k. Here n denotes the size in bits of the MAC value and k the
size in bits of the secret key. This is a non-verifiable attack: an attacker does not
know a priori whether his guess was correct. The feasibility of the attack depends
on the number of trials that can be performed and on the expected value of a
successful attack; both are strongly application dependent.

Exhaustive Key Search

This is another straightforward attack that can be applied to any algorithm. The
attack requires approximately k/n known text-MAC pairs for a given key; one
attempts to determine the key by trying one-by-one all the keys. The expected
number of trials is equal to 2k−1. In contrast to the previous attack, this attack
is carried out off-line and it yields a complete break of the MAC algorithm.

Internal Collision Based Forgery

Iterated MAC constructions are vulnerable to attacks based on internal collisions.
The observation behind this forgery attack is that if one can find an internal
collision (that is, a collision which occurs before the output transformation g),
this can be used to construct a verifiable MAC forgery based on a single chosen
text. Preneel and van Oorschot [532] have shown that an internal collision for
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h can be found using u known text-MAC pairs and v chosen texts, where the
expected values for u and v are as follows (here l denotes the size in bits of the
chaining variable): u =

√
2 · 2l/2 and v = 0 if the output transformation g is a

permutation; otherwise, v is approximately

2
(

2l−n +
⌊
l − n
n− 1

⌋
+ 1
)

.

Further optimisations of this attack are possible if the set of text-MAC pairs has
a common sequence of s trailing blocks.

Internal Collision Based Key Recovery

For some compression functions, one can extend the internal collision attack to a
key recovery attack [533]. The idea is to identify one or more internal collisions;
for example, if f is not a permutation for fixed Hi, an internal collision after
the first message block gives the equation fK(H0, X1) = fK(H0, X

′
1), in which

K and possibly H0 are unknown (H0 = IV may be key dependent). For some
compression functions f , one can obtain information on the secret key based on
such relations.

Divide-and-Conquer Attack

This attack is a special case of an internal collision based key recovery. For some
compression functions that use two separate keys, it is possible to exploit internal
collisions for a divide-and-conquer key recovery attack [532]. Let the keys be
denoted by K1,K2 and assume that the IV and f depend on only K1, and that
g depends on only K2. The general idea is that an attacker first looks for some
internal collisions, and then searches exhaustively for a key K1 that produces
these collisions. Once K1 is determined, an exhaustive search is used to find K2.
Therefore, the strength of such a MAC comes from its individual keys and not
from their combined length (although the attack is less practical than a simple
exhaustive key search, as it needs a large number of known text-MAC pairs).

Exor Forgery

This type of forgery only works if the value of Hi is computed as a function of
Hi−1 ⊕ Xi, and if no output transformation is present. The easiest variant of
the attack requires only a single known text-MAC pair. Assume that the input
X and its padded version X̄ consist of a single block. Assume that one knows
h(K,X); it follows immediately that h(K, X̄ ‖ (X ⊕ h(K,X))) = h(K,X). This
implies that one can construct a new message with the same MAC value, which
is a forgery.

Side-Channel Attacks

Side-channel attacks are a major threat for all implementations of cryptographic
algorithms. Side-channel attacks on MAC algorithms are similar as for other sym-
metric primitives. For a detailed discussion on side-channel attacks and counter-
measures that can be applied to protect an implementation we refer to Annex A.
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5.2.3 Assessment process

The MAC submissions were assessed with reference to the above generic common
MAC attacks and by specific attacks when appropriate. Statistical analysis was
carried out for various input lengths. MACs were submitted to the dependence
test and linear factors test described in Sect. 2.2.4. If the NESSIE submissions
were based on compression functions, these were also submitted to the two tests.
Furthermore the stream cipher tests described in Sect. 2.2.4 were also applied to
the MACs both in output feedback and counter mode. None of the MACs tested
exhibited any anomalous behaviour.

5.3 Overview of the common designs

There are few algorithms that are designed for the specific purpose of message
authentication. In most cases a message authentication code is constructed from
a block cipher or from a hash function as discussed below. A different approach is
the use of families of universal hash functions. We also summarise the procedures
which have been undertaken by several organisations for the standardisation of
message authentication codes.

5.3.1 MACs based on block ciphers

The most common way of basing a MAC on a block cipher is by using the cipher
in CBC-mode (cipher block chaining): the MAC key is used as cipher key in
each step of the iteration, and the message block to be processed in the current
step serves as plaintext input to the cipher, after being added bit by bit to the
ciphertext output from the previous step:

H1 = EK(X1) , Hi = EK(Xi ⊕Hi−1) (2 ≤ i ≤ t) .

Here we assume that the message X (after padding) is divided into blocks
X1, . . . , Xt of lengths appropriate for the block cipher used. EK denotes encryp-
tion with secret key K and Ht forms the output of the MAC algorithm (in this
case there is no output transformation).

The basic CBC-construction is susceptible to the exor forgery attack described
in Sect. 5.2.2, therefore it can only be used in applications where the messages
have a fixed length. Several more secure variations on the scheme exist however.
One example, known as EMAC1, is the use of an additional encryption as output
transformation, where the key for this encryption operation may be derived from
the MAC key. Another example, commonly known as the retail-MAC, replaces
the last encryption by a two-key triple encryption. The security of these construc-
tions can be proven based on the assumption that the underlying block cipher is
pseudo-random [518].

All of these schemes are included in ISO/IEC 9797-1 [303], a standard for
MACs using an (unspecified) block cipher.
1 EMAC stands for Encrypted-MAC. This construction is also known as DMAC

(Double-MAC).
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5.3.2 MACs based on hash functions

A message authentication code can also be constructed from a hash function.
This is a common approach because these MACs are usually faster than MACs
which are based on a block cipher. HMAC is a nested construction that computes
a MAC, for an underlying hash function h, message X and secret key K, as
follows:

HMAC(K,X) = h((K ⊕ opad) ‖h((K ⊕ ipad) ‖X)) .
The keyK is first padded with zero bits to a full block, and opad and ipad are con-
stant values. Bellare et al. [44] have proven the security of this construction under
the following assumptions: the underlying hash function is collision-resistant for
a secret initial value; the compression function keyed by the initial value is a
secure MAC algorithm (for messages of one block); the compression function is
a weak pseudo-random function.

An alternative to HMAC are the MDx-MAC constructions [532] which can
be based on MD5, SHA, RIPEMD or similar hash functions. Here, the under-
lying hash function is converted into a MAC by small modifications, involving
the secret key at the beginning, at the end and in every iteration of the hash
function. This is achieved by key-dependent modification of the initial value and
the additive constants used by the hash function, and by a key-dependent output
transformation. The security of MDx-MAC can be proven based on the assump-
tion that the underlying compression function is pseudo-random.

Both HMAC and MDx-MAC are included in ISO/IEC 9797-2 [304], a stan-
dard for MACs using a dedicated hash function. The NESSIE submission TTMAC
(see Sect. 5.4.1) is also based on a hash function, more specifically the RIPEMD-
160 hash function.

5.3.3 MACs based on universal hashing

A family of hash functions H = {h : D → R} is a finite set of functions with
common domain D and (finite) rangeR. We may also denote this by H : K×D →
R where HK : D → R is a function in the family for each K ∈ K. In the latter
case, one chooses a random function h from the family by choosing K ∈ K
uniformly and letting h = HK .

A universal hash function family is a family of hash functions with some
combinatoric property. For example, a hash function family H = {h : D → R}
is “ε-almost-universal” if for any distinct X,X ′ ∈ D, the probability that h(X) =
h(X ′) is no more than ε, when h ∈ H is chosen at random.

This can be used for message authentication, for example by hashing a mes-
sage with a function drawn from a universal hash function family, encrypting
the output of the hash function, and then producing the encrypted hash output
as MAC value. It can be proven that the security of the resulting MAC scheme
depends on the security of the cipher used for encrypting the hash output. The
combinatoric property of the universal hash function family is often not difficult
to prove, and the resulting MAC schemes are the fastest MACs around. The
NESSIE submission UMAC (see Sect. 5.4.2) is an example of a MAC based on
universal hashing.
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5.3.4 Current standards

Several organisations have taken initiatives for the standardisation of message
authentication codes. ISO/IEC has developed standard 9797 for MACs, with two
separate parts. Part 9797-1 [303] describes MACs based on a block cipher, more
specifically the CBC-MAC for an unspecified block cipher (with some optional
extensions including EMAC and retail-MAC). Part 9797-2 [304] details MACs
based on a dedicated hash function, more specifically the HMAC and MDx-MAC
constructions for an unspecified hash function (and a variant of MDx-MAC for
short input strings only).

ANSI has adopted the DES-based CBC-MAC (including retail-MAC) in its
banking standard X9.19 [18] and HMAC (with unspecified hash function) in
standard X9.71 [22]. NIST has developed FIPS 113 [462] for DES-based CBC-
MAC and FIPS 198 [473] for SHA-1-based HMAC.

5.4 MAC primitives considered during Phase II

The TTMAC and UMAC algorithms were submitted to NESSIE and se-
lected for study during phase II of the NESSIE project. Furthermore, the schemes
EMAC and HMAC, based on AES and SHA-1 respectively, and RMAC (a variant
of EMAC) were selected for study during NESSIE phase II.

5.4.1 Two-Track-MAC

Two-Track-MAC (also known as TTMAC) is a message authentication code de-
signed by Bert den Boer and Bart Van Rompay [609] and submitted to the
NESSIE project. The design is based on the RIPEMD-160 hash function with
modifications. The algorithm operates on blocks of 512 bits divided into words of
32 bits, uses a secret key of 160 bits, and generates an output of up to 160 bits.
5.4.1.1 The design

The design of Two-Track-MAC is based on the hash function RIPEMD-160. First,
the message to be authenticated is padded with a 1-bit, and then 0-bits until its
length is 448 mod 512. Then the binary representation of the length of the original
message (mod 264) is appended, so the length of the message becomes a multiple
of 512. Each 512-bit block is split into a set of sixteen 32-bit words, W0, . . . ,W15.
The secret key is a set of five 32-bit words, K0, . . . ,K4. The algorithm works by
iterating a compression function as follows.

Two sets of five 32-bit wordsX0, . . . , X4 and Y0, . . . , Y4 and a set of 16 message
words are input to two different functions fL and fR that output five 32-bit words
each:

A0, . . . , A4 = fL(X0, . . . , X4,W0, . . . ,W15) ,
B0, . . . , B4 = fR(Y0, . . . , Y4,W0, . . . ,W15) .

These two functions are identical to the ones used in RIPEMD-160 (the details
are given below). Then compute two new sets of five words each by subtracting
the input words from the results of the previous step:
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Ci = Ai −Xi mod 232 , 0 ≤ i ≤ 4 ,

Di = Bi − Yi mod 232 , 0 ≤ i ≤ 4 .

To finish the compression function, the ten words Ci and Di are mixed in two
linear transformations gL and gR:

E0, . . . , E4 = gL(C0, . . . , C4, D0, . . . , D4) ,
F0, . . . , F4 = gR(C0, . . . , C4, D0, . . . , D4) .

Ei and Fi together with the next set of message words, form the inputs to
the next application of the compression function. In the first iteration, the five
secret keywords Ki are input as both Xi and Yi, 0 ≤ i ≤ 4.

In the final iteration, where the last message words are input, fL and fR swap
places. After the subtraction of the input words, instead of executing gL and gR
at the end of this iteration, compute

Ei = Ci −Di mod 232 , 0 ≤ i ≤ 4 .

The results from these subtractions form the output of Two-Track-MAC. An
optional output transformation is defined for the computation of shorter MAC
values.

The functions fL and fR.
The functions fL and fR, which are known as the left and right trail of

the compression function, are identical to the functions used in the compression
function of RIPEMD-160. They consist of 80 sequential steps which we describe
below. We first define the constants and functions that are used.

Additive constants:

ki = 00000000x, k′i = 50a28be6x, 0 ≤ i ≤ 15,
ki = 5a827999x, k′i = 5c4dd124x, 16 ≤ i ≤ 31,
ki = 6ed9eba1x, k′i = 6d703ef3x, 32 ≤ i ≤ 47,
ki = 8f1bbcdcx, k′i = 7a6d76e9x, 48 ≤ i ≤ 63,
ki = a953fd4ex, k′i = 00000000x, 64 ≤ i ≤ 79.

Non-linear functions at bit level:

fi(x, y, z) = x⊕ y ⊕ z , 0 ≤ i ≤ 15 ,

fi(x, y, z) = (x& y) | (x̄& z) , 16 ≤ i ≤ 31 ,

fi(x, y, z) = (x | ȳ)⊕ z , 32 ≤ i ≤ 47 ,

fi(x, y, z) = (x& z) | (y& z̄) , 48 ≤ i ≤ 63 ,

fi(x, y, z) = x⊕ (y | z̄) , 64 ≤ i ≤ 79 .

Selection of message word:



Dra
ft

Apr
il
19

, 2
00

4

5. Message authentication codes — 5.4 Phase II MAC 203

r[i] = i, 0 ≤ i ≤ 15

r[i] = 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8, 16 ≤ i ≤ 31

r[i] = 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12, 32 ≤ i ≤ 47

r[i] = 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2, 48 ≤ i ≤ 63

r[i] = 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13, 64 ≤ i ≤ 79

r′[i] = 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 0 ≤ i ≤ 15

r′[i] = 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2, 16 ≤ i ≤ 31

r′[i] = 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13, 32 ≤ i ≤ 47

r′[i] = 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14, 48 ≤ i ≤ 63

r′[i] = 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11, 64 ≤ i ≤ 79

Rotation constants:

s[i] = 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8, 0 ≤ i ≤ 15

s[i] = 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12, 16 ≤ i ≤ 31

s[i] = 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5, 32 ≤ i ≤ 47

s[i] = 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12, 48 ≤ i ≤ 63

s[i] = 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6, 64 ≤ i ≤ 79

s′[i] = 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6, 0 ≤ i ≤ 15

s′[i] = 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11, 16 ≤ i ≤ 31

s′[i] = 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5, 32 ≤ i ≤ 47

s′[i] = 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8, 48 ≤ i ≤ 63

s′[i] = 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11, 64 ≤ i ≤ 79

Suppose that the initial values a0, b0, c0, d0, e0 are given.2 The function fL (left
trail of the compression function) consists of the following steps for 0 ≤ i ≤ 79
(additions are mod 232):

ai+1 = ei ,

bi+1 = (ai + fi(bi, ci, di) +Wr[i] + ki)<<s[i] + ei ,

ci+1 = bi ,

di+1 = c<<10
i ,

ei+1 = di .

Similarly, when the initial values a0, b0, c0, d0, e0 are given3, the function fR (right
trail of the compression function) consists of the following steps for 0 ≤ i ≤ 79
(additions are mod 232):

2 These values are X0, . . . , X4 in the description above.
3 These values are Y0, . . . , Y4 in the description above.
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ai+1 = ei ,

bi+1 = (ai + f79−i(bi, ci, di) +Wr′[i] + k′i)
<<s′[i] + ei ,

ci+1 = bi ,

di+1 = c<<10
i ,

ei+1 = di .

The functions gL and gR.
The linear transformations gL and gR are used to mix the outputs of the

two trails of the compression function. For inputs C0, . . . , C4 and D0, . . . , D4, the
function gL computes five words E0, . . . , E4 as follows (operations are mod 232):

E0 = (C1 + C4)−D3 ,

E1 = C2 −D4 ,

E2 = C3 −D0 ,

E3 = C4 −D1 ,

E4 = C0 −D2 .

For inputs C0, . . . , C4 and D0, . . . , D4, the function gR computes five words
F0, . . . , F4 as follows (operations are mod 232):

F0 = C3 −D4 ,

F1 = (C4 + C2)−D0 ,

F2 = C0 −D1 ,

F3 = C1 −D2 ,

F4 = C2 −D3 .

5.4.1.2 Security analysis

The security of Two-Track-MAC can be proven based on the assumption that the
underlying compression function is pseudo-random. This function is very similar
to the compression function used by RIPEMD-160 [531], which is a well studied
primitive for which no weaknesses have been reported.

The functions fL and fR consist of 80 step iterations, and use the different
bit operations AND, OR, XOR and bit complementation. The step functions also
include bit rotations and addition mod 232, and iterated 80 times it seems very
hard to trace unknown key bits through it.

It is worth noting that the only place where key material is used is in the initial
value. The 160-bit output of the algorithm is the difference between two 160-bit
quantities, so the knowledge of this difference still gives 160 bits of uncertainty
about which two values produced it. In other words, guessing what these two
values are, and computing backwards to find the input, i.e. the key, is no faster
than guessing on the key directly.

The large size of the internal state (320 bits) in Two-Track-MAC gives the
algorithm a high level of security against attacks based on internal collisions.
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5.4.2 UMAC

UMAC is a message authentication code designed by Ted Krovetz, John Black,
Shai Halevi, Hugo Krawczyk and Phillip Rogaway [379] and submitted to the
NESSIE project. The design is based on families of universal hash functions (see
Sect. 5.3.3 for a definition) and offers provable security in the sense that there are
provable collision bounds for the compression, so that the security depends on
the AES cipher which is used for the encipherment of a nonce and the derivation
of key material. Compared to conventional MAC algorithms, UMAC offers the
benefits of faster speed (especially for long messages) and provable security at
the cost of greater complexity.

5.4.2.1 The design

The UMAC message authentication code evolved from an earlier version UMAC
(1999). We first describe this first version, next the additions for the new version,
and we also describe some practical specifications and parameter sets. Due to the
complexity of the scheme we give only a general outline, for details we refer to
the algorithm specification in [379].

The previous version of UMAC.
UMAC (1999) computes the MAC by first compressing the message by a fixed

ratio using the NH universal hash function family. A nonce is then concatenated
to the compressed message and the result processed by a PRF (pseudo-random
function) to obtain the authentication tag. HMAC (based on a conventional hash
function) and CBC-MAC (based on a block cipher) were proposed as PRF. In
short we can say that the universal hash function family NH is used as an accel-
erant to HMAC or CBC-MAC.

NH works by dividing the message into blocks of a certain length (except
for the last block which can be shorter). Each block is processed by adding key
material with the same length to it (the same key is used for every block), and
compressing it by multiplying pairs of words and adding the results (e.g., starting
from a block of 1024 32-bit words one can obtain a compressed value of 64
bits, which means a compression factor of 512). All compressed blocks are then
concatenated and length information is appended.

The algorithm has some parameters, like the block size and word size, the
PRG (pseudo-random generator) used to compute the needed key material from
the user key (NH needs a key with the same length as the blocks in which the
message is divided), and the PRF used to process the compressed message and
nonce. Furthermore it is possible to use the Toeplitz construction to reduce the
chance of forgery (by applying NH several times with keys that are shifted versions
of each other, and concatenating the results), and/or to use two-level hashing to
reduce the amount of needed key material. There are some other variations that
allow optimisation for certain architectures (e.g., MMX).

Most of the limitations of UMAC (1999) come from the fact that the message
is compressed by a fixed ratio rather than to a fixed length. In the first case the
authentication tag is computed with PRF(hash||nonce), in the second case it
can be computed with hash⊕PRF(nonce), which has some advantages (the use
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of the PRF is limited to the minimum, it does not have an input of unbounded
length). NH, the universal hash function family used in UMAC (1999), could also
compress to a fixed output length, but then it would need a key (generated by
the PRG) with length equal to the message (the entire message would be treated
as a single ‘block’ in the description given above).

The submitted version of UMAC.
The new version of UMAC (2000) introduces extra complexity to solve the

problem of compressing the message to a fixed length so the MAC can be com-
puted with hash⊕ PRF(nonce). The PRF part works by enciphering the nonce
with a block cipher. The hash part (also called UHash), which compresses the
message, consists of three different layers:

– Compression: The first layer uses the fast NH hash family to compress the
message by a fixed ratio.

– Hash-to-fixed-length: The second layer uses the RP hash family, which is not
as fast as NH but generates an output of fixed length using a fixed-length key.

– Strengthen-and-fold: The third layer uses the IP hash family, which reduces
the length of its input to a more appropriate size.

The RP universal hash function family is polynomial-based. A string made
of n words of bitlength w can be viewed as a polynomial of degree n over a
finite field, where each word of the string serves as a coefficient. To compute
the hash, one evaluates the polynomial for a randomly chosen point (the key).
For efficiency reasons, the computations are performed in a prime field, using
the largest prime less then 2w. The function has been tweaked in order to allow
expansion of the domain to arbitrary strings (allowing variations in length, and
dealing with strings outside the prime field). RP stands for ramped polynomial
hashing: small prime fields are used for short messages, and larger prime fields
for longer messages, the reason being that computations in a small prime field
are more efficient, but can only handle messages up to a certain length for a
given collision probability (for polynomial hashing the collision bounds degrade
linearly with the length of the message being hashed, for a given size of the key
set). In fact a hybrid scheme is used, where for long messages a small prime field
is used on the first part of the message. The result is a hash family with arbitrary
length inputs and fixed-length outputs, using a fixed-length key. From a security
point of view it adds little to the collision probability compared to the NH hash
layer of the algorithm.

The layer with the IP universal hash function family reduces the length of its
input because the RP hash layer generates outputs which are quite long compared
to the collision probability which is offered (for all but the longest messages being
authenticated many of the leading bits of the output string of the RP layer will be
zeros). It is based on computing the inner-product over a prime field (multiplying
input words with key words and adding the results). While doing this the collision
probability from the previous layer of the algorithm is maintained.
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Specifications.
Many options are available in an implementation of UMAC but two named

parameter sets have been specified: UMAC16 and UMAC32. They are based
on the three-layer hash schemes UHash16 and UHash32 respectively, and use the
AES (Rijndael) block cipher for enciphering the nonce. The PRG which computes
(from the user key) the key material needed in the internal operation of UHash
is also based on the AES, in output-feedback mode.

UHash16 uses 16-bit words, representing them as signed integers. The NH
hash layer operates on blocks of 2Kbytes, which are compressed to 32-bit values
(this corresponds to a compression ratio of 512). The collision probability is
proved to be no more than 2−15. The result is passed to the RP hash layer which
computes an output string of a fixed length of 128 bits. The RP hash family is
a ramped construction using three prime fields with a 32-bit, 64-bit and 128-bit
prime modulus respectively. The message length is restricted to a maximum of
264 bits, and it is proved that this layer adds only little (around 2−19) to the
collision probability. When the message being authenticated is short to begin
with, the RP layer is not needed and it is skipped as an optimisation. The IP
hash layer folds its 128-bit input into a 16-bit output, maintaining the collision
probability of nearly 2−15. The three-layer construction is iterated a number of
times, with independent keys, to increase the length of the authentication tag
and decrease the chance of MAC forgery. The default number is four times, and
concatenating the 16-bit output values one obtains a 64-bit MAC with forging
probability 2−60.

The main difference in UHash32, compared to UHash16, is that it uses 32-bit
words and iterates over the three-layer scheme only twice (default). This gives
differences in the implementation (the use of larger prime fields) but the analysis
is mainly the same.

The advantages over the previous UMAC (1999) version are that the use of
the cryptographic primitive (AES) is minimised, that (as a result) it is more
efficient on short messages, and that it offers extra flexibility for the verifier: he
can choose how many of the parallel iterations he wants to perform in the MAC
computation, thereby trading computation time for assurance level.

5.4.2.2 Security analysis

The UMAC message authentication code is based on families of universal hash
functions and offers provable security in the sense that there are provable collision
bounds for the hashing part of the MAC computation, so the security in the
end depends on the cryptographic primitive used for enciphering the nonce. The
primitive stated in the specification is the AES (Rijndael) block cipher, which
has had a lot of analysis during and after the AES process supporting its security
claims. There is the added advantage that the encryption is only performed on a
short nonce.

No flaws have been found in the security proof of UMAC. For the layer using
the NH universal hash function family, a first security proof states that NH is
2−w-almost-universal (this means that the collision probability is no more than
2−w) for strings of equal length, when it operates on words of bitlength w. This
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corresponds to the use of NH on one block of fixed length of the message. A
second security proof allows to extend this result to NH working on any pair
of strings, like in the UMAC setting. The reason that the collision probability
after the NH hash layer in the UHash16 scheme is 2−15 rather than 2−16 is that
a signed rather than an unsigned version of NH is used. A variant of the first
security proof shows that the signed version of NH is 2−w+1-almost-universal.

UHash16 and UHash32 have two additional layers using the RP and IP
universal hash function families, and they iterate the three-layer scheme four,
respectively two times. It is proven that the hash family UHash16 is 4-wise
(2−15+2−18+2−28)-almost-universal, and that the hash family UHash32 is 2-wise
(2−31 + 2−33)-almost-universal4.

5.4.3 CBC-constructions: EMAC and RMAC

The DES-based CBC-MAC [462] is an old NIST MAC standard that will probably
be upgraded to AES-based CBC-MAC and the general scheme is also included
in the ISO/IEC standard 9797-1. Therefore AES-based CBC-MAC is considered
as a benchmark for the submissions in this category. The scheme uses the AES
(Rijndael) block cipher in a black box model and generates a MAC value of up to
128 bits. We consider EMAC5 [518], a variant of CBC-MAC with an additional
encryption at the end (this is one of the extensions included in ISO/IEC 9797-1).
We also discuss another recently proposed variant called RMAC [318,471].

5.4.3.1 The design

The computation of EMAC for a secret key K and a message X — divided (after
padding) in 128-bit blocks X1, . . . , Xt — proceeds as follows (here EK denotes
encryption with the 128-bit block cipher AES using key K):

1. Compute H1 = EK1(X1).
2. For i = 2, . . . , t: compute Hi = EK1(Xi ⊕Hi−1).
3. Compute the output transformation: Hout = EK2(Ht). The key K2 may be

derived from K1 by the following procedure: K2 = K1⊕ f0f0 ...f0x.
4. To obtain an m-bit MAC value, select the leftmost m bits of Hout.

RMAC is a randomised variant of this scheme, offering improved resistance
against attacks based on internal collisions. The only difference is in the output
transformation where one encrypts with a key that is obtained by bitwise addition
of K2 and a salt R:

Hout = EK2⊕R(Ht) .

For RMAC, the keys K1 and K2 may be independent or they can be derived
from one master key in a standard way. The salt R is r bits long and should
be padded with 0-bits if it is shorter than K2. For RMAC as specified by NIST
in [471], five different parameter sets have been defined for the sizes m and r.

4 Stronger universality properties are also proven for UHash16 and UHash32, see [379].
5 This construction was previously known as DMAC.
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5.4.3.2 Security analysis

The security of EMAC can be proven based on the assumption that the underlying
block cipher is pseudo-random [518], in this case Rijndael which has received a
lot of analysis during and after the AES process supporting its security claims.

It is worth noting that without the additional encryption at the end, a sim-
ple (adaptive chosen text) existential forgery would be possible for the CBC-
MAC scheme (due to an exor forgery attack) Existential forgeries are also pos-
sible in the case where an additional encryption is used but where K2 is cho-
sen equal to K1 If K1 and K2 are chosen independently, rather than setting
K2 = K1⊕f0f0 ...f0x the level of security against key recovery attacks is less
than suggested by the combined key size (due to a divide-and-conquer attack).
An internal collision based forgery for EMAC needs about 264 known text-MAC
pairs and 1 chosen text when the output length is 128 bits. More chosen texts
are required when the MAC output is truncated, e.g., when the leftmost 64 bits
are chosen, the attack needs about 264 known pairs and 264 chosen texts. On the
other hand this increases the probability of success for an attack where one tries
to guess the MAC value.

The main advantage of the randomised variant RMAC is that it offers im-
proved resistance against attacks that are based on internal collisions. For exam-
ple, when parameters m = 128 and r = 128 are chosen, such an attack requires
about 2128 known pairs and 1 chosen text. On the other hand RMAC needs
stronger assumptions for its security proof; for instance, the underlying block
cipher must be secure against related-key attacks. In Appendix A of [471] it is
noted that for RMAC with two independent keys K1 and K2 an exhaustive
search for the keys is expected to require the generation of 22k−1 MACs, where
k is the size of one key. However, as noted in [358, 363], this can be done much
faster for parameters m = 128 and r = 128: under a chosen message attack with
just one known message and one chosen message K2 can be found with about
2k decryption operations, subsequently K1 can be found in roughly the same
time. [358,363] also describe an alternative attack on RMAC (m = 128, r = 128)
requiring 2123 chosen texts (in running time 2124), and a serious attack on RMAC
using three-key Triple-DES as underlying block cipher instead of AES (in certain
cases this attack works with a complexity of about 256 operations and success
probability of 2−8).

5.4.4 HMAC

The SHA-1 based HMAC [473] has been standardised by NIST as FIPS-198 and
the general scheme is also included in the ISO/IEC standard 9797-2. Therefore
it is considered as a benchmark for the submissions in this category. The scheme
uses the SHA-1 hash function in a black box model and generates a MAC value
of up to 160 bits. SHA-1 operates on blocks of 512 bits that are divided in 32-bit
words, computing a 160-bit hash value.
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5.4.4.1 The design

The computation of the MAC for a secret key K and a message X proceeds by
the following steps (here h denotes hashing with the hash function SHA-1):

1. Compute a key value K ′ of 512 bits long. Suppose K has bitlength l. If
l = 512 set K ′ = K; if l < 512 obtain K ′ by appending 512 − l zero bits
to K; if l > 512 obtain K ′ by computing the hash h(K) (160 bits long) and
appending 352 zero bits to this hash value.

2. Exor K ′ with the 512-bit constant ipad and append the message X: (K ′ ⊕
ipad) ‖X.

3. Compute the hash of the string resulting from step 2: h((K ′ ⊕ ipad) ‖X).
4. Exor K ′ with the 512-bit constant opad and append the 160-bit result from

step 3: (K ′ ⊕ opad) ‖h((K ′ ⊕ ipad) ‖X).
5. Compute the hash of the string resulting from step 4:
h((K ′ ⊕ opad) ‖h((K ′ ⊕ ipad) ‖X)).

6. To obtain an m-bit MAC value, select the leftmost m bits of the result of
step 5.

The string ipad is defined as the concatenation of 64 times the hexadecimal
value ‘36’, and the string opad is defined as the concatenation of 64 times the
hexadecimal value ‘5c’.

5.4.4.2 Security analysis

Bellare et al. [44] give theoretical support for HMAC, relating the security of the
MAC scheme to the security of the underlying hash function, in this case SHA-1
which is a well studied primitive for which no weaknesses have been reported.
More specifically, it has been proved that HMAC is secure if the following as-
sumptions hold (here f is the compression function that is iterated by the hash
function for each 512-bit block):

– The hash function h is collision-resistant when the initial value is secret.
– The compression function f keyed by the initial value is a strong MAC algo-

rithm (this means that its output is hard to predict).
– The values f(K ′⊕ ipad) and f(K ′⊕ opad) cannot be distinguished from truly

random values. This means that the compression function f is a ‘weak’ pseudo-
random function (‘weak’ because the opponent has no direct access to K ′).

It may be noted that if the HMAC construction is used with two independent
keys (rather than using K1 = K ′⊕ipad and K2 = K ′⊕opad), the level of security
against key recovery attacks would be less than suggested by the algorithms key
size (due to a divide-and-conquer attack). An internal collision based forgery for
SHA-1-based HMAC needs about 280 known text-MAC pairs and 1 chosen text
when the output length is 160 bits. More chosen texts are required when the MAC
output is truncated, e.g., when the leftmost 80 bits are chosen, the attack needs
about 280 known pairs and 280 chosen texts. On the other hand this increases
the probability of success for an attack where one tries to guess the MAC value.
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5.5 Comparison of studied MAC primitives

In this section we compare the security levels of the MAC algorithms studied in
the NESSIE project. No short-cut attacks have been found for any of the algo-
rithms, except RMAC. The estimated complexity for an exhaustive key search
depends on the bitlength k of the secret key: about 2k−1 off-line MAC computa-
tions are required. Likewise, the estimated complexity for an attack guessing the
MAC output depends on the bitlength n of the output: about 2n−1 on-line MAC
verifications are needed for a (non-verifiable) forgery. Note that for UMAC the
(provable) forging probability is only near optimal: 2−60 for an output size of 64
bits. Table 5.23 below compares the possible values of k and n for the different
algorithms6.

Table 5.23. Key length k and output length n for MAC primitives.

Algorithm k n
UMAC 128 64
TTMAC 160 ≤ 160
EMAC-AES 128,192,256 ≤ 128
RMAC-AES 128,192,256 ≤ 128
HMAC-SHA-1 ≤ 512 ≤ 160

The most effective generic attack on MAC algorithms is the birthday forgery
attack (based on internal collisions): for an internal state size of l bits and output
size of n bits, this attack requires about 2l/2 known text-MAC pairs and 2l−n

chosen texts. Table 5.24 below compares this complexity for the different algo-
rithms. The entries in the table are denoted (α, β), where α is the number of
known pairs and β the number of chosen texts that are needed. Maximum values
are chosen for the output size n of the algorithms (this minimises the number of
chosen texts that are needed in the attack).

Table 5.24. Estimated (minimal) complexity of birthday forgery attacks on MACs.

Algorithm birthday forgery
TTMAC (2160, 2160)
EMAC-AES (264, 1)
RMAC-AES (2128, 1)
HMAC-SHA-1 (280, 1)

It can be seen from Table 5.24 that for EMAC-AES and HMAC-SHA-1 the
birthday attack requires respectively 264 or 280 known pairs and (in both cases)
1 chosen text (when the output size n is equal to the internal state size). The
randomised RMAC offers better resistance than EMAC: when both the output
and the salt value are 128 bits long, the attack needs 2128 known pairs and
6 Note that other parameter sets can be chosen for UMAC.
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1 chosen text. TTMAC offers the highest level of security because of its large
internal state size: 2160 known pairs and 2160 chosen texts are needed (when
n = 160). Note that the birthday attack does not apply to the UMAC algorithm.

For RMAC-AES there is an alternative attack as described in [358,363]. This
attack can be used to find one of the two keys in the system faster than by an
exhaustive search (after which RMAC reduces to a simple CBC-MAC for which
it is well known that simple forgeries can be found). The estimated complexity of
the attack is 2123 chosen texts and 2124 running time (considering RMAC with
output and salt value of 128 bits).
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6. Asymmetric encryption schemes

6.1 Introduction

Asymmetric encryption, also known as public-key encryption, is a method of
sending messages securely between two people who do not share a common secret.
This is in contrast to symmetric encryption, where the communicating parties
are assumed to share a common secret key. Examples of symmetric encryption
include block ciphers (see Sect. 2) and stream ciphers (see Sect. 3). Asymmetric
cryptography was developed out of the ideas of Diffie and Hellman [201] and was
first properly realised as the ever popular RSA cryptosystem [543] in 1978.

In the twenty-five years since then the area has received copious attention from
researchers, who have tightened security definitions and requirements, proposed
and broken new schemes, and expanded the range of applications.

During the three-year lifespan of the NESSIE project, there have been several
important shifts of focus within this research area. Much effort has been expended
by the research community in the field of provable security and no new primitive
is really taken seriously these days unless its security can in some way be related
to a “hard” problem. This has also led to an increase in research on so called
side-channel attacks: attacks that take advantage of information that may be
available in the real world but is not available to an attacker in a mathematical
model. These security requirements and limitations will be discussed in Sect. 6.2.

Also within the last three years, the International Organisation for Standard-
ization (ISO) has developed a new framework for asymmetric encryption that
attempts to better model the real-world use of public-key cryptography. The new
KEM-DEM framework, discussed in Sect. 6.3, was popular enough that almost all
the primitives selected for further study in phase II of the NESSIE project were
tweaked to fit into this model. Only EPOC-2, discussed in Sect. 6.4.4, remained
completely outside of this framework.

6.2 Security Requirements

6.2.1 Preliminaries

We start with a formal definition of an asymmetric encryption algorithm. In or-
der to fulfil the security requirements of Sect. 6.2.2 we will see that it is necessary
0 Coordinator for this chapter: RHUL — Alex Dent
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for encryption algorithms to be probabilistic. We choose here to represent these
probabilistic algorithms as deterministic algorithms that take some fixed length
random seed as input. This serves to accentuate the problem of adaptively cre-
ating multiple random bit strings, e.g. generating one bit string, testing it for
some property and then discarding it and generating a new random bit string.
However, when there is no danger of confusion, we assume this input is implicit
and whenever an algorithm generates some randomness it actually derives the
required randomness from this seed.

Definition 6.1. An asymmetric encryption system is a triple of deterministic
algorithms (G, E ,D). The first algorithm G is called the key generation algorithm
and need only be run once to set up the system. It takes as input a unary string
1λ, where λ is called the security parameter, and a fixed length random seed r,
and outputs a key-pair (pk, sk). The key pk is called the public key and needs to
be distributed to all people who wish to encrypt messages. The key sk is called
the secret key or private key1 and should only be known to those people who are
permitted to read encrypted messages.

The second algorithm E is the encryption algorithm. It takes as input a mes-
sage m, the public key pk and a fixed length random seed r, and outputs a cipher-
text C.

The last algorithm D is the decryption algorithm. It takes as input a ciphertext
and the secret key (which may include elements from the public key), and outputs
a message m′ or the error symbol ⊥.

For the system to be useful we require that it is sound, i.e. for any message m,
random seed r and valid key-pair (pk, sk) we have that D(E(m, r, pk), sk) = m.
We also require that some kind of security result holds that limits an attacker’s
power to recover information about a message m or the secret key sk from an
encipherment.

It is impossible for an asymmetric encryption scheme to be perfectly secure;
an attacker that has access to unlimited (time and computational) resources can
always recover a secret key. This is because an attacker with unbounded resources
can just search the (finite) space of possible private keys and check their ability
to decrypt messages. So, in order to prove any meaningful results, we have to
limit the attacker’s computational power and there are two approaches to this
problem.

The first uses the field of complexity theory. We can assume that the attacker
is represented by a (probabilistic) Turing machine that runs in polynomial-time
in the security parameter, and then derive results about its ability to break the
scheme. This is a very elegant theory but is only useful as an asymptotic ap-
proximation. An attacker that runs in polynomial time is not guaranteed to be
practical in real terms, and an attacker that doesn’t run in polynomial time is
not guaranteed to be impractical for all useable security parameters. Since the
NESSIE call for primitives [475] required that the security level of a candidate
1 Some standardisation bodies reserve the term “secret key” for a key used within a

symmetric algorithm and insist upon the use of the term“private key” for asymmetric
applications.
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be of a certain specified level we must regretfully put aside this theory and con-
centrate on something more concrete.

Definition 6.2. A (t, ε) solver for a problem is a probabilistic Turing machine
that runs in time bounded above by t and outputs a solution for the problem with
probability at least ε.

A (t, ε, qD) attacker for an asymmetric encryption scheme is a probabilistic
Turing machine A that runs in time bounded above by t, makes at most qD queries
to a decryption oracle and succeeds in breaking the scheme with probability at least
ε.

A further discussion of the access an attacker might have to a decryption
oracle and the definition of “breaking the scheme” can be found in Sect. 6.2.2.

Of course, the success probability ε depends upon the units we use for the
time t — if we measure time in years then we would expect a higher success
probability in 1 unit time than if we measure time in seconds! We decide that
one unit of time is equal to the time taken for one decryption operation.

However there is still a problem with this approach. In order to prove that a
system is as secure as the NESSIE call requires, the submitters had to prove the
absence of a strong attacker. To do this the submitters were allowed to submit
a proof that the existence of a (t, ε, qD) attacker for their scheme implied the
existence of a (t′, ε′) solver for some trusted cryptographic problem. The rela-
tionship between t, t′, ε and ε′ defines the efficiency of the security reduction. A
discussion of those problems which are trusted to be “hard” by the cryptographic
community can be found in Sect. 6.2.3.

6.2.2 The Security Models

So far we have specifically avoided stating what it means for an asymmetric
encryption scheme to be secure. In order to do this we have to define two things:
the conditions an attacker must fulfil for the scheme to be considered broken,
and the access that an attacker has to the system.

There are many different ways in which a cryptosystem might be considered
weak. Whether these weaknesses actually“break” the system, i.e. give an attacker
some useful information, depends upon the application for which the cryptosys-
tem is being used. We model these various success criteria as games that an
attacker plays against a mythical system that controls the encryption scheme
and measure the attacker’s success as the probability that he wins the game.

The most obvious, and most naive, way that an encryption scheme can be
considered weak is if there exists an attacker that can, given some ciphertext,
recover the associated message.

Definition 6.3 (One-way (OW)). Consider the following game that an at-
tacker plays against a system which is using an asymmetric encryption scheme
(G, E ,D) with a security parameter λ.

1. The system picks a random seed r, runs G(1λ, r) to generate a key-pair
(pk, sk) and passes the value pk to the attacker A.
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2. The attacker runs until it is ready to receive a challenge ciphertext.
3. The system picks a random seed r and a message m uniformly at random

from the set of possible messages and calculates the challenge ciphertext C =
E(m, r, pk). The system then passes C back to the attacker.

4. The attacker outputs a guess m′ for the message m.

The attacker wins the above game if m′ = m.
An asymmetric encryption scheme is said to be one-way or OW if the prob-

ability that the attacker wins the above game is small.

This is a fairly weak definition of security. For example, if an encryption
scheme is only used to encrypt a message from a certain small known subset
of possible messages then it might be enough for an attacker to tell whether a
ciphertext is the encryption of one given message or another. This leads to the
stronger definition of message-indistinguishable encryption schemes [271,536].

Definition 6.4 (Message-indistinguishable (IND)). Consider the following
game that an attacker plays against a system which is using an asymmetric en-
cryption scheme (G, E ,D) with security parameter λ.

1. The system picks a random seed r, runs G(1λ, r) to generate a key-pair
(pk, sk) and passes the value pk to the attacker A.

2. The attacker generates two distinct messages m0 and m1, and submits them
to the system.

3. The system
a) Chooses a bit σ uniformly at random from {0, 1} and a random seed r.
b) Calculates the challenge ciphertext C = E(mσ, r, pk) and returns this to

the attacker.
4. The attacker outputs a guess σ′ for σ.

The attacker wins the above game if σ′ = σ.
An attacker A has an advantage AdvA of winning the above game where

AdvA = Pr[σ′ = σ]− 1/2 (6.1)

and the scheme is said to have advantage

Adv = max
A

AdvA . (6.2)

An asymmetric encryption scheme is said to be message-indistinguishable or IND
if the scheme’s advantage is small.

Consequently it is easy to see that if a system is message-indistinguishable
then it is certainly one-way; however there are schemes which are thought to be
one-way that are definitely not message-indistinguishable (such as the original
RSA cryptosystem [543]). Of course it is difficult to show that any scheme is one-
way as a proof that a scheme is one-way would imply a proof that P 6= NP , which
would be a major mathematical achievement. However we can show that there
exists the scope for a scheme that is one-way but not message indistinguishable.
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Consider an asymmetric encryption scheme (G, E ′,D′) constructed from a one-
way asymmetric encryption scheme (G, E ,D) in the following manner:

E ′(m, pk) = b||E(m, pk) where b is the leftmost bit of m,

D′(b||C, sk) =
{
D(C, sk) provided the leftmost bit of D(C, sk) is b ,
⊥ otherwise .

This scheme is one-way (possibly slightly less one-way than the original scheme)
and yet it is easy to distinguish between messages that have different leftmost
bits. Hence the scheme is not message indistinguishable.

Next we will consider the access an attacker has to the system. In the simplest
case an attacker might only have access to the challenge ciphertext and the public
key. However it is possible that an attacker might be able to gain decryptions of
certain messages, so we have to define more relaxed attack models.

Definition 6.5 (Attack models). We assume that the attack algorithm A
runs in two stages: pre-challenge and post-challenge. Let the attacker have ac-
cess to an oracle O1 up until the challenge is issued, and access to an oracle O2

after this time.

– The attack is said to be a chosen plaintext attack (CPA) if the oracles are both
trivial, i.e. O1 = O2 and both return the error symbol ⊥ for any input.

– The attack is said to be a chosen ciphertext attack (CCA1) or lunchtime attack
if the oracle O1 decrypts messages (so O1(C) = D(C, sk)) but the oracle O2 is
trivial.

– The attack is said to be an adaptive chosen ciphertext attack (CCA2) if both
oracles O1 and O2 decrypt messages, with the exception that the oracle O2

returns ⊥ if it is queried on the challenge ciphertext.

When the oracles O1 and O2 are not trivial, they are referred to as decryption
oracles.

Again it is easy to see that if a system is secure against an attack in the
CCA2 attack model then it is also resistant to that attack in the CCA1 and CPA
models.

There has been much discussion about the appropriateness of each of the
different types of attack model. It is relatively easy to envisage a situation where
it is necessary for an encryption scheme to be resistant to attacks in the CCA1
model – for example, a malicious employee who only attempts to attack a system
after he has been fired and therefore had his decryption privileges revoked. It is
a lot harder to envision a situation where the CCA2 model is appropriate. It is
difficult to see why an attacker with such strong decryption access would not be
able to just decrypt the challenge ciphertext. However this is not the best way to
think of the model. It is better to think of the CCA2 model as proving that the
only way to break the system is to apply the decryption function to the challenge
ciphertext.

The combination of success criteria and attack model is usually referred to by
the combination of their abbreviations. For example, a scheme that is message-
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indistinguishable in the adaptive chosen ciphertext model is said to be IND-
CCA2. This is the strongest measure of security and is the de facto standard
for an asymmetric encryption scheme. Formally we will use the notion of an
attacker derived in Sect. 6.2.1. A (t, ε, qD) attacker in the IND-CCA2 model is a
probabilistic Turing machine A that runs in time at most t, makes at most qD
queries to the decryption oracles (i.e. the total number of queries made to the
oracles O1 and O2 is at most qD), and distinguishes messages with advantage at
least ε.

We will consider the security of the submitted schemes primarily in the IND-
CCA2 model, i.e. we will consider the resistance to message-distinguishing attacks
in the adaptive chosen ciphertext model. However, we will also consider the se-
curity of some of the submitted schemes in the IND-CPA model, i.e. in a model
where the attacker does not have access to a decryption oracle. Obviously, any
security reduction valid in the IND-CCA2 model is also valid in the IND-CPA
model. Therefore the IND-CPA model is only of interest if it yields a tighter
security proof or a security proof that reduces to a better underlying problem. In
the IND-CPA model we will talk about a (t, ε) attacker: a probabilistic Turing
machine A that runs in time at most t and distinguishes messages with advantage
at least ε.

For a further discussion of security models the reader is referred to [45,418].

6.2.3 Trusted cryptographic problems

As we have already mentioned, it is impossible to prove the security of an asym-
metric encryption scheme directly. The best that can be done is to relate the
security of a scheme back to some problem that is thought to be hard by the
research community and trusted by developers. In this section we will discuss the
various trusted problems to which the security of the submitted primitives can
be reduced.

The NESSIE primitives use two distinct ‘flavours’ of trusted problems: those
based on the difficulty of solving the discrete logarithm problem and its related
problems, and those based on the difficulty of factoring composite numbers. For
a further discussion of the trusted cryptographic problems used by the NESSIE
primitives see [418].

6.2.3.1 Factoring based problems

All of the schemes based on factoring problems use arithmetic in the equivalence
class Z/nZ where n is some composite number. In all cases the ability to factor
the number (or ‘modulus’) n implies the ability to solve the hard problem. For
simplicity we define λ(n) = l.c.m.(p− 1, q − 1) when n = pq.

Definition 6.6. The following are trusted cryptographic problems and are all in
some way related to the difficulty of factoring a large composite number.

– The factoring problem is the problem of finding the component factors of a
composite integer n. In particular, we will concentrate on finding the component
factors of an integer n of the form pdq, where p and q are prime and d ≥ 1.
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– An RSA key is a pair (n, e) where n = pq with p and q primes, and 1 < e < n
with g.c.d.(λ(n), e) = 1. The RSA problem is the problem of finding an integer
1 ≤ x ≤ n such that xe = y mod n when given an RSA key (n, e) and a
randomly selected integer 1 ≤ y ≤ n.

– The e-th root problem is similar to the RSA problem, except that the exponent
e is thought of as a constant. The e-th root problem is the problem of finding
an integer 1 ≤ x ≤ n such that xe = y mod n when given a modulus n = pq
(with p and q primes) and a randomly selected integer 1 ≤ y ≤ n.

The factoring problem has been of interest to mathematicians for centuries
and there are many algorithms that efficiently solve it for specific classes of ‘mod-
ulus’ n. However there are no known efficient algorithms for solving the factoring
problem on a modulus n = pdq for small d (i.e. for d <

√
log p). Again it is quite

easy to see that if the RSA problem is hard for a modulus n then the factoring
problem is hard for n too. The RSA problem was implicitly defined when the
original RSA cryptosystem was proposed, and has been widely studied.

Whilst all of the above problems are well established, some of the schemes
studied in phase I reduce to one of the following less well known problems.

Definition 6.7. The following are trusted cryptographic problems:

– Consider a modulus of the form n = p2q where the factorisation is unknown.
The p-subgroup problem is the problem of deciding, given h ∈ (Z/nZ)∗, if there
exists a g ∈ (Z/nZ)∗ such that gp = h.

– For our purposes, the gap-factoring problem is the problem of finding the com-
ponent factors of a composite integer n = p2q when given access to the follow-
ing oracle. The oracle returns the bit b when queried with gbhr for unknown
b ∈ {0, 1} and r ∈ {0, . . . , p− 1}, and fixed public g, h ∈ (Z/nZ)∗ where
– gp has order p− 1 modulo p2,
– h = hn0 mod n for some h0.

These problems have not been subject to the same level of peer review by the
scientific community as the factoring problem or the RSA problem; however there
is no obvious reason to suspect that the p-subgroup problem or the gap factoring
problem is particularly easier to solve than the RSA or factoring problems.

6.2.3.2 Discrete logarithm based problems

Problems related to the discrete logarithm problem are usually phrased in terms
of a group G = 〈g〉 where g has prime order q. Technically, since all groups
of prime order are isomorphic, the hardness of the problem depends not upon
the group itself but upon the representation of the group. For example, the dis-
crete logarithm problem is thought to be hard in elliptic curve subgroups but is
definitely easy in the additive group of integers modulo q.

Definition 6.8. Let g be an element of a group, and let g have order q.

– The discrete logarithm problem (DLP) is the problem of finding a when given
(g, ga).
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– The computational Diffie-Hellman problem (CDH) is the problem of finding gab

when given (g, ga, gb).
– The decisional Diffie-Hellman problem (DDH) is the problem of deciding if
gab = gc when given (g, ga, gb, gc).

– The gap Diffie-Hellman problem (Gap-DH) is the problem of finding gab when
given (g, ga, gb) and an oracle O that correctly solves the decisional Diffie-
Hellman problem.

Obviously if the DDH problem is hard in the group 〈g〉 then so is the CDH
problem and the DLP. All of these problems are well established, except for the
Gap-DH problem, which was only formally introduced in 2001 [498].

In situations where the security of an algorithm can be reduced to the difficulty
of solving the CDH problem on some group it is not uncommon for the algorithm
constructed to solve the CDH problem to output not a single answer to the
problem but a small list of some L elements that contains the answer. Obviously,
if one could solve the DDH problem on that group (either by means of a dedicated
algorithm or by the use of some oracle) then selecting the correct answer from the
list would be trivial, but we cannot assume that the DDH problem is tractable
on the group so we are forced to use other means to find the correct answer.

The simplest, and fastest, method of selecting an answer is to pick an element
of the list uniformly at random and output that element as the algorithm’s final
answer. The probability that this technique outputs the correct answer is 1/L
times the probability that the correct answer appears on the list. Since L is
typically of order related to qD, the number of decryption oracle queries, this can
have a significant impact on the efficiency of the reduction (see Sect. 6.2.9).

A more sophisticated approach has been suggested by Shoup [581]. Suppose
that there exists an algorithm which, when given an instance of the CDH problem
(g, ga, gb), outputs a (small) list of L elements that contains the solution to the
CDH problem with probability at least ε. Then we may construct an algorithm
that will output the correct answer to the CDH problem with probability at least
1− (1/2)k for some k > 2. However, this involves running the original algorithm
2k d1/εe times with randomised inputs. Formally, if there exists an algorithm
which outputs a list of L elements that contains the solution to the CDH problem
with probability at least ε, and this algorithm runs in time bounded by t, then
there exists a (t′, ε′) solver for the CDH problem with

ε′ ≈ 1− 1
2k
, (6.3)

t′ ≈ 2k d1/εe t+ 2kL d1/εeT , (6.4)

where

– k is an integer greater than two,
– and T is the time taken to check an equation of the form{

h · g−ax1y2 · g−bx2y1 · gx2y2
}x′1y′1 =

{
h′ · g−ax

′
1y

′
2 · g−bx

′
2y

′
1 · gx

′
2y

′
2
}x1y1

.

for random x1, y1, x2, y2, x
′
1, y

′
1, x

′
2, y

′
2 and fixed ga and gb.
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6.2.3.3 Solving trusted cryptographic problems

As has been mentioned several times, even the trusted cryptographic prob-
lems in the previous two sections can be solved given enough computing power.
Therefore, if we estimate the different amounts of computing power it would
take to solve these problems then we may gain some measure of the com-
parative difficulty of seemingly unrelated problems. The notation Lq[α, c] =
O(exp((c+ o(1))(ln q)α(ln ln q)1−α)) is used for estimating asymptotic complex-
ity.

– Integer factorisation. The fastest known algorithms for factorising large
integers are the Number Field Sieve [393] and the Elliptic Curve Method [397].
The asymptotic time taken by the number field sieve to factor an integer n
is approximately Ln[ 13 , c], where c depends on the variant of the number field
sieve used. The asymptotic time taken by the elliptic curve method to factor
an integer whose smallest factor is p is Lp[ 12 ,

√
2]. Both of these algorithms are

subexponential in the size of their input.
An improvement of the elliptic curve method exists for n = p2q [213,517] and
a special algorithm exists for n = prq with large r [108].

– RSA problem The fastest method known for solving the general RSA problem
involves factoring the modulus.

– e-th root problem The fastest method known for solving the e-th root prob-
lem (for e 6≡ 1 mod λ(n)) involves factoring the modulus.

– Discrete logarithm over Fp. The index-calculus method [144,221,492] is the
fastest known method for solving the discrete logarithm problem over Fp. It is
closely related to the number field sieve factoring algorithm and has expected
asymptotic running time of Lp[ 13 , c], which is subexponential in the input size.

– Elliptic curve discrete logarithm. The fastest general methods for solving
the elliptic curve discrete logarithm problem are the Pollard ρ and the Pollard
λ methods [524]. For a group with q elements, the Pollard ρ runs in time√
πq/2 and the Pollard λ runs in time 2

√
q but can be faster in some special

cases. Both can be efficiently parallelised [607] and have been slightly improved
[250,624]. No subexponential algorithm has been found for solving the elliptic
curve discrete logarithm problem.
However, there are subexponential attacks for specific elliptic curves: supersin-
gular curves [236,439,550] and anomalous curves [554,564,587].

NESSIE has concluded that the following key sizes are roughly equivalent.
For a further discussion on this subject, the reader is referred to Sect. 7.2.2.3.

Equivalent symmetric key size 56 64 80 112 128 160
Elliptic curve key size 112 128 160 224 256 320
Modulus length (pq) 512 768 1536 4096 6000 10000
Modulus length (p2q) 570 800 1536 4096 6000 10000

It should be noted that these are estimates for classical computers. If it proves
possible to build a quantum computer then there exist quantum algorithms that
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successfully solve both the discrete logarithm problem and the factorisation prob-
lem [580]. None of the asymmetric encryption algorithms submitted to NESSIE
should be considered secure against attacks made by quantum computers.

6.2.4 The Random Oracle Model

Owing to the complex nature of asymmetric encryption schemes, it is very difficult
to prove results about their security without making some assumptions about the
properties of the components that make up the cipher. A security proof that does
not make any assumptions is called a proof in the standard model.

The most common assumption used to simplify a proof is that a good hash
function will behave exactly like a completely random function. This is the ran-
dom oracle model, and was introduced by Bellare and Rogaway in 1993 [52].
Random functions (or oracles) and good hash functions share many properties,
for example in both cases it is difficult to compute the pre-image of a given output
or to find two elements that have the same image, and so this might be consid-
ered a reasonable modelling assumption. One of the common interpretations of a
proof in the random oracle model used to be that if a scheme had a security proof
in the random oracle model then that scheme was secure unless the particular
hash function used interacted badly with the rest of the cryptosystem. This was
considered unlikely to happen as hash functions are usually composed on the
bit level whilst asymmetric encryption schemes take advantage of higher-level
properties such as group structures.

Doubt, however, was cast on the random oracle model in a paper by Canetti,
Goldreich and Halevi [135]. This paper proved that if there exists a cryptosystem
that is secure in the random oracle model then there exists a cryptosystem that
is secure in the random oracle model but insecure when the random oracle is
replaced with any hash function. Whilst this means that the above interpretation
is, in fact, incorrect, many people still accept it owing to the highly technical and
theoretical nature of the results in [135].

For the purposes of NESSIE, proofs of security that were given in the random
oracle model were accepted but regarded as heuristic.

6.2.5 Other models

There are several other models that have been used to examine cryptographic
algorithms, but all of the NESSIE submissions were provided with proofs of
security in either the standard or random oracle model. The only other model
that could be of interest is the generic group model [474,581].

The generic group model examines the security of schemes that can be im-
plemented on many different groups, such as ECIES (see Sect. 6.4.2). A proof of
security in the generic group model intends to show that a scheme is secure up
to attacks that take advantage of the specific nature of the group on which the
scheme operates. It models this by only giving the scheme access to a random
encoding of a group element, rather than to the group element itself.
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Unfortunately the generic group model was shown to have the same weak-
nesses as the random oracle model: if there exists a scheme that is provably secure
in the generic group model then there exists a scheme that is provably secure in
the generic group model but insecure when the random encoding function is re-
placed by any fixed encoding function [194,230]. Also the generic security proofs
cannot be provided for the schemes based on factoring problems, as the factoring
problems tend to be defined on specific group encodings (usually Z/nZ). For this
reason NESSIE has given less weight to security proofs given in the generic group
model.

6.2.6 Validation of subgroup elements

Many asymmetric encryption schemes, particularly those based on discrete loga-
rithm problems (see Sect. 6.2.3.2), involve group operations that take place in a
prime order subgroup H of some much larger group G. Typically G will be either
an elliptic curve group or the group of multiplicative integers modulo some value
n, and H will be a cyclic subgroup generated by some element g ∈ G of prime
order. In situations where an algorithm takes an element of the subgroup H as
input, either as part of a message, a ciphertext or as part of the secret key, it is
important that the algorithm check that:

– the given element is an element of the group G,
– and the given element is a member of the subgroup H generated by g.

Failure to check that the given input is a member of the subgroup H may lead to
attacks like the small subgroup attacks presented by Lim and Lee [399]. Failure
to check that the given input is a member of the group G may lead to attacks
such as those given by Biehl, Meyer and Müller [58] and Antipa et. al. [23].

It is usually fairly easy to avoid these attacks by checking that the given
element is in G and in H. We separate these two conditions because the methods
usually used for the checks are different in each case.

Suppose that an algorithm wishes to check that an element h is in G. If G is
the group of multiplicative integers modulo n then the algorithm merely checks
that h is an integer satisfying 1 ≤ h ≤ n and that gcd(h, n) = 1. If the group G
is an elliptic curve group over a field F then the algorithm merely checks that h
defines a pair (x, y) ∈ F×F and that (x, y) satisfies the defining equation for the
elliptic curve.

Suppose that an algorithm wishes to check that an element h ∈ G is inH ≤ G.
Let p be the (prime) order of H and let r be the index of H in G. If G is cyclic (as
is the case when G is the multiplicative group of a finite field) or gcd(p, r) = 1 (as
is often the case in elliptic curve groups) then the algorithm can check if h ∈ H
by checking to see if hp = 1. If G is not cyclic and gcd(p, r) 6= 1 then further
information about the group is required. Note that these are not necessarily the
most efficient tests. Note further that if the attacker has the ability to modify
the elements of the key then the attacker is necessarily performing a side channel
attack (see Sect. 6.2.7 and Annex A).
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In our description of the submitted primitives (see Sect. 6.4 and Sect. 6.5)
we will implicitly assume that all group elements have been validated before any
computations are made that use them.

6.2.7 Side-channel attacks

Because of the increasing prominence of proofs of security in the field of asym-
metric encryption, there has been an increase in interest in side-channel attacks.
A side-channel attack is an attack that uses information or abilities that are as-
sumed to be unavailable to an attacker in the normal attack models. This means
that, essentially, a side-channel attack is the only method of breaking a provably
secure asymmetric encryption scheme without breaking the underlying problem.
For further information on side-channel attacks, the reader is referred to Annex A.
For a further discussion of side-channel attacks against the asymmetric encryp-
tion primitives submitted to NESSIE, the reader is referred to [197,207,508].

6.2.8 Current standards

There are several bodies that are currently standardising asymmetric encryption
schemes. These include RSA Laboratories, which produce the PKCS (Public-Key
Cryptography Standards) [548], the SECG (Standards for Efficient Cryptography
Group) [136] and the IEEE P1363 group [299, 300]. All of these groups also
standardise other asymmetric schemes, including digital signature schemes (see
Chapter 7).

The International Organisation for Standardisation (ISO) is also currently
developing a standard that includes asymmetric encryption schemes (ISO/IEC
18033) [312,584]. This draft standard currently includes several of the asymmetric
encryption schemes considered during Phase II of the NESSIE process, includ-
ing RSA-KEM (see Sect. 6.4.6), PSEC-KEM (see Sect. 6.4.5), ECIES-KEM (see
Sect. 6.4.3), ACE-KEM (see Sect. 6.4.1) and EPOC-2 (see Sect. 6.4.4).

6.2.9 Assessment criteria

The most important criterion in the NESSIE evaluation process is security. The
submitters were encouraged to submit their asymmetric encryption primitives
with a proof that they are secure in the IND-CCA2 model, although this proof
could use the heuristic random oracle model. The security proofs were evaluated
in terms of the hardness of the problem to which the security of the scheme
reduces (see Sect. 6.2.3) and the efficiency of that reduction.

The efficiency of the reduction is the relationship between a (t, ε, qD) attacker
that breaks the cryptosystem and the implied (t′, ε′) solver that would solve
the underlying trusted cryptographic problem. If we know the efficiency of the
reduction then we can, by examining the best known methods for solving the
underlying problem, estimate the maximum advantage ε that an attacker could
have for attacking the encryption scheme. Normally we will also be able to de-
termine the minimum size of the security parameter for which the cryptosystem
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has the security level specified in the NESSIE call. We classify the efficiency of
the security reductions in the following way:

– the security reduction is tight if t′

ε′ ≈
t
ε ,

– the security reduction is not so tight if t′

ε′ ≈ qD
t
ε ,

– the security reduction is loose if t′

ε′ �
t
ε .

Usually we assume that qD � 2λ, where λ is the security parameter.
In order for a scheme to be practical we must balance the security of the

scheme against its performance (speed and size). In order for these calculations
to be fair and accurate we need to make certain comparisons between the various
parameter sizes of the underlying trusted problems. We wish to use parameters
that ensure that each of the problems can be solved with the same amount of com-
putational power and that this computational difficulty is sufficient to protects
the data. A discussion of these issues can be found in [573].

In accordance with the wishes of the NESSIE Project Industry Board, Intel-
lectual Property Right (IPR) issues were also considered.

Lastly we used vulnerability to side-channel attacks only as a final factor in
determining suitability. This is because an algorithm that is vulnerable to a side-
channel attack can be protected by a careful implementation; indeed this is the
most common solution according to the PIB. Only if it could be shown that a side
channel attack applies to a primitive, regardless of the implementation (i.e. there
is no known defence, or the primitive has an inherent weakness when confronted
with side channel attacks), was it be taken into account as a selection criterion.

6.3 KEM-DEM cryptosystems

6.3.1 Hybrid encryption

In comparison with symmetric encryption algorithms, asymmetric encryption
schemes are often slow and tend to have smaller message spaces. Consequently,
in practice, asymmetric encryption schemes are often only used to encrypt a
randomly generated symmetric key that is then used to encrypt a longer message.
Asymmetric encryption schemes that use this technique are known as hybrid
encryption schemes. The KEM-DEM model is a formalisation of this idea. It was
introduced in a later version of [171], which also included the security analysis of
ACE-KEM described in Sect. 6.4.1, and in the draft ISO proposal [584].

A KEM-DEM cryptosystem is composed of two algorithms: a key encapsu-
lation mechanism (KEM) and a data encapsulation mechanism (DEM). A key
encapsulation mechanism is a scheme that, given a public-key, derives a random
key and provides a method of encrypting (encapsulating) and decrypting (de-
capsulating) that random key. This typically uses asymmetric techniques. The
data encapsulation mechanism uses that random key to encrypt a message. This
typically uses symmetric techniques. Formally,
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Definition 6.9. A key encapsulation mechanism (KEM) is a triple of determin-
istic algorithms (G,KEM .Encrypt ,KEM .Decrypt). As before, G is a key gen-
eration algorithm that takes as input a unary string 1λ, where λ is called the
security parameter, and a fixed length random seed r, and outputs a key-pair
(pk, sk). The encapsulation algorithm, KEM .Encrypt, takes the public-key pk
and a random seed as input and outputs a pair (K,ψ). The decapsulation algo-
rithm, KEM .Decrypt, takes as input an encapsulation ψ and the secret-key sk,
and outputs a key value K ′ or the error symbol ⊥.

As before we require that the KEM is sound, i.e. for any valid key-pair (pk, sk)
the decapsulation of an encapsulated key is the key itself, or, in other words, if
KEM .Encrypt(pk, r) = (K,ψ) then KEM .Decrypt(ψ, sk) = K. We will also need
some kind of security result that limits an attacker’s ability to derive information
about the key K from the public-key pk and the encapsulation ψ. Notice that
the KEM encapsulation algorithm does only take as input a random seed and
the public-key pk, which is often considered to be a system parameter, and never
has access to the message.

Again, although we define both the key generation algorithm and the encap-
sulation algorithm as deterministic, it is often easier to think of them as prob-
abilistic algorithms. So, when the context is sufficiently clear, we will implicitly
assume the presence of a random input and that any randomness required by an
algorithm is actually derived from the random input provided.

Definition 6.10. A data encapsulation mechanism (DEM) is a pair of deter-
ministic algorithms (DEM .Encrypt ,DEM .Decrypt).2 The encryption algorithm
DEM .Encrypt takes as input a message m and a key K and computes a cipher-
text χ. The decryption algorithm DEM .Decrypt takes as input a ciphertext χ and
a key K and outputs a message m′ or the error symbol ⊥.

The DEM must also be sound, i.e. for all valid keys K and messages m
we have that DEM .Decrypt(DEM .Encrypt(m,K),K) = m, and it must satisfy
some security condition. It should also be noted here that the DEM does not have
access to the public key used by the KEM, only the symmetric key produced by
the KEM and the message itself.

Definition 6.11. A KEM-DEM based cryptosystem is a hybrid asymmetric en-
cryption scheme composed of a KEM (G, KEM .Encrypt, KEM .Decrypt) and a
DEM (DEM .Encrypt, DEM .Decrypt) where the output key-space of the KEM
is the same as the key-space of the DEM. To encrypt a message m the hybrid
scheme runs as follows:

1. Generate a random seed r.
2. Run KEM .Encrypt(pk, r) to produce an encapsulation pair (K,ψ).
3. Run DEM .Encrypt(m,K) to produce a ciphertext χ.
2 Technically there is no reason why the DEM should not be composed of proba-

bilistic algorithms. However, because of the computational problems associated with
generating random or pseudo-random bits, we do not recommend that probabilistic
algorithms are used.
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4. Output C = (ψ, χ).

Hence the decryption algorithm for a ciphertext C is

1. Parse C as appropriately sized ψ and χ.
2. Run KEM .Decrypt(ψ, sk) to obtain a key K ′ or ⊥.
3. Run DEM .Decrypt(χ,K ′) to obtain a message m′ or ⊥.
4. Output m′ or ⊥.

Key generation for the hybrid scheme is provided by G.

At this point it might be helpful to consider an elementary example of a KEM-
DEM based cryptosystem. The first asymmetric encryption scheme that can be
modelled as a KEM-DEM cryptosystem is the ElGamal scheme [220]. This uses
a KEM based on the Diffie-Hellman key agreement protocol and a DEM based
on modular multiplication.3

This provides a good example of the differences between a key encapsulation
mechanism and a key agreement or key exchange protocol. Although a key agree-
ment protocol can be used as the basis for a KEM, the security requirements for
a KEM are different from those of a key agreement protocol. A KEM is only re-
quired to produce an encapsulation of a key that will be secure when used once.
The ElGamal scheme is a good example: the scheme is provably as secure as the
decisional Diffie-Hellman problem (see Sect. 6.2.3) when a new key is generated
for each encryption, but it is totally insecure when keys are reused.

6.3.2 KEM Security

One of the aims of the KEM-DEM model was to provide a security analysis based
on the component parts. The security of the KEM is based on the inability of an
attacker to distinguish a proper encapsulation pair from a random pair.

Definition 6.12. Consider the following game an attacker A plays against a sys-
tem using a KEM (G,KEM .Encrypt ,KEM .Decrypt) with a security parameter
λ.

1. The system runs G(1λ, r) (for some suitably random seed r) to generate a
random key-pair (pk, sk) and passes pk to the attacker.

2. The attacker runs until it requests a challenge encapsulation.
3. The system generates the challenge in the following way:

a) The system generates a suitably random seed r.
b) Next, it runs KEM .Encrypt(pk, r) to generate a pair (K0, ψ).
c) The system then generates a key K1 uniformly at random from the entire

output space of the KEM.
d) Lastly, it picks a bit σ uniformly at random from {0, 1} and returns

(Kσ, ψ) to the attacker.

3 Technically, ElGamal does not fit into the formal KEM-DEM model as the DEM re-
quires access to the public key in order to encrypt the message. However the structures
are sufficiently similar to be enlightening.
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4. The attacker outputs a guess σ′ for σ.

The attacker wins the above game if σ′ = σ.
The advantage of an attacker A is

AdvA = Pr[σ′ = σ]− 1/2 (6.5)

and the advantage of the KEM is said to be

AdvKEM = max
A

AdvA . (6.6)

A KEM is said to be indistinguishable or IND if its advantage is small.
A (t, ε) attacker for a KEM in the IND-CPA model is a probabilistic Turing

machine A that runs in time bounded above by t and has advantage at least ε. A
(t, ε, qD) attacker for a KEM in the IND-CCA2 model is a probabilistic Turing
machine A that runs in time bounded above by t, makes at most qD decryption
queries and has advantage at least ε.

Most key encapsulation mechanisms are composed of some kind of security
mechanism which is highly algebraic, and some kind of key derivation function
(KDF). The purpose of the key derivation function is more than just formatting: it
takes some raw key or seed produced by the security mechanism and produces an
appropriately sized bit string that has been stripped of all its algebraic properties.
This usually involves some kind of hash function and is often modelled as a
random oracle. A security mechanism is defined as follows.

Definition 6.13. A security mechanism is a pair (Mech.Encrypt,Mech.Decrypt)
of algorithms along with some key generation algorithm G. The encryption func-
tion Mech.Encrypt takes as input a random seed r and the public-key pk, and
outputs a pair (Kraw, ψ). The decryption function Mech.Decrypt inverts this op-
eration by returning Kraw when given ψ and the secret key sk.

This ‘pared down’ version of the KEM allows us to show that, in the random
oracle model at least, key encapsulation mechanisms are fairly abundant. The
following is shown in [193].

Theorem 6.1. If (Mech.Encrypt, Mech.Decrypt) is a security mechanism that
is OW-CCA2 and KDF is a key derivation function, then we may define a KEM
(G,KEM .Encrypt ,KEM .Decrypt) in the following manner. Key generation is
provided by the key generation algorithm of the security mechanism. We define
the encapsulation function KEM .Encrypt(pk, r) as follows:

1. Compute Mech.Encrypt(pk, r) = (Kraw, ψ).
2. Compute K = KDF (Kraw).
3. Output (K,ψ).

The corresponding decryption function KEM .Decrypt(ψ, sk) can then be defined
as follows:

1. Compute Mech.Decrypt(ψ, sk) = Kraw.
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2. Compute K = KDF (Kraw).
3. Output K.

If the security mechanism is OW-CCA2 (in the obvious sense, i.e. that an attacker
is unable to recover Kraw from ψ) then, in the random oracle model, the KEM is
IND-CCA2.

As will be seen, both the RSA protocol and the Diffie-Hellman key agreement
protocol make good security mechanisms and this construction will be used in
RSA-KEM (see Sect. 6.4.6) and ECIES-KEM (see Sect. 6.4.3). Further generic
constructions for KEMs from low-level primitives can be found in [195].

There is also a further distinction that one can make with regard to key
encapsulation mechanisms. Of the KEMs presented there seem to be two sepa-
rate flavours: authenticated key encapsulation mechanisms and unauthenticated
key encapsulation mechanisms. An authenticated KEM is a KEM where a de-
capsulated key is only released if the encapsulation satisfies some kind of extra
criteria that give the user some assurance that the encapsulation was properly
constructed and not just some kind of guess. A good example of this is the dif-
ference between ECIES-KEM (see Sect. 6.4.3) and ACE-KEM (see Sect. 6.4.1).
ACE-KEM uses a method similar to ECIES-KEM for the actual key encapsula-
tion but adds extra elements to authenticate the fact that a key was encapsulated
properly. The difference is typified by the fact that an unauthenticated KEM will
generally decapsulate any encapsulated key, whilst an authenticated KEM will
reject most randomly formed encapsulations. Although authenticated KEMs usu-
ally have better security proofs, i.e. security proofs that work in stronger models
or reduce more efficiently to weaker assumptions, some concern has been raised
as to whether it is necessary to authenticate a key that will be used to decrypt a
message that will, most likely, itself be authenticated [193].

6.3.3 Key derivation functions

Almost all of the asymmetric encryption primitives use some kind of key deriva-
tion function (KDF) or mask generating function (MGF). A mask generating
function is a function used to create a mask for some secret value. Whilst the
uses of key derivation functions and mask generating functions are slightly dif-
ferent, the properties that these functions must have and the methods used to
construct them seem to be the same. Hence we will only refer to key deriva-
tion functions in this section, with the understanding that all of the following
discussion is relevant to mask generating functions as well.

Key derivation functions are similar to hash functions in that they map bit
strings of any length to fixed length bit strings in an almost random way. Key
derivation functions are very similar to hash functions. Hash functions map a bit
string to a bit string of a fixed length determined by the hash function. KDFs and
MGFs are families of functions that map a bit string onto a bit string of a fixed
length but this length is determined by the public key. KDFs are usually based
on hash functions (see Chapter 4) and are often modelled as random oracles (see
Sect. 6.2.4) for simplicity.
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Whether we regard KDFs (and MGFs) as distinct cryptographic entities or
modes of operation of a hash function, they are still outside the initial scope of
NESSIE and so have not in themselves received a high level of scrutiny from the
NESSIE partners.

With the exception of ACE-KEM (see Sect. 6.4.1), each of the primitives that
uses a KDF (or MGF) models it as a random oracle. Hence if more than one ran-
dom oracle is used, for example if a scheme uses a hash function and a KDF and
the security analysis models both as random oracles, the security analysis is only
valid if each of the implemented functions are suitably independent of each other.
For ACE-KEM the KDF is required to have an output that is indistinguishable
from random even when some of the leftmost bits of the input are known.

All of the key derivation functions submitted to NESSIE use one of two tech-
niques to construct a KDF KDF (·) from a hash function Hash(·). Suppose
Hash(·) is a hash function with output size HashLen and that we wish to eval-
uate KDF (·) on an input x and get an output of length KDFLen(λ, pk). Set

BlockNum(λ, pk) :=
⌈

KDFLen(λ,pk)
HashLen

⌉
.

The first technique, known as KDF1 [584] or MGF1 [549], is to use the leftmost
KDFLen(λ, pk) bits of the string

Hash(x||032) || . . . ||Hash(x||(BlockNum− 1)32) ,

where i32 is the 32-bit representation of the integer i. The second technique,
known as KDF2 [584], is to use the leftmost KDFLen(λ, pk) bits of the string

Hash(x||132) || . . . ||Hash(x||BlockNum32) ,

where i32 is the 32-bit representation of the integer i. Notice that both of these
techniques fail if the output size of the KDF is required to be too large, i.e. if
KDFLen(λ, pk) > 232 ·HashLen.

These techniques have the advantage that the output of the KDF is random
providing the underlying hash function is random (and unavailable to the at-
tacker). However these functions have been criticised by Shoup [584] because of
the way some hash functions work. Whilst this criticism appears valid, it does
not appear to be a critical flaw in the design.

Another problem with modelling both hash functions and key derivation func-
tions as random oracles is that the outputs of each of these functions need to be
independent of each other. Obviously if the KDF is either KDF1 or KDF2 then
the output will be correlated to the output of the hash function Hash(·). The
simplest solution would be for each primitive to use a different hash function, but
this is often impractical. Another good solution is to assign each component that
uses the hash function, including the hash function itself, a unique fixed length
identifier id and prefix all inputs to the hash function with this value. In this
case, the outputs of the hash function and the key derivation functions KDF1
and KDF2 will be random and uncorrelated.
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6.3.4 DEM Security

It might be reasoned from some of the discussion in this chapter that the security
of the KEM is in some way more important than the security of the DEM. This
is, of course, not true. As we shall see in Sect. 6.3.5, the security of the hybrid
scheme depends in equal measure on the security of the KEM and the DEM.

We have seen that the key produced by a KEM is very similar to a random
key, so it makes sense to examine the security of the DEM under the action of
a random key. Furthermore, since it makes no sense to query a DEM decryption
oracle before a challenge key has been produced, we will have to tweak the attack
models for the DEM slightly.

Definition 6.14. Consider the following game an attacker plays against a sys-
tem, using a DEM (DEM .Encrypt ,DEM .Decrypt) with a security parameter λ.

1. The system generates a key K for the DEM uniformly at random from the
key-space of the DEM (which is defined in terms of the security parameter
λ).

2. The attacker generates two distinct messages m0 and m1 of the same length,
and submits these to the system.

3. The system
a) Chooses a bit σ uniformly at random from {0, 1}.
b) Calculates the challenge ciphertext χ = DEM .Encrypt(mσ,K) and re-

turns this to the attacker.
4. The attacker outputs a guess σ′ for σ.

The attacker wins the game if σ′ = σ.
An attacker A has an advantage AdvA of winning the above game where

AdvA = Pr[σ′ = σ]− 1/2 (6.7)

and the DEM is said to have advantage

AdvDEM = max
A

AdvA . (6.8)

A DEM is said to be message-indistinguishable or IND if its advantage is small.

The attack model for a DEM also follows the standard ideas.

Definition 6.15. We allow the attacker A access to an oracle O after the chal-
lenge has been issued. The attack is said to be passive (PAS) if the oracle always
returns the error symbol ⊥. The attack is said to be a chosen ciphertext at-
tack (CCA) if the oracle decrypts messages under the challenge key K (hence
O(χ) = DEM .Decrypt(χ,K)) with the exception that the oracle returns ⊥ if it
is queried with the challenge ciphertext.

Obviously if a scheme is secure against an attack in the chosen ciphertext
model then it is secure in the passive model, and it is easier to demonstrate the
security of a scheme in the passive model than in the chosen ciphertext model.
A result of [171] shows that it is possible to combine a DEM that is secure in
the passive model with a message authentication code (MAC) (see Chapter 5) to
give a DEM that is secure in the chosen ciphertext model.
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6.3.5 Hybrid Security

Of course the aim of this entire section is to provide some insight into the security
of a hybrid KEM-DEM based cryptosystem. So, whilst it might be very interesting
to talk about the security of the KEM and the DEM in abstract models, it
is useless unless we can combine these results to prove something about the
security of the hybrid scheme. In particular we wish to show that a KEM-DEM
based cryptosystem achieves the minimum security requirements specified by the
NESSIE call, i.e. that the scheme is IND-CCA2 secure.

A security proof for the KEM-DEM construction was given in [171]. It basi-
cally shows that a KEM-DEM scheme composed of a secure DEM and a secure
KEM will itself be secure. This shows that the method of construction is in some
sense a“black-box”construction: any secure KEM and secure DEM can be chosen
to give a secure scheme without reference to each other.

Theorem 6.2. Suppose (G, E ,D) is a KEM-DEM scheme composed of a KEM
and a DEM in the usual manner. If the KEM is IND-CCA2 secure and the DEM
is IND-CCA secure then the overall hybrid scheme will be IND-CCA2 secure in
the usual sense.

There has been some work [275] that shows that if the public key pk used
by the KEM is considered a system parameter available to all parties then the
above theorem no longer holds. A separate security proof for this case was also
proposed in that paper but, unfortunately, this security proof no longer allows a
black-box construction.

Theorem 6.3. Suppose (G, E ,D) is a KEM-DEM scheme composed of a KEM
and a DEM in the usual manner. Suppose further that the DEM takes the public
key as an extra input. If the KEM is IND-CCA2 secure and the DEM is IND-
CCA secure when the attacker has access to a decryption oracle for the
KEM, then the overall hybrid scheme is IND-CCA2 secure in the standard sense.

In practice it seems very unlikely that a DEM would consider using the
public-key in any way that would compromise the security of the system. How-
ever it should be noted that the ElGamal scheme and the EPOC-2 scheme (see
Sect. 6.4.4) both fit into this formal model of a KEM-DEM based scheme, as
both contain modular arithmetic operations in the DEM phase.

One generic problem associated with KEM-DEM constructions is message
expansion. Since only the ciphertext produced by the DEM depends on the mes-
sage, the complete ciphertext is always bigger than the plaintext by at least a
number of bits equal to the size of the encapsulation produced by the KEM. In
practice the amount of message expansion may be larger even than this as the
DEM ciphertext may contain bits that do not directly relate to the encryption
of the message but are instead some kind of assurance of the integrity of the
message (such as a MAC). Therefore in situations where message expansion is a
critical factor, it might be best to avoid using a hybrid construction.
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6.3.6 Assessment criteria

The assessment process for KEM-DEM based cryptosystems was roughly the
same as for general asymmetric encryption schemes (see Sect. 6.2.9). The most
important criterion is security. However, since this section of the NESSIE project
is concerned with asymmetric techniques, we have concentrated our resources
on examining the security of the key encapsulation mechanisms. We therefore
assume the existence of a DEM that is equally secure for each KEM even in the
presence of a decryption oracle for that KEM. This greatly simplifies matters as
the security of the KEM can be examined independently of the DEM. Again,
each of the submitted primitives came with a proof of security and these proofs
were evaluated in terms of the efficiency of their reductions and the hardness of
the underlying trusted problems.

Next, performance was considered, on platforms of equal security, and lastly
side-channel attacks were considered only if they could be applied to multiple
platforms. Intellectual Property Rights (IPR) were also considered.

6.4 Asymmetric encryption primitives considered during
Phase II

The following algorithms were selected for study during phase II of the
NESSIE project:
– ACE-KEM,
– ECIES,
– EPOC-2,
– PSEC-KEM,

and, because they are under discussion in ISO [584], the following algorithms were
selected for study during NESSIE phase II as de facto standards for asymmetric
encryption algorithms:

– ECIES-KEM,
– RSA-KEM.

We deal with the security considerations for each algorithm in turn. Note that
what is given here are not a complete specifications but rather mathematical
bases for the algorithms. In particular we assume that variables are stored in
binary form even if they are integers, elliptic curve points, etc. We also assume
that all hash functions, mask generating functions, key derivation functions and
symmetric encryption schemes take inputs and produce outputs of a “correct”
length for the asymmetric scheme. References are given to complete specifications
which may be found on the NESSIE website.

6.4.1 ACE-KEM

The ACE-KEM cryptosystem is based on the work of Cramer and Shoup [171]
and is purposely designed to be secure without needing the heuristic random
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oracle model. It has been submitted to NESSIE by IBM. The scheme consists
loosely of the following algorithms. A complete specification is given in [584].

6.4.1.1 The design

Key Generation. ACE-KEM is described on an abstract group and so can
be realised either as an elliptic curve scheme or as a scheme working in the
multiplicative group of integers for some modulus. We will represent the group
as an additive group where group elements are represented as capital letters (as in
an elliptic curve group). We assume that the group is a cyclic group generated by
some element P of order p and that p has length equal to the security parameter
λ. The key generation algorithm is a probabilistic algorithm that takes the group
parameters (P, p, λ) as input. It runs as follows.

1. Generate random and independent integers w, x, y, z ∈ {0, . . . , p− 1}.
2. Set W := wP , X := xP , Y := yP and Z := zP .
3. Set pk := (P, p,W,X, Y, Z, λ) and sk := (w, x, y, z, pk).
4. Output the key-pair (pk, sk).

Encapsulation Algorithm. The encapsulation algorithm is a probabilistic al-
gorithm that takes the public-key pk as input. It uses a public and pre-agreed
hash function Hash(·) and key derivation function KDF (·). It runs as follows.

1. Generate a random integer r ∈ {0, . . . , p− 1}.
2. Set C1 := rP .
3. Set C2 := rW .
4. Set Q := rZ.
5. Set α := Hash(C1||C2).
6. Set C3 := rX + αrY .
7. Set C := (C1, C2, C3).
8. Set K := KDF (C1||Q).
9. Output the encapsulated key-pair (K,C).

The ACE-KEM encapsulation algorithm is also shown pictorially in Fig. 6.19.

Decapsulation Algorithm. The decapsulation algorithm is a deterministic al-
gorithm that takes a key encapsulation C and the secret-key sk as input. It also
uses the pre-agreed hash function Hash(·) and key derivation function KDF (·).
It runs as follows.

1. Parse the encapsulated key C as (C1, C2, C3).
2. Set α := Hash(C1||C2).
3. Set t := x+ yα mod p.
4. Check that C2 = wC1. If not, output Invalid Ciphertext and halt.
5. Check that C3 = tC1. If not, output Invalid Ciphertext and halt.
6. Set Q := zC1.
7. Set K := KDF (C1||Q).
8. Output K.
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Fig. 6.19. The ACE-KEM encapsulation algorithm.

6.4.1.2 Security analysis

The following is a summary of the security analysis of ACE-KEM; for more details
see [141,193].

The main advantage of ACE-KEM is that the security of the scheme can be
proven without the use of the heuristic random oracle model (see Sect. 6.2.4).
This combines nicely with the security proof for the generic hybrid construction
discussed in Sect. 6.3.5 to form a hybrid scheme that is provably secure without
the need for random oracles.

The security proof for ACE-KEM [171] reduces the problem of breaking ACE-
KEM in the IND-CCA2 sense to the problem of solving the decisional Diffie-
Hellman problem in the group generated by P . As we do not model the hash
function or the key derivation function as random oracles we must formally define
their security conditions.

Definition 6.16. A hash function Hash(·) is 2nd pre-image resistant if, given
a value x, it is hard to find a value y 6= x such that Hash(x) = Hash(y). We
define a (t, ε) attacker for a hash function to be a probabilistic Turing machine
that runs in time bounded above by t and, given a randomly generated x, finds a
second pre-image with probability at least ε.

Definition 6.17. A key derivation function KDF (·) is indistinguishable if,
given x, it is computationally infeasible to distinguish between KDF (x||y) and a
randomly generated bit string of the same length when y is unknown. We define a
(t, ε) attacker for a key derivation function to be a probabilistic Turing machine
that runs in time bounded above by t and solves the above problem with probability
at least 1/2 + ε.
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If there exists a (t, ε, qD) attacker for ACE-KEM in the IND-CCA2 sense then
there exists a (t1, ε1) solver for the decisional Diffie-Hellman problem on the group
generated by P , a (t2, ε2) attacker for the hash function Hash(·) and a (t3, ε3)
attacker for the key derivation function KDF (·) with

ε ≈ ε1 + ε2 + ε3 +
qD
p
, (6.9)

t ≈ ti for i ∈ {1, 2, 3} . (6.10)

Whilst the reduction to the decisional Diffie-Hellman (DDH) problem is tight,
the assumption that the DDH problem is hard is quite a strong one. For better
comparison to existing schemes the submitters have also shown that ACE-KEM
is at least as secure as ECIES-KEM (see Sect. 6.4.3). Formally, if there exists a
(t, ε, qD) attacker for ACE-KEM then there exists a (t, ε, qD) attacker for ECIES-
KEM. This serves to show that, in the random oracle model, the security of
ACE-KEM in the IND-CCA2 sense tightly reduces to the problem of solving the
gap Diffie-Hellman problem on the group generated by P .

The relationship between ACE-KEM and ECIES-KEM also means that in
the IND-CPA model, and with the help of the random oracle model, the security
of ACE-KEM can be reduced to the problem of breaking the computational
Diffie-Hellman (CDH) problem in the group 〈P 〉.4 Formally, if there exists a (t, ε)
attacker for ACE-KEM then there exists an algorithm running in time t′ that
outputs a list of L elements and contains a solution to the CDH problem with
probability at least ε′ with

ε′ ≈ ε , (6.11)
t′ ≈ t , (6.12)
L ≤ qK , (6.13)

where the attacker makes at most qK queries of the random oracle simulating the
key derivation function. Of course, we may now use the techniques of Sect. 6.2.3.2
to construct a (t′′, ε′′) solver for the CDH problem with

ε′′ ≈ 1− 1
2k
, (6.14)

t′′ ≈ 2k d1/ε′e t′ + 2kL d1/ε′eT , (6.15)

where T is the time taken to compute a group element of the form

x−1
1 y−1

1

{
P ′ − ax1y2P − bx2y1P + x2y2P

}
,

for random integers x1, y1, x2, y2 and a random elliptic curve point P ′.
It is unclear to what extent the small subgroup attacks of Lim and Lee are

applicable to ACE-KEM (see Sect. 6.2.6). A naive analysis suggests that to find

4 In the IND-CCA2 attack model, and using the random oracle model, the security of
ACE-KEM can be directly reduced to the problem of breaking the CDH problem in
the group generated by P [582]. However this reduction is far from tight.
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z mod n requires at most n2 trial decapsulations and n evaluations of the key
derivation function (if the elliptic curve points are not validated).

Along with most of the other asymmetric encryption schemes, ACE-KEM is
vulnerable to a fault attack that recovers the secret key [197]. It also appears to
be vulnerable to power analysis during the scalar multiplications of the elliptic
curve points. This is a common problem with schemes based on elliptic curves:
for more information see Sect. A.1.2.3.

Recently a new version of the ACE-KEM scheme has been proposed by Lucks
[409]. This new scheme works in the multiplicative group of integers modulo n,
where n = PQ, P = 2p + 1, Q = 2q + 1 and P,Q, p, q are prime numbers. This
scheme has the disadvantage of working in a very specific, multiplicative group
(and so will probably have longer keys than the elliptic curve version) but has the
advantage of a stronger security proof. The Lucks scheme is secure in the standard
model providing the factoring problem is secure and the DDH problem is hard
in the group of quadratic residues modulo n. This is worse than ACE-KEM as
ACE-KEM does not require the factoring problem to be difficult. However, in
the random oracle model, the Lucks scheme reduces to solving the CDH problem
in a very efficient manner. This is a significant improvement over ACE-KEM in
theoretical security.

6.4.2 ECIES

ECIES is a hybrid encryption scheme submitted to NESSIE by Certicom Corp.
It loosely consists of the following algorithms. A complete specification can be
found in [136].

6.4.2.1 The design

Key Generation. Since ECIES is an elliptic curve based cryptosystem, it is
necessary to generate a suitably secure elliptic curve E and a point P ∈ E that
has prime order p. We will assume that the length of p is equal to the security
parameter λ. The key generation algorithm for ECIES is a probabilistic algorithm
that takes (E,P, p, λ) as input. It runs as follows. (For notational purposes, let
O be the ‘point at infinity’ – the identity element of an elliptic curve group.)

1. Randomly generate an integer s ∈ {1, . . . , p− 1}.
2. Set W := sP .
3. Set pk := (E,P, p,W, λ) and sk := (s, pk).
4. Output the key-pair (pk, sk).

Encryption Algorithm. The encryption algorithm is a probabilistic algorithm
that takes as input a message m and the public-key pk. The scheme also relies on
a set of public and pre-agreed functions that are available to all parties. These in-
clude a key derivation functionKDF (·), a message authentication code algorithm
MAC(·, ·) and a symmetric encryption scheme (Sym.Encrypt , Sym.Decrypt). It
runs as follows.

1. Generate a random integer r ∈ {1, . . . , p− 1}.
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2. Set C1 := rP .
3. Set Q := rW .
4. Check that Q 6= O. If so, output Invalid Encryption and halt.
5. Set x to be the x-coordinate of Q.
6. Set K := KDF (x).
7. Parse K as EK and MK, where EK is a suitably sized key for the sym-

metric encryption scheme and MK is a suitably sized key for the message
authentication scheme. 5

8. Encrypt the message m using the symmetric encryption scheme under the
key EK, i.e. C2 := Sym.Encrypt(m,EK).

9. Generate a message authentication code (MAC) for the ciphertext C2 us-
ing the message authentication scheme under the key MK, i.e. C3 :=
MAC(C2,MK).

10. Output the ciphertext C := (C1, C2, C3).

Decryption Algorithm. The decryption algorithm is a deterministic algorithm
that takes a ciphertext C and the secret-key sk as input. It also uses the same pre-
agreed key derivation function KDF (·), message authentication code algorithm
MAC(·, ·) and symmetric encryption scheme (Sym.Encrypt , Sym.Decrypt) as the
encryption algorithm. It runs as follows.

1. Parse C as (C1, C2, C3).
2. Set Q := sC1.
3. Check that Q 6= O. If so, output Invalid Ciphertext and halt.
4. Set x to be the x-coordinate of Q.
5. Set K := KDF (x).
6. Parse K as EK and MK, where EK is a suitably sized key for the sym-

metric encryption scheme and MK is a suitably sized key for the message
authentication scheme.

7. Check that C3 is a valid message authentication code for C2 under the key
MK, i.e. that C3 = MAC(C2,MK). If not, output Invalid Ciphertext
and halt.

8. Decrypt the ciphertext C2 using the symmetric encryption scheme under the
key EK, i.e. m := Sym.Decrypt(C2, EK).

9. Output m.

6.4.2.2 Security analysis

The following is a summary of the security analysis of ECIES; for more details
see [571].

The first thing to notice about the ECIES algorithm as it stands is that it is
not secure in the IND-CCA2 sense. If an attacker is given a challenge ciphertext
(C1, C2, C3) then he may submit the ciphertext (−C1, C2, C3) to the decryption
oracle (providing C1 6= −C1, a condition which occurs with overwhelming proba-
bility) and the oracle will return the correct message m. Therefore if we are going

5 Note that if the lengths of EK and MK are not predetermined, then the attack of
Shoup [584, 15.6.4] applies.
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to find any meaningful result on the security of ECIES in this model then we will
have to formally deny the attacker the power to make these queries. Shoup [584]
calls this property benign malleability.

The security proof for ECIES is sketched in [3]. This paper describes the secu-
rity of the DHAES scheme, a scheme similar to ECIES but defined on an abstract
cyclic group of order p rather than specifically on an elliptic curve group. It dif-
fers from ECIES in the generation of the symmetric key K, which, in DHAES,
is derived from a complete representation of Q and from C1. The security proof
shows that, provided the symmetric encryption scheme and the MAC are in some
sense secure, the problem of breaking the scheme reduces to the problem of dif-
ferentiating the output of the key derivation function from a random string of
the same size.

A security proof for ECIES in the generic group model (see Sect. 6.2.5) has
also been proposed [588].

ECIES is essentially an example of ECIES-KEM (see Sect. 6.4.3) used with a
particular data encapsulation mechanism (known as DEM-1 [584]). We consider
ECIES-KEM to be more flexible than ECIES without having any computational
or security loss.

6.4.3 ECIES-KEM

ECIES-KEM is essentially the asymmetric heart of ECIES described in the KEM-
DEM framework. Although ECIES-KEM was never formally submitted to the
NESSIE project, it is considered by NESSIE as a de facto standard for a KEM-
DEM based cryptosystem and because it has been proposed for standardisation
in the ISO/IEC standard 18033-2 [584]. It consists loosely of the following algo-
rithms. A complete specification can be found in [584].

6.4.3.1 The design

Key Generation. ECIES-KEM, like ECIES, is an elliptic curve scheme. This
means that before the scheme can be implemented a suitably secure elliptic curve
E must have been generated and a point P ∈ E with prime order p must have
been chosen. We assume that the length of p is equal to the security parameter λ.
The key generation algorithm is a probabilistic algorithm that takes the elliptic
curve parameters (E,P, p, λ) as input and runs as follows.

1. Randomly generate an integer s ∈ {1, . . . , p− 1}.
2. Set W := sP .
3. Set pk := (E,P, p,W, λ) and sk := (s, pk).
4. Output the key-pair (pk, sk).

Encapsulation Algorithm. The encapsulation algorithm is a probabilistic al-
gorithm that takes the public-key as input. It uses a public and pre-agreed key
derivation function KDF (·) that must be available to all parties wishing to use
the scheme. Its encapsulation algorithm runs as follows.

1. Generate a random integer r ∈ {1, . . . , p− 1}.
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2. Set C := rP .
3. Set x to be the x-coordinate of rW .
4. Set K := KDF (C||x).
5. Output the encapsulated key-pair (K,C).

Decapsulation Algorithm. The decapsulation algorithm is a deterministic al-
gorithm that takes as input an encapsulated key C and the secret-key sk. It also
uses the pre-agreed key derivation function KDF (·) that was used in the encap-
sulation process. The algorithm runs as follows. (For notational purposes, let O
be the ‘point at infinity’ – the identity element of an elliptic curve group.)

1. Set Q := sC.
2. Check that Q 6= O. If so, output Invalid Ciphertext and halt.
3. Set x to be the x-coordinate of Q.
4. Set K := KDF (C||x).
5. Output K.

6.4.3.2 Security analysis

It is very easy to show that ECIES-KEM is IND-CCA2 secure in the random
oracle model [195]. The security of the scheme can be very efficiently reduced
to the problem of solving the gap Diffie-Hellman problem in the elliptic curve
subgroup generated by P . Formally, if there exists a (t, ε, qD) attacker for ECIES-
KEM then there exists a (t′, ε′) solver for the gap Diffie-Hellman problem in the
group 〈P 〉 with

ε′ ≈ ε , (6.16)
t′ ≈ t+ 2qKT , (6.17)

where

– qK is the number of queries that the attacker submits to the random oracle
simulating the key derivation function,

– and T is the time taken to check a Diffie-Hellman triple (i.e. the time taken
for the oracle to check whether gc = gab for a triple (ga, gb, gc)).

In the IND-CPA model, the security of ECIES-KEM can be improved. The
security of the scheme, in the random oracle model, can be reduced to the problem
of breaking the computational Diffie-Hellman (CDH) problem in the group 〈P 〉.
Formally, if there exists a (t, ε) attacker for ECIES-KEM then there exists an
algorithm running in time t′ that outputs a list of L elements and contains a
solution to the CDH problem with probability at least ε′ with

ε′ ≈ ε , (6.18)
t′ ≈ t , (6.19)
L ≤ qK , (6.20)

where the attacker makes at most qK queries of the random oracle simulating the
key derivation function. Of course, we may now use the techniques of Sect. 6.2.3.2
to construct a (t′′, ε′′) solver for the CDH problem with
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ε′′ ≈ 1− 1
2k
, (6.21)

t′′ ≈ 2k d1/ε′e t′ + 2kL d1/ε′eT , (6.22)

where T is the time taken to compute a group element of the form

x−1
1 y−1

1

{
P ′ − ax1y2P − bx2y1P + x2y2P

}
,

for random integers x1, y1, x2, y2 and a random elliptic curve point P ′.
ECIES-KEM is vulnerable to the small subgroup attacks of Lee and Lim (see

Sect. 6.2.6). If the elliptic curve points are not validated then an attacker can
compute the secret key s modulo n with one trial decapsulation and n evaluation
of the key derivation function.

The ECIES-KEM mechanism can be viewed as a subroutine of both the
PSEC-KEM (see Sect. 6.4.5) and the ACE-KEM algorithms (see Sect. 6.4.1).
This means that the performance costs of PSEC-KEM and ACE-KEM are equal
to or greater to than those of ECIES-KEM.

The only side-channel attacks to which ECIES-KEM seems to be vulnerable
are a fault attack [197] and a power attack based on its use of elliptic curve groups
(see Sect. A.1.2.3).

6.4.4 EPOC-2

EPOC-2 is a hybrid asymmetric encryption scheme submitted by NTT Cor-
poration of Japan. It consists loosely of the following algorithms. A complete
specification is given in [485].

6.4.4.1 The design

Key Generation. The key generation algorithm is a probabilistic algorithm
that takes a security parameter λ as input and runs as follows.

1. Generate (usually randomly) two distinct λ-bit primes p and q. Set n := p2q.
2. Generate (usually randomly) an element g ∈ (Z/nZ)∗ such that gp :=
gp−1 mod p2 has order p in (Z/p2Z)∗.

3. Set h := gn mod n.
4. Set w := (gp − 1)/p mod p.
5. Set pk := (n, g, h, λ) and sk := (p, q, w, pk).
6. Output the key-pair (pk, sk).

Encryption Algorithm. The encryption algorithm takes as input the public-
key pk and a messagem. It also relies on a set of pre-agreed system parameters. In
order for the scheme to work, the two parties must have agreed on the use of a hash
function Hash(·), a mask generating function MGF (·), a key derivation function
KDF (·) and a symmetric encryption scheme (Sym.Encrypt , Sym.Decrypt). It
runs as follows.

1. Generate a random octet string R ∈ {0, . . . , 255}b(λ−1)/8c.
2. Derive a suitable symmetric key K := KDF (R).
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3. Encrypt the message m using the symmetric scheme and the key K, C2 :=
Sym.Encrypt(m,K).

4. Set DB := m||R||C2.
5. Set H := MGF (Hash(DB)).
6. Set C1 := gRhH mod n.
7. Output the ciphertext C = (C1, C2).

This process is also shown pictorially in Fig. 6.20.

Fig. 6.20. The EPOC-2 encryption algorithm.

Decryption Algorithm. The decryption algorithm uses the same set of system
parameters as the encryption algorithm, i.e. a pre-agreed hash function Hash(·),
mask generating function MGF (·), key derivation function KDF (·) and symmet-
ric encryption scheme (Sym.Encrypt , Sym.Decrypt). It takes as input a ciphertext
C and the secret-key sk and runs as follows.

1. Parse the ciphertext C into (C1, C2).
2. Check that 0 ≤ C1 < n. If not, output Invalid Ciphertext and halt.
3. Set C ′1 := Cp−1

1 mod p2.
4. Set C ′′1 := (C ′1 − 1)/p mod p.
5. Set R := C ′′1 /w mod p.
6. Check that 0 ≤ R < 256b(λ−1)/8c. If not, output Invalid Ciphertext and

halt.
7. Derive a suitable symmetric key K := KDF (R).
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8. Decrypt the ciphertext C2 using the symmetric encryption scheme and the
key K, m := Sym.Decrypt(C2,K).

9. Set DB := m||R||C2.
10. Set H := MGF (Hash(DB)).
11. Derive a reduced public key ˆPK with ĝ := g mod q, ĥ := h mod q and

Ĥ := H mod q − 1.
12. Calculate Ĉ1 = ĝRĥĤ mod q.
13. Check that Ĉ1 = C1 mod q. If not, output Invalid Ciphertext and halt.
14. Output m.

6.4.4.2 Security analysis

The following is a summary of the security analysis of EPOC-2; for more details
see [192, 621]. Some arguments as to why EPOC-2 was selected to be studied in
NESSIE phase II over the other EPOC candidates (see Sect. 6.5.1 and Sect. 6.5.2)
can be found in [576].

It should be noted that the structure of EPOC-2 is very similar to that of a
KEM-DEM based cryptosystem. It has, presumably, not been phrased in these
terms because the ‘KEM’ output would not be indistinguishable from a random
key in the CCA2 model. This is a good example of a hybrid scheme that is secure
but does not satisfy the security requirements for a KEM-DEM based scheme.
It should also be noted that the ‘DEM’ section uses group operations derived
from the public key as a MAC tag, and this is formally excluded from a DEM
construction since the DEM can have no access to the public key. In the security
proof the symmetric cipher is assumed to be a Vernam cipher, in which the key
is bitwise XORed with the message to form the ciphertext.

The security of EPOC-2 is based on the Okamoto-Uchiyama cryptosystem
[501], which is provably as secure as factoring in the IND-CPA model, and an
improved version of the Fujisaki-Okamoto transform [242] which is specific to
the Okamoto-Uchiyama cryptosystem. The security proof [237] for the scheme
proves that, in the random oracle model, one can reduce the problem of attacking
the scheme in the IND-CCA2 setting to the problem of factoring the modulus
n = p2q. For convenience we define |n| to be the size of the integer n in bits.
Formally, if there exists a (t, ε, qD) IND-CCA2 attacker for EPOC-2 in the random
oracle model then there exists a (t′, ε′) solver for the problem of factoring the
modulus n with

ε′ ≈ ε

3
(1− 2−3λ+3)(1− 2−γ)qD , (6.23)

t′ ≈ t+ qHT1 + qHqDT2 , (6.24)

where

– qH is the number of queries the attacker makes of the random oracle,
– γ is a constant that depends only upon the public key,
– T1 is the time taken to compute the greatest common divisor of two |n|-bit

numbers,
– and T2 is the time taken to check an equation of the form C1 = ĝRĥĤ mod q.
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The problem of factoring a number of the form n = p2q is one of the less well
researched trusted cryptographic problems used by the NESSIE phase II submis-
sions. Most of the research into factoring algorithms concentrates on attempting
to factor integers of the form pq. The attack of [108], whilst not directly appli-
cable to the Okamoto-Uchiyama modulus n, only serves to underline the fact
that factoring a number of the form p2q is unlikely to be harder than factoring
a number of the form pq. Furthermore, factoring the modulus is enough to re-
cover the secret key (which depends only on p and q). So any attack that can
reliably distinguish messages in the CCA2 model also provides, in the random
oracle model, an attack that can recover the secret key.

EPOC-2 is also vulnerable to a few important side-channel attacks (see
Sect. 6.2.7). Whilst it is true that EPOC-2 is the only primitive in Phase II
that does not seem susceptible to fault attacks [197], it is vulnerable to a Ham-
ming weight attack [197] and to an error message attack [196]. This seems to be
indicative of an inherent weakness of EPOC-2; the security proof for the prim-
itive shows that if any information can be gained about the value derived from
the Okamoto-Uchiyama decryption process (the number R calculated in step 5 of
the decryption process) then an attacker is likely to be able use this information
to launch a key recovery attack. For this reason we consider EPOC-2 to be weak
against side-channel attacks.

For fair comparison EPOC-2 was not only evaluated against the other NESSIE
candidates but also against existing schemes with similar security assumptions
[209]. The scheme was compared against the HIME(R) scheme [484] and the
Rabin-SAEP scheme [103], the security of each of which can be reduced to the
problem of factoring a modulus n of the form n = pq or n = prq for small r.
Whilst all of the schemes had comparable security reductions, EPOC-2 was found
to have a comparatively large key size and a slow running time.

6.4.5 PSEC-KEM

PSEC-KEM is a tweaked version of PSEC-2 and was submitted by the NTT
Corporation of Japan. It consists loosely of the following algorithms. A complete
specification is available in [486].

6.4.5.1 The design

Key Generation. Since PSEC-KEM is defined over an elliptic curve, a suitable
curve E will have to be generated before the key generation algorithm is executed.
The curve should have a point P that generates a secure cyclic subgroup of E with
prime order p. We assume that p is of size λ where λ is the security parameter.

The key generation algorithm is a probabilistic algorithm that takes the el-
liptic curve E, the point P and the order p of P as input. It runs as follows.

1. Generate an integer s uniformly at random from {0, . . . , p− 1}.
2. Set W := sP .
3. Set pk := (E,P,W, p, λ) and sk := (s, pk).
4. Output the key-pair (pk, sk).
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Encapsulation Algorithm. The key encapsulation algorithm is a probabilistic
algorithm that takes as input the public-key pk. In order for the scheme to work
the two communicating parties must have agreed on the use of a common key
derivation function KDF (·). It runs as follows.

1. Generate a suitably sized random bit string r (of size comparable to p, say).
2. Set H := KDF (032||r), where 032 is the 32-bit representation of the integer

0.
3. Parse H as t||K where t is a (λ+ 128)-bit integer and K is a suitably sized

symmetric key.
4. Set α := t mod p.
5. Set Q := αW .
6. Set C1 := αP .
7. Set C2 := r⊕KDF (132||C1||Q), where 132 is the 32-bit representation of the

integer 1.
8. Set C := (C1, C2).
9. Output the encapsulated key-pair (K,C).

The PSEC-KEM encapsulation algorithm is also shown pictorially in Fig. 6.21.

Fig. 6.21. The PSEC-KEM encapsulation algorithm.

Decapsulation Algorithm. The decapsulation algorithm is a deterministic al-
gorithm that takes as input a key encapsulation C and the secret-key sk. It also
uses the pre-agreed key derivation function KDF (·). It runs as follows.

1. Parse C as (C1, C2).
2. Set Q := sC1.
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3. Set r := C2⊕KDF (132||C1||Q), where 132 is the 32-bit representation of the
integer 1.

4. Set H := KDF (032||r), where 032 is the 32-bit representation of the integer
0.

5. Parse H as t||K, where t is an (λ+128)-bit integer and K is a suitably sized
symmetric key.

6. Set α := t mod p.
7. Check C1 = αP . If not, output Invalid Ciphertext and halt.
8. Output K.

6.4.5.2 Security analysis

In many ways the PSEC family of asymmetric encryption schemes are coun-
terparts to the EPOC schemes, in the sense that they both use the same con-
structions to turn a base problem into useable asymmetric encryption schemes.
However, when the schemes were tweaked at the start of NESSIE phase II, PSEC-
2 was rephrased as a KEM-DEM based cryptosystem (see Sect. 6.3), whereas
EPOC-2 (see Sect. 6.4.4) was not. The following security analysis is a summary
of the work found mainly in [574, 575]. Some arguments as to why PSEC-2 was
chosen to be studied in NESSIE phase II over the other PSEC candidates (see
Sect. 6.5.3 and Sect. 6.5.4) were given in [576].

The security proof for PSEC-KEM can be found in [584]. It shows that, in the
random oracle model, the problem of breaking the system can be reduced to the
problem of solving a computational Diffie-Hellman problem on the elliptic curve
E. Formally, if there exists a (t, ε, qD) IND-CCA2 attacker for PSEC-KEM then
there exists an algorithm running in time t′ that outputs a list of L elements that
contains the solution to the CDH problem with probability ε′ and

t′ ≈ t , (6.25)

ε′ ≈ ε− qK0 + 2qD
p

− qK0 + qD
2λ

, (6.26)

L ≤ qD + qK1 , (6.27)

where

– the encryption algorithm generates a random integer of length λ in step 1,
– the attacker makes at most qKi

queries to the random oracle representing the
key-derivation function where the initial 32-bits are a representation of the
integer i.

Of course we may now use the probability amplification techniques given in
Sect. 6.2.3.2 to give a (t′′, ε′′) solver for the CDH problem on E with

ε′′ ≈ 1− 1
2k
, (6.28)

t′′ ≈ 2k d1/ε′e t′ + 2kL d1/ε′eT , (6.29)

where T is the time taken to compute a group element of the form
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x−1
1 y−1

1

{
P ′ − ax1y2P − bx2y1P + x2y2P

}
,

for random integers x1, y1, x2, y2 and a random elliptic curve point P ′.
Since the reduction shown for PSEC-KEM appears to be close to optimal in

a group for which a DDH oracle does not exist, we do not expect the security
reduction to be significantly improved in the IND-CPA model.

PSEC-KEM is an authenticated KEM. The PSEC-KEM algorithm can be
viewed as using a version of ECIES-KEM (see Sect. 6.4.3) as a mask for the key.
It also produces data that is used to perform a consistency check.

It is unclear whether PSEC-KEM is vulnerable to the small subgroup at-
tacks of Lee and Lim (see Sect. 6.2.6) because of the Diffie-Hellman check in the
decapsulation algorithm.

Along with most of the other NESSIE phase II candidates, PSEC-KEM is
vulnerable to a fault attack and, along with the other schemes that are based on
elliptic curves, it does seem to be vulnerable to power analysis (see Sect. A.1.2.3).
It does not appear to be vulnerable to either an error message attack or a Ham-
ming weight attack [197].

6.4.6 RSA-KEM

The RSA based key encapsulation mechanism is one of the simplest key en-
capsulation mechanisms. It uses the RSA trapdoor permutation as a security
mechanism (see Sect. 6.3.2). Although RSA-KEM was never formally submitted
to the NESSIE project, it is included in the evaluation process as a de facto
standard for a KEM-DEM based cryptosystem and because it has been proposed
for inclusion in the ISO/IEC standard 18033-2 [584]. It consists loosely of the
following algorithms. A complete specification can be found in [325,584].

6.4.6.1 The design

Key Generation. The key generation algorithm for RSA-KEM is very similar
to that of RSA-OAEP (see Sect. 6.5.5) as both concentrate on producing a valid
RSA key. The RSA-KEM key generation algorithm is a probabilistic algorithm
that takes the security parameter λ as input and runs as follows.

1. Generate a random public exponent e, an odd integer greater than 1.
2. Randomly generate a prime p of length λ such that gcd(p− 1, e) = 1.
3. Randomly generate a prime q of length λ such that gcd(q − 1, e) = 1.
4. Set n := pq.
5. Set d to be the unique integer in Z/λ(n)Z such that ed ≡ 1 mod λ(n), where
λ(n) = l.c.m.(p− 1, q − 1).

6. Set pk := (n, e, λ) and sk := (d, pk).
7. Output the key-pair (pk, sk).

Note that there have been many other methods proposed to generate RSA
key-pairs. The most notable of these involves choosing a suitable exponent e in
step 1 rather than randomly generating it.
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Encapsulation Algorithm. The encapsulation algorithm is a probabilistic al-
gorithm that takes as input the public key pk. It also uses a common, public key
derivation function KDF (·) that is available to all parties. It runs as follows.

1. Generate a random integer r ∈ {0, . . . , n− 1}.
2. Set C := re mod n.
3. Set K := KDF (r).
4. Output the encapsulated key-pair (K,C).

Decapsulation Algorithm. The decapsulation algorithm is a deterministic al-
gorithm that takes an encapsulation C and the secret-key sk as input. It also
uses the pre-agreed key derivation function KDF (·) and runs as follows.

1. Set r := Cd mod n.
2. Set K := KDF (r).
3. Output K.

6.4.6.2 Security analysis

The following is a summary of the security analysis for RSA-KEM. The results
can either can be found in [275] or derived from the general results on KEM-DEM
cryptosystems in [193,195].

The security of RSA-KEM is based on the security of the RSA cryptosystem
[543] in the OW-CPA model. We use the general result about security mechanisms
of [193] to show that, in the random oracle model, the security of RSA-KEM can
be reduced to the RSA problem. Formally, if there exists a (t, ε, qD) attacker for
RSA-KEM in the IND-CCA2 sense then there exists a (t′, ε′) solver for the RSA
problem with

ε′ ≈ ε , (6.30)
t′ ≈ t+ (qK + qD)T , (6.31)

where

– qK is the number of queries the attacker makes to the random oracle,
– and T is the time taken to calculate xe for some x.

Since the reduction shown for RSA-KEM appears to be close to optimal, we
do not expect the security reduction to be significantly improved in the IND-CPA
model.

In the case where the key generation algorithm does not randomly select the
public exponent e but instead selects some specific exponent, the security proofs
still hold but the security of the scheme reduces to the e-th root problem rather
than the RSA problem (see Sect. 6.2.3.1).

The RSA cryptosystem exhibits some homomorphic properties, most notice-
ably that if C1 = me

1 mod n and C2 = me
2 mod n then C1C2 mod n is the encryp-

tion of m1m2 mod n. Whilst this is highly desirable in certain applications, it
does allow unknown messages to be manipulated in quite specific ways. In RSA-
KEM we rely on the nature of the key derivation function KDF (·) to destroy
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any relations between keys that result from relations in encapsulations. Hence
the properties of the key derivation function are more critical in RSA-KEM than
they might be in, say, ACE-KEM (see Sect. 6.4.1). This homomorphic property
is also useful when implementing side-channel attacks. It has been shown that
RSA-KEM is vulnerable to a fault attack that recovers the secret key [349], a
chosen modulus attack [207, 349] and a Hamming weight attack [197, 349]. See
Sect. 6.2.7 for a discussion of the relevance of these attacks.

There is also an attack against the RSA cryptosystem that can be applied to
RSA-KEM. It has been shown that if the secret exponent d is less than n0.292

then it can be recovered from the modulus n and public exponent e [106]. It has
been conjectured that it will be possible to recover d from n and e providing
d < n0.5.

RSA-KEM was selected as a suitable de facto standard for hybrid RSA based
cryptosystems after it was favourably evaluated against RSA-REACT [499] in a
paper by Granboulan [275].

6.5 Asymmetric encryption primitives not selected for
Phase II

The following algorithms were submitted to NESSIE but not selected for
further study in the second phase of the project:
– EPOC-1
– EPOC-3
– PSEC-1
– PSEC-3
– RSA-OAEP

Again we choose to specify the algorithms in a general mathematical way rather
than as a detailed specification. In particular we assume that variables are stored
in binary form even if they are integers, elliptic curve points, etc. We also assume
that hash functions, mask generating functions, key derivation functions and
symmetric encryption schemes all take inputs and produce outputs of a “correct”
length for the asymmetric scheme. References are given to complete specifications
for the algorithms.

6.5.1 EPOC-1

EPOC-1 was the first of the EPOC series submitted by the NTT Corporation.
It is based on the Okamoto-Uchiyama problem [501], which is provably secure in
the IND-CPA sense in the random oracle model. The techniques of [241] are then
used to transform this into an asymmetric encryption scheme that is IND-CCA2
secure in the random oracle model. The scheme consists loosely of the following
algorithms. A complete specification can be found in [239].
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6.5.1.1 The design

Key Generation. The key generation algorithm is a probabilistic algorithm
that takes a security parameter λ as input and runs as follows.

1. Randomly generate two λ-bit primes p and q. Set n := p2q.
2. Randomly generate an element g ∈ (Z/nZ)∗ such that gp := gp−1 mod p2

has order p in (Z/p2Z)∗.
3. Randomly generate an element h0 ∈ (Z/nZ)∗ and set h := hn0 mod n.
4. Set w := gp−1

p mod p.
5. Choose positive integers mLen and rLen such that mLen+ rLen ≤ λ− 1.
6. Set pk := (n, g, h,mLen, rLen, λ) and sk := (p, q, w, pk).
7. Output the key-pair (pk, sk).

Encryption Algorithm. The encryption algorithm takes as input the public-
key pk and a message m of length mLen. It also uses a pre-agreed hash function
Hash(·). It runs as follows.

1. Generate a random string R of length rLen and compute r := Hash(m||R).
2. Set C := gm||Rhr mod n.
3. Output the ciphertext C.

Decryption Algorithm. The decryption algorithm takes as input a ciphertext
C and the secret-key sk. It also uses the pre-agreed hash function Hash(·) and
runs as follows.

1. Set Cp := Cp−1 mod p2.
2. Set C ′p := Cp−1

p mod p.

3. Set X := C′
p

w mod p.
4. Check that 0 ≤ X ≤ 2mLen+rLen. If not, output Invalid Ciphertext and

halt.
5. Check that C = gXhHash(X). If not, output Invalid Ciphertext and halt.
6. Set m to be the first mLen bits of X.
7. Output the message m.

6.5.1.2 Security analysis

The following is a summary of the security analysis of EPOC-1 ; for more details
see [621]. Some of the arguments as to why EPOC-2 (see Sect. 6.4.4) was selected
to be studied in NESSIE phase II over EPOC-1 were given in [576].

It has been shown that, in the random oracle model, EPOC-1 is secure in the
IND-CCA2 sense [239]. The security of the scheme reduces to the problem of solv-
ing the p-subgroup membership problem on the group (Z/nZ)∗ (see Sect. 6.2.3).
Formally, if (t, ε, qD) is an IND-CCA2 attacker for the EPOC-1 scheme then there
exists a (t′, ε′) solver for the p-subgroup problem with

ε′ ≈ (ε− qH2−(rLen−1))(1− 2−2λ)qD , (6.32)
t′ ≈ t+ qH(T + cλ) , (6.33)

where
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– qH is the number of queries the attacker makes to the random oracle,
– T is the time taken to calculate gmhr mod n,
– and c is a constant.

EPOC-1 was designed for key distribution, which is outside the scope of the
NESSIE project. The scheme was not selected for NESSIE phase II because
it had a worse security reduction than EPOC-2 for similar performance costs.
Furthermore, the submitters withdrew their support for EPOC-1 in favour of
EPOC-2 (see Sect. 6.4.4).

6.5.2 EPOC-3

EPOC-3 was submitted by the NTT Corporation and, like the other members of
the EPOC series, uses the Okamoto-Uchiyama cryptosystem [501]. This time the
submitters use the REACT transform [499] to improve the security of the basic
scheme. The EPOC-3 scheme consists loosely of the following three algorithms.
A complete specification is given in [239].

6.5.2.1 The design

Key Generation. The key generation algorithm is a probabilistic algorithm
that takes a security parameter λ as input and runs as follows.

1. Randomly generate two λ-bit primes p and q. Set n := p2q.
2. Randomly generate an element g ∈ (Z/nZ)∗ such that gp := gp−1 mod p2

has order p in (Z/p2Z)∗.
3. Randomly generate an element h0 ∈ (Z/nZ)∗ and set h := hn0 mod n.
4. Set w := gp−1

p mod p.
5. Set pk := (n, g, h, λ) and sk := (p, q, w, pk).
6. Output the key-pair (pk, sk).

Encryption Algorithm. The encryption algorithm takes as input the public-
key pk and a message m. It also relies on a set of pre-agreed system parame-
ters. In order for the scheme to work the two communicating parties must have
agreed upon a public choice of a hash function Hash(·), a key derivation function
KDF (·) and a symmetric encryption scheme (Sym.Encrypt , Sym.Decrypt). The
encryption algorithm runs as follows.

1. Generate two independent and uniform random bit strings r and R of length
λ− 1.

2. Derive a suitable symmetric key K := KDF (R).
3. Set C1 := gRhr mod n.
4. Set C2 := Sym.Encrypt(m,K), i.e. the encryption of the message m in the

symmetric scheme under the key K.
5. Set C3 := Hash(C1||C2||R||m).
6. Output the ciphertext C = (C1, C2, C3).
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Decryption Algorithm. The decryption algorithm uses the same set of sys-
tem parameters as the encryption algorithm: a hash function Hash(·), a key
derivation function KDF (·) and a symmetric encryption scheme (Sym.Encrypt ,
Sym.Decrypt). It takes as input a ciphertext C and the secret key sk. It runs as
follows.

1. Parse C as an appropriately sized triple (C1, C2, C3).
2. Set C ′1 := Cp1 mod p2.
3. Set C ′′1 := C′

1−1
p mod p.

4. Set R := C′′
1
w mod p.

5. Derive a suitable symmetric key K := KDF (R).
6. Decrypt the ciphertext C2 using the symmetric encryption scheme and the

key K, i.e. set m := Sym.Decrypt(C2,K).
7. Check if R < 2λ−1. If not, output Invalid Ciphertext and halt.
8. Check that C3 = Hash(C1||C2||R||m). If not, output Invalid Ciphertext

and halt.
9. Output the message m.

6.5.2.2 Security analysis

The following is a summary of the security analysis of EPOC-3; for more details
see [621]. Some of the arguments as to why EPOC-2 (see Sect. 6.4.4) was selected
to be studied in NESSIE phase II over EPOC-3 were given in [576].

It has been shown in [239] that EPOC-3 is IND-CCA2 secure in the random
oracle model, and reduces to the problem of solving the gap-factoring problem
for the modulus n. As with EPOC-2 (see Sect. 6.4.4) we will assume that the
symmetric encryption system used is a Vernam cipher. Formally, if there exists
a (t, ε, qD) attacker for EPOC-3 then there exists a (t′, ε′) solver for the gap-
factoring problem (see Sect. 6.2.3) with

ε′ ≈ 1
2
ε− qD

2λ
, (6.34)

t′ ≈ t+ c(qH + qK) , (6.35)

where

– c is a constant,
– qH is the number of queries the attacker makes to the hash function random

oracle,
– and qK is the number of queries the attacker makes to the key derivation

function random oracle.

The reduction of EPOC-3 is not as efficient as that of EPOC-2, and the
underlying assumption is not as strong. Furthermore, the submitters withdrew
their support from the scheme in favour of EPOC-2.
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6.5.3 PSEC-1

PSEC-1 is the first of the PSEC family of cryptosystems that were submitted to
NESSIE by the NTT Corporation. It consists loosely of the following algorithms.
A complete specification can be found in [238].

6.5.3.1 The design

Key Generation. PSEC-1 is defined over an elliptic curve, so, before any of
these algorithms are executed, it is necessary to have constructed a suitably
secure elliptic curve E and chosen a point P ∈ E with prime order p. We assume
that the length of p is equal to the security parameter λ and that the elliptic curve
is defined over a finite field Fq, where q is a prime power of length qLen. The key
generation algorithm is a probabilistic algorithm that takes (E,P, p, qLen, λ) as
input. It runs as follows.

1. Generate a random integer s ∈ (Z/pZ)∗.
2. Set W := sP .
3. Choose positive integers mLen and rLen such that mLen+ rLen = qLen.
4. Set pk := (E,P, p, qLen,W,mLen, rLen, λ) and pk := (s, pk).
5. Output the key-pair (pk, sk).

Encryption Algorithm. The encryption algorithm is a probabilistic algorithm
that takes as input a message m of length mLen and the public-key pk. Before
the encryption algorithm can be run the communicating parties must have agreed
upon the use of some common, public hash function Hash(·). The encryption
algorithm runs as follows.

1. Generate a random bit string r of length rLen.
2. Set α := Hash(m||r).
3. Set C1 := αP .
4. Set x to be the x-coordinate of αW .
5. Set C2 := (m||r)⊕ x.
6. Output the ciphertext C = (C1, C2).

Decryption Algorithm. The decryption algorithm is a deterministic algorithm
that takes as input a ciphertext C and the private-key sk. It also uses the agreed
hash function Hash(·). It runs as follows.

1. Parse the ciphertext C into (C1, C2).
2. Set x to be the x-coordinate of sC1.
3. Set m and r to be the appropriately sized bit strings that satisfy (m||r) =
C2 ⊕ x.

4. Set α := Hash(m||r).
5. Check that C1 = αP . If not, output Invalid Ciphertext and halt.
6. Output m.
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6.5.3.2 Security analysis

The following is a summary of the security analysis of PSEC-1; for more details
see [574]. Some of the arguments that justify the selection of PSEC-2 for further
study in NESSIE phase II over PSEC-1 can be found in [576].

The security claims of [238] refer to a security proof in [241]. Here it is loosely
shown that PSEC-1 is IND-CCA2 secure in the random oracle model provided
that the decisional Diffie-Hellman problem (see Sect. 6.2.3) is intractable on the
elliptic curve group generated by P . Formally, if there exists a (t, ε, qD) attacker
for PSEC-1 then there exists a (t′, ε′) solver for the decisional Diffie-Hellman
problem on the elliptic curve group generated by P , with

ε′ ≈ (ε− qH2−rLen+1)(1− 2p)qD , (6.36)
t′ ≈ t+ qH(T + cλ) , (6.37)

where

– the attacker makes at most qH queries to the random oracle simulating the
hash function,

– T is the time taken to calculate sQ on the elliptic curve,
– and c is a constant.

PSEC-1 was designed for key distribution, which is outside the scope of the
NESSIE project. Hence PSEC-1 has a very limited message space. It shares a lot
of properties with PSEC-KEM (see Sect. 6.4.5) but reduces to a weaker security
assumption. Furthermore, the submitters withdrew their support from PSEC-1
in favour of PSEC-KEM.

6.5.4 PSEC-3

The last of the PSEC algorithms submitted by NTT Corporation, PSEC-3, is a
hybrid encryption scheme based on the hardness of the gap Diffie-Hellman prob-
lem on certain elliptic curve groups. It consists loosely of the following algorithms.
A complete specification can be found in [238].

6.5.4.1 The design

Key Generation. The key generation algorithm for PSEC-3 is similar to that
of PSEC-KEM (see Sect. 6.4.5). Since PSEC-3 is based on the Diffie-Hellman
problem on elliptic curves, it is necessary to have generated a suitable curve E
and chosen a point P ∈ E with prime order p. We will assume that the length
of p is equal to the security parameter λ and that E is defined over a finite field
Fq, where q is a prime power of length qLen. The key generation algorithm is a
probabilistic algorithm that takes (E,P, p, qLen, λ) as input. It runs as follows.

1. Generate a random integer s ∈ (Z/pZ)∗.
2. Set W := sP .
3. Set pk := (E,P, p, qLen,W, λ) and sk := (s, pk).
4. Output the key-pair (pk, sk).
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Encryption Algorithm. The encryption algorithm is a probabilistic algorithm
that takes a message m and the public-key pk as input. It is necessary for the
two communicating parties to have agreed on the use of some common functions:
a hash function Hash(·), a key derivation function KDF (·) and a symmetric
encryption scheme (Sym.Encrypt , Sym.Decrypt). It runs as follows.

1. Generate a random integer r ∈ (Z/pZ)∗.
2. Set C1 := rP .
3. Set x to be equal to the x-coordinate of rW .
4. Generate a random bit string u of length qLen.
5. Set C2 = u⊕ x.
6. Derive a suitable symmetric key K := KDF (u).
7. Encrypt the message m using the agreed symmetric encryption scheme under

the key K, i.e. set C3 = Sym.Encrypt(m,K).
8. Set C4 = Hash(C1||C2||C3||u||m).
9. Output the ciphertext C = (C1, C2, C3, C4).

Decryption Algorithm. The decryption algorithm is a deterministic algorithm
that takes a ciphertext C and the secret-key sk as input. It also uses the pre-
agreed hash function Hash(·), key derivation function KDF (·) and symmetric
encryption scheme (Sym.Encrypt , Sym.Decrypt). It runs as follows.

1. Parse the ciphertext C as (C1, C2, C3, C4).
2. Set x to be the x-coordinate of sC1.
3. Set u := C2 ⊕ x.
4. Derive a suitable symmetric key K := KDF (u).
5. Decrypt the symmetric ciphertext C3 using the key K, i.e. set m :=

Sym.Decrypt(C3,K).
6. Check that C4 = Hash(C1||C2||C3||u||m). If not, output Invalid Cipher-

text and halt.
7. Output m.

6.5.4.2 Security analysis

The following is a summary of the security analysis for PSEC-3; for more details
see [574]. Some justification for the selection of PSEC-KEM (see Sect. 6.4.5) for
further study over PSEC-3 is given in [576].

PSEC-3 is an amalgamation of two techniques used to enhance the security
of a key distribution scheme similar to PSEC-1 (see Sect. 6.5.3). The scheme uses
standard techniques to transform the weak key distribution scheme into a weak
hybrid encryption scheme. It then uses the techniques of [241] to improve the
security of the scheme.

The security analysis of PSEC-3 assumes that the implementation uses a
Vernam cipher as its symmetric component. The specifications [238] claim that
PSEC-3 is IND-CCA2 secure in the random oracle model and reduces to solving
the gap Diffie-Hellman problem on the elliptic curve group generated by P . A
formal proof of security was never given.



Dra
ft

Apr
il
19

, 2
00

4

256 Book II. Evaluation — Part B. Security evaluation

PSEC-KEM has an efficient reduction to a better assumption than PSEC-3,
and PSEC-3 does not appear to be significantly faster than a hybrid scheme using
PSEC-KEM. PSEC-3 is also very similar in structure to ECIES (see Sect. 6.4.2).
Furthermore, the submitters withdrew their support for PSEC-3 in favour of
PSEC-KEM.

6.5.5 RSA-OAEP

The RSA-OAEP algorithm is a well-established asymmetric encryption scheme
that uses the OAEP padding scheme developed by Bellare and Rogaway [53].
It was submitted to NESSIE by RSA Laboratories and consists loosely of the
following algorithms. A complete specification can be found in [325].

6.5.5.1 The design

Key Generation. The key generation algorithm for RSA-OAEP is similar to
that of RSA-KEM (see Sect. 6.4.6). It takes the security parameter λ as input
and runs as follows.

1. Generate a public exponent e, an odd integer greater than 1.
2. Randomly generate a prime p of length λ such that gcd(p, e) = 1.
3. Randomly generate a prime q of length λ such that gcd(q, e) = 1.
4. Set n := pq.
5. Set d to be the unique integer in (Z/λ(n)Z)∗ such that ed ≡ 1 mod λ(n),

where λ(n) = l.c.m.(p− 1, q − 1).
6. Choose positive integers mLen and rLen such that the length of n in bits is

equal to mLen+ rLen+ 32.
7. Set pk := (n, e,mLen, rLen, λ) and sk := (d, pk).
8. Output the key-pair (pk, sk).

Encryption Algorithm. The encryption algorithm is a probabilistic algorithm
that takes a message m of length mLen and the public key pk as input. In order
to use the scheme all parties must have agreed on the use of a common, public
mask generating function MGF (·). Note that here we use the mask generating
function to produce outputs of different lengths. We trust that the size of the
output required from the mask generating function will be clear from the context.

The encryption algorithm runs as follows.

1. Generate a random bit string R of length rLen.
2. Set X := MGF (R)⊕ (116||m), where 116 is the 16-bit representation of the

integer 1.
3. Set Y := R⊕MGF (X).
4. Set Z := 016||Y ||X where 016 is the 16-bit representation of the integer 0.
5. Set C = Ze mod n.
6. Output the ciphertext C.
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Decryption Algorithm. The decryption algorithm is a deterministic algorithm
that takes a ciphertext C and the secret-key sk as input. It requires access to the
same mask generating function that is used in the encryption process, and runs
as follows.

1. Set Z := Cd mod n.
2. Check that the leftmost 16 bits of Z are equal to 0. If not, output Invalid

Ciphertext and halt.
3. Parse Z as 016||Y ||X, where Y has length rLen, X has length mLen + 16

and 016 is the 16-bit representation of the integer 0.
4. Set R := Y ⊕MGF (X).
5. Set W := X ⊕MGF (R).
6. Check that the leftmost 16 bits of W are equal to the 16-bit representation

of the integer 1. If not, output Invalid Ciphertext and halt.
7. Parse W as 116||m, where m has length mLen and 116 is the 16-bit repre-

sentation of the integer 1.
8. Output m.

6.5.5.2 Security analysis

The following is a summary of the security analysis of the RSA-OAEP asymmetric
encryption scheme; for more details see [417].

The RSA cryptosystem [543] is well known not to be message-indistinguishable
in any normal attack model; however it is thought to be OW-CPA secure in the
standard model. Indeed its security has been so well studied that it is considered
to be a trusted cryptographic problem in its own right and so needs no more jus-
tification as a cryptosystem. The OAEP padding method was introduced in [53]
and provided with a proof that it transforms a scheme that is OW-CPA secure
into a scheme that is IND-CCA2 secure in the random oracle model. Unfortu-
nately this proof was shown to have a flaw [583]. The proof was corrected for the
RSA cryptosystem in [243].

This proof reduces the security of the cryptosystem to the RSA problem.
Formally, if (t, ε, qD) is an attacker for RSA-OAEP in the IND-CCA2 model then
there exists a (t′, ε′) solver for the RSA problem with

ε′ ≥ ε2

4
− ε ·

(2qDqM + qD + qM
2rLen

+
2qD
216

+
32

4λ−rLen
)
, (6.38)

t′ ≥ 2t+ 3q2M +O(λ3) , (6.39)

where

– qM is the number of queries the attacker makes to the random oracle repre-
senting the mask generating function.

Note that this security bound is not tight.
There is an attack against the RSA cryptosystem that can be applied to RSA-

OAEP. It has been shown that if the secret exponent d is less than n0.292 then
it can be recovered from the modulus n and public exponent e [106]. It has been
conjectured that it will be possible to recover d from n and e providing d < n0.5.
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Although side-channel attacks were not considered during phase I, the wealth
of literature on RSA based cryptosystems means that they are easy to find. It is
vulnerable to an error-message attack [414] and to a Hamming weight attack [349].
Each of these attacks recover a hidden message.

At the end of phase I NESSIE invited RSA Laboratories to submit a tweaked
version of the RSA cryptosystem with a padding method that gave rise to a
more efficient security reduction (such as RSA-SAEP or RSA-SAEP+ [103]).
RSA Laboratories responded by saying:

The only known RSA-based encryption scheme with a better security
reduction than RSA-OAEP is Victor Shoup’s adaption RSA-OAEP+.
However, the security reduction for RSA-OAEP+ is not tight enough
either in practice. Since neither of the schemes are provably secure for
concrete parameters, replacing one with the other does not appear mean-
ingful.

– J. Jönsson, RSA Laboratories

Hence RSA-OAEP was not selected for further study in NESSIE phase II because
it offers no advantages over a hybrid scheme that uses RSA-KEM (see Sect. 6.4.6).
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7. Digital signature schemes

7.1 Introduction

What is a digital signature? A signature is used by a signer to authenticate
a document, in such a way that anyone can check the validity of the signature.
A digital signature scheme does not mimic exactly the classical handwritten sig-
natures, because the signature is different for each message. If this were not the
case, a signature could be extracted from a document and copied to another
document.

The digital information that allows the signer to generate valid digital sig-
natures is the private key, and the digital information that allows the verifier to
check the validity of the signature is the public key.

Components of a digital signature scheme. A signature scheme is described
by the following four algorithms, with the security parameter k:

– a parameter generation Generate : (k, ρ) 7→ param,
– a key generation KeyGen : (param, ρ′) 7→ (pk, sk),
– a signature generation Sign : (param, sk,m, r) 7→ σ,
– a signature verification Ver : (param, pk, σ, r′) 7→ m or reject.

All these algorithms are deterministic. pk is the public key, sk is the private key,
m is a message and σ a signed message. The inputs ρ, ρ′, r and r′ (if non empty)
contain the optional randomisation for the algorithms. Usually these are fixed
length bit strings.

The digital signature scheme is sound if the following condition holds.

– For all k and m and for all ρ, ρ′, r and r′, let param = Generateρ(k) and
(pk, sk) = KeyGenρ

′
(param), and let σ = Signrparam,sk(m). Then Verr

′

param,pk(σ) =
m.
It may be accepted that the scheme is sound either with probability 1 or for
all but a negligible proportion of ρ, ρ′, r and r′.

The digital signature scheme is secure if it is hard to generate a valid σ with-
out knowing sk. When studying the security of a digital signature scheme, the
exact description of the algorithms Generate, KeyGen and Sign is not needed.
Only the probability distribution of their output makes a difference (see also the

0 Coordinator for this chapter: ENS — Louis Granboulan
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notion of equivalent signature schemes in Sect. 7.2.3). This is why we will be-
gin the description of signature schemes by the description of their most specific
component: Ver.
Appendix or message recovery. Signature schemes with appendix have the
property that σ = m‖s and s is called the appendix. Signature schemes with
partial message recovery have the property that σ = m̂‖s and that the whole
message is m = m̂‖m̄, where m̄ is the recovered part of the message. They
typically have a lower bound for the size of the whole message, which is also
the number of message bits recovered. This lower bound can be overcome by
storing the length of the actual recovered part in m̄, e.g. by padding m̄ with a
1 followed by a string of 0s. With this padding, one bit of message expansion
is added. All the signature schemes submitted to NESSIE are signature schemes
with appendix.
Stateful schemes. In a stateful digital signature scheme, the signing algorithm
Sign is allowed to keep an internal state that tracks the number of signatures
generated and optionally their values.

All the signature schemes submitted to NESSIE are stateless, but there exist
interesting examples of stateful schemes [169,212,273].
Public key and identity. It is important that the verifier is convinced that the
public key used to verify a signature corresponds to the alleged signer. Generally,
it is not the goal of the signature scheme to decide how the public key infras-
tructure is organised, but any application that uses a signature scheme needs to
decide how public keys are linked to meaningful identities.

Some digital signature schemes are identity-based, which means that the
signer can choose his public key to be equal to his identity, and that a trusted
authority generates the corresponding secret key. No identity-based signature
scheme was submitted to NESSIE.
Description of the scheme, public parameters and public keys. Many
descriptions of signature schemes only include the precise description for the
algorithms Sign and Ver. However, to study the performance and security of the
scheme one needs to know what is part of the scheme, what is a parameter that
can be tuned to different applications, and what is in the keys specific to each
user.

In many cases, parameters and keys are not clearly separated, and param-
eter generation and key generation are merged in a single algorithm KeyGen′ :
(k, ρ‖ρ′) 7→ (param‖pk, param‖sk), but separating the two is useful in practice.

The public parameters of a scheme usually include some information on the
key size, but may include other additional information like the description of an
elliptic curve subgroup. The choice of a hash function for the scheme may be
fixed, but is usually left as a parameter, or may even be left up to the user (see
also the discussion on hash identifiers [334]).
Parameters and key validation. Many descriptions of signature schemes only
include the algorithms Sign and Ver. They certainly are the most specific compo-
nents of a scheme, and their performance and security are usually studied assum-
ing that the parameters and keys are uniformly randomly distributed. However,
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the way parameters and keys are actually generated can be the source of weak-
nesses and it is important that the verifier and the signer can trust the parameters
and the keys. This document will not go deeply into this topic, but this issue will
be highlighted when necessary.

Short to long term security. Some applications may need long term security
(50 to 80 years) but current knowledge does not allow us to make predictions
about cryptanalytic advances for such a long time. Some applications only need
short term validity of a signature (1 day to 1 month). Medium term security is 5
to 10 years and is the main target of this document.

All signature schemes should incorporate in their public parameters a deadline
for validity. If the validity needs to be extended beyond this deadline, re-signing
with more recent public parameters is mandatory.

7.2 Security requirements

7.2.1 Security model

7.2.1.1 Existential unforgeability under adaptive chosen message
attack

Unforgeability. An existential forger under adaptive chosen message attack is
a (randomised) algorithm that inputs a public key and tries to produce a valid
signature, the forgery. The forger is able to make queries to a black box that
generates valid signatures and the forgery must be new (see below). A (t, ε, qS)-
forger succeeds in time t with probability ε and is allowed to make qS signing
queries. A signature scheme with no (t, ε, qS)-forger is said to be (t, ε, qS)-secure.

The original definition of an existential forger [273] required that the forgery
is a valid signed message for a message that was not the input of a signature
query. Our definition only requires that the forgery is a valid signed message
that was not the answer to a query. This means that another valid appendix for
the same message is a valid forgery. This requirement is called “super-security”
by Goldreich [265, Volume 2, Sect. 6.5.2], “strong unforgeability” by Bellare and
Namprempre (introduced for MACs [50]) or “non-malleability” by Stern et al.
[597].

We will aim at non-malleable existential unforgeability under adaptive chosen
message attack. Non-malleability may not be really important [14] but some
applications may need it.

Some weaker security requirements. The adaptive chosen message signing
oracle can be replaced by a less powerful oracle.

– Single-occurrence chosen message attacks (SO-CMA) [597]. The forger is not
allowed to make multiple signing queries on the same message. This attack
model appears during the study of non-deterministic signature schemes, espe-
cially ESIGN. See Sect. 7.3.1.2 and 7.4.2.
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– Random message attacks (RAND). The forger has access to a list of signed
messages that correspond to random messages. This attack model depends on
a probability distribution on the message space. Schemes that are secure in
this attack model can be used as building blocks for schemes that are secure
against adaptive chosen message attacks. See Sect. 7.3.3.3.
Goldwasser, Micali and Rivest [273] defined known-message attacks where the
forger has access to a list of signed messages, but they don’t say how these
messages are chosen, only that the forger did not choose them.

Security level. The security level of a scheme is k bits if there exists no (t, ε, qS)-
forger with log2(t/ε) < k.

This value k depends on the time unit used for t. A natural time unit is the
running time of the verification algorithm.

Non-repudiation of origin. In a similar way to the two flavours of unforge-
ability, two flavours of non-repudiation of origin exist.

Basic non-repudiation of origin means that any third party can be convinced
that a valid signed document corresponds to a message that has been deliberately
signed by the secret key holder. It makes it impossible to repudiate a message.
Existential unforgeability under adaptive chosen message attack implies (basic)
non-repudiation.

Strong non-repudiation of origin means that any third party can be con-
vinced that a valid signed document has been deliberately signed by the secret
key holder. It makes it impossible to repudiate a signed message. Non-malleable
(strong) existential unforgeability under adaptive chosen message attack implies
strong non-repudiation.

Remark: The verification algorithm needs to get the whole signed message σ
to compute its answer. Therefore, for a signature scheme with appendix, it is
meaningless to consider properties where the appendix is studied separately
from the message.
For example, the notion of duplicate signatures is meaningless. It was de-
fined [597] as an attack against an appropriate definition of non-repudiation.

Duplicate signatures are values m, m′, s such that Verr′
param,pk(m‖s) = m and

Verr′
param,pk(m

′‖s) = m′. This property also appeared in [123] where it was seen
as a potential weakness.
While the existence of duplicate signatures may be surprising, it is not a weak-
ness of a digital signature scheme. If the scheme is existentially unforgeable, it
proves that both signed messages were produced by a secret key holder.
Moreover, one can notice that the secret key can easily be deduced from the du-
plicate signatures described in [123,597]. Therefore a user that shows duplicate
signatures in these schemes is a user that publishes his secret key.

It is important that the secret key is not compromised, because any holder
of the secret key can sign documents. Therefore, non-repudiation of origin is not
a proof of security against viruses or Trojan horses. Forward secrecy and related
properties [4,15,49,313,376,411] deal with this problem. Such properties are not
in the scope of the NESSIE evaluation and we make the hypothesis that the
secret key is never compromised.
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7.2.1.2 Other security models

While existential unforgeability under adaptive chosen message attack is the de
facto standard notion of security for signature schemes, it does not cover all
possible attacks. This security notion only considers a unique randomly generated
param and a unique (pk, sk) pair. Non-uniqueness or non-random generation lead
to realistic attack models that are not covered by existential unforgeability under
adaptive chosen message attack.

Authentication of origin. An attacker against this property of a digital sig-
nature scheme is an algorithm that inputs a signed message σ valid for a public
key pk and outputs another public key pk′ such that σ is valid for pk′.

This property is not implied by existential unforgeability, but it is useful
to mimic some properties of hand-written signatures, e.g. in applications where
some write-only and time-stamped database is used to receive signed messages
and then to solve disputes for anteriority.

The attack against the property of authentication of origin is named duplicate-
signature key selection [94] or key substitution [440] or key-collision [546].

Multi-key/multi-user setting. These settings consider the case where a fixed
param and many pki are used, and the adversary has access to signature oracles
for all those keys.

The multi-user setting for digital signature schemes first appeared in [249,440]
and its security requirements are related to those of the multi-user setting for
asymmetric encryption schemes [43].

By definition, a (t, ε, n, qS)-mu-forger has access to the signature oracles cor-
responding to n public keys pki, is allowed to make at most qS queries to the
oracles, runs in time t and outputs a forgery for some pki with probability ε. A
scheme for which the existence of a (t, ε, n, qS)-mu-forger implies the existence of
a (t, ε, qS)-forger is secure in the multi-user setting. This also implies authentica-
tion of origin.

Using similar techniques to those of Bellare et al. for multi-user security
with asymmetric encryption, Galbraith et al. [249] showed how random self-
reducibility of Schnorr-like signature schemes proves multi-user security.

A similar requirement appeared in [274] under the name multi-key. Here the
best simultaneous attack on all the keys should be an independent attack on each
key.

By definition, a (t, ε, n, qS)-mk-forger has access to the signature oracles cor-
responding to n public keys pki, is allowed to make at most qS queries to each
oracle, runs in time nt and outputs a list of forgeries for each pki such that
each forgery is valid with probability ε. A scheme for which the existence of a
(t, ε, n, qS)-mk-forger implies the existence of a (t, ε, qS)-forger is secure in the
multi-key setting.

This is the case if all the verification algorithms with distinct (param, pk)
values are information-theoretically independent. However, most digital signature
schemes share a common hash function for all public keys. Finding a collision in
the hash function is a more efficient simultaneous attack on multiple keys than on
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a single key. Therefore it is good practice to have a key-dependent hash function,
for example by including param and pk in the input of a common hash function.

Parameter manipulation. If param is not chosen at random, new attacks may
appear. For example, param can be chosen with a trapdoor enabling the gen-
eration of valid signatures without knowing the secret key [96] or such that a
collision is introduced in the hash function [444,612].

One technique that protects against parameter manipulation is parameter
validation, e.g. the publication of (k, ρ) together with param, but this might not
be sufficient if the algorithm that generates the parameters from the seed leaves
some freedom, as is the case for the ECDSA standardised technique [615]. Ideally,
one should provide a security proof for Generate. Another heuristic protection has
been proposed [340,444] to protect against an attacker that studies the properties
of a hash function used in the scheme to select weak or trapdoor parameters: one
can include the values param, pk in the input to this hash function.

Side-channel attacks. A hidden assumption of our security model is that the
attacker may have access to the input and output of the signing algorithm, but
the attacker should not be able to get any information about intermediate values
that appear during the computation of a signature.

An adversary that has access to this type of information is said to be able to
mount a side-channel attack (see Appendix A for more details).

Key recovery vs. forgery. If one access to a forger allows an attacker to
compute the secret key, then additional forgeries can be made without the forger
and the message for these forgeries can be chosen by the attacker. For example,
if a side-channel attack can succeed in producing a forgery, then a few accesses
to side-channel information can allow an attacker to make an unlimited number
of chosen-text-forgeries. Therefore, the existence of a reduction from forgery to
key recovery can be seen as a weakness of the system.

7.2.2 Intractability assumptions

7.2.2.1 Mathematical problems

A mathematical problem is described by the set of instances of size l, a probability
distribution on this set, and a set of possible solutions. For each instance, some
of the possible solutions are valid and the others invalid.

Computational and decisional problems. If the set of possible solutions is
{yes, no} with one valid and one invalid for each instance, then it is called a
decisional problem; else it is called a computational (or search) problem.

A solution-checker is an efficient algorithm that inputs an instance and a so-
lution and tells if the solution is valid. The problem of the existence of a solution-
checker is the decisional problem associated with the problem.
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Concrete intractability. A solver for the problem is an efficient algorithm
that inputs an instance and outputs a valid solution. A mathematical problem is
(t′, ε′)-intractable for size l if there exists no solver running in time t′ that succeeds
with probability better than ε′ for a random instance of size l. The problem has
intractability k′ bits if there exists no (t′, ε′)-solver with log2(t′/ε′) < k′. The
value k′ depends on the time unit.
Asymptotic intractability. A problem is intractable if for any polynomial p
the problem with size l has intractability p(l) bits for large enough l. With the
terminology of complexity theory an intractable problem (usually only defined
for decisional problems) is a problem that is not a member of P.

NP-hard problems are proven to be at least as difficult to solve as all NP
problems (problems that have a polynomial-time solution-checker). They may
be good candidates for intractable problems. However NP-hardness only gives a
bound for the worst case and not for an average instance of the problem, and
hard instances may be difficult to generate.
7.2.2.2 Trusted cryptographic problems

No mathematical problem is provably intractable, but the following problems are
good candidates and their intractability is assumed when proving the security of
some cryptographic schemes.
Factorisation-based problems.

– The integer factorisation problem. An instance is a composite integer n
of l bits. A solution is a non-trivial factor of n.
The probability distribution of the instances is unclear. Usually, the integer n
is constructed as pq or p2q where p and q are randomly generated primes of
similar sizes, because these are the most difficult instances for the current best
factorisation algorithms. 1

The corresponding decisional problem is easy because the algorithm that com-
putes the gcd of the instance and the solution is a solution-checker.

– The RSA problem. An instance is (n, e, y) where n is a composite integer of
l bits, e is an integer coprime to φ(n) and y ∈ (Z/nZ)×, the set of invertible
elements modulo n. A solution is some x ∈ (Z/nZ)× such that y = xe.
The probability distribution of the instances is as unclear as for the factori-
sation problem. There exist two techniques for generating random instances:
choosing n, then e and then y, or choosing e, then n and then y. The second
technique is usually preferred because it allows one to fix the value of e in
advance and use the e-th root problem below.
The only known method of solving this problem is to solve the integer factori-
sation problem for n. The assumption that the RSA problem is hard is known
as the RSA assumption.
The corresponding decisional problem is easy because the algorithm that com-
putes xe ?= y is a solution-checker.

1 There is no simple method to detect if n is of one of these special forms. In general,
the best known technique to detect if n is of one of these forms is to factor it.
Many algorithms exist for the generation of random primes and give different proba-
bility distributions. One efficient algorithm has been submitted to NESSIE [331].
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– The e-th root problem. An instance with parameter e is (n, y) where n is a
composite integer of l bits such that φ(n) is coprime to e and y ∈ (Z/nZ)×. A
solution is some x ∈ (Z/nZ)× such that y = xe.
This problem looks very similar to the RSA problem, but having a fixed value
for e leads to some theoretical results, e.g. if e is a smooth integer [110]. One
can also notice that if e is not coprime to φ(n), e.g. e = 2, then the e-th root
problem (where y is a e-th power) is proven to be equivalent to the factorisation
problem.
The only known method of solving the e-th root problem is to solve the integer
factorisation problem for n.
The corresponding decisional problem is easy because the algorithm that com-
putes xe ?= y is a solution-checker.

– The flexible RSA problem. An instance is (n, y) where n is a composite
integer of l bits and y ∈ (Z/nZ)×. A solution is some x ∈ (Z/nZ)× and e > 1
such that y = xe.
The only known method of solving this problem is to solve the integer factori-
sation problem for n. The assumption that this problem is hard is known as
the strong RSA assumption.
The corresponding decisional problem is easy because the algorithm that com-
putes xe ?= y is a solution-checker.

– The approximate e-th root problem (AER). An instance with parameters
e and d is (n, y) where n is a composite integer of l bits such that φ(n) is coprime
to e and y ∈ (Z/nZ)×. Let αd(x) =

⌊
x mod n
n(d−1)/d

⌋
the n

1
d -approximation of x. A

solution is some x ∈ (Z/nZ)× such that αd(y) = αd(xe).
For d = 3, this problem has been solved for e < 4. The only known method of
solving this problem for d = 3 and e ≥ 4 is to solve the integer factorisation
problem for n.
The corresponding decisional problem is easy because the algorithm that com-
putes αd(xe) ?= αd(y) is a solution-checker.

– The claw-free approximate e-th root problem (Claw-AER). Parame-
ters and instances are defined as for AER but a solution is a pair x, z ∈ (Z/nZ)×

such that αd(yze) = αd(xe). This problem appeared recently [274] and its in-
tractability is not well known.

– The second-preimage approximate e-th root problem (2nd-AER).
Parameters and instances are defined as for AER but a solution is a value
x ∈ (Z/nZ)× such that x 6= y and αd(xe) = αd(ye). This problem is related to
the non-malleability of ESIGN and its intractability is not well known.

Discrete logarithm-based problems. All problems are parameterised by a
cyclic group 〈G〉 and its generator G. The order of 〈G〉 is a number q with l bits.
Group operations should be easy to compute, but elements of this group may be
indistinguishable from elements of a larger group.
〈G〉 is usually a subgroup of the multiplicative group of a finite field of prime

order p or a subgroup of the group of points on an elliptic curve over a finite field.

– The discrete logarithm problem. An instance is H, a random element in
〈G〉. The solution is x ∈ Z/qZ such that Gx = H.
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This value is unique and is the discrete logarithm logH.
The corresponding decisional problem is easy because the algorithm that com-
putes Gx ?= H is a solution-checker.

– The computational Diffie-Hellman problem. An instance is (H1,H2),
both random elements of 〈G〉. The solution is H such that logH = logH1 ·
logH2.
The only known method for solving this problem is to solve the discrete loga-
rithm problem.

– The decisional Diffie-Hellman problem. An instance is (H,H1,H2), ele-
ments of 〈G〉. The solution is yes if logH = logH1 · logH2.
The probability distribution of instances is given by the following algorithm:
take independent random x1, x2, x3 ∈ Z/qZ and a random bit b, let H1 = Gx1 ,
H2 = Gx2 and, depending on b, either H = Gx3 or H = Gx1x2 .
The only known generic method for solving this problem is to solve the compu-
tational Diffie-Hellman problem, hence to solve the discrete logarithm problem.
However, there exist groups where an efficient algorithm solves the decisional
Diffie-Hellman problem without solving the computational Diffie-Hellman prob-
lem (they are called GDH groups and are elliptic curves where the Tate/Weil
pairing [235,329] has special properties).

– The gap Diffie-Hellman problem. Solve the computational Diffie-Hellman
problem with access to an oracle that answers the decisional Diffie-Hellman
problem. In practice this problem appears in GDH groups.

Multivariate algebra-based problems.

– The MQ problem. The MQ problem is to find a solution to a given set of
multivariate quadratic equations over a finite field, and is NP-hard in general.

– The HFE problem and variants. The HFE problem is a special case of the
MQ problem where the set of equations is not random but constructed so that
there is a trapdoor to their solution, and the HFEv− problem is an extension
of the HFE problem which is harder to solve.
The QUARTZ, FLASH and SFLASH problems are special cases of HFEv−.

7.2.2.3 How to estimate concrete intractability

Best known solvers. There are some algorithms for solving the above prob-
lems. The notation Lq[α, c] = O(exp((c+ o(1))(ln q)α(ln ln q)1−α)) is used for the
asymptotic complexity of some of them.

– Integer factorisation. The fastest known algorithms for factorising large
integers are the Number Field Sieve [393] and the Elliptic Curve Method [397].
The asymptotic time taken by the number field sieve to factor an integer n is
approximately Ln[ 13 , cNFS] where cNFS is a constant depending on the variant
of number field sieve. 2 The asymptotic time taken by the elliptic curve method

2 The General Number Field Sieve works for any integer n and has cNFS = ( 64
9

)1/3 '
1.923. The Special Number Field Sieve works for n = k · ab ± c and has cNFS =
( 32

9
)1/3 ' 1.526.
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to factor an integer whose smallest factor is p is Lp[ 12 ,
√

2]. Both algorithms
are subexponential in the size of their input.
An improvement of the elliptic curve method exists for n = p2q [213,517] and
a special algorithm for n = prq with large r [108].

– Discrete logarithm over Fp. The index-calculus method [144,221,492] is the
fastest known method of solving the discrete logarithm problem over Fp. It is
closely related to the number field sieve factoring algorithm and has expected
asymptotic running time of Lp[ 13 , cNFS], which is subexponential.

– Elliptic curve discrete logarithm. The fastest general methods of attack
for solving the elliptic curve discrete logarithm problem are the Pollard ρ and
the Pollard λ methods [524]. For a group with q elements, the Pollard ρ runs
in time

√
πq/2, and the Pollard λ runs in time 2

√
q but can be faster in some

special cases. Both can be efficiently parallelised [607] and have been slightly
improved [250, 624]. No subexponential algorithm has been found for solving
the elliptic curve discrete logarithm problem.
There exist subexponential attacks for specific elliptic curves: supersingular
and similar curves [236,282,439,550] and anomalous curves [554,564,587].

– Generic group discrete logarithm. Nechaev [474] and Shoup [581] proved
that the best algorithm to solve the discrete logarithm in a generic group runs
in time O(

√
q). However, all known concrete groups can easily be distinguished

from a generic group (they have automorphisms that are easy to compute from
the binary representation of the elements).

– MQ and related problems. For the MQ and HFE problems the situation
is somewhat more complicated and not as well studied. The MQ problem is
usually solved by looking for a Gröbner basis — a method that can handle
generic multivariate equations. Faugère [225] showed that the instances of HFE
generated for QUARTZ are easier than generic instances and Courtois, Daum
and Felke [157] studied the implications of this result.
The XL and FXL algorithms are designed for systems where the equations
are quadratic and there is an attack of Shamir and Kipnis [566] on the HFE
problem.

Quantum computers. Today large quantum computers don’t exist, and they
may never exist, but their theoretical aspects have been studied and many re-
searchers are trying to build one. The largest quantum computer that has been
built handled 7 q-bits. If larger quantum computers can be realised, their impact
on cryptology is important, because some algorithms have been designed that
can efficiently solve the integer factorisation or discrete logarithm problem with
a quantum computer [580]. No algorithm is known that solves MQ and related
problems faster with a quantum computer than with current computers.

Estimations for the difficulty of problems. While it is impossible to be sure
that a cryptographic problem will remain intractable (because a fast polynomial
algorithm might be discovered, that solves all NP problems), it is necessary to
estimate the lifespan of a public key. Articles giving such estimates have been
written by many researchers [396, 491, 586, 623] and have led to various conclu-
sions. See also the discussion in [573].
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The simplest presentation of their results can be given in terms of equivalent
symmetric key size for a given security. The NESSIE call [475] asked for a security
equivalent to an 80-bit symmetric key, by asking that the best attacks require
the equivalent of 280 Triple-DES operations.

– Current practice. For normal security most products use DES (56-bit sym-
metric key), 512-bit RSA moduli, 112-bit elliptic curve keys and 160/512-bit
DSA. Higher security is obtained with Triple-DES (112 bits) or AES (128 bits),
1024-bit RSA and 160-bit elliptic curve keys.

– Estimates by Certicom. The Standards for Efficient Cryptography Group
[136, appendix B.2] gives the following estimates for comparable key sizes.
Equivalent symmetric key size 56 80 112 128 192 256
RSA modulus length 512 1024 2048 3072 7680 15360
Elliptic curve key size 112 160 224 256 384 512

– Estimate of Silverman. A cost-based analysis [586] gives the following table.
Equivalent symmetric key size 56 64 80 96 112 128
RSA modulus length 430 530 760 1020 1340 1620

With these estimates, the computing power for the factorisation of 1020-bit
integers should not be available during the next 20 years, and a 768-bit integer
should be factorised by public effort around 2019.

– Estimates for the computing power available. Blaze et al. [95] estimated
in 1996 that a minimum of 75 bits was necessary to have security for commercial
use, and that 90 bits were needed to protect data for the next 20 years.

– Estimates by Lenstra and Verheul. Their article [396] is the most complete
study of this topic. They take many factors into account:
– Trusted key length for secure block ciphers.
– Increase of computing power and memory available on constant-cost com-

puters.
– Increase of the budget of attackers.
– Cryptanalytic advances.
Their results can be summarised with the following approximate table.
Equivalent symmetric key size 56 64 72 80 90 100
Elliptic curve key size 105 120 135 160 185 220
RSA modulus length 417 682 1024 1500 2236 3100
RSA cost-based equiv. 288 480 768 1150 1792 2600

They also find equivalent dates for different key sizes if one makes the hypoth-
esis that DES could be trusted until 1982.
Equivalent symmetric key size 56 64 72 80 90 100
Last year with trust 1982 1992 2002 2012 2025 2040

– Bernstein’s circuit for integer factorisation. Recently, Bernstein [55] pro-
posed a new hardware design for the linear algebra step of the Number Field
Sieve that might reduce the cost of factorisation. Dedicated hardware for the
sieving is also studied. The proposed measure of the efficiency of such tech-
niques is “construction cost × run time”, which is quite different from the
classical count of the number of operations. This approach has been heavily
discussed within the community of researchers in cryptography and algorith-
mic number theory [394, 557], but currently no real consensus emerges. It is
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likely that dedicated hardware will improve the cost of factorisation, but sev-
eral estimations give different values, all being asymptotic. However, one can
remark that Bernstein’s techniques don’t reduce the number of operations.

– Some records. Here is a table of some historical factorisation records.
Year 1978 1982 1986 1992 1999 2002
Bit size 150 170 289 429 512 525

Exhaustive key search for 64 bits was achieved in 2002 with two years of com-
putation on the spare time of thousands of computers [203]. Factorisation of
a 525-bit number was achieved in 2002 with two months of computation on a
few dozens of computers [31].

– A conclusion. To comply with the NESSIE requirement of an equivalence
with a symmetric key of 80 bits, the size given in the above papers for an
elliptic curve key is 160 bits, but the sizes for an RSA modulus range from 760
to 1500 bits. All submitted schemes use the intermediate value of 1024 bits.
However, the NESSIE call was phrased in terms of number of operations, be-
cause it was felt that cost-based analysis introduces an additional parameter
that is not very well understood. Moreover, the difference between attack tech-
niques against symmetric and asymmetric schemes is already taken into ac-
count by the fact that the minimal computational cost of an attack against
NESSIE-recommended symmetric primitives is 2128 operations while the mini-
mal computational cost of an attack against NESSIE-recommended asymmet-
ric primitives is 280 operations.
Therefore, we use the following table, based on the hypothesis that the factori-
sation of 512-bit numbers with NFS needs a workfactor of 256 and that 190-bit
factors are found by ECM with a workfactor of 256.
Equivalent symmetric key size 56 64 80 112 128 160
Elliptic curve key size 112 128 160 224 256 320
Modulus length (pq) 512 768 1536 4096 6000 10000
Modulus length (p2q) 570 800 1536 4096 6000 10000

7.2.3 Proven security

A proof of security is the description of a (randomised) algorithm called a reduc-
tion algorithm. This algorithm is a (t′, ε′)-solver for some mathematical problem
and interacts with a (t, ε, qS)-forger for the signature scheme. For a random in-
stance of the problem the reduction algorithm sends a random-looking public
key to the forger and uses the forgery to solve the problem. Therefore ε′ ≤ ε and
t′ ≥ t.

Usually qS � t, and we will require k = log2(t/ε) = 80 (the attacker’s
computing power is estimated to 280 triple-DES operations) and log2 qS = 30
(the attacker cannot require more than a billion signed messages).

Simulation of signature queries. The black box that is used by the forger to
get the qS signatures depends on the public key. Therefore it is provided by the
reduction algorithm, which acts as an oracle. For each signature query made by
the forger, the reduction algorithm should answer with a valid signed message,
and this answer should be indistinguishable from an answer made by the signing
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algorithm with the secret key. Therefore the reduction algorithm is also named a
simulator.

The reduction does not always succeed, partly because its simulation of an
equivalent signature scheme may not be perfect, and partly because the forgery
may be useless.

Uniformity of proofs. Uniform reduction means that the reduction algorithm
does not depend on the description of the forger. Non-uniform reduction means
that for any possible forger, there exists a reduction algorithm which is a solver.
An example of non-uniform reduction can be found in [523] where the reduction
algorithm depends on the success probability and number of queries of the forger.

Efficiency of proofs. We have a tight proof of security if t′/ε′ ' t/ε.
We have a not so tight proof of security if t′/ε′ ' qSt/ε.
We have a loose proof of security if t′/ε′ � qSt/ε, for example t′/ε′ ' t2/ε.

For example, for the security proof to give 80 bits of security, factorisation-
based schemes should use a 1536-bit modulus if they have a tight proof of security,
a 4096-bit modulus with a not so tight proof and a 10000-bit modulus with a
loose proof.

Equivalent signature schemes. Two signature schemes are equivalent when
the following conditions are satisfied:

– The possible values of param are the same.
– The distributions of the pk generated are indistinguishable.
– Both verification algorithms are the same.
– The output of the two Sign algorithms for fixed m and random r are indistin-

guishable. When this last condition is omitted, it is a weak equivalence.

Any (t, ε, qS)-forger for a signature scheme is also a (t, ε, qS)-forger for all equiv-
alent signature schemes. If qS ≤ 1, weak equivalence is sufficient.

A security proof for a signature scheme shows that if the mathematical prob-
lem is intractable, then there exists no forger for any scheme equivalent to it.

7.2.4 Proofs in an idealised world

Definition. A proof in an idealised world involves a restriction of the power of
the attacker: some components of the verification algorithm cannot be computed
by the forger alone, help from the simulator is needed. By definition all our
algorithms are deterministic, hence the components are deterministic functions
of their inputs.

Basic oracle property. An idealised component has the basic oracle property
if the simulator knows the values of all inputs and outputs of this component.
Usually the basic oracle property is introduced in the proof by requesting that for
each access to this component, the attacker must send to the simulator a query
containing the input. Then the simulator computes the output of the component
and sends it to the attacker. The simulator behaves like an oracle for this function,
hence the name.
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Usually the number of queries to the oracle is bounded by qO, and because
the actual computation of the idealised components takes time, a scheme with k
bits of security and with the appropriate time unit always has qO ≤ 2k.

Randomness. Instead of computing the idealised component, the simulator may
give random answers, provided that they agree with the properties of the com-
ponent.

The simulator needs to remember all the inputs that are queried and the an-
swers that are made, and make the appropriate consistency checks before answer-
ing. In other words, the reduction algorithm constructs the oracle input/output
table in answer to queries.

Such an idealised proof makes the assumption that the component has no
other useful property than the ones used for the consistency checks.

Programmability. Instead of choosing the answer at random from the set of
consistent answers, the simulator is allowed to generate the answer with any
technique that is indistinguishable from a random choice.

Example of idealised components and some terminology.

– Random oracle model. The idealised component is a hash function. The
only consistency check is that two identical inputs get the same answer, hence
the name [52]. This is the simplest possible consistency check and it was the
first idealised model used for security proofs [229]. The alternative generic
hash model terminology has been proposed [126].
The random oracle model is the most widely used model for security proofs in
an idealised world [52–54,149].

– Generic group model. The idealised component is the group where some
computations take place. The consistency check has to make sure that algebraic
properties of the group operation are respected.
The generic group model appeared in [474,581] and has been used to prove the
security of some specific schemes [124,126].

– Random permutation model. The idealised component is a permutation,
and oracle queries can be made for the permutation or for the inverse permu-
tation. Consistency checks make sure that it is 1-to-1.
This model is used to prove the security of some specific schemes [276].

– Ideal cipher model. The idealised component is a block cipher. This is a
simultaneous use of multiple idealised permutations, one for each value of the
key.
This model is used to prove the security of some specific schemes [276,323].

Can we trust security proofs in an idealised world? Proofs in these models
cannot generically be translated into the real world [135,194,230], but it is widely
believed that a proof in an idealised model gives some confidence in the design
of a cryptographic primitive.

The impossibility result of Canetti, Goldreich and Halevi [135] shows that
there exist systems that are secure in an idealised model, but insecure when the
idealised component is replaced by any concrete component. Such a weakness is
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very unlikely to be present in a simple cryptographic design, but cannot be ruled
out. The only solution is to find a proof in the real world.

Another problem with proofs in an idealised world is that they don’t specify
which concrete attacks against the idealised component should be prevented. The
availability of different proofs that idealise distinct components gives a partial
answer to this problem.

7.2.5 Assessment process

The digital signature submissions were assessed with reference to the submitted
security proof. The underlying intractability assumption was reviewed.

Variants of the scheme were studied to verify whether the designers have made
the optimal choices or not. When interesting variants were found, we interacted
with the submitters to find justifications for keeping the submitted design un-
changed. Compatibility with existing de facto standards was not received as a
good argument for not improving a scheme, because the goal of NESSIE is not to
recommend the de facto standards, but to recommend a portfolio of secure and
efficient primitives.

7.3 Overview of the common designs

We describe three types of design commonly used to build digital signature
schemes.

– The idea of using a trapdoor one-way function to obtain digital signatures dates
back to 1978 [543]. This paradigm is also named hash-then-invert or hash-then-
sign and NESSIE submissions RSA-PSS, ESIGN, Quartz, Flash and Sflash fall
into this category.

– The discrete logarithm problem was the first basis for security in public key
cryptography [201] and the first digital signature scheme based on this problem
was introduced in 1985 [219]. A wide family of other schemes based on the
discrete logarithm problem has been developed and the NESSIE submission
ECDSA is one of them.

– The above schemes don’t have a security proof without an idealised model.
There exist many schemes that have a security proof in the “real world” and
the NESSIE submission ACE-Sign is one of those.

This section contains much technical information about the design criteria for
digital signature schemes, and the key ideas of the security proofs that support
them. Much of the material in this section appeared in various places, but no
previous overview of common designs for digital signature schemes covers all the
schemes submitted to NESSIE.
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7.3.1 Schemes based on trapdoor one-way functions

7.3.1.1 Properties of one-way functions

Family of one-way functions. A family of one-way functions is a collection
of functions {fi : Si → Hi|i ∈ I} over some index set I =

⊕
l Il (disjoint union)

with the following properties.
OW1 There is an efficient randomised algorithm Gen which takes as input a

length parameter l and outputs an index i ∈ Il.
OW2 There is an efficient randomised algorithm which on input i outputs x ∈ Si.

The resulting probability distribution is denoted x← Si.
OW3 Each fi is efficiently computable.

We remark that there is an efficient randomised algorithm that outputs
some y ∈ Hi: this algorithm generates x ← Si and finds y = fi(x). The
resulting probability distribution is written y ← Hi.

OW4 Preimage-resistance: for random i← Gen(l), y ← Hi, the problem of find-
ing a value x ∈ Si such that fi(x) = y is intractable.

OW5 Second-preimage-resistance: for random i ← Gen(l), x ← Si, the problem
of finding a value z ∈ Si, z 6= x, such that fi(x) = fi(z) is intractable.

Property OW5 will imply non-malleability of the signature scheme. It is always
true if fi is injective.
Note that if the preimage-resistance has intractability k bits, then the set Hi has
at least 2k elements, because exhaustive sampling in Si is always possible.

Family of claw-free functions. A family of claw-free functions is a collection
of functions {fi : Si → Hi, gi : Ti → Hi|i ∈ I} over some index set I =

⊕
l Il

with the following properties.
CF1 There is an efficient randomised algorithm Gen which takes as input a

length parameter l and outputs an index i ∈ Il.
CF2 There are efficient randomised algorithms which on input i output x ∈ Si

or z ∈ Ti.
CF3 Each fi and gi are efficiently computable.
CF4 Claw-freeness: for a random i← Gen(l), the problem of finding two values

x ∈ Si and z ∈ Ti such that fi(x) = gi(z) is intractable.
We remark that if (f, g) is claw-free, both f and g are preimage-resistant.
Note that if the claw-freeness has intractability k bits then the set Hi has at least
22k elements, or exhaustive sampling in Si and Ti would lead to a collision with
the birthday paradox.

Uniformity. In the above general definitions, the distributions i← Gen(l), x←
Si and y ← Hi don’t need to be uniform.
A family f is said to be uniform if the following additional property holds.

UN The distribution y ← Hi is indistinguishable from the uniform distribution
in Hi.

Trapdoor invertibility. The family f is invertible with a trapdoor if the fol-
lowing additional properties hold.
TR1 The algorithm Gen also outputs a trapdoor trapi.
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TR2 There is an efficient (randomised) algorithm that on input i, trapi, y ∈ Hi
returns a value x = f−1

i (y) such that fi(x) = y.
TR3 The distribution of x generated by y ← Hi and x = f−1

i (y) is indistin-
guishable from the distribution x← Si.

Note that in many examples of such families of functions we have Si = Ti = Hi
and fi and gi are permutations, but these more general definitions are necessary
to cover all submissions to NESSIE.
A generalisation to verifiable simulatable functions. While the usual def-
inition of the hash-then-invert paradigm makes the hypothesis that the fi are
efficiently computable, this requirement can be relaxed for the FDH and PFDH
constructions, as described below. This is used e.g. in Sect. 7.3.2.11.
A family of verifiable simulatable one-way functions is similar to a family of
one-way functions, but with the properties OW2 and OW3 replaced by
OW2S There exists an efficient randomised algorithm Sf

i which on input i outputs
a pair (x, y) ∈ Si ×Hi such that y = fi(x). The corresponding probability
distributions are written x ← Si and y ← Hi. This algorithm simulates
x← Si, y = fi(x).

OW3T Each test function Tf
i : Si ×Hi → 0/1 defined by Tf

i(x, y) =
(
y ?= fi(x)

)
is

efficiently computable.
A family of verifiable simulatable claw-free functions is similar to a family of
claw-free functions, but with the properties CF2 and CF3 replaced by
CF2S There exist two efficient randomised algorithms Sf

i and Sg
i which on input i

output a pair (x, y) ∈ Si×Hi such that y = fi(x) or a pair (z, y) ∈ Ti×Hi
such that y = gi(z) and such that the two corresponding distributions
y ← Hi are indistinguishable.

CF3T The test functions Tf
i : Si × Hi → 0/1 and Tg

i : Ti × Hi → 0/1 defined
by Tf

i(x, y) =
(
y ?= fi(x)

)
and Tg

i (z, y) =
(
y ?= gi(z)

)
are efficiently com-

putable.
7.3.1.2 FDH: Full Domain Hash

Definition. This is the most natural scheme. It was formally introduced in 1988
[46] and was provided with a security proof in the random oracle model in 1993
[52].

The f-FDH digital signature scheme with appendix is defined as follows. For
any i ∈ I the components are a hash function Hi with output in Hi and a
trapdoor invertible verifiable function fi : Si → Hi with test Tf

i. The appendix is
an element of Si and Hi is idealised as a (programmable) random oracle.

– The key generation algorithm runs Gen and sets pk = i and sk = trapi.
– The verification algorithm on m‖s, where m is the message and s ∈ Si the

appendix, checks if Tf
i(s,Hi(m)) ?= 1.

– The signature generation algorithm computes h = Hi(m) and uses the trapdoor
to compute s = f−1

i (h). The signed message is (m, s).

Note that in the multi-key setting the hash functions Hi should be independent.
However, in most actual published FDH schemes Hi depends only on the length
parameter.
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Theorem 7.1 (Necessary conditions). The following conditions are neces-
sary to the existential unforgeability of the f-FDH signature scheme.

1. Preimage-resistance of f.
2. Second-preimage-resistance of f is necessary for non-malleability.
3. Collision-resistance of H, which implies second-preimage-resistance.
4. Preimage-resistance of H.

Proof. We describe an attacker if one of the conditions does not hold.

1. The attacker computes h = Hi(m) and finds a preimage s ∈ f−1
i ({h}).

2. The attacker queries for a valid signed message (m, s) and computes another
s′ ∈ f−1

i ({Hi(m)}).
3. With a collision Hi(m) = Hi(m′) with m 6= m′, the attacker queries for a

valid signed message (m, s). Then (m′, s) is a new valid signed message.
4. The attacker computes a pair (s, h) = Sf

i and finds a preimage m ∈ H−1
i ({h}).

Then (m, s) is a valid signed message.
ut

Theorem 7.2. (Security result if f is verifiable simulatable one-way).
Let f be uniform one-way with preimage-resistance of k+log2 qH bits and second-
preimage-resistance of k bits. If either f−1

i is deterministic or the forger is SO-
CMA, then in the random oracle model with qH hash queries and qS signing
queries f-FDH has a security level of k bits.

Proof. This result dates back to Bellare and Rogaway [52]. It is a special case of
the security result for PFDH (see next section). ut

Generic attack. Theorem 7.2 is the best possible generic security result for a
FDH scheme, because it applies to a trapdoor invertible bijection of a set of 22k

elements with preimage resistance of 2k bits. Such a trapdoor invertible bijection
might exist, and the FDH scheme based on this function can be broken with 2k

hash queries and no signature query, by looking for a collision between random
Hi(m) and random fi(s).

Theorem 7.3. (Security result if f comes from a verifiable simulatable
claw-free pair). Let (f, g) be uniform claw-free with intractability of k+ log2 qS
bits with f having second-preimage-resistance of k bits. If either f−1

i is determin-
istic or the forger is SO-CMA, then in the random oracle model with qH hash
queries and qS signing queries f-FDH has a security level of k bits.

Proof. This result applied to RSA dates back to Coron [149]. Its generalisation
to claw-free pairs is due to Dodis and Reyzin [206]. It is a special case of the
security result for PFDH (see next section). ut

Generic attack. Theorem 7.3 is the best possible security result for a generic
FDH scheme, because it applies to a trapdoor invertible bijection of a set of 22k

elements with claw-freeness of k bits. Such a trapdoor invertible bijection might
exist, and the FDH scheme based on this function can be broken with 2k hash
queries and no signature query, by looking for a collision between random Hi(m)
and random fi(s).
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7.3.1.3 FDH with a non-deterministic f−1
i

Definition. For non-deterministic f−1
i the previous results only prove the secu-

rity of the FDH design if the forger is not allowed to make multiple queries for
a single message. However, it is possible to tweak the design to make it deter-
ministic and have proven security. The following FDH-D technique is used in the
FLASH and QUARTZ families [161,514] and in ESIGN-D [274].

Let f−1
i (r, h) denote the randomised algorithm that computes a preimage of h

with random seed r ← Rh. Let prf be a family of pseudo-random functions such
that the output distribution of prf∆(h) for uniform random ∆ is indistinguishable
from the distribution r ← Rh.

– The key generation algorithm chooses a random k-bit index ∆, runs Gen and
sets pk = i and sk = (trapi,∆).

– The verification algorithm on m‖s, where m is the message and s ∈ Si the
appendix, checks if Tf

i(s,Hi(m)) ?= 1.
– The signature generation computes h = Hi(m) and r = prf∆(h) and uses the

trapdoor to compute s = f−1
i (r, h). The signed message is (m, s).

A remark. For some schemes (QUARTZ or ESIGN-D) the distribution r ← Rh
is defined as follows. A value r is chosen uniformly from a set R. If it is incom-
patible with h then it is discarded and another r is chosen, until a compatible
value is found. Then prf∆ is a function that generates an (infinite) sequence of
uniform values r ∈ R and takes the first that is compatible with h.

7.3.1.4 PFDH: Probabilistic Full Domain Hash

Definition. This scheme was defined by Coron [151] but the underlying ideas
date back to Bellare and Rogaway [54].

For any i ∈ I the components are a hash function Hi with output in Hi, a
trapdoor invertible verifiable function fi : Si → Hi with test Tf

i and a set Ri with
uniform sampling in 2ki elements. The appendix is an element of Si×Ri and Hi
is idealised as a (programmable) random oracle.

– The key generation algorithm runs Gen and sets pk = i and sk = trapi.
– The verification algorithm on m‖r‖s, where m is the message, r ∈ Ri and
s ∈ Si, checks if Tf

i(s,Hi(m‖r)) ?= 1.
– The signature generation algorithm generates r ← Ri, computes h = Hi(m‖r)

and uses the trapdoor to compute s = f−1
i (h). The signed message is (m, r, s).

An alternative description of PFDH is that it is an FDH signature scheme on
messages of the form m‖r, with a restriction on the attacker. The attacker is not
able to decide the r-part of his queries to the signature oracle. Therefore if Ri
is sufficiently large, the attacker does not learn anything useful from the signing
queries.

Theorem 7.4. (Security result if f is verifiable simulatable one-way).
Let f be uniform one-way with preimage-resistance of k+log2 qH bits and second-
preimage-resistance of k bits. If either f−1

i is deterministic or qS <
√

2ki , then



D
ra
ft

A
pr
il
19

, 2
00

4

278 Book II. Evaluation — Part B. Security evaluation

in the random oracle model with qH hash queries and qS signing queries f-PFDH
has a security level of k bits.
Note that when based on one-wayness, PFDH does not have better security than
FDH.

Proof. This result is a generalisation of the proof by Bellare and Rogaway for
FDH [52]. Dodis and Reyzin [206] give an argument showing that no better proof
can be found in a black box model.

Assuming the existence of a (t, ε, qS , qH)-forger for f-PFDH, we show how
to construct an algorithm (the simulator) that runs in time t′ ' 2t and either
breaks the preimage-resistance of f with probability ε′ ' ε/(qH + qS) or breaks
the second-preimage-resistance of f with probability ε′′ ' ε. 3

The simulator receives a challenge (i, y ∈ Hi). Then it chooses a random
element j0 ∈ {1...qH + qS} and runs the forger on pk = i.

For a hash query mj‖rj , if the answer was already defined then it is returned.
Else, if it is the j0-th query then the answer is the challenge y, and otherwise the
simulator picks a random (xj , yj)← Sf

i and sets Hi(mj‖rj) = yj . This simulates
the hash function because yj has uniform distribution (property UN).

For a signing query mj the simulator generates rj ← Ri and internally simu-
lates a hash query for mj‖rj . It returns the corresponding rj‖xj . This fails if the
j0-th query is a signing query, which happens with probability qS

qH+qS
.

It is also necessary to show that the simulator makes a good simulation of the
signing algorithm. Property TR3 implies that the simulation is valid for signing
queries of distinct values of m. A problem may only arise if multiple signature
queries for the same message are made [597]. If two answers have the same rj ,
then the simulation also answers the same xj . If f−1

i is deterministic, this is
exactly the right behaviour. Else we should avoid such a collision, which we do
if qS <

√
2ki or if the forger is SO-CMA.

The forgery is some m‖r‖s. If the signing oracle never received m as a query
and returned an answer rj‖xj with rj = r, then Hi(m‖r) is unset unless it was
a hash query. In that case, if the forgery corresponds to the j0-th query (which
happens with probability 1

qH+qS
), then it gives a preimage of y. This contradicts

property OW4 of one-way functions.
Else the signing oracle received m as a query and returned an answer r‖xj

with xj 6= s. This contradicts the second-preimage resistance, property OW5 of
one-way functions.

The running time of the simulator is the running time t of the forger plus the
time corresponding to qH + qS executions of the verification algorithm, which is
bounded by t. ut

3 Dodis and Reyzin propose a proof where ε′

ε
' 1

qH+1
, but their proof is flawed in the

following way. (The reader is invited to look at the sketch proof of (b) in Sect. 3
of [206]). If the forger makes the corresponding hash query after each signing query,
then with probability qS

qH
their simulator will be unable to answer the selected hash

query. If qH − qS � qH , the success of the simulator is ε′

ε
' 1

q2
H

.
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Theorem 7.5. (Security result if f comes from a verifiable simulat-
able claw-free pair). Let (f, g) be uniform claw-free with intractability of
k + max(log2 qS − ki, 0) bits, with f having second-preimage-resistance of k bits.
If either f−1

i is deterministic or qS <
√

2ki , then in the random oracle model with
qH hash queries and qS signing queries f-PFDH has a security level of k bits.
When based on claw-freeness, PFDH does have better security than FDH.

Proof. This result dates back to Bellare and Rogaway [52] and Coron [151] showed
that this is optimal (under reasonable assumptions). The generalisation to claw-
free pairs is due to Dodis and Reyzin [206].

Assuming the existence of a (t, ε, qS , qH)-forger for f-PFDH, we construct
a simulator that either breaks the claw-freeness of (f, g) or breaks the second-
preimage-resistance of f.

The simulator receives a challenge i. Then it generates a list L of qS random
elements of Ri and runs the forger on pk = i. Some elements may have multiple
occurrences in L.

For a hash query mj‖rj , if the answer was already defined then it is returned.
Else, if rj ∈ L the simulator picks a random (xj , yj)← Sf

i and sets Hi(mj‖rj) =
yj . Else the simulator picks a random (zj , yj) ← Sg

i and sets Hi(mj‖rj) = yj .
This simulates the hash function because yj has a uniform distribution (property
UN).

For a signing query mj the simulator takes an element rj ∈ L and internally
simulates a hash query for mj‖rj . Then it deletes rj from L. Since rj was in L
the hash query has generated an xj and the simulator can return the appendix
rj‖xj .

For the same reason as in the previous proof, this is a good simulation of the
signing algorithm if f−1

i is deterministic, if qS <
√

2ki or if the forger is SO-CMA.
If the forgery m‖r‖s does not contradict the second-preimage resistance, then

it corresponds to a hash query, which either had an f answer or a g answer.
If it corresponds to a g answer, then it contradicts the claw-freeness because
f(s) = g(zj). When the list L contains q elements, a g answer happens with
probability (1− 2−ki)q. The number of elements of L decreases regularly during
the simulation, so the probability that the forgery corresponds to a g answer is
ε′/ε = 1

qS

∑
q=0...qS

(1− 2−ki)q.
If qS � 2ki then ε′/ε ' (1 − 2−kiqS) ' 1 and therefore the security loss is
− log2(ε′/ε) ' 0.
If qS � 2ki then ε′/ε ' 1

qS

1
2−ki

and therefore the security loss is − log2(ε′/ε) '
log2 qS − ki. ut

7.3.1.5 PSS and PSSR: partial message recovery

Definition. PSS means Probabilistic Signature Scheme, and PSSR means Prob-
abilistic Signature Scheme with message Recovery.

The PSS and PSSR schemes are due to Bellare and Rogaway [54]. They
include some message recovery in (P)FDH. The key idea is that the output of
H can be smaller than Hi, provided that it is collision-intractable and that the
input of f−1

i is random.
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For any i ∈ I, the recovered part of the message is ai bits long and it is
an element of the set Ai = {0, 1}ai . The components of the scheme are a hash
function Hi with output in Bi, a hash function Gi : Bi → Ai and a trapdoor
invertible function fi : Si → Hi such that Hi = Ai×Bi. The functions Hi and Gi
are idealised as (programmable) random hash oracles. For k bits of security the
set Bi should have at least 22k elements.

– The key generation algorithm runs Gen and sets pk = i and sk = trapi.
– The verification of m̂‖s computes a‖b = fi(s), m̄‖r = a ⊕ Gi(b) and checks

Hi(m̂‖m̄‖r) ?= b. The message is m = m̂‖m̄.
– The signature generation for the message m = m̂‖m̄ computes h = Hi(m̂‖m̄‖r)

and a = (m̄‖r) ⊕ Gi(h) and uses the trapdoor to compute s = f−1
i (a‖h). The

signed message is m̂‖s.

PSS is the special case where this scheme is applied to PFDH with m̂ = m and
m̄ = 0...0 or another constant.

Theorem 7.6. (Security result). PSS(R) has the same security as (P)FDH.

Proof. This result is due to Coron [151] and is an improvement on the original
result of Bellare and Rogaway [54]. For a complete proof, the reader should look
at those papers.

The main difference from (P)FDH is that the unique hash function m 7→
Hi(m) is replaced by m 7→ a‖h where h = Hi(m) and a = m̄⊕ Gi(h). If there is
no collision in h, then all oracle queries to Hi or to Gi make a commitment to
some value for m. This is the essential reason why the security of PSS(R) is the
same as the security of (P)FDH if the number of hash-oracle queries is at most
the square root of the number of elements of Fi.

Note that this theorem also applies to the variant with h‖a instead of a‖h,
which just uses the different definition Hi = Bi ×Ai and is also named PSS. ut

7.3.1.6 OPSSR: maximal message recovery

Definition of Basic OPSSR. OPSSR means Optimal Padding for Signature
Schemes with message Recovery.

The Basic OPSSR scheme is due to Granboulan [276] and is designed to have
maximal message recovery. It is based on the fact that the important property of
Hi is not one-wayness but collision-intractability. Therefore a (random) permu-
tation can be used instead of a hash function.

For any i ∈ I, the set of possible messages isMi and Vi is a set of 2k elements.
The components of the scheme are a bijection Pi : Hi →Mi×Vi and a trapdoor
invertible function fi : Si → Hi. The function Pi is idealised as a (programmable)
random permutation oracle.

– The key generation algorithm runs Gen and selects an arbitrary public value
vi ∈ Vi, e.g. vi = 0k. It sets pk = (i, vi) and sk = (trapi, vi).

– The verification algorithm on s computes m‖v = Pi(fi(s)) and checks if v ?= vi.
– The signature generation algorithm uses the trapdoor to compute the signed

message s = f−1
i (P−1

i (m‖vi)).
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A probabilistic variant of OPSSR can be defined as in PFDH, by replacing m
with m‖r.

Definition of OPSSR. The full OPSSR scheme can do partial message recov-
ery, which allows the signer to sign messages of arbitrary length with a fixed
public key. It is a variant of Basic OPSSR where one replaces the bijection Pi
by a keyed family Ei with keyspace equal to the output of a collision-intractable
hash function Ĥi. It is defined by Pi(m̂‖a) = m̂‖Ei[Ĥi(m̂)](a). The family Ei is
idealised as a (programmable) ideal cipher.

– The key generation algorithm is the same as for Basic OPSSR.
– The verification algorithm on m̂‖s computes m‖v = m̂‖Ei[Ĥi(m̂)](fi(s)) and

checks if v ?= vi.
– The signing algorithm uses the trapdoor to compute the signed message m̂‖s

where s = f−1
i (E−1

i [Ĥi(m̂)](m̄‖vi)).

Comparison with previous paddings. FDH is a special case of Basic OPSSR
based on the involution Pi(m‖v) = m‖(vi ⊕ v ⊕ Hi(m)) and on the family {fMi :
M× Si → M× Hi} defined by fMi (m‖x) = m‖fi(x). This family fM has the
same properties as f, but the proof given below does not apply to FDH because
this function Pi is trivially not a random permutation.

PSS(R) is another special case of Basic OPSSR based on Pi(m̂‖a‖b) =
m̂‖m̄‖(vi ⊕ b⊕ Hi(m̂‖m̄)), where m̄ = a⊕ Gi(b), and its inverse P−1

i (m̂‖m̄‖v) =
m̂‖(m̄ ⊕ Gi(b))‖b, where b = vi ⊕ v ⊕ Hi(m̂‖m̄), and on the family fM̂. But the
proof given below does not apply to PSS(R) because this function Pi is trivially
not a random permutation.

The main advantage of OPSSR compared to PSSR is that the message ex-
pansion can be reduced to k bits (the size of v) instead of 2k bits (the size of
Bi).

Theorem 7.7. (Security result). OPSSR has the same security as (P)FDH,
where the random permutation model replaces the random oracle model.

Proof. This result is due to Granboulan [276]. For a complete proof, the reader
should look at this paper.

As with PSS(R), the key idea is that all oracle queries to Pi or P−1
i make a

commitment to some value for m. ut

7.3.1.7 CPC : generalised Chained Patarin Construction

Definition. This technique is used in Quartz [161] and is also named the gen-
eralised Feistel-Patarin construction [155].

The parameter r ≥ 1 is the number of rounds. The components are r hash
functions (Hi,j)j=1...r with output in Si and a trapdoor function fi : Si×Ti → Si.
The Hi,j are idealised as programmable random oracles, the set Si has a group
operation ⊕ and the appendix is an element of Si × Ti × ...× Ti︸ ︷︷ ︸

r times

,

– The key generation algorithm runs Gen and sets pk = i and sk = trapi.
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– The verification algorithm on m‖s‖t1‖...‖tr sets sr = s, computes the sequence
sj−1 = fi(sj‖tj)⊕ Hj(m) for j = r...1 and checks if s0 ?= 0.

– The signature generation algorithm sets s0 = 0, computes the sequence sj‖tj =
f−1
i (sj−1 ⊕ Hj(m)) for j = 1...r and sets s = sr.

If f−1
i is not deterministic the same technique as for FDH-D can be used and is

named CPC-D.

Theorem 7.8. (Security result). While the proven security of CPC is the
same as for FDH, the generic attack against FDH does not work against CPC.
Therefore the actual security of CPC may be better than FDH.

In fact, Courtois proved that if qS = 0 then the generic attack against CPC
is the best possible.

Proof. See Courtois’ paper [155]. ut

Generic attack. Let S be the number of elements of Si and let us compute
Sr/(r+1) random values (s‖t, fi(s‖t)). These values allow us to invert fi with prob-
ability S−1/(r+1).

The generic attack then generates Sr/(r+1) random messages m and computes
the corresponding (Hi,j(m))j=1...r. For each m the probability that a forgery can
be made by using the precomputed partial table for f−1

i is S−r/(r+1), so the
average number of forgeries made by this attack is 1.

7.3.2 Schemes based on the Discrete Logarithm Problem

7.3.2.1 Introduction

We describe how most DL-based signature schemes [5,319,340,445,447,455,464,
489, 490, 519, 559, 560] can be built by mixing four components, which we call a
group, a hash function, a projection and a category. We describe some possible
values of each component, and give some security proofs.

All the security proofs for DL-based signature schemes work in an idealised
model. Therefore it may happen that the scheme is not secure when a concrete
component is chosen to replace an idealised component, and it may even happen
that any choice of a concrete component makes an insecure scheme. We will
show how the security can be proven in three independent ways: when the group
is idealised, or when the hash function is idealised, or when the projection is
idealised. A scheme for which a security proof exists in all three models is secure
in the real world unless all three concrete components are weak choices.

The toolbox. The signature scheme is built on

– A DL-group 〈G〉 of order q (usually a prime number) where computing dis-
crete logarithms is hard.
The set of possible private keys is V ⊂ Z/qZ. If the private key of the signer is
v ∈ V, the corresponding public key is the element V = Gv. Depending on the
category, we may need V = Z/qZ or V = (Z/qZ)×.
In this section all groups will be denoted multiplicatively, even in the case of
elliptic curves.
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– A projection. This is a function p : 〈G〉 → R, where R can be an arbitrary
set.

– A hash function that makes a digest of the message. It is a function H :
M×R→ H, whereM is the set of possible messages.

– A category that defines the formulae for signature and verification.
The category defines two functions φ and ψ : H × R × S → Z/qZ and a
function σ : I → S, where I ⊂ H × R × V × K, S = Z/qZ or (Z/qZ)× and
K = Z/qZ or (Z/qZ)×.

Description. The digital signature scheme works as follows:

– Verification. The verification of (m, r, s) ∈M×R× S computes h = H(m, r),
α = φ(h, r, s), β = ψ(h, r, s), R = GαV β and checks if r ?= p(R).

– Signature. To sign the message m one takes a random k ∈ K and computes
R = Gk, r = p(R) and h = H(m, r), until (h, r, v, k) ∈ I and s = σ(h, r, v, k).
The signed message is (m, r, s).

– Parameters and keys. For most DL-based schemes, the description of 〈G〉 is a
public parameter and the public key is V . Schemes where both 〈G〉 and V are
in the public key might be more secure in the multi-key setting.

– Partial message recovery. For some schemes the p function is designed to allow
partial message recovery. The verification r ?= p(R) also extracts the recovered
message m̄.

7.3.2.2 DL-groups

DL-based signature schemes do computations in a cyclic group 〈G〉 of known
order q and known generator G. Multiplying or taking inverses of elements of
the group should be easy, but elements of 〈G〉 might be indistinguishable from
elements of a larger set G. 4

Usually 〈G〉 is a cyclic subgroup of the multiplicative group (Z/pZ)× of inte-
gers modulo p, or an elliptic curve subgroup, and q is a prime number.

The exponentiation is a bijection from Z/qZ to 〈G〉 defined by k 7→ Gk, and
the discrete logarithm is the inverse of that bijection. By definition, computing
the discrete logarithm in a DL-group is intractable.

(Z/qZ)× is the set of invertible elements of Z/qZ, and for any k ∈ (Z/qZ)×

the group element Gk is a generator of 〈G〉. One must know the factorisation of
q to compute inverses in (Z/qZ)×.

Let #q be an integer smaller than log2 q and let [Z/qZ]# be the subset of
Z/qZ that contains the integers smaller than 2#q. Then [Z/qZ]# form a group
under the operation ⊕ corresponding to the XOR of bit strings of length #q.

4 Shoup [584, Sect. 13] defines the more complete notion of “abstract group”
(H,G,g, µ, ν, E ,D, E ′,D′). His G is a cyclic group generated by g: it is 〈G〉 with our
notation. His H is a group that contains G: it is G with our notation. His µ is our
q and his ν is the index of G in H. His E and D define bijective encodings of the
elements of H to octet strings. His E ′ is a partial encoding, and corresponds to what
we call a “projection”.
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7.3.2.3 Hash function

The function H :M×R → H should be easy to compute, should have uniform
random output for random m and may have some of the following properties.

– H is Type I if ∀m ∈M and r, r′ ∈ R, H(m, r) = H(m, r′). This common value
is called H(m).
H is Type II if it is not Type I.

– H with Type I is collision-resistant if it is hard to find distinct inputs m 6= m′

such that H(m) = H(m′).
– H with Type II is collision-resistant if it is hard to find distinct inputs (m, r) 6=

(m′, r′) such that H(m, r) = H(m′, r′).

– H with H ⊂ [Z/qZ]# and R ⊂ [Z/qZ]# is xor-collision-resistant if given ran-
dom r, r′ it is hard to find m,m′ such that H(m, r)⊕ r = H(m′, r′)⊕ r′. For a
type I hash, this is equivalent to preimage-resistance.

– H with H ⊂ Z/qZ and R ⊂ Z/qZ is add-collision-resistant if given random
r, r′ it is hard to find m,m′ such that H(m, r) + r = H(m′, r′) + r′. For a type
I hash, this is equivalent to preimage-resistance.

– H with H ⊂ Z/qZ and R ⊂ (Z/qZ)× is div-collision-resistant if given random
r, r′ it is hard to find m,m′ such that H(m, r)/r = H(m′, r′)/r′. For a type I
hash, this is equivalent to preimage-resistance.

– H is suitable as a random oracle if the knowledge of any number of input-output
pairs cannot help to build an algorithm that will compute another input-output
pair without doing the computation of H.

Usually one takes a cryptographic hash function such as those studied in Chapter
4. It is likely that these functions have uniform output and have all the variants of
collision-resistance mentioned above. However, strictly speaking, none is suitable
as a random oracle, because of their extensibility property [127].

7.3.2.4 Projections

The function p : 〈G〉 → R is easy to compute by the signer, and the verifier
should be able to test if r ?= p(R) for R ∈ 〈G〉 and r ∈ R. Note that if elements of
〈G〉 are indistinguishable from elements of G, then p is defined on the complete
group G. The projection may have some of the following properties.

– p is ε-almost uniform if ∀r ∈ R, PrR∈〈G〉[p(R) = r] ≥ ε. This is similar to the
entropy-smoothing property defined by Shoup [584].

– p is ε-almost invertible if there exists an efficient algorithm to compute the
function p−1 : R → P(〈G〉) such that
– ∀R ∈ p−1(r), p(R) = r
– At least a proportion ε of the sets p−1(r) is non empty.
– Elements randomly taken from random sets p−1(r) are indistinguishable

from elements randomly taken from 〈G〉.
– p is `+1-collision-resistant for ` ≥ 1 if it is hard to find distinct R0, ..., R` such

that p(R0) = ... = p(R`).
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– p is suitable as a random oracle if the knowledge of any number of input-output
pairs cannot help to build an algorithm that will compute another input-output
pair without doing the computation of p or p−1. Note that an almost invertible
function can be suitable as a random oracle (see also Sect. 7.3.2.7).

Examples of projections.

– Identity projection. For G ⊂ R it is p(R) = R.
This function is almost uniform and collision-resistant. It is not almost-
invertible if membership of 〈G〉 is hard to check. It is not suitable as a random
oracle.

– DSA projection. For G = (Z/pZ)× and R = Z/qZ this is p(R) = R mod q.
This function is almost uniform and probably log q-collision-resistant [123]. It
is not almost-invertible if membership of 〈G〉 is hard to check. It is not suitable
as a random oracle.

– EC projections. If G is an elliptic curve defined over some finite field F, let
(Rx, Ry) be the coordinates of a point R and iF a mapping from F to the set
of integers.
– ECxq projection. For R = Z/qZ it is p(R) = iF(Rx) mod q.
– ECx2 projection. For R = [Z/qZ]# it is p(R) = iF(Rx) mod 2#q.
– ECaddq projection. For R = Z/qZ it is p(R) = iF(Rx +Ry) mod q.
These functions are almost uniform and almost invertible. They are probably
log q-collision-resistant. They are not suitable as a random oracle.

– KCDSA projection. p is a hash function with output in R, e.g. based on
SHA-1 (see Sect. 4.4.2).
This function is uniform and collision-resistant. It is almost (because of the
extensibility property) suitable as a random oracle. It is not almost-invertible.

– Permuted projection. Any projection p′ : 〈G〉 → R can be composed with
a random permutation P : 〈G〉 → 〈G〉 to obtain p = p′ ◦ P.
The projection p inherits the properties of p′, but is also suitable as a random
oracle.

Projections with partial message recovery. Let F : 〈G〉 × M̄ → R and
F−1 : 〈G〉×R → M̄∪{fail} such that ∀R ∈ 〈G〉, F(R, m̄) = r ⇔ F−1(R, r) = m̄.
Then the function p(R) = F(R, m̄) is a projection that allows partial message
recovery. The verification r ?= p(R) is false if, and only if, F−1(R, r) returns fail .

– PVSSR projection. This is the composition of an arbitrary encryption func-
tion E over R, with a key selected from 〈G〉, and a redundancy function ρ :
M̄ → R. The definition is F(R, m̄) = ER ◦ ρ(m̄) and F−1(R, r) = ρ−1 ◦E−1

R (r).
The redundancy function ρ should have the following properties:
– it is collision resistant,
– the inverse ρ−1 : R → M̄ ∪ {fail} is easy to compute.
– a random element m̃ ∈ R is very unlikely to be the image of some m̄ ∈ M̄,
If E is a secure cipher, then the projection is uniform, collision-resistant and
suitable as a random oracle, but is not almost invertible.
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– Group projection. This is a special case of the PVSSR projection, based
on any other projection p′ : 〈G〉 → G such that G is a group with an action
on R. This defines a one-time-pad encryption scheme and the projection is
p(R) = p′(R) · ρ(m).
This projection has the same properties as p′.

– NS projection. This is the Group projection where G = R = Z/qZ with
additive action. It is defined by the equation p(R) = p′(R) + ρ(m) mod q.
This projection has the same properties as p′.

– NR projection. This is the Group projection where G = G = (Z/pZ)×

has a multiplicative action on R = Z/pZ, and with a tweak of the Identity
projection p′(R) = R−1 mod p. The NR projection is defined by the equation
ρ(m) = R · p(R) mod p.

7.3.2.5 Categories

Definition and properties. The category is described by the sets V, K and S,
subsets of Z/qZ, the setsH andR, the two functions φ and ψ : H×R×S → Z/qZ
and a set I ⊂ H ×R× V ×K.

A category should meet some of the following properties.

– Other functions. Let A be the set of possible outputs for φ and B the set
of possible outputs for ψ. Five additional functions σ, λh, λs, λr, µh can be
defined, and for each of these functions there exists an efficient algorithm that
computes the result.
– σ : I → S.
– λh : A× B ×R → H
– λs : A× B ×R → S
– λr : A× B ×H → R
– µh : S ×R× V ×K → H

– Main properties. These properties are mandatory for all DL-based schemes.
(m1) For all (h, r, v, k) ∈ I, the value s = σ(h, r, v, k) is such that if α =

φ(h, r, s) and β = ψ(h, r, s) then k = α+ v · β.
(m2) For all v ∈ V and h ∈ H, Pr

r∈R, k∈K
[(h, r, v, k) ∈ I] ≥ εm.

Property (m1) implies that all signatures generated by the signing algorithm
are valid. Property (m2) implies that the expected number of random values
for k needed to generate a signature is less than 1

εm
.

– Other properties.
(o1) For all (h, r, s) ∈ H×R×S the equation λh(φ(h, r, s), ψ(h, r, s), r) = h

holds.
(o2) For all (h, r, s) ∈ H ×R× S the equation λs(φ(h, r, s), ψ(h, r, s), r) = s

holds.
(o3) The function s 7→ µh(s, r, v, k) is the inverse of h 7→ σ(h, r, v, k).

– Additional properties for security with idealised p.
(p1) For fixed (h, r, v) and uniform k such that (h, r, v, k) ∈ I the value

σ(h, r, v, k) is uniform in S.
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Note that this property together with the hypothesis that the function
k 7→ p(Gk) is (almost-)uniform and one-way implies that the set of
possible valid appendices (r, s) for a message m is uniformly distributed.

(p2) For fixed h ∈ H and v ∈ V and uniformly random s ∈ S and r ∈ R, the
value k = φ(h, r, s) + v · ψ(h, r, s) is uniformly random in K.
Note that failure may happen if I 6= H×R×V ×K and if k 6∈ K. It is
accepted that the probability of this failure is negligible.

(p3) Given random r and r′, it is hard to find some (α, β) and messages m
and m′ such that λh(α, β, r) = H(m, r) and λh(α, β, r′) = H(m′, r′).
Note that for a type I hash, this property is usually equivalent to the
preimage-resistance of H.

– Additional properties for security with idealised H.
(h1) If h = λh(α, β, r) and s = λs(α, β, r), then α = φ(h, r, s) and β =

ψ(h, r, s).
(h2) Pr

α∈A,β∈B
[λh(α, β, p(GαV β)) ∈ H and λs(α, β, p(GαV β)) ∈ S] ≥ εh.

– Additional properties for security with idealised 〈G〉.
(g1) For all (h, r, s) the equation λr(φ(h, r, s), ψ(h, r, s), h) = r holds.
(g2) For any (h, h′, r, s), if λr(φ(h, r, s), ψ(h, r, s), h′) = r then h′ = h.

Simple categories. These are the categories where H ⊂ Z/qZ and R ⊂ Z/qZ
and where each of φ and ψ only does one operation in Z/qZ. These are less
general than Meta-ElGamal [298] or TEGTSS [123] schemes, but cover all actual
published schemes.

Examples. These are taken from the literature. Properties (m1), (m2), (o1),
(o2), (o3), (p1), (p2), (h1) and (h2) hold for all these examples.

– ElGamal category. Let H ⊂ Z/qZ, R = V = K = S = B = (Z/qZ)×

and A = Z/qZ. Because I = {(h, r, v, k)|h + v · r ∈ (Z/qZ)×} property
(p2) can fail with negligible probability. Property (p3) is equivalent to div-
collision-resistance of H. Properties (g1) and (g2) hold with the restrictions
H ⊂ (Z/qZ)× and A = (Z/qZ)×. Properties (m2) and (h2) hold with εm = ϕ(q)

q

and εh = |H|
q .

φ(h, r, s) = h/s λh(α, β, r) = αβ−1 · r
ψ(h, r, s) = r/s λs(α, β, r) = β−1 · r
σ(h, r, v, k) = (h+ v · r)/k λr(α, β, h) = α−1β · h
µh(s, r, v, k) = k · s− v · r

– Inverse ElGamal category. Let H ⊂ Z/qZ, R = V = K = S = B =
(Z/qZ)× and A = Z/qZ. Because I = {(h, r, v, k)|h+v ·r ∈ (Z/qZ)×} property
(p2) can fail with negligible probability. Property (p3) is equivalent to div-
collision-resistance of H. Properties (g1) and (g2) hold with the restrictions
H ⊂ (Z/qZ)× and A = (Z/qZ)×. Properties (m2) and (h2) hold with εm = ϕ(q)

q

and εh = |H|
q .



Dra
ft

Apr
il
19

, 2
00

4

288 Book II. Evaluation — Part B. Security evaluation

φ(h, r, s) = h · s λh(α, β, r) = αβ−1 · r
ψ(h, r, s) = r · s λs(α, β, r) = r−1 · β
σ(h, r, v, k) = k/(h+ v · r) λr(α, β, h) = α−1β · h
µh(s, r, v, k) = k/s− v · r

– GOST category. Let H ⊂ (Z/qZ)×, V = K = S = A = Z/qZ and R =
B = (Z/qZ)×. Property (o3) needs the restriction K = (Z/qZ)×. Property (p3)
is equivalent to div-collision-resistance of H. Properties (g1) and (g2) hold.
Properties (m2) and (h2) hold with εm = 1 and εh = |H|

q .

φ(h, r, s) = s/h λh(α, β, r) = β−1 · r
ψ(h, r, s) = r/h λs(α, β, r) = αβ−1 · r
σ(h, r, v, k) = k · h− v · r λr(α, β, h) = β · h
µh(s, r, v, k) = (s+ v · r)/k

– GDSA category. Let H ⊂ Z/qZ, K = S = A = B = Z/qZ and R = V =
(Z/qZ)×. Property (p3) is equivalent to div-collision-resistance of H. Properties
(g1) and (g2) hold with the restrictions H ⊂ (Z/qZ)× and A = (Z/qZ)×.
Properties (m2) and (h2) hold with εm = 1 and εh = |H|

q .

φ(h, r, s) = h/r λh(α, β, r) = α · r
ψ(h, r, s) = s/r λs(α, β, r) = β · r
σ(h, r, v, k) = (k · r − h)/v λr(α, β, h) = α−1 · h
µh(s, r, v, k) = k · r − v · s

– KCDSAadd category. Let H ⊂ Z/qZ, R = K = S = A = B = Z/qZ
and V = (Z/qZ)×. Property (p3) is equivalent to add-collision-resistance of H.
Properties (g1) and (g2) hold. Properties (m2) and (h2) hold with εm = 1 and
εh = |H|

q .

φ(h, r, s) = h+ r λh(α, β, r) = α− r
ψ(h, r, s) = s λs(α, β, r) = β
σ(h, r, v, k) = (k − (h+ r))/v λr(α, β, h) = α− h
µh(s, r, v, k) = (k − v · s)− r

– KCDSAxor category. Let H = R = A = [Z/qZ]#, K = S = B = Z/qZ
and V = (Z/qZ)×. Property (p3) is equivalent to xor-collision-resistance of H.
Properties (g1) and (g2) hold. Properties (m2) and (h2) hold with εm = 1 and
εh = 1.

φ(h, r, s) = h⊕ r λh(α, β, r) = α⊕ r
ψ(h, r, s) = s λs(α, β, r) = β
σ(h, r, v, k) = (k − (h⊕ r))/v λr(α, β, h) = α⊕ h
µh(s, r, v, k) = (k − v · s)⊕ r

– Schnorr category. Let H ⊂ Z/qZ, V = K = S = A = Z/qZ and B = H.
The variable r is not used and is taken from an arbitrary set R. Property
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(p3) is implied by the collision-resistance of H. Properties (g1) and (g2) do
not hold because λr cannot be defined. Property (o3) needs the restriction
V = (Z/qZ)×. Properties (m2) and (h2) hold with εm = 1 and εh = 1.

φ(h, r, s) = s λh(α, β, r) = β
ψ(h, r, s) = h λs(α, β, r) = α
σ(h, r, v, k) = k − v · h
µh(s, r, v, k) = (k − s)/v

– Swapped-Schnorr category. Let H ⊂ Z/qZ, K = S = B = Z/qZ, V =
(Z/qZ)× and A = H. The variable r is not used and is taken from an arbitrary
set R. Property (p3) is implied by the collision-resistance of H. Properties (g1)
and (g2) do not hold because λr cannot be defined. Properties (m2) and (h2)
hold with εm = 1 and εh = 1.

φ(h, r, s) = h λh(α, β, r) = α
ψ(h, r, s) = s λs(α, β, r) = β
σ(h, r, v, k) = (h− k)/v
µh(s, r, v, k) = v · s+ k

7.3.2.6 Examples of published signature schemes

– The ElGamal scheme [219] is defined on the multiplicative group (Z/pZ)×, with
a slight variant of the ElGamal category (where −r replaces r), the identity
projection and a type I hash.

– The DSA scheme [464] is defined on a prime order subgroup of the multiplica-
tive group (Z/pZ)×, with the ElGamal category, the DSA projection and a
type I hash.

– The ECDSA scheme [319] is defined on a prime order elliptic curve subgroup
with the ElGamal category, the ECxq projection and a type I hash.

– The GOST 34.10 scheme [445] is defined on a prime order multiplicative sub-
group of Z/pZ, with a slight variant of the GOST category (where −r replaces
r), the DSA projection and a type I hash.

– The KCDSA scheme [340] is defined on a prime order multiplicative subgroup
of Z/pZ or on a prime order elliptic curve subgroup, with the KCDSAxor
category, the KCDSA projection and a type I hash, where some certification
data is hashed together with the message.

– The ECGDSA scheme [13] is defined on a prime order elliptic curve subgroup,
with the GDSA category, the ECxq projection and a type I hash.

– The DSA-II scheme [123] is defined on a prime order multiplicative subgroup of
Z/pZ, with the ElGamal category, the KCDSA projection and a type II hash.

– The ECDSA-II scheme [412] is defined on a prime order elliptic curve subgroup,
with the ElGamal category, the ECxq projection and a type II hash.

– The ECDSA-III scheme [412] is defined on a prime order elliptic curve sub-
group, with the ElGamal category, the ECaddq projection and a type II hash.

– The Schnorr scheme [559] is defined on a prime order multiplicative subgroup
of Z/pZ, with a slight variant of the Schnorr category (where −h replaces h),
the identity projection and a type II hash.
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– The GPS-sign scheme [263] is defined on a subgroup of Z/nZ with a variant
of the Schnorr category (where S = Z), the identity projection and a type II
hash. The composite modulus n is viewed as part of the public key and not as
a scheme parameter.

– The Nyberg-Rueppel scheme [489,490] is a scheme with total message recovery,
and hence no variable m. It is defined on a prime order multiplicative subgroup
of Z/pZ, with the Schnorr category, the NR projection and the type II hash
defined by H(r) = r mod q.

– The PVSSR scheme (Pintsov-Vanstone Signature Scheme with message Re-
covery [519]) is defined on a prime order elliptic curve subgroup with a slight
variant of the Schnorr category (where −h replaces h), the PVSSR projection
and a type II hash.

– The Naccache-Stern scheme [455] is defined on a prime order elliptic curve sub-
group with the ElGamal category, the NS projection based on ECxq projection
and a type I hash.

– The Abe-Okamoto scheme [5] is a scheme with total message recovery, and
hence no variable m. It is defined on a prime order elliptic curve subgroup
with the Schnorr category, the xor variant of the NS projection based on ECx2
projection and the type II hash H(r).

7.3.2.7 Initial results to be used in the security proofs

The random oracle model for almost invertible functions. The random
oracle model builds an oracle for a one-way function f, that answers queries for
f(x) with some uniformly distributed value y. Suitable functions have uniform
output, are collision-resistant, etc.

If the function f is almost invertible, then the random oracle model should also
allow queries for f−1(x). Many results that were proven for the original random
oracle model are also valid for this model.

The forking lemma. This lemma is found e.g. in [523] and is a tool for proofs
of security in the random oracle model. The lemma holds when the scheme has
the following property: each forgery can be linked to a unique “critical” query to
the random oracle. The critical query is an input x such that knowing x f7→ y is
necessary to check if the forgery is valid.

The forking lemma also holds in the random oracle model for an almost
invertible function, if the critical query hypothesis holds.

Let qS be the number of signature queries, qH the number of oracle queries,
nH the number of possible outputs for the random oracle and ε the probability
that the forger outputs a valid forgery.

Lemma 7.1. (Forking lemma). There exist constants c0 and c1 such that if
ε ≥ c0/nH then after an expected number of c1·qH/ε replays of the simulation with
different choices for the random oracle, one can obtain (with some probability ε′)
another forgery with the same critical query but having another uniform random
answer.
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In [523, Lemma 8 ] we have c0 = 7qH , c1 = 2(7 + 1
qH

) and ε′ = 3/25 and
also [523, Theorem 10 ] c0 = 7qH , c1 = 84480 and ε′ ' 1.

The improved forking lemma. This lemma is an extension of the forking
lemma that is found in [123] and is used together with ` + 1-collision-resistant
functions.

Lemma 7.2. (Improved forking lemma). There exist constants c0 and c1
such that if ε ≥ c0/nH then after an expected number of c1 · qH/ε replays of
the simulation with different choices for the random oracle, one can obtain (with
some probability ε′) ` other forgeries with the same critical query but having other
uniform random answers.

In [123, Lemma 10 ] we have c0 = 4, c1 = 24` log(2`) + 1
qH

and ε′ = 1/96.

Unique representation.

Lemma 7.3. (Unique representation). If the discrete logarithm of V ∈ 〈G〉
is hard to compute and if two representations R = GαV β and R = Gα

′
V β

′
can

be computed then α = α′ and β = β′.

Proof. This is proven by (α− α′) = (β′ − β) · log V . ut

7.3.2.8 Security proof with idealised p

This proof is based on one of the results from [123]. In this proof, H may be a
Type I or Type II hash function, and p may be almost invertible.

Theorem 7.9. A DL-based signature scheme is existentially unforgeable (and
non-malleable) under adaptive chosen message attacks if the discrete logarithm
is hard, if H is collision-resistant, if p is a random oracle and if the category has
properties (o1), (o2), (p2), (p1), and (p3). The security reduction is loose.

Proof. To answer a signature query for m, the simulator generates a random r
and a random s, and computes h = H(m, r) and R = Gφ(h,r,s)V ψ(h,r,s). With
property (p2), the value R is uniformly distributed and with property (p1) the
value s has the same distribution as for the signing algorithm. The simulator sets
the oracle table p(R) := r. The signed message is (m, r, s).

p-oracle queries that were not defined by a signature query are answered with a
random value. If p is almost invertible, then p−1-oracle queries are answered with
some R = Gα

′
V β

′
for random α′ and β′. The probability that the oracle table

cannot be set is the probability of a collision in R, which is low if (qH + qS)2 ≤ q.

When the forger outputs its forgery (m, r, s), the critical query is the value
R = GαV β where α = φ(h, r, s), β = ψ(h, r, s) and h = H(m, r).

Let us suppose that the critical query was part of a signature query for
some m′ that answered (m′, r′, s′) 6= (m, r, s). We define h′ = H(m′, r′),
α′ = φ(h′, r′, s′) and β = ψ(h′, r′, s′). Validity of the signature means that
R = Gα

′
V β

′
, and the unique representation of R implies α′ = α and β′ = β.

We also have r′ = r = p(R). Property (o1) implies h = λh(α, β, r) = h′ and
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property (o2) implies s = λs(α, β, r) = s′. Therefore (m′, r′, s′) 6= (m, r, s) im-
plies m′ 6= m. Since H(m′, r′) = H(m, r) we have found a collision in H.

Let us suppose that the critical query was a p-oracle query for R. The forking
lemma allows us to find another forgery (m′, r′, s′) 6= (m, r, s) with the same
critical R but a different oracle for p. The unique representation of R implies
α′ = α and β′ = β. Therefore the simulator can find α, β, m and m′ such that
λh(α, β, r) = H(m, r) and λh(α, β, r′) = H(m′, r′) for random r and r′, which is
intractable if (p3) holds.

Let us suppose that the critical query was a p−1-oracle query that returned
R = Gα

′
V β

′
. The unique representation of R implies α′ = α and β′ = β, which

is very unlikely because α′ and β′ were kept secret. ut

7.3.2.9 Security proof with idealised H of type II

This proof is based on one of the results from [123]. In this proof, H is a type II
hash function.

Theorem 7.10. A DL-based signature scheme is existentially unforgeable under
adaptive chosen message attacks if the discrete logarithm is hard, if H is a random
oracle with large output set, if p is almost uniform and ` + 1-collision-resistant
and if the category has properties (o1), (o2), (h1), and (h2). Collision-resistance
of p also implies non-malleability. The security reduction is loose.

Proof. To answer a signature query, the simulator generates random α ∈ A and
β ∈ B and computes R = GαV β , r = p(R), h = λh(α, β, r) and s = λs(α, β, r),
until h ∈ H and s ∈ S. This is equivalent to using the signature generation
algorithm with k = α+ v · β, and therefore this simulation has the same output
distribution. Property (h2) says that the expected number of random α, β needed
is less than 1

εh
. The simulator sets the oracle table H(m, r) := h. The signed

message is (m, r, s).
Oracle queries that were not defined by a signature query are answered with a

random value. The value of R = GαV β is uniformly distributed for random α and
β. If p is 1

n -almost uniform then the probability that the oracle table cannot be
set is bounded by the probability of a collision in r, which is low if (qH+qS)2 ≤ n.

When the forger outputs its forgery (m, r, s), the critical query is the H-oracle
query of (m, r).

Let us suppose that the critical query was part of a signature query. This
signature query returned a valid (m, r, s′) with the same oracle. Therefore h′ = h.
If p is collision-resistant, thenR = R′ and its unique representation implies α′ = α
and β′ = β, so property (o2) implies s′ = s.

Let us suppose that the critical query was an oracle query for (m, r). The
improved forking lemma allows us to find ` other forgeries (m, r, si) with the
same critical (m, r) but different oracles for H. Since all p(Ri) = r, the ` + 1
collision-resistance of p implies that there exists a pair where Ri = Rj . Unique
representation implies αi = αj and βi = βj . Property (o1) implies a unique
possible value hi = hj , which is unlikely to be the one given by the two different
oracles for H, because the output set is large. ut
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7.3.2.10 Security proof with idealised 〈G〉
The generic group model was introduced by Shoup [581] and extended by Brown
[126] to prove the security of ECDSA.

Theorem 7.11. A DL-based signature scheme is existentially unforgeable under
adaptive chosen message attacks in the generic group model if H is uniform, one-
way and collision-resistant, if p is almost uniform and almost invertible and if
the category has properties (g1) and (g2). The security reduction is tight.

Proof. We don’t include in this document the proof given in [126] but we show
below how it can be adapted to other schemes than ECDSA, using our general
framework.

The proof was written for a type I hash function, but it also works for a type
II hash. It was written for ElGamal category, but it works for all categories with
properties (g1) and (g2).

– In [Table 1] step 3 of Hint is replaced with
sm+1 = z1 · σ(hm+1, p(Am+1), z2z−1

1 , zm+1).
– In [Table 2] steps 1 and 2 of Hint are replaced with

C(m+1)1 = φ(hm+1, p(Am+1), sm+1) and
C(m+1)2 = ψ(hm+1, p(Am+1), sm+1).

– In [Table 4] step 2.b should use p−1(λr(Ci1, Ci2, e)).
– In [Table 7] step 1.b.iii should use p−1(λr(Ci1, Ci2, êi)).

Property (g2) is used when the proof shows that
r = ... = λr(Cm1, Cm2, êi) = λr(φ(H(m), r, sm), ψ(H(m), r, sm), êi)

and then deduces that êi = H(m). ut

7.3.2.11 Security proof with idealised H of type I

A proof where the scheme is seen as an FDH scheme. Under some con-
ditions, DL-based schemes can easily fit into the hash-then-invert paradigm.

Theorem 7.12. A type I DL-based signature scheme is existentially unforgeable
under single-occurrence chosen message attacks if H is a random oracle, p is in-
vertible, the category has properties (h1) and (o3), and the following problem is in-
tractable: given h ∈ H, finding (r, s) ∈ R×S such that r = p(Gφ(h,r,s)V ·ψ(h,r,s)).

Proof. The FDH scheme based on the function f(r‖s) = µh(s, r, v, logG(p−1(r))),
is exactly the Type I scheme based on this category and projection p.

– f is not efficiently computable if the discrete logarithm is hard.
– The test function Tf(r‖s, h) =

(
r ?= p(Gφ(h,r,s)V ψ(h,r,s))

)
is efficiently com-

putable from the public information.
– The simulation function takes random α ∈ A, β ∈ B and computes Sf(α, β) =

(r‖s, h) with r = p(GαV β), s = λs(α, β, r) and h = λh(α, β, r).
– The randomised inverse f−1(k, h) = p(Gk)‖σ(h, p(Gk), v, k) is efficiently com-

putable with the trapdoor.
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The function f is verifiable simulatable trapdoor and its preimage-resistance is
based on the intractability of the following problem: given h ∈ H, finding (r, s) ∈
R × S such that r = p(Gφ(h,r,s)V ·ψ(h,r,s)). This problem is provably as hard
as the discrete logarithm in 〈G〉 if p is replaced with a random oracle. This
result is weaker than the previous ones, because two components need to be
simultaneously idealised.

Non-malleability of the scheme is also equivalent to second-preimage resis-
tance of f. ut

Proofs based on“semilogarithm”problems. A result of Brown [125] can be
seen as an improvement of Theorem 7.12. It is a proof that the single-occurrence
security of ECDSA is equivalent, in the random oracle model for H, to the in-
tractability of an ad hoc “semilogarithm” problem. This result applies directly to
the ElGamal category and can be generalised to other categories.

Definition. An instance of the (φ̄, ψ̄)-semilogarithm problem in the group 〈G〉
with projection p is a random element P ∈ 〈G〉. A solution is a pair (r, u) such
that r = p(Gφ̄(r,u)P ψ̄(r,u)).

Theorem 7.13. (Intractability of the semilogarithm problem is neces-
sary for the security of ECDSA). If there exists a solver for the (u, ru)-
semilogarithm problem, then one can attack all Type I schemes based on the El-
Gamal category, e.g. ECDSA.

Proof. To forge a signature of m under public key V , one computes h = H(m)
and P = V 1/h, finds (r, u) a semilogarithm of P , and computes s = h/u. Then
r = p(Gh/sV r/s) and (m, r, s) is a valid signed message. ut

Theorem 7.14. (Intractability of the semilogarithm problem in the
random oracle model is sufficient for the SO-CMA security of ECDSA).
If there exists an existential forger under single-occurrence chosen message at-
tacks for a Type I scheme based on the ElGamal category, in the random oracle
model for H, then there exists a solver for the (u, ru)-semilogarithm problem. The
security reduction is loose.

Proof. This proof is similar to both the proof of Theorem 7.2 (FDH) and that of
Theorem 7.10 (Type II).

To find a semilogarithm of P ∈ 〈G〉, one pre-selects a random h0 ∈ H and
runs the forger with public key V = Ph0 .

To answer a signature query, the simulator generates random α ∈ A and
β ∈ B and computes R = GαV β , r = p(R), h = λh(α, β, r) and s = λs(α, β, r),
and sets H(m) := h. The signed message is (m, r, s).

To answer an H-oracle query, the corresponding signature query is made, with
the exception of one query which is answered with h0.

If the forgery (m, r, s) corresponds to this H-oracle query with answer h0, then
(r, h0/s) is a (u, ru)-semilogarithm of P . ut

Similar results can be obtained for some other categories. Condition (h1) is
necessary, but not sufficient.
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– Inverse ElGamal category. The security of schemes built with the Inverse El-
Gamal category is based on the (u, ru)-semilogarithm problem. The proof uses
P = V 1/h and s = u/h.

– GOST category. The security of schemes built with the GOST category is based
on the (u, r)-semilogarithm problem. The proof uses P = V 1/h and s = u · h.

– GDSA category. It is not clear if a similar security result can be obtained for
the GDSA category.

– KCDSAadd category. It is not clear if a similar security result can be obtained
for the KCDSAadd category.

– KCDSAxor category. It is not clear if a similar security result can be obtained
for the KCDSAxor category.

– Schnorr category. The security of schemes built with the Schnorr category
is based on the (u, 1)-semilogarithm problem. The proof uses P = V h and
s = u. Note that this shows that a Type I scheme based on Schnorr category
is insecure, because the (u, 1)-semilogarithm problem is easy.

– Swapped Schnorr category. It is not clear if a similar security result can be
obtained for the Swapped Schnorr category.

7.3.2.12 Comments on the security proofs

Comparison with the results from [123]. The two above results follow
closely the proofs from Brickell et al. [123], but their interactions with the com-
ponents of the scheme are more clearly detailed. Property (p3) was not clearly
defined in terms of interaction between the category and H.

Moreover, we showed that the proof with an idealised p also works if p is
almost invertible.

Comparison with the results from [126]. Our result is more general but does
not go into all the details that are considered by Brown in [126]. For example
we don’t consider zero-finder-resistance, because our toolbox restricts ElGamal
category to H ⊂ (Z/qZ)× to meet properties (g1) and (g2).

Note that footnote number 13 in [126] explains why collision-resistance to-
gether with uniformity implies preimage-resistance, so Theorem 4 of [126] doesn’t
mention the assumption that the hash function needs to be preimage-resistant.

7.3.2.13 Comments on the toolbox

Type I or Type II. Both approaches have their specific security proof where
H is idealised. However, Type II is probably to be preferred, because of the fact
that a Type I scheme with Schnorr category is insecure, while a Type II scheme
with Schnorr category is probably secure, and the fact that the Type I proof only
considers SO-CMA security.

Projections. None of the projections previously proposed in the literature has
all the required properties for our three proofs. This is why we described how to
build a permuted projection. The permuted EC projections probably have all the
required properties, but a random fixed permutation of 〈G〉 may be difficult to
design [92]. If partial message recovery is useful, Group projections are the best
candidates.
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Categories. No category is clearly better than the other ones.
ElGamal category and GOST category have all the required properties, but

they rely on distinct semilogarithm problems which are difficult to compare.
Schnorr and Swapped-Schnorr categories are the simplest choice, but they

need a Type II hash and are not proven with idealised 〈G〉.
The KCDSAadd and KCDSAxor categories have the advantage of using sim-

pler computations.
For Schnorr category, the order q can have intractable factorisation, because

no inverse is computed. For the KCDSA categories and Swapped-Schnorr cat-
egory, computing inverses in (Z/qZ)× is only needed for key generation. If the
signer’s only private information is v−1, neither the verifier nor the signer needs
to know the factorisation of q. Intractable factorisation might be useful for an
identity based scheme [432].

Two variants. A variant of this toolbox defines the signed message to be the
value (m,R, s) ∈ M× 〈G〉 × S instead of (m, r, s). The signature generation is
exactly the same, but the verification computes r = p(R), h = H(m, r), α =
φ(h, r, s), β = ψ(h, r, s), and checks if R ?= GαV β . This variant can be applied to
all the schemes described above.

A second variant only applies to the case where neither φ not ψ use their input
r, e.g. Schnorr category. The signed message is the value (m,h, s) ∈M×H×S.
The verification computes α = φ(h, ·, s), β = ψ(h, ·, s), R = GαV β , r = p(R),
and checks if h ?= H(m, r). This variant reduces the signature size if H is smaller
the R.

The above security proofs can be translated easily to both variants.

7.3.3 Schemes with security proven in the “real world”

7.3.3.1 Introduction

Thoughts on the signature oracle. The security proof is the description of
a reduction algorithm (aka. a simulator) that interacts with a forger and uses
the forgery to solve some intractable problem (see Sect. 7.2.3). One important
difficulty is that the simulator needs to be able to answer the signature queries
made by the forger. The simulator must know some trapdoor that allows it to
generate at least qS valid signatures for arbitrary messages. Notice that this
requirement implies that the public key is generated by the simulator. To reduce
the security of the scheme to the intractability of a mathematical problem, it
is necessary that the forgery could not have been made by the simulator. This
remark was made by Goldwasser, Micali and Rivest [273, Sect. 4].

One-time and fixed-time signature schemes. With a one-time signature
scheme, a public key is used for validating one signature only. For fixed-time
signature schemes, there is an a priori upper bound on the number of messages
that can be validated with a given public key.



Dra
ft

Apr
il
19

, 2
00

4

7. Digital signature schemes — 7.3 Overview of the common designs 297

One-time signature schemes as chameleon hashing. A one-time signature
scheme is KS-secure (also called secure chameleon hashing [377]) if no KS-attacker
exists. Such an attacker is allowed to make key-then-sign queries, where the input
is a message and the output is a random public key with a valid signed message.
The attacker succeeds if it can make another valid signed message for one of those
public keys.

The refreshing paradigm. The key idea is that all the messages will be signed
by a secure one-time signature scheme, but with a different public key for each
message. The public key of the secure scheme is the concatenation of all those
one-time public keys. With this simple construction the public key of the whole
scheme has length qS times the length of the public key of the one-time signature
scheme.

This technique for constructing signatures is also used in the online/offline
approach to improve the performance of digital signature schemes [223], where
a public key for a fast one-time scheme is signed by a normal secure and slow
signature scheme.

7.3.3.2 Tree constructions based on the refreshing paradigm

This technique can be used to construct secure signature schemes from secure
one-time signature schemes (see also [265, Volume 2, Sect. 6.4.2]).

Practical constructions are based on the refreshing paradigm and use an au-
thentication tree to authenticate the one-time public keys with respect to a unique
short public key. No such scheme has been submitted to NESSIE.

7.3.3.3 Using a RAND-secure scheme in the refreshing paradigm

Any RAND-secure signature scheme can be used to authenticate the one-time
public keys. The key idea is that the RAND scheme is able to securely sign any
random one-time public key, and each one-time public key can securely sign one
arbitrary message.

Theorem 7.15. If GenerateA,KeyGenA,SignA,VerA defines a KS-secure signa-
ture scheme and if GenerateB,KeyGenB,SignB,VerB defines a RAND-secure sig-
nature scheme, then the following signature scheme is secure under adaptive cho-
sen message attacks.

– Generate runs GenerateA and GenerateB and outputs param = paramA‖paramB.
– KeyGen runs KeyGenB and outputs pk = pkB and sk = skB.
– Sign computes (h, ĥ) = KeyGenA. Then it computes s = SignAĥ(m) and t =

SignBsk(h), and outputs σ = (t, s).
– Ver computes h = VerBpk(t) and m = VerAh(s).

Proof. Let us name (t, s) the forgery, h = VerBpk(t) the corresponding one-time
public key and m = VerAh(s) the corresponding message. Let us name (tj , sj)
and (hj ,mj) the questions and answers to the j-th query to the signing oracle.

All the information that the forger receives about the scheme A is contained
in mj , hj , sj , where the forger chooses mj but the public key hj is random. This
is exactly a KS-attack.
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All the information that the forger receives about the scheme B is contained
in hj , pk, tj , where the forger does not choose the values hj , which are random
values. This is exactly a RAND-attack.

Two variants of the theorem can be proven: with or without non-malleability.
With non-malleability, we define two types of forgeries.

– KS forgery. ∃j0 : t = tj0 . Therefore s 6= sj0 and h = hj0 . The forger has
produced a new valid signed message s for an old public key h of the scheme
A, which contradicts its KS-security.

– RAND forgery. ∀j, t 6= tj . The forger has produced a new valid signed message
t for the scheme B, which contradicts its RAND-security.

Without non-malleability, we define two types of forgeries.

– KS forgery. ∃j0 : h = hj0 and m 6= mj0 . The forger has produced a valid
signature s for a new message m and an old public key h of the scheme A,
which contradicts its KS-security.

– RAND forgery. ∀j, h 6= hj . The forger has produced a valid signature t for a
new message h for the scheme B, which contradicts its RAND-security.

ut

The two main examples are the GHR scheme [256] and the ACE-Sign submis-
sion to NESSIE, both of whose security is based on the strong RSA assumption.
One can compare these two schemes. While all components of ACE-Sign are effi-
ciently computable, GHR needs an efficient collision-resistant hash function with
an additional property named division-intractability, e.g. a hash function that
outputs prime numbers. On the other hand, GHR has a tight reduction to the
strong RSA assumption, while the reduction for ACE-Sign is not so tight.

7.3.3.4 The Cramer-Shoup family of schemes: ACE-Sign and variants

The RAND component. The following RAND-secure scheme is the core of this
family of schemes.

– Domain parameters. The security parameter l is the output length of a collision-
resistant hash function H and determines the length of the RSA composite
number and of some prime numbers.

– Key generation algorithm. The key generation algorithm chooses two random
strong primes p and q, computes n = pq and chooses two random values x and
g in QRn (quadratic residues). The public key is pk = (n, x, g) and the private
key is sk = (p, q).

– Verification algorithm. The verification of a signed message (m, y, e) ∈ M ×
QRn × [2l, 2l+1] begins with h = H(m) and checks if ye ?= xgh.

– Signing algorithm. To sign the message m one takes a random prime e ∈
[2l, 2l+1] and uses the secret key to compute y = (xgH(m))1/e.

Theorem 7.16. This scheme is RAND-secure under the Strong RSA assump-
tion, with not so tight reduction.
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Proof. Using a (t, ε, qS)-forger, the following algorithm either solves with prob-
ability 1 the flexible RSA problem or solves with probability 1/qS the e-th root
problem.

We can define two types of forgeries, depending on their common values with
the queries. We let hj , yj , ej denote the values for the j-th query and h, y, e the
values for the forgery.

– FLEX forgery. ∀j, e 6= ej . The reduction wants to solve the flexible RSA prob-
lem for (n, u). It generates qS random primes ej ∈ [2l, 2l+1] and a random
α ∈ [1...n2], then deduces the elements of the public key g = u2

Q
j ej and

x = gα. It can answer the j-th oracle query by generating a random mj and
computing yj = u2(α+H(mj))

Q
i6=j ei . The forgery will give an e-th root of g, and

therefore a non-trivial root of u.
– GUESS forgery. ∃j0 : e = ej0 . The reduction wants to find u1/e′ mod n. It

chooses a random j0 in 1...qS , sets ej0 = e′ and generates qS − 1 other random
primes ej ∈ [2l, 2l+1]. It generates random values for α ∈ [1...n2] and h′ =
H(m′), then deduces the elements of the public key g = u2

Q
j 6=j0

ej and x =
gαe

′−h′ . It can answer the j0-th oracle query with mj0 = m′, yj0 = gα and
ej0 = e′. It can answer all other oracle queries by generating a random mj and
computing yj = u2(αe′−h′+H(mj))

Q
i6=j,j0

ei . If indeed the forgery is such that
e = e′, then (y/yj0)

e = gH(m)−h′ and it gives the e-th root of u. This succeeds
if j0 was correctly guessed (probability 1/qS).

ut

The chameleon hash. The following one-time signature scheme is used in the
original scheme.

– Domain parameters. The security parameter l is the output length of a collision-
resistant hash function H and determines the length of the RSA composite
number n and of a prime number e. A random f in QRn is chosen and g = fe is
computed. The public domain parameters are n, g and e. The private parameter
f is used for key generation. 5

– Key generation algorithm. The key generation algorithm chooses a random
value z in QRn and computes x = ze. The public key is pk = (x) and the
private key is sk = (f, z).

– Verification algorithm. The verification of a signed message (m, y) ∈M×QRn
begins with h = H(m) and checks if ye ?= xgh.

– Signing algorithm. To sign the message m one uses the secret key to compute
y = zfH(m).

Theorem 7.17. This scheme is KS-secure under the RSA assumption, with tight
reduction.

Proof. The reduction algorithm wants to find u1/e mod n. It defines g = u and
interacts with the forger. In answer to a key-then-sign query for the message m,
5 An equivalent scheme can be obtained by generating n with known secret factorisa-

tion, kept in the private key.



D
ra
ft

A
pr
il
19

, 2
00

4

300 Book II. Evaluation — Part B. Security evaluation

the reduction generates a random y and computes the public key x = yeg−H(m).
The forgery is a pair (m′, y′) such that (y′/y)e = gH(m′)−H(m), which gives an
e-th root of g. ut

ACE-Sign. The actual Cramer-Shoup scheme [170] is an improvement on the
straightforward construction based on the two components described above.

The security of the construction is the same if the values n and g are common
to the RAND-secure scheme and to the one-time scheme. With this improvement,
the public key is (n, x, g, e′), the signed message is (m, y, e, x′, y′) and the verifi-
cation checks if x ?= yeg−H(x′) and if x′ ?= (y′)e

′
g−H(m). If we also notice that x′

can be omitted from the signed message, the result is ACE-Sign, fully described
in Sect. 7.5.1.1.
Another Chameleon hash. The following scheme is also proposed as an al-
ternative in [170]. It is based on the intractability of discrete logarithms.

– Domain parameters. The security parameter l is the output length of a collision-
resistant hash function H. Computations are made in a group 〈G〉 of order q.
Two random α, α′ coprime to q are chosen such that the public parameters
g1 = Gα

′
and g2 = gα1 are generators of 〈G〉. The private parameter α is kept

for key generation.
– Key generation algorithm. The key generation algorithm chooses a random
β and computes x = gβ1 . The public key is pk = (x) and the private key is
sk = (α, β).

– Verification algorithm. The verification of a signed message (m, t) ∈M×Z/qZ
begins with h = H(m) and checks if x ?= gt1g

h
2 .

– Signing algorithm. To sign the message m one uses the secret key to compute
t = β − αH(m) mod q.

Theorem 7.18. This scheme is KS-secure if the discrete logarithm problem in
〈G〉 is intractable, with tight reduction.

Proof. The reduction algorithm wants to find the logarithm of g2 with respect to
g1. In answer to a key-then-sign query for the message m, the reduction generates
a random t and computes the public key x = gt1g

H(m)
2 . The forgery is a pair (m′, t′)

such that g2 = g
(t−t′)/(H(m′)−H(m))
1 . ut

Generalisation to any group. Damg̊ard and Koprowski [184] proposed a gen-
eralisation of ACE-Sign to any group where the equivalent of the flexible RSA
problem is intractable.
Variants without a chameleon hash. The key idea is that the chameleon
hash is only needed for the j0-th query in the GUESS forgery. In all the other
cases any arbitrary message can be signed by the reduction algorithm. Therefore
a chameleon hash brings unnecessary flexibility.

Instead of replacing gH(m) by gH(chameleon−hash(m)), one first variant, due to
Camenisch and Lysyanskaya [131], replaces gH(m) by gt1g

H(m)
2 . The signed message

is (m, t, e, y) and the verification checks if ye ?= xgt1g
H(m)
2 . If n is an l′-bit number

and H has l-bit output (i.e. security l/2 bits) then this variant is secure when t
is an l′ + 3l/2-bit number. Therefore it is less efficient than ACE-Sign.
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Theorem 7.19. The Camenisch-Lysyanskaya scheme is secure under the Strong
RSA assumption, with not so tight reduction.

Proof. The proof is very similar to the proof of Theorem 7.16.

– FLEX forgery. ∀j, e 6= ej . The reduction wants to solve the flexible RSA prob-
lem for (n, u). It generates qS random primes ej ∈ [2l, 2l+1] and random
α, β ∈ [1...n2], then deduces the elements of the public key g1 = u2

Q
j ej ,

g2 = gβ1 and x = gα1 . It can answer the j-th oracle query for mj by generating
a random tj ∈ [0...2l

′+3l/2] and computing yj = u2(α+tj+βH(mj))
Q

i6=j ei . The
forgery will give an e-th root of g1, and therefore a non-trivial root of u.

– GUESS forgery. ∃j0 : e = ej0 . The reduction wants to find u1/e′ mod n. It
chooses a random j0 in 1...qS , sets ej0 = e′ and generates qS − 1 other random
primes ej ∈ [2l, 2l+1]. It generates random α, β ∈ [1...n2] and γ ∈ [0...2l

′+3l/2],
then deduces the elements of the public key g1 = u2

Q
j 6=j0

ej , g2 = gβ1 and x =
gαe

′−γ
1 . It can answer the j-th oracle queries for mj with j 6= j0 by generating

a random tj ∈ [0...2l
′+3l/2] and computing yj = u2(αe′−γ+tj+βH(mj))

Q
i6=j,j0

ei .
It can answer the j0-th oracle query for mj0 with yj0 = gα, ej0 = e′ and
tj0 = γ−βH(mj0). Owing to the condition γ ∈ [0...2l

′+3l/2], the value t appears
to be uniform in [0...2l

′+3l/2]. If indeed the forgery is such that e = e′, then
(y/yj0)

e = gt−tj0+βH(m)−βH(mj0 ) and it gives the e-th root of u. This succeeds
if j0 was correctly guessed (probability 1/qS).

ut

Two other variants, due to Fischlin [231], replace gH(m) by gt1g
t+H(m)
2 or by

gt1g
t⊕H(m)
2 . The signed message is (m, t, e, y) and the verification checks e.g. if

ye ?= xgt1g
t⊕H(m)
2 . These variants are secure for l-bit t, so their efficiency is similar

to ACE-Sign with the DL-based chameleon hash.

Theorem 7.20. The Fischlin schemes are secure under the Strong RSA assump-
tion, with not so tight reduction.

Proof. The proof is very similar to the proofs of Theorem 7.16 and 7.19.

– FLEX forgery. ∀j, e 6= ej . The reduction wants to solve the flexible RSA prob-
lem for (n, u). It generates qS random primes ej ∈ [2l, 2l+1] and random
α, β ∈ [1...n2], then deduces the elements of the public key g1 = u2

Q
j ej ,

g2 = gβ1 and x = gα1 . It can answer the j-th oracle query for mj by generating
a random tj ∈ [0...2l] and computing yj = u2(α+tj+β(tj⊕H(mj)))

Q
i6=j ei . The

forgery will give an e-th root of g1, and therefore a non-trivial root of u.
– GUESS/1 forgery. ∃j0 : e = ej0 and tj0 6= t. The reduction wants to

find u1/e′ mod n. It chooses a random j0 in 1...qS , sets ej0 = e′ and gen-
erates qS − 1 other random primes ej ∈ [2l, 2l+1]. It generates random
α, β ∈ [1...n2] and γ ∈ [0...2l], then deduces the elements of the public key
g1 = u2

Q
j 6=j0

ej , g2 = gβe
′

1 and x = gαe
′−γ

1 . It can answer the j-th oracle
queries for mj with j 6= j0 by generating a random tj ∈ [0...2l] and computing
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yj = u2(αe′−γ+tj+βe′(tj⊕H(mj)))
Q

i6=j,j0
ei . It can answer the j0-th oracle query

for mj0 with yj0 = g
α+β(γ⊕H(mj0 ))
1 , ej0 = e′ and tj0 = γ. If indeed the forgery

is such that e = e′ and tj0 6= t, then (gβ(tj0⊕H(mj0 ))−β(t⊕H(m))
1 ·y/yj0)e = gt−tj0

and it gives the e-th root of u.
– GUESS/2 forgery. ∃j0 : e = ej0 and tj0 ⊕ H(mj0) 6= t ⊕ H(m). Similar to

the GUESS/1 forgery, with the public key g2 = u2
Q

j 6=j0
ej , g1 = gβe

′

2 and
x = gαe

′−γ
2 . Also tj0 = γ ⊕ H(mj0) and yj0 = g

α+βtj0
2 .

ut

7.3.4 Current standards

The US NIST (National Institute of Standards and Technology) issued in 1994
a FIPS (U.S. Government Federal Information Processing Standard) that de-
scribed DSA (Digital Signature Algorithm) [464]. This standard has been revised
twice: FIPS-186-1 [466] and FIPS-186-2 [467] added the ANSI X9.31 and X9.62
standards.

The ANSI (American National Standards Institute) issued in 1999 ANSI
X9.31 [20], which is a partial domain hash RSA signature, and ANSI X9.62 [21],
which is ECDSA.

The ISO (International Organisation for Standardisation) has published ISO-
9796 [301,302], ISO-14888 [308,309] and ISO-15946-2 [310].

The IEEE P1363 group has published various standards on public key cryp-
tography [299,300] that go down to implementation details.

7.4 Digital signature schemes considered during Phase II

The complete description of a signature scheme needs to explain how to con-
vert integers to and from octet strings or bit strings. Usually, this has no influence
on the security and will not be mentioned here.

7.4.1 ECDSA

ECDSA was submitted by Certicom [319] and is a signature scheme based on
the intractability of the discrete logarithm problem in an elliptic curve subgroup.
It was first proposed in 1992 by Scott Vanstone [610] in response to NIST’s re-
quest for public comments on their first proposal for DSS [464]. It is an ISO [309]
standard since 1998, an ANSI [21] standard since 1999 and an IEEE [299] and
NIST [467] standard since 2000. Interoperability between these standards is
discussed in http://www.certicom.com/resources/news/news_103000.html.
The version submitted to NESSIE is the ANSI X9.62 ECDSA.
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7.4.1.1 The design

ECDSA is a special case of the family of DL-based signature schemes described
in Sect. 7.3.2. It is defined on a prime order elliptic curve subgroup with ElGamal
category, ECxq projection and type I hash.

– Domain parameters. The security parameter is an integer l, e.g. 160. Let E
be an elliptic curve over the finite field F and 〈G〉 a subgroup of known prime
order q ∈ [2l, 2l+1] and known generator G. We use the additive notation for
this group.
F is either a prime field GF (p) or a characteristic 2 field GF (2n).
Let H be a hash function with l bits of output (usually SHA-1) and iF a mapping
from F to the set of integers modulo q, that does the conversion from F to Z
as specified in ANSI X9.62 and then a reduction modulo q.

– Key generation algorithm. The key generation algorithm chooses a random
v ∈ (Z/qZ)× and sets pk = V = v ·G and sk = v.

– Verification algorithm. The verification algorithm on a signed message
(m, r, s) ∈M×Z/qZ×(Z/qZ)× computes h = H(m) and R = s−1 ·(h·G+r·V ),
and checks if r ?= iF(Rx).

– Signing algorithm. To sign the message m one takes a random invertible k ∈
(Z/qZ)×, and computes R = k ·G, r = iF(Rx), h = H(m) and s = k−1(h+ vr).
If s is not invertible, another k is taken. The signed message is (m, r, s).

Parameter generation. The parameters for ECDSA consist mainly of the de-
scription of a suitable elliptic curve and of a base point that generates a subgroup
with large prime order.

Depending on the variant of ECDSA, the elliptic curve and base point can be
chosen from a table of suitable values [137] or can be taken at random subject
to the base point having large prime order. Any underlying field can be chosen,
but only prime fields or binary fields are usually considered.

The elliptic curve subgroup is not part of the public key, it is a system pa-
rameter common to all users. Therefore it is important that no weaknesses can
be found in it.

Okeya et al. [503] proposed the use of elliptic curves with Montgomery form
to protect against timing attacks. This leads to the OK-ECDSA variant, which
was not submitted to NESSIE but is studied by CRYPTREC [502].

7.4.1.2 Security analysis (see also Sect. 7.3.2)

Attacks on ECDSA. Necessary conditions for the security of ECDSA are
one-wayness and collision resistance of H and intractability of the (u, ru)-
semilogarithm in the elliptic curve E, which implies intractability of the discrete
logarithm.

Security proofs for ECDSA. This signature scheme has been published for
a long time and various security arguments have been provided which show that
the two necessary conditions above might be sufficient. However, none of those
security arguments can be used to argue that ECDSA is an optimal design for a
scheme based on the intractability of the elliptic curve discrete logarithm.
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The first published arguments were proofs in the random oracle model that
in fact apply to variants of ECDSA, e.g. to KCDSA (proof with idealised p) or to
the Schnorr or PVSSR schemes (proof with idealised H). The proof that works
in the generic group model applies to ECDSA itself, but it is also an example of
a case where a generic proof is explicitly invalidated by some specific properties
of the components. 6

Therefore one big concern about ECDSA is that it is probably not the best
choice in the extensive family of DL-based signature schemes.

The hash function of ECDSA. The function H should be a one-way collision
resistant hash function with output in a subset of (Z/qZ)×, and the security of
the scheme may be weakened if this output set has substantially fewer than q
elements.

But the specifications of ECDSA say that H is the SHA-1 hash function,
whose output is a 160-bit string, reduced modq. Therefore it might not be an
element of (Z/qZ)×, because it can be zero. An additional property required for
SHA-1 is zero-finder resistance [126], which means that a preimage of 0 should
be hard to find.

Some realistic attacks on DSA and ECDSA rely on the ability to choose
the parameters of the scheme after having studied some properties of the hash
function [96, 612]. An easy protection is the inclusion in the input of H of some
certification data depending on the parameters and the public key. It has been
proposed for KCDSA and some other schemes [340,444].

Other comments: parameter and key validation. Note that to prove that
the parameters are not designed to correspond to a weak elliptic curve, ECDSA
asks for a certification, which is the seed used for the generation of a random
curve. This certification technique can be bypassed in characteristic 2, and should
absolutely be improved [615].

Note also that the ECDSA submitted to NESSIE asks that the verification
and the signing algorithms make sure that r 6= 0, while the description in this
document does not make this verification. The rationale for this check on r is
to protect against a very specific type of bad parameter. It is felt that a good
algorithm for parameter validation would be preferred to ad hoc checks, and that
it is harmful to make the verification and signing algorithms more complicated
than necessary.

The random nonce. The random value k used in the signing algorithm should
be unpredictible, otherwise the scheme can be attacked [216, 482, 483]. However,
this value can be deterministically generated from the message and a secret value,
like it is done for the FDH-D design (cf. Sect. 7.3.1.3).

Side-channel attacks. In elliptic curve cryptography, scalar point multiplica-
tion is a crucial operation. As mentioned in Sect. A.1 algorithms performing this

6 The elliptic curve subgroup can easily be distinguished from an ideal group because
it has the trivial automorphism (x, y) 7→ (x,−y). In the case of ECDSA, the choice
of p being the reduction of the x-coordinate allows one to use this automorphism to
forge a new signature for an existing signed message.
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operation are a particular target for side-channel attacks. In ECDSA, the task is
to compute k ·G. Any information concerning the value k that can leak during the
computation might be used by an attacker to compute the secret key. Different
side-channel techniques exist to get the information and various countermeasures
have been proposed in the literature to defend against this kind of attack. For
further discussion on this subject, the reader is referred to the Annex A and to
the survey [508] by Oswald and Preneel.

Another side-channel technique that can be used is introducing faults during
the computation of the signature (for a general introduction to fault attacks, see
Sect. A.2). For example, and following the original idea of Bao et al. [33] against
DSA, if an attacker is able to change one bit of the secret key v used by the
signer, then the erroneous signature can be used to recover the original value
of the bit. Indeed, the signer would output s′ = k−1(h + vr ± 2ir), assuming
the attacker changed the i-th bit of v, and depending on its original value. So
the verification algorithm would give s′−1(h · G + r · V ) = k · G ± (2irs′−1) · G.
Thus, computing all the possible values for R = s′

−1(h ·G+ r ·V )± (2irs′−1) ·G
and detecting if r ?= iF(Rx). the attacker will discover the original value of the
bit that he flipped. In [58], Biehl et al. present another idea: faults are used to
make the device apply the multiplication algorithm to a point that is actually
on a different, probably cryptographically weak, elliptic curve. The result of this
computation might be used to recover the secret key v. Countermeasures against
fault attacks are necessary, e.g. checking the consistency of the output.

7.4.2 ESIGN

ESIGN was submitted by NTT [244] and can be viewed as a variant of RSA that
has faster signing but relies on more demanding security assumptions.

7.4.2.1 The design

– Domain parameters. The security parameter is an integer l, e.g. 512. Let H be
a hash function with l − 1 bits of output and e be a small integer.
In the original submission of ESIGN to NESSIE [244] the requirements are
l ≥ 352 and e ≥ 8, with recommended values l = 384 and e = 1024. In the
specification of ESIGN-D [496] the requirements are l ≥ 342 and 3l

2 ≤ e ≤ 2l/4,
with recommended values l = 512 or 1024 and e = 65537.

– Key generation algorithm. Let p and q be distinct primes from [2l−1, 2l] such
that n = p2q ∈ [23l−1, 23l]. The keys are pk = n and sk = (p, q).

– Verification algorithm. The verification of a signed message (m, s) ∈M×Z/nZ
begins with h = H(m) and x = se mod n, and checks if x ?= h · 22l + w where
w ∈ [0, 22l−1].

– Basic signing algorithm. To sign the message m one takes a random w ∈
[0, 22l−1] and computes h = H(m), x = h · 22l + w and s = x1/e mod n. The
signed message is (m, s).

– ESIGN fast signing algorithm. To sign the message m one computes h = H(m).
Then one takes a random r < pq and computes u = h·22l−re mod n, v =

⌈
u
pq

⌉
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and w = v · pq − u until w < 22l−1. Then t = v
e·re−1 mod p and s = r + t · pq.

The signed message is (m, s).
Both signing algorithms give the same output distribution.

7.4.2.2 Security analysis (see also Sect. 7.3.1)

Attacks on ESIGN and its variants. Necessary conditions for the security
of ESIGN are one-wayness and collision resistance of H and intractability of the
AER problem.

Security proofs for ESIGN and its variants. ESIGN is an FDH signature
scheme based on the “truncated e-th power” function, which is defined by f(x) =⌊
xe mod n

22l

⌋
. The original description of ESIGN [244] made the statement that the

original security proof of FDH applies to ESIGN, but Stern et al. [597] noticed
that f−1 is randomised, and therefore this proof only assesses the security against
a SO-CMA attacker.

A variant named ESIGN-D has been described [274] and replaces the original
submission. This variant uses the FDH-D technique described in Sect. 7.3.1.3.
Another variant named ESIGN-R is described in the same document and uses
PFDH with a seed of length at least 2 log2 qS .

To assess the security of ESIGN-D and ESIGN-R, we need to study the prop-
erties of f.

– Definitions. The set Il contains all pairs (n, η) with suitable n = p2q and η ∈
Z/nZ. Let us define X = {x ∈ Z/nZ|x = 0‖h‖0‖w with h ∈ [0, 22l−1] and w ∈
[0, 22l−1]}. The input sets are S = T = {x ∈ Z/nZ|xe mod n ∈ X} and the
output set is H = [0, 22l−1].
We define f(x) =

⌊
xe mod n

22l

⌋
and g(x) =

⌊
η·xe mod n

22l

⌋
.

– Computational properties. These properties (OW1, OW2, OW3, CF1, CF2,
CF3, TR1 and TR2) are implied by the description of the scheme, the probabil-
ity distribution on S = T being uniform, with a sampling algorithm uniformly
taking an element of Z/nZ until it is in S.

– Statistical properties. Property UN (almost uniformity of the output of f and
g) can be proved [217,497,596].
Property TR3 comes from the following facts. Both signing algorithms gener-
ate values with their e-th power uniform in X . The e-th power function is a
bijection between S and X .

– Intractability properties. Preimage resistance (property OW4) holds if the AER
problem is hard.
Claw-freeness (property CF4) holds if the Claw-AER problem is hard.
Second preimage resistance (property OW5) holds if the 2nd-AER problem is
hard.

Therefore, the following security results have been proven.

– If the AER problem is hard with a security level of k bits, then both ESIGN-D
and ESIGN-R have a proven (in the random oracle model) security level of
k − log2 qH bits. Non-malleability requires also that the 2nd-AER problem is
hard.
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– If the Claw-AER problem is hard with a security level of k bits, then ESIGN-D
also has a proven security level of k− log2 qS bits and ESIGN-R a proven secu-
rity level of k bits. Non-malleability still requires that the 2nd-AER problem
is hard.

The hash function of ESIGN and its variants. Both the original description
of ESIGN and the tweak to ESIGN-D use a hash function H, based on SHA-1,
which is common to all the public keys. It may be a better design to improve the
security in the multi-key setting by including pk in the input of H.

In the original description of ESIGN, the value H(m) is defined to be the first
bits of SHA-180

σ (0‖m)‖SHA-180
σ (1‖m)‖..., where SHA-180

σ is a variant of SHA-1
with a different starting value and truncated to 80 bits. This is not an optimal
design because it is too slow if m is a long message. The specification of ESIGN-D
uses a better design: SHA-1(SHA-1(m)‖0)‖SHA-1(SHA-1(m)‖1)‖....

Side-channel attacks. For a general introduction to side-channel attacks, see
the Annex A. We did not find any side-channel attack against ESIGN. The fact
that it is a randomised algorithm protects ESIGN against some side-channel
attacks.

ESIGN-D is a deterministic variant of ESIGN. We can use this to mount
a side-channel attack that uses faults (see Sect. A.2). Imagine an attacker can
disturb the signing algorithm by introducing faults during the computation of
either u, v or t. This leads to an erroneous value t′ = t± ε, with 0 ≤ ε < p. Thus,
an erroneous signature s′ is computed, with the following relation: s′ = s± ε · pq,
where s = r+t ·pq is the correct signature. If an attacker can get both the correct
signature and an erroneous one on the same message, then he gets εpq, which
is not a multiple of N , so gcd(s − s′, N) = pq and the modulus is factorised.
This attack is particularly powerful because all it needs is a random error during
the computation of the most time-consuming steps. So any implementation of
ESIGN-D should be protected against fault attacks.

7.4.3 SFLASH (new version)

All signature schemes from the FLASH family are FDH-D schemes based on the
intractability of variants of the HFE problem. These variants are named C∗−−

(see [515]).

7.4.3.1 The design

– Domain parameters. The parameters are four integers q, d, n and r, a security
parameter l, a hash function H with output in (Fq)n−r and a family of pseudo-
random functions prf with an l-bit index, input in (Fq)n−r and output in (Fq)r.
The function F(x) = xq

d+1 is a bijection of the finite field Fqn with inverse
F−1(x) = xh, where h = (qd+1)−1 mod (qn−1). The function φ : Fqn → (Fq)n
fixes a representation of Fqn as an Fq-vector space. Let f = φ−1 ◦ F ◦ φ.
For SFLASH (new version) we have l = 80, q = 128 = 27, d = 11, n = 37 and
r = 11 and H and prf based on SHA-1.
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– Key generation algorithm. Two random affine bijections s and t of (Fq)n and
a random l-bit value ∆ are generated. They are the private key.
The public key is (P1, ..., Pn−r) where (P1, ..., Pn) are the quadratic polynomials
that describe t ◦ f ◦ s.

– Verification algorithm. The verification of a signed message (m, s1, ..., sn) ∈
M×(Fq)n begins with (h1, ..., hn−r) = H(m) and then computes (y1, ..., yn−r) =
(P1, ..., Pn−r)(s1, ..., sn) and checks if all hi ?= yi.

– Signing algorithm. To sign the message m one computes (h1, ..., hn−r) = H(m),
then (x1, ..., xr) = prf∆(h1, ..., hn−r) and finally (s1, ..., sn) = s−1 ◦ f−1 ◦
t−1(h1, ..., hn−r, x1, ..., xr). The signed message is (m, s1, ..., sn).
The fact that x 7→ xq is linear over (Fq)n allows for some tricks that help to
do a fast computation of F−1(x) = xh and therefore of f−1.

7.4.3.2 Security analysis (see also Sect. 7.3.1)

Attacks on SFLASH (new version). The security of SFLASH is exactly the
security of an FDH-D scheme based on the one-wayness of the function f =
(P1, ..., Pn−r) : (Fq)n → (Fq)n−r, where the Pj are quadratic polynomials in Fq
generated with a C∗−− trapdoor.

Necessary conditions for the security of SFLASH are one-wayness and collision
resistance of H and one-wayness of f.

Security proof for SFLASH (new version). The preimage resistance of the
function f is not well defined, but two techniques to find preimages can be de-
scribed. This is not sufficient for a high level of confidence in the intractability of
the C∗−− problem, but it is sufficient for short term security.

– Attack on the C∗−− structure. This attack [515] requires O(qr) operations,
which is more than 280 Triple-DES operations for the parameters of SFLASH.

– Resolution of a random set of quadratic equations. This is called the MQ
problem and is NP-hard. However, Gröbner basis finding [128], XL or FXL
algorithms [164] or the more sophisticated F5 and F5/2 algorithms of Faugère
[224] are relatively efficient at solving systems of polynomial equations over
finite fields.
At the time when NESSIE made its selection, for the parameters of SFLASH,
those attacks required more computational power than 280 Triple-DES opera-
tions. However, some improvements have been published since then [156] and
the size of the parameters of SFLASH have been increased to resists this new
attack [163].

The hash function of SFLASH (new version). In the specifications for
SFLASH the message is hashed to the value H(m) defined to be the first bits
of SHA-1(m)‖SHA-1(SHA-1(m)). The output of the hash function H is clearly
not uniform random in (Fq)n−r. A better design is to take the first bits of
SHA-1(SHA-1(m)‖0)‖SHA-1(SHA-1(m)‖1).

Other comments about the design. The value prf∆(h) is defined to be the
first bits of SHA-1(h‖∆). This is an acceptable family of pseudo-random func-
tions. HMAC may be preferred.
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The affine part of s and t can be recovered from the public key alone, and
therefore appears to be useless [253,254].

Side-channel attacks. For a general introduction to side-channel attacks, the
reader is referred to the Annex. A. When a message is signed with SFLASH,
most of the computations are performed in finite fields of characteristic 2. This
makes it difficult to imagine, for example, a fault attack where one would change
a bit of the secret key and try to use the erroneous signature to recover the
original value of the bit. However, other methods might exist to gain information
about the secret key, for instance using differential power analysis (DPA) [595].
The submitters proposed in [12] to mask all the intermediate data with random
values.

7.4.4 QUARTZ

QUARTZ is a CPC-D scheme based on the intractability of a variant of the HFE
problem.

7.4.4.1 The design

– Domain parameters. The parameters are four integers d, n, v and r, a secu-
rity parameter l, a hash function H with output in {0, 1}n−r and a family of
pseudo-random functions prf with l-bit index, input in {0, 1}n−r and output
in {0, 1}r+v.
The function φ : F2n → {0, 1}n fixes a representation of F2n as a {0, 1}-vector
space. For any function F on the finite field F2n let f = φ−1 ◦ F ◦ φ.
For QUARTZ we have l = 80, d = 129, n = 103, v = 4 and r = 3 and H and
prf based on SHA-1.

– Key generation algorithm. A random affine bijection s of {0, 1}n+v, a random
affine bijection t of {0, 1}n, a random family (FV )V ∈{0,1}v of polynomials over
F2n and a random l-bit value ∆ are generated. They are the private key.
Each polynomial FV is randomly chosen from the polynomials of degree at
most d whose monomials {x2a+2b}a,b≥0 have constant coefficient, {x2a}a≥0

have coefficient linear in V , and x0 has coefficient quadratic in V .
The public key is P = (P1, ..., Pn−r) where (P1, ..., Pn) are the quadratic poly-
nomials that describe the function(t ◦ fV ◦ s) : {0, 1}n+v → {0, 1}n.

– Signing and verification algorithms. QUARTZ is exactly the CPC-D design
with 4 rounds based on the trapdoor function P : {0, 1}n−r × {0, 1}r+v →
{0, 1}n−r. The appendix is an element of {0, 1}n−r × ({0, 1}r+v)4, with length
n+ 3r + 4v = 128 bits.
The signer can compute P−1 because the knowledge of FV is sufficient to
compute a preimage for fV and P−1(x) ∈ {s−1◦f−1

V ◦t−1(x,R) for R ∈ {0, 1}r,
V ∈ {0, 1}v }. The probability that the preimage does not exist for fixed R
and V is approximately 1

e , so the average number of attempts is e and the
probability that the signing algorithm fails is 1

e128 ' 2−185.
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7.4.4.2 Security analysis (see also Sect. 7.3.1)

General security analysis. The preimage resistance of the function P is not
well defined, but two techniques to find preimages can be described.

– Attack on the QUARTZ structure. If the degree of FV is not bounded, then
the function P is a random set of quadratic polynomials, but the signing time
is too long. To improve the efficiency of the signing algorithm (which is still
very slow) the maximal degree in QUARTZ is set some value d. No known
attack directly exploits this difference between the QUARTZ problem and the
MQ problem.

– Resolution of a random set of quadratic equations. This is called the MQ
problem and is NP-hard. However, Faugère [225] showed experimentally that
the classical algorithm to solve a system of polynomial equations (Gröbner
basis finding) is much more efficient on QUARTZ systems than on general
systems.
The impact of this result has been studied by Courtois et al. [157] and their con-
clusion is that setting d = 257 increases the computational power of Faugère’s
attack to 278. The price to pay is a signing algorithm that is more than 3 times
slower.

The hash function of QUARTZ. In the specifications for the first version
of QUARTZ [159], the value H(m) is defined to be the first bits of h1‖h2‖h3,
where h1 = SHA-1(m), h2 = SHA-1(h1) and h3 = SHA-1(h2). The revised
version of QUARTZ [161] uses the better design that takes the first bits of
SHA-1(h‖0)‖SHA-1(h‖1)‖SHA-1(h‖2), where h = SHA-1(m).

Other comments about the design. The signature generation algorithm in
the first version of QUARTZ only accepts the case where F−1

V has a unique
solution. The revised version also accepts the case where two solutions exist and
chooses one in a deterministic way. The drawback of the first version is that the
appendix space is restricted to the values where FV has only one root, and that
gives some information about FV that might be usable for an attack.

Another drawback of Quartz is that the scheme is malleable (it is not strongly
unforgeable) [328].

Side-channel attacks. Side-channel attacks are introduced in Annex A. The
signing algorithm of QUARTZ does not use any of the classically vulnerable
operations, and we did not find any side-channel attack against it.

7.4.5 RSA-PSS

RSA-PSS as submitted by RSA Labs [326] is based on the PSS design, and its
security mainly relies on the intractability of the e-th root problem.

The differences between the submitted RSA-PSS and the generic design de-
scribed in Sect. 7.3.1.5 of this document and in the original description of PSS [54]
are justified in the submission and in supporting documents [322,326].
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7.4.5.1 The design

– Domain parameters. The parameters are the bitlength l of the modulus, the
output size l′ of a hash function Hash and the public exponent e ≥ 3.

– Key generation algorithm. Two random primes p and q are generated. The
public key is n = pq and the private exponent is d = e−1 mod (p− 1)(q − 1).

– Signing and verification algorithms. The scheme uses the PSS design where the
trapdoor function is f(x) = xe mod n and where the two functions H and G are
built from the common hash function Hash. A hash identifier may be used,
and the complete definitions of H and G are given in Sect. 7.4.5.2 below.
One consequence of this complete definition is that the trapdoor function
f is used only on a subset of Z/nZ. More precisely, if we define H0 =
{x ∈ Z/nZ |x = a‖b‖0xBC}, HId = {x ∈ Z/nZ |x = a‖b‖Id‖0xCC},
H = H0 ∪

⋃
IdHId and S = {x1/e |x ∈ H}, then the NESSIE submission is

a PSS construction based on the restriction f : S → H.

Parameter and key generation. While any exponent e ≥ 3 can be used, the
NESSIE submission proposes small values like 3, 17, or 65537. The advantage of
choosing a small e is that the verification algorithm is much faster.

The generation of random prime numbers p and q of a given size is crucial
to the security of the scheme. The NESSIE submission suggests an algorithm
that does a probabilistic primality testing. Other algorithms may be used for key
generation.

7.4.5.2 Security analysis (see also Sect. 7.3.1)

Security proof for RSA-PSS. Following the generic security proof for the
PSS design, the security of RSA-PSS is based on the clawfreeness of f and g(x) =
η · xe mod n for a random η. This is easily shown to be equivalent to the e-th
root problem for η.

But because the NESSIE submission is based on a restriction of the function
f, the efficiency of the security proof is slightly worse than for the generic PSS
design. This is shown by Jonsson [322].

On the hash functions of RSA-PSS. The description of the function H de-
pends on an option t which can be 1 or 2 and decides whether a hash iden-
tifier 7 is used or not. If t = 1 and Hash is a hash function with hLen-
octet output, then H has an output of hLen + 1 octets and is defined by
H(m‖r) = Hash(0(8 octets)‖Hash(m)‖r)‖0xBC. If t = 2 andHash is a hash func-
tion with hLen-octet output and identifier Id, then H has an output of hLen+ 2
octets and is defined by H(m‖r) = Hash(0(8 octets)‖Hash(m)‖r)‖Id‖0xCC. The
output of the function G(h) is defined to be the first bl/8c − hLen − t octets of
Hash(h‖0(4 octets))‖Hash(h‖1(4 octets))‖... Moreover, the salt r being of length
smaller than bl/8c − hLen− t octets, a constant m̄ = 0...01 is used.

While this is very close to the generic PSS design, the fact that H and
G have variable output length, depending on t, makes a new proof necessary
and may introduce subtle weaknesses. Another very similar design is easier to

7 Some thoughts on hash identifiers have been published by Kaliski [334].
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provide with a security proof, if the function H has a fixed output length for
each public key. For example, H(m‖r) can be defined to be the last octets of
...‖Hash(1(8 octets)‖Hash(m)‖r)‖Hash(0(8 octets)‖Hash(m)‖r)‖Trail, where Trail
is either 0x00BC or Id‖0xCC. The security proof of this variant of RSA-PSS then
makes the hypothesis that this function can be viewed as a random oracle (with
output in H), which is likely if Hash is one-way and collision-resistant. 8

Another improvement on the functions H and G can be suggested, which
protects against parameter manipulation, especially against adversarial hashing
[444]: the inclusion of some commitment to the parameters and the public key in
the input of the hash functions, as suggested in Sect. 7.2.1.2.

One last improvement is the use of UOWHF (Universal One-Way Hash Func-
tions) instead of CRHF (Collision-Resistant Hash Functions). The reason behind
this is that there exist secure constructions of families of UOWHF, while no
family of CRHF has been found.

RSA problem versus e-th root problem. It is important to notice that
because the exponent e is a parameter of the scheme the security of RSA-PSS is
provably based on the e-th root problem.

Some implementations of RSA-based schemes generate n before choosing e. If
e is not randomly chosen from the numbers coprime to φ(n) (e.g. the implementa-
tion of GPG 1.2.1 www.gnupg.org chooses the smallest such e in the list 41, 257,
65537, 65539, ...) the security of the scheme is based on another intractability
assumption.

However, flexibility in the choice of e can be useful for some RSA-based
schemes, e.g. threshold RSA and mediated RSA [105,190].

It is possible that the e-th root problem for small values of e like 3, 17, or
65537 has not the same intractability as the generic problem. It may be easier,
or harder to solve. But small exponents make this problem easier to solve if some
side-channel information can be obtained, e.g. some bits of the secret exponent
d [107]. Moreover, some other theoretical arguments have been given that suggest
that a prime e ≥ 65537 is a conservative choice [110].

The random nonce. The random value r used in the signing algorithm should
have entropy, otherwise the efficiency of the security proof decreases. If this value
is deterministically generated, then the scheme is equivalent to an RSA-FDH
scheme, and has not so tight reduction to the e-th root problem. Even if the
deterministic generation of r is not pseudo-random, e.g. if r = 0, no concrete
weakness of the resulting scheme is known.

Side-channel attacks. A general introduction to side-channel attacks can be
found in Annex. A. In [104], Boneh et al. stressed how Chinese remainder based
implementations of RSA signature schemes are vulnerable to faults. For efficiency,
one would compute separately Sp = xd mod p and Sq = xd mod q and then use
the Chinese remainder theorem to construct the signature S = xd mod n. If an
error occurs during only one of the two exponentiations, then an attacker who
8 This design may even be better than the simple design H(m‖r) = Hash(m‖r), which

has the extensibility property [127].
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obtains this faulty signature and the correct one of the same message can factor
the modulus. This attack has been improved by Joye et al. in [330]: one such
erroneous signature and the corresponding plaintext x are enough to find out the
entire secret exponent. This attack does not apply to RSA-PSS. Indeed, in this
scheme, the message is at first encoded using the PSS encoding method, which
introduces some random bits. Thus the user never signs the same message twice,
and so the first version of the attack is avoided. Furthermore, given an erroneous
signature, the full message x that has been signed cannot be recovered, so the
second version of the attack does not work either.

For the same reason, it seems very hard to mount against RSA-PSS a fault
based attack (based on [349]) that introduces faults in the secret exponent.

7.5 Digital signature schemes not selected for Phase II

7.5.1 ACE-Sign

7.5.1.1 The design

ACE-Sign is based on the merge of a RAND-secure scheme and of a secure
chameleon hash, as described in Sect. 7.3.3.4.

– Domain parameters. The security parameters are two integers l (e.g. 160) and
l′ (e.g. 512). Let H be a hash function with an l-bit output.

– Key generation algorithm. Two l′-bit strong primes p and q are randomly
chosen, and n = pq is computed. h and x are randomly taken in QRn and
e′ is a randomly chosen (l + 1)-bit prime. The keys are pk = (n, h, x, e′) and
sk = (p, q).

– Verification algorithm. The verification of a signed message (m, e, y, y′) ∈M×
Z× Z/nZ× Z/nZ checks that e is an odd (l + 1)-bit integer different from e′.
Then it computes x′ = (y′)e

′
h−H(m) and checks if x ?= yeh−H(x′).

– Signing algorithm. A random y′ ∈ QRn and a random (l + 1)-bit prime e are
generated, and x′ = (y′)e

′
h−H(m) and y = (xhH(x′))1/e are computed. The

appendix is (e, y, y′).

In fact, ACE-Sign as submitted to NESSIE does not use a collision resistant
function H but a family of universal one-way hash functions (UOWHF). The
index of the hash function used is added to the signed message. This increases
its size but weakens the security hypothesis on the hash.

Moreover, the random prime e is generated by some specific randomised al-
gorithm that output e together with some certification values. The properties of
this algorithm are: the probability that the same e is generated twice is negligi-
ble, and it is intractable to generate e and the certification without using this
algorithm. This modification increases the size of the signed message but allow
to reduce the security of ACE-Sign to the RSA assumption in the random oracle
model.
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7.5.1.2 Security analysis (see also Sect. 7.3.3)

General security analysis. We can apply the general security result for this
construction (cf. Sect. 7.3.3.4), but ACE-Sign is also provided with an explicit
security proof, under the hypothesis that H is collision resistant (or taken from
a family of UOWHF).

If the forgery is (m, e, y, y′) we define x′ = (y′)e
′
h−H(m), and for all answers

(mi, ei, yi, y
′
i) to signature queries we define x′i = (y′i)

e′h−H(mi). This proof defines
three types of forgeries:

– In a type I forgery for some j we have e = ej and x′ = x′j . It leads to a solution
of the RSA problem for (n, z, e′) with tight reduction. This corresponds to a
forgery of the chameleon hash. One can notice that e = ej is not used in the
proof.

– In a type II forgery for some j we have e = ej but x′ 6= x′j . It leads to a solution
of the RSA problem for (n, z, ej) with not so tight reduction. This corresponds
to the GUESS forgery of the RAND scheme.

– In a type III forgery for all i we have e 6= ei. It leads to a solution of the strong
RSA problem for (n, z) with tight reduction. This corresponds to the FLEX
forgery of the RAND scheme.

The random nonces. The random value y′ used in the signing algorithm and
the randomness needed to generate e only need to be unpredictible. These values
can be deterministically generated from the message and a secret value, like it is
done for the FDH-D design (cf. Sect. 7.3.1.3).
Comments about the design. ACE-Sign is the first of a family of digital
signature schemes which have a security proof in the real world and for which all
the operations used for signature or verification are efficient. While this design is
very promising, ACE-Sign has the drawback of having a not so tight reduction.
This is also the case for all the variants of this scheme.

For this reason its advantage over RSA-PSS, namely the fact that the security
proof holds in the real world, is only meaningful if parameter size is increased to
counteract the non-optimal reduction. For example, to have 80-bit security with
qS ' 232, ACE-Sign would need a modulus of 4096 bits, where RSA-PSS only
needs 1536 bits. The impact in terms of performance is important.

7.5.2 FLASH

7.5.2.1 The design

This scheme is very similar to SFLASH (new version). The only change is in the
parameter choice, where q = 256 = 28 instead of 27. See also [513].
7.5.2.2 Security analysis

There is no known difference in security between FLASH and SFLASH (new
version) and the performance is similar. However, the fact that 7 is prime implies
that no other subfield can be found in F128 than F2, while the FLASH base
field F256 can also be seen as a vector space over F16 or F4. This may introduce
additional weaknesses in FLASH.
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7.5.3 SFLASH (old version)

7.5.3.1 The design

This scheme is very similar to SFLASH (new version). The only change is in the
secret key choice, where all components of s and t are 0 or 1. The advantage of
this restriction is that the keys are much shorter than for SFLASH (new version).

7.5.3.2 Security analysis

Gilbert and Minier [259] have found how to use this special property to break
SFLASH (old version). Their attack is practical, so SFLASH (old version) is
totally insecure.
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8. Digital identification schemes

8.1 Introduction

We present in this chapter asymmetric techniques to identify one entity (the
prover, also called Alice) with regard to another (the verifier, also called Bob),
in a way that any attacker (also called Charlie) would most certainly fail to
substitute himself for Alice. We will first review some standard techniques to
achieve this goal, starting from the least secure. Then we will see how to prevent
a wide variety of active attacks through the notion of zero-knowledge and witness-
indistinguishable properties. Finally we will scrutinise the only submission in this
category, namely GPS, comparing it with some existing standards.

8.1.1 Identification through Password

The most widespread identification protocol is the identification through a pass-
word. For instance, under a UNIX system, it works as follows. Every user U
chooses a password xU and sends it to the server. The server applies a one-way
function f (based on the DES block cipher for UNIX) to compute yU = f(xU )
and then stores (U, yU ). Each time a user wants to access his account, he will
send his password x to the server that will then check whether yU = f(x).

Unfortunately, this identification does not satisfy the modern security require-
ments. Indeed any eavesdropper will be able to recover the secret password (which
is sent unencrypted) therefore causing the scheme to be totally vulnerable to a
passive attack (cf. Def. 8.2).

8.1.2 Lamport’s Protocol

This protocol is akin to the previous password protocol, with the difference that
any password is only used once. The price to pay is a larger storage capacity, or
an enhanced computational power. It works as follows.

– Initialisation
1. Every user U chooses and saves a secret value xU = x0.
2. He then computes x1 = f(x0), x2 = f(x1), . . . , x1000 = f(x999), where f is

as before a one-way function.
3. He then publishes yU = x1000 to the server (verifier) who stores (U, yU ).

0 Coordinators for this chapter: UCL — Mathieu Ciet and Francesco Sica
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– Identification
1. When first identifying himself, the prover sends, together with his identity,
x = x999. The verifier then checks that f(x) = yU and updates the value of
yU by setting yU = x.

2. Successive identifications are carried out as previously, with the prover send-
ing x998, x997, . . . and so on and the verifier updating the value of yU after
each identification. Since f is supposed one-way, only the prover is able to
produce this sequence of values.

There are two problems with this kind of identification. Since successive values
x1000, x999, . . . become public after doing several executions of the protocol, one
cannot safely replay this protocol. In particular, in case of disk crash, if the last
value sent (say x765) was not stored, but say only up to x900 was stored, anyone
having recorded any value between x899 and x765 will be able to identify himself
instead of the prover if the server replays previous identification rounds.

Another issue lies in the fact that this identification scheme can only be used
with one verifier (this is a problem for electronic transactions, for instance).

8.2 Security Requirements

8.2.1 Passive Attacks and Interactive Proofs

As we saw in the previous section, a major threat is represented by replay attacks,
that are the most dangerous passive attacks. To thwart the possibility of passive
attacks, one solution is to make the identification protocol interactive with a
series of questions and answers between Alice and Bob. The minimal properties
of this protocol against any attack are the completeness and the soundness. They
are explained in the following.

Definition 8.1 (Goal of attacker). An identification scheme is totally broken
by an attacker if the attacker can impersonate the legitimate prover at will (to
any verifier) using his public key.

Definition 8.2 (Passive and active attacks). A passive attack involves an
adversary who tries to break the identification scheme by simply recording data
exchanged between prover and verifier and thereafter analysing it. An active at-
tack involves an adversary who can deviate from the verifier’s protocol in order
to extract more information about the secret key.

Definition 8.3 (Completeness property). An interactive proof is called
complete if given a honest prover and a honest verifier, the verifier accepts the
prover with overwhelming probability.

Definition 8.4 (Soundness property). An interactive proof is called sound if
whenever Charlie tries to impersonate Alice during the identification protocol, he
will fail with overwhelming probability.



Dra
ft

Apr
il
19

, 2
00

4

8. Digital identification schemes — 8.2 Security Requirements 319

How do we build in practice such interactive proofs of knowledge? Asymmetric
cryptography comes to our help: Alice will be the holder of a secret key SA, with
corresponding public key IA. This public key is a word of a language L ∈ NP
(see start of Sect. 8.2.5 for a definition of NP). The secret key SA witnesses that
IA ∈ L. One chooses L in such a way that finding such a witness is untractable.
The identity proof consists in Alice trying to persuade Bob that she possesses
such a witness SA. Also if Charlie wants to successfully identify himself, he will
have to know a witness.

We can reformulate the soundness property by making it more precise.

Definition 8.4b (Soundness property). An interactive proof is called sound
if there exists an expected polynomial-time algorithm M with the following prop-
erty: if an attacker impersonating the prover can, with non-negligible probability,
successfully execute the protocol and be accepted by the verifier then M can recover
a prover’s witness using the attacker as a subalgorithm.

We will now present a few mathematical problems on which such interactive
proofs can be based.

8.2.2 Trusted Hard Mathematical Problems

These problems can be divided into two classes, namely the popular number-
theoretic problems (RSA, discrete logarithm, . . . ) which are not NP-complete but
extensively studied, and proven NP-complete problems (PKP, SD and following,
see below). NP-complete languages L are the natural candidates for identification
tasks, because by definition if L 6∈ P (supposing P 6= NP) then checking whether
a word x belongs to L cannot be done in polynomial time, whereas the knowledge
of a witness (certificate) y allows to do so.

Let us describe these problems (cf Section 6.2.3).

– Let g be an element of a group, and let g have order q. The discrete logarithm
problem (DLP) is the problem of finding a when given (g, ga). The DLP as-
sumption is that the DLP cannot be solved by a polynomial-time (with respect
to q) algorithm. We will use the version where the group is the set (Z/nZ)× of
invertible residues modulo n.

– Short exponent problem: this is a sub-instance of the discrete logarithm prob-
lem. Given two coprime integers n, g, an integer S << ϕ(n) and gs mod n the
problem consists of recovering the exponent s, knowing that s ≤ S.

– An RSA key is a pair (n, e) where n = pq with p and q primes, and 1 ≤ e < n
with g.c.d.(n, e) = 1. The RSA problem is the problem of finding an integer
1 ≤ x ≤ n such that xe = y when given an RSA key (n, e) and a randomly
selected integer 1 ≤ y ≤ n.

– The e-th root problem is similar to the RSA problem except the exponent e is
thought of as a constant. The e-th root problem is the problem of finding an
integer 1 ≤ x ≤ n such that xe = y when given a modulus n = pq (with p and
q primes) and a randomly selected integer 1 ≤ y ≤ n. A special case of this
problem is the square root problem, when e = 2.



D
ra
ft

A
pr
il
19

, 2
00

4

320 Book II. Evaluation — Part B. Security evaluation

– RSA-omi (one more inversion) problem: given two integers n, e such that
gcd(e, ϕ(n)) = 1, a challenge oracle outputting a random y ∈ (Z/nZ)× for
each query and an inversion oracle which on input y ∈ (Z/nZ)× outputs x
such that y ≡ xe (mod n), the problem is for an adversary making t queries to
the challenge oracle and getting y1, . . . , yt to find x1, . . . , xt such that yi = xei
(mod n) for i = 1, . . . , t with at most t− 1 queries to the inversion oracle.

– One-more discrete logarithm (omdl) problem: this is defined similarly to the
RSA-omi, where the inversion oracle is replaced by a discrete logarithm oracle.

– PKP (Permuted Kernel Problem): Given an m × n matrix A with entries in
Z/pZ and a vector (v1, . . . , vn) ∈ (Z/pZ)n, find a permutation σ (if it exists)
on the set {1, . . . , n} such that (vσ(1), . . . , vσ(n)) lies in the kernel of A.

– SD (Syndrome Decoding problem): Given a (n, n− k)-linear binary code with
parity matrix H and a k-bit vector i, find a minimum-weight solution to the
linear equation H(s) = i.

– CLE (Constrained Linear Equations problem): This is the problem of finding
solutions to a system of linear equations modulo a small prime, when imposing
that the solutions must be taken from a specified set of residues.

– PPP (Permuted Perceptrons Problem): Define an ε-matrix (resp. vector) to
have all entries equal to ±1. Let A be an ε-matrix of size m × n and S be a
set of m nonnegative integers. The problem consists in finding an ε-vector V
of size n such that the set of the components of the vector AV is equal to S.

8.2.3 Protection against Active Attacks

The reason to base interactive protocols on hard problems is to offer resistance
to the more pernicious active attacks. We can follow the paradigm of asymmetric
schemes proofs in order to show that a given scheme is secure under active attacks.
The following definitions are adaptations of the similar Def. 6.2 and the definition
found at the beginning of Sect. 7.2.3.

We point out that an active attacker will usually act as the verifier to Alice
for a number of times and then try to impersonate her successfully with other
(honest) verifiers.

Definition 8.5. A (t, ε)-solver for a problem is a probabilistic Turing Machine
A that runs in time bounded above by t and outputs a solution for the problem
with probability at least ε.

A (t, ε, qI)-impersonator for a digital identification scheme is a probabilistic
Turing Machine A that runs in time bounded above by t, makes at most qI chal-
lenges to the prover and succeeds in breaking the scheme with probability at least
ε.

Definition 8.6. A proof of security is the description of a (randomised) algo-
rithm called reduction algorithm. This algorithm is a (t′, ε′)-solver for some
mathematical problem and interacts with a (t, ε, qI)-impersonator for the iden-
tification scheme. A proof of security explains how a solver, using a (t, ε, qI)-
impersonator as a subalgorithm, can solve the underlying mathematical problem
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in time t′ with probability ε′. The proof must relate t to t′ and ε to ε′. In partic-
ular, ε′ ≤ ε and t′ ≥ t.

Thus if the underlying mathematical problem is hard, so that there exists
no (t′, ε′)-solver for it, then there cannot exist any (t, ε, qI)-impersonator of the
identification scheme. We say that the identification scheme is (t, ε, qI)-secure.

Usually qI � t, and we will require k = log2(t/ε) = 80 (the attacker’s com-
puting power is estimated to be 280 triple-DES executions) and log2 qI = 30
(the attacker cannot require more than a billion executions of the identification
protocol).

However, some algorithms until recently did not have any security proof ac-
cording to this paradigm, and even the known proofs [51] use some strong under-
lying assumption, like the RSA-omi for GQ2 or the one-more discrete logarithm
for Schnorr.

This is the reason for which the zero-knowledge property proposed by Gold-
wasser, Micali and Rackoff [272] is preferred as a shield against active attacks.

8.2.4 Zero-Knowledge

8.2.4.1 The Power of Zero-Knowledge Interactive Proofs

Is it possible for Alice to convince Bob that she knows a secret SA without re-
vealing anything other than this fact? The theory of zero-knowledge gives an
affirmative answer. In other words, during a zero-knowledge identification proto-
col, Alice is effectively sending Bob only one bit of information, namely that she
is indeed who she claims she is.

This section is largely inspired from Goldreich’s book [265, Chapter 6], to
which we refer for more technical details and proofs. The following is a formal-
isation of Alice and Bob and some rephrasing of concepts already seen. Note
that one can view, in light of the preceding sections, an interactive identification
protocol as a proof that some word x belongs to a language L.

Definition 8.7 (Loose formalisation of prover and verifier). Alice and
Bob are interactive Turing machines (ITM), denoted respectively P and V . Each
of these Turing machines has a certain number of tapes, most important of which
are a common input tape (read-only), auxiliary input tapes (read-only and specific
to each), random seed or coin tapes (read-only and specific to each), work tapes
(read-write and specific) and two communication tapes (shared, on one of them
P can read and V can write, on the other one V can read and P can write).

Also, P and V have two states (active and idle) and they cannot be both active
(they are both idle only before and after the identification protocol).

Definition 8.8 (Time complexity of ITMs). Let A and B be two linked
ITMs and t : N→ N a non-decreasing function. Then A has time complexity t if
for any B and any bit string x, machine A on interacting with B with common
input x always (i.e. for any distribution of outputs of tapes specific to B) halts
within time t(|x|), where |x| denotes the bit length of x.
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We say A has polynomial-time complexity if t can be chosen to be a polyno-
mial.

Definition 8.9. We denote by 〈A(y), B(z)〉(x) the random variable consisting
of the local output of B after interacting with A, over all choices of the random
seed tapes, with common input x and auxiliary inputs y for A and z for B.

Definition 8.10 (Completeness and soundness revisited). The identifica-
tion protocol between P and V which is an interactive proof system for a language
L is

– complete if for every common input x ∈ L, there exists y such that for any z

Prob(〈P (y), V (z)〉(x) = 1) ≥ 2
3
, (8.40)

– sound if for every x 6∈ L, for any ITM B and for any bit strings y, z

Prob(〈B(y), V (z)〉(x) = 1) ≤ 1
3
.

Remark. The numbers 2/3 and 1/3 can be equivalently replaced in this definition
by 1− ε and ε for any 0 < ε < 1/2. Also, given x ∈ L, we denote PL(x) to be the
set of y satisfying (8.40).

We come to the main definition of this section.

Definition 8.11 (Zero-knowledge property). Let (P, V ) be an interactive
proof for a language L. We say (P, V ) is auxiliary-input zero-knowledge if for
every probabilistic polynomial time interactive machine V ∗ there exists a prob-
abilistic algorithm M∗(·, ·), running in polynomial time with respect to its first
input, so that the following two distributions are indistinguishable:

– {〈P (y), V ∗(z)〉(x)}x∈L,y∈PL(x),z∈{0,1}∗ and
– {M∗(x, z)}x∈L,z∈{0,1}∗ .

In this case, M∗ is called a simulator of the interaction of V ∗ with P .

What this says is that the interaction of P and V can be simulated polynomi-
ally by an algorithm controlled by V , with the same inputs (to V ). It is important
that this simulation be polynomial-time, as we will later see. Also note that an
eavesdropper seeing only the interaction between P and V will be unable to tell
whether he is witnessing a real interaction (variable 〈P (y), V ∗(z)〉(x)) or a fake
one (M∗(x, z)).

In this definition, one has to give a meaning to the term indistinguishable.
If the two distributions are truly the same, the property is called perfect zero-
knowledge. But in practice, given the limited power an attacker can have, the
weaker notion of computational zero-knowledge offers enough security.

Definition 8.12 (Computational indistinguishability). The distribu-
tions defined by the random variables {〈P (y), V ∗(z)〉(x)}x∈L,y∈PL(x),z∈{0,1}∗ and
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{M∗(x, z)}x∈L,z∈{0,1}∗ are computationally indistinguishable if for every proba-
bilistic algorithm D(·, ·, ·) running in polynomial time with respect to its first in-
put, every polynomial p, all sufficiently long x ∈ L, all y ∈ PL(x) and z ∈ {0, 1}∗,
one has

|Prob(D(x, z, 〈P (y), V ∗(z)〉(x)) = 1)− Prob(D(x, z,M∗(x, z)) = 1)| < 1
p(|x|)

.

Remark. By zero-knowledge we will henceforth mean computational zero-
knowledge.

Note that for the time complexity of ITMs and hence M∗ and D we require
polynomial-time only in the common input x, not in the auxiliary inputs z or y
which can be very large. If we did, then we would allow for instance D’s that
could run in exponential time and worse, in practice shredding the notion of
computational indistinguishability.

The interesting property of zero-knowledge proofs is that they remain zero-
knowledge after polynomially many repetitions of the protocol.

Theorem 8.1 (Closure under sequential composition). Let (P, V ) be an
interactive auxiliary-input zero-knowledge proof for a language L. Let Q be a
polynomial. Define PQ to be the sequential running of P with same x as com-
mon input Q(|x|) times and independent random tapes (similarly for VQ). Then
(PQ, VQ) is an auxiliary-input zero-knowledge proof for L. Moreover if (P, V ) is
perfect auxiliary-input zero-knowledge, then so is (PQ, VQ).

Remark. Actually, V plays no role here, because it is clear that the zero-
knowledge property is a property of the prover P only.

One should be aware here that the assertions of the theorem are not necessarily
valid if one uses alternative definitions of zero-knowledge, as the original definition
of Goldwasser, Micali and Rackoff [272]. In particular, allowing auxiliary inputs
is essential in order to get closure under sequential composition.

This theorem is used in practice to construct protocols where the probability
of cheating is as low as one desires. For instance, in the Fiat-Shamir protocol (see
Sect. 8.4.1) a legitimate prover is always accepted, but a cheater can be accepted
with probability 1/2. Therefore by repeating the basic 3-round protocol a number
k of times, one can ensure that a cheater will only be accepted with probability
1/2k, while retaining the zero-knowledge character of the protocol.

A very nice result is that all languages in NP have a zero-knowledge proof
provided one-way functions exist.

Theorem 8.2. Suppose one-way functions exist. Then every language in NP
has an auxiliary-input zero-knowledge proof system. Furthermore, the prescribed
prover in this system can be implemented in probabilistic polynomial-time, pro-
vided it gets the corresponding NP witness as auxiliary input.
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8.2.4.2 Negative Results on Zero-Knowledge

The theory of zero-knowledge does not solve all our problems, since we will see
that to obtain adequate security, zero-knowledge protocols have to be repeated
sufficiently many times and thus lose in efficiency.

We begin by recalling the definition of the complexity class BPP.

Definition 8.13 (BPP). The class BPP consists of all languages L for which
there exists a polynomial-time randomised algorithm V such that for all x

Prob(V (x) = 1 | x ∈ L) ≥ 2
3

and
Prob(V (x) = 1 | x 6∈ L) ≤ 1

3
.

As before, the numbers appearing in the right-hand sides can be made ar-
bitrarily close to 1 (resp. 0). It is clear that languages in this class have trivial
interactive proofs of knowledge, in the sense that the verifier has no interaction
with the prover.

Definition 8.14 (Black-box zero-knowledge). The prover P for the lan-
guage L is black-box zero-knowledge if there exists a universal probabilistic
polynomial-time algorithm M which uses any verifier V ∗ as a black box, such that
{〈P (y), V ∗(z)〉(x)}x∈L,y∈PL(x),z∈{0,1}∗ and {MV ∗(z)(x)}x∈L,z∈{0,1}∗ are compu-
tationally indistinguishable.

Hence the main difference with traditional zero-knowledge definitions is that
the simulator here is universal and does not depend on the verifier V ∗. In practice,
all known proofs of zero-knowledge proceed by exhibiting a universalM , so that in
the end, one always demonstrates black-box zero-knowledge properties. However
this theoretical definition is important because of the following result.

Theorem 8.3. Suppose that (P, V ) is an interactive proof system for the lan-
guage L with negligible error probability. Suppose also that there exists a constant
ρ such that for every x ∈ L, on input x the prover P sends at most ρ messages
(constant round), the messages sent by the verifier are predetermined consecutive
segments of its random tape (public coins or Arthur-Merlin game) and that P is
black-box zero-knowledge. Then L ∈ BPP.

Thus, except for “trivial” languages, if (P, V ) satisfies all the properties above,
it must be that the error probability is not negligible, hence to make it small, you
must increase the number of sequential runs of the protocol. Another conclusion
is that in order to construct low error probability zero-knowledge protocols it is
wise to allow the verifier to use secret coins.

In the cases that we will consider, namely 3-round protocols, the distinction
between public and secret tosses of a coin does not exist (since there is only one
random toss), hence we get that there are no 3-round black-box zero-knowledge
identification systems with negligible error probability. The number of rounds
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here is believed to be optimal in the sense that there exist 4-round black-box
zero-knowledge proofs for languages believed to be outside BPP and assuming
the existence of claw-free permutations (see 7.3.1.1) there exist 5-round zero-
knowledge interactive proofs for all languages in NP.

There is one important consequence of this fact. If we consider parallel ex-
ecutions of the protocol, then the error probability can be made negligible (for
instance less than 1/2m for m parallel executions of Fiat-Shamir). If (P, V ) play
an Arthur-Merlin game, then the same is true for the parallel version and the
number of rounds stays the same. Hence the theorem implies that this paral-
lel version cannot be black-box zero-knowledge. Although it may still be zero-
knowledge, the fact that all known zero-knowledge proofs are actually black-box
zero-knowledge proofs is a bad omen. Indeed the following was proved.

Theorem 8.4 (Non-closure under parallel composition). There exist two
zero-knowledge provers P1 and P2 such that the prover P which runs both of them
in parallel leaks knowledge.

This and the fact that zero-knowledge protocols are expensive (in terms of
performance) has led to consider a larger class of protocols that includes zero-
knowledge protocols but can still be used for secure identification.

8.2.5 Witness Indistinguishability

Let L be a language in NP. By definition, this means that there exists a binary
relation, called witness relation, RL such that (x, y) ∈ RL implies |y| ≤ pL(|x|)
for some polynomial pL. Also, (x, y) ∈ RL can be checked in polynomial-time
and

L = {x : ∃y : (x, y) ∈ RL} .

We call y a witness to x ∈ L. In general, x ∈ L may have more than one witness,
so that the cardinality of RL(x) = {y : (x, y) ∈ RL} is larger than 1. We say an
interactive proof for L is witness-indistinguishable if after running the protocol,
the verifier cannot tell which witness the prover used as auxiliary input.

Definition 8.15 (Witness indistinguishability/independence). Let
L ∈ NP with a witness relation RL, (P, V ∗) an interactive proof for L, where
V ∗ is any polynomial-time ITM . Denote by viewP (y)

V ∗(z)(x) a random variable de-
scribing the contents of the random-tape of V ∗ and the messages V ∗ reads on the
communication tape (written by P ), on common input x, auxiliary input y (for
P ) and z (for V ∗). We say P is witness-indistinguishable if for every V ∗ and
every two sequences (w1

x)x∈L and (w2
x)x∈L such that wix ∈ RL(x), the following

two distributions are computationally indistinguishable

– {x, viewP (w1
x)

V ∗(z) (x)}x∈L,z∈{0,1}∗ and

– {x, viewP (w2
x)

V ∗(z) (x)}x∈L,z∈{0,1}∗ .

If the two distributions are the same, then we use the term witness-independent.
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Note that any zero-knowledge proof for a language in NP is witness-indistingui-
shable, since the view corresponding to each witness can be approximated by the
same simulator. Likewise, perfect zero-knowledge proofs are witness independent.

Theorem 8.5 (Closure under sequential and parallel composition).
The sequential composition of witness-indistinguishable (resp. witness-indepen-
dent) provers is witness-indistinguishable (resp. witness-independent).

For parallel composition: let L ∈ NP, RL a witness relation, P a witness indis-
tinguishable (resp. witness-independent) prover for RL that runs in probabilistic
polynomial time. Let Q be a polynomial and PQ denote the ITM that on common
input x1, . . . , xQ(n) ∈ {0, 1}n and auxiliary input y1, . . . , yQ(n) ∈ {0, 1}∗ invokes
P in parallel Q(n) times, so that in the ith copy P is invoked with common input
xi and auxiliary input yi. Then PQ is witness-indistinguishable (resp. witness-
independent) for the relation RLQ such that

(
(u1, . . . , uQ(n)), (v1, . . . , vQ(n))

)
∈

RLQ iff (u1, v1) ∈ RL, . . . , (uQ(n), vQ(n)) ∈ RL.

Remark. It is important that P be probabilistic polynomial-time.

Theorems 8.2 and 8.5 together with the observation that zero-knowledge implies
witness-indistinguishability can be put together to arrive to the following result.

Theorem 8.6. Assume there exist one-way functions, then every language in
NP has a constant round witness-indistinguishable proof system with negligible
error probability. In fact, the error probability can be made exponentially small.

8.2.6 Resettable Zero-Knowledge Proofs

The notion of resettable zero-knowledge was introduced in [134] to provide natural
solutions to physical problems in the implementation of zero-knowledge protocols,
for instance when the prover is implemented on a smart card that can be reset
by simply disconnecting its power supply.

Also this stronger property offers security (is closed) under concurrent (par-
allel) executions of the protocol, something we have seen to be false for the plain
zero-knowledge property.

Finally, this notion provides an alternative way of constructing identification
schemes that are fundamentally different from the ones constructed following the
Fiat-Shamir paradigm, see Sect. 8.3.1.

We will not discuss this property at length, since it is not satisfied by the
submission or any of the existing standards. We mention it for completeness and
because of its practical relevance.

Loosely speaking, a resettable zero-knowledge proof is an interactive proof
where the prover is forced to use a random but fixed coin in a polynomial num-
ber of executions, each time interacting with the verifier in the usual fashion.
The verifier can of course send messages that are related from one execution to
another. If the output of the verifier is indistinguishable from a polynomial-time
simulator (that depends only on the common input, previously denoted by x),
we say the proof is resettable zero-knowledge (rZK).
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Analogously, one can define resettable witness-indistinguishability (rWI). The
main results are the following.

Theorem 8.7. Under the DLP assumption, there is a non-constant round (resp.
constant round) rZK (resp. rWI) proof for NP.

Hence we can modify, under classical assumptions, everything previously written
to make it resistant to reset attacks.

8.2.7 Classification of Attacks

In the following, we give a list of possible attacks against identification schemes.
Distinction is sometimes made between adversaries based on the type of in-

formation available to them.

Definition 8.16. An outsider is an adversary who has no special knowledge be-
yond that generally available, e.g. by eavesdropping on protocol messages over
open channels.

An insider is an adversary with access to additional information, (e.g. com-
mitment of prover, see Sect. 8.3.1). He can be a one-time insider, if he obtains
such information at one point in time for use at a subsequent time or a permanent
insider if he has continual access to privileged information.

We list some active attacks (online or offline) on identification schemes.

Concurrent attack. A concurrent attack is an active attack whereby the at-
tacker interacts with several copies of the same prover (same secret key) using
different commitments g in the notation of Sect. 8.3.1. This attack is realistic
when identification protocols are used in the context of Internet.

Man-in-the-middle attack. A man-in-the-middle attack is an attack whereby
an intruder will communicate anonymously with both the verifier and the prover
in such a way as to cut off the direct information exchange between them. As a
result the (honest) verifier and prover will think to have successfully executed the
identification protocol while in fact they will have leaked privileged information
that may prove fatal to the prover.

Replay attack. A replay attack is an attack whereby the attacker is able to
achieve his goal by using some previous honest execution of the protocol, either
with the same verifier or a different one.

Interleaving attack. An interleaving attack is an attack whereby the attacker
uses a selective combination of information from several previous honest protocol
executions. A replay attack is a type of interleaving attack.

Reflection attack. A reflection attack is an interleaving attack whereby the
attacker passes all queries from the verifier to the originator of the honest infor-
mation and forwards all replies from this entity back to the verifier.

Forced delay attack. This attack occurs when an attacker intercepts a message
and relays it at some later point in time.
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Chosen text attack. This is an attack whereby an attacker impersonates the
verifier and chooses messages in such a way as to obtain information about the
prover’s key.

Reset attack. In this type of attack the attacker is able to reset the prover to
a previous state, for instance by forcing it to always use the same random seed
(coin). This is a very powerful physical attack that can be implemented easily on
smart cards deprived of internal power supply. Note that resistance against reset
attacks, in a slight generalisation of Sect. 8.2.6, implies resistance to concurrent
attacks defined above.

Side-channel attack. An attack by side channel is an attack on an implemen-
tation of an algorithm whereby an intruder tries to uncover secret information
by a measurement of physical traces, such as the time to perform certain oper-
ations, or the electrical, electromagnetic or infrared power trace. This attack is
very effective and requires specific countermeasures that will usually slow down
performance, for the sake of security. See Annex A for more details.

8.2.8 Assessment Process

The submitted asymmetric identification scheme is assessed with respect to
generic common identification schemes and specific attacks. To assess the se-
curity of an asymmetric identification scheme which is a zero-knowledge proto-
col we will follow the Feige-Fiat-Shamir methodology in proving completeness,
soundness and the zero-knowledge property.

8.3 Overview of Common Designs

8.3.1 Interactive 3-round Identification Protocols

An identification protocol relying on a zero-knowledge proof of knowledge usually
follows the four steps which we will describe. This paradigm is often called the
Fiat-Shamir paradigm, since it was first described in the Fiat-Shamir protocol
(see Sect. 8.4.1) for knowledge of a square root modulo n.

This kind of protocols is commonly called interactive 3-round identification
protocol.

– Commitment: the prover randomly selects a commitment g (also called coin)
and sends it under a mask x to the verifier.

– Challenge: the verifier chooses a random challenge c and sends it to the prover.
– Response: the prover uses his secret key together with g to compute a response

value y, which is sent back to the verifier.
– Verification: the verifier uses y together with x to check the identity of the

prover. He may either accept or reject.
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There is also a need when using an asymmetric proof of identity to get assur-
ance of the validity of a public key of the prover. This is the role of the trusted
authority (TA) which is always supposed honest: the prover chooses a secret key
and computes the related public key and the TA certifies his choice. Some of the
schemes such as GQ, GPS and Feige-Fiat-Shamir (but not GQ2 or Schnorr) can
be made identity-based, meaning that the public key is related very closely to the
prover’s identity (e.g. his email address) and his secret key is then computed by
the TA (who holds some super-secret unknown to all provers) who then passes it
on to the prover.

Note that it is obvious in all protocols described in Sect. 8.4 are vulnerable
to reset attacks, since this is a common weakness to all zero-knowledge proofs of
knowledge (by definition, which we do not recall here, see [265, Chap. 6]).

8.3.2 Current standards

– ISO/IEC 9798-5 specifies three identification techniques: one family based on
the RSA problem, of which Fiat-Shamir and GQ are instances, one family
based on the discrete logarithm problem, of which Schnorr is an example and
a mechanism based on an asymmetric encryption scheme, derived from the
Brandt-Damgaard-Landrock-Pedersen scheme [120].

8.4 Digital identification schemes considered during
Phase II

In this section we describe the identification schemes of Fiat-Shamir, GQ,
Schnorr and GPS, with a more thorough evaluation of the last one, which is the
only submission to NESSIE.

8.4.1 Fiat-Shamir

We describe the Fiat-Shamir protocol [229], historically the first zero-knowledge
protocol and an example emulated by later schemes.

Public parameters. The TA chooses a security parameter n, a large N = pq,
with p and q primes of size n/2 and publishes N .

Private and public keys. Alice chooses her secret key S ∈ (Z/NZ)∗ and
computes the public key I = S2 mod N .

One identification round.

1. Commitment : Alice chooses a random number r ∈R (Z/NZ)∗, computes
x = r2 mod N and sends x to Bob.

2. Challenge: Bob chooses a random bit b ∈R {0, 1} and sends it to Alice.
3. Response: Alice then computes y = rSb mod N and sends it to Bob.
4. Verification: Bob checks whether y2 = xIb mod N .
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Prover Verifier
choose r ∈ (Z/NZ)∗

compute x = r2 (mod N)
x−−−−−→
b←−−−−− choose b ∈ {0, 1}

compute y = rSb (mod N)
y−−−−−→ check y ∈ (Z/nZ)∗

accept if y ≡ xIb (mod N)

Fig. 8.22. A round of Fiat-Shamir

The interaction between prover and verifier in one round is reproduced
schematically in Fig. 8.22.

Theorem 8.8. The sequential Fiat-Shamir protocol is an interactive proof of
knowledge of a square root of I. It is sound, complete and zero-knowledge.

As explained after Theorem 8.1, one has to repeat this protocol sequentially
k times to obtain a cheating probability of 1/2k. Hence it is important that k
grows faster than any expression C log n for any constant C > 0 to achieve super-
polynomial security, but must remain less than nC

′
for some C ′ > 0, in order to

preserve the zero-knowledge property (see Theorem 8.1).

8.4.2 Schnorr

The prototype of many identification schemes is Schnorr’s scheme [560], which
we will describe briefly.

Public parameters. A TA publishes

– two primes p, q, such that q divides p−1 and such that the discrete log problem
is difficult to solve in F∗p (typically log2 p = 1024 and log2 q = 160),

– an element g ∈ F∗p of order q and
– a security parameter t such that q > 2t.

Private and public keys. Each prover chooses s ∈ {1, . . . , q − 1} at random
and computes I = g−s (mod p), publishing I through the TA as their public key.

One identification round.

1. Commitment : the prover picks r ∈ {0, . . . , q−1} at random and sends to the
verifier x = gr (mod p).

2. Challenge: the verifier chooses a random c ∈ {0, . . . , 2t − 1} and sends it to
the prover.

3. Response: the prover computes y = r+sc (mod q) and sends it to the verifier.
4. Verification: the verifier computes z = gyIc (mod p) and accepts the prover

if and only if z = x.

The interaction between prover and verifier in one round is reproduced
schematically in Fig. 8.23.
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Prover Verifier
choose r ∈ {0, . . . , q − 1}
compute x = gr (mod p)

x−−−−−→
c←−−−−− choose c ∈ {0, . . . , 2t − 1}

compute y = r + cs mod q
y−−−−−→ accept if gyIc = x (mod p)

Fig. 8.23. A round of Schnorr

Theorem 8.9. The Schnorr protocol is an interactive proof of knowledge of the
discrete logarithm of I to the base g in Z/pZ. It is sound, complete and zero-
knowledge for fixed t.

Note that trivially if Charlie tries to impersonate Alice, his probability of
fooling Bob is at most 1/2t. However, if one lets t grow super-polynomially,
then the protocol cannot be simulated in polynomial time and thus cannot be
zero-knowledge. Hence to decrease the error probability while keeping adequate
security against active attacks, one must play this protocol several times sequen-
tially.

8.4.3 GPS

GPS is the only identification scheme submitted to NESSIE. The scheme has
good performance with high security. The submitted documents contained some
minor flaws in the specifications, but these were corrected at the beginning of
phase II.

8.4.3.1 The Design

The GPS scheme consists of an interactive zero-knowledge identification scheme,
that combines provable security based on the problem of integer factorisation and
the short exponent problem, with a small identity-based key and minimal on-line
computations.

It is essentially a modified version of the well-known Schnorr identification
scheme (see Sect. 8.4.2). Unlike the Schnorr scheme, GPS uses a generator g with
unknown order and the exponent is calculated in Z rather than modulo p.

Public parameters. The GPS identification scheme consists of ` iterations of
an identification round. This ` is part of the security parameters of the scheme.
Let A, B, S be parameters with |A| ≥ |S| + |B| + 80, |B| = 32 and |S| greater
than 140 bits. The submitters propose that |S| = 180 meaning A is approximately
a 300-bit number. Let n be a RSA modulus (n = pq where p, q are for instance
768-bit primes).

Private key. The private (prover’s) key is a random s ∈ [1, S].
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Public key. The public key is I = g−s mod n.
We now describe one round of the GPS identification scheme.

1. Commitment : the prover picks r ∈ {0, . . . , A − 1} at random and sends to
the verifier x = gr (mod n).

2. Challenge: the verifier chooses a random c ∈ {0, . . . , B − 1} and sends it to
the prover.

3. Response: the prover checks that c ∈ {0, . . . , B − 1}, computes y = r + sc
and sends it to the verifier.

4. Verification: the verifier checks that y ∈ {0, . . . , A + (B − 1)(S − 1) − 1},
computes z = gyIc (mod n) and accepts the prover if and only if z = x.

The interaction between prover and verifier in one round is reproduced
schematically in Fig. 8.24.

Prover Verifier
choose r ∈ {0, . . . , A− 1}
compute x = gr (mod n)

x−−−−−→
c←−−−−− choose c ∈ {0, . . . , B − 1}

check c ∈ {0, . . . , B − 1}
compute y = r + cs

y−−−−−→ check y ∈ {0, . . . , A + (B − 1)(S − 1)− 1}
accept if gyIc = x (mod n)

Fig. 8.24. A round of GPS

This scheme is proved complete, sound (a prover accepted after ` rounds
with probability greater than 1/B` must know the discrete logarithm of I), and
perfectly zero-knowledge and honest-verifier zero-knowledge if B is not too large,
see Sect. 8.4.3.2.

GPS is designed to be used in situations where authentication has to be done
“on the fly” with smart cards.

8.4.3.2 The Security of GPS

The submitters show that GPS is complete, sound and zero-knowledge. More
precisely they prove the following three assertions [526].

Theorem 8.10 (Completeness). The execution of the protocol between a
prover who knows the secret key corresponding to his public key and a verifier
is always successful.

Theorem 8.11 (Soundness). Assume some adversary is accepted in polyno-
mial time with non-negligible probability by honest verifiers, that log(|n|) =
o(` · |B|) and that ` and B are polynomial in |n|. Then there exists a polynomial-
time algorithm that solves the discrete log with short exponent problem.

Theorem 8.12 (Zero-knowledge). The GPS protocol is computationally zero-
knowledge if ` and B are polynomial in |n| and `SB/A is negligible. As a conse-
quence it is also honest-verifier computationally zero-knowledge under the same
assumptions.
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In [527], the authors actually relate the soundness of the protocol to the
factorisation of the modulus n, under the same hypothesis.

It may be remarked that the proof of the zero-knowledge property assumes
that |B| is constant, as in the proof for the original Schnorr protocol. On the
other hand, Pointcheval [522] proves that under some hypothesis on n and g,
assuming |B| > 2 ord(g), GPS still retains its witness indistinguishable property,
and active attacks are then related to the factorisation of n. This leads to a more
efficient and secure identification protocol since one can then safely take ` = 1.

8.4.3.3 Various Attacks on GPS [572]

Verifier Cheating over Value of c. In the original version of GPS the response
did not include any check that c < B. If the verifier is dishonest then he could
send c = A as a challenge to the prover. The prover then computes y = r + sA
and sends this value to the verifier. Since (assuming the prover is following the
protocol correctly) r < A, the verifier can easily compute

s =
⌊ y
A

⌋
.

This problem was pointed out by Daniel Bleichenbacher (see NESSIE forum)
and the protocol was consequently modified.

Breaking the Pseudo-Random Number Generator. Suppose that the
pseudo-random number generator used to generate r in the commitment step is
weak, so that given k random values r1, r2, . . . , rk we can predict rk+1. Then the
verifier can break the system by sending c = 0 k times in order to find the values
r1, r2, . . . , rk and thus predict the value of rk+1. On the (k+ 1)-th application of
the algorithm, the verifier can send an arbitrary value of c and then compute the
secret key s which is given by

s =
y − rk+1

c
.

Alternatively, suppose that the prover is dishonest and wishes to pass himself
off as the holder of the private/public key pair (s, I) without actually knowing
the private key s. If such a dishonest prover could break the pseudo-random
number generator used to generate the challenge c then he could fool the verifier
as follows:

– the dishonest prover sends the commitment x = gr+cIc to the verifier. The
verifier sends the (not so) random challenge c to the prover.

– The dishonest prover sends y = r + c to the verifier. The verifier checks that
x = gyIc = gr+cIc and that y ∈ [0, A+ (B − 1)(S − 1)].

Both of these checks will be accepted as correct by the verifier who will then
assume that the dishonest prover is in fact the holder of the private key s.

Therefore GPS is only secure when the used pseudo-random number generator
is unbroken.



Dra
ft

Apr
il
19

, 2
00

4

334 Book II. Evaluation — Part B. Security evaluation

8.4.3.4 Fault and Chosen-Modulus Attacks on GPS [207,208]

The first fault attack targets the secret key and requires the following fault model
(see also Annex A): bit-flip fault model, complete control on the number of faulty
bits induced and complete or loose control on the fault location. The fault can be
induced before the computation starts. The idea is to flip exactly one bit of the
secret key used by the prover. With his response to the challenge, an attacker can
recover the original value of the bit he flipped. Repeating this operation, he can
recover all the bits of the secret key. This attack has been introduced by [104]
and is fully described in [208]. If the attacker does not know exactly which bit of
the secret key he flipped, he can make several tries and find out which one it was
and its original value. Obviously the attack is then less efficient.

The second fault attack targets an intermediate value and works in the fol-
lowing model: bit-flip fault model, complete control on the number of faulty bits
induced, and complete or loose control on the fault location. The value targeted
is namely the random value r chosen by the prover at the first step. The prover
has to store this value as he is going to use it again when responding to the
verifier’s challenge. If an attacker is able to swap exactly one bit of this value
while the prover is waiting for the challenge, and to repeat this operation several
times sending the same challenge to the prover, he can recover the secret key s.
The attacker must have at least the following control on the fault location: the
fault concerns the value r. If he has complete control, so that he knows exactly
which bit has been flipped, the attack is more efficient. This attack has been first
described against Schnorr’s identification scheme in [104], and the version against
GPS is described in [208].

GPS is also vulnerable to a chosen-modulus attack. Indeed, the modulus n
is needed by the prover, so a modification of this value can lead to an attack.
An attacker who is able to replace this value by a value of his choice can recover
the secret key. The first step of the protocol consists in the prover choosing a
commitment r and sending the value gr mod n to the verifier. If the attacker
has replaced the original modulus by a number so that he can easily solve the
discrete logarithm in the new field, he can thus find the value r and so the secret
key.

8.4.4 GQ

In this section we sum up what the research community already knows about
the security of the GQ protocol. We will see that GQ satisfies the following
properties: completeness, soundness, perfect zero-knowledge and security against
concurrent attacks under the RSA-omi assumption. We will then discuss more
practical aspects of the security of GQ, namely we see which attacks on RSA
apply to GQ, then we notice that GQ is immune from side-channel attacks on
exponents.

8.4.4.1 The Design

The GQ protocol was first published in [278]. It is of the same design as the Fiat-
Shamir identification scheme. It provides security based on the RSA assumption,
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identity-based public keys, and allows the use of the same modulus by multiple
users. It needs a trusted authority to generate some of the parameters.

Public Parameters. Let n be a RSA modulus, and v a prime RSA exponent.
These parameters can be shared by several users.

Parameters of the authority. The factorisation of n and the integer s such
that v.s ≡ 1 (mod ϕ(n)) are kept secret by the authority.

Parameters of the users. Each user’s private key is an integer Q, and the cor-
responding public key is an integer G verifying GQv ≡ 1 (mod n) (the equation
G ≡ Qv (mod n) can also be used).

Remark. The use of the second equation only affects the verification step.

A round of GQ. We describe one round of the GQ identification algorithm.

1. Commitment : Alice chooses a random number r ∈R (Z/NZ)∗, computes
R = rv mod n and sends R to Bob.

2. Challenge: Bob chooses a random d ∈ {0, . . . , v − 1} and sends it to Alice.
3. Response: Alice checks that d ∈ {0, . . . , v− 1}, then computes D = rQd mod
n and sends it to Bob.

4. Verification: Bob checks that D ∈ (Z/nZ)∗ and whether R ≡ DvGd mod n
(or RGd ≡ Dv mod n if second equation is used).

The interaction between prover and verifier in one round is reproduced
schematically in Fig. 8.25.

Prover Verifier
choose r ∈ (Z/nZ)∗

compute R = rv (mod n)
R−−−−−−→
d←−−−−− choose d ∈ {0, . . . , v − 1}

check d ∈ {0, . . . , v − 1}
compute D = rQd (mod n)

D−−−−−−→

check D ∈ (Z/nZ)∗

accept if R ≡ DvGd (mod n)
(or RGd ≡ Dv (mod n)
if second equation is used)

Fig. 8.25. A round of GQ

8.4.4.2 The Security of GQ

The following properties of GQ have been proved.

Theorem 8.13 (Completeness). The execution of the protocol between a
prover who knows the secret key corresponding to his public key and a verifier is
always successful (it is obvious, see [278]).
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Theorem 8.14 (Soundness). Assume some adversary knows a commitment
such that he can succeed in an identification with probability greater than v−1,
then this cheater can recover the real prover’s private key in polynomial time.
This proof was first published in [277].

Theorem 8.15 (Zero-knowledge). The GQ protocol is perfect zero-knowledge
if v is polynomial in n (this was shown in [130]). As a consequence it is also
honest-verifier computationally zero-knowledge under the same assumption.

Theorem 8.16. (Security against Impersonation under Concurrent At-
tacks). The GQ protocol is secure against impersonation under concurrent and
active attacks, if the RSA-omi problem is hard. This result was published in [51].

8.4.4.3 Practical security problems

RSA-related security problems. The GQ protocol requires the use of a RSA
modulus n, and the private GQ key (or its inverse modulo n, depending upon
which version is being used) is the RSA signature of the public GQ key. This
implies that the choice of the modulus n and the private exponent s must be
done with the same care as in RSA.

– The modulus n must be large enough to prevent elliptic curve factorisation
– One can wonder if Wiener’s attack [622], Boneh-Durfee’s attack [106], or

Blömer-May’s attack [98] apply to GQ. It could in theory, but it will not
work in practice. These attacks work on small secret exponents (i.e., s < n

1
4

for Wiener’s attack, s < n0.292 for Boneh-Durfee’s attack and s < n0.29 for
Blömer-May’s attack). But the secret exponent cannot be small in GQ because
v.s > ϕ(n) and v is small. For example, if we take |n| = 1024 and |v| = 16, we
have |s| > 1000.

– Since the factorisation of n is not known by the prover, he can’t use the
CRT function, and the fault attack on chinese remainder based implemen-
tations [104] will not work on GQ.

A remark about side-channel attacks. An attacker might try to find some
information on the private key by using a side-channel attack to recover one or
both of the exponents used by the prover. In this paragraph, we notice that even
if the attacker recovers both of the exponents it doesn’t give him any advantage.

Let us give at look at the computations made by the prover during a proof
(notice that the first computation can be made in advance).

– Commitment : The prover calculates R = rv mod n. The exponent used here,
v, is public.

– Answer : The prover calculates D = rQd mod n. The exponent used here, d,
is the challenge and is not secret (more precisely, an eavesdropper can see it
during the proof).

Recovering one of the exponents, or both of them, will not provide an attacker
any additional information about the private key.
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A. Side-channel attacks

Ever since cryptography became part of our everyday life, not only the crypto-
graphic algorithms have been subject to attacks, but also their implementations
in hard- or software. The traditional cryptographic model, however, does not take
the aspect of implementation attacks into account. In the traditional scenario, Al-
ice and Bob secure their communication by some mathematical function, namely
the cryptographic algorithm. The adversary, Eve, is only assumed to have knowl-
edge about this mathematical function and some plain- and ciphertext pairs.
Consequently, security proofs only involve these components. Despite the given
proofs of security for any cryptographic algorithm in any theoretical model, a
communications system based on this algorithm can still be vulnerable to quite
a number of other attacks. A very dangerous class of such attacks is commonly
referred to as side-channel attacks. This appendix is devoted to the consideration
of the NESSIE primitives in terms of their vulnerabilities to side-channel attacks
and their ability to resist such attacks.

Currently there is very little theoretical framework in which one can assess
such attacks. Our research has concentrated on the properties of an algorithm
which allow it to be protected against such attacks. The results of this research
have been collected in several survey articles. In Sect. A.1 we deal with the
passive types of implementation attacks, which are known as side-channel or
information-leakage attacks. Such attacks do not require the adversary to actively
manipulate the computation, but only to monitor the side-channel leakage during
the computation. In Sect. A.2 we deal with active attacks. As can be deduced
from their name, this type of implementation attacks assume an attacker actively
manipulating the execution of a cryptographic algorithm. Information which is
specifically related to the NESSIE primitives can be found directly in the sections
devoted to the individual primitives, in the main part of this document.

A.1 Passive Attacks

Passive attacks were published by Kocher in [374] for the first time. In this article,
timing information was used to gain knowledge about the secret key from im-
plementations of the RSA, DSS, and other cryptosystems. The attack described
in this article required an attacker to be able to simulate or predict the timing

0 Coordinator for this appendix: KUL — Elisabeth Oswald
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behaviour of the attacked device rather accurately. The second article by Kocher
et al. [375] presented a similar, but far more dangerous attack. This second article
introduced the usage of power consumption information to determine the secret
key. Because of its statistical nature, one of the attacks in [375] is called differ-
ential power analysis. Another type of side-channel information was introduced
only recently. The first articles, [535] and [251], about the usage of electromag-
netic emanations were presented in 2000 and published in 2001.

A.1.1 Types of Information Leakage

We briefly discuss the different types of information leakage that have been ex-
ploited by attacks published in the open literature so far.
Execution Time Leakage. Often, a device takes slightly different amounts of
time to execute an algorithm. Explanations for this behaviour include differing
input data which might cause some instructions to take different amounts of
time for their executions, performance optimisations and branching instructions.
Practical implementations of attacks using this kind of information leakage, such
as [198] and [295], indicate that such attacks are difficult to realise in practice
owing to the difficulty of measuring the real execution time. In many modern
processors, even on smart cards, instructions can be cached and so the execution
time is more and more related to other influences.

Countermeasures appear to be easy to implement, and to work efficiently in
practice. Since their first introduction, most work in the area of side-channel
attacks has been dedicated to the exploitation of side-channels with a higher
amount of information.
Power Consumption Leakage. Most commonly used cryptographic devices
are implemented in CMOS (complimentary metal-oxide semiconductor) logic.
The power consumption characteristics of CMOS circuits can be summarised as
follows. Whenever a circuit is clocked, the circuit gates change their states si-
multaneously. This leads to a charging and discharging of the internal capacitors,
and this in turn results in a current flow which is measurable at the outside of the
device.The measurements can be acquired easily using either a data acquisition
card or a digital oscilloscope. The current flow can be measured directly with a
current probe, or by putting a small resistor in series with the device’s ground-
input or power-input. Power analysis attacks are the most popular attacks at
the time of writing owing to their effectiveness and simplicity. While the first
publication [375] was mainly concerned with power-analysis attacks on secret-
key cryptosystems, Messerges et al. [443] presented such an attack for public-key
cryptosystems. In [56] and [11], the methods of some power-analysis attacks are
refined. An introduction to the practical aspects of power-analysis attacks can be
found in [10].
Electromagnetic Radiation Leakage. The same charging and discharging
which occurs whenever a circuit is clocked creates, besides the current flow, also
a certain electromagnetic (short EM) field. Direct emanations are caused by in-
tentional current flow which is caused by the execution of an algorithm. Uninten-
tional emanations are caused by the miniaturisation and complexity of modern
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CMOS devices. This miniaturisation and complexity results in coupling effects
between components in close proximity. EM attacks are becoming more and more
popular at the time of writing because of the high amount of information this
side-channel can leak and because the information can be exploited at a large
distance from the attacked device [9].

Error Message Leakage. An error message attack usually targets a device im-
plementing a decryption scheme. In the standard model, there is a feedback from
the device to tell whether or not the message has been successfully decrypted. If
the attacker can somehow know the reason why the decryption operation failed,
he might gain some secret information by sending well chosen ciphertexts to the
device, or by observing others do the same. Attacks exploiting this side-channel
are summarised in Sect. A.1.4.

Combining Side-Channels. Not much research has been done on this topic so
far. However, the following simple observation has been used for attacks. Timing
attacks can suffer from the difficulty of obtaining precise measurements. Attacks
are even more difficult when only one intermediate operation is targeted. In such a
case, power measurements lead directly and more precisely to timing information
about the intermediate operation if this intermediate operation is visible in the
power consumption trace. Besides in [556], such an attack is also presented in
[617].

A.1.2 Simple Side-Channel Attacks

Most attacks presented so far have been performed with power consumption
leakage information. A trace refers to a measurement taken for one execution of
the attacked cryptographic operation. In a simple side-channel attack, only one
measurement is used to gain information about the device’s secret key. Obviously,
for such an attack to work, the side-channel information needs to be strong enough
to be directly visible. Additionally, the secret key or hidden message needs to
have some simple, exploitable relationship with the operations visible in the side-
channel trace. Such an attack typically targets implementations which use key
dependent branching.

A.1.2.1 Attacking Implementations of Symmetric Schemes

A special class of simple power-analysis attacks, the so called Hamming weight
attacks, exploit a strong relationship between the Hamming weight of the secret
key and the power-consumption trace. In [80] such an attack is presented on an
implementation of the DES algorithm and in [413] one is presented on an im-
plementation of the AES algorithm. For this type of attack it is vital that the
implementation is based on relatively small data-words, as happens for example
in an 8-bit implementation. Usually, this type of attack is applied to implemen-
tations of ciphers with a simple key schedule. For implementations that try to
achieve a protection against first-order differential power-analysis attacks, this
method can be used to determine information on the mask used. Collision At-
tacks on implementations of the DES algorithm have been examined in [562].
Internal collisions are detected by their power trace in these attacks.
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A.1.2.2 Securing Implementations of Symmetric Schemes

To counteract the type of simple power-analysis attack that uses Hamming weight
information, a designer has to assure that the Hamming weight information which
is leaked is not correlated with the intermediate values that are processed. In
dedicated hardware implementations this can be achieved by using a special logic-
style or by masking intermediate values (this can be achieved by bus encryption
as well as by masking the operations of the algorithm in general). In software
implementations the intermediate values have to be masked. It is imperative
to implement a decent masking scheme to counteract attacks such as presented
in [142] and [153]. A good noise generator on chip will also help to counteract
such attacks, at least in the case of a power attack.

A.1.2.3 Attacking Implementations of Asymmetric Schemes

Scenarios in which simple side-channel attacks are a possible threat have been
considered in [508] and can be summarised as follows. If a multiplication of a
known and a secret value has to be calculated, then a simple side-channel attack
is theoretically possible, but unlikely to work in practice. An exponentiation of
a known with a secret value is also in principle vulnerable to simple side-channel
attacks. The practical feasibility of the attack is heavily dependent on the im-
plementation. Unprotected Scalar multiplications of a known elliptic curve point
by an unknown scalar are highly vulnerable to this kind of attack, regardless of
the underlying hardware. Also, implementations based on addition-subtraction
chains can leak enough information to recover the private key [507]. Consider-
ations of the security of implementations of S-Flash and Quartz can be found
in [12]. In Klima et al. [349] a variant of a Hamming weight attack is applied to
RSA.

A.1.2.4 Securing Implementations of Asymmetric Schemes

Attacks against a multiplication can be counteracted by switching multiplier and
multiplicand. To protect implementations of modular exponentiations, an always-
square-and-multiply approach can be helpful. The same is valid for implemen-
tations of the scalar point-multiplication on elliptic curves. In general, there are
more implementation options to secure elliptic curve cryptosystems. An overview
of countermeasures published in the open literature is given in [508].

A.1.2.5 Conclusions and Recommendations

Hamming weight attacks are a practical threat to all (unprotected) software im-
plementations of symmetric algorithms. Countermeasures in hard- and software
have been published in the open literature (see [509] for a survey). Since the
efficient implementation of countermeasures is most important, we recommend
choosing algorithms which allow such efficient implementations. Summarising
our considerations in [509], we can say that ciphers without too many different
algebraic structures are easier to protect. Rijndael, Khazad and Camellia are
algorithms which are favourable from our point of view.

Simple side-channel attacks can be applied in practice on (unprotected) soft-
ware implementations of a modular exponentiation, and on potentially all kinds of
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(unprotected) implementations of elliptic-curve scalar point-multiplications. Such
attacks are less likely to be realisable in practice on implementations of modu-
lar exponentiations than on implementations of scalar point-multiplications. But
there are many more ways to counteract such attacks in implementations of scalar
point-multiplications.

A.1.3 Differential Side-Channel Attacks

Differential side-channel attacks exploit the correlation between the processed
data and the instantaneous side-channel leakage of the attacked cryptographic
device. Because this correlation is usually very small, statistical methods must
be used to exploit it efficiently. In a differential side-channel attack the output(s)
of the real physical device and the output of a hypothetical model of the device
(working with a hypothetical key) are compared. Only if the hypothetical key
equals the real key is the output of the hypothetical model correlated with the
output of the real device. By comparing the two outputs, the attacker can deter-
mine the secret key. If the hypothetical model only outputs a single value (i.e.
it predicts, for example, the power consumption of the real device for only one
moment in time), then the attack is called a first-order differential side-channel
attack. If a model can output more values for the same side-channel then the at-
tack is called a higher-order differential side-channel attack. For example, if two
output-values are used in an attack then the attack is a second-order differential
side-channel attack. The term “differential side-channel attack” used on its own
generally refers to a first-order differential side-channel attack.

A.1.3.1 Attacking Implementations of Symmetric Schemes

The strength of an attack depends largely on the quality of the hypothetical
model used by the attacker. Dedicated hardware implementations of Feistel ci-
phers without an initial bit-wise addition of the key allow the implementation of
a very powerful hypothetical model. The statistical qualities of the S-boxes also
influence the strength of an attack. However, none of the block ciphers which we
considered in [509] showed any special properties in this regard.

A.1.3.2 Securing Implementations of Symmetric Schemes

As we pointed out in the previous sections, software countermeasures are usually
based on masking the data and the key during a computation. Ciphers which
allow the cheap implementation of masking schemes are certainly preferable. For
hardware countermeasures, their cheap realisation is also a priority. If a special
logic style is used then it is certainly an advantage if only a few different types of
gates have to be designed in this logic style. The simpler a cipher’s description,
the more suited it is for such an implementation.

A.1.3.3 Attacking Implementations of Asymmetric Schemes

Typical targets for an attack are again implementations of the modular ex-
ponentiation and implementations of scalar point-multiplication on an elliptic
curve. Three different types of differential side-channel attacks have been intro-
duced. Two of them, the SEMD (Single-Exponent Multiple-Data) and the MESD
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(Multiple-Exponent Single-Data) attacks, do not require the attacker to have
knowledge of or a model for the attacked device. The ZEMD (Zero-Exponent
Multiple-Data) attack, which is essentially the same attack as proposed in [150],
assumes that the attacker has a model and can predict intermediate values of
the computation. Several refinements of the basic ideas behind differential side-
channel attacks have been presented. An overview can be found in [508].

A.1.3.4 Securing Implementations of Asymmetric Schemes

There have been significantly fewer published articles dealing with countermea-
sures for implementations of the modular exponentiation than with countermea-
sures for implementations of the scalar point-multiplication on an elliptic curve
(see [508] for a survey). Countermeasures for the scalar point-multiplication in-
clude randomising points, randomising curves, randomising the scalar and ran-
domising the algorithms for the scalar point-multiplication. Since practical re-
alisations of elliptic curve cryptosystems are software implementations (which
probably make use of some accelerator unit anyway), most of these countermea-
sures are cheap to implement and to combine with one another.

A.1.3.5 Conclusions and Recommendations

Summarising our considerations in [509], we can say that ciphers without too
many different algebraic operations are easier to protect. AES, Khazad and
Camellia are algorithms which are favourable from our point of view. We did
not consider any hash functions, stream ciphers or MAC algorithms in detail.
However, the attack techniques and countermeasures would be exactly the same
as for block ciphers.

Because of the variety of available countermeasures for elliptic curve cryp-
tosystems, they seem to be favourable in the case of asymmetric schemes.

Hardware countermeasures suffer from the same drawbacks as we described
in Sect. A.1.2.5. Another difficulty in the case of asymmetric schemes is the
inherent complexity of their implementation. Dedicated hardware implementa-
tions of asymmetric schemes are significantly larger than such implementations
of symmetric schemes. This amplifies the difficulties in the application of coun-
termeasures.

A.1.4 Error Message Attacks

This kind of attack was first introduced by Bleichenbacher in [97], which describes
a chosen ciphertext attack against the RSA encryption standard PKCS#1. In this
standard, the decryption operation fails if the result of the RSA decryption is not
in the correct format (more precisely, the first two bytes are fixed). The attack
demonstrated that it is then possible to compute the RSA decryption of any
ciphertext, by sending well chosen “ciphertexts” to the device and using it as
an oracle to know if the corresponding plaintext is in the right format. There
may be other integrity checks applied, in addition to the format checking, but
the attack is still reliable if the different failures can be separated. This is the
case, for instance, if different error messages are sent, or if the whole verification
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process takes more time to achieve than the first failure condition (and in that
case, the attack will be combined with a side-channel technique, see Sect. A.1).

Other error message attacks are mentioned in the literature: [414] against
RSA-OAEP, [192] against the NESSIE candidate EPOC-2 (this one recovers the
secret key) and [614] against the CBC mode in various standards. This shows
that no information about the reasons why a decryption failed should leak from
the device.

A.1.5 Consideration of Hash-function, MACs and Stream Ciphers

There has been no research on attacks against MAC primitives and hash func-
tions. Only in the case of the stream cipher SOBER is a timing attack known
[390]. The attack-techniques, however, are essentially the same as the techniques
which were developed for block ciphers. Scenarios in which hash functions or
MACs would be subject to attacks include constructions in which these primi-
tives are used keyed.

A.2 Active Attacks

In a passive attack, the attacker only eavesdrops on some side-channel informa-
tion, which is analysed afterwards to reveal some secret information. An active
attack involves an attacker that takes active part in the attack: we make the
assumption that the attacker is able to somehow deviate the device from its nor-
mal behaviour, and tries to gain additional information by analysing its reactions.
Some passive techniques seen in the previous section can be used to determine
these reactions. This can be done, for instance, by modifying some internal data
used by the device.

In the following we describe the most popular type of active attack: fault
attacks. We will give examples of how successfully they have been applied, and
see how they can be avoided.

A.2.1 Fault Attacks

When an attacker has physical access to a cryptographic device, he may try to
force it to malfunction. A fault attack is an attack in which information about
the message or the secret key is leaked from the output of erroneous compu-
tations. This kind of attack can be applied to both symmetric and asymmetric
cryptosystems, and was first introduced in [104].

There are several ways to introduce an error during the computation per-
formed by the cryptographic device. Though the description of these practical
means is beyond the scope of this introduction, we cite some non-invasive meth-
ods:

– spike attacks work by deviating the external power supply more than can be
tolerated by the device. This will surely lead to a wrong computation.
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– glitch attacks are similar to spike attacks, but target the clock contact of the
integrated circuit.

– optical attacks work by focusing flash-light on the device in order to set or
reset bits. It seems that very precise faults can be induced with this technique,
as shown by Anderson et al. in [16].

We will now focus on what the attacker is able to do (i.e. the attack model)
instead of considering the practical means by which he does it. We will first sort
these attacks according to two criteria. The first one is the attack model: how
can the attacker modify the value? Which are exactly the assumptions about his
capabilities? The second one concerns the value targeted: which data used by the
device does the attacker modify?

A.2.1.1 Attack models

There are a lot of different fault attacks. Most of the time, they differ by the
assumptions made about the attacker’s capabilities: the way he can access and
modify the memory, the power he has upon the fault occurrence time, etc. In
Blömer et al. [99], the authors characterise fault attacks according to different
criteria:

– control on the fault location;
– control on the fault occurrence time;
– control on the number of faulty bits induced;
– the fault model.

On the three first items, an attacker can have either no control, loose control
or precise control. We have to clarify the fault models we will consider. Of the
models proposed in [99], we selected the following ones: the random fault model,
the bit flip model, and the bit set or reset model.

The authors assume that the bit flip and bit (re)set models can be achieved
with complete control on fault location and precise timing using optical attacks.
In that case, an attacker can mount what we will call a chosen value/modulus
attack : he can replace a value used by the device by a value of his choice. The
attacker may or may not know the original value. This kind of attack is described
in Sect. A.2.2.

A.2.1.2 Target values

We now differentiate the different values that can be the target of a fault attack.
In asymmetric cryptography, one party owns some secret and the other party

only knows public values. Let Bob be the one who possesses the secret (the de-
crypter, the signer or the prover, depending on the type of primitive considered),
and Alice the one who knows only the public values. First we should separate
into two parts the set of data that can be made public. The parameters are the
set of public data which is initially chosen and which defines the general setting
(e.g., the characteristics of the elliptic curve in elliptic curve cryptography). The
public key is then chosen among all the public keys that the parameters permit.
This public key can be modified without changing the parameters. The private
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key is a part of the whole set of data needed by Bob to perform his computation,
the one that changes when we change the public key.

So, the public data that is not modified when the public key changes are part
of the parameters. We call the subset of the private key that has to be kept secret
the secret key. Note that the private key depends on implementation choices. For
instance, if a public modulus n = pq is needed, one can choose to store n, or to
store the values p and q and to compute n. The secret key may also depend on
some choices.

In symmetric cryptography, the private key is reduced to the secret key and
if public data is needed then it is regarded as parameters (e.g., constant words,
S-boxes).

So, in order to perform his part of the computation, Bob needs the private
key (which may contain a part of the public key) and maybe some parameters.
Thus a modification of any part of this set of data can possibly lead to an attack
giving some information. This is important to notice because the data which does
not need to be kept secret might be stored in an unprotected memory location,
so that it is easy to modify it. If a modification of some public data permits an
attack giving information about the secret data, this data should be protected as
well as the secret data, and some additional countermeasures might be useful.

Another kind of data that can be the target of a fault attack is intermediate
data. An attacker could introduce faults in the registers of the device while they
are holding some intermediate values.

A.2.1.3 Published attacks

Introducing faults in the secret key of asymmetric schemes. This kind
of attack has been applied by Bao et al. [33] to the RSA decryption (or signature)
scheme, and to the El Gamal, Schnorr and DSA signature schemes. It has been
extended to various RSA-type signature schemes in [34], to the encryption scheme
RSA-KEM in Kĺıma et al. [349], and to ACE-KEM, ECIES-KEM and PSEC-
KEM in [197]. It works efficiently in the following model: bit flip fault model,
complete control on the number of faulty bits induced, complete control on the
location. For the timing, the only requirement is that the fault occurs before the
critical computation, so we need only loose control on it.

The idea is to flip one bit of the secret key and to use the erroneous com-
putation of the device to get the value of this bit. This is particularly easy for
discrete logarithm based schemes because we can use the simple relation between
the secret and the public keys to successively guess the bits of the secret key.

Introducing faults in registers. Here, faults are introduced in an interme-
diate value stored in the registers of the device. This kind of attack has been
applied to the Fiat-Shamir and the Schnorr identification schemes in Boneh et
al. [104], where the random value r chosen by the prover is the target of the fault
introduction. This attack works against GPS, as shown in [208]. The prover has
to store this value r, as he is going to use it again when responding to the verifier’s
challenge. The idea is to swap exactly one bit of r while the prover is waiting for
the challenge. Several such erroneous computations are used to recover the secret
key.
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Random faults. This is the most powerful attack, as the fault model and the
number of faulty bits induced are random, and controls on the location and
the timing are loose. The well known Bellcore attack [104] against RSA using
the Chinese Remainder Theorem belongs to this category. This attack has been
improved by Joye et al. [330]. The NESSIE candidate ESIGN-D (see Sect. 7.4.2)
is also vulnerable to an attack of this type [207]. Here, a random error occurs
during some (more or less time consuming) step of the computation, and the
erroneous output completely reveals the secret key.

Fault attacks against elliptic curve cryptosystems. The use of elliptic
curves can lead to specific fault attacks. A fault attack of this type is described
in Biehl et al. [58]. In this paper, the idea is to somehow modify the point involved
in the scalar multiplication step in such a way that the resulting point is on a
cryptographically weak curve, where we can solve the discrete logarithm problem,
and thus find out the secret key. The authors examine different attacks models
based on this idea.

Fault attacks against symmetric cryptosystems. Fault attacks as intro-
duced in [104] use algebraic properties of the asymmetric cryptosystems. In Bi-
ham et al. [79], the authors apply fault attacks to symmetric cryptosystems, in-
troducing differential fault analysis, which uses statistical methods. Various fault
models are considered, and several cryptosystems are attacked, among them the
full DES. Fault attacks against the AES are considered by Blömer et al. in [99].

A.2.2 Chosen Modulus Attacks

Chosen modulus attacks can be viewed as a particular kind of fault attack. In a
chosen modulus attack, the attacker replaces a value used by the device to perform
its cryptographic computation. This can be done, for instance, by applying several
bit sets/resets at a precise memory location of the device in order to replace a
(possibly unknown) value by another value, this one known and chosen. The
target value is likely to be a public one (either a part of the public key, or some
parameter of the scheme), which may not be as well protected as a secret value.

The schemes vulnerable to this kind of attack are typically the ones where a
modular exponentiation with secret exponent is performed. Usually, the (public)
modulus will be replaced by a value well chosen by the attacker, enabling him to
recover the secret exponent. This is done against RSA-KEM in [349]. The authors
explain how to recover the secret exponent using the decryption device with a
Trojan modulus. A chosen modulus attack against GPS is described in [207].

A.2.3 Other attacks

The problem of public keys validation is discussed in Brown et al. [23]. The
authors demonstrate that attacks can be mounted against some elliptic curve
based schemes if the receiver of an elliptic curve point does not check that the
point lies on the right curve. This shows the importance of validating values
received from the outside.
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A.2.4 Preventing fault attacks

As we have seen, fault attacks are very powerful attacks that may permit the
cryptanalysis of theoretically secure schemes. Several software countermeasures
have been proposed, among them:

– Double computation: for encryption schemes, this could be a solution. However,
it doubles the computational time, and does not protect against permanent
faults.

– Checking the output: this can be done quite efficiently with signature and
identification schemes. However, it assumes that the device contains the whole
public key, and this is not always the case.

– Randomisation: here random bits are introduced in the computation. They are
either XOR-ed to sensitive data to blind them, or appended to the message,
as in the signature scheme RSA-PSS.

In [333], Joye et al. show that some countermeasures can sometimes help
the attacker. However, we feel confident that hardware countermeasures used
in combination with software countermeasures can prevent the large range of
existing fault attacks.
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Part C

Performance evaluation

Book II Part C of this final report was first published under the name ”Performance of
Optimized Implementations of the NESSIE Primitives” as Deliverable D21 of NESSIE.
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1. Introduction

1.1 Overview

This Part of the book provides a detailed review of all performance procedures
and results undertaken up to January 2003. It provides new and improved speed
estimates for the candidates submitted to NESSIE (along with standard prim-
itives and other primitives we implemented), with emphasis on the primitives
accepted for the second phase of NESSIE. These estimates are the results of a
long and thorough work, in which we created a test suite including codes for
all the candidates (except for some of the asymmetric ones) following a special
NESSIE API, along with a special software for the actual measurement.

In total we have tested 285 different implementations for over 138 different
variants of the measured primitives, with a total CPU time of several thousands
hours on all platforms.

1.2 The submissions received by NESSIE

– Block ciphers
– Anubis. [37] (tweaked version is not considered)
– Camellia. [24]
– CS-cipher. [234]
– Grand Cru. [112]
– Hierocrypt. [493] – Hierocrypt-L1 and Hierocrypt-3
– IDEA. [387]
– Khazad. [39] (original+tweak)
– MISTY1. [426]
– Nimbus. [410]
– Noekeon. [180]
– NUSH. [391]
– Q. [434]
– RC6. [324]
– SAFER++. [420]
– SC2000. [569]
– SHACAL. [281] – SHACAL-1 and SHACAL-2.

– Stream ciphers and pseudo-random number generators
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– BMGL. [285] (original+tweak),
– SNOW. [214] (original+tweak)
– SOBER. [289] – SOBER-t16 and SOBER-t32
– LEVIATHAN. [435]
– LILI-128. [187]

– Hash functions
– Whirlpool. [38]

– Message authentication codes
– UMAC. [379]
– Two-Track-MAC. [609]

– Asymmetric encryption
– ACE-KEM. [563] – Upgrade of ACE-Encrypt
– EPOC. [239] – EPOC-1, EPOC-2 and EPOC-3
– ECIES. [320]
– PSEC. [238] – PSEC-1, PSEC-2, PSEC-3 and PSEC-KEM
– RSA-OAEP. [325] – Revised to RSA-KEM [584]

– Digital signature schemes
– ACE Sign. [563]
– ECDSA. [319]
– ESIGN. [244] – Tweaked to ESIGN-D
– FLASH family. [514] – FLASH and SFLASH (has been tweaked)
– QUARTZ. [161]
– QUARTZ. [161] – QUARTZ was tweaked twice; in this document we do

not consider the second tweak
– RSA-PSS. [326]

– Digital identification schemes
– GPS. [525]

1.3 Performance Evaluation Methodology

Performance evaluation is an essential part in determining the practicality of a
cryptographic algorithm. An algorithm that performs well is more likely to be
adopted for practical applications.

NESSIE primitives will be used on a variety of platforms: PCs, smart cards,
hardware, and in various other applications. Some application areas impose very
high performance requirements (such as hard disk encryption) and protection of
high speed communications (Gigabit networks). For others, an acceptable perfor-
mance is required in a low-end hardware platform and/or in compact hardware
(cellular phone, smart-card). In general, we retain the candidates which are flexi-
ble, i.e. perform well on more than one platform, and those which perform above
average on a particular platform.
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1.3.1 Performance Criteria

On PCs (under Windows and Linux) and Unix machines, speed is the main con-
cern. We measure speed in the most uniform possible way: using clock counts
as measured by the C function clock(). The performance of hardware and
smartcard implementations also influences the selection.

1.3.2 Comparison with Standards and Well-Known Algorithms

The NESSIE project also takes into account existing and emerging standards,
even if these have not been formally submitted to the NESSIE project. Two re-
cent examples in this context come from the standardisation efforts run by NIST.
The NESSIE project has contributed extensive comments to the AES process and
Vincent Rijmen, one of the designers of the AES algorithm ‘Rijndael’, is a former
member of the NESSIE project team. It was therefore decided that in the eval-
uation of block ciphers, the Rijndael algorithm should be used as a benchmark.
One can expect that the research by NESSIE on the security of block ciphers
may well increase the confidence in and acceptability of the Rijndael algorithm
as a standard. The NESSIE project also studied the security and performance of
SHA-256, SHA-384 and SHA-512, the new hash algorithms recently standardised
by NIST to extend the result of SHA-1 to hash results between 256 and 512 bits.
The speed performance of candidates is compared with well-known algorithms:

– DES and triple-DES for 64-bit block ciphers,
– Rijndael, the FIPS standard, for 128-bit block ciphers,
– Kasumi, the new 3GPP block cipher,
– Skipjack, the NSA’s escrow encryption cipher,
– the AES finalists: Mars, Serpent, Twofish (RC6 was submitted to NESSIE, and

for Rijndael see above),
– RC4, such as distributed in the OpenSSL package, for synchronous stream

ciphers,
– SHA-1, SHA-256, SHA-384 and SHA-512 for hash functions,
– HMAC-SHA-1 and EMAC (a CBC-MAC) with Rijndael and DES as underly-

ing block ciphers for MACs,
– other non-standard primitives, such as RC5, Seal, Scream, various HMAC’s

and EMAC’s, etc.
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2. Theoretical Analysis

2.1 Block Ciphers

Block ciphers are symmetric encryption primitives that typically encipher blocks
of 64 or 128 bits. For most block ciphers, the ciphertext is obtained by repeatedly
applying a relatively simple cryptographic function to the input. The simple
cryptographic function is called a round function and the key-derived material
used in the round function is called a round key. The round keys are computed
from the key using a key-schedule algorithm. An SP-network is a type of block
cipher which has the effect of modifying the entire data block in each round. A
Feistel cipher is a type of block cipher which modifies only half of the block in
each round.

The NESSIE call for primitives specified the following security levels for block
ciphers:

– High. Key length at least 256 bits. Block length at least 128 bits.
– Normal. Key length at least 128 bits. Block length at least 128 bits.
– Normal-Legacy. Key length at least 128 bits. Block length 64 bits.

Table 1 lists the block ciphers, the sizes of the blocks, and the security levels
with the corresponding key sizes. The top part lists the ciphers studied in the
second phase of NESSIE, the middle part the other ciphers submitted to NESSIE,
and the bottom part other ciphers whose performance we measured.

NOTES: NUSH was designed with two different block sizes: 64 bits and 128
bits. RC6 has a variable block length of 4w bits, where w ≥ 32 is recommended
by the designers. There are two variants of SAFER++, one with 64-bit blocks
and one with 128-bit blocks.

We can separate the NESSIE block ciphers into five different categories:

1. 64-bit block ciphers: CS-Cipher, Hierocrypt-L1, IDEA, Khazad (and the
tweaked variant), MISTY1, Nimbus, SAFER++, NUSH,

2. 128-bit block ciphers: Anubis, Camellia, NUSH, Grand Cru, Hierocrypt-3,
Noekeon, Q, SC2000, SAFER++, NUSH, RC6,

3. 160-bit block ciphers: SHACAL-1,
4. 256-bit block ciphers: SHACAL-2, RC6.

A summary of the theoretical results is given in Table 2. More details can be
found in D14 [477].
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Table 1. Block ciphers submitted to NESSIE, along with block ciphers whose perfor-
mance was measured by NESSIE.

Name of cipher Block size Submitted/tested keysizes
Normal
Legacy

Normal High

IDEA 64 128
Khazad 64 128
Khazad - tweaked 64 128
MISTY1 64 128
SAFER++ 64,128 128 128 256
Camellia 128 128, 192 256
RC6 128,256 128 256
SHACAL-1 160 512
SHACAL-2 256 512
CS-Cipher 64 128
Hierocrypt-L1 64 128
Nimbus 64 128
NUSH 64,128 128 128 256
Anubis 128 128, 160, 192, 224 256, 288, 320
Grand Cru 128 128
Hierocrypt-3 128 128, 192 256
Noekeon Direct 128 128
Noekeon Indirect 128 128
Q 128 128 256
SC2000 128 128, 192 256
CAST-128 64 128
DES 64 56
Triple-DES 64 168
Kasumi 64 128
RC5 64 64
Mars 128 128,192 256
Rijndael 128,256 128,192 256
Serpent 128 128,192 256
Skipjack 64 80
Seed 128 128
Twofish 128 128,192 256
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Table 2. Block ciphers theoretical results.

Theoretical
Analysis

Block
size
(bits)

Word
size
(bits)

Key
size
(bits)

Sub-
key
size
(bits)

Table
lookups (ta-
ble size in
bits×bits)

Shifts&
rotations
+ multi-
plications

XOR,
ADD (bit
size)

AND,
OR, NOT
(bit size)

Total
table
lookups

Total
logical
oper-
ations
(8-bit)

Total
multi-
plica-
tions
(8-bit)

Code
size
(kB)

Optimi-
sed in
submis-
sion?

CS-cipher 64 8 128 576 192(8x8) 96(8bit) 488(8bit) 96(8bit) 192 584 0 7 yes
Hierocrypt-L1 64 8 128 896 8(8x8),

48(8x32),
40(8x64)

72(32bit) 60(32bit),
36(64bit)

96(32bit) 96 912 0 12 no

Idea 64 16 128 832 42+34
32-bit mul-
tiplications

388 (32bit) 0 1552 136 22.6 no

Khazad 64 8 128 576 64(8x64) 64 64(64bit) 64 512 0 58 no
Khazad - tweaked 64 8 128 576 64(8x64) 64 64(64bit) 64 512 0 58 no
MISTY1 64 32 128 512 24(7x7),

48(9x9)
0 56(32bit),

72(16bit),
24(8bit)

10(32bit),
24(16bit),
10(32bit)

72 390 0 6.9 no

Nimbus6/1 64 64 128 704 80(4x64) 75+5 mul-
tiplications

86(64bit) 80(64bit) 80 1328 40 no

Nimbus6/2 64 64 128 704 40(8x64) 35+5 mul-
tiplications

46(64bit) 40(64bit) 40 688 40 no

Nimbus6/3 64 64 128 704 5(4x64),
25(12x64)

25+5 mul-
tiplications

36(64bit) 30(64bit) 30 528 40 no

NUSH64 (legacy) 64 16 128,
192,
256

1280 36(16bit) 116(16bit) 36(16bit) 0 304 0 10 yes

SAFER++(legacy) 64 8 128 1152 64(8x8) 128 17(32bit),
404(8bit)

64 472 0 35 no

DES 64 32 56 768 128;8(6x4),
8;8(8x32),
64;11(8x48),
16;16(8x64),
0;8(8x56)

6(32bit),
64(48bit),
14(64bit)

216 520 0 n. a.

Triple DES 64 32 56 384;8(6x4),
8;8(8x32),
192;11(8x48),
16;16(8x64),
0;8(8x56)

6(32bit),
192(48bit),
14(64bit)

600 1288 0 n. a.

Anubis
(R = keysize/32 + 8)

128 8 128-
320

128 ∗
(R+1)

192+16∗(R−
12) (8x128)

180 + 15 ∗
(R− 12)

192 + 16 ∗
(R − 12)
(128bit)

192 + 16 ∗
(R − 12)
(128bit)

192+16∗
(R− 12)

6144 +
512 ∗
(R− 12)

0 32 no

Camellia 128 8 128 1664 144(8x64) 130 2(128bit),
162(64bit),
8(32bit)

144(64bit),
4(32bit),
4(32bit)

144 2544 0 8.2 no

Camellia 128 8 192 &
256

2176 192(8x64) 174 2(128bit),
216(64bit),
12(32bit)

192(64bit),
6(32bit),
6(32bit)

192 3392 0 8.2 no

Grand Cru 128 8 128 4224 50(5x8),
672(8x8)

144(8bit),
160(8bit)

1372(8bit),
32(8bit)

144(8bit) 722 1548 0 16 no

Hierocrypt-3 128 8 128 1792 16(8x8),
96(8x32),
80(8x128)

144(32bit) 120(32bit),
76(128bit)

192(32bit) 182 2464 0 15 no

Hierocrypt-3 128 8 192 2048 16(8x8),
112(8x32),
96(8x128)

168(32bit) 140(32bit),
91(128bit)

224(32bit) 224 2912 0 15 no

Hierocrypt-3 128 8 256 2304 16(8x8),
128(8x32),
112(8x128)

192(32bit) 160(32bit),
106(128bit)

256(32bit) 256 3360 0 15 no

Noekeon 128 32 128 2048 128 16(128bit),
304(32bit)

32(32bit),
32(32bit),
32(32bit)

0 1856 0 10.5 no

NUSH128 128 32 128,
192,
256

4608 68(32bit) 212(32bit) 68(32bit) 0 1120 0 15 yes

Q (bit-sliced) 128 32 1280 128(8x8) 24 26(128bit),
144(32bit)

56(32bit)
16(32bit)

128 1280 0 11.3 no

RC6 (default) 128 32 128 1408 40(32bit),
80(32bit)
+40(32bit)
multiplica-
tions

40(32bit),
84(32bit)

0 496 160 8 no

SAFER++/128 128 8 128 1920 112(8x8) 15(64bit),
456(8bit)

112 576 0 35 yes, for
8-bit and
32-bit

SAFER++/256 128 8 256 2688 160(8x8) 21(64bit),
648(8bit)

160 816 0 35 yes, for
8-bit and
32-bit

SC2000 (128) 128 32 128 1792 24(10x10),
48(11x11)

48(32bit) 87(32bit),
12(64bit),
14(128bit)

145(32bit) 72 668 0 20 no

SC2000 (192-256) 128 32 192-
256

2048 28(10x10),
56(11x11)

56(32bit) 98(32bit),
14(64bit),
16(128bit)

168(32bit) 84 760 0 20 no

Rijndael 128 8 128 1408 160(8x32) 30 11(128bit),
120(32bit)

160 656 0 n. a.

SHACAL-1 160 32 512 2560 224(32bit) 272(32bit),
320(32bit)

180(32bit) 0 3088 0 8 no
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2.2 Synchronous Stream Ciphers

The following stream ciphers were submitted to NESSIE:

LILI-128
–
– LEVIATHAN
– SOBER-t16 and SOBER-t32
– SNOW
– BMGL

Table 3 lists the stream ciphers, the security levels and the corresponding key
sizes, and the IV size. The top part lists the ciphers studied in the second phase
of NESSIE, the middle part the other ciphers submitted to NESSIE, and the
bottom part other ciphers whose performance we measured.

Table 3. Stream ciphers submitted to NESSIE, along with stream ciphers whose per-
formance was measured by NESSIE.

Name of Cipher Submitted Keysizes IV size
Normal High

BMGL 128 –
BMGL with IV 128 128
Snow 128 256 –
Snow with IV 128 256 64
Sober-t16 128 256 –
Sober-t16 with IV 128 256 128
Sober-t32 128 256 –
Sober-t32 with IV 128 256 128
LEVIATHAN 128, 192 256 –
LILI-128 128 –
RC4 128 –
Scream 128 128
Seal 160 32

A summary of the theoretical results is given in Tables 4 and 5.
More details can be found in D14 [477].
The NESSIE call for primitives specified the following security levels for

stream ciphers:

– High. Key length of at least 256 bits. Internal memory of at least 256 bits.
– Normal. Key length of at least 128 bits. Internal memory of at least 128 bits.

2.3 Collision Resistant and One-Way Hash Functions

The candidates in this category:

– Whirlpool
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Table 4. Stream ciphers theoretical results: key setup.

Key setup Table lookups Shifts Rot-
ations

And
Or

Xor
Add

BMGL (8-bit word) 560 0 0 0 544
Snow128 (32-bit word) 256 268 64 736 158
Snow256 (32-bit word) 256 280 64 768 174
Sober-t16/128 (16-bit word) 371 70 0 189 212
Sober-t32/128 (32-bit word) 371 78 0 253 242
LEVIATHAN 128 or 256
LILI-128
RC4 256(log2 (byte-

keylength) x8bit),
512(8x8bit), 512
table storages
(8x8bit)

0 0 0 512

Table 5. Stream ciphers theoretical results: key stream generation.

Key stream generation Table
lookups

Shifts Rot-
ations

And
Or

Xor
Add

Output
bits

/LFSR
cycle

BMGL (32bit word) 160 80 0 224 20 32
Snow128 (32bit word) 64 112 16 224 77 32
Snow256 (32bit word) 64 112 16 224 77 32
Sober-t16/128 (16bit word) 138 39 0 156 63 16
Sober-t32/128 (32bit word) 288 111 0 262 119 32
LEVIATHAN 128 or 256
LILI-128
RC4 3(8x8bit),

2(8x8bit)
table stor-
ages

0 0 0 3 81

1This number measures bits/stream cipher cycle since there is no LFSR for RC4.
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– SHA-1
– SHA-256
– SHA-384
– SHA-512

Table 6 lists the hash functions and the hash sizes. The top part lists the hash
function submitted to NESSIE, namely Whirlpool, and the bottom part other
hash functions whose performance we measured. Note that BCHASH-Rijndael is
the hash function that results by replacing the internals of the compression func-
tion of SHA-1 by Rijndael (leaving the feed-forward mixing untouched), i.e., by
replacing the SHACAL-1 part of SHA-1 by Rijndael (or in other words BCHASH
is defined such that SHA-1 = BCHASH-SHACAL-1).

Table 6. Hash functions submitted to NESSIE, along with hash functions whose per-
formance was measured by NESSIE.

Name of Primitive Hash Sizes
Whirlpool 512
MD4 128
MD5 128
RIPEMD 160
SHA-0 160
SHA-1 160
SHA-256 256
SHA-384 384
SHA-512 512
Tiger 192
BCHASH-Rijndael 128

A summary of the theoretical results is given in Table 8. More details can be
found in D14 [477].

2.4 Message Authentication Codes

There are two candidates in this category:

– Two-Track-MAC
– UMAC

Table 7 lists the message authentication codes (MACs), the MAC sizes, and
the key sizes. The top part lists the MACs submitted to NESSIE, and the bottom
part other MACs whose performance we measured. The implemented CBC-MAC
is EMAC as defined by Algorithm 2 of the ISO/IEC 9797-1 [303], i.e., the message
is padded by one 1-bit, followed by as many 0-bits as required to fill the last block.
Then, the result is CBC-encrypted with the EMAC key, and the last block of the
ciphertext is encrypted again with the key obtained by XORing all bytes of the
EMAC key with F0x. The MAC value is the result of this last encryption.
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Table 7. MACs submitted to NESSIE, along with MACs whose performance was mea-
sured by NESSIE.

Name of Primitive MAC Sizes Keysizes
TTMAC 160 160
UMAC 64 160
HMAC-Whirlpool 512 512
HMAC-MD4 128 512
HMAC-MD5 128 512
HMAC-RIPE-MD 160 512
HMAC-SHA-0 160 512
HMAC-SHA-1 160 512
HMAC-SHA-256 256 512
HMAC-SHA-384 384 512
HMAC-SHA-512 512 512
HMAC-Tiger 192 512
EMAC-Rijndael 128 128
EMAC-DES 64 56
EMAC-SHACAL-1 512 160

Table 8. Hash functions and message authentication codes theoretical results.

Theoretical
Analysis

Word
size
(bits)

Sub-
key
size
(bits)

Table
look-
ups
(table
size in
bits×
bits)

Shifts/
Rota-
tions
(bit
size)

XOR,
ADD,
MULT
(bit
size)

AND,
OR,
NOT
(bit
size)

Total
table
look-
ups

Total
logical
oper-
ations
(8-bit)

Total
multi-
plica-
tions
(8-bit)

Code
size
(kB)

Optimi-
sed in
submis-
sion?

Whirlpool 8 5120 1280
(8x64)

1188 1175
(64bit)

1268
(64bit)

1280 19544 0 65 no

SHA-1 32 0/224
(32bit)

312
(32bit),
325
(32bit)

100
(32bit)

0 2948 0

SHA-256 32 96
(32bit)/
576
(32bit)

640
(32bit),
600
(32bit)

384
(32bit)

0 6496 0

SHA-384,
SHA-512

64 128
(64bit)/
736
(64bit)

816
(64bit),
760
(64bit)

480
(64bit)

0 16448 0

UMAC16 16 8192 2048
(16bit),
1024
(32bit),
1024
(32bit
mult.)

0 8192 4096 146 no

UMAC32 32 8192 512
(32bit),
256
(64bit),
256
(64bit
mult.)

0 4096 2048 146 no

TTMAC 32 160 320 128
(32bit),
613
(32bit)

384
(32bit)

0 4500 0 13 no
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A summary of the theoretical results is given in Table 8. More details can be
found in D14 [477].

2.5 Asymmetric Encryption Schemes

The primitives in this category are:

– ACE Encrypt – tweaked to ACE-KEM
– ECIES
– EPOC-1
– EPOC-2 (tweaked)
– EPOC-3
– PSEC-1
– PSEC-2 – tweaked to PSEC-KEM
– PSEC-3
– RSA-OAEP
– RSA-KEM

More details can be found in D14 [477].

Table 9. Usual parameter lengths (in bytes).

Scheme Public Key Private Key Ciphertext Length for
Length Length 16-Byte Messages

ACE-Encrypt 1348 160 432
ECIES 20 20 36
EPOC-1 432 (288) 144 160
EPOC-2 432 (288) 144 160
EPOC-2 - tweaked 432 (288) 144 160
EPOC-3 432 (288) 144 160
PSEC-1 20 20 60
PSEC-2 20 20 76
PSEC-3 20 20 96
RSA-OAEP 129 256 (129) 128
ACE-KEM over (Z/pZ)× 512 80 400
ACE-KEM over EC 80 80 76
PSEC-KEM 20 20 52

1 For elliptic-curve-based schemes we assume that a point-compression technique is
used.

Table 9 contains the practical parameter lengths and the ciphertext length
for each scheme. The parameter lengths are chosen as follows. For schemes based
on integer factorisation, the modulus is a 128-byte integer, for schemes based on
discrete logarithm, the cyclic group is (Z/PZ)× for P of length 128 bytes or an
elliptic curve where the field size and the size of the order of the base point are
20 bytes. For schemes based on discrete logarithm, the decryption of the group
and the base point are not considered to be part of the key. The private key also
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includes the public parameters needed to decrypt. Sometimes, the key size can
be reduced, but the encryption/decryption time will then be increased by some
preprocessing; this reduced key size is in parentheses.

The table also contains the ciphertext length corresponding to messages of
size 16 bytes. We assume the output of the hash functions is 20 bytes (160 bits),
the output of the symmetric encryption scheme used in the EPOC and PSEC
schemes is 16 bytes (128 bits), and that the length of the random string (salt) is
16 bytes.

Table 10 describes the number of group operations required by each scheme.

Table 10. Number of group operations for each asymmetric encryption scheme.

RSA EPOC-2 RSA-OAEP ECIES PSEC-KEM ACE-KEM
ENC DEC ENC DEC ENC DEC ENC DEC ENC DEC ENC DEC

group exponentiations 1 1 2 3 1 1 2 1 2 2 5 3
group multiplications – – 1 2 – – – – – – 1 –
random numbers – – 1 – 1 – 1 – 1 – 1 –
hash calls 1 – – 3 3 3 3 1 1 2 2 2 2
symmetric cipher calls – – 1 1 – – 1 1 1 1 1 1
MAC calls – – – – – – 1 1 – – – –
1This includes calls to functions that predominantly rely on hash functions, including
key derivation functions (KDFs) and mask generating functions (MGFs).

2.6 Asymmetric Digital Signature Schemes

The primitives in this category are:

– ACE Sign
– ECDSA
– ESIGN – tweaked to ESIGN-D
– RSA-PSS
– FLASH
– SFLASH (old version ) – tweaked to SFLASH (new version)
– QUARTZ (tweaked)

Details about them can be found in D14 [477].
Table 11 and Figure 1 specify the lengths of the data handled by the algo-

rithms. Most important are the signature size, which can cause an overhead for
a message transmission, and the public key size, which has to be handled by the
public key infrastructure. When (a part of) the public key is needed to sign, we
include the corresponding length in the private key length.

For most submitted signature schemes, security and performance depend on
the choice of some parameters. For table 11, the choices have been 1024 bit moduli
for two factors based schemes (ACE Sign and RSA-PSS), 1152 bit moduli for three
factors based schemes (ESIGN), and 163 bit base field for discrete logarithm based
schemes (ECDSA). The RSA public exponent is fixed to 3.

Most of the submitted schemes use a hash function which gives a limitation
on the message length, e.g., 261 bytes for SHA-1. Only ACE-Sign has a signature
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length depending on the message length. We assume that the messages to be
signed have lengths between 20 bytes and 1 Mbyte. The signature length of
ACE-sign can be made constant using CRHF instead of UOWHF.

Table 11. Data lengths.

Scheme Public Key Private key Signature
ACE-Sign 620 bytes 748 bytes 425 to 705 bytes
ECDSA 48 bytes 24 bytes 48 bytes
ESIGN 145 bytes 96 bytes 144 bytes
RSA-PSS 128 bytes 320 bytes 128 bytes
FLASH 19266 bytes 2822 bytes 37 bytes
SFLASH (old version) 2409 bytes 362 bytes 37 bytes
SFLASH (new version) 15400 bytes 2450 bytes 37 bytes
Quartz (and tweak) 71 to 90 kB 3914 bytes 16 bytes
KCDSA 48 bytes 24 bytes 48 bytes

Fig. 1. Data lengths.
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2.7 Asymmetric Identification Schemes

The only candidate in this category is:

– GPS (tweaked)

Details can be found in D14 [477].
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3. Claimed Performance

Here, we present performance results, mainly concentrating on the C code running
on a Pentium III.

3.1 Block Ciphers - Legacy

3.1.1 CS-Cipher

Efficiency results for standard C implementation on a Pentium 133 MHz.

Processor
Encryption

(cycles/block)
Encryption

(cycles/byte)
Pentium 4053.12 506.64

3.1.2 Hierocrypt-L1

Best results in 10 trials to carry out 1000000 block encryptions in ECB mode for
128-bit key version on Pentium III 650 MHz, running MS Windows 98 CE, and
MSVC++ 6.0. Data obtained from Proceedings of the 2nd NESSIE Workshop.

Processor
Encryption
Decryption

(cycles/block)

Encryption
Decryption

(cycles/byte)

Encryption
Decryption

(cycles/byte)

Encryption
Decryption

(cycles/byte)
Pentium 199 374 24.8 46.7

3.1.3 IDEA

Here we give the performance claimed by the submitters for their candidate.

Processor
Encryption
Decryption
(Mbits/sec)

Encryption
Decryption

(cycles/byte)
90 MHz Pentium 4.2 171.4

366 MHz Pentium II 31 94.4
600 MHz Pentium III 61 78.7

In the next table we present the results given by Lipmaa, who uses MMX and
encrypts 4 blocks in parallel (i.e., CBC mode cannot be performed with this
speed).
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Processor
Encryption
Decryption
Block size

Encryption
Decryption

(cycles/block)

Encryption
Decryption

(Mbytes/sec)

Encryption
Decryption

(cycles/byte)
Pentium III 4x64 440 55.5 13.75

Pentium MMX 4x64 543 45.0 16.9
Pentium MMX 64 358 17.0 44.7

3.1.4 Khazad and its Tweaked Variant

Khazad is an involutional cipher, so the effort required for encryption and de-
cryption is the same. Because of this, decryption is not obtained by applying
the encryption components in reverse order, and so the key schedules for encryp-
tion and decryption are not identical. The tweaked variant should have the same
performance as the original variant.

Processor Language
Key setup

(cycles/key)

Encryption
Decryption

(cycles/byte)

Encryption
Decryption
(Mbits/sec)

Pentium III 1 ANSI C 717(encrypt) 67 65.7
1206(decrypt)

1 IBM PC/ AT compatible PC, Intel Pentium III, 550 MHz.

3.1.5 MISTY1

Processor Language
Key setup

(cycles/key)
Encryption

(cycles/byte)
Encryption
(Mbits/sec)

Pentium II 1 ANSI C 170 56.25 71.1
Pentium II 2 ANSI C 300 37.5 106.7

1 IBM PC/ AT compatible PC, Intel Pentium II, 500 MHz, 128 MB memory, Windows
98, straightforward implementation.

2 IBM PC/ AT compatible PC, Intel Pentium II, 500 MHz, 128 MB memory, Windows
98, optimised implementation requiring more memory.

3.1.6 NUSH

Efficiency results for C implementation.

Processor
Encryption

(cycles/block)
Key setup

(cycles/key)
Encryption

(cycles/byte)
Pentium 180 64 22.5
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3.1.7 SAFER++

Processor
Key setup1

(cycles/key)
Encryption2

(cycles/byte)
Decryption2

(cycles/byte)
Pentium 1333 169 160

1 Efficiency of reference implementation (not optimised).
2 Efficiency results for 128-bit key version on Pentium III 667 MHz, running MS Win-

dows 2000, and MSVC++ 6.0 (optimised source code).

3.1.8 DES

The performance of DES has been studied well in the past; we give here some
results to compare with the NESSIE candidates.

Encryption
Origin Processor (cycles/byte) (Mbits/sec) (MBytes/sec)

Bosselaers 90 MHz Pentium 42.5 16.9 2.12

3.2 Block Ciphers - Normal and High (128-bit blocks)

3.2.1 Anubis

Anubis is an involutional cipher, so the effort required for encryption and de-
cryption is the same. Because of this, decryption is not obtained by applying the
encryption components in reverse order, and so the key schedules for encryption
and decryption are not identical.

Processor
Language Key size

Key setup
(cycles/key)

Encryption
Decryption

(cycles/byte)

Encryption
Decryption
(Mbits/sec)

Pentium III 1 128 3352(encrypt) 36.8 119.5
ANSI C 4527(decrypt)

160 4445(encrypt) 39.3 112.1
5709(decrypt)

192 6644(encrypt) 41.6 105.9
8008(decrypt)

224 8129(encrypt) 43.8 100.5
9576(decrypt)

256 9697(encrypt) 46.3 95.1
11264(decrypt)

288 11385(encrypt) 48.5 90.7
11291(decrypt)

320 13475(encrypt) 50.8 86.6
15169(decrypt)

1 Intel Pentium III, 550 MHz.
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3.2.2 Camellia

Processor
Language Key size

Key setup
(cycles/key)

Encryption
(cycles/byte)

Encryption
(Mbits/sec)

Pentium III 1 128 160 23.1 241.5
Assembly 192 222 30.8 181

256 226 30.9 181
Pentium II 2 128 263 36 66.6

ANSI C

1 IBM PC/ AT compatible PC, Intel Pentium III (700 MHz), 256 KB L2 cache,
FreeBSD 4.0R, 128 MB main memory.

2 IBM PC/ AT compatible PC, Intel Pentium II (300 MHz), 512 KB L2 cache, Windows
95, 160 MB main memory.

3.2.3 Grand Cru

Efficiency results of reference ANSI C implementation for 128-bit key version
using gcc on an Intel Pentium 200 MHz, running Linux 2.0.38, and on an Intel
XEON 550 MHz, running Linux 2.2.14.

Processor
Encryption

(cycles/byte)
Decryption

(cycles/byte)
Key setup

(cycles/key)
Pentium 2812.5 4062.5 200000
XEON 4062.5 5625 300000

3.2.4 Hierocrypt-3

Best results in 10 trials to carry out 1000000 block encryptions in ECB mode for
128-bit key version on Pentium III 650 MHz, running MS Windows 98 CE, and
MSVC++ 6.0. Data obtained from Proceedings of the Second NESSIE Workshop.

Processor Key size
Encryption

(cycles/byte)
Decryption
unoptimised

Key setup
(cycles/key)

Pentium 128 37.5 63.2 370
192 44.4 78.1 386
256 50.5 88.7 468

3.2.5 Noekeon

Note that Noekeon has two key schedules. In direct mode the user-selected key is
used directly, and so requires no operations before encryption or decryption can
start. In indirect mode the user-selected key is encrypted once using the all-zero
key, and the ciphertext becomes the working key. This indirect key schedule thus
takes the same time as one encryption.
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Processor
Language Key size

Key setup
(cycles/key)

Encryption
Decryption

(cycles/byte)
Pentium II 1 0(direct) 32.8 48.8

ANSI C 525(indirect)

1 IBM PC/ AT compatible PC, Intel Pentium II, 200 MHz, Windows NT 4.0, Microsoft
Visual C/C++ 6.0 compiler.

3.2.6 NUSH

Efficiency results for C implementation.

Processor
Key Size

(bits)
Encryption

(cycles/byte)
Key setup

(cycles/key)
Pentium 128 21.2 112

3.2.7 Nimbus

Processor Block Size
Encryption

(cycles/byte)
Key setup

(cycles/key)
Pentium 64 66 24665

3.2.8 Q

Processor Key Size
Encryption
Decryption

(cycles/byte)

Key setup
(cycles/key)

Pentium 128 36.5 500

3.2.9 RC6

We present the performance claimed by the submitters of RC6, for the C code,
in cycles/byte for 20-round and 128 bit-block version.

Processor Compiler
Encryption
Decryption

(cycles/byte)
Pentium II Borland 39

Pentium Pro MSVC 30
MSVC + optimiser 16

GCC 26
GCC + optimiser 23
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3.2.10 SAFER++

Processor Key size
Key setup 1

(cycles/key)
Encryption 2

(cycles/byte)
Decryption 2

(cycles/byte)
Pentium 128 2333 40 76

256 3227 57 101

1 Efficiency of reference implementation (not optimised).
2 efficiency results for 128-bit key version on Pentium III 667 MHz, running MS Win-

dows 2000, and MSVC++ 6.0 (optimised source code).

3.2.11 SC2000

Processor Key size
Key setup

(cycles/key)
Encryption 1

(cycles/byte)
Decryption 1

(cycles/byte)
Pentium 128 488 23.93(assembly) 25.187(assembly)

192 525 27.37(assembly) 28.75(assembly)
256 526 27.37(assembly) 32.81(assembly)

1 Best efficiency results for 128-bit key version in MSVC++ 6.0 + Assembly (inline)
on an Intel Pentium III 550 MHz, running Microsoft Windows NT 4.0; key schedule
in C language.

3.2.12 Rijndael

Rijndael was studied well in the AES process. We give some significant results
to compare them with those of the NESSIE candidates, in addition to our own
tests.
Origin Processor Block size Cycles/byte MBytes/s
Lipmaa Pentium II/III 128 28.6 53.3

3.3 Block Ciphers - Normal and High (large blocks)

3.3.1 SHACAL-1

Processor
Block size

(bits)
Encryption

(cycles/byte)
Decryption

(cycles/byte)
Key setup

(cycles/key)
Pentium II/III 160 140 116.5 3200
updated 160 124 116 2280

The SHACAL-1 submitters estimate the computational efficiency at 2800 cycles
per 20-bytes-block encryption (block size), 2330 per 20-byte-block decryption and
3200 per 64 byte key setup, on a PC with an AMD K6 processor running at 233
MHz.
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3.3.2 SHACAL-2

Processor
Block size

(bits)
Encryption

(cycles/byte)
Decryption

(cycles/byte)
Key setup

(cycles/key)
Pentium II/III 256 112.5 115 2800

3.4 Stream Ciphers

3.4.1 BMGL

No claimed performance given.

3.4.2 LEVIATHAN

No claimed performance given.

3.4.3 LILI-128

Processor
Key size
(bits)

Key setup
(cycles/byte)

Keystream generation
(cycles/byte)

Pentium III 128 – 1200
650 MHz

3.4.4 Snow

Processor
Key size
(bits)

Key setup
(cycles/byte)

Keystream generation
(cycles/byte)

Pentium III 128 2000 6.75
500 MHz 256 2000 6.75

3.4.5 Snow with IV

Processor
Key size
(bits)

Key setup
(cycles/byte)

IV setup
(cycles/byte)

Keystream generation
(cycles/byte)

Pentium III 128 few 1000 6.75
500 MHz 256 few 1000 6.75

3.4.6 Sober-t16

Processor
Key size
(bits)

Key setup
(cycles/byte)

Keystream generation
(cycles/byte)

Sun Ultrasparc 0 1084 42.6
248 MHz 64 1346 42.6

128 1581 42.6
192 1812 42.6
256 2062 42.6

For Sober-t16 with IV, there are no claimed results for the IV setup.
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3.4.7 Sober-t32

Processor
Key size
(bits)

Key setup
(cycles/byte)

Keystream generation
(cycles/byte)

Sun Ultrasparc 0 1110 24.51
248 MHz 64 1208 24.51

128 1348 24.51
192 1480 24.51
256 1564 24.51

For Sober-t32 with IV, there are no claimed results for the IV setup.

3.5 Hash Functions

3.5.1 Whirlpool

Processor Hash (cycles/byte)
Pentium III 550 MHz 133

3.6 MACs

3.6.1 Two-Track MAC

Processor
MAC

(cycles/byte)
Key setup

(cycles/key)
Pentium 1 95.8 10
Assembly 16 10

1 Efficiency results for non-optimised reference C code.

3.6.2 UMAC

Processor Message Size (bytes) 1

43 256 1500 256·210

Pentium 16.3 3.8 2.1 1.9

1 Efficiency results in cycles/byte on a 700 MHz Pentium III under gcc 2.95, mixed
C/Assembly. Figures for UMAC32 submitted to NESSIE and simply called UMAC.
Data obtained from Proceedings of First NESSIE Workshop.

3.7 Asymmetric Primitives

The claimed performance of the asymmetric encryption schemes is given in Ta-
ble 12. Chinese remainders are used for RSA. No new claims have been made for
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Table 12. Claimed performance of the asymmetric encryption schemes.

Scheme Key setup Encryption Decryption Architecture
time cycles time cycles time cycles

ACE-Encrypt 14 sec 3724M 230 ms 61M 97 ms 26M Pentium @ 266
PSEC-1 4.4 ms 3080K 4.4 ms 3080K Pentium @ 700
PSEC-2 4.4 ms 3080K 4.4 ms 3080K Pentium @ 700
PSEC-3 4.4 ms 3080K 2.4 ms 1680K Pentium @ 700
ECIES 5.8 ms 1160K 4.4 ms 880K Pentium @ 200
EPOC-1 13 ms 9100K 20 ms 14M Pentium @ 700
EPOC-2 10 ms 7000K 17 ms 12M Pentium @ 700
EPOC-3 10 ms 7000K 7 ms 4900K Pentium @ 700
RSA-OAEP 1 ms 450K 27 ms 12M Celeron @ 450
PSEC-KEM 4.4 ms 3080K 4.4 ms 3080K Pentium @ 700

the tweaks ACE-KEM, PSEC-KEM and EPOC-2. The changes for the latter two
should not influence their performance. ACE-KEM is faster than ACE-Encrypt.

The claimed performance of the asymmetric digital signature schemes is given
in Table 13.

Table 13. Claimed performance of the digital signature schemes.

Scheme Key setup Signature Verification Architecture
time cycles time cycles time cycles

ACE-Sign 36 sec 9576M 62 ms 16492K 73 ms 19418K Pentium @ 266
ECDSA F2163 1.5 ms 600K 2.1 ms 840K 4.1 ms 1640K Pentium @ 400
ECDSA Fp 2.1 ms 840K 2.6 ms 1040K 6.5 ms 2600K Pentium @ 400
ESIGN 3.4 ms 2980K 0.4 ms 280K Pentium @ 700
RSA-PSS 1.9 sec 855M 27 ms 12.1M 3 ms 1350K Celeron @ 450
FLASH 49 ms 24.5M 50 ms 25M Pentium @ 500
SFLASH (old) 44 ms 22M 50 ms 25M Pentium @ 500
SFLASH (new)∗ 1 sec 500M 2.7 ms 1350K 0.8 ms 400K Pentium @ 500
Quartz 30 sec 15G 50 ms 25M Pentium @ 500
Quartz, tweaked∗ 4 sec 2000M 10 sec 5000M 0.9 ms 450K Pentium @ 500

∗

The different performances of the two versions of SFLASH are due to a more efficient
implementation of the new version. The same holds for Quartz and its tweak.

The claimed performance of the GPS and its tweak is given in Table 14.
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Table 14. Claimed performance of GPS and its tweak.

Scheme Key setup Commitment Answer Verification Architecture
time cycles time cycles time cycles time cycles

GPS
and tweak

0.7 sec 315M 10 ms 4500K 1 µs 450 12 ms 5400K Pentium @ 450
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4. Practical Software Implementation

We tested the performance of 285 implementations of 138 different variants of
primitives. The tests were performed on 11 different kinds of platforms (on over
20 computers), on various operating systems and with various compilers. On
some processors (e.g, Pentiums) we made the tests on two operating systems
with 4 compilers, and even several different versions of some compilers, in order
to achieve the best results. In total, our performance tests ran several thousands
of computer hours.

4.1 Measurements for Symmetric Primitives

We tested all NESSIE symmetric candidates along with standard primitives and
many ’non-standard’ primitives. Our tool measures the time for key setup, en-
cryption, decryption, IV setup, and hash and MAC initialisation and finalisation.
The tool checks the correctness of all codes by comparing the encryption results
to the supplied test vectors. For encryption, e.g., we measure the time in the
following way (decryption, key setup, ... analogously):

– First, we encrypt random plaintexts for about one second. Based on the number
of plaintexts encrypted in one second, we estimate how many encryptions are
expected to run in 10 seconds.

– Then, we run the estimated number of encryptions and measure their run time.

The actual measurement is executed with many different keys for many differ-
ent encryption/decryption blocks. We calculate the encryption, decryption, hash,
MAC time in units of cycles/byte and the key setup, IV setup time and hash and
MAC initialisation and finalisation in cycles/invocation.

We compare the results on various machines (The machines are listed in Ta-
ble 29.) The speed results for the various types of processors and operating sys-
tems are given in Tables 30–35, where Table 30 summarises the results for legacy
block ciphers, Table 31 those for normal and high block ciphers, Table 32 those
for block ciphers with 160- and 256-bit blocks, Table 33 those for stream ciphers,
Table 34 those for hash functions, and Table 35 those for MACs. Tables 39–48
present these results for various processors and compilers. Figures 2–23 show
these results as bar histograms, and Figures 24–45 show these results in a sorted
order (sorted by performance). Each table is divided into three parts: the first
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part contains the candidates accepted for the second phase of NESSIE, the sec-
ond part contains the other candidates submitted to NESSIE, and the third part
contains primitives that we implemented and compared, but were not submitted
to NESSIE; the (unsorted) figures are ordered in the same way (from bottom to
top), Table 33 (stream ciphers) and the corresponding figures have an additional
division for ciphers which do not accept initial values, and ciphers that require
initial values. Our results show very high consistency between different machines
of the same type, especially between various PIIIs (at different speeds and with
different memory sizes). In many cases we obtained clock counts with differences
of less than one unit.

For the measurement of speed, we compiled all ciphers with all the available
compilers, with various optimisation options (as adequate for the machine and
compiler), and selected the best speed that resulted from all these options. In
many cases, higher optimisations (such as -O3) resulted in poorer speeds than
lower optimisations (such as -O1), and in many cases optimisations targeted to
older processors (such as optimisation targeted for 386 when running on PIII)
gave better results than optimisations targeted to the newer ones (such as Pen-
tium or Pentium-pro). For this reason, on most machines, our measurements
consisted of more than a dozen compilations with different optimisation options
and target machines, to ensure that we do not miss the best code that the com-
piler can generate. In the case of PIII with Linux, we performed the measurement
under three different versions of the gcc compiler, with over 40 different optimi-
sation options for the newer version.

We also ensured that the compiled code is correct by regenerating the test
vectors in each run with each compilation option. In those rare cases where some
compilation option generated wrong code on some machine, we ignored the speed
results of the runs with the wrong results. For example, the compilations of
Anubis on Alpha machines generated wrong codes when the optimisation options
were -O2 or higher. We ignored the resultant speeds of these wrong runs, although
they were faster than the speeds we will list later.

We also ensured that the main test program was compiled with the same
optimisation option in all cases, although the code of the primitives was compiled
with different options, in order to make the overhead of the test program as fixed
as possible. In order to measure this overhead, we measured the speed of dummy
ciphers (that do nothing) and verified that their computation time is negligible.
It should be noted that all codes (of each family of primitives) use the same API
(which, among other things, ensures that the keys are set up into structures that
can later be passed as parameters to the encryption (decryption, etc.) function,
and that no global or static variables depending on the key, state, ... are used),
and thus, the overhead of all codes of the same type and block size is expected
to be similar.

It can be seen from the results that the codes for the primitives are quite
optimised. This is the result of several rounds of optimisations of the submitted
codes by several people in the NESSIE project. For about 50% of the ciphers, our
codes are even faster than the submitters claim, and for several others ciphers,
the results are only a few cycles slower than claimed. In particular, we wish to
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refer the reader to our optimisation of Camellia, which uncovers the design of
Camellia, whose round function is designed for 32-bit processors, although the
description in the submission only describes a byte-level implementation. We also
wish to mention our novel optimisation of Idea [63], which is, as far as we know,
the fastest implementation of Idea in C.

In most cases, the order of the primitives by decreasing speed is similar on all
machines. Exceptions are primitives that are optimised for 64-bit machines, which
become the fastest on Alpha, although they are not so on other machines. Two
examples are RC6 with 256-bit blocks (using 64-bit multiplications), which, on
Alpha, is even twice faster than the standard RC6 with 128-bit blocks, although
it is twice slower on all other machines, and Tiger, which, on Alpha, becomes even
faster than MD4, although it only has a medium speed on all other machines.

Note that the same implementations of block ciphers and stream ciphers were
also subjected to the NESSIE statistical tests, and all of them passed these tests.

We have also measured the amount of memory required for the various im-
plementations, and verified that the speeds we report can be reached with a
reasonable amount of memory.

We did not distinguish the cases where the key setup can be faster for
encryption-only or decryption-only applications. In all cases, we measured the
time required for a full key setup. In the cases of Idea, Rijndael, and several oth-
ers, the time required to setup encryption-only keys may be significantly faster
than the full time of the key setup.

The test vectors we used for verifying the correctness of our codes, were sent
to the submitters for verification. In Table 15, we list the status of these test
vectors in February 2003.

Finally, a primitive is listed with two implementations in cases where there are
inherent tradeoffs between the listed speeds, e.g., when encryption can be made
faster with a slower key schedule, or when one implementation uses a feature that
is usually not used in our implementations (e.g., MMX instructions).

4.1.1 Non-NESSIE Assembly Results

The NESSIE project did not implement the primitives in assembly languages,
except for a few MMX-optimised codes that were written in the C files and
processed by the C compilers. For the selection of the primitives, it was not
necessary to know the exact speedup gained by assembly code, and the average
saving of a few cycles per byte was not worth directing our cryptanalytic efforts
towards additional implementation work. For completeness, we list in Table 16
the claimed speeds of non-NESSIE implementations.

4.2 Measurements for Asymmetric Primitives

We chose the smallest parameters for which the submissions claimed to have a
security of 280, i.e., 1024 or 1152 bits for factorisation or discrete logarithm based
schemes, and 160 bits for elliptic curves. We use an RSA public exponent of 3,
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Table 16. Assembly performance results.

Primitive Machine Speed (cycles/byte) Reference
Encryption Decryption

Camellia Sparc 22.2 22.2 [173]
Alpha 17.6 17.6 [173]

4-Way IDEA PIII 13.75 [400]
PI/MMX 16.96 [400]

MISTY1 PII 26.6 26 [173]
Alpha 25.4 25.8 [173]

RC6 P.ProII 16 [558]
Pentium 44 [558]

PIII 22.18 [401]
Rijndael PIII 14.13 14.93 [401]

PIII 14.8 [173]
P.ProII 18 [558]
Pentium 20 [558]

Mars P.ProIII 20 [558]
Pentium 34 [558]

Twofish P.ProII 16 [558]
Pentium 19 [558]

Whirlpool PIII/MMX 36.52 [461]
SHA-1 PIII/MMX 8.3 [461]
SHA-256 PIII/MMX 20.59 [461]
SHA-512 PIII/MMX 40.18 [461]
MD5 PIII/MMX 4.31 [461]
RIPEMD-160 PIII/MMX 11.34 [461]
UMAC PII 1.93 [91]

PPC 1.58 [91]
Alpha 2.78 [91]
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type B parameters for (untweaked) EPOC, elliptic curves over the binary prime
field GF(2163) for ECIES and ECDSA and over a prime field for PSEC. Note that
OEFs (Optimal Extension Fields) are more efficient but may weaken the discrete
logarithm assumption. (For EPOC-2-tweaked, a different set of parameters is
required.)

The measurement was performed with the same test suite and the same pro-
cessors, operating systems and compilers as the symmetric case, but in the asym-
metric case, not all primitives were implemented, due to the inherent slow speeds
of these primitives and the fact that it is easy to derive approximate times for
some primitives from the times of others (such as when the key generations
are the same for several primitives, or when the most time-consuming operation
is common for several primitives, as in the case of modular exponentiation that
dominates the computation time). However, note that our asymmetric implemen-
tations are not optimised, and should only be treated as an order of magnitude.

4.2.1 Asymmetric Encryption Schemes

The results of our performance tests for asymmetric encryption schemes are given
in Tables 36 and 49, where the top part lists results of (not necessarily optimised)
codes of the NESSIE test suite, and the bottom part lists results based on the
submitters’ codes (without all the extra features and tests of the suite).

Table 17. Estimated performance of asymmetric encryption schemes.

Scheme Encryption Decryption
ms cycles ms cycles group size

ACE-Encrypt 50 ms 25M 45 ms 22.5M 1024-bit
PSEC-1 5 ms 2500K 5 ms 2500K 160-bit
PSEC-2 5 ms 2500K 5 ms 2500K 160-bit
PSEC-3 5 ms 2500K 2.5 ms 1250K 160-bit
ECIES 5 ms 2500K 2.5 ms 1250K 160-bit
EPOC-1 15 ms 7.5M 20 ms 10M 1152-bit
EPOC-2 10 ms 5M 15 ms 7.5M 1152-bit
EPOC-2 - tweaked 10 ms 5M 15 ms 7.5M 1152-bit
EPOC-3 10 ms 5M 7 ms 3.5M 1152-bit
RSA-OAEP (e=3) 1 ms 500K 11 ms 5.5M 1024-bit
ACE-KEM over F∗p 50 ms 25M 35 ms 17.5M 1024-bit
ACE-KEM over EC 12.5 ms 6250K 7.5 ms 3750K 160-bit
PSEC-KEM 5 ms 2500K 5 ms 2500K 160-bit
Rabin-SAEP 0.5 ms 250K 11 ms 5.5M 1024-bit

Table 17 shows estimations of the performance for encryption and decryption
on a Pentium III desktop, based on the theoretical analysis of Section 2. RSA-
KEM has similar performance as RSA-OAEP.
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4.2.2 Asymmetric Digital Signature Schemes

The results of our performance tests for asymmetric digital signature schemes
are given in Tables 37 and 50, where the top part lists results of (not necessarily
optimised) codes of the NESSIE test suite, and the bottom part lists results
(mostly) based on the submitters’ codes (without all the extra features and tests
of the suite).

We also tested the speed of invalid verifications, and found that in all the
cases of Table 37, the times are about the same as those of valid verifications.

4.2.3 Asymmetric Identification Schemes

The only identification scheme submitted to NESSIE is GPS. GPS has five parts:
the generation of the parameters, the generation of public and private key, the
commitment, the answer, and finally the verification. We used the parameters
suggested in the submission, which guarantee enough security, namely |S| = 160,
|B| = 35, and |A| = 275.1 We tested the performance of the submitters’ code,
and obtained the results listed in Tables 38 and 51 .

We also tested the performance of GPS in Java with the submitted Java
code. We note that the code is really short with only about 2 KB, including some
short comment, but uses external Java libraries. The results are summarised in
Table 18. In this table, Machine I is a Pentium 550 MHz with 1 GB of memory,

Table 18. Performance of GPS in Java.

Machine I Machine II
Parameters Generation 1.4 ms 1.5 ms
Commitment 9 ms 5 ms
Answer 0.018 ms 0.006 ms
Verification 11 ms 6.2 ms

running under Windows 2000, and Machine II is a laptop Pentium 1 GHz with
256 MB of memory and running under Windows 2000.

1 With the notations of the submission, A/BS must be large enough to guarantee the
statistical zero knowledge property, |A| ≥ |S| + |B| + 80, which is the case with the
chosen values.
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5. Hardware and Smartcard Implementations

In addition to the implementations in software, the NESSIE project has studied
implementations on hardware and smartcards. In this section, we describe the
results.

5.1 Hardware Implementations

5.1.1 Previous Results

Table 19 lists known implementations external to the NESSIE project.
For block ciphers, the quoted results apply to encryption without key schedule.

FPGA and ASIC implementations are shown together, despite their differences.
This table is a collection of known results. These results should not be considered
as a fair comparison of the primitives, as each implementation was done with a
different methodology, and the implementations were not evaluated by NESSIE.

5.1.2 Block Ciphers

Reprogrammable devices such as Field Programmable Gate Arrays (FPGAs) are
highly attractive options for hardware implementations of encryption algorithms.
Table 20 summarises results of implementations for the block ciphers MISTY1,
Khazad, Rijndael and DES. These results were synthesised with FPGA Express
(SYNOPSYS), implemented with XILINX ISE 4 within a VIRTEX1000 and they
do not use RAM blocks. Note that the pipeline version of Rijndael cannot fit into
a VIRTEX1000. For more information see [547, 591–594]. Table 21 summarises
the results of our implementations of Rijndael on VIRTEX3200E.

5.1.3 Estimations for PSEC-KEM

In this section we give time estimations for the PSEC-KEM [238] signature gen-
eration and verification algorithm on an EC processor developed at KUL [506].

Algorithm 1, ..., Algorithm 5 are the 5 algorithms related to PSEC-KEM.
The total latency to execute Algorithm 1 is basically the latency of the random
number generation, which is 14.843 ms. The total latency to execute Algorithm 2
is 29.686 ms. The total latency to execute Algorithm 3 is 14.843 ms. Step 3 of
Algorithm 4 takes 14.843 ms and the latency of the other two steps is negligible
when compared with EC point multiplication.
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Table 19. Non-NESSIE implementations in hardware.

Primitive Type of Hardware (ASIC) Speed More Details
CS-cipher 30 MHz 73 Mbps estimation; 1mm2

30 MHz 2000 Mbps estimation; 15mm2
Hierocrypt-L1 0.14µ 128 MHz 586 Mbps 38.2K gates
IDEA 0.25µ 100 MHz 240 Mbps 720 Mbps in ECB
MISTY1 0.35µ 72 Mbps 7.6K gates

0.35µ 800 Mbps 50K gates
Triple-DES 0.35µ [24] 407 Mbps 128K gates
Camellia 0.35µ [24] 1170 Mbps 273K gates

0.35µ [24] 220 Mbps 11K gates
Hierocrypt-3 0.14µ 126 MHz 897 Mbps 81.5K gates

0.14µ 185 MHz 85 Mbps 26.7K gates
RC6-128 0.5µ 104 Mbps iterative

0.5µ 2200 Mbps pipelined
0.35µ [24] 204 Mbps 1.6M gates

Rijndael-128 0.5µ 524 Mbps iterative; 81mm2
0.5µ 5100 Mbps pipelined
0.35µ [24] 1950 Mbps 613K gates

Primitive Type of Hardware (FPGA) Speed More Details
Hierocrypt-L1 11 MHz 44 Mbps 11K logic cells
Camellia XC4000XLµ [24] 122 Mbps 874 CLBs

ALTERA 13.1 MHz [545] 240 Mbps 3.0K LE 48k EAB
Hierocrypt-3 7.4 MHz [493] 53 Mbps 23K logic cells

9 MHz [493] 4.1 Mbps 6.3K logic cells
8 MHz [545] 115 Mbps 8.6K LE 48k EAB
ALTERA 11.9 MHz [545] 190 Mbps 9.5K LE 48k EAB
ALTERA 15.6 MHz [545] 304 Mbps 9.8K LE 48k EAB
ALTERA 21.7 MHz [545] 397 Mbps 26K logic cells

RC6-128 XCV1000 14 MHz 127 Mbps feedback
XCV1000 38 MHz 2400 Mbps non-feedback

Rijndael-128 XCV1000 14 MHz 300 Mbps feedback
XCV1000 32 MHz 1940 Mbps non-feedback

Primitive Type of Hardware (DSP) Speed More Details
RC6-128 TMS320C6201 18cycles/byte feedback

TMS320C6201 13cycles/byte non-feedback
TMS320C64x 10cycles/byte non-feedback

Table 20. FPGA implementations of block ciphers within VIRTEX1000

Cipher Nbr of Output every Estimated Throughput
slices (clock edges) frequency (MHz) (Mbits/s)

MISTY1 6322 1 159 10176
Fast Khazad 8800 1 148 9472
Low area Khazad 7175 1 123 7872
Pipeline Rijndael∗ 17984 1 – –
Sequential Rijndael 2257 5/52 127 1563
Pipelined DES 3681 1 175 11200
Sequential DES 189 1/18 176 626
Sequential 3-DES 604 1/18 165 587
∗ Does not fit into VIRTEX1000
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Table 21. Rijndael implementations on VIRTEX3200E

Type
Nbr
of

LUT

Nbr
of

reg.

Nbr
of

slices

RAM
blocks

Latency
(cycles)

Output
every

(cycles)

Freq.
after
Synt.
(MHz)

Freq.
after
Impl.
(MHz)

Pipeline 4912 7792 5144 100 42 1 285 112
Pipeline 4272 6832 4032 100 32 1 232 92
Pipeline 3516 3840 2784 100 21 1 208 92
Sequential 1036 1452 866 10 52 5/52 285 147
Sequential 965 1372 739 10 42 4/42 232 135
Sequential 877 932 550 10 31 3/31 208 117
Sequential 877 668 542 10 21 2/21 208 119
Modified
sequential

709 413 405 10 20 2/20 192 87

Algorithm 1 KGP-PSEC
Inputs: E : an elliptic curve subgroup with generator P ,

KDF : a key derivation functions,
hLen: a nonnegative integer

Outputs: PK : PSEC public key, (E, W, KDF, hLen),
s: PSEC private key, a nonnegative integer, 0 ≤ s < p

1: Generate a random integer s ∈ {0, ..., p− 1}.
2: Let W := sP .
3: PK = (E, W, KDF, hLen) and s.

Algorithm 2 EP-PSEC
Inputs: PK : PSEC public key,

α: random value, a nonnegative integer, 0 ≤ α < p
Outputs: Q: a point on E, C1: a point on E
1: Let Q := αW .
2: Let C1 := αP .
3: Output (Q, C1).

Algorithm 3 DP-PSEC
Inputs: PK : PSEC public key,

C1: a point on E,
s: PSEC private key, a nonnegative integer, 0 ≤ s < p

Outputs: Q: a point on E
1: Let Q := sC1.
2: Q.

Algorithm 4 ES-PSEC-KEM-Encrypt
Inputs: PK : PSEC public key
Outputs: c0 an octet string,

k an octet string
1: Let (α, k, r) := EME − PSEC −KEM −A(PK). (See [238] Section 7.1.1.)
2: Let (Q, C1) := EP − PSEC(PK, a). (See Algorithm 2.)
3: Let c0 := EME − PSEC −KEM −B(PK, Q, C1, r). (See [238] Section 7.1.2.)
4: (c0, k).
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Algorithm 5 ES-PSEC-KEM-Decrypt
Inputs: PK : PSEC public key

s: PSEC private key, a nonnegative integer, 0 ≤ s < p
c0: an octet string

Outputs: k′: an octet string
1: Let (C1, c2, g) := EME − PSEC −KEM − C(PK, c0). (See [238] Section 7.1.3.)

If the decoding operation returns “invalid”, then assert “invalid” and stop.
2: Let Q′ := DP − PSEC(PK, C1, s). (See [238] Section 5.3.)
3: Let (α′, k′) := EME−PSEC−KEM−D(PK, c2, g, Q′). (See [238] Section 7.1.4.)
4: Check C1 = DP −PSEC(PK, P, α′). (See [238] Section 5.3.) If it holds, output k′.

Otherwise, assert “invalid” and stop.

5.1.4 Estimations for ECDSA

In this section we give time estimations for the ECDSA [319] signature gener-
ation and verification algorithm on an EC processor developed at KUL [506].
Most of the ECDSA computation time is devoted to modular reduction, modu-
lar multiplication, modular addition and modular multiplicative inversion oper-
ations. A generic arithmetic processor for these operations has been developed
at K.U.Leuven, and the implementation of ECDSA uses this generic arithmetic
processor.

If the elliptic curve is defined over GF (p), we use the elliptic curve processor
(ECP) developed at KUL [506] for the EC point multiplication and the other
modular operations needed for signature generation and verification. If the el-
liptic curve is defined over GF (2m), we use Orlando and Paar’s processor over
GF (2m) [504] for the EC point multiplication and the ECP for the modular op-
erations. To estimate the costs of implementing SHA-1, we use the data given by
Helion Technology Lim. [293]. (For a comparison of implementations of elliptic
curve point multiplications see Table 22.)

ECDSA Signature Generation. We give estimations on the ECP for the
ECDSA signature generation algorithm. To sign a message m, with domain pa-
rameters D = (q, FR, a, b,G, n, h) and associated key pair (d,Q), the operations
and the corresponding numbers of clock cycles on the ECP are as follows:

1. Compute kG = (x1, y1) and r = x1: If q is an odd prime, l1(51l2 + 66),
l1 = log2 k, l2 = log2 q. If q = 2m, m odd prime, 10.5m2 − 8.5m +
1.5 blog2(m− 1)cm.

2. Compute k−1 mod n: 9/2l23 + 6l3, l3 = log2 n.
3. Compute e = SHA-1(m): 889.
4. Compute s = k−1(e+ dr) mod n: 8l3 + 9.

If l ≈ l1 ≈ l2 ≈ l3 and q is an odd prime, the total number of clock cycles for
the ECDSA signature generation is 55.5l2 +80l+898. If m ≈ l2 ≈ l3 and q = 2m,
m odd prime, it is 15m2 + 5.5m+ 1.5 blog2(m− 1)cm+ 898.

ECDSA Signature Verification. The operations for the verification of a sig-
nature and the corresponding numbers of clock cycles on the ECP are as follows:

1. Compute e = SHA-1(m): 889.
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2. Compute w = s−1 mod n: 9/2l23 + 6l3.
3. Compute u1 = ew mod n and u2 = rw mod n: 6l3 + 8.
4. Compute X = u1G + u2Q: If q is an odd prime, 2l3(51l2 + 66) + 42l2 + 56.

If q = 2m, m odd prime, 21m2 − 6m+ 3 blog2(m− 1)cm.

If l ≈ l2 ≈ l3 and q is an odd prime, the total number of clock cycles for the
ECDSA signature verification is 106.5l2 + 186l + 953. If m ≈ l3 and q = 2m, m
odd prime, it is 25.5m2 + 6m+ 3 blog2(m− 1)cm+ 897.

The area and speed and FPGA resource values of the used circuits for esti-
mations of the ECDSA circuit are given in Table 23.

Table 23. The area and speed values of the used circuits for estimations of the ECDSA
circuit.

Operation Block LUTs FFs Block RAMs
Clock Frequency

(MHz)
ECP over GF (p) 11 227 6 959 91.971

ECP over GF (2m) 1 627 1 745 10
SHA-1 722 2 95

The times needed for signature generation and verification for ECDSA over
GF (p) on an FPGA at 91.971 MHz are given in Table 24.

Table 24. The times needed for signature generation and verification for ECDSA over
GF (p) on an FPGA at 91.971 MHz.

Operation
with curve over

GF (2192 − 264 − 1)
with curve over

GF (2167)
Signature Generation 22.42 ms 4.59 ms
Signature Verification 43.09 ms 7.73 ms

5.2 Smartcard Implementations

5.2.1 Non-NESSIE Results

Table 25 lists known non-NESSIE implementations. Results not known are
marked by N/A. The results should not be considered as a fair comparison of the
primitives, as each implementation was done with a different methodology, and
the implementations were not evaluated by NESSIE. In the following we describe
our implementations on a 8051 Smartcard.

5.2.2 Implementation of Khazad, MISTY1, and SAFER++

Table 26 summarises the results for our Khazad, MISTY1 and SAFER++ (64-
bit block) implementations on a low cost 8-bit smartcard (8051). The RAM and
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Table 25. Previous implementations on smartcards.

Primitive Smartcard Speed More Details
CS-cipher 6805 1600 cycles/byte non optimised
Hierocrypt-L1 Z80/JT6N55 2425 states/byte RAM/ROM:26/2447bytes
MISTY1 Z80/JT6N55 3185 states/byte RAM/ROM:44/1598bytes
Triple-DES 6805 6547 cycles/byte RAM/ROM:213/379bytes
Camellia 8051 638.5 cycles/byte submission document [24]
RC6-128 6805 2046 cycles/byte RAM/ROM:200/639bytes

8051 900 cycles/byte RAM/ROM:221/596bytes
ARM 49 cycles/byte RAM/ROM:192/272bytes

Rijndael-128 6805 895 cycles/byte RAM/ROM:50/540bytes
8051 199 cycles/byte RAM/ROM:49/1016bytes
ARM 180 cycles/byte RAM/ROM:16/3900bytes

SHACAL-1 6805 3362 cycles/byte RAM/ROM:118/379bytes
SHA-1 6805 1051 cycles/byte RAM/ROM:118/419bytes
GPS 6805 N/A RAM/ROM:?/300bytes

Table 26. Results of our Khazad, MISTY1, and SAFER++ implementations.

RAM ROM (code + tables) Cycles
Khazad 41(+16) 1227 (705 + 512) 4000
MISTY1 31 2682 (1530 + 1152) 5280
SAFER++ 35(+16) 1345 (705 + 640) 3966

ROM are expressed in bytes. The “(+16)” means that 16 bytes must be added
if the key is to be kept. The given number of cycles is for the encryption of an
8-byte block and the key schedule.

As one can see, SAFER++ (64-bit block) has comparable performance with
Khazad and MISTY1 on a 8051-based CPU, whereas on desktop machines it
is slower. This is due to the fact that most of the operations in SAFER++
are performed on 8-bit words, whereas Khazad and MISTY1 can be optimised
using 32-bit words. However, the implementation of MISTY1 might be optimised
further.

5.2.3 Implementation of (untweaked) ESIGN

SFLASH might have an advantage over other signature schemes only if it is faster
on a low cost smartcard without any coprocessor. Two algorithms are candidates
to compete with SFLASH: ESIGN and ECDSA. These three algorithms have
similar performances on desktop computers, and a rough evaluation shows that
they may have similar performances on low cost smartcards. ESIGN has been
chosen for this evaluation because there are no IPR problems with optimised
implementations of the algorithm.

Low cost smartcards usually have microprocessors either of the Intel 8051
family or of the Motorola 6805 family. The 8051 was chosen as the platform for
our comparison. All evaluations are made on the simplest variant of the 8051.
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ESIGN and SFLASH first compute the hash of the message. In both cases,
this step uses three SHA-1s, so that the times are comparable. Therefore, we can
omit this step and implement only the signature algorithm itself.

The implementation characteristics we are interested in are the memory re-
quirements, the speed, and the code size. RAM is clearly the most sensitive
resource on a smartcard. A basic 8051 processor has a bank of 128 bytes of in-
ternal memory, which is the fastest RAM available to programs. If we need more
memory, we have to use external RAM, which is much slower and quite expen-
sive. Therefore, we shall be especially attentive to RAM usage, and try to use as
little RAM as possible. The SFLASH parameters have fixed size, thus we do not
have decisions to make about their implementation. For ESIGN there is some
flexibility concerning the parameters sizes, but we do not use this feature as our
implementation is designed to support a fixed key size. We choose the recom-
mended size of 1152 bits for the modulus and e = 8 for the exponent. (This is
the smallest exponent that fulfills the security requirements, as recommended by
the designers in their original (untweaked) submission.)

The first thing to note when implementing ESIGN is that the parameters
sizes forces us to use external RAM, for example the modulus will not fit in
the internal RAM. The main steps of the ESIGN signature algorithm are two
(very different) modular exponentiations. The first modular exponentiation is
the computation of r8 modn, where n is a 144-byte modulus and r is a 96-byte
value. This step is clearly the costliest one: its computation takes more than a
third of the total time, due to the fact that we have to perform three squarings
and three modular reductions on large numbers that have to be stored in external
memory, as they cannot fit in the on-chip memory of the 8051. External RAM is
costlier to handle, as there is only one pointer for accessing data located behind
the first 256 bytes of the external RAM. The second main step is the modular
exponentiation r7 mod p, where p is a 48-byte prime. Here we have to perform two
squarings, two multiplications and four modular reductions. The main difference
from the previous modular exponentiation — as the values we have to handle are
not so big — is that we can use the internal RAM, and only need some smaller
external RAM. Thus, this step is not as costly as the first. In total, both modular
exponentiations take about half of the complete time.

In Table 27 we give the characteristics of our ESIGN implementation. The
performance of this implementation could be improved following a comment by
Chung-Huang Yang. The computation of r7 mod p can be replaced by one mod-
ular reduction (r8 mod n) mod p (where r8 mod n is already computed) and a
multiplication by the modular inverse r−1 mod p.

An implementation of ESIGN on an 8-bit H8/300 based smartcard (Hitachi)
has been done by Morita, Okamoto and Yang. The claimed results are that a
signature generation takes 6.15 s, with a 1152-bit modulus and e = 1024, and a
CPU running at 5 MHz. For comparison, our implementation would take 12 s to
generate a signature with a CPU at the same speed. However, this should not be
considered as a fair comparison, as the smartcards are different.
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Table 27. Characteristics of the (untweaked) ESIGN and SFLASH (new version)
smartcard implementations.

Key size Code size Memory size Signature
(bytes) (bytes) (bytes) (CPU cycles)

ESIGN 336 3000 800 5 100 000
SFLASH (new version) 2000 + 1369 127 7 200 000

5.2.4 Implementation of SFLASH (new version)

Here, we give the details of an implementation of the SFLASH algorithm on a
basic 8051 smartcard. We let K denote the field F27 and L denote the field F2259 ,
which is an extension field of degree 37 of K. These fields are described in the
submission as quotients of the polynomial ring F2[X] (resp. K[X]) by an ideal
generated by an irreducible polynomial of degree 7 (resp. 37).

We implemented the steps 6–9 of the SFLASH signature algorithm, as de-
scribed in the submission. The initial steps consist of transforming a message
into an element of L by using a series of three applications of SHA-1. These steps
(1–5) were neglected since the main goal of our implementation was to compare
SFLASH (new version) with ESIGN and both have the same initial triple hashing.

The implementation was written in assembly. In the first attempt, we focused
on fitting the signature to a basic 8051 without external memory, that is with
only the basic 128 bytes of RAM. The significant data of this implementation are
as follows:

– Code size: 2K + some extra tables (37× 37 bytes)
– RAM: 127 bytes (contains registers, stack and 3 elements of L, namely 111

bytes)
– Run time for one signature: approximately 7.2 million cycles

Table 27 contains these characteristics for our SFLASH implementation. An in-
dependent implementation by Schlumberger-Sema gives around 223 000 CPU
cycles (using external memory). The performance of the implementations by
Schlumberger-Sema with and without optimisation of the multiplications using
Gray codes is given in Table 28.

Table 28. Performance of optimised implementations of SFLASH (new version), made
by the submitters.

CPU Type
Using
Gray
Codes

CPU
Cycles

Clock
Cycles

Time
(sec) at

3.57 MHz

Time
(sec) at
10 MHz

RAM
(bytes)

ROM
(bytes)

Intel 8051 no 319 968 3 839 616 1.075 0.384 473 2.5K
yes 223 118 2 677 416 0.750 0.268 473 3.1K

Infineon 66 no 821 135 0.230 0.082 473 2.5K
yes 586 605 0.164 0.059 473 3.1K

We describe the technical part of our implementation: Steps 6–9 of the
SFLASH signature algorithm involve two affine maps of L viewed as a K-
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vector space of dimension 37. These maps are described in the GEN AFF func-
tion, which has addresses of the vectors VAR i and VAR j as input and computes
VAR j = A VAR i+B, where A is a 37×37 matrix and B a 37×1 matrix (a column
vector), both stored in the ROM.

The delicate part of the signature is the computation of Ah (the modular expo-
nentiation) in L. To do this, we follow suggestion (b) of the SFLASH description
(whereas in the Schlumberger-Sema implementation they compute the minimal
h, thus saving a lot of computation). To do this exponentiation, we need a linear
map, a multiplication map in L (MULTL) and a squaring map in L (SQUAREL).

Note that we cannot use MULTL to square because we only use 128 bytes of
RAM: MULTL multiplies two elements and writes the result into a third different
one, changing two of the three variables of L that are stored in the RAM, whereas
SQUAREL squares a variable and writes it into a different one, changing only one
of the three variables. When performing the modular exponentiation we often
need to keep the values of two variables, hence we need SQUAREL.

Since the linear map is the same as the affine map GEN AFF with B = 0,
we only introduced a switch (bit) to indicate whether the linear version will be
called.

All these functions rely on a sub-function MULTK which performs the multi-
plication of two bytes (elements of K). This function was made SPA-resistant
by using a table of logarithms and a table of exponentials to transform multipli-
cations into sums. Thus we were able to lower the cycle count from 12.4 to 7.2
million with an additional cost of storing two 128-byte arrays in the ROM.

The more dramatic improvements in the cycle count will come from a better
implementation of the modular exponentiation. In particular, if we can efficiently
compute inverses in L, we can speed up things quite essentially.

On the other hand, the Schlumberger-Sema implementation uses a smaller
representative of the exponent h and exploits (as we did) a quasi-periodicity of
some loops.

5.2.5 GPS

The GPS submitters claim that GPS (and its tweak) were designed for smartcard
applications, in view of speed and code size (only 300 bytes). We obtained very
high speeds on smartcards; the card only needs to compute the answer, which on
our platforms takes between 1 and 3 ms. If we use a much larger number for |A|,
the speed for the answer is about the same and only the commitment and the
verification are slower. (The commitment may take about 100–300 ms.)
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Table 29. Host Computers

Platform Location Processor, Speed, Memory
Operating
Systems

Compilers

PIII/Linux TEC Pentium III, 450 MHz, 256M Linux 2.4.17 gcc 3.1.1, gcc3.3
TEC Pentium III, 600 MHz, 256M Linux 2.4.17 gcc 2.95.2, gcc 3.0.3, gcc 3.1.1
TEC Pentium III, 933 MHz, 256M Linux 2.4.17 gcc 2.95.2
RHUL Pentium III, 665 MHz Linux 2.2.16 egcs 2.91.66

PIII/MS TEC Pentium III, 450 MHz Win 2000 Visual C 6.0, gcc 2.95.3
SAG Pentium III, 850 MHz Win 2000 gcc 2.95.3
SAG Pentium III, 850 MHz Win 2000 Intel C++ 6.0, Visual C 6.0
UCL Pentium III, 850 MHz, 256M Win 2000 gcc 2.95.3

PI/MMX TEC Pentium MMX, 133 MHz, 80M Linux 2.2.9 gcc 2.7.2.3
Pentium4 TEC Pentium 4, 1.8 GHz Linux 2.4.0 gcc 2.95.2

TEC Pentium 4, 1.7 GHz Linux 2.4.12 gcc 2.95.2, gcc 3.1.1
Pentium2 TEC Pentium II, 350 MHz, 64M Win 98 Visual C 6.0, gcc 2.95.3
Xeon TEC Pentium 4 Xeon, 1680 MHz Linux 2.4.2 gcc 2.96, egcs 2.91.66

KUL Pentium 4 Xeon, 1500 MHz Linux 2.4.7 gcc 2.96
486 TEC i486DX, 33 MHz Linux 2.0.30 gcc 2.7.2.3
Alpha EV6.7 TEC 21264A, 667 MHz OSF1 V4.0, V5.1 Dec C V6.4, gcc 2.97
Sparc V9 TEC Ultrasparc IIi, 400 MHz Sun OS 5.8 SWC 5.1, gcc 3.0.4

TEC Ultrasparc IIi, 338 MHz Sun OS 5.8 SWC 5.1, gcc 3.0.4
UIB Ultrasparc IIi, 450 MHz Sun OS 5.8 SWC 5.2
ENS Ultrasparc IIi, 450 MHz, 2G Sun OS 5.7 SWC 5.0
ENS Ultrasparc IIi, 333 MHz Sun OS 5.8 gcc 3.2.1
SAG Ultrasparc IIi, 248 MHz Sun OS 5.6 gcc 2.95.3

Mac ENS G4 (Power PC), 400 MHz Mac OS 10.0.4 gcc 2.95.2
AMD TEC Duron, 1200 MHz, 128M WinXP Visual C 7.0 (.NET), gcc 2.95.3

ENS AthlonXP 1700+, 1467 MHz, 256M Linux 2.4.18 gcc 2.96
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Fig. 3. Block Ciphers on PIII/MS
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Fig. 4. Block Ciphers on PI/MMX
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Fig. 5. Block Ciphers on Pentium4

encryption decryption
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Fig. 6. Block Ciphers on Pentium2

encryption decryption
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Fig. 7. Block Ciphers on Xeon

encryption decryption
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Fig. 8. Block Ciphers on 486
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Fig. 9. Block Ciphers on Alpha
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Fig. 11. Block Ciphers on Macintosh

encryption decryption



Dra
ft

Apr
il
19

, 2
00

4

434 Book II. Evaluation — Part C. Performance evaluation

02040608010
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

Id
ea...............

Kha
za

d

............... ...............

Kha
za

d-t
wea

k

............... ...............

M
ist

y1

............... ...............

Sa
fer

++/6
4

............... ..........

Cs-c
iph

er

........ ........

Hier
oc

ry
pt

-L
1

........ ................

Nim
bu

s

............... ................

Nus
h

............... ................

CAST
-12

8

................ ................

DES

................ ...............

Trip
le-

DES

............... ..........

Kasu
mi

.......... .............

RC5 (12
Rou

nd
s)

............. .................

Sk
ipjac

k

................. ..........

Cam
ell

ia/
12

8

.......... ................

Cam
ell

ia/
19

2

................ ...............

Cam
ell

ia/
25

6

............... ...............

Cam
ell

ia
2n

d im
pl/

12
8

............... ................

Cam
ell

ia
2n

d im
pl/

19
2

................ ...............

Cam
ell

ia
2n

d im
pl/

25
6

............... ...............

RC6/
12

8

............... .................

RC6/
19

2

................. .................

RC6/
25

6

................. .................

Sa
fer

++/1
28

................. ...............

Sa
fer

++/2
56

............... ...............

Anu
bis

/1
28

.............. ................

Anu
bis

/1
60

................ ................

Anu
bis

/1
92

................ ...............

Anu
bis

/2
24

............... ...............

Anu
bis

/2
56

............... ...............

Anu
bis

/2
88

............... ...............

Anu
bis

/3
20

............... ...............

Gran
dc

ru

...............

Hier
oc

ry
pt

-3/
12

8
...............

Hier
oc

ry
pt

-3/
19

2
.............. ..............

Hier
oc

ry
pt

-3/
25

6
.............. ..............

Noe
ke

on
-D

ir

............. ..............

Noe
ke

on
-In

d

.............. ................

Nus
h/

12
8

................ ................

Nus
h/

25
6

................ ................

Q/1
28

................. ...............

Q/2
56

......... ...............

SC
20

00
/1

28

........ ................

SC
20

00
/1

92

................ ...............

SC
20

00
/2

56

............... ...............

M
ars

/1
28

............... ................

M
ars

/1
92

................ ................

M
ars

/2
56

................ ................

Rijn
da

el/
12

8

................ ................

Rijn
da

el/
19

2

................ ................

Rijn
da

el/
25

6

................ ................

Se
ed

............... ...............

Se
rp

en
t/1

28

............... ..............

Se
rp

en
t/1

92

.............. ..............

Se
rp

en
t/2

56

.............. ..............

Twofi
sh

/1
28

.............. ................

Twofi
sh

/1
92

................ ................

Twofi
sh

/2
56

................ ................

SH
ACAL-1

................ ................

SH
ACAL-2

................ ................

RC6-2
56

/2
56

............... ...............

Rijn
da

el-
25

6/
19

2

.............. ...............

Rijn
da

el-
25

6/
25

6

............... ............... ...............

cy
cle

s/
by

te

Fig. 12. Block Ciphers on AMD

encryption decryption



Dra
ft

Apr
il
19

, 2
00

4

B. Figures 435

02040608010
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

BM
G
L

(m
=
16

)

Sn
ow

/1
28

Sn
ow

/2
56

.........................

So
be

r-t
16

/1
28

.........................

So
be

r-t
16

/2
56

....................

So
be

r-t
32

/1
28

....................

So
be

r-t
32

/2
56

......................

Le
vi
at

ha
n/

12
8

......................

Le
vi
at

ha
n/

19
2

........................

Le
vi
at

ha
n/

25
6

........................

Li
li

........................

RC4BM
G
L

with
IV

..........................

Sn
ow

with
IV

/1
28

Sn
ow

with
IV

/2
56

.........................

So
be

r-t
16

with
IV

/1
28

.........................

So
be

r-t
16

with
IV

/2
56

....................

So
be

r-t
32

with
IV

/1
28

....................

So
be

r-t
32

with
IV

/2
56

......................

Sc
re
am

-0

......................

Sc
re
am

-F

.........................

Sc
re
am

-S

..........................

Se
al
-3
.0

.........................

W
hi
rlp

oo
l

.........................

W
hi
rlp

oo
l 2

nd
im

pl
(M

M
X)

..................

M
D
4

....................

M
D
5

.........................

RIP
EM

D

..........................

SH
A-0

........................

SH
A-1

........................

SH
A-2

/2
56

........................

SH
A-2

/3
84

......................

SH
A-2

/5
12

................

Tig
er

................

BCHASH
-R

ijn
da

el-
12

8

......................

BCHASH
-R

ijn
da

el-
25

6

....................

Ttm
ac

..............

Um
ac

-1
6

......................

Um
ac

-3
2

.........................

HM
AC-W

hi
rlp

oo
l

........................

HM
AC-M

D
4

..................

HM
AC-M

D
5

.........................

HM
AC-R

IP
E-M

D

..........................

HM
AC-S

HA-0

........................

HM
AC-S

HA-1

........................

HM
AC-S

HA-2
/2

56

........................

HM
AC-S

HA-2
/3

84

......................

HM
AC-S

HA-2
/5

12

................

HM
AC-T

ig
er

................

CBCM
AC-D

ES

......................

CBCM
AC-R

ijn
da

el

..................

CBCM
AC-S

ha
ca

l

......................

......................

cy
cl

es
/b

yt
e

Fig. 13. Stream Ciphers, Hash Functions and MACs on PIII/Linux
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Fig. 14. Stream Ciphers, Hash Functions and MACs on PIII/MS
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Fig. 16. Stream Ciphers, Hash Functions and MACs on Pentium4
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Fig. 17. Stream Ciphers, Hash Functions and MACs on Pentium2
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Fig. 18. Stream Ciphers, Hash Functions and MACs on XEON

stream ciphers hash functions MACs



Dra
ft

Apr
il
19

, 2
00

4

B. Figures 441

02040608010
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

BM
G
L

(m
=
16

)

Sn
ow

/1
28

Sn
ow

/2
56

........................

So
be

r-t
16

/1
28

........................

So
be

r-t
16

/2
56

....................

So
be

r-t
32

/1
28

....................

So
be

r-t
32

/2
56

......................

Le
vi
at

ha
n/

12
8

......................

Le
vi
at

ha
n/

19
2

........................

Le
vi
at

ha
n/

25
6

........................

Li
li

........................

RC4BM
G
L

with
IV

........................

Sn
ow

with
IV

/1
28

Sn
ow

with
IV

/2
56

........................

So
be

r-t
16

with
IV

/1
28

........................

So
be

r-t
16

with
IV

/2
56

....................

So
be

r-t
32

with
IV

/1
28

....................

So
be

r-t
32

with
IV

/2
56

......................

Sc
re
am

-0

......................

Sc
re
am

-F

..........................

Sc
re
am

-S

........................

Se
al
-3
.0

..........................

W
hi
rlp

oo
l

..........................

M
D
4M

D
5

.........................

RIP
EM

D

.........................

SH
A
-0

......................

SH
A
-1

....................

SH
A
-2
/2

56

........................

SH
A
-2
/3

84

..................

SH
A
-2
/5

12

........

Tig
er

........

BCH
A
SH

-R
ijn

da
el-

12
8

..................

Ttm
ac

....

U
m
ac

-1
6

......................

U
m
ac

-3
2

......................

H
M

AC-W
hi
rlp

oo
l

........................

H
M

AC-M
D
4

H
M

AC-M
D
5

.........................

H
M

AC-R
IP

E-M
D

.........................

H
M

AC-S
H
A
-0

......................

H
M

AC-S
H
A
-1

....................

H
M

AC-S
H
A
-2
/2

56

........................

H
M

AC-S
H
A
-2
/3

84

..................

H
M

AC-S
H
A
-2
/5

12

........

H
M

AC-T
ig
er

........

CBCM
AC-D

ES

..................

CBCM
AC-R

ijn
da

el

................

CBCM
AC-S

ha
ca

l

....................

....................

cy
cl

es
/b

yt
e

Fig. 19. Stream Ciphers, Hash Functions and MACs on 486
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Fig. 21. Stream Ciphers, Hash Functions and MACs on Sparc V9
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Fig. 22. Stream Ciphers, Hash Functions and MACs on Macintosh

stream ciphers hash functions MACs



Dra
ft

Apr
il
19

, 2
00

4

B. Figures 445

02040608010
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

BM
G
L

(m
=
16

)

Sn
ow

/1
28

Sn
ow

/2
56

........................

So
be

r-t
16

/1
28

........................

So
be

r-t
16

/2
56

....................

So
be

r-t
32

/1
28

....................

So
be

r-t
32

/2
56

........................

Le
vi
at

ha
n/

12
8

........................

Le
vi
at

ha
n/

19
2

........................

Le
vi
at

ha
n/

25
6

........................

Li
li

........................

RC4BM
G
L

with
IV

........................

Sn
ow

with
IV

/1
28

Sn
ow

with
IV

/2
56

........................

So
be

r-t
16

with
IV

/1
28

........................

So
be

r-t
16

with
IV

/2
56

....................

So
be

r-t
32

with
IV

/1
28

....................

So
be

r-t
32

with
IV

/2
56

........................

Sc
re
am

-0

........................

Sc
re
am

-F

.........................

Sc
re
am

-S

........................

Se
al
-3
.0

..........................

W
hi
rlp

oo
l

.........................

W
hi
rlp

oo
l 2

nd
im

pl
(M

M
X)

..............

M
D
4

................

M
D
5

.........................

RIP
EM

D

..........................

SH
A-0

......................

SH
A-1

........................

SH
A-2

/2
56

........................

SH
A-2

/3
84

......................

SH
A-2

/5
12

..................

Tig
er

..................

BCHASH
-R

ijn
da

el-
12

8

......................

BCHASH
-R

ijn
da

el-
25

6

....................

Ttm
ac

..........

Um
ac

-1
6

......................

Um
ac

-3
2

.........................

HM
AC-W

hi
rlp

oo
l

........................

HM
AC-M

D
4

..............

HM
AC-M

D
5

.........................

HM
AC-R

IP
E-M

D

..........................

HM
AC-S

HA-0

......................

HM
AC-S

HA-1

........................

HM
AC-S

HA-2
/2

56

........................

HM
AC-S

HA-2
/3

84

......................

HM
AC-S

HA-2
/5

12

..................

HM
AC-T

ig
er

..................

CBCM
AC-D

ES

......................

CBCM
AC-R

ijn
da

el

....................

CBCM
AC-S

ha
ca

l

......................

......................

cy
cl

es
/b

yt
e

Fig. 23. Stream Ciphers, Hash Functions and MACs on AMD
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Fig. 24. Block Ciphers on PIII/Linux (Sorted)

encryption decryption
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Fig. 25. Block Ciphers on PIII/MS (Sorted)

encryption decryption
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Fig. 26. Block Ciphers on PI/MMX (Sorted)
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Fig. 27. Block Ciphers on Pentium4 (Sorted)

encryption decryption
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Fig. 28. Block Ciphers on Pentium2 (Sorted)

encryption decryption
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Fig. 29. Block Ciphers on Xeon (Sorted)

encryption decryption
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Fig. 30. Block Ciphers on 486 (Sorted)

encryption decryption
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Fig. 31. Block Ciphers on Alpha (Sorted)

encryption decryption
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Fig. 32. Block Ciphers on Sparc V9 (Sorted)

encryption decryption
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Fig. 33. Block Ciphers on Macintosh (Sorted)

encryption decryption
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Fig. 36. Stream Ciphers, Hash Functions and MACs on PIII/MS (Sorted)
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Fig. 37. Stream Ciphers, Hash Functions and MACs on PIII/MMX (Sorted)
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Fig. 38. Stream Ciphers, Hash Functions and MACs on Pentium4 (Sorted)
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Fig. 39. Stream Ciphers, Hash Functions and MACs on Pentium2 (Sorted)
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Fig. 40. Stream Ciphers, Hash Functions and MACs on XEON (Sorted)
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Part D

NESSIE selection for Phase II

1 Introduction

The NESSIE project is a three year project (2000-2002) that is funded by the Eu-
ropean Union’s Fifth Framework Programme. The main objective of the NESSIE
project is to put forward a portfolio of strong cryptographic primitives of various
types. Further details about the NESSIE project can be found at the NESSIE
website http://www.cryptonessie.org/.
The start of the NESSIE project was an open call [475] for the submission of
cryptographic primitives as well as for evaluation methodologies for these primi-
tives. This call includes a request for the submission of block ciphers (as for the
AES call), but also of other cryptographic primitives including hash functions,
stream ciphers, and digital signature algorithms. The call also asked for evalu-
ation methodologies for these primitives. The scope of the call was defined in
conjunction with the project industry board, and was published in March 2000.
This call resulted in forty submissions. The NESSIE project aims to assess these
submissions with the goal of producing a portfolio of cryptographic primitives
for use in different environments. The NESSIE project proposes to disseminate
the project results widely and to build consensus based on these results by using
the appropriate bodies: a project industry board, NESSIE workshops, the 5th
Framework programme, and various standardisation bodies.
The NESSIE project has been divided into two phases. All primitives are evalu-
ated in Phase I. At the end of Phase I, a subset of primitives is selected for further
evaluation in Phase II. At the end of Phase II, a portfolio of primitives for possible
standardisation will be chosen. To facilitate the open evaluation process, there
are three NESSIE workshops. Submitted primitives were presented at the first
NESSIE workshop, which took place on 13-14 November 2000 at K.U. Leuven
(Belgium). Early results concerning the primitives were presented at the second
NESSIE workshop, which took place on 12-13 September 2001 at Royal Holloway
(U.K.). This workshop took place at the end of Phase I. The third workshop will
take place at the end of Phase II (autumn 2002). In Phase I, both a security

Book II Part D of this final report was first published under the name ”NESSIE Phase
I: Selection of Primitives” as a public NESSIE document.
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evaluation and a performance evaluation of the submitted primitives were under-
taken by the NESSIE partners. The NESSIE partners have also received many
external comments about the submitted primitives. Reports on both the Phase I
Security Evaluation [478], which also contains methodological comments, and the
Phase I Performance Evaluation [477] are available on the NESSIE website. An
overview of the methodology used by the NESSIE project is given in the Phase
I Security review [478]
This document gives the selection of primitives made by the NESSIE project for
further evaluation in Phase II. The NESSIE project will also consider relevant
standards or proposed standards in Phase II, such as AES, CBC-MAC, H-MAC,
DSS, SHA-1, SHA-256 and SHA-512.

2 Block Ciphers

We divide the discussion about block ciphers into normal-legacy (64-bit key)
block ciphers and normal (128-bit key) or high (256-bit key) block ciphers.

2.1 Legacy Block Ciphers

– Legacy Block Ciphers selected for Phase II Evaluation
– IDEA
– Khazad
– MISTY1
– SAFER++ (64-bit block)

– Legacy Block Ciphers not selected for Phase II Evaluation
– CS-Cipher
– Hierocrypt-L1
– Nimbus
– NUSH

No security problems have been reported for IDEA, MISTY1, Khazad and
SAFER++. IDEA benefits from having been scrutinised publicly for a decade
without the detection of any serious weaknesses. MISTY1 has been in the pub-
lic domain for five years, and the best attack breaks five of the suggested eight
rounds. Khazad borrows elements from the AES, which makes it an attractive
candidate for a 64-bit block cipher. Similarly SAFER++ (64-bit block) is a minor
modification of the 128-bit block cipher SAFER++ (128-bit block).
CS-Cipher has no reported security problems, though it is the slowest of all the
64-bit submissions. Hierocrypt-L1 is slow, has problems with its key schedule
and 3.5 out of its 6 rounds can be attacked. Nimbus has been broken in a chosen
plaintext attack with 28 texts and 210 time complexity. NUSH has an extremely
low security margin, and it seems that a linear attack is faster than an exhaustive
key search in the case of 256-bit keys.
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2.2 Normal and high level Block Ciphers

– Normal and High Level Block Ciphers selected for Phase II Evaluation
– SAFER++ (128-bit block)
– Camellia
– RC6

SHACAL
–

– Normal and High Level Block Ciphers not selected for Phase II Evaluation
– NUSH
– Grand Cru
– Noekeon
– Q
– Hierocrypt-3
– SC2000
– Anubis

No security problems have been reported for SAFER++ (128-bit block), Camel-
lia, RC6, and SHACAL.
NUSH has an extremely low security margin, as described above. Grand Cru is
based on AES, but is one of the slowest block ciphers submitted to NESSIE.
Q can be attacked faster than an exhaustive key search. Noekeon has a related
key attack for either of the submitted key schedules. Hierocrypt-3 also has key
schedule problems, and there are attacks for up to 3.5 rounds out of 6. SC2000 has
a mix of Feistel rounds and SP-network rounds; the benefits of and justification
for this design are unclear. Anubis is very similar to the AES. Any advantages
that Anubis might offer over the AES would not seem sufficient to suggest that
Anubis would ever be selected as an alternative standard to the AES.

3 MAC and Hash Functions

– MAC and Hash Functions selected for Phase II Evaluation
– Two-Track-MAC
– UMAC
– Whirlpool

There have been no security problems reported for any of the submitted MAC and
Hash Function primitives Two-Track-MAC, UMAC and Whirlpool. All three
have been selected for further evaluation in Phase II of the NESSIE process.

4 Stream ciphers

– Stream Ciphers selected for Phase II Evaluation
– SOBER-t16 and SOBER-t32
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– SNOW
– BMGL

– Stream Ciphers not selected for Phase II Evaluation
LILI-128

–
– LEVIATHAN

No security problems have been reported for the stream cipher submissions
SOBER-t16, SOBER-t32, SNOW and BMGL.
LEVIATHAN possesses severe statistical problems, which have been verified ex-
perimentally. For LILI-128, there are attacks that are very much faster than brute
force key space search.

5 Asymmetric Primitives

Primitives are selected for Phase II evaluation as detailed below. Phase II evalu-
ation will take note of ongoing standardisation activities such as ISO and P1363.

5.1 Asymmetric Encryption

– Asymmetric Encryption Schemes selected for Phase II Evaluation
– ACE Encrypt (revised version named ACE-KEM)
– EPOC-2 (revised version)
– PSEC-2 (revised version named PSEC-KEM)
– ECIES
– RSA-OAEP (if revised)

– Asymmetric Encryption Schemes not selected for Phase II Evaluation
– EPOC-1 and EPOC-3
– PSEC-1 and PSEC-3

Primitives based on finite field discrete logarithm

ACE Encrypt is proven to be secure without using the random oracle model but
is not as flexible as the other schemes in that the only symmetric cipher it can be
based on is MARS. ACE-KEM is a variant of ACE Encrypt with similar security,
better performance, and also working in an elliptic curve group. ACE-KEM is
supported by the submitters of ACE Encrypt.

Primitives based on elliptic curve discrete logarithm

PSEC-1 is not selected because it has worse security than PSEC-2 and similar
performance. PSEC-2 as submitted to NESSIE has weaknesses. PSEC-KEM, a
revised version of PSEC-2, is being considered by ISO and will be submitted to
NESSIE. PSEC-KEM will be considered in Phase II. PSEC-KEM has an efficient
reduction to a better asymmetric assumption, at the cost of a slower decryption,
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than PSEC-3. Furthermore, PSEC-3 is no longer supported by its submitters.
Thus, PSEC-3 is not selected for Phase II.
ECIES and PSEC-3 are the schemes with the most efficient security reduction
submitted in this category. Whilst the asymmetric component of ECIES is at least
as secure as PSEC-3, it has stronger requirements for its symmetric components.
ECIES is selected for Phase II. There is also an ECIES-KEM variant that will
be compared to ECIES.

Primitives based on the factorisation problem

EPOC-1 is not selected for Phase II because it has worse security than EPOC-2
and similar performance. EPOC-2 has been revised in P1363 to fix some param-
eters and encoding methods. Compared to EPOC-3, EPOC-2 has an efficient
reduction to a better asymmetric assumption, at the cost of a slower decryption.
Furthermore, EPOC-3 is no longer supported by its submitters. Thus EPOC-3
is not selected for Phase II. EPOC-2 is selected for Phase II because it is the
only submitted primitive based on factoring and it has efficient and convincing
security.
RSA-OAEP is selected for Phase II. However, the OAEP padding has weaknesses
and the submission should be modified to use another technique with a better
security proof. We are aware of four techniques in the literature that reduce RSA
encryption to the RSA problem: OAEP+ [583] and SAEP+ [103] have a bad
reduction, REACT [500] and KEM [584] have a tight reduction. Recent results
have shown that a Rabin-SAEP scheme [103] has better properties than the RSA-
based schemes, as its security has a very efficient reduction to factoring instead of
RSA inversion, and it has better performance than RSA-based schemes, though
a bad implementation can reveal the secret key.

5.2 Digital Signature Schemes

– Digital Signature Schemes selected for Phase II Evaluation
– ECDSA
– ESIGN (revised version)
– RSA-PSS
– SFLASH
– QUARTZ (depending on application)

– Digital Signature Schemes not selected for Phase II Evaluation
– ACE Sign
– FLASH

Primitives based on the RSA problem.

ACE Sign and RSA-PSS are both based on the difficulty of factorisation. While
both are secure in the random oracle model if the RSA problem is hard (with a
much tighter reduction for RSA-PSS), ACE Sign is also secure if the Strong-RSA
problem is hard without any random oracle assumption. This additional security
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property has a high performance cost, which implies that ACE Sign with a 1024-
bit modulus has similar performance to RSA-PSS with a 3000-bit modulus. Thus
RSA-PSS is selected for Phase II, and ACE Sign is not selected for Phase II.

Primitives based on elliptic curve discrete logarithm problem

ECDSA is selected for Phase II. There have been no reported security problems,
and ECDSA creates shorter signatures than RSA-PSS with a shorter signing time
with an equivalent verification time.

Primitives based on the approximate e-th root modulo p2q

The security of ESIGN is based on a similar but stronger assumption than RSA.
It has similar performance to ECDSA, and its security also seems to be simi-
lar. ESIGN has been revised in P1363 to change some parameters and encoding
methods so that signature generation for long messages requires only one pass
through a hash function. ESIGN is selected for Phase II.

Primitives based on multivariate quadratic polynomials

FLASH and SFLASH are both C∗−− schemes targeted to a smart card environ-
ment. SFLASH is selected for Phase II and FLASH is not. SFLASH has similar
security and similar performance as FLASH, but with a much smaller public key.
QUARTZ has very slow signature generation but the resulting signature is only
128 bits long. If such short signatures are considered useful in standardised ap-
plications, then QUARTZ should be selected for Phase II. The fact that these
schemes do not have provable security is not a significant problem for applications
which need signatures with only a short validity period.

5.3 Digital Identification Schemes

– Digital Identification Schemes selected for Phase II Evaluation
– GPS

GPS, the only primitive submitted to NESSIE in this category, has good perfor-
mance with high security. The submitted documents contain some minor flaws
in the specification, but these have been corrected. GPS is selected for further
evaluation in Phase II.
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NESSIE portfolio

1 Introduction

This document presents and motivates the NESSIE portfolio of recommended
cryptographic primitives.Further technical information supporting these decisions
can be found in the NESSIE security [481] and performance [480] evaluation
documents.

The information in this document is provided as is, and no guarantee or
warranty is given or implied that the information is fit for any particular purpose.
The user thereof uses the information at its sole risk and liability.

2 Block Cipher Encryption Schemes

2.1 64-bit Block Ciphers

NESSIE portfolio. The 64-bit block cipher included in the NESSIE portfolio
is MISTY1.

– The NESSIE project did not find an attack on MISTY1. Furthermore, MISTY1
is similar to the block cipher KASUMI, so much of the analysis for KASUMI
would also be applicable to MISTY1. KASUMI has been scrutinised prior
to its adoption as a 3GPP standard. However, many NESSIE partners are
concerned that the simple algebraic structure of MISTY1 may lead to future
breakthroughs in the analysis of MISTY1.

Comments on the other 64-bit block ciphers studied in Phase II.

– No attacks were found on Khazad and in the opinion of the NESSIE project it is
an interesting primitive for future research. However, concerns were expressed
with regard to the structural symmetry of Khazad.

Book II Part E of this final report was first published under the name ”Portfolio of
recommended cryptographic primitives” as a public NESSIE document.
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– The NESSIE project did not find an attack on IDEA. However, it was not
selected because of Intellectual Property Rights issues and some concerns about
its key schedule.

– The NESSIE project did not find an attack on SAFER++ (64-bit block).
However, SAFER++ (64-bit block) was not selected because there were some
concerns about certain structural properties of SAFER++ (64-bit block), as
discussed in the NESSIE Security Evaluation Report. It was also found to be
slower than the other ciphers except in smart cards.

– The NESSIE project considers 3-DES to be a secure but slow block cipher.

2.2 128-bit Block Ciphers

NESSIE portfolio. The 128-bit block ciphers included in the NESSIE portfolio
are the AES and Camellia.

– The AES has been scrutinised by the U.S. National Institute of Standards and
Technology as a secure block cipher and adopted as a U.S. Federal Information
Processing Standard. Camellia has many similarities to the AES, so much of the
analysis for the AES is also applicable to Camellia. It is also the case that the
NESSIE project did not find an attack on either the AES or Camellia. However,
the NESSIE partners, as well as the wider cryptographic community, have a
wide range of views about the AES and Camellia. Many NESSIE partners
have significant concerns that the simple algebraic structure of the AES, and
to a somewhat lesser extent Camellia, may lead to future breakthroughs in the
analysis of these block ciphers.

Comments on the other 128-bit block ciphers studied in Phase II.

– The NESSIE partners felt unable to consider the selection of RC6 owing to
ongoing serious Intellectual Property Rights issues.

– The NESSIE project did not find an attack on SAFER++ (128-bit block).
However, the NESSIE project did not select SAFER++ (128-bit block) because
of some concerns, both about certain structural properties of SAFER++ (128-
bit block) and about the low security margin of SAFER++ (128-bit block), as
discussed in the NESSIE Security Evaluation Report.

2.3 256-bit Block Ciphers

NESSIE portfolio. The 256-bit block cipher included in the NESSIE portfolio
is SHACAL-2.

Comments on the other block ciphers with block length larger than
128 bits studied in Phase II.

– The NESSIE partners felt unable to consider the selection of RC6 owing to
ongoing serious Intellectual Property Rights issues.

– The NESSIE project did not select SHACAL-1 because of concerns about its
key schedule.
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3 Stream Ciphers and Pseudorandom Number Generators

NESSIE portfolio. The NESSIE portfolio in this category is empty.

Comments on the stream ciphers studied in Phase II.

– NESSIE does not recommend SNOW for encryption, because there are distin-
guishing attacks and guess and determine attacks faster than exhaustive key
search.

– For SOBER-t16 and SOBER-t32 there are distinguishing attacks faster than
exhaustive key search. Owing to the irregular decimation of SOBER-t16 and
SOBER-t32 there are certain reservations with respect to the vulnerability
of implementations of these algorithms with respect to side-channel attacks.
NESSIE, therefore, does not recommend either primitive.

– The first drawback of BMGL is its small internal state, which makes it vul-
nerable to a time-memory tradeoff attack. In addition, BMGL is too slow for
encryption, so NESSIE does not recommend BMGL.

4 Collision-Resistant Hash Functions

NESSIE portfolio. The collision-resistant hash functions included in the
NESSIE portfolio are Whirlpool, SHA-256, SHA-384 and SHA-512.

– The NESSIE project selects Whirlpool as a collision-resistant hash function,
with an output length of 512 bits. The design of Whirlpool is based on an
underlying 512-bit block cipher that is used in Myaguchi-Preneel mode. This
block cipher has a structure similar to Rijndael. The best known attack on
Whirlpool finds non-random properties when the compression function is
reduced to six rounds or less (out of ten); this gives a good security margin.
The performance of Whirlpool is acceptable, though on most platforms it is
slightly slower than SHA-2/512.

– The NESSIE project selects SHA-256, SHA-384 and SHA-512 as collision-
resistant hash functions, with an output length of 256, 384 or 512 bits. These
algorithms have recently been added to the NIST standard for hash functions.
In contrast to the AES process this was not an open standardisation process
and the design strategy was not made public. These algorithms are rather a
new designs that have some similarities to SHA-1 but there are important dif-
ferences in the structure. They were not submitted to NESSIE and owing to
a lack of resources only limited evaluation was done for them. Current results
indicate no security problems and these primitives seems to have a large se-
curity margin against known attacks. The performance of these algorithms is
acceptable, SHA-512 and SHA-384 being slightly faster than Whirlpool on
most platforms. SHA-256 is about twice as fast on most platforms.

No security weaknesses were found for these primitives. However, Whirlpool,
SHA-256, SHA-384 and SHA-512 are newly designed primitives which have un-
dergone only limited evaluation by the cryptographic community so far.
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NESSIE comments on “legacy” hash functions. The standard primitives
SHA-1 and RIPEMD-160 do not meet the NESSIE security requirement for sym-
metric primitives, because their output is only 160 bits, but they can be recom-
mended for applications where this security level is sufficient.

5 Message Authentication Codes

NESSIE portfolio. The message authentication codes included in the NESSIE
portfolio are UMAC, TTMAC, EMAC and HMAC.

– For the authentication of long message streams UMAC is by far the fastest of
the MAC primitives considered by NESSIE (at the cost of greater complex-
ity and worse key-agility compared to the other primitives). UMAC is based
on universal hash function families and has provable security: a break of the
primitive would imply a break of the block cipher that is used by the scheme
as a pseudo-random function (the current specification chooses AES as block
cipher).

– TTMAC (also known as Two-Track-MAC) has the highest security level of
the MAC primitives considered by NESSIE. The design of TTMAC is based
on the hash function RIPEMD-160 (with small modifications). The security
can be proven on the assumption that the underlying compression function is
pseudo-random. TTMAC has specific performance advantages: it is especially
efficient in the case of short messages, and has optimal key-agility.

– EMAC (also known as DMAC) has the advantage that it allows the reuse of
an existing block cipher implementation (in CBC-mode with an extra encryp-
tion as output transformation). The security can be proven on the assumption
that the underlying block cipher is pseudo-random. The performance and key-
agility are reasonable (EMAC is preferable for short messages because the block
length is smaller compared to the schemes based on a hash function). NESSIE
recommends the use of this construction with a 128-bit block cipher included
in the NESSIE portfolio.

– HMAC has the advantage that it allows the reuse of an existing hash function
implementation. The security can be proven on the following assumptions:
the underlying hash function is collision-resistant for a secret initial value; the
compression function keyed by the initial value is a secure MAC primitive
(for messages of one block); the compression function is a weak pseudorandom
function. These assumptions are weaker than the assumptions required for
TTMAC and EMAC. The performance and key-agility are reasonable. NESSIE
recommends the use of this construction with a collision-resistant hash function
included in the NESSIE portfolio.

No security weaknesses were found for any of these primitives. NESSIE makes a
broad recommendation in this area because every primitive has its own specific
advantages.
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6 Asymmetric encryption schemes

NESSIE portfolio. The asymmetric encryption schemes included in the
NESSIE portfolio are PSEC-KEM, RSA-KEM and ACE-KEM.

– The primary recommendation is PSEC-KEM. Its security is based on the Com-
putational Diffie-Hellman assumption with an efficient proof of security. From
a performance point of view, it compares favourably with other schemes that
offer a similar security level. The elliptic curve should be carefully chosen and
the base field should be at least of size 160 bits, which should be sufficient
for medium term security (5 to 10 years). A prime field is preferable, unless
implementation constraints favour a field of characteristic 2.

– A secondary recommendation is RSA-KEM with exponent at least 65537 and
public keys of at least 1536 bits, which should be sufficient for medium term
security (5 to 10 years). Exponent 3 can be used if fast encryption is important.
Its security is based on the RSA assumption with an efficient proof, but it has
a relatively slow decryptionand longer keys than PSEC-KEM. It may be more
difficult to protect implementations of RSA-KEM against side-channel attacks
than implementations of PSEC-KEM.

– ACE-KEM is recommended where performance is not critical. It has several
provable security arguments, and therefore its security is better than that of
the other encryption schemes. Depending on the application, either a 160-bit
(or more) elliptic curve or a 1536-bit (or more) prime field can be used.

Comments on the other asymmetric encryption schemes studied in
Phase II.

– ECIES and ECIES-KEM have slightly better performance than PSEC-KEM,
but the Gap Diffie-Hellman security assumption makes the security proof less
convincing than PSEC-KEM.

– EPOC-2 compares unfavourably with Rabin-based schemes such as HIME(R)
and Rabin-SAEP.

NESSIE recommendation if very long term security is important. For
very high level security we note that double encryption using ACE-KEM and
RSA-KEM with different DEMs gives a good range of security, based on vari-
ous different assumptions. Triple encryption that also uses a public-key scheme
not based on number-theoretical assumptions might increase the security against
future breakthrough.

7 Digital signature schemes

NESSIE portfolio. The digital signature schemes included in the NESSIE port-
folio are RSA-PSS, ECDSA and SFLASH.

– The primary recommendation is a digital signature scheme based on the RSA-
PSS submission to NESSIE with exponent at least 65537 and public keys of at
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least 1536 bits, which should be sufficient for medium term security (5 to 10
years). Exponent 3 can be used if fast verification is important.

– A secondary recommendation is ECDSA. This scheme is well suited to applica-
tions where the signing time or the appendix length are important. The elliptic
curve should be carefully chosen and the base field should be at least of size
160 bits, which should be sufficient for medium term security (5 to 10 years).
A prime field is preferable, unless implementation constraints favour a field of
characteristic 2.

– SFLASH is not recommended for general use but this signature scheme is very
efficient on low cost smart cards, where the size of the public key is not a
constraint.

If this causes no interoperability problems, a tweak of the submitted schemes is
strongly recommended. One should include some certification data in the inputs
of the hash functions. This would bind the scheme parameters, public key and
expiration time, to a particular signature. (This was a proposal of the KCDSA
scheme.)

Comments on the other digital signature schemes studied in Phase II.

– The ESIGN family of digital signature schemes has convincing security and
some performance advantages, but RSA-PSS and ECDSA have more convinc-
ing security and cover most common applications. Both ESIGN-D and ESIGN-
R may be suited to specific uses.

– QUARTZ does not meet our security requirements for the submitted param-
eters. A modification of the parameter d might be sufficient, but is not fully
evaluated. Still, if a digital signature scheme with appendix shorter than 250
bits is needed, QUARTZ with a larger d can be used.

NESSIE recommendation if very long term security is important. Use
simultaneously different digital signature schemes, based on different mathemat-
ical assumptions and distinct hash functions.

8 Asymmetric Identification Schemes

NESSIE portfolio. The asymmetric identification scheme included in the
NESSIE portfolio is GPS.

– GPS is the only primitive submitted to NESSIE in the category of asymmetric
identification schemes and has good performance with high security. It com-
pares favourably with the other zero-knowledge identification schemes that
have been described in the literature.
For medium term security (5 to 10 years) the modulus should have at least
1536 bits and the other parameters as recommended by the submitters of the
scheme. The flexibility of GPS allows this scheme to be used in a variety of
situations, and different security parameters might be appropriate.
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A trivial protocol flaw was found in the original submitted version, and was
corrected. Implementations of GPS should not forget any item of the protocol,
as a mistake may have serious security implications.
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Book III. The NESSIE portfolio 485

Organization of Book III

For each primitive in the NESSIE portfolio, we give a complete description and
test vectors, that should help to validate an implementation.

While the previous Books in this report were written to support the selection
made by NESSIE and were aimed at cryptologists, Book IIIis aimed at imple-
mentors of cryptographic primitives and is self-contained.
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1. Mathematical objects

1.1 Notations

0b The bit 0.
0100b A bit string of length 4.
09x An octet.
09ABx The octet string of length 2 with first octet 09x and last octet ABx.
X‖Y The concatenation of two bit strings or two octet strings X and Y .
X The bitwise negation of X
X ⊕ Y The bitwise exclusive-or (XOR) of two bit strings or two octet strings

X and Y of same length.
X ∨ Y The bitwise OR of X and Y (having same length).
X ∧ Y The bitwise AND of X and Y (having same length).
a ` a The truncation of X to the a leftmost bits.
X ≪a The cyclic left-rotation by a bits of X
X ≫a The cyclic right-rotation by a bits of X
X �a The right-shift by a bits of X.
dxe The smallest integer greater than or equal to x.
bxc The larger integer smaller than or equal to x.
log2 x The logarithmic function of a number x to the base 2.
Fq The finite field containing q elements.
E(Fq) An elliptic curve defined over the finite field Fq.
#E(Fq) The order of the elliptic curve E(Fq).
O The point at infinity on an elliptic curve.

1.2 Finite fields

A finite field (or Galois field) is a field containing a finite number of elements.
The order of a finite field is the number of elements it contains. A finite field of
order q > 1 exists if and only if q is a power of a prime number. Furthermore,
a finite field of given order q is “unique”, meaning that two such fields share the
same algebraic structure. This field is denoted Fq (or GF (q)). On the other hand,
there exist several different representations for a given field, leading to different
ways to perform arithmetic. In cryptography, we are mainly interested in the
finite fields Fq where q is either a prime number (called prime fields), or a power
of 2 (called characteristic 2 finite fields). We will see in the following how they
are commonly represented.
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1.2.1 Prime finite fields

A prime finite field Fp is represented as the set of integers {0, 1, . . . , p−1}, where
the operations are performed modulo p. The addition is defined for all x, y ∈ Fp
by x + y = r where r is the remainder when the integer x + y is divided by p,
and the multiplication by xy = t where t is the remainder when the integer xy is
divided by p.

1.2.2 Characteristic 2 finite fields

For an integer m > 0, the elements of the field F2m are the 2m possible bit strings
of length m. For a = (am−1am−2 . . . a1a0) and b = (bm−1bm−2 . . . b1b0) in F2m ,
the addition is the bitwise XOR, i.e.:

a+ b = c = (cm−1cm−2 . . . c1c0), with ci = ai ⊕ bi.

We see that addition is easy to implement since the bit string c is obtained
by XORing the bit strings a and b. Elements of F2m can also be seen as m-
dimensional vectors over F2, and the addition in F2m is the addition in (F2)

m.
The implementation of the multiplication depends on the representation of

F2m we choose, i.e we have to specify the way the bit strings are interpreted.
A polynomial basis representation of F2m is determined by choosing an irre-

ducible polynomial f(X) of degree m. The field is then represented as the set
of polynomials of maximal degree m − 1, with coefficients in F2. More explic-
itly, the bit string (bm−1bm−2 . . . b1b0) is represented by the binary polynomial
bm−1X

m−1 + bm−2X
m−2 + . . . + b1X + b0. The operations on these polynomi-

als are performed in F2(X), modulo the polynomial f(X), which is called the
reduction polynomial. More precisely, for a = am−1X

m−1 + . . . + a1X + a0 and
b = bm−1X

m−1 + . . .+ b1X + b0 in F2m ,
The multiplication is defined by:

ab = d = dm−1X
m−1 + . . .+ d1X + d0

where d is the remainder when the polynomial ab is divided by f(X), and all the
operations on the coefficients are performed modulo 2.

In this representation, the additive identity element is the polynomial 0, and
the multiplicative identity element is the polynomial 1.

1.3 Elliptic curve points

Elliptic curves are a subset of the cubic plane curves, i.e. they are defined to be
the set of points P which coordinates (x, y) verify some equation F (x, y) = 0 of
degree 3. In cryptography, we are mainly interested in elliptic curves defined over
a finite field Fq, where q is a prime or a power of 2. An elliptic curve over the
finite field Fq is a set of points P = (xP , yP ), where xP and yP are elements of
Fq verifying an equation with coefficients in Fq, plus a special point O called the
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point at infinity. The most common equations used to define elliptic curves are
the Weierstrass equations. They depend on whether the field Fq is a prime field
or a characteristic 2 finite field:

– if q is an odd prime with q > 3, the Weierstrass equation is

y2 = x3 + ax+ b,

where a and b are elements of Fq satisfying 4a3 + 27b2 6= 0 in Fq;
– if q is a power of 2, the Weierstrass equation is

y2 + xy = x3 + ax2 + b,

where a and b are elements of Fq with b 6= 0.

The so-defined elliptic curve, denoted E(Fq), is thus characterised by a and b,
which are called the coefficients of the curve. The number of points on E(Fq) is
called the order of E(Fq) and is denoted #E(Fq).

It is possible to define an additive operation on the points of an elliptic curve
that possesses the properties of a commutative group rule. This operation can be
defined geometrically. We define the inverse of a point P = (xP , yP ) to be the
point Q = −P where:

xQ = xP , yQ =
{
−yP if q = p prime
xP + yP if q = 2m

The sum of two points P and Q of E(Fq) is then defined as the point R of the
curve such that −R lies on the line passing through P and Q. When P = Q, the
line we consider is the tangent line at the point P . The point at infinity O plays
the role of the number 0 in the ordinary addition, so we have P + O = P and
P + (−P ) = O for all point P of the curve.

The coordinates of the resulting point can be expressed with the coordinates
of the points to add. Let R = (xR, yR) be the sum of two distinct points P =
(xP , yP ) and Q = (xQ, yQ), with xP 6= xQ (otherwise P+Q = O). The expression
depends on whether the field is a prime field, or a finite characteristic 2 field.

– If q is an odd prime number, we have

xR = λ2 − xP − xQ in Fp, yR = λ(xP − xR)− yP in Fp,

where λ =
yQ − yP
xQ − xP

in Fp.

– If q = 2m, we have

xR = λ2 + λ+ xP + xQ + a in F2m , yR = λ(xP + xR) + xR + yP in F2m ,

where λ =
yQ + yP
xQ + xP

in F2m .

Now, let R = (xR, yR) be the sum of P = (xP , yP ) with itself. This operation is
called doubling, and the coordinates of the resulting point are as follows.
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– If q is an odd prime number, we have

xR = λ2 − 2xP in Fp, yR = λ(xP − xR)− yP in Fp,

where λ =
3xP 2 + a

2yP
in Fp.

– If q = 2m, we have

xR = λ2 + λ+ a in F2m , yR = xP
2 + (λ+ 1)xR in F2m ,

where λ = xP +
yP
xP

in F2m .

The scalar multiplication is the multiplication of an elliptic curve point P by an
integer k defined by:

kP = P + P + . . .+ P︸ ︷︷ ︸
k times
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2. Data type conversions

2.1 Integers

Converting integers into octet strings should be done according to the following
method.

Converting integers to octet strings: I2OSP.

Input: an integer x.
a length Slen with 256Slen > x.

Output: an octet string S of length Slen.
1. write the unique decomposition of x in base 256:

x = xSlen−1256Slen−1 + xSlen−2256Slen−2 + . . .+ x1256 + x0;

2. for 0 ≤ i ≤ Slen− 1, let Si be an octet and set:

Si := xi;

3. return the octet string S = SSlen−1SSlen−2 . . . S1S0.

Converting octet strings to integers: OS2IP.

Input: an octet string S = SSlen−1SSlen−2 . . . S1S0 of length Slen.
Output: an integer x.

1. set

x :=
Slen−1∑
i=0

28iSi;

2. return x.

2.2 Finite fields

As we have seen, an element of a finite field Fq is represented as an integer x in
the set {0, . . . , p − 1} if q = p an odd prime, and as a bit string of length m if
q = 2m. So, the conversion between field elements and octet strings depends on
the field.
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Converting a finite field element to an integer FE2IP.

Input: an element a of the finite field Fq.
Output: an integer x.

1. If q = p an odd prime, there is a unique integer x ∈ {0, ..., p − 1} such
that a ≡ x mod p. Return x.

2. If q = 2m, a is a bit string a = (am−1am−2 . . . a1a0). Let x be the integer
defined by: x :=

∑m−1
i=0 ai2i. Return x.

Converting an integer to a finite field element: IP2FEP.

Input: an integer x.
Output: an element a of the finite field Fq.

1. If q = p an odd prime: If x 6∈ {0, . . . , p − 1}, return “invalid”. Else,
return x.

2. If q = 2m: If x ≥ 2m, return “invalid”. Else, write x =
∑m−1
i=0 ai2i and

return the bit string a := am−1am−2 . . . a1a0.

Converting a finite field element to an octet string: FE2OSP.

Input: an element a of the finite field Fq.
Output: an octet string S of length Slen = dlog2 q/8e.

1. Compute x := FE2IP(a).
2. Compute S := I2OSP(x, dlog2 q/8e).
3. Return S.

Converting an octet string to a finite field element: OS2FEP.

Input: an octet string S of length Slen = dlog2 q/8e.
Output: an element a of the finite field Fq.

1. Compute x := OS2IP(a).
2. Compute S := IP2FEP(x).
3. Return S.

2.3 Elliptic curve points

An elliptic curve point should be converted into an octet string following one of
the methods below. The first one is the basic method, which idea is to convert
each coordinate of the point to an octet string using the FE2OSP routine. The
second method uses the so-called point compression. The idea is to compress one
coordinate of the point into 1 bit. The full value can be recovered from the other
coordinate and the coefficients of the curve.

Converting elliptic curve points to octet strings: ECP2OSP.
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Basic algorithm.

Input: a point P = (xP , yP ).
Output: an octet string S of length Slen octets, with:

– Slen = 1 if P = O;
– Slen = 2 d(log2 q)/8e+ 1 if P 6= O.

1. if P = O, return S := 00x;
2. else, perform the following steps:

a) convert xP to an octet string X := FE2OSP(xP ) ,
b) convert yP to an octet string Y := FE2OSP(yP ),
c) return S := 04x‖Y ‖X.

Using point compression algorithm.

Input: a point P = (xP , yP ).
Output: an octet string S of length Slen octets, with:

– Slen = 1 if P = O;
– Slen = d(log2 q)/8e if P 6= O.

1. if P = O, return S := 00x;
2. else, perform the following steps:

a) convert xP to an octet string X := FE2OSP(xP ),
b) i. if q = p an odd prime: ỹP = yP mod 2,

if q = 2m: ỹP = z0, where z = zm−1X
m−1 + zm−2X

m−2 + . . .+
z1X + z0 is defined by z = yPXP

−1;
ii. if ỹP = 0, Y := 02x,

if ỹP 6= 0, Y := 03x;
iii. return S = Y ‖X.

Converting octet strings to elliptic curve points: OS2ECPP. This routine
converts an octet string into an elliptic curve point, this point being compressed
or not, and checks that the point is on the right curve.

Input: the coefficients a and b of an elliptic curve E(Fq), and an octet
string S of length Slen octets.

Output: a point P = (xP , yP ).
1. If S = 00x, return P = O;
2. If Slen = d(log2 q)/8e+ 1, perform the following steps:

a) Parse S as Y ‖X, where Y is a single octet, and X has length
d(log2 q)/8e.

b) Convert the octet string X to a field element using the routine
OS2FEP. If the routine returns “invalid”, return “invalid”.

c) If Y = 02x, set ỹp = 0.
If Y = 03x, set ỹp = 1.
Else, return “invalid”.

d) Decompress the point (xP , yP ) from xP and ỹP :
i. If q = p an odd prime:
A. Compute the element α = xP

3 + axP + b in Fp.
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B. Compute a square root of α in Fp.
If there are no square root of α in FP , return “invalid”.
Else, let β be this square root.

C. If β ≡ ỹP (mod 2), yP := β.
Else, yP := p− β.

ii. If q = 2m and xP = 0, set yP := b2
m−1

.
iii. If q = 2m and xP 6= 0:

A. Compute the element γ = xP + a+ bx−2
P in F2m .

B. Compute an element of F2m

z = zm−1X
m−1 + zm−2X

m−2 + . . .+ z1X + z0

that verifies the equation z2 + z = γ in F2m .
If no such element exists, return “invalid”.

C. If z0 = ỹP , set yP := xP z in F2m .
Else, set yP := xP (z + 1) in F2m .

e) Return P = (xP , yP ).
3. If mLen = 2 d(log2 q)/8e+ 1, perform the following steps:

a) Parse S as W‖X‖Y , where w is a single octet, X and Y are
d(log2 q)/8e-octet strings.

b) If W 6= 04x, return “invalid”.
c) Convert the octet string X to a field element xP using the routine

OS2FEP. If the routine returns “invalid”, return “invalid”.
d) Convert the octet string Y to a field element yP using the routine

OS2FEP. If the routine returns “invalid”, return “invalid”.
e) Check that coordinates of the point P = (xP , yP ) verify the defining

equation of the curve. If not, return “invalid”.
f) Return p = (xP , yP ).
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3. Key derivation functions

Some of the asymmetric encryption schemes (see Part E) require a key derivation
function (KDF) or a mask generating function (MGF). Key derivation functions
and mask generating functions take as input octet strings of arbitrary length and
an output length, and output an octet string of the prescribed length. For any
fixed length, these functions should have the same security properties as a hash
function.

The NESSIE project is not recommending any specific key derivation func-
tions or mask generating functions for use however all of the submitted schemes
used one of two mechanisms which we will detail here. These functions will be
used to generate test vectors for the primitives. No weaknesses have been found
in either of the primitives specified here. For further information the reader is
referred to Book II Part B [481].

Both functions use a hash function Hash which takes as input octet strings of
arbitrary length and outputs octet strings of length HashLen. The hash function
SHA-1 can be used for this application but it would be preferable to use a hash
function with a longer output (see Part C). Note that in the description of the
functions we will assume that a hash function can process an input of any length.
In reality, however, a hash function may output “error” if the length of the input
is greater than some certain (very large) bound. In this case the KDF or MGF
should output “error” and abort.

The first KDF/MGF specified will be referred to as Mech1. It runs as follows.

Description:

Input: An input octet string X of any length
An output length Len

Output: An octet string Y of length Len

1. If Len > 232HashLen then output “error” and abort.
2. Set k := dLen/HashLene.
3. Set Y to be the empty string.
4. For i from 0 to k − 1 do

a) Y := Y ||Hash(X||I2OSP(i, 4)).
5. Set Y to be equal to the first Len octets of Y .
6. Output Y .



Dra
ft

Apr
il
19

, 2
00

4

498 Book III. The NESSIE portfolio — Part A. Definitions and notations

The second KDF/MGF specified will be referred to as Mech2. It runs as
follows.

Description:

Input: An input octet string X of any length
An output length Len

Output: An octet string Y of length Len

1. If Len > 232HashLen then output “error” and abort.
2. Set k := dLen/HashLene.
3. Set Y to be the empty string.
4. For i from 1 to k do

a) Y := Y ||Hash(X||I2OSP(i, 4)).
5. Set Y to be equal to the first Len octets of Y .
6. Output Y .
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Block Ciphers
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1. MISTY1

1.1 Introduction

1.1.1 Overview

MISTY1 was first published in 1996 [424, 425] and uses 128-bit keys. It was
submitted to NESSIE by Eisaku Takeda on behalf of Mitsubishi. MISTY1 can
be implemented in situations where resources are heavily constrained, and the
constituent lookup tables are optimised for hardware performance. The entire
algorithm is built from recursive components such that at each level the structure
is again a secure Feistel-like structure. There exists a variant of MISTY1, namely
MISTY2, which was published around the same time [424, 425] and also uses
128-bit keys. Another variant of MISTY1, namely KASUMI, has been chosen for
the 3GPP standard [1].

1.1.2 Outline of the primitive

MISTY1 is an iterated cipher that operates over 8 rounds or, more generally,
a multiple of 4 rounds. It accepts 64-bit plaintext and 128-bit key. It uses two
S-boxes, a 7×7 S-box, S7, and a 9×9 S-box, S9. These are incorporated into the
lowest level of a recursively constructed Feistel-like structure. They are designed
to obtain good resistance to linear and differential attacks but are also designed
so that they can be implemented using relatively few logical components which
implement boolean functions of relatively low degree, with S7 comprising a set of
cubic functions, and S9 comprising a set of quadratic functions. Each successively
higher level of the cipher is built from instances of the previous level which are
linked together in a Feistel-like manner. The key-schedule of MISTY1 is relatively
simple compared to other block ciphers and uses multiple instances of the lowest-
level module (which include S7 and S9 S-boxes) to generate a further 128-bit sub-
key from the original 128-bit input key. These 128 + 128 = 256 key schedule bits
are then used as round keys for key inputs to the Feistel-like modules. MISTY1
also uses so-called keyed-FL layers after every second round so as to introduce
irregularity into the cipher round function and thereby enhance security at little
extra implementation cost. Decryption for MISTY1 is very similar to encryption.
The only changes are that each FL layer must be replaced by its inverse, and
secondly, the order in which the round keys are introduced is reversed.
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1.1.3 Security and performance

MISTY1 [426] has been widely studied for five years and for the duration of the
NESSIE project and no serious security flaws have been found. The cipher and
its key-schedule perform satisfactorily on all software and hardware platforms,
and requires relatively simple logic to implement its 7 × 7 and 9 × 9 S-boxes.
Many attacks on MISTY1 may also be relevant to the similar ciphers, MISTY2,
and KASUMI, and vice versa. It appears to be easier to attack MISTY1 without
FL functions. Conversely, this implies that the insertion of the FL functions in
MISTY1 enhances its security. Attacks on MISTY1 without the FL operations
have been accomplished up to five rounds. The low algebraic degree of the con-
stituent functions of the MISTY1 S-boxes has invited higher order differential
attacks by Lai [385], Knudsen [352], and Tanaka et al. [604] on MISTY1 without
FL functions. The Slide attack has been proposed against MISTY1 by Biryukov
and Wagner [90] where the same subkey is applied to every nth round. MISTY1
is designed to have provable security against differential and linear cryptanalysis,
and this proof is achieved by bounding the average differential/linear probabilities
for the recursive layers of MISTY1; if the average differential/linear probability
of each layer is p then the complete cipher has probability upper-bounded by p4.
It is claimed by the designers that the unequal division of the S-boxes into 7 bits
and 9 bits has an advantage against differential and linear cryptanalysis, as the
probability bound can be made lower for S-boxes that use odd as opposed to even
numbers of bits. Recently, Integral Cryptanalysis [371, 448] has been applied to
MISTY1 including FL functions. The integral attacks are over 4 and 5 rounds
and exploit the Sakurai-Zheng property that was initially applied to MISTY2.
Also a new attack, the Slicing Attack by Kuhn [380,381] has been applied to the
4-round version of MISTY1, making use of the special structure and position of
the key-dependent linear FL functions.

1.2 Description

MISTY1 is a Feistel network based on a 32-bit nonlinear function. It takes 64-bit
plaintext and a 128-bit key, and is recommended for 8 rounds (more generally a
multiple of 4 rounds). We will now describe each module.

1.2.1 Encryption

The encryption operation is as shown in Fig 46. The 64-bit plaintext input, P ,
is split into two halves, L0 and R0, each of 32-bits. Before the first round and
after every two rounds, both left and right halves, Li−1 and Ri−1, respectively,
are passed through keyed FL modules, which take a 32-bit input, a 32-bit sub-
key, KLi, and produce a 32-bit output. During each round the left half is input
to a keyed FO module which accepts a 32-bit input, a 48-bit sub-key, KIi, a
64-bit sub-key, KOi, and produces a 32-bit output. This output is then XOR’ed
with the right half to produce a modified right half (XOR is short for bitwise
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eXclusive OR). At the end of each round, the left and right halves are swapped
to give Li and Ri, respectively. After 8 rounds (or, more generally, some multiple
of 4 rounds) there is a final pass through the keyed FL modules followed by a
final swap of left and right halves, before a final recombination of left and right
halves, Ln+1 and Rn+1 to produce an output ciphertext of length 64 bits, C,
where n is the number of rounds, (normally 8). The final FL operation after the
last round is to ensure that decryption is like encryption apart from a reverse of
the subkey order and the interchange of FL and FL−1.

FO

FO

KI  KO

KI  KO

KLKL

C

21

3 4

R

KLn+2n+1KL

KI  KO

KLKL

2KI  KO2

11

33

4 4

P64

64
n+1L

R

R

L R

L

0 0

2

3

4

2R

1R

3L

4L

n+1

1L

FL FL

FLFL

FO

FO

FLFL

Fig. 46. Encryption for MISTY1

We can summarise the encryption inputs as,

P = L0‖R0

KL = {KLi}
KO = {KOi}
KI = {KIi}

The encryption function is then defined as,
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for i = 1, 3, . . . , n− 1 :
Ri = FL(Li−1,KLi)
Li = FL(Ri−1,KLi+1)⊕ FO(Ri,KOi,KIi)
Li+1 = Ri ⊕ FO(Li,KOi+2,KIi+1)
Ri+1 = Li

for i = n+ 1 :
Ri = FL(Li−1,KLi)
Li = FL(Ri−1,KLi+1)

where the output is C = Ln+1‖Rn+1.
The above variables are of the following bit-widths:

P : 64 bits
Li : 32 bits
Ri : 32 bits
KLi : 32 bits
KIi : 48 bits
KOi : 64 bits
C : 64 bits

Note that the order (and position) in which the sub-keys are input is as follows
(shown for n = 8 rounds):

KL1 KI1,KO1 KL2

KI2,KO2

KL3 KI3,KO3 KL4

KI4,KO4

KL5 KI5,KO5 KL6

KI6,KO6

KL7 KI7,KO7 KL8

KI8,KO8

KL9 KL10

1.2.2 Decryption

The decryption operation is as shown in Fig 47, and is identical in operation to
encryption apart from the following two modifications.

– All FL modules are replaced by their inverse modules, FL−1.
– The order in which the sub-keys are applied is reversed. To be more explicit,

for decryption the sub-keys are input as follows (shown for n = 8 rounds):
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KL10 KI8,KO8 KL9

KI7,KO7

KL8 KI6,KO6 KL7

KI5,KO5

KL6 KI4,KO4 KL5

KI3,KO3

KL4 KI2,KO2 KL3

KI1,KO1

KL2 KL1

FO

KLKL

L

R

KL

KI  KO

KL

C

−1

n+2

n n−1

2 1KL

n n

R

KI    KO

P

n+1KL

64

R

R

L Rn+1 n+1

n−1 n−1

n−2

n−3

0

64

0L

n−3L

n−2L

nL nR
n−1 n−1KI    KO

n−2n−2

KI    KOn−3n−3

FL−1FL−1

FL
−1 FL

FO

FO

FO

−1FL−1
FL

Fig. 47. Decryption for MISTY1

1.2.3 FL Module

The FL module is used in encryption only and is shown in Fig. 48. It takes a
32-bit input, X32, and splits this into two 16-bit halves, XL and XR. The right
half, XR, is modified by XOR’ing with a modified version of the left half after
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the left half, XL, has been bitwise AND’ed with a 16-bit key, KLiL (AND is
shown as ∧ in Fig. 48). Following this, the left half is modified by XOR’ing with
a modified version of the right half after the right half has been bitwise OR’ed
with a 16-bit key, KLiR (OR is shown as ∨ in Fig. 48). Finally the 16-bit left and
16-bit right halves, YL and YR, are concatenated to form a 32-bit output, Y32.

KL
X

KL

iL

iR

X R

L

L

Y YR

Y

X32

32

Fig. 48. FL function for MISTY1

We can summarise the FL inputs as,

X32 = XL‖XR

KLi = KLiL‖KLiR

The FL function is then defined as,

YR = (XL ∧KLiL)⊕XR

YL = (YR ∨KLiR)⊕XL

where the output is Y32 = YL‖YR.
The above variables are of the following bit-widths:

X32 : 32 bits
XL : 16 bits
XR : 16 bits
KLi : 32 bits
KLiL : 16 bits
KLiR : 16 bits
YL : 16 bits
YR : 16 bits
Y32 : 32 bits

1.2.4 FL−1 Module

The FL−1 module is the inverse to the FL module, is used in decryption only,
and is shown in Fig. 49. It takes a 32-bit input, Y32, and splits this into two 16-bit
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halves, YL and YR. The left half, YL, is modified by XOR’ing with a modified
version of the right half after the right half, YR, has been bitwise OR’ed with a
16-bit key, KLiR (OR is shown as ∨ in Fig. 49). Following this, the right half is
modified by XOR’ing with a modified version of the left half where the left half
has been bitwise AND’ed with a 16-bit key, KLiL (AND is shown as ∧ in Fig. 49).
Finally the 16-bit left and 16-bit right halves, XL and XR, are concatenated to
form a 32-bit output, X32.

KL
Y

iR

RL

LX RX

Y

iLKL

Y32

X32

Fig. 49. FL−1 function for MISTY1

We can summarise the FL−1 inputs as,

Y32 = YL‖YR
KLi = KLiL‖KLiR

The FL−1 function is then defined as,

XL = (YR ∨KLiR)⊕ YL
XR = (XL ∧KLiL)⊕ YR

where the output is X32 = XL‖XR.
The above variables are of the following bit-widths:

Y32 : 32 bits
YL : 16 bits
YR : 16 bits
KLi : 32 bits
KLiL : 16 bits
KLiR : 16 bits
XL : 16 bits
XR : 16 bits
X32 : 32 bits
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1.2.5 FO Module

The FO module is used for encryption and decryption and is shown in Fig. 50. It
takes a 32-bit input, X32, and splits this into two 16-bit halves, L0 and R0. The
left half, L0, is XOR’ed with a 16-bit sub-key, KOi1, and then input to the FI
module, keyed by KIi1. The 16-bit output of this FI module is then XOR’ed with
R0 before the left and right sides are swapped. The above process is repeated two
more times, before a final XOR of the left-hand side, L3, with KOi4. Finally the
output, Y32, is obtained by concatenating left and right-hand sides, L3 and R3.

KIi

KOi

KIi

KOi

1

2

3

3

X

Y

KIi

KOi

KOi4

R

R

R

L

L

L

L

R

0 0

1 1

2 2

3 3

1

2

32

32

FI

FI

FI

FI

Fig. 50. FO function for MISTY1

We can summarise the FO inputs as,

X32 = L0‖R0

KOi = KOi1‖KOi2‖KOi3‖KOi4
KIi = KIi1‖KIi2‖KIi3

The FO function is then defined as,
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for j = 1 to 3 do :
Rj = FI(Lj−1 ⊕KOij ,KIij)⊕Rj−1

Lj = Rj−1

Y32 = (L3 ⊕KOi4)‖R3

where Y32 is the output.
The above variables are of the following bit-widths:

X32 : 32 bits
Lj : 16 bits
Rj : 16 bits
KOi : 64 bits
KOij : 16 bits
KIi : 48 bits
KIij : 16 bits
Y32 : 32 bits

1.2.6 FI Module

The FI module is used for encryption, decryption and the key schedule, and is
shown in Fig. 51. It takes a 16-bit input, X16, and splits this into two unequal-
length parts, L0 and R0, of length 9 bits and 7 bits, respectively. The left half,
L0, is then input to the 9×9 S-box, S9, before being XOR’ed with a modified R0,
where R0 has been zero-extended from 7 bits to 9 bits by the concatenation of two
bits on the left side. The left and right sides are then swapped. The 7-bit left half,
L1, is then input to the 7 × 7 S-box, S7, before being XOR’ed with a modified
R1, where R1 has been truncated from 9 bits to 7 bits by dropping two bits on
the left side. Then the 7-bit left-hand side is XOR’ed with a sub-key, KIijL, and
the 9-bit right-hand side is XOR’ed with a sub-key, KIijR. The left and right
sides are then swapped. The 9-bit left half, L2, is then input to the 9× 9 S-box,
S9, before being XOR’ed with a modified R2, where R2 has been zero-extended
from 7 bits to 9 bits by the concatenation of two bits on the left side. Finally,
the left and right sides are then swapped before a final concatenation, L3‖R3, to
produce the output Y16.

We can summarise the FI inputs as,

X16 = L0‖R0

KIij = KIijL‖KIijR

The FI function is then defined as,

R1 = S9[L0]⊕ (00b‖R0)
L1 = R0

R2 = S7[L1]⊕ (truncate(R1))⊕KIijL
L2 = R1 ⊕KIijR
R3 = S9[L2]⊕ (00b‖R2)
L3 = R2

Y16 = L3‖R3
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X

Y

S9

S7

S9

R

R

zero−extend

truncate

zero−extend

KIijRKIijL

R
16

0

1

2

0L

L3

2L

1L

R3

16

Fig. 51. FI function for MISTY1

where Y16 is the output.
The above variables are of the following bit-widths:

X16 : 16 bits
L0 : 9 bits
R0 : 7 bits
L1 : 7 bits
R1 : 9 bits
L2 : 9 bits
R2 : 7 bits
L3 : 7 bits
R3 : 9 bits
KIij : 16 bits
KIijL : 7 bits
KIijR : 9 bits
Y16 : 16 bits

1.2.7 Key Schedule

The Key Schedule is used before encryption or decryption to prepare an extra key
material, K ′, from the input key, K, where K and K ′ are both of length 128 bits.
The Key Schedule is shown in Fig. 52. It comprises 8 consecutive applications
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of the FI module. Firstly, K is split up into eight parts, Ki, 1 ≤ i ≤ 8, each of
length 16 bits. Then Ki is considered as the input to FI with Ki+1 acting as the
key to the FI module. The 16-bit output from each FI module is K ′

i, 1 ≤ i ≤ 8.
Note that K9 is interpreted as K1.

FI

K

K’

FI

K

K’

FI

K

K’

FI

K

K’

FI

K

K’

FI

K

K’

FI

K

K’

5 6 7 8

4 5 6 7 82 3

1 2 3 4

1

FI

K

K’

K(=     )
K9

1

Fig. 52. Key Schedule for MISTY1

We can summarise the Key Schedule inputs as,

K = K1‖K2‖K3‖K4‖K5‖K6‖K7‖K8

The Key Schedule function is then defined as,

for i = 1 to 8 do
K ′
i = FI(Ki,Ki+1)

K ′ = K ′
1‖K ′

2‖K ′
3‖K ′

4‖K ′
5‖K ′

6‖K ′
7‖K ′

8

where K9 = K1.
The above variables are of the following bit-widths:

K : 128 bits
Ki : 16 bits
K ′ : 128 bits
K ′
i : 16 bits

The sub-keys, KLiL/R, KOij and KIij , with i = 1 . . . 10, i = 1 . . . 8 and
j = 1 . . . 4, i = 1 . . . 8 and j = 1 . . . 3, respectively, are then derived from the K
and K ′ keys by the assignment shown in Table 52. These sub-keys are 16 bits
long.

Table 52. Subkey Mapping Table

Round KOi1 KOi2 KOi3 KOi4 KIi1 KIi2 KIi3 KLiL KLiR

Actual Ki Ki+2 Ki+7 Ki+4 K′
i+5 K′

i+1 K′
i+3 K i+1

2
odd i K′

i+1
2 +6

odd i

K′
i
2+2

even i K i
2+4even i

The indices in Table 52 should be between 1 and 8 where one should subtract
a multiple of 8 if necessary.
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1.2.8 S-boxes

We here give a logical description of the two S-boxes of MISTY1, S7 and S9.
The variables x1, x2, . . . are the binary inputs that form the 7 or 9-bit inputs to
the two S-boxes, respectively, and the variables y1, y2 . . . are the corresponding
binary outputs from the two S-boxes. The subsequent section gives pseudo-code
for MISTY1 and also includes an alternative description of the two S-boxes as
permutations over the integers {0, 1, . . . , 127} (S7) and {0, 1, . . . , 511} (S9). This
alternative description is particularly useful for software implementations where
the S-boxes are typically implemented as lookup tables.

Description of S7

y7 = x1x2x5 ⊕ x1x4x7 ⊕ x1x5x6 ⊕ x2x4x6 ⊕ x3x4x5 ⊕ x1x3 ⊕ x1x6 ⊕ x2x4 ⊕ x2x5

⊕x2x7 ⊕ x4x7 ⊕ x6x7 ⊕ x4

y6 = x1x2x5 ⊕ x2x6x7 ⊕ x3x5x7 ⊕ x4x5x6 ⊕ x5x6x7 ⊕ x1x7 ⊕ x2x4 ⊕ x2x7 ⊕ x3x6

⊕x4x7 ⊕ x5 ⊕ x6 ⊕ x7

y5 = x1x2x3 ⊕ x1x2x6 ⊕ x2x4x7 ⊕ x2x5x6 ⊕ x3x4x6 ⊕ x1x6 ⊕ x2x5 ⊕ x3x7 ⊕ x4x5 ⊕ x2 ⊕ 1
y4 = x1x3x7 ⊕ x1x4x6 ⊕ x2x3x6 ⊕ x5x6x7 ⊕ x1x2 ⊕ x1x5 ⊕ x3x5 ⊕ x4x7 ⊕ x6 ⊕ x7 ⊕ 1
y3 = x1x3x5 ⊕ x1x4x7 ⊕ x2x3x4 ⊕ x2x3x7 ⊕ x3x6x7 ⊕ x4x5x7 ⊕ x1x3 ⊕ x1x4 ⊕ x1x6

⊕x2x7 ⊕ x3x6 ⊕ x5x6 ⊕ x3

y2 = x1x2x7 ⊕ x1x3x6 ⊕ x1x4x5 ⊕ x2x3x5 ⊕ x1x4 ⊕ x1x7 ⊕ x2x6 ⊕ x3x4 ⊕ x3x7 ⊕ x5x7

⊕x1 ⊕ 1
y1 = x1x2x4 ⊕ x1x2x7 ⊕ x1x6x7 ⊕ x2x5x7 ⊕ x3x4x7 ⊕ x1x5 ⊕ x2x3 ⊕ x2x6 ⊕ x4x6 ⊕ x7 ⊕ 1

Description of S9

y9 = x1x5 ⊕ x1x6 ⊕ x2x6 ⊕ x2x7 ⊕ x3x7 ⊕ x3x8 ⊕ x4x8 ⊕ x4x9 ⊕ x5x9 ⊕ 1
y8 = x1x4 ⊕ x1x6 ⊕ x1x9 ⊕ x3x7 ⊕ x3x9 ⊕ x4x5 ⊕ x5x6 ⊕ x6x7 ⊕ x6x8 ⊕ x7x9 ⊕ x2 ⊕ x6 ⊕ 1
y7 = x2x6 ⊕ x2x8 ⊕ x3x4 ⊕ x3x9 ⊕ x4x5 ⊕ x5x6 ⊕ x5x7 ⊕ x5x9 ⊕ x6x8 ⊕ x8x9 ⊕ x1 ⊕ x5

y6 = x1x5 ⊕ x1x7 ⊕ x2x3 ⊕ x2x8 ⊕ x3x4 ⊕ x4x5 ⊕ x4x6 ⊕ x4x8 ⊕ x5x7 ⊕ x7x8 ⊕ x4 ⊕ x9

y5 = x1x2 ⊕ x1x7 ⊕ x2x3 ⊕ x3x4 ⊕ x3x5 ⊕ x3x7 ⊕ x4x6 ⊕ x4x9 ⊕ x6x7 ⊕ x6x9 ⊕ x3 ⊕ x8

y4 = x1x2 ⊕ x1x9 ⊕ x2x3 ⊕ x2x4 ⊕ x2x6 ⊕ x3x5 ⊕ x3x8 ⊕ x5x6 ⊕ x5x8 ⊕ x6x9 ⊕ x2 ⊕ x7

y3 = x1x2 ⊕ x1x3 ⊕ x1x5 ⊕ x1x9 ⊕ x2x4 ⊕ x2x7 ⊕ x4x5 ⊕ x4x7 ⊕ x5x8 ⊕ x8x9 ⊕ x1 ⊕ x6 ⊕ 1
y2 = x1x8 ⊕ x2x3 ⊕ x2x5 ⊕ x2x9 ⊕ x3x6 ⊕ x3x8 ⊕ x5x9 ⊕ x6x7 ⊕ x7x8 ⊕ x8x9 ⊕ x4 ⊕ x8 ⊕ 1
y1 = x1x3 ⊕ x1x6 ⊕ x1x9 ⊕ x2x9 ⊕ x3x4 ⊕ x3x6 ⊕ x4x7 ⊕ x4x9 ⊕ x7x8 ⊕ x8x9 ⊕ x5 ⊕ x9 ⊕ 1

1.2.9 Pseudo-Code

MAIN /* an example encryption then decryption, both over 8 rounds */
{

K = 0x00112233445566778899aabbccddeeff;
plaintext = 0x0123456789abcdef;
K’ = MISTY1KEYSCHEDULE(K); /* = 0xcf518e7f5e29673acdbc07d6bf355e11 */
ciphertext <- MISTY1(plaintext,K,K’,8,0); /* = 0x8b1da5f56ab3d07c */
plaintext <- MISTY1(ciphertext,K,K’,8,1); /* = 0x0123456789abcdef */

} /* MAIN */

64Bit <- MISTY1(text,K,K’,n,f)
/* f=0 to encrypt, f=1 to decrypt */

{
left = plaintext{1,32};
right = plaintext{33,64};
firstround = 1;
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lastround = n + 1;
if (f is equal to 1)
{

SWAP(firstround,lastround);
step = -1;

}
else

step = 1;
FLlayer = 1;
i = firstround;
while (i is not equal to (lastround + step))
{

roundindex = i;
if (FLlayer == 1)
{

KL = SUBKEYL(K,K’,roundindex,f,0);
left = FL(left,KL,f);
KL = SUBKEYL(K,K’,roundindex,f,1);
right = FL(right,KL,f);
FLlayer = 0;

}
else

FLlayer = 1;
if (f is equal to 1)

roundindex = roundindex - 1;
if (i is not equal to lastround)
{

KI = SUBKEYI(K’,roundindex);
KO = SUBKEYO(K,roundindex);
leftmod = FO(left,KO,KI);
right = XOR(right,leftmod);

}
SWAP(left,right);
i = i + step;

}
RETURN(left || right);

} /* MISTY1 */

32Bit <- SUBKEYL(K,K’,i,f,s)
{

k = (8 * i) - 7;
if ((f XOR s) == 0)

RETURN(K{k,k + 15} || K’{k + 96,k + 111});
else

RETURN(K’{k + 32,k + 47} || K{k + 64,k + 79});
} /* SUBKEYL */

48Bit <- SUBKEYI(K’,i)
{

k = (16 * i) - 15;
RETURN(K’{k + 80,k + 95} || K’{k + 16,k + 31} || K’{k + 48,k + 63});

} /* SUBKEYI */

64Bit <- SUBKEYO(K,i)
{
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k = (16 * i) - 15;
KO = K{k,k + 15} || K{k + 32,k + 47};
RETURN(KO || K{k + 112,k + 127} || K{k + 64,k + 95});

} /* SUBKEYO */

32Bit <- FL(X32,KL,f) /* f = 0 for FL, f = 1 for FL inverse */
{

Xl = X32{1,16};
Xr = X32{17,32};
keyl = KL{1,16};
keyr = KL{17,32};
if (f == 0)
{

Xl’ = AND(Xl,keyl);
Xr = XOR(Xr,Xl’);
Xr’ = OR(Xr,keyr);
Xl = XOR(Xl,Xr’);

}
else
{

Xr’ = OR(Xr,keyr);
Xl = XOR(Xl,Xr’);
Xl’ = AND(Xl,keyl);
Xr = XOR(Xr,Xl’);

}
RETURN(Xl || Xr);

} /* FL */

32Bit <- FO(X32,KO,KI)
{

l16 = X32{1,16};
r16 = X32{17,32};
for r = 1 to 3 do
{

k = (16 * r) - 15;
KO16 = KO{k,k + 15};
KI16 = KI{k,k + 15};
l16 = XOR(l16,KO16);
l16 = FI(l16,KI16);
l16 = XOR(l16,r16);
SWAP(l16,r16);

}
KO16 = KO{49,64};
l16 = XOR(l16,KO16);
RETURN(l16 || r16);

} /* FO */

16Bit <- FI(X16,KI16)
{

l9 = X16{1,9};
r7 = X16{10,16};
key7 = KI16{1,7};
key9 = KI16{8,16};
l9 = S9[l9];
l9 = XOR(l9,00 || r7);
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r7 = S7[r7];
r7 = XOR(r7,TRUNC(l9));
r7 = XOR(r7,key7);
l9 = XOR(l9,key9);
l9 = S9[l9];
l9 = XOR(l9,00 || r7);
RETURN(r7 || l9);

} /* FI */

128Bit <- MISTY1KEYSCHEDULE(K)
{

K’ = ();
for i = 1 to 8 do
{

k = (16 * i) - 15;
K16 = FI(K{k,k + 15},K{k + 16,k + 31});
K’ = K’ || K16;

}
RETURN(K’);

} /* MISTY1KEYSCHEDULE */

/* S7 is here specified in decimal */
S7 = [27, 50, 51, 90, 59, 16, 23, 84, 91, 26,114,115,107, 44,102, 73,

31, 36, 19,108, 55, 46, 63, 74, 93, 15, 64, 86, 37, 81, 28, 4,
11, 70, 32, 13,123, 53, 68, 66, 43, 30, 65, 20, 75,121, 21,111,
14, 85, 9, 54,116, 12,103, 83, 40, 10,126, 56, 2, 7, 96, 41,
25, 18,101, 47, 48, 57, 8,104, 95,120, 42, 76,100, 69,117, 61,
89, 72, 3, 87,124, 79, 98, 60, 29, 33, 94, 39,106,112, 77, 58,
1,109,110, 99, 24,119, 35, 5, 38,118, 0, 49, 45,122,127, 97,
80, 34, 17, 6, 71, 22, 82, 78,113, 62,105, 67, 52, 92, 88,125]

/* S9 is here specified in decimal */
S9 = [451,203,339,415,483,233,251, 53,385,185,279,491,307, 9, 45,211,

199,330, 55,126,235,356,403,472,163,286, 85, 44, 29,418,355,280,
331,338,466, 15, 43, 48,314,229,273,312,398, 99,227,200,500, 27,
1,157,248,416,365,499, 28,326,125,209,130,490,387,301,244,414,

467,221,482,296,480,236, 89,145, 17,303, 38,220,176,396,271,503,
231,364,182,249,216,337,257,332,259,184,340,299,430, 23,113, 12,
71, 88,127,420,308,297,132,349,413,434,419, 72,124, 81,458, 35,
317,423,357, 59, 66,218,402,206,193,107,159,497,300,388,250,406,
481,361,381, 49,384,266,148,474,390,318,284, 96,373,463,103,281,
101,104,153,336, 8, 7,380,183, 36, 25,222,295,219,228,425, 82,
265,144,412,449, 40,435,309,362,374,223,485,392,197,366,478,433,
195,479, 54,238,494,240,147, 73,154,438,105,129,293, 11, 94,180,
329,455,372, 62,315,439,142,454,174, 16,149,495, 78,242,509,133,
253,246,160,367,131,138,342,155,316,263,359,152,464,489, 3,510,
189,290,137,210,399, 18, 51,106,322,237,368,283,226,335,344,305,
327, 93,275,461,121,353,421,377,158,436,204, 34,306, 26,232, 4,
391,493,407, 57,447,471, 39,395,198,156,208,334,108, 52,498,110,
202, 37,186,401,254, 19,262, 47,429,370,475,192,267,470,245,492,
269,118,276,427,117,268,484,345, 84,287, 75,196,446,247, 41,164,
14,496,119, 77,378,134,139,179,369,191,270,260,151,347,352,360,
215,187,102,462,252,146,453,111, 22, 74,161,313,175,241,400, 10,
426,323,379, 86,397,358,212,507,333,404,410,135,504,291,167,440,
321, 60,505,320, 42,341,282,417,408,213,294,431, 97,302,343,476,
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114,394,170,150,277,239, 69,123,141,325, 83, 95,376,178, 46, 32,
469, 63,457,487,428, 68, 56, 20,177,363,171,181, 90,386,456,468,
24,375,100,207,109,256,409,304,346, 5,288,443,445,224, 79,214,
319,452,298, 21, 6,255,411,166, 67,136, 80,351,488,289,115,382,
188,194,201,371,393,501,116,460,486,424,405, 31, 65, 13,442, 50,
61,465,128,168, 87,441,354,328,217,261, 98,122, 33,511,274,264,
448,169,285,432,422,205,243, 92,258, 91,473,324,502,173,165, 58,
459,310,383, 70,225, 30,477,230,311,506,389,140,143, 64,437,190,
120, 0,172,272,350,292, 2,444,162,234,112,508,278,348, 76,450]

Data, Logical and Arithmetic Definitions
=========================================

0x1fa4....
A number of this type, with 0x at the beginning, should be interpreted as
hexadecimal. The above example represents the bit string 0001111110100100.

a || b || c ||..
outputs the concatenation of the bitstrings, a,b,c,.... with a leftmost.
Example: a = 1011, b = 0110 -> a || b = 10110110

XOR(a,b)
outputs the bitwise XOR of a and b.
Example: a = 1011, b = 0110 -> XOR(a,b) = 1101

OR(a,b)
outputs the bitwise OR of a and b.
Example: a = 1011, b = 0110 -> OR(a,b) = 1111

AND(a,b)
outputs the bitwise AND of a and b.
Example: a = 1011, b = 0110 -> AND(a,b) = 0010

00 || a
outputs the concatenation of two zero bits onto the left side of a.
Example: a = 1011 -> 00 || a = 001011

TRUNC(a)
outputs the truncation of a by the removal of the two leftmost bits of a.
Example: a = 1011 -> TRUNC(a) = 11

SWAP(a,b)
swaps the contents of a and b.
Example: a = 1011, b = 0110 -> SWAP(a,b) -> a = 0110, b = 1011

A{a,b}
outputs the bit-segment of the bit string, A, starting from bit a of A
and up to and including bit b of A. Thus, A{a,b} has bit-length b - a + 1.
The first (leftmost) bit in A is A{1}.
Example: A = 10110110, -> A{4,6} = 101

A[a]
outputs the integer element stored at position a in the integer array, A.
The first integer in A is A[0].
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Example: A = [125,32,7,89,36,101,....], -> A[4] = 36

’*’ ’+’
mean integer multiplication and addition, respectively.

Note that, if k > 128, then k is replaced by k - (a * 128), where
a is an integer chosen so that

0 < k - (a * 128) < 129

List of Variables Used
=======================
128 bits - K,K’
64 bits - KO,ciphertext,plaintext
48 bits - KI
32 bits - KL,leftmod,X32,left,right
16 bits - keyl,keyr,Xl,Xr,Xl’,Xr’,l16,r16,KO16,KI16,X16,K16
9 bits - key9,l9
7 bits - key7,r7
integer - n,firstround,lastround,i,roundindex,r
{1,2,....,127,128} - k
binary - f,FLlayer,s

1.3 Test vectors

To aid in verification of a software or hardware implementation of MISTY1, we
here provide a few test vectors comprising, as input (K, plaintext) and, as
output from the key schedule and encryption (K ′, ciphertext).

K 00112233445566778899AABBCCDDEEFFx 0123456789ABCDEFx plain
K ′ CF518E7F5E29673ACDBC07D6BF355E11x 8B1DA5F56AB3D07Cx cipher
K 414AFD99BB577EE69DF58CC8FB4E6888x 9FC302E281310E90x plain
K ′ C7BD6E012268237A4389305A1B360B8Cx 15C270974B9B9163x cipher
K 3C54AED9A5389C947167DB9D97C6967Ax 032C4A4A100EE807x plain
K ′ 7C8E13EBFE7648050C9097934205662Bx 3346CB8C779CF2DEx cipher
K D3F11A6D25F1B3866FDADA0B5E53FA17x DB9E3218402023F3x plain
K ′ F011D035AC920F832F69BCF7B860D4F0x B2DD1595A450BC98x cipher
K 5F87F88EC7641D83AF03FD8327821046x 6553DE24C0DD900Bx plain
K ′ 3736172D7421C91401596DB29D3D5536x 60081E65CB7C2B84x cipher

It is also useful to verify the test vectors for incomplete implementations of
MISTY1 as, for instance, when the FL/FL−1 module is removed and replaced
by an identity transformation, (input directly connected to output). One can
similarly replace the FO and/or FI modules with appropriate identity trans-
formations. In the following we provide one set of test vectors for each of the
situations where either FL/FL−1 and/or FO and/or FI transformations are re-
placed by identity transformations. Note that, in all possible incomplete cipher
configurations considered below, the action of decryption of the ciphertext results
in the original plaintext.
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Input: K = 5F87F88EC7641D83AF03FD8327821046x
plaintext = 6553DE24C0DD900Bx

Implementation includes K ′, ciphertext
− K ′ = 5F87F88EC7641D83AF03FD8327821046x

ciphertext = A58E4E2FC0DD900Bx
FI K ′ = 3736172D7421C91401596DB29D3D5536x

ciphertext = A58E4E2FC0DD900Bx
FO K ′ = 5F87F88EC7641D83AF03FD8327821046x

ciphertext = 87E7E92682D978C3x
FO,FI K ′ = 3736172D7421C91401596DB29D3D5536x

ciphertext = A220257C87EA9458x
FL(−1) K ′ = 5F87F88EC7641D83AF03FD8327821046x

ciphertext = B3EDCD6E923477CBx
FL(−1),FI K ′ = 3736172D7421C91401596DB29D3D5536x

ciphertext = D79D953A96A94A63x
FL(−1),FO K ′ = 5F87F88EC7641D83AF03FD8327821046x

ciphertext = 140DE7077F1F156Dx
FL(−1),FO,FI K ′ = 3736172D7421C91401596DB29D3D5536x
(complete) ciphertext = 60081E65CB7C2B84x
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2. AES

2.1 Introduction

2.1.1 Overview

The Advanced Encryption Standard (AES) is the new symmetric encryption
scheme adopted by the US National Institute of Standards and Technology
(NIST). The standard is described in FIPS-197 [470] and specifies a symmet-
ric block cipher called Rijndael, designed by J. Daemen and V. Rijmen [183].
This cipher was selected in 2001 after a public evaluation process of more than
two years and is intended to replace the existing Digital Encryption Standard
(DES). The AES algorithm was not formally submitted to NESSIE but has been
included in the evaluation as a widely used FIPS-approved algorithm for sym-
metric encryption.

2.1.2 Outline of the primitive

The Rijndael block cipher was originally designed to handle a wide range of
block sizes and key lengths. Only three specific combinations of block sizes and
key lengths are supported by the FIPS standard, however. These three AES
variants, referred to as AES-128, AES-192, and AES-256, have a fixed block size
of 128 bits and accept keys of length 128, 192, and 256 bits respectively.

The AES block cipher is a Substitution Permutation Network (SPN) con-
sisting of 10, 12, or 14 rounds, depending on the key length. The cipher takes
a 128-bit plaintext block P as input and encrypts it into a 128-bit ciphertext
block C, according to a secret key K. All operations during this iterative process
are performed on an array of 4 × 4 bytes, which are interpreted as elements in
the finite field GF (28). A single round consists of a nonlinear byte substitution
(SubBytes), a two-stage affine transformation (ShiftRows/MixColumns), and a
round key addition (AddRoundKey). The round keys, each consisting of 128 bits,
are derived from the original 128-bit, 192-bit, or 256-bit secret key by a separate
key expansion routine.

The inverse process, which allows to recover the decrypted plaintext given the
secret key, is very similar to the encrypting algorithm, but the different transfor-
mations are slightly modified.
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2.1.3 Security and performance

The Rijndael design follows the Wide Trail Strategy and makes use of results
from finite field and coding theory to optimize the different transformations. This
guarantees the resistance against linear and differential attacks. As a result, the
most successful attacks against round-reduced versions of the AES seem to be
structural attacks such as improved Square attacks and collision attacks. These
attacks cover up to 7 rounds (out of 10) for AES-128 and 9 (out of 14) for AES-
256.

The AES algorithm is one of the most efficient block ciphers analyzed by
NESSIE. The cipher allows fast software implementations on 32-bit platforms
and the special structure of the components can be exploited to reduce the space
requirements in hardware.

2.2 Description

This section intends to provide a short but complete specification of the AES
algorithm. More extensive descriptions can be found in [470] and [183].

2.2.1 Cipher

The AES algorithm consists of a sequence of operations performed on an inter-
mediate 4 × 4-byte array, called the state and denoted by S = (si,j). At the
start of the encryption process, the 16 bytes of the state (128 bits) are initialized
with plaintext bytes pi, from top to bottom and from left to right as illustrated
below:

p0 p4 p8 p12

p1 p5 p9 p13

p2 p6 p10 p14

p3 p7 p11 p15

S=P−−−−−→

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

Note that in the initialization above, as well as in most of the subsequent oper-
ations, software implementations on 32-bit platforms can benefit from the fact
that the 4 bytes of each column can be treated as a single 32-bit word.

After an initial round key addition, the state is transformed by Nr successive
applications of a round function, the last round being slightly simplified. The
final contents of the state is then sent to the output as ciphertext. The complete
encryption algorithm can be described with the following pseudo-code:

S = AddRoundKey(P,W0)
for i = 1 to Nr − 1 do
S = SubBytes(S)
S = ShiftRows(S)
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S = MixColumns(S)
S = AddRoundKey(S,Wi)

end for
S = SubBytes(S)
S = ShiftRows(S)
C = AddRoundKey(S,WNr)

The number of rounds Nr depends on the key length and has been fixed to
10, 12, and 14 rounds for AES-128, AES-192, and AES-256 respectively. Note
also that the MixColumns transform is skipped in the last round.

In the following subsections, each of the four transforms used above are spec-
ified separately.
2.2.1.1 The SubBytes transformation

The SubBytes operation substitutes each individual state byte si,j by a new
value s′i,j = SRD(si,j). The function SRD is a fixed invertible nonlinear mapping
(S-box), given by Table 53. Using this table, the byte 53x for example would be
mapped to EDx.

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

S(·)−−−−−→

s′0,0 s′0,1 s′0,2 s′0,3

s′1,0 s′1,1 s′1,2 s′1,3

s′2,0 s′2,1 s′2,2 s′2,3

s′3,0 s′3,1 s′3,2 s′3,3

In most software environments, the S-box can simply be implemented as a lookup
table, but when memory is restricted, it is possible to build more memory-efficient
(but slower) implementations using the fact that the S-box is constructed from
an inversion in GF (28) followed by an affine transformation. For details on such
implementations we refer to [181].
2.2.1.2 The ShiftRows transformation

The ShiftRows transformation operates on the rows of the state: the first row
is kept unchanged, the remaining rows are cyclically shifted to the left over 1, 2,
and 3 byte positions respectively. The operations are illustrated below:

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

	−−−−−→

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2

2.2.1.3 The MixColumns transformation

The MixColumns operation applies a linear transform to the columns of the state.
This transform can be represented as a matrix multiplication, where each byte is
interpreted as an element in the finite field GF (28):
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Table 53. The Rijndael S-box SRD

00x 01x 02x 03x 04x 05x 06x 07x 08x 09x 0Ax 0Bx 0Cx 0Dx 0Ex 0Fx
00x 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
10x CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
20x B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
30x 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
40x 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
50x 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
60x D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
70x 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
80x CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
90x 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A0x E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B0x E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C0x BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D0x 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E0x E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F0x 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16


s′0,i
s′1,i
s′2,i
s′3,i

 = A ·


s0,i
s1,i
s2,i
s3,i

 =


02x 03x 01x 01x
01x 02x 03x 01x
01x 01x 02x 03x
03x 01x 01x 02x

 ·

s0,i
s1,i
s2,i
s3,i


As a result, the first byte of the column, for example, is replaced by s′0,i =
(02x · s0,i)⊕ (03x · s1,i)⊕ s2,i ⊕ s3,i. The “⊕” operator in this expression denotes
addition in GF (28), which corresponds to bitwise XOR (eXclusive OR). The
multiplications are performed modulo the irreducible polynomial of the field. In
the case of the AES algorithm the polynomial x8 + x4 + x3 + x+ 1 is used. For
example:

03x · 93x = 00000011b · 10010011b
= (x+ 1) · (x7 + x4 + x+ 1) mod x8 + x4 + x3 + x+ 1

= x8 + x7 + x5 + x4 + x2 + 1 mod x8 + x4 + x3 + x+ 1

= x7 + x5 + x3 + x2 + x

= 10101110b

= AEx

The effect of the complete MixColumns operation is depicted below.

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

A×·−−−−−→

s′0,0 s′0,1 s′0,2 s′0,3

s′1,0 s′1,1 s′1,2 s′1,3

s′2,0 s′2,1 s′2,2 s′2,3

s′3,0 s′3,1 s′3,2 s′3,3
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2.2.1.4 The AddRoundKey transformation

Finally, in the AddRoundKey transformation, each bit of the state is XORed with
the corresponding bit of a 128-bit round key Wi. Each round requires a separate
round key, and the generation of these keys is performed by the key expansion
routine described in the next subsection.

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

·⊕Wi−−−−−→

s′0,0 s′0,1 s′0,2 s′0,3

s′1,0 s′1,1 s′1,2 s′1,3

s′2,0 s′2,1 s′2,2 s′2,3

s′3,0 s′3,1 s′3,2 s′3,3

2.2.2 Key Expansion

The purpose of the key expansion is to construct (Nr +1) 128-bit round keys Wi

from a single 128-bit secret key K. Once these round keys have been derived, an
unlimited number of plaintext blocks can be encrypted, i.e., the key expansion
routine only needs to be repeated when the secret key is changed.

The AES key expansion routine is a recursive process in which each new
round key is directly derived from the preceding keys. If the round keys Wi

are represented by 4× 4-bytes arrays, the routine exclusively consists of column
operations. The key expansion in AES-128 proceeds according to the pseudo-code
below:

W0 = K
for i = 1 to 10 do
Wi,0 = Wi−1,0 ⊕ SubBytes∗(ShiftColumn(Wi−1,3))⊕RiC
Wi,1 = Wi−1,1 ⊕Wi,0

Wi,2 = Wi−1,2 ⊕Wi,1

Wi,3 = Wi−1,3 ⊕Wi,2

end for

The first round key W0, used in the initial key addition, is directly filled
with the 16 bytes of the secret key K. The 32-bit columns Wi,j of the remain-
ing round keys are derived recursively. The function SubBytes∗ substitutes the
bytes of a single column in the same way as the SubBytes transformation de-
scribed in Sect. 2.2.1.1. The ShiftColumn operation is an upward cyclic shift
over one byte position. The constants RiC are fixed 4-byte columns defined as
(02i−1

x , 00x, 00x, 00x)T with 02x representing the element x in GF (28) (using the
same irreducible polynomial x8 + x4 + x3 + x+ 1).

The key expansion routine used in AES-192 is very similar (we refer to [470]
for the details), but the expansion in AES-256 is slightly different:

W0 = K0

W1 = K1

for i = 2 to 14 do



Dra
ft

Apr
il
19

, 2
00

4

524 Book III. The NESSIE portfolio — Part B. Block Ciphers

if i is even then
Wi,0 = Wi−2,0 ⊕ SubBytes∗(ShiftColumn(Wi−1,3))⊕Ri/2C

else
Wi,0 = Wi−2,0 ⊕ SubBytes∗(Wi−1,3)

end if
Wi,1 = Wi−2,1 ⊕Wi,0

Wi,2 = Wi−2,2 ⊕Wi,1

Wi,3 = Wi−2,3 ⊕Wi,2

end for

In the code above, K0 and K1 represent the first and the second half of the
256-bit key respectively.

2.2.3 Inverse Cipher

All transformations described in Sect. 2.2.1 are invertible and a straightforward
implementation of the decryption algorithm would simply consist in applying
the inverted operations in reverse order (without modifying the key expansion).
This section presents an equivalent inverse cipher, which slightly modifies the key
schedule, but has the advantage of using the same sequence of transformations
as the original cipher. The pseudo-code is given below:

S = AddRoundKey(C,W ′
Nr

)
for i = Nr − 1 to 1 do
S = SubBytes−1(S)
S = ShiftRows−1(S)
S = MixColumns−1(S)
S = AddRoundKey(S,W ′

i)
end for
S = SubBytes−1(S)
S = ShiftRows−1(S)
P = AddRoundKey(S,W ′

0)

The inverse transformations SubBytes−1 and ShiftRows−1 are easily derived
from the descriptions in Sect. 2.2.1. The inverse of MixColumns requires the matrix
A to be inverted. The resulting linear transformation is given by:

s′0,i
s′1,i
s′2,i
s′3,i

 = A−1 ·


s0,i
s1,i
s2,i
s3,i

 =


0Ex 0Bx 0Dx 09x
09x 0Ex 0Bx 0Dx
0Dx 09x 0Ex 0Bx
0Bx 0Dx 09x 0Ex

 ·

s0,i
s1,i
s2,i
s3,i


The new round keys W ′

i used in the equivalent inverse cipher are computed from
the original round keys as follows:

W ′
i =

{
Wi for i = 0 or i = Nr,
MixColumns−1(Wi) for 1 ≤ i ≤ Nr − 1.
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2.3 Test vectors

Test vectors are available in FIPS-197 [470].
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3. Camellia

3.1 Introduction

3.1.1 Overview

Camellia was first published in 2000 and is developed jointly by NTT and Mit-
subishi Electric. The design of Camellia is based on E2 and MISTY. E2 was
designed by NTT and submitted as an AES candidate, and MISTY was designed
by Mitsubishi Electric and submitted for the 3GPP’s confidentiality and integrity
function.

which was a previous block cipher by the same designers and was a submission
to the AES. The main difference between E2 and Camellia is the adoption, for
Camellia, of the 1-round Substitution-Permutation Network (SPN), not the 2-
round SPN of E2, leading to an expected improvement in speed for Camellia.
Camellia has a block size of 128 bits and uses 128, 192, or 256-bit keys. Camellia
is aimed at a wide range of platforms, from low-power hardware applications
and environments with limited resources to resource-intensive environments. It is
designed to require only byte-oriented operations to ensure a strong performance
on software platforms.

3.1.2 Outline of the primitive

Camellia [24] is an 18 (or 24)-round 128-bit block cipher which supports 128-,
(or 192-, and 256-) bit key lengths, with a layer of 64-bit FL-blocks after the 6th,
12th (and 18th) rounds, which introduce round irregularity into the cipher. It is a
byte-oriented Feistel cipher with a particular emphasis on low-cost hardware ap-
plications, and is designed to be resistant to differential and linear cryptanalysis.
Camellia uses four 8×8-bit S-boxes with input and output affine transformations
and logical operations. The diffusion layer uses a linear transformation based on a
Maximum-Distance-Separable code with a branch number of 5. The FL functions
are similar to those of MISTY, except that Camellia also uses a 1-bit rotation so
as to make bytewise cryptanalysis harder. Decryption for Camellia is very similar
to encryption except that the order in which the round keys are introduced is
reversed 1 .

1 In the original specification, the term ”subkey” is used instead of ”round key”.
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3.1.3 Security and performance

Camellia has not only been examined by the NESSIE project but also by the ISO
and CRYPTREC standardization bodies, as well as by the more general research
community, and no security flaws have been found. The designers [25] claim that
for Camellia no differential/linear characteristics exist with linear bias and dif-
ferential probabilities > 2−128 over 12 rounds and 2−132 over 15 rounds. This
claim is based on the theoretical lower bounds of the number of active S-boxes
and the use of S-boxe which are affine transformations of x−1 over GF(28). This
particular mathematical function ensures optimal differential and linear charac-
teristics through the S-box. The cipher also obtains high diffusion by using a
linear transformation for the diffusion layer with a high branch number of 5. The
designers claim that 10 rounds is indistinguishable from a random permutation
with respect to truncated differential and linear cryptanalysis, and also claim
security against interpolation, linear sum, and Square attacks. The introduction
of the FL functions after every 6 rounds provides resistance to Slide attacks.

The security of Camellia against the Square attack is discussed by Yeom et al.
in [627]. This attack may be extended up to 9 rounds including the first FL/FL−1

layer by considering the key schedule. In [578] Shirai et al. discuss the security
of Camellia against differential and linear attack and it is shown that 10-round
Camellia without FL/FL−1 has no differential and linear characteristic with prob-
ability higher than 2−128. Shirai obtains a differential attack on 11 rounds without
FL/FL−1 layers using an 8-round characteristic, and a linear attack on 12 rounds
without FL/FL−1 layers using a 9-round linear approximation. Shirai [577] also
proposed boomerang and rectangle attacks on 10-round Camellia with FL/FL−1

layers. They use a technique developed by Biham et al. [68, 69]. Truncated and
impossible differential cryptanalysis of Camellia (without FL/FL−1 functions) is
described by Sugita et al. [602]. A Square attack on Camellia is proposed by He
and Qing in [292]. 3-round and 7-round iterative differential characteristics with
probability 2−52 have been found by Biham et al. in [67], which can be iterated
to further rounds. A higher-order differential attack on 10 rounds of 256-bit key
Camellia without FL rounds is performed by Kawabata and Kaneko in [339],
leading to 9 and 8 rounds on 192-bit and 128-bit key versions, respectively.

Camellia’s S-boxes are based on the x−1 function, similar to the AES and, as
pointed out in [165], the Camellia (and AES) S-box can be described by a system
of 23 quadratic equations in 80 terms. Hence it is potentially open to algebraic
attacks (none found yet), for instance using the Big Encryption System (BES)
as described by Murphy and Robshaw [452, 454]. However Camellia also inserts
FL and FL−1 layers every six rounds and these should make any future algebraic
attacks more complicated in comparison to the AES. But, if an attack using
BES and/or a system of overdefined quadratic equations was ever successful on
AES, then it might also be quite successful on Camellia. Fuller and Millan [245]
recently observed that the bit-output functions of the x−1 S-box are all affine
transformations of the same function. This suggests a potential hardware saving
for the Camellia S-box, although this may later also become a security weakness.
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3.2 Description

Camellia is a byte-oriented Feistel cipher taking 128-bit plaintext blocks. It re-
quires 18 rounds for a 128-bit, and 24 rounds for a 192-bit or 256-bit key. We will
now describe each module.

3.2.1 Encryption - 128-bit Key

The encryption process for 128-bit keys operates over 18 rounds and is shown in
Fig 53. It comprises a series of three 6-round Feistel operations separated by FL
layers. The 128-bit input plaintext, M , is first split into two 64-bit halves, L0

and R0, where M = L0‖R0. Then L0 and R0 are bitwise XOR’ed with the 64-bit
round keys, kw1 and kw2, respectively, before passing into the first set of 6-round
Feistel modules. Each round of a 6-round Feistel block passes 64-bit Li through
a keyed F -function, keyed by a 64-bit round key, ki, with the 64-bit output of
the F -function, L′i, bitwise XOR’ed with Ri. At the end of each round, 64-bit Li
and Ri are assigned to Ri+1 and Li+1, respectively. After each of the first two 6-
round Feistel blocks, 64-bit Li and Ri are passed through an FL and FL−1 layer,
respectively, where the FL and FL−1 layers are keyed by 64-bit klj and klj+1,
respectively. After the third and last 6-round Feistel block, 64-bit L18 and R18 are
interchanged before a final bitwise XOR with 64-bit kw3 and kw4, respectively.
Finally the ciphertext, C, is constructed, where C = (R18 ⊕ kw3)‖(L18 ⊕ kw4).

We can summarise the encryption inputs as,

M = L0‖R0

k = {k1, k2, . . . , k18}
kl = {kl1, kl2, kl3, kl4}
kw = {kw1, kw2, kw3, kw4}

The encryption function is then summarised as,

(L6‖R6) = 6RoundFeistel(L0 ⊕ kw1‖R0 ⊕ kw2, k1, k2, k3, k4, k5, k6)
L6 = FL(L6, kl1)
R6 = FL−1(R6, kl2)
(L12‖R12) = 6RoundFeistel(L6‖R6, k7, k8, k9, k10, k11, k12)
L12 = FL(L12, kl3)
R12 = FL−1(R12, kl4)
(L18‖R18) = 6RoundFeistel(L12‖R12, k13, k14, k15, k16, k17, k18)
C = (R18 ⊕ kw3)‖(L18 ⊕ kw4)

where 6RoundFeistel is described as,

for j = 0 to 5 do
Li+1+j = F(Li+j , ki+j+1)⊕Ri+j
Ri+1+j = Li+j

and where i = 0, 6 or 12.
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Fig. 53. Encryption for Camellia for 128-bit Key

The above variables, Li, Ri, ki, kli, kwj are all 64-bits wide, and M and C are
both 128-bits wide.

The order in which the round keys are used is as follows:

kw1, kw2

k1, k2, k3, k4, k5, k6

kl1, kl2
k7, k8, k9, k10, k11, k12

kl3, kl4
k13, k14, k15, k16, k17, k18

kw3, kw4

3.2.2 Decryption - 128-bit Key

The decryption process for 128-bit keys is shown in Fig 54, and is identical in
operation to encryption apart from the position and ordering of the round keys,
which are reversed. To be more explicit, for decryption the round keys are input
as follows:
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Fig. 54. Decryption for Camellia for 128-bit Key

kw3, kw4

k18, k17, k16, k15, k14, k13

kl4, kl3
k12, k11, k10, k9, k8, k7

kl2, kl1
k6, k5, k4, k3, k2, k1

kw1, kw2

3.2.3 Encryption - 192-bit and 256-bit Keys

The encryption process for 192-bit or 256-bit keys operates over 24 rounds and
is shown in Fig 55. It is similar to the encryption process for 128-bit keys. The
only difference is that an extra 6-round Feistel operation and an FL layer are
inserted. It therefore comprises four 6-round Feistel operations separated by FL
layers. We therefore require the generation and input of more round keys.

We can summarise the encryption inputs as,

M = L0‖R0

k = {k1, k2, . . . , k24}
kl = {kl1, kl2, kl3, kl4, kl5, kl6}
kw = {kw1, kw2, kw3, kw4}
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Fig. 55. Encryption for Camellia for 192-bit and 256-bit Keys

The encryption function is then summarised as,

(L6‖R6) = 6RoundFeistel(L0 ⊕ kw1‖R0 ⊕ kw2, k1, k2, k3, k4, k5, k6)
L6 = FL(L6, kl1)
R6 = FL−1(R6, kl2)
(L12‖R12) = 6RoundFeistel(L6‖R6, k7, k8, k9, k10, k11, k12)
L12 = FL(L12, kl3)
R12 = FL−1(R12, kl4)
(L18‖R18) = 6RoundFeistel(L12‖R12, k13, k14, k15, k16, k17, k18)
L18 = FL(L18, kl5)
R18 = FL−1(R18, kl6)
C = (R24 ⊕ kw3)‖(L24 ⊕ kw4)
(L24‖R24) = 6RoundFeistel(L18‖R18, k19, k20, k21, k22, k23, k24)

The order in which the round keys are used is as follows:
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kw1, kw2

k1, k2, k3, k4, k5, k6

kl1, kl2
k7, k8, k9, k10, k11, k12

kl3, kl4
k13, k14, k15, k16, k17, k18

kl5, kl6
k19, k20, k21, k22, k23, k24

kw3, kw4

3.2.4 Decryption - 192-bit and 256-bit Keys

The decryption process for 192-bit and 256-bit keys is shown in Fig 56, and is
identical in operation to encryption apart from the position and ordering of the
round keys, which are reversed. To be more explicit, for decryption the round
keys are input as follows:

FL FL
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FL FL
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Fig. 56. Decryption for Camellia for 192-bit and 256-bit Keys
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kw3, kw4

k24, k23, k22, k21, k20, k19

kl6, kl5
k18, k17, k16, k15, k14, k13

kl4, kl3
k12, k11, k10, k9, k8, k7

kl2, kl1
k6, k5, k4, k3, k2, k1

kw1, kw2

3.2.5 F-Function

The F-function is shown in Fig 57. The F-function comprises a bitwise XOR,
followed by an application of 8 parallel 8 × 8 S-Boxes, followed by a diffusion
layer (the P-function). To be more specific, the input is bits x1 to x8 where,

Li = x1‖x2‖x3‖x4‖x5‖x6‖x7‖x8

and this 64-bit input, Li, is first bitwise XOR’ed with a 64-bit key, ki, and is
then partitioned into eight 8-bit segments, yj , such that,

Li ⊕ ki = y1‖y2‖y3‖y4‖y5‖y6‖y7‖y8

Each yj is then passed through an 8× 8 S-box, st, to give eight 8-bit segments,
zj , where,

z1 = s1[y1], z2 = s2[y2], z3 = s3[y3], z4 = s4[y4],
z5 = s2[y5], z6 = s3[y6], z7 = s4[y7], z8 = s1[y8]

The eight 8-bit segments, zj , are then acted on by the P-function, which is a
diffusion layer which outputs eight 8-bit segments, z′j , where,

z′1 = z1 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8
z′2 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8
z′3 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8
z′4 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7
z′5 = z1 ⊕ z2 ⊕ z6 ⊕ z7 ⊕ z8
z′6 = z2 ⊕ z3 ⊕ z5 ⊕ z7 ⊕ z8
z′7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8
z′8 = z1 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7

The P-function can alternatively be represented in matrix-vector form as,
z8
z7
...
z1

→


z′8
z′7
...
z′1

 = P


z8
z7
...
z1


where,
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P =



0 1 1 1 1 0 0 1
1 0 1 1 1 1 0 0
1 1 0 1 0 1 1 0
1 1 1 0 0 0 1 1
0 1 1 1 1 1 1 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1


The 64-bit output of the F-function, L′i, is then constructed by concatenating the
8-bit z′j , where,

L′i = z′1‖z′2‖z′3‖z′4‖z′5‖z′6‖z′7‖z′8
The above variables, yj , zj , z′j , are 8-bits wide, and the variables, Li, ki, L′i are

64-bits wide.
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Fig. 57. F-Function for Camellia

3.2.6 FL-Function

The FL and FL−1-functions are shown in Fig 58. The FL-function takes as input
a 64-bit word, X, which is then split into two 32-bit parts, XL and XR, where,

X = XL‖XR

The right half, XR, is modified by bitwise XOR’ing with a modified version of
the left half after the left half, XL, has been bitwise AND’ed with a 32-bit key,
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kliL, and the 32-bit result rotated left by one bit. (AND is shown as ∧ in Fig. 58).
Following this, the left half is modified by bitwise XOR’ing with a modified version
of the right half after the right half has been bitwise OR’ed with a 32-bit key,
kliR, (OR is shown as ∨ in Fig. 58). Finally the 32-bit left and 32-bit right halves,
YL and YR, are concatenated to form a 64-bit output, Y where,

Y = YL‖YR

X
Y

kl

X
X Y YXL R L R

R

iL

kliR

kl

kl

iR

iL

LY YR

1

1

Y

X
XL

Fig. 58. FL and FL−1 Functions for Camellia

We can summarise the FL inputs as,

X = XL‖XR

kli = kliL‖kliR

The FL function is then defined as,

YR = ((XL ∧ kliL) ≪1)⊕XR

YL = (YR ∨ kliR)⊕XL

and the output is Y = YL‖YR.
The above variables, XL, XR, YL, YR, kliL, kliR, are 32-bits wide, and the vari-

ables, X,Y are 64-bits wide.

3.2.7 FL−1-Function

The FL and FL−1-functions are shown in Fig 58. The FL−1-function takes as
input a 64-bit word, Y , which is then split into two 32-bit parts, YL and YR,
where,
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Y = YL‖YR
The left half, YL, is modified by bitwise XOR’ing with a modified version of the
right half after the right half, YR, has been bitwise OR’ed with a 32-bit key,
kliR (OR is shown as ∨ in Fig. 58). Following this, the right half is modified by
bitwise XOR’ing with a modified version of the left half where the left half has
been bitwise AND’ed with a 32-bit key, kliL, and the 32-bit result rotated left by
one bit (AND is shown as ∧ in Fig. 58). Finally the 32-bit left and 32-bit right
halves, XL and XR, are concatenated to form a 64-bit output, X.

We can summarise the FL−1 inputs as,

Y = YL‖YR
kli = kliL‖kliR

The FL−1 function is then defined as,

XL = (YR ∨ kliR)⊕ YL
XR = ((XL ∧ kliL) ≪1)⊕ YR

where the output is X = XL‖XR.
The above variables, YL, YR, XL, XR, kliL, kliR, are 32-bits wide, and the vari-

ables, Y,X are 64-bits wide.

3.2.8 Key Schedule

The Key Schedule is shown in Fig 59. For the 128-bit key version of Camellia,
the user key, K, is the 128-bit key, KL, with the 128-bit key, KR, set to all zero
bits. Thus,

K = KL, KR = 0

For the 192-bit key version of Camellia, the user key, K, is the 128-bit key, KL,
and the leftmost 64-bits of KR, KRL, with the rightmost 64-bits of KR, KRR,
set to the bitwise negation of the leftmost 64-bits of KR, KRL. Thus,

K = KL‖KRL, KRR = KRL, KR = KRL‖KRR

For the 256-bit key version of Camellia, the user key, K, is the 128-bit key, KL,
and the 128-bit key, KR. Thus,

K = KL‖KR

The key schedule of Camellia makes use of the F-function of the encryption mod-
ule, and is the same for encryption and decryption. The user key, K, is encrypted
by means of the F-function using pre-fixed constants, where these constants,
Σi, are defined as continuous values from the hexadecimal representation of the
square root of the ith prime. The round keys are then generated partly from
rotated values of the user-input key, K (where K = KL, K = KL‖KRL, or
K = KL‖KR, for a 128-bit, 192-bit, or 256-bit key, K, respectively), and partly
from rotated values of the encrypted keys, KA and KB .
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For the 128-bit key version of Camellia, the output of the key schedule is the
128-bit encrypted key, KA, with the right-hand side of Fig 59 omitted and KB

not generated or used. For the 192-bit and 256-bit key versions of Camellia, the
outputs of the key schedule are the 128-bit encrypted key, KA, and the 128-bit
encrypted key, KB . The key schedule comprises 2 or 3 2-round Feistel blocks for
128-bit or 192/256-bit key versions, respectively. Each Feistel block is ‘keyed’ by
a pair of constants, Σi.

The 128-bit input to the first 2-round Feistel block on the left side of Fig 59
is KL⊕KR, and this Feistel block is ‘keyed’ by two 64-bit constants, Σ1 and Σ2.
The 128-bit output from the first 2-round Feistel block is then bitwise XOR’ed
with KL before input to the second 2-round Feistel block on the left side of
Fig 59. This second Feistel block is ‘keyed’ by two 64-bit constants, Σ3 and Σ4.
The 128-bit output from this second 2-round Feistel block is KA. For 192-bit or
256-bit key versions of Camellia, KA is then bitwise XOR’ed with the 128-bit key,
KR, before inputing the result to a third 2-round Feistel block, which is on the
right side of Fig 59. This third Feistel block is ‘keyed’ by two 64-bit constants,
Σ5 and Σ6. The 128-bit output from this third 2-round Feistel block is KB .

F

F

F

F

F

F

KK

K

K K

L KR

1

2

3

4

KL

R

5

6

A B

Fig. 59. Key Schedule for Camellia

The key schedule is then summarised as,
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Ka = 2RoundFeistel(KL ⊕KR, Σ1, Σ2)
KA = 2RoundFeistel(Ka ⊕KL, Σ3, Σ4)
KB = 2RoundFeistel(KA ⊕KR, Σ5, Σ6) (192/256-bit key only)

where the 128-bit input to 2RoundFeistel is split into two 64-bit parts, L0‖R0,
the 128-bit output from 2RoundFeistel is also split into two 64-bit parts, L2‖R2,
and the two 64-bit ‘key’ inputs to 2RoundFeistel are Σi and Σi+1.

2RoundFeistel is then described as,

for j = 0 to 1 do
Lj+1 = F(Lj , Σi+j)⊕Rj
Rj+1 = Lj

where i = 1, 3 or 5.
The above variables, Lj , Rj , Σi are all 64-bits wide, and

KL,KR,Ka,KA,KB are all 128-bits wide.
The order in which the constants, Σi, are input is as follows:

Σ1, Σ2

Σ3, Σ4

Σ5, Σ6

These 64-bit key schedule constants are as follows,

Σ1 = 0xa09e667f3bcc908b
Σ2 = 0xb67ae8584caa73b2
Σ3 = 0xc6ef372fe94f82be
Σ4 = 0x54ff53a5f1d36f1c
Σ5 = 0x10e527fade682d1d
Σ6 = 0xb05688c2b3e6c1fd

Finally, the 64-bit round keys, k, kw, and kl are derived from the 128-bit
keys, KL, KR, KA, and KB , as shown in the following tables. Table 54 is for
the 128-bit key version of Camellia, and Table 55 is for the 192- or 256-bit key
version of Camellia. Note that (X ≪r)L is the leftmost 64-bits of the 128-bit
value, (X ≪r) which, in turn, is the 128-bit value, X, cyclically rotated left by r
bits. Similarly, (X ≪r)R is the rightmost 64-bits of the 128-bit value, (X ≪r).

For decryption the order of the rounds is reversed.

3.2.9 S-boxes

The four s-boxes of Camellia are affine equivalent to an inversion function,
x−1, over GF(28). They do not have compact boolean Algebraic Normal Forms
(ANFs). However, they are compactly described as arithmetic operations over
GF(28), followed by binary affine operations, where the 8-bit input, x, is parti-
tioned into 1-bit segments where,

x = x1‖x2‖x3‖x4‖x5‖x6‖x7‖x8



Dra
ft

Apr
il
19

, 2
00

4

540 Book III. The NESSIE portfolio — Part B. Block Ciphers

Table 54. Extracting Round Keys from User Key and Encrypted Keys for 128-bit Key
Version of Camellia (shown for encryption only)

round key value
Prewhitening kw1 (KL ≪0)L

kw2 (KL ≪0)R

F (Round 1) k1 (KA ≪0)L

F (Round 2) k2 (KA ≪0)R

F (Round 3) k3 (KL ≪15)L

F (Round 4) k4 (KL ≪15)R

F (Round 5) k5 (KA ≪15)L

F (Round 6) k6 (KA ≪15)R

FL kl1 (KA ≪30)L

FL−1 kl2 (KA ≪30)R

F (Round 7) k7 (KL ≪45)L

F (Round 8) k8 (KL ≪45)R

F (Round 9) k9 (KA ≪45)L

F (Round 10) k10 (KL ≪60)R

F (Round 11) k11 (KA ≪60)L

F (Round 12) k12 (KA ≪60)R

FL kl3 (KL ≪77)L

FL−1 kl4 (KL ≪77)R

F (Round 13) k13 (KL ≪94)L

F (Round 14) k14 (KL ≪94)R

F (Round 15) k15 (KA ≪94)L

F (Round 16) k16 (KA ≪94)R

F (Round 17) k17 (KL ≪111)L

F (Round 18) k18 (KL ≪111)R

Postwhitening kw3 (KA ≪111)L

kw4 (KA ≪111)R
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Table 55. Extracting Round Keys from User Key and Encrypted Keys for 192/256-bit
Key Versions of Camellia (shown for encryption only)

round key value
Prewhitening kw1 (KL ≪0)L

kw2 (KL ≪0)R

F (Round 1) k1 (KB ≪0)L

F (Round 2) k2 (KB ≪0)R

F (Round 3) k3 (KR ≪15)L

F (Round 4) k4 (KR ≪15)R

F (Round 5) k5 (KA ≪15)L

F (Round 6) k6 (KA ≪15)R

FL kl1 (KR ≪30)L

FL−1 kl2 (KR ≪30)R

F (Round 7) k7 (KB ≪30)L

F (Round 8) k8 (KB ≪30)R

F (Round 9) k9 (KL ≪45)L

F (Round 10) k10 (KL ≪45)R

F (Round 11) k11 (KA ≪45)L

F (Round 12) k12 (KA ≪45)R

FL kl3 (KL ≪60)L

FL−1 kl4 (KL ≪60)R

F (Round 13) k13 (KR ≪60)L

F (Round 14) k14 (KR ≪60)R

F (Round 15) k15 (KB ≪60)L

F (Round 16) k16 (KB ≪60)R

F (Round 17) k17 (KL ≪77)L

F (Round 18) k18 (KL ≪77)R

FL kl5 (KA ≪77)L

FL−1 kl6 (KA ≪77)R

F (Round 19) k19 (KR ≪94)L

F (Round 20) k20 (KR ≪94)R

F (Round 21) k21 (KA ≪94)L

F (Round 22) k22 (KA ≪94)R

F (Round 23) k23 (KL ≪111)L

F (Round 24) k24 (KL ≪111)R

Postwhitening kw3 (KB ≪111)L

kw4 (KB ≪111)R
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and where the 8-bit output, y, is partitioned into 1-bit segments where,

y = y1‖y2‖y3‖y4‖y5‖y6‖y7‖y8

We now present the Galois/Affine construction of s1, s2, s3, and s4. The subse-
quent section gives pseudo-code for Camellia and also includes an alternative de-
scription of the four S-boxes as permutations over the integers {0, 1, . . . , 254, 255}
which is useful for software implementations using lookup tables.

3.2.9.1 S-Box s1

s1 : y = h(g(f(0xc5⊕ x)))⊕ 0x6e

where f , g, and h take 8-bit inputs, a = a1‖a2‖a3‖a4‖a5‖a6‖a7‖a8, and output
8-bit values, b = b1‖b2‖b3‖b4‖b5‖b6‖b7‖b8, where the ai and bi are 1-bit values.
f is an affine permutation of the input, g is inversion over GF(28), and h is an
affine transformation of the output. Specifically,

f :
b1 = a6 ⊕ a2

b2 = a7 ⊕ a1

b3 = a8 ⊕ a5 ⊕ a3

b4 = a8 ⊕ a3

b5 = a7 ⊕ a4

b6 = a5 ⊕ a2

b7 = a8 ⊕ a1

b8 = a6 ⊕ a4

g :
(b8 + b7α+ b6α

2 + b5α
3) + (b4 + b3α+ b2α

2 + b1α
3)β

= 1/((a8 + a7α+ a6α
2 + a5α

3) + (a4 + a3α+ a2α
2 + a1α

3)β)

g is an inversion in GF(28) assuming 1
0 is 0, where β is an element in GF(28)

that satisfies β8 + β6 + β5 + β3 + 1 = 0 and α = β238 = β6 + β5 + β3 + β2 is an
element in GF(24) that satisfies α4 + α+ 1 = 0.

h :
b1 = a5 ⊕ a6 ⊕ a2

b2 = a6 ⊕ a2

b3 = a7 ⊕ a4

b4 = a8 ⊕ a2

b5 = a7 ⊕ a3

b6 = a8 ⊕ a1

b7 = a5 ⊕ a1

b8 = a6 ⊕ a3

3.2.9.2 S-Box s2

s2 : y = s1(x) ≪1
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3.2.9.3 S-Box s3

s3 : y = s1(x) ≫1

3.2.9.4 S-Box s4

s4 : y = s1(x ≪1)

3.2.10 Pseudo-Code

/* data in hexadecimal */
sigma = [0xa09e667f3bcc908b,

0xb67ae8584caa73b2,
0xc6ef372fe94f82be,
0x54ff53a5f1d36f1c,
0x10e527fade682d1d,
0xb05688c2b3e6c1fd]

MAIN /* an example encryption then decryption for 128-bit key */
/* produces ciphertext = 67673138549669730857065648eabe43 */
{

K = 0x0123456789abcdeffedcba9876543210;
plaintext = 0x0123456789abcdeffedcba9876543210;
Keyschedule(K,k,kl,kw,128);
ciphertext <- Encrypt(plaintext,k,kl,kw,128);
plaintext <- Decrypt(ciphertext,k,kl,kw,128);
/* plaintext recovered */

} /* MAIN */

Keyschedule(K,k,kl,kw,keysize)
{

KL = K{1,128};
if (keysize is equal to 128)
{

KR = ();
KRL = 0x0000000000000000;
KRR = 0x0000000000000000;

}
else
{

if (keysize is equal to 192)
KR = K{129,192} || BAR(K{129,192});

else
KR = K{129,256};

KRL = KR{1,64};
KRR = KR{65,128};

}
KLL = KL{1,64};
KLR = KL{65,128};
L = XOR(KLL,KRL);
R = XOR(KLR,KRR);
for n = 1 to 2 do
{

R = XOR(R,F(L,sigma[n]));
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SWAP(L,R);
}
L = XOR(L,KLL);
R = XOR(R,KLR);
for n = 1 to 2 do
{

R = XOR(R,F(L,sigma[2+n]));
SWAP(L,R);

}
KA = L || R;
L = XOR(L,KRL);
R = XOR(R,KRR);
for n = 1 to 2 do
{

R = XOR(R,F(L,sigma[4+n]));
SWAP(L,R);

}
KB = L || R;
kw[1] = KL{1,64};
kw[2] = KL{65,128};
if (keysize = 128)
{

k[1] = KA{1,64};
k[2] = KA{65,128};
k[3] = (KL <<< 15){1,64};
k[4] = (KL <<< 15){65,128};
k[5] = (KA <<< 15){1,64};
k[6] = (KA <<< 15){65,128};
k[7] = (KL <<< 45){1,64};
k[8] = (KL <<< 45){65,128};
k[9] = (KA <<< 45){1,64};
k[10] = (KL <<< 60){65,128};
k[11] = (KA <<< 60){1,64};
k[12] = (KA <<< 60){65,128};
k[13] = (KL <<< 94){1,64};
k[14] = (KL <<< 94){65,128};
k[15] = (KA <<< 94){1,64};
k[16] = (KA <<< 94){65,128};
k[17] = (KL <<< 111){1,64};
k[18] = (KL <<< 111){65,128};

kl[1] = (KA <<< 30){1,64};
kl[2] = (KA <<< 30){65,128};
kl[3] = (KL <<< 77){1,64};
kl[4] = (KL <<< 77){65,128};
kw[3] = (KA <<< 111){1,64};
kw[4] = (KA <<< 111){65,128};

}
else /* keysize is 192 or 256 */
{

k[1] = KB{1,64};
k[2] = KB{65,128};
k[3] = (KR <<< 15){1,64};
k[4] = (KR <<< 15){65,128};
k[5] = (KA <<< 15){1,64};
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k[6] = (KA <<< 15){65,128};
k[7] = (KB <<< 30){1,64};
k[8] = (KB <<< 30){65,128};
k[9] = (KL <<< 45){1,64};
k[10] = (KL <<< 45){65,128};
k[11] = (KA <<< 45){1,64};
k[12] = (KA <<< 45){65,128};
k[13] = (KR <<< 60){1,64};
k[14] = (KR <<< 60){65,128};
k[15] = (KB <<< 60){1,64};
k[16] = (KB <<< 60){65,128};
k[17] = (KL <<< 77){1,64};
k[18] = (KL <<< 77){65,128};
k[19] = (KR <<< 94){1,64};
k[20] = (KR <<< 94){65,128};
k[21] = (KA <<< 94){1,64};
k[22] = (KA <<< 94){65,128};
k[23] = (KL <<< 111){1,64};
k[24] = (KL <<< 111){65,128};

kl[1] = (KR <<< 30){1,64};
kl[2] = (KR <<< 30){65,128};
kl[3] = (KL <<< 60){1,64};
kl[4] = (KL <<< 60){65,128};
kl[5] = (KA <<< 77){1,64};
kl[6] = (KA <<< 77){65,128};
kw[3] = (KB <<< 111){1,64};
kw[4] = (KB <<< 111){65,128};

}
} /* Keyschedule */

128Bits <- Encrypt(M,k,kl,kw,keysize)
{

L = M{1,64};
R = M{65,128};
L = XOR(L,kw[1]);
R = XOR(R,kw[2]);
if (keysize is equal to 128)

BigRounds = 3;
else

BigRounds = 4;
for N = 0 to (BigRounds - 1) do
{

for n = 1 to 6 do
{

R = XOR(R,F(L,k[n + (6 * N)]));
SWAP(L,R);

}
if (N is not equal to (BigRounds - 1))
{

L = FL(L,kl[(2 * N) + 1)]);
R = FLINV(R,kl[(2 * N) + 2)]);

}
}
SWAP(L,R);
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L = XOR(L,kw[3]);
R = XOR(R,kw[4]);
Return(L || R);

} /* Encrypt */

128Bits <- Decrypt(C,k,kl,kw,keysize)
{

R = C{1,64};
L = C{65,128};
R = XOR(R,kw[3]);
L = XOR(L,kw[4]);
if (keysize is equal to 128)

BigRounds = 3;
else

BigRounds = 4;
for N = (BigRounds - 1) downto 0 do
{

if (N is not equal to (BigRounds - 1))
{

R = FL(R,kl[(2 * N) + 2)]);
L = FLINV(L,kl[(2 * N) + 1)]);

}
for n = 6 downto 1 do
{

L = XOR(L,F(R,k[n + (6 * N)]));
SWAP(L,R);

}
}
SWAP(L,R);
R = XOR(R,kw[1]);
L = XOR(L,kw[2]);
Return(R || L);

} /* Decrypt */

64Bits <- F(x,ki)
{

x = XOR(x,ki);
z1 = s1[x{1,8}];
z2 = s2[x{9,16}];
z3 = s3[x{17,24}];
z4 = s4[x{25,32}];
z5 = s2[x{33,40}];
z6 = s3[x{41,48}];
z7 = s4[x{49,56}];
z8 = s1[x{57,64}];
z1’ = XOR(z1,z3,z4,z6,z7,z8);
z2’ = XOR(z1,z2,z4,z5,z7,z8);
z3’ = XOR(z1,z2,z3,z5,z6,z8);
z4’ = XOR(z2,z3,z4,z5,z6,z7);
z5’ = XOR(z1,z2,z6,z7,z8);
z6’ = XOR(z2,z3,z5,z7,z8);
z7’ = XOR(z3,z4,z5,z6,z8);
z8’ = XOR(z1,z4,z5,z6,z7);
Return(z1’ || z2’ || z3’ || z4’ || z5’ || z6’ || z7’ || z8’);

} /* F */
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64Bits <- FL(X,kli)
{

XL = X{1,32};
XR = X{33,64};
XR = XOR(XR,AND(XL,kli{1,32}) <<< 1);
XL = XOR(XL,OR(XR,kli{33,64}));
Return(XL || XR);

} /* FL */

64Bits <- FLINV(X,kli)
{

XL = X{1,32};
XR = X{33,64};
XL = XOR(XL,OR(XR,kli{33,64}));
XR = XOR(XR,AND(XL,kli{1,32}) <<< 1);
Return(XL || XR);

} /* FLINV */

/* s1 is here specified in decimal */
s1 = [112,130, 44,236,179, 39,192,229,228,133, 87, 53,234, 12,174, 65,

35,239,107,147, 69, 25,165, 33,237, 14, 79, 78, 29,101,146,189,
134,184,175,143,124,235, 31,206, 62, 48,220, 95, 94,197, 11, 26,
166,225, 57,202,213, 71, 93, 61,217, 1, 90,214, 81, 86,108, 77,
139, 13,154,102,251,204,176, 45,116, 18, 43, 32,240,177,132,153,
223, 76,203,194, 52,126,118, 5,109,183,169, 49,209, 23, 4,215,
20, 88, 58, 97,222, 27, 17, 28, 50, 15,156, 22, 83, 24,242, 34,
254, 68,207,178,195,181,122,145, 36, 8,232,168, 96,252,105, 80,
170,208,160,125,161,137, 98,151, 84, 91, 30,149,224,255,100,210,
16,196, 0, 72,163,247,117,219,138, 3,230,218, 9, 63,221,148,
135, 92,131, 2,205, 74,144, 51,115,103,246,243,157,127,191,226,
82,155,216, 38,200, 55,198, 59,129,150,111, 75, 19,190, 99, 46,
233,121,167,140,159,110,188,142, 41,245,249,182, 47,253,180, 89,
120,152, 6,106,231, 70,113,186,212, 37,171, 66,136,162,141,250,
114, 7,185, 85,248,238,172, 10, 54, 73, 42,104, 60, 56,241,164,
64, 40,211,123,187,201, 67,193, 21,227,173,244,119,199,128,158]

/* s2 is here specified in decimal */
s2 = [224, 5, 88,217,103, 78,129,203,201, 11,174,106,213, 24, 93,130,

70,223,214, 39,138, 50, 75, 66,219, 28,158,156, 58,202, 37,123,
13,113, 95, 31,248,215, 62,157,124, 96,185,190,188,139, 22, 52,
77,195,114,149,171,142,186,122,179, 2,180,173,162,172,216,154,
23, 26, 53,204,247,153, 97, 90,232, 36, 86, 64,225, 99, 9, 51,
191,152,151,133,104,252,236, 10,218,111, 83, 98,163, 46, 8,175,
40,176,116,194,189, 54, 34, 56,100, 30, 57, 44,166, 48,229, 68,
253,136,159,101,135,107,244, 35, 72, 16,209, 81,192,249,210,160,
85,161, 65,250, 67, 19,196, 47,168,182, 60, 43,193,255,200,165,
32,137, 0,144, 71,239,234,183, 21, 6,205,181, 18,126,187, 41,
15,184, 7, 4,155,148, 33,102,230,206,237,231, 59,254,127,197,
164, 55,177, 76,145,110,141,118, 3, 45,222,150, 38,125,198, 92,
211,242, 79, 25, 63,220,121, 29, 82,235,243,109, 94,251,105,178,
240, 49, 12,212,207,140,226,117,169, 74, 87,132, 17, 69, 27,245,
228, 14,115,170,241,221, 89, 20,108,146, 84,208,120,112,227, 73,
128, 80,167,246,119,147,134,131, 42,199, 91,233,238,143, 1, 61]
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/* s3 is here specified in decimal */
s3 = [ 56, 65, 22,118,217,147, 96,242,114,194,171,154,117, 6, 87,160,

145,247,181,201,162,140,210,144,246, 7,167, 39,142,178, 73,222,
67, 92,215,199, 62,245,143,103, 31, 24,110,175, 47,226,133, 13,
83,240,156,101,234,163,174,158,236,128, 45,107,168, 43, 54,166,
197,134, 77, 51,253,102, 88,150, 58, 9,149, 16,120,216, 66,204,
239, 38,229, 97, 26, 63, 59,130,182,219,212,152,232,139, 2,235,
10, 44, 29,176,111,141,136, 14, 25,135, 78, 11,169, 12,121, 17,
127, 34,231, 89,225,218, 61,200, 18, 4,116, 84, 48,126,180, 40,
85,104, 80,190,208,196, 49,203, 42,173, 15,202,112,255, 50,105,
8, 98, 0, 36,209,251,186,237, 69,129,115,109,132,159,238, 74,

195, 46,193, 1,230, 37, 72,153,185,179,123,249,206,191,223,113,
41,205,108, 19,100,155, 99,157,192, 75,183,165,137, 95,177, 23,
244,188,211, 70,207, 55, 94, 71,148,250,252, 91,151,254, 90,172,
60, 76, 3, 53,243, 35,184, 93,106,146,213, 33, 68, 81,198,125,
57,131,220,170,124,119, 86, 5, 27,164, 21, 52, 30, 28,248, 82,
32, 20,233,189,221,228,161,224,138,241,214,122,187,227, 64, 79]

/* s4 is here specified in decimal */
s4 = [112, 44,179,192,228, 87,234,174, 35,107, 69,165,237, 79, 29,146,

134,175,124, 31, 62,220, 94, 11,166, 57,213, 93,217, 90, 81,108,
139,154,251,176,116, 43,240,132,223,203, 52,118,109,169,209, 4,
20, 58,222, 17, 50,156, 83,242,254,207,195,122, 36,232, 96,105,
170,160,161, 98, 84, 30,224,100, 16, 0,163,117,138,230, 9,221,
135,131,205,144,115,246,157,191, 82,216,200,198,129,111, 19, 99,
233,167,159,188, 41,249, 47,180,120, 6,231,113,212,171,136,141,
114,185,248,172, 54, 42, 60,241, 64,211,187, 67, 21,173,119,128,
130,236, 39,229,133, 53, 12, 65,239,147, 25, 33, 14, 78,101,189,
184,143,235,206, 48, 95,197, 26,225,202, 71, 61, 1,214, 86, 77,
13,102,204, 45, 18, 32,177,153, 76,194,126, 5,183, 49, 23,215,
88, 97, 27, 28, 15, 22, 24, 34, 68,178,181,145, 8,168,252, 80,
208,125,137,151, 91,149,255,210,196, 72,247,219, 3,218, 63,148,
92, 2, 74, 51,103,243,127,226,155, 38, 55, 59,150, 75,190, 46,
121,140,110,142,245,182,253, 89,152,106, 70,186, 37, 66,162,250,
7, 85,238, 10, 73,104, 56,164, 40,123,201,193,227,244,199,158]

Data, Logical and Arithmetic Definitions
=========================================

0x1fa4....
A number of this type, with 0x at the beginning, should be interpreted as
hexadecimal. The above example represents the bit string 0001111110100100.

a || b || c ||..
outputs the concatenation of the bitstrings, a,b,c,.... with a leftmost.
Example: a = 1011, b = 0110 -> a || b = 10110110

XOR(a,b,...)
outputs the bitwise XOR of a with b with .....
Example: a = 1011, b = 0110 -> XOR(a,b) = 1101

OR(a,b)
outputs the bitwise OR of a and b.
Example: a = 1011, b = 0110 -> OR(a,b) = 1111
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BAR(a)
outputs the bitwise negation of a.
Example: a = 1011 -> BAR(a) = 0100

AND(a,b)
outputs the bitwise AND of a and b.
Example: a = 1011, b = 0110 -> AND(a,b) = 0010

a <<< b
outputs the cyclic rotation left of a by b bits
Example: a = 1011, b = 2 -> a <<< b = 1110

SWAP(a,b)
swaps the contents of a and b.
Example: a = 1011, b = 0110 -> SWAP(a,b) -> a = 0110, b = 1011

A{a,b}
outputs the bit-segment of the bit string, A, starting from bit a of A
and up to and including bit b of A. Thus, A{a,b} has bit-length b - a + 1.
The first (leftmost) bit in A is A{1}.
Example: A = 10110110, -> A{4,6} = 101

A[a]
outputs the integer element stored at position a in the integer array, A.
The first integer in A is A[1].
Example: A = [112,130,44,236,179,....], -> A[3] = 44

’*’ ’+’
mean integer multiplication and addition, respectively.

List of Variables Used
=======================
128-256 bits - K
128 bits - plaintext,ciphertext,KL,KA,KB,M,C
0-128 bits - KR
64 bits - KLL,KLR,L,R,sigma[n],kw[i],k[i],kl[i],x,ki,X,kli
0-64 bits - KRL,KRR
32 bits - XL,XR
8 bits - z1,z2,z3,z4,z5,z6,z7,z8
integer - keysize,n,N,BigRounds

3.3 Test vectors

To aid in verification of a software or hardware implementation of Camellia, we
here provide a few test vectors comprising, as input (K, plaintext) and, as output
from the key schedule and encryption (KA(‖KB), ciphertext). All data in this
section is presented in hexadecimal. We provide test vectors for keysizes 128, 192,
and 256 separately.
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3.3.1 Keysize 128

K 0123456789ABCDEFFEDCBA9876543210x 0123456789ABCDEFFEDCBA9876543210x plain
KA AE71C3D55BA6BF1D169240A795F89256x 67673138549669730857065648EABE43x cipher
K 4149D2ADED9456681EC8B511D9E7EE04x 2A9B0B74F4C5DC6239B7063A50A7946Ex plain

KA C501214A4E3EBDE87C7CB2849487E0ABx DB93BB9C0ADD5AB59ED94D467A6277F8x cipher
K 47E8FB063DD4FE4AB430A73AF7720206x 0F9D74FC31CA654F921A606C024E7084x plain

KA 0E295B7D3F360780E68144421220764Fx 147375F650037166CA66C010CDA256A5x cipher
K 40BC8981241954A60A942B4A4334D1DBx 98048DD5D98B1F8DBBC6C7B238C9B948x plain

KA 02596E63AA22CE0B724A216C366FEA38x 3804E8E37A934CD71490C04AC34FD01Ex cipher
K 3DA93F2679DECB104422E07332F7E3FEx CCA0F0F0BA4596C4D9C10E1CF5DFF82Ex plain

KA 83B4F6108365A66DD87F05F25FE79D4Bx 3AC304208199AA72CCDDC42F5E6C7972x cipher

3.3.2 Keysize 192

K 0123456789ABCDEFFEDCBA98765432100011223344556677x
KA‖KB 0766A2135C44E288CF62016A06BABED3x‖8F3AFAC1CC974396C098A0B7E38B4DF2x

plain 0123456789ABCDEFFEDCBA9876543210x
cipher B4993401B3E996F84EE5CEE7D79B09B9x

K 5E89B44B505C09F156BF78055F78A83C24BFC19EDD5C94EFx
KA‖KB BA0B31B670B34C26026DFF7B74564087x‖3C23619D33DD5FCBEE712953EEDA757Fx

plain DCAC1785791E9BF611C7C7FCF3BCDFE7x
cipher 46DB784FF79A83ADBB9A36D617BF94B2x

K D3E748B043DC9F66388B7D50567CC6AA2F884F3E53E4A3DDx
KA‖KB 49667A715EC02BE735943E7A4B4ACC0Cx‖264D533063503300AADF49FE61B451CEx

plain 54B3C1A40FCB95658A0D6BEA861326AAx
cipher D01DF1A0F3C44431A7D48ECABC94B25Ex

K 1E1FE47104884EF696166EB80390ADD8FB53EF43986DC268x
KA‖KB D976805E61B8B9EC6F7DF42B42C11239x‖50C525B03A7575A6F061F5780EB98D91x

plain D46BA51747457E7FD0FBCF267796D0A6x
cipher 069713F8BE95E9E78EB4D312D7178582x

K 43E6B5DB547743BD09D19D312F2477AD902E2F8334A70D4Fx
KA‖KB B4A87A3EAF5A4B27645242CF6CFEDE61x‖83ADBB334E4BF72262ADB5E18FDE7873x

plain 7E6BB782F305788A1BE6421F76F0F772x
cipher 9C7C8C7148B6FAE78FBA6576D6808E92x
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3.3.3 Keysize 256

K 0123456789ABCDEFFEDCBA987654321000112233445566778899AABBCCDDEEFFx
KA‖KB 17D1B5B046DF07FAC9BB914B7F1937EEx‖3815214280A4D3C01848FD9AC7B1FE60x

plain 0123456789ABCDEFFEDCBA9876543210x
cipher 9ACC237DFF16D76C20EF7C919E3A7509x

K C940117C2EDA1D1EEA32C009D3C85421B330D6547F0D36E7AA6A2BE16D584636x
KA‖KB E9E4BF7F4699FC102DC4E604048338D2x‖5C8D2902D7ED8F582423E290493DBB3Bx

plain 4DEADCB5A14F37E2679C344437032D64x
cipher 96379E8CC8ECCDEE43C9A5332CE5627Ex

K A8CD7528DAAB0F84153A668392ACB92A036CF1343DD64F3F7C7415EAEC0C0B95x
KA‖KB 1013CF0907021375C6A47660CA372337x‖860596FDBAC808D0B66E385332BC805Dx

plain 9857B3C731D0E51B02A524D66E78F721x
cipher 5559E464CF71C284C2279A6BDDD8FA71x

K E9B481268AD16606457BF03188FBC6617B8315A64F4EE755ECAAED3727B08411x
KA‖KB 8DFD62ACE469C4C31944C934F6D819CDx‖E7EB9972CA9768A2F513E0E48CD147CDx

plain D980BDB42BCC3840069EC3984A7DC24Dx
cipher 8A9CD33A905A24A38EB0B4FBF2E7D68Fx

K 971803E766EA3C52942A89BCDA0ECD3E14042CEBA22107BB07545CE8685E4400x
KA‖KB A02F5B9A72D9CE7C7085A59258D8C8EDx‖208A93B9DEC678C522574C7DC203BCA1x

plain 640637EED79DF51C19E54DA1E114025Cx
cipher B01EA3099F64847F8B0AD264841C64BDx

It is also useful to verify the test vectors for partial implementations of Camel-
lia as, for instance, when the FL and FL−1 modules are removed and replaced by
identity transformations, (input directly connected to output). One can similarly
replace the F,s1,s2,s3,s4, and P modules with appropriate identity transforma-
tions. In the following we provide one set of test vectors for a selected subset
of scenarios where some of the above modules have been replaced by identity
transformations. Note that, in all possible partial cipher configurations consid-
ered below, the action of decryption of the ciphertext (using the same partial
configuration) results in the original plaintext. We provide test vectors for key-
sizes 128, 192, and 256 separately. Note also that for the case ’Implementation
includes -’, we mean that we replace the F,s1,s2,s3,s4, and P modules with iden-
tity transformations. This does NOT mean that these modules are deleted - no
links in the design are broken.
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3.3.4 Partial Implementations - Keysize 128

Input: K = 0123456789ABCDEFFEDCBA9876543210x
plaintext = 0123456789ABCDEFFEDCBA9876543210x

Implementation includes KA, ciphertext
− KA = 0123456789ABCDEFFEDCBA9876543210x

ciphertext = 19080091A2B3C4D5E6F7FF6E5D4C3B2Ax
FL/FL−1 KA = 0123456789ABCDEFFEDCBA9876543210x

ciphertext = 60FD2E1373FB84D5B726CCED736A262Fx
F KA = 33AD4792AAFBB0C68E4965EFD3B1C31Cx

ciphertext = 79AF1B549F685C53575AB532217AA79Bx
F,s1 KA = F0AD4792AAFBB0F9214965EFD3B1C353x

ciphertext = 8178FADB74B78B6ACF829741D18291F0x
F,s2 KA = 33FB4792A9FBB0C68E5165EFFEB1C31Cx

ciphertext = 79B09AFF3ABE5DDF5C76423D838F349Cx
F,s3 KA = 33AD8D92AAB7B0C68E4950EFD31FC31Cx

ciphertext = 1CBC8B22FA78B135A8F1A7B33D99B559x
F,s4 KA = 33AD4783AAFB69C68E4965D6D3B1FF1Cx

ciphertext = 27A7AD0663E0C69D60EEBA55D3E15DCFx
F,P KA = A1D7C1ADC77B3DA683474E5DA3344963x

ciphertext = 11A8E71280EFDAE6D3918AE3190BAA89x
FL/FL−1,F KA = 33AD4792AAFBB0C68E4965EFD3B1C31Cx

ciphertext = BEBB914476211FD2462B112452D4B6ACx
FL/FL−1,F,s1,s2,s3,s4 KA = F0FB8D83A9B769F9215150D6FE1FFF53x

ciphertext = 63268A2F8951DF32C9F961704443C87Bx
FL/FL−1,F,s1,s2,s3,P KA = B82919201A0BF2C69084CB4E71A64A7Cx

ciphertext = 731FB3C2F5AD22BDA69E0AD78C0395EDx
FL/FL−1,F,s1,s2,s4,P KA = AB017974AEAB5AC63F91169BBCC8710Dx

ciphertext = EEFD50D90CC2F0197D63A131AB958847x
FL/FL−1,F,s1,s3,s4,P KA = 8A00B3141C260E69724B7B0264EE5BB9x

ciphertext = B8BCA5B2D9481669D14FDBA2E3B3366Ex
FL/FL−1,F,s2,s3,s4,P KA = E2E1172D9353B7F3154631466CFD8EB1x

ciphertext = A0CF747DF45B2318BEC0DAC91DCCE888x
F,s1,s2,s3,s4,P KA = AE71C3D55BA6BF1D169240A795F89256x

ciphertext = BB7BFEF4A3C852F56DE4FEB946BB89C0x
FL/FL−1,F,s1,s2,s3,s4,P KA = AE71C3D55BA6BF1D169240A795F89256x
(complete) ciphertext = 67673138549669730857065648EABE43x
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3.3.5 Partial Implementations - Keysize 192

Input: K = 0123456789ABCDEFFEDCBA98765432100011223344556677x
plaintext = 0123456789ABCDEFFEDCBA9876543210x

Implementation includes KA,KB, ciphertext
− KA = FEDCBA9876543210FECD98AB32015467x

KB = 0123456789ABCDEFFFEEDDCCBBAA9988x
ciphertext = 4CC40091A2B3C4D5E6F7FFF76EE65DD5x

FL/FL−1 KA = FEDCBA9876543210FECD98AB32015467x
KB = 0123456789ABCDEFFFEEDDCCBBAA9988x

ciphertext = B23C8B3E8E37B9641924F03C913D9B96x
F KA = CC52B86D55044F398E5847DC97E4A56Bx

KB = D105352841C0D003AD1027B4E37738B0x
ciphertext = 239F084D2F52F01F39C6AB4FBCC6D0A1x

F,s1 KA = 1C52B86D55044F991C5847DC97E4A5CCx
KB = 8A05352841C0D049091027B4E377383Fx

ciphertext = CD7CB7947442B965A9A311059E057138x
F,s2 KA = CC5DB86D6C044F398E6047DC1FE4A56Bx

KB = D1073528A1C0D003AD4027B4227738B0x
ciphertext = A52134CB16481103ABB2F3E127D5E61Ax

F,s3 KA = CC520E6D559C4F398E5850DC9704A56Bx
KB = D10566284141D003AD1017B4E38038B0x

ciphertext = F8A4F331047BFD43E9439073B0529995x
F,s4 KA = CC52B88455043A398E58472397E43C6Bx

KB = D105356C41C01703AD102709E3771CB0x
ciphertext = 3F4BAD8A55EF8C6EC7CD84A11A9A31CAx

F,P KA = E582A7DA0B95F148E521283BF6523E27x
KB = 358AA59DA93118D26E56CFB3FE250DCAx

ciphertext = 769488327945E19BB78AE57D92378A5Dx
FL/FL−1,F KA = CC52B86D55044F398E5847DC97E4A56Bx

KB = D105352841C0D003AD1027B4E37738B0x
ciphertext = 1F656CC60334CD5FC679E84FEF6CC13Ax

FL/FL−1,F,s1,s2,s3,s4 KA = 1C5D0E846C9C3A991C6050231F043CCCx
KB = 8A07666CA14117490940170922801C3Fx

ciphertext = A1D617F74B5772A9B192F139B9A0E04Dx
FL/FL−1,F,s1,s2,s3,P KA = 0B624512C0B8F7848A636A3E188BEA31x

KB = D394E83B811432C6ACECB02D8E100B07x
ciphertext = C33EC891F38AC7E20CEBC53A0139E9D1x

FL/FL−1,F,s1,s2,s4,P KA = 2B691944455ED09640D25203297A7CD2x
KB = B1C13857457ABA851265DA48130D5669x

ciphertext = A8244AB4EC460EB1ACBDFB02A85041E1x
FL/FL−1,F,s1,s3,s4,P KA = 1CE4B02A1DFF66116086225F2345B610x

KB = E70DCA76B9A97AFCB29A626BB0E2C601x
ciphertext = 40CB2D4629C0B493F4095828A41151C1x

FL/FL−1,F,s2,s3,s4,P KA = D54E15652A66B668427FB9B97F945CFEx
KB = 7D2C5D1533377968306FD045B123DDCCx

ciphertext = B52974CDE868248E203346F2BFB46593x
F,s1,s2,s3,s4,P KA = 0766A2135C44E288CF62016A06BABED3x

KB = 8F3AFAC1CC974396C098A0B7E38B4DF2x
ciphertext = 9E7E989406CFA12DEA3A5F2D76A35E13x

FL/FL−1,F,s1,s2,s3,s4,P KA = 0766A2135C44E288CF62016A06BABED3x
(complete) KB = 8F3AFAC1CC974396C098A0B7E38B4DF2x

ciphertext = B4993401B3E996F84EE5CEE7D79B09B9x
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3.3.6 Partial Implementations - Keysize 256

Input: K = 0123456789ABCDEFFEDCBA9876543210x
‖00112233445566778899AABBCCDDEEFFx

plaintext = 0123456789ABCDEFFEDCBA9876543210x
Implementation includes KA,KB, ciphertext
− KA = 89ABCDEF01234567FECD98AB32015467x

KB = 76543210FEDCBA98FFEEDDCCBBAA9988x
ciphertext = 4CC43B2A19087F6E5D4C7FF76EE65DD5x

FL/FL−1 KA = 89ABCDEF01234567FECD98AB32015467x
KB = 76543210FEDCBA98FFEEDDCCBBAA9988x

ciphertext = 9CF631843944869BD6C93FDDE8AC8004x
F KA = BB25CF1A2273384E8E5847DC97E4A56Bx

KB = A672425F36B7A774AD1027B4E37738B0x
ciphertext = 17DB795C239E3CD3D7287E1AF44E6392x

F,s1 KA = 2C25CF1A227338238D5847DC97E4A590x
KB = D472425F36B7A7FE541027B4E377387Dx

ciphertext = D790603681A8BD2A27EFD0174D452960x
F,s2 KA = BB14CF1ADE73384E8EA447DCF5E4A56Bx

KB = A6A0425F63B7A774ADD927B4CE7738B0x
ciphertext = B6B7272A23F7DA6D44F5A167D3A6A6B4x

F,s3 KA = BB25DE1A2293384E8E58E9DC9747A56Bx
KB = A672E95F36C7A774AD1062B4E34538B0x

ciphertext = 1F73AD9C63CE2CFFE88CE16B41FF6D03x
F,s4 KA = BB25CF542273924E8E58475D97E49F6Bx

KB = A672428936B73174AD102730E37757B0x
ciphertext = 353C6D4016E53487CE4FEB3BFC150E44x

F,P KA = E582A7DA7CE2863FE521283BF6523E27x
KB = 358AA59DDE466FA56E56CFB3FE250DCAx

ciphertext = 271B47C303BAC0CF6149531EB4116295x
FL/FL−1,F KA = BB25CF1A2273384E8E5847DC97E4A56Bx

KB = A672425F36B7A774AD1027B4E37738B0x
ciphertext = 74634A8596D420CA2B962CE62DEAD1B8x

FL/FL−1,F,s1,s2,s3,s4 KA = 2C14DE54DE9392238DA4E95DF5479F90x
KB = D4A0E98963C731FE54D96230CE45577Dx

ciphertext = D52A41E60DE3159FC0348C955908176Bx
FL/FL−1,F,s1,s2,s3,P KA = F4CCBD694FC3B106773031528896ACC6x

KB = 54CAB25F54D19B298E678F0CE61DBD57x
ciphertext = 1CB480CF818A36393B581F12353FA7B8x

FL/FL−1,F,s1,s2,s4,P KA = 11BE956EA68AE5EB44E6A807691CF633x
KB = 5BDE250A16823352375783E10162D4D5x

ciphertext = 763AFDABFCB1049BA1EDA1D6B5D6FF6Fx
FL/FL−1,F,s1,s3,s4,P KA = E7D8411C2D79CFEB32AEAABDF0869FB8x

KB = 491425E38734A1C3DDCB8AEB7968E5BAx
ciphertext = 3D7F37B736A081619F4853F4B56AFB99x

FL/FL−1,F,s2,s3,s4,P KA = 776E0ACCD74AB3DC3E6AD0D51F60F31Fx
KB = BA18ECDA611399AD70F36DD72F2DF753x

ciphertext = 25D95763D39C04F405372AF83FF60B05x
F,s1,s2,s3,s4,P KA = 17D1B5B046DF07FAC9BB914B7F1937EEx

KB = 3815214280A4D3C01848FD9AC7B1FE60x
ciphertext = C93862015661CD9115B05BAA43245E36x

FL/FL−1,F,s1,s2,s3,s4,P KA = 17D1B5B046DF07FAC9BB914B7F1937EEx
(complete) KB = 3815214280A4D3C01848FD9AC7B1FE60x

ciphertext = 9ACC237DFF16D76C20EF7C919E3A7509x
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4. SHACAL-2

4.1 Introduction

4.1.1 Overview

SHA-1 [472] has been a NIST hash function standard (FIPS-180-1) since 1995.
It has been subjected to a great deal of cryptanalytic effort, and only recently a
weakness of SHA-1 was reported in [553]. This inspired the use of the compression
function of SHA-1 in encryption mode [280]. This primitive was submitted to
NESSIE as the candidate SHACAL [281], which is later referred to as SHACAL-1
(as it based on SHA-1).

In August 2002 NIST has added to FIPS-180 three new hash functions:
SHA-256, SHA-384 and SHA-512. These inspired the submitters of SHACAL-
1 to tweak their submission, and add SHACAL-2, a block cipher based on the
compression function of SHA-256.

SHACAL-2 is a 256-bit block cipher which accepts keys of various lengths
(between 0 and 512 bits). The cipher is well suited for applications where SHA-
256 is already implemented (either by software or hardware), reducing the code
size or the gate count of the final application.

4.1.2 Outline of the primitive

SHACAL-2 operates over 64 rounds on 256-bit plaintext. It supports key sizes
between 0 and 512 bits, although a minimum of 128 bits is strongly recommended.
It uses a composition of bitwise logical operations, addition modulo 232 and two
non-linear functions – the majority and the selection functions. The key schedule
of SHACAL-2 is linear in nature. Keys shorter than 512 bits are padded into 512
bits, and the 512-bit key is then used to compute 2048 subkey bits.

Decryption is similar to encryption up to the order of subkeys, and the use of
subtraction modulo 232 instead of addition in two places.

4.1.3 Security and performance

No security flaws have been identified for SHACAL-2. The weakness in the key
schedule of SHACAL-1 does not extend to SHACAL-2.

SHACAL-2 is quite efficient both in software and in hardware. The cipher is
relatively fast (between 30 and 60 cycles per byte), and very well suited for usage
along with SHA-256.
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4.2 Description

This section intends to provide a short but complete specification of the SHACAL-2
algorithm. A more extensive description can be found in NIST’s FIPS-180-2 [472]
(detailing SHA-256) and in the description of SHACAL-2 [281].

4.2.1 Cipher

The SHACAL-2 encryption algorithm consists of a sequence of operations per-
formed on eight 32-bit words. At the start of the encryption process, the 32 bytes
of the plaintext (256 bits) are divided into eight words of 32 bits each. Denoting
by pi the i’th byte of the plaintext P (0 ≤ i ≤ 31, where byte 0 is the most
significant byte), and by A,B, . . . ,H the eight 32-bit words, we load P ’s first
byte into the most significant byte of A. We continue to load the bytes of P into
the words, till the least significant byte of H contains P31. Thus, the words are
loaded as follow:

Word Byte 0 Byte 1 Byte 2 Byte 3
(LSB) (MSB)

A P3 P2 P1 P0

B P7 P6 P5 P4

C P11 P10 P9 p8

D p15 P14 P13 P12

E P19 P18 P17 P16

F P23 P22 P21 P20

G P27 P26 P25 P24

H P31 P30 P29 P28

After the initialization, the eight words are transformed by 64 successive ap-
plications of the round function. The final contents of the words are then sent to
the output as ciphertext according to the same transformation as in the initial-
ization, i.e., the ciphertext is A64, B64, . . . ,H64.

The round function is as follows:

T1 = Hi +Σ1(Ei) + Ch(Ei, F i, Gi) +Ki +W i

T2 = Σ0(Ai) +Maj(Ai, Bi, Ci)
Ai+1 = T1 + T2

Bi+1 = Ai

Ci+1 = Bi

Di+1 = Ci

Ei+1 = Di + T1

F i+1 = Ei

Gi+1 = F i

Hi+1 = Gi
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WhereXi is the wordX before the round i (for i = 0, . . . , 63). Thus, the plaintext
is loaded into A0, B0, . . . ,H0.

All the additions are performed modulo 232 (regular 32-bit unsigned addition
in 32-bit processors). Each round, a different round constant Ki is used, as well
as a different round subkey W i.

4.2.2 Key Expansion

The purpose of the key expansion is to construct 2048 bits of subkey material
obtained from the secret key K. The key schedule is defined for keys between 0
and 512 bits long. However, keys shorter than 128 bits are not advised, as they
offer insufficient security in today’s terms. Keys shorter than 512 bits are padded
with as many zeroes as needed to obtain a 512-bit string.

The 512-bit key is then loaded into an array named W . This is an array of
sixty four 32-bit words, and the key is loaded into the first 16 entries of this array
(W 0,W 1, . . . ,W 15). The remaining 48 entries are computed as follows:

W i = σ1(W i−2) +W i−7 + σ0(W i−15) +W i−16

for i = 16, 17, . . . 63.
The two functions σ0() and σ1() accept 32-bit input and output a 32-bit value,
which is linearly dependent on the input.

4.2.3 Decryption

The decryption process of SHACAL-2 is very similar to the encryption process.
The same key schedule is used to derive the 64 subkey words W i. The same
constants Ki are also used in order to decrypt.

The ciphertext is loaded into the eight 32-bit words A,B, . . . ,H in a similar
way to the way the plaintext is loaded. Then the following procedure is applied
64 times:

R1 = Σ0(Bi+1) +Maj(Bi+1, Ci+1, Di+1)
R2 = Ai+1 −R1

Ai = Bi+1

Bi = Ci+1

Ci = Di+1

Di = Ei+1 −R2

Ei = F i+1

F i = Gi+1

Gi = Hi+1

Hi = R2 −Σ1(F i+1)− Ch(F i+1, Gi+1,Hi+1)−Ki −W i

Where − is subtraction modulo 232.
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The ciphertext is loaded as A64, B64, . . . ,H64. The computed A0, B0, . . . ,H0

are then loaded into the plaintext in the inverse transformation used to load the
plaintext for the encryption process.

4.2.4 The Building Functions

SHACAL-2 uses 6 building functions besides addition: Σ0, Σ1, σ0, σ0, Ch and
Maj. The first four functions accept 32-bit input and output a 32-bit value
which is linearly computed from the input. The remaining two Ch and Maj
accept three 32-bit words and output a 32-bit output.

We first define the 4 linear operations:

Σ0(X) = X ≫2 ⊕X ≫13 ⊕X ≫22

Σ1(X) = X ≫6 ⊕X ≫11 ⊕X ≫25

σ0(X) = X ≫7 ⊕X ≫18 ⊕X �3

σ1(X) = X ≫17 ⊕X ≫19 ⊕X �10

The Ch operation accepts three 32-bit words X,Y, Z. The operation is a
bitwise choose function, i.e., if the i’th bit of X is set, then the i’th bit of the
output is the i’th bit of Y . Otherwise, the i’th bit of the output is the i’th bit of
Z. This operation can be efficiently implemented as:

Ch(X,Y, Z) = (X ∧ Y )⊕ (X ∧ Z)

The Maj operation also accepts three 32-bit words X,Y, Z. The operation
is a bitwise majority function, i.e., if the majority of the i’th bits of X,Y and
Z are set, then the i’th output bit is set, and vice versa. This operation can be
efficiently implemented as:

Maj(X,Y, Z) = (X ∧ Y )⊕ (X ∧ Z)⊕ (Y ∧ Z)

4.2.5 Constants

Each round, a round constant is used in the encryption. We list the round con-
stants in the following table:
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Round i Ki Round i Ki Round i Ki Round i Ki

0 428A2F98x 1 71374491x 2 B5C0FBCFx 3 E9B5DBA5x
4 3956C25Bx 5 59F111F1x 6 923F82A4x 7 AB1C5ED5x
8 D807AA98x 9 12835B01x 10 243185BEx 11 550C7DC3x
12 72BE5D74x 13 80DEB1FEx 14 9BDC06A7x 15 C19BF174x
16 E49B69C1x 17 EFBE4786x 18 0FC19DC6x 19 240CA1CCx
20 2DE92C6Fx 21 4A7484AAx 22 5CB0A9DCx 23 76F988DAx
24 983E5152x 25 A831C66Dx 26 B00327C8x 27 BF597FC7x
28 C6E00BF3x 29 D5A79147x 30 06CA6351x 31 14292967x
32 27B70A85x 33 2E1B2138x 34 4D2C6DFCx 35 53380D13x
36 650A7354x 37 766A0ABBx 38 81C2C92Ex 39 92722C85x
40 A2BFE8A1x 41 A81A664Bx 42 C24B8B70x 43 C76C51A3x
44 D192E819x 45 D6990624x 46 F40E3585x 47 106AA070x
48 19A4C116x 49 1E376C08x 50 2748774Cx 51 34B0BCB5x
52 391C0CB3x 53 4ED8AA4Ax 54 5B9CCA4Fx 55 682E6FF3x
56 748F82EEx 57 78A5636Fx 58 84C87814x 59 8CC70208x
60 90BEFFFAx 61 A4506CEBx 62 BEF9A3F7x 63 C67178F2x

4.3 Test vectors
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Collision-Resistant Hash Functions
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1. Whirlpool

1.1 Introduction

1.1.1 Overview

Whirlpool is a collision-resistant hash function submitted to NESSIE by Paulo
Barreto and Vincent Rijmen [38]. The design of Whirlpool is based on an
underlying block cipher that is used in the so-called Miyaguchi-Preneel hashing
mode. This block cipher is similar in structure to the AES cipher (see Part B of
the NESSIE portfolio), but it works on bigger blocks of 512 bits.

1.1.2 Outline of the primitive

Whirlpool maps a message M consisting of an arbitrary number of bits onto
a 512-bit hash value Whirlpool(M). The algorithm is based on a compression
function, that is used iteratively on message blocks of 512 bits. This function is
based on an underlying dedicated 512-bit block cipher using a 512-bit key.

First, the message is expanded to an appropriate length and divided into
message blocks M0 . . .Mt−1 where each block Mi (0 ≤ i ≤ t− 1) consists of 512
bits. An initial value is defined as the string consisting of 512 0-bits: H0 = 0.

The compression function of Whirlpool transforms an input value Hi and a
message blockMi into an output valueHi+1. This function depends on encryption
with an internal block cipher W where Mi forms the plaintext and Hi serves as
key. Furthermore, the obtained ciphertext is XOR’ed (exclusive-or operation)
with both Mi and Hi (note that all string are 512 bits long). That is, Hi+1 =
WHi(Mi)⊕Mi⊕Hi. In the next use of the compression function Hi+1 forms the
input together with the next message block Mi+1. This results in the following
outline of the Whirlpool algorithm.

1. Expand the message M and divide it into message blocks M0 . . .Mt−1.
2. Define the initial value H0 = 0.
3. For 0 ≤ i ≤ t− 1 use the compression function to compute
Hi+1 = WHi(Mi)⊕Mi ⊕Hi.

4. Set the hash value Whirlpool(M) = Ht.



Dra
ft

Apr
il
19

, 2
00

4

564 Book III. The NESSIE portfolio — Part C. Collision-Resistant Hash Functions

1.1.3 Security and performance

The security of Whirlpool can be proven based on the assumption that certain
ideal properties hold for the underlying block cipher W. This block cipher is very
similar to AES. There are no known short-cut attacks on Whirlpool and the
algorithm has a high security level because of the long hash value (512 bits).

The performance of Whirlpool depends on the performance of the under-
lying block cipher which is quite efficient. However one needs to recompute the
key schedule for this cipher for each use of the compression function (that is for
every message block of 512 bits). The structure of the algorithm is not oriented
towards any particular platform but different optimisations can be made on dif-
ferent platforms. Also, the special structure of the components, especially the
S-box that is used, allows for efficient hardware implementations.

1.2 Description

In this section we give a complete specification of Whirlpool, where we first
describe the underlying block cipher, and next show how this block cipher is used
to define the hash function Whirlpool.

1.2.1 Cipher

The block cipher W is a Substitution Permutation Network (SPN) consisting of
10 rounds. The cipher takes a 512-bit plaintext P as input and encrypts it into
a 512-bit ciphertext C, according to a 512-bit key K. This is denoted by C =
WK(P ). All operations during the iterative encryption procedure are performed
on an array of 8 × 8 bytes, which are interpreted as elements in the finite field
GF (28). A single round consists of a nonlinear byte substitution (SubBytes),
a two-stage affine transformation (ShiftColumns/MixRows), and a round key
addition (AddRoundKey). The round keys, each consisting of 512 bits, are derived
from the original 512-bit key by a separate key expansion routine.

The 8×8-byte array on which all operations are performed, is called the state
and denoted by S = (si,j) with 0 ≤ i, j ≤ 7. At the start of the encryption
process, the 64 bytes of the state (512 bits) are initialised with plaintext bytes
pi (0 ≤ i ≤ 63), from left to right and from top to bottom as illustrated below.
Note that in these initialisations, as well as in most of the subsequent operations,
software implementations on 64-bit platforms can benefit from the fact that the
8 bytes of each row can be treated as a single 64-bit word.
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p0 p1 p2 p3 p4 p5 p6 p7

p8 p9 p10 p11 p12 p13 p14 p15

p16 p17 p18 p19 p20 p21 p22 p23

p24 p25 p26 p27 p28 p29 p30 p31

p32 p33 p34 p35 p36 p37 p38 p39

p40 p41 p42 p43 p44 p45 p46 p47

p48 p49 p50 p51 p52 p53 p54 p55

p56 p57 p58 p59 p60 p61 p62 p63

S=P−−−→

s0,0 s0,1 s0,2 s0,3 s0,4 s0,5 s0,6 s0,7

s1,0 s1,1 s1,2 s1,3 s1,4 s1,5 s1,6 s1,7

s2,0 s2,1 s2,2 s2,3 s2,4 s2,5 s2,6 s2,7

s3,0 s3,1 s3,2 s3,3 s3,4 s3,5 s3,6 s3,7

s4,0 s4,1 s4,2 s4,3 s4,4 s4,5 s4,6 s4,7

s5,0 s5,1 s5,2 s5,3 s5,4 s5,5 s5,6 s5,7

s6,0 s6,1 s6,2 s6,3 s6,4 s6,5 s6,6 s6,7

s7,0 s7,1 s7,2 s7,3 s7,4 s7,5 s7,6 s7,7

After an initial round key addition, the state is transformed by 10 successive
applications of a round function. The final content of the state is then sent to the
output as ciphertext (taking the bytes out of the state array from left to right
and from top to bottom). This encryption process is described in pseudo-code as:

S = P
S = AddRoundKey(S,K0)
for r = 1 to 10 do
S = SubBytes(S)
S = ShiftColumns(S)
S = MixRows(S)
S = AddRoundKey(S,Kr)

end for
C = S

1.2.1.1 The SubBytes transformation

The SubBytes operation substitutes each individual state byte si,j by a new value
s′i,j = SW (si,j). The function SW is a fixed invertible nonlinear mapping (S-box),
given by Table 56. Using this table, the byte 53x for example is mapped to 71x.

s0,0 s0,1 s0,2 s0,3 s0,4 s0,5 s0,6 s0,7

s1,0 s1,1 s1,2 s1,3 s1,4 s1,5 s1,6 s1,7

s2,0 s2,1 s2,2 s2,3 s2,4 s2,5 s2,6 s2,7

s3,0 s3,1 s3,2 s3,3 s3,4 s3,5 s3,6 s3,7

s4,0 s4,1 s4,2 s4,3 s4,4 s4,5 s4,6 s4,7

s5,0 s5,1 s5,2 s5,3 s5,4 s5,5 s5,6 s5,7

s6,0 s6,1 s6,2 s6,3 s6,4 s6,5 s6,6 s6,7

s7,0 s7,1 s7,2 s7,3 s7,4 s7,5 s7,6 s7,7

SW (·)−−−−→

s′0,0 s′0,1 s′0,2 s′0,3 s′0,4 s′0,5 s′0,6 s′0,7

s′1,0 s′1,1 s′1,2 s′1,3 s′1,4 s′1,5 s′1,6 s′1,7

s′2,0 s′2,1 s′2,2 s′2,3 s′2,4 s′2,5 s′2,6 s′2,7

s′3,0 s′3,1 s′3,2 s′3,3 s′3,4 s′3,5 s′3,6 s′3,7

s′4,0 s′4,1 s′4,2 s′4,3 s′4,4 s′4,5 s′4,6 s′4,7

s′5,0 s′5,1 s′5,2 s′5,3 s′5,4 s′5,5 s′5,6 s′5,7

s′6,0 s′6,1 s′6,2 s′6,3 s′6,4 s′6,5 s′6,6 s′6,7

s′7,0 s′7,1 s′7,2 s′7,3 s′7,4 s′7,5 s′7,6 s′7,7
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In most software environments, the S-box can simply be implemented as a lookup
table, but when memory is restricted, it is possible to build more memory-efficient
(but slower) implementations using the fact that the S-box is based on a three-
layer structure using smaller 4-bit substitution boxes. For details on such imple-
mentations we refer to [38].

Table 56. The S-box SW

00x 01x 02x 03x 04x 05x 06x 07x 08x 09x 0Ax 0Bx 0Cx 0Dx 0Ex 0Fx
00x 18 23 C6 E8 87 B8 01 4F 36 A6 D2 F5 79 6F 91 52
10x 60 BC 9B 8E A3 0C 7B 35 1D E0 D7 C2 2E 4B FE 57
20x 15 77 37 E5 9F F0 4A DA 58 C9 29 0A B1 A0 6B 85
30x BD 5D 10 F4 CB 3E 05 67 E4 27 41 8B A7 7D 95 D8
40x FB EE 7C 66 DD 17 47 9E CA 2D BF 07 AD 5A 83 33
50x 63 02 AA 71 C8 19 49 D9 F2 E3 5B 88 9A 26 32 B0
60x E9 0F D5 80 BE CD 34 48 FF 7A 90 5F 20 68 1A AE
70x B4 54 93 22 64 F1 73 12 40 08 C3 EC DB A1 8D 3D
80x 97 00 CF 2B 76 82 D6 1B B5 AF 6A 50 45 F3 30 EF
90x 3F 55 A2 EA 65 BA 2F C0 DE 1C FD 4D 92 75 06 8A
A0x B2 E6 0E 1F 62 D4 A8 96 F9 C5 25 59 84 72 39 4C
B0x 5E 78 38 8C D1 A5 E2 61 B3 21 9C 1E 43 C7 FC 04
C0x 51 99 6D 0D FA DF 7E 24 3B AB CE 11 8F 4E B7 EB
D0x 3C 81 94 F7 B9 13 2C D3 E7 6E C4 03 56 44 7F A9
E0x 2A BB C1 53 DC 0B 9D 6C 31 74 F6 46 AC 89 14 E1
F0x 16 3A 69 09 70 B6 D0 ED CC 42 98 A4 28 5C F8 86

1.2.1.2 The ShiftColumns transformation

The ShiftColumns transformation operates on the columns of the state: the first
column is kept unchanged, the remaining columns are cyclically shifted down
over 1,2,. . . ,7 byte positions respectively. The operations are illustrated below:

s0,0

s1,0

s2,0

s3,0

s4,0

s5,0

s6,0

s7,0

s0,1

s1,1

s2,1

s3,1

s4,1

s5,1

s6,1

s7,1

s0,2

s1,2

s2,2

s3,2

s4,2

s5,2

s6,2

s7,2

s0,3

s1,3

s2,3

s3,3

s4,3

s5,3

s6,3

s7,3

s0,4

s1,4

s2,4

s3,4

s4,4

s5,4

s6,4

s7,4

s0,5

s1,5

s2,5

s3,5

s4,5

s5,5

s6,5

s7,5

s0,6

s1,6

s2,6

s3,6

s4,6

s5,6

s6,6

s7,6

s0,7

s1,7

s2,7

s3,7

s4,7

s5,7

s6,7

s7,7

	−−→

s0,0

s1,0

s2,0

s3,0

s4,0

s5,0

s6,0

s7,0

s7,1

s0,1

s1,1

s2,1

s3,1

s4,1

s5,1

s6,1

s6,2

s7,2

s0,2

s1,2

s2,2

s3,2

s4,2

s5,2

s5,3

s6,3

s7,3

s0,3

s1,3

s2,3

s3,3

s4,3

s4,4

s5,4

s6,4

s7,4

s0,4

s1,4

s2,4

s3,4

s3,5

s4,5

s5,5

s6,5

s7,5

s0,5

s1,5

s2,5

s2,6

s3,6

s4,6

s5,6

s6,6

s7,6

s0,6

s1,6

s1,7

s2,7

s3,7

s4,7

s5,7

s6,7

s7,7

s0,7

1.2.1.3 The MixRows transformation

The MixRows operation applies a linear transform to the rows of the state. This
transform can be represented as a matrix multiplication, where each byte is in-
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terpreted as an element in the finite field GF (28):

s′i,0
s′i,1
s′i,2
s′i,3
s′i,4
s′i,5
s′i,6
s′i,7



T

=



si,0
si,1
si,2
si,3
si,4
si,5
si,6
si,7



T

·A =



si,0
si,1
si,2
si,3
si,4
si,5
si,6
si,7



T

·



01x 01x 03x 01x 05x 08x 09x 05x
05x 01x 01x 03x 01x 05x 08x 09x
09x 05x 01x 01x 03x 01x 05x 08x
08x 09x 05x 01x 01x 03x 01x 05x
05x 08x 09x 05x 01x 01x 03x 01x
01x 05x 08x 09x 05x 01x 01x 03x
03x 01x 05x 08x 09x 05x 01x 01x
01x 03x 01x 05x 08x 09x 05x 01x


As a result, the first byte of the row, for example, is replaced by (apply the

first column of the matrix A):

s′i,0 = si,0⊕(si,1 ·05x)⊕(si,2 ·09x)⊕(si,3 ·08x)⊕(si,4 ·05x)⊕si,5⊕(si,6 ·03x)⊕si,7 .

The “⊕” operator in this expression denotes addition in GF (28), which corre-
sponds to bitwise XOR (eXclusive OR). The multiplications are performed mod-
ulo the irreducible polynomial of the field. In the case of the cipher W the poly-
nomial x8 + x4 + x3 + x2 + 1 is used. For example:

93x · 03x = 10010011b · 00000011b
= (x7 + x4 + x+ 1) · (x+ 1) mod x8 + x4 + x3 + x2 + 1

= x8 + x7 + x5 + x4 + x2 + 1 mod x8 + x4 + x3 + x2 + 1

= x7 + x5 + x3

= 10101000b

= A8x

The effect of the complete MixRows operation is depicted below.

s0,0 s0,1 s0,2 s0,3 s0,4 s0,5 s0,6 s0,7

s1,0 s1,1 s1,2 s1,3 s1,4 s1,5 s1,6 s1,7

s2,0 s2,1 s2,2 s2,3 s2,4 s2,5 s2,6 s2,7

s3,0 s3,1 s3,2 s3,3 s3,4 s3,5 s3,6 s3,7

s4,0 s4,1 s4,2 s4,3 s4,4 s4,5 s4,6 s4,7

s5,0 s5,1 s5,2 s5,3 s5,4 s5,5 s5,6 s5,7

s6,0 s6,1 s6,2 s6,3 s6,4 s6,5 s6,6 s6,7

s7,0 s7,1 s7,2 s7,3 s7,4 s7,5 s7,6 s7,7

·×A−−→

s′0,0 s′0,1 s′0,2 s′0,3 s′0,4 s′0,5 s′0,6 s′0,7

s′1,0 s′1,1 s′1,2 s′1,3 s′1,4 s′1,5 s′1,6 s′1,7

s′2,0 s′2,1 s′2,2 s′2,3 s′2,4 s′2,5 s′2,6 s′2,7

s′3,0 s′3,1 s′3,2 s′3,3 s′3,4 s′3,5 s′3,6 s′3,7

s′4,0 s′4,1 s′4,2 s′4,3 s′4,4 s′4,5 s′4,6 s′4,7

s′5,0 s′5,1 s′5,2 s′5,3 s′5,4 s′5,5 s′5,6 s′5,7

s′6,0 s′6,1 s′6,2 s′6,3 s′6,4 s′6,5 s′6,6 s′6,7

s′7,0 s′7,1 s′7,2 s′7,3 s′7,4 s′7,5 s′7,6 s′7,7
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1.2.1.4 The AddRoundKey transformation

Finally, in the AddRoundKey transformation, each bit of the state is XORed with
the corresponding bit of a 512-bit round key Kr. Each round requires a separate
round key, and the generation of these keys is performed by the key expansion
routine described in the next subsection.

s0,0 s0,1 s0,2 s0,3 s0,4 s0,5 s0,6 s0,7

s1,0 s1,1 s1,2 s1,3 s1,4 s1,5 s1,6 s1,7

s2,0 s2,1 s2,2 s2,3 s2,4 s2,5 s2,6 s2,7

s3,0 s3,1 s3,2 s3,3 s3,4 s3,5 s3,6 s3,7

s4,0 s4,1 s4,2 s4,3 s4,4 s4,5 s4,6 s4,7

s5,0 s5,1 s5,2 s5,3 s5,4 s5,5 s5,6 s5,7

s6,0 s6,1 s6,2 s6,3 s6,4 s6,5 s6,6 s6,7

s7,0 s7,1 s7,2 s7,3 s7,4 s7,5 s7,6 s7,7

·⊕Kr

−−−→

s′0,0 s′0,1 s′0,2 s′0,3 s′0,4 s′0,5 s′0,6 s′0,7

s′1,0 s′1,1 s′1,2 s′1,3 s′1,4 s′1,5 s′1,6 s′1,7

s′2,0 s′2,1 s′2,2 s′2,3 s′2,4 s′2,5 s′2,6 s′2,7

s′3,0 s′3,1 s′3,2 s′3,3 s′3,4 s′3,5 s′3,6 s′3,7

s′4,0 s′4,1 s′4,2 s′4,3 s′4,4 s′4,5 s′4,6 s′4,7

s′5,0 s′5,1 s′5,2 s′5,3 s′5,4 s′5,5 s′5,6 s′5,7

s′6,0 s′6,1 s′6,2 s′6,3 s′6,4 s′6,5 s′6,6 s′6,7

s′7,0 s′7,1 s′7,2 s′7,3 s′7,4 s′7,5 s′7,6 s′7,7

1.2.1.5 The key expansion

The purpose of the key expansion is to construct eleven 512-bit round keys Kr

from a single 512-bit key K. The key expansion routine is a recursive process in
which each new round key is directly derived from the preceeding round key. It
proceeds according to the pseudo-code below:

K0 = K
for r = 1 to 10 do
S = SubBytes(Kr−1)
S = ShiftColumns(S)
S = MixRows(S)
Kr = AddRoundKey(S,Cr)

end for

The first round key K0, used in the initial key addition, is directly filled with
the 64 bytes of the key K (filling in these key bytes in an 8× 8-byte array from
left to right and from top to bottom). The remaining round keys Kr are derived
recursively by application of the round function. The constants Cr, used in the
AddRoundKey operation, are 8×8-byte arrays defined as follows (for 1 ≤ r ≤ 10):

Cr0,j ≡ SW (8(r − 1) + j) , 0 ≤ j ≤ 7 ,
Cri,j ≡ 0 , 1 ≤ i ≤ 7 , 0 ≤ j ≤ 7 .

1.2.2 From cipher to hash

In this section we specify how to use the block cipher W in order to define the
Whirlpool hashing function. Let M be a message consisting of Mlen bits with
Mlen < 2256. The hash value Whirlpool(M) is computed as described below.
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1.2.2.1 Message expansion

The message M needs to be expanded so that it contains a number of bits which
is an integer multiple of 512. This is done in the following way:

1. M is concatenated with a single 1-bit.
2. The result of the previous step is concatenated with a string of r 0-bits. Here

0 ≤ r ≤ 511 and the length of the resultant string must be an odd multiple
of 256. That is, Mlen+ 1 + r ≡ 256 mod 512.

3. Concatenate the string resulting from the previous step with the 256-bit
representation of Mlen (the original length of M), most significant bit first.

The expanded message is then divided into message blocks with a length of 512
bits each. If the expanded message is 512t bits long (Mlen+1+ r+256 = 512t),
this results in t message blocks M0,M1, . . . ,Mt−1.

1.2.2.2 Hash function

Given the 512-bit message blocks Mi and the block cipher W, Whirlpool com-
putes the hash value in the following iterative manner.

– Define an initial value H0 as a string of 512 0-bits.

H0 := 0000...00x .

– For i = 0, . . . , t − 1 compute a new 512-bit string Hi+1 from the previously
obtained Hi and the message block Mi:

Hi+1 := WHi
(Mi)⊕Mi ⊕Hi .

That is, apply the cipher W with the current message block Mi as plaintext
and the previously obtained Hi as key (this means that the ciphers key sched-
ule routine must be executed as well). Next, compute the bitwise exclusive-or
(XOR) of the following three 512-bit strings: the ciphertext obtained from W,
the string Mi, and the string Hi.

– Define the 512-bit hash value Whirlpool(M) as the string obtained from the
last step of the iteration.

Whirlpool(M) := Ht .

1.2.3 The updated Whirlpool specification

After the final selection of the NESSIE portfolio algorithms, Shirai and Shibu-
tani [579] announced a flaw in the original Whirlpool diffusion matrix, that
made its branch number suboptimal. Although this flaw per se does not seem to
introduce an effective vulnerability, the designers decided to propose a replace-
ment matrix. Besides displaying optimal branch number and thus keeping the
existing security analysis unchanged, the new matrix also leads to more efficient
implementation in 8-bit platforms and hardware. The updated design is included
in ISO/IEC 10118-3, the international standard on dedicated hash functions.
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The diffusion matrix is used in the MixRows operation. The new matrix is
given by:

A =



01x 01x 04x 01x 08x 05x 02x 09x
09x 01x 01x 04x 01x 08x 05x 02x
02x 09x 01x 01x 04x 01x 08x 05x
05x 02x 09x 01x 01x 04x 01x 08x
08x 05x 02x 09x 01x 01x 04x 01x
01x 08x 05x 02x 09x 01x 01x 04x
04x 01x 08x 05x 02x 09x 01x 01x
01x 04x 01x 08x 05x 02x 09x 01x


.

This is the only change in the design.

1.3 Test vectors for Whirlpool (original version)

The following test vectors are generated for Whirlpool. They are denoted as
pairs (message, hash). This correponds to hash = Whirlpool(message).

The hash is denoted as a hexadecimal number of 64 bytes (512 bits). The
message is denoted as an ASCII string (e.g., the character "a" corresponds to
the hexadecimal byte 61x).

message = "" (empty string)
hash = B3E1AB6EAF640A34F784593F2074416A

CCD3B8E62C620175FCA0997B1BA23473
39AA0D79E754C308209EA36811DFA40C
1C32F1A2B9004725D987D3635165D3C8

message = "a"
hash = F4B620445AE62431DBD6DBCEC64D2A30

31CD2F48DF5E755F30B3D069929ED4B4
EDA0AE65441BC86746021FB7F2167F84
D67566EFABA003F0ABB67A42A2CE5B13

message = "abc"
hash = 54EE18B0BBD4DD38A211699F28297931

56E5842DF502A2A25995C6C541F28CC0
50FF57D4AF772DEE7CEDCC4C34C3B8EC
06446C6657F2F36C2C06464399879B86

message = "message digest"
hash = 29E158BA336CE7F930115178A6C86019

F0F413ADB283D8F0798AF06CA0A06D6D
6F295A333B1C24BDA2F429AC918A3748
AEF90F7A2C8BFB084D5F979CF4E7B2B5
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message = "abcdefghijklmnopqrstuvwxyz"
hash = 5AC9757E1407432DAF348A972B8AD4A6

5C1123CF1F9B779C1AE7EE2D540F30B3
CEFA8F98DCA5FBB42084C5C2F161A7B4
0EB6B4A1FC7F9AAAB92A4BB6002EDC5E

message = "A...Za...z0...9"
hash = CAE4175F09753DE84974CFA968621092

FE41EE9DE913919C2B452E6CB4240567
21D640E563F628F29DD3BD0030837AE4
AC14AA17308505A92E5F7A92F112BE75

message = 8 times "1234567890"
hash = E5965B4565B041A0D459610E5E48E944

C4830CD16FEBA02D9D263E7DA8DE6A6B
88966709BF28A5328D928312E7A172DA
4CFF72FE6DE02277DAE4B1DBA49689A2

message = 1 million times "a"
hash = 5BC84BA27B464B4B761B5E48F314CFDB

9F2C27B8C9BD664D26C99CF1F556D89C
4270FC60D62340487FE8738EF2DC4168
97CEB419F6B48335880E79D5A0046BE2

1.4 Test vectors for Whirlpool (updated version)

The following test vectors are generated for Whirlpool. They are denoted as
pairs (message, hash). This correponds to hash = Whirlpool(message).

The hash is denoted as a hexadecimal number of 64 bytes (512 bits). The
message is denoted as an ASCII string (e.g., the character "a" corresponds to
the hexadecimal byte 61x).

message = "" (empty string)
hash = 19FA61D75522A4669B44E39C1D2E1726

C530232130D407F89AFEE0964997F7A7
3E83BE698B288FEBCF88E3E03C4F0757
EA8964E59B63D93708B138CC42A66EB3

message = "a"
hash = 8ACA2602792AEC6F11A67206531FB7D7

F0DFF59413145E6973C45001D0087B42
D11BC645413AEFF63A42391A39145A59
1A92200D560195E53B478584FDAE231A

message = "abc"
hash = 4E2448A4C6F486BB16B6562C73B4020B

F3043E3A731BCE721AE1B303D97E6D4C
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7181EEBDB6C57E277D0E34957114CBD6
C797FC9D95D8B582D225292076D4EEF5

message = "message digest"
hash = 378C84A4126E2DC6E56DCC7458377AAC

838D00032230F53CE1F5700C0FFB4D3B
8421557659EF55C106B4B52AC5A4AAA6
92ED920052838F3362E86DBD37A8903E

message = "abcdefghijklmnopqrstuvwxyz"
hash = F1D754662636FFE92C82EBB9212A484A

8D38631EAD4238F5442EE13B8054E41B
08BF2A9251C30B6A0B8AAE86177AB4A6
F68F673E7207865D5D9819A3DBA4EB3B

message = "A...Za...z0...9"
hash = DC37E008CF9EE69BF11F00ED9ABA2690

1DD7C28CDEC066CC6AF42E40F82F3A1E
08EBA26629129D8FB7CB57211B9281A6
5517CC879D7B962142C65F5A7AF01467

message = 8 times "1234567890"
hash = 466EF18BABB0154D25B9D38A6414F5C0

8784372BCCB204D6549C4AFADB601429
4D5BD8DF2A6C44E538CD047B2681A51A
2C60481E88C5A20B2C2A80CF3A9A083B

message = 1 million times "a"
hash = 0C99005BEB57EFF50A7CF005560DDF5D

29057FD86B20BFD62DECA0F1CCEA4AF5
1FC15490EDDC47AF32BB2B66C34FF9AD
8C6008AD677F77126953B226E4ED8B01
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2. SHA-256, SHA-384 and SHA-512

2.1 Introduction

2.1.1 Overview

In 1993 NIST issued FIPS-180 [463] which presented a standard secure hash
function called SHA. In FIPS-180-1 [465] from 1995 SHA was tweaked (a rotation
left by 1 bit position was added) and the tweaked version was named SHA-1. Both
versions have a digest size of 160 bits. Only recently a work by Saarinen [553]
showed a slide attack on SHA-1.

As the security industry and community demanded larger security margins,
in August 2002 NIST published three more hash functions: SHA-256, SHA-384
and SHA-512. FIPS-180-2 [472] defines these three new hash functions along with
SHA-1 as the standard hash functions for US government use.

The three new functions have larger digest size, 256 bits for SHA-256, 384
bits for SHA-384, and 512 bits for SHA-512.

2.1.2 Outline of the primitive

SHA-256 is based on dividing the message into blocks of 512 bits each. Each block
is then entered to the compression function, which expands the 512-bit block into
2048 bits, which are used to transform the current state value of 256 bits into the
new state value.

The 256-bit initial value is loaded into eight 32-bit words. Then, for 64 rounds
these words affect each other using the expanded message block and various
functions. These 64 rounds can also be used in a block cipher mode (see SHACAL-
2, Chapter 4 in part B (block ciphers) of the NESSIE portfolio).

SHA-384 and SHA-512 are based on dividing the message into blocks of 1024
bits each. Each block enters the compression function, and is used to affect the
state of 512 bits through 80 rounds of the compression function.

Both SHA-384 and SHA-512 have a similar structure to the one used in SHA-
256 but the word size is doubled and the functions are a little bit different. The
only difference between SHA-384 and SHA-512 is the initial state and the fact
that in SHA-384 the output is the state at the end truncated to 384 bits.
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2.1.3 Security and performance

There are no reported attacks against any of the hash functions SHA-256, SHA-
384 and SHA-512.

The performance figures for these hash functions show that they are very ef-
ficient. The software implementation of NESSIE achieved speeds of 30–70 cycles
per byte for SHA-256, and 16–190 cycles per byte for SHA-384 and SHA-512. The
simplicity of the operations used in all three submissions assures that hardware
implementation will have low gate count. Moreover, SHA-256 can be used along
with the encryption algorithm SHACAL-2 to save gates or the size of implemen-
tation.

We note that SHA-384 and SHA-512 are suited to environments where 64-bit
registers (or longer ones) exist, as they operate on 64-bit words.

2.2 Description

All three hash functions share the same basic design. Each function appends
bits to the message so that its length becomes a multiple of the block size the
compression function deals with (512 bits for SHA-256, 1024 bits for SHA-384
and SHA-512).

Let l be the length of the message M which we want to hash. We append
1 followed by k zero bits, where k is the smallest non-negative value for which
l + 1 + k ≡ 448 mod 512 in the case of SHA-256, and l + 1 + k ≡ 896 mod 1024
in the case of SHA-384 and SHA-512. To achieve a multiple of the block size the
hash function deals with, we then add the length of the message (mod264 for
SHA-256 or mod2128 for SHA-384 and SHA-512).

Once this step is complete, we divide the message M into blocks of the same
size (512 bits for SHA-256 and 1024 bits for SHA-384 and SHA-512). We denote
this decomposition as M = m1m2 . . .mn.

Now the same process is executed for either of the three hash functions (the
constants and the exact functions might differ):

1. An initial hash value of 8 words is loaded into the 8 words: A,B,C,D,E, F,G
and H.

2. For i = 1 to n do:
– Set AA = A,BB = B,CC = C,DD = D,EE = E,FF = F,GG = G and
HH = H.

– for t = 0 to 63 (79 for SHA-512 and SHA-384) do:
T1 = H +Σ1(E) + Ch(E,F,G) +Kt +Wt

T2 = Σ0(A) +Maj(A,B,C)
H = G
G = F
F = E
E = D + T1

D = C
C = B
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B = A
A = T1 + T2

– set A = A+AA,B = B+BB,C = C+CC,D = D+DD,E = E+EE,F =
F + FF,G = G+GG and H = H +HH.

3. Produce the hash value of A|B|C|D|E|F |G|H for SHA-256 and SHA-512,
and of A|B|C|D|E|F for SHA-384.

Additions are performed modulo 232 for SHA-256 and modulo 264 for SHA-384
and SHA-512.

The Kt’s are round constants added at each round of the compression func-
tion. The Wt’s are a set of 64 or 80 words derived from the message block being
processed. The Ch(x, y, z) andMaj(x, y, z) are the only non-linear functions used
in the compression function. Σ0 and Σ1 are two linear functions which differ for
SHA-256 and for SHA-512 and SHA-384.

Each block Mi is divided into 16 words m0
i ,m

1
i , . . .m

15
i , then the Wt’s are

computed:

Wt =
{
mt
i 0 ≤ t ≤ 15

s1(Wt−2) +Wt−7 + s0(Wt−15) +Wt−16 16 ≤ t ≤ 63(or 79)

The s0 and s1 functions are linear functions, but are different for SHA-256
and for SHA-512 and SHA-384.

2.2.1 The Functions Used in SHA-256

SHA-256 uses 6 functions: Ch(x, y, z) and Maj(x, y, z), two non-linear functions
with 96-bit input and 32-bit output, and 4 linear functions with 32-bit input and
32-bit output: Σ0, Σ1, s0, s1.

We first define the 4 linear operations:

Σ0(X) = X ≫2 ⊕X ≫13 ⊕X ≫22

Σ1(X) = X ≫6 ⊕X ≫11 ⊕X ≫25

σ0(X) = X ≫7 ⊕X ≫18 ⊕X �3

σ1(X) = X ≫17 ⊕X ≫19 ⊕X �10

The Ch operation accepts three 32-bit words X,Y, Z. The operation is a
bitwise choose function, i.e., if the i’th bit of X is set, then the i’th bit of the
output is the i’th bit of Y . Otherwise, the i’th bit of the output is the i’th bit of
Z. This operation can be efficiently implemented as:

Ch(X,Y, Z) = (X ∧ Y )⊕ (X ∧ Z)

The Maj operation also accepts three 32-bit words X,Y, Z. The operation
is a bitwise majority function, i.e., if the majority of the i’th bits of X,Y and
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Z are set, then the i’th output bit is set, and vice versa. This operation can be
efficiently implemented as:

Maj(X,Y, Z) = (X ∧ Y )⊕ (X ∧ Z)⊕ (Y ∧ Z)

2.2.2 The Constants of SHA-256

Each round, a round constant is used in the compression function. We list the
round constants in the following table:

Round i Ki Round i Ki Round i Ki Round i Ki

0 428A2F98x 1 71374491x 2 B5C0FBCFx 3 E9B5DBA5x
4 3956C25Bx 5 59F111F1x 6 923F82A4x 7 AB1C5ED5x
8 D807AA98x 9 12835B01x 10 243185BEx 11 550C7DC3x
12 72BE5D74x 13 80DEB1FEx 14 9BDC06A7x 15 C19BF174x
16 E49B69C1x 17 EFBE4786x 18 0FC19DC6x 19 240CA1CCx
20 2DE92C6Fx 21 4A7484AAx 22 5CB0A9DCx 23 76F988DAx
24 983E5152x 25 A831C66Dx 26 B00327C8x 27 BF597FC7x
28 C6E00BF3x 29 D5A79147x 30 06CA6351x 31 14292967x
32 27B70A85x 33 2E1B2138x 34 4D2C6DFCx 35 53380D13x
36 650A7354x 37 766A0ABBx 38 81C2C92Ex 39 92722C85x
40 A2BFE8A1x 41 A81A664Bx 42 C24B8B70x 43 C76C51A3x
44 D192E819x 45 D6990624x 46 F40E3585x 47 106AA070x
48 19A4C116x 49 1E376C08x 50 2748774Cx 51 34B0BCB5x
52 391C0CB3x 53 4ED8AA4Ax 54 5B9CCA4Fx 55 682E6FF3x
56 748F82EEx 57 78A5636Fx 58 84C87814x 59 8CC70208x
60 90BEFFFAx 61 A4506CEBx 62 BEF9A3F7x 63 C67178F2x

At the beginning of the hash computation the words A,B,C,D,E, F,G and
H are loaded with an initial value. For SHA-256 the following values are loaded:

A = 6A09E667x

B = BB67AE85x

C = 3C6EF372x

D = A54FF53Ax

E = 519E527Fx

F = 9B05688Cx

G = 1F83D9ABx

H = 5BE0CD19x
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2.2.3 The Functions Used in SHA-384 and SHA-512

SHA-512 and SHA-384 uses 6 functions: Ch(x, y, z) and Maj(x, y, z), two non-
linear functions with 192-bit input and 64-bit output, and 4 linear functions with
64-bit input and 64-bit output: Σ0, Σ1, s0, s1.

We first define the 4 linear operations:

Σ0(X) = X ≫28 ⊕X ≫34 ⊕X ≫39

Σ1(X) = X ≫14 ⊕X ≫18 ⊕X ≫41

σ0(X) = X ≫1 ⊕X ≫8 ⊕X �7

σ1(X) = X ≫19 ⊕X ≫19 ⊕X �6

The Ch operation accepts three 64-bit words X,Y, Z. The operation is a
bitwise choose function, i.e., if the i’th bit of X is set, then the i’th bit of the
output is the i’th bit of Y . Otherwise, the i’th bit of the output is the i’th bit of
Z. This operation can be efficiently implemented as:

Ch(X,Y, Z) = (X ∧ Y )⊕ (X ∧ Z)

The Maj operation also accepts three 64-bit words X,Y, Z. The operation
is a bitwise majority function, i.e., if the majority of the i’th bits of X,Y and
Z are set, then the i’th output bit is set, and vice versa. This operation can be
efficiently implemented as:

Maj(X,Y, Z) = (X ∧ Y )⊕ (X ∧ Z)⊕ (Y ∧ Z)

2.2.4 The Constants of SHA-384 and SHA-512

Each round, a round constant is used in the compression function. We list the
round constants in the following table:
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Round i Ki Round i Ki Round i Ki

0 428A2F98D728AE22x 1 7137449123EF65CDx 2 B5C0FBCFEC4D3B2Fx
3 E9B5DBA58189DBBCx 4 3956C25BF348B538x 5 59F111F1B605D019x
6 923F82A4AF194F9Bx 7 AB1C5ED5DA6D8118x 8 D807AA98A3030242x
9 12835B0145706FBEx 10 243185BE4EE4B28Cx 11 550C7DC3D5FFB4E2x
12 72BE5D74F27B896Fx 13 80DEB1FE3B1696B1x 14 9BDC06A725C71235x
15 C19BF174CF692694x 16 E49B69C19EF14AD2x 17 EFBE4786384F25E3x
18 0FC19DC68B8CD5B5x 19 240CA1CC77AC9C65x 20 2DE92C6F592B0275x
21 4A7484AA6EA6E483x 22 5CB0A9DCBD41FBD4x 23 76F988DA831153B5x
24 983E5152EE66DFABx 25 A831C66D2DB43210x 26 B00327C898FB213Fx
27 BF597FC7BEEF0EE4x 28 C6E00BF33DA88FC2x 29 D5A79147930AA725x
30 06CA6351E003826Fx 31 142929670A0E6E70x 32 27B70A8546D22FFCx
33 2E1B21385C26C926x 34 4D2C6DFC5AC42AEDx 35 53380D139D95B3DFx
36 650A73548BAF63D2x 37 766A0ABB3C77B2A8x 38 81C2C92E47EDAEE6x
39 92722C851482353Bx 40 A2BFE8A14CF10364x 41 A81A664BBC423001x
42 C24B8B70D0F89791x 43 C76C51A30654BE30x 44 D192E819D6EF5218x
45 D69906245565A910x 46 F40E35855771202Ax 47 106AA07032BBD1B8x
48 19A4C116B8D2D0C8x 49 1E376C085141AB53x 50 2748774CDF8EEB99x
51 34B0BCB5E19B48A8x 52 391C0CB3C5C95A63x 53 4ED8AA4AE3418ACBx
54 5B9CCA4F7763E373x 55 682E6FF3D6B2B8A3x 56 748F82EE5DEFB2FCx
57 78A5636F43172F60x 58 84C87814A1F0AB72x 59 8CC702081A6439ECx
60 90BEFFFA23631E28x 61 A4506CEBDE82BDE9x 62 BEF9A3F7B2C67915x
63 C67178F2E372532Bx 64 CA273ECEEA26619Cx 65 D186B8C721C0C207x
66 EADA7DD6CDE0EB1Ex 67 F57D4F7FEE6ED178x 68 06F067AA72176FBAx
69 0A637DC5A2C898A6x 70 113F9804BEF90DAEx 71 1B710B35131C471Bx
72 28DB77F523047D84x 73 32CAAB7B40C72493x 74 3C9EBE0A15C9BEBCx
75 431D67C49C100D4Cx 76 4CC5D4BECB3E42B6x 77 597F299CFC657E2Ax
78 5FCB6FAB3AD6FAECx 79 6C44198C4A475817x

At the beginning of the hash computation the words A,B,C,D,E, F,G and
H are loaded with an initial value. For SHA-384 the following values are loaded:

A = CBBB9D4DC1059ED8x

B = 629A292A367CD507x

C = 9159015A3070DD17x

D = 152FECD8F70E5939x

E = 67332667FFC00B31x

F = 8EB44A8768581511x

G = DB0C2E0D64F98FA7x

H = 47B5481DBEFA4FA4x

For SHA-512 the following values are loaded:
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A = 6A09E667F3BCC908x

B = BB67AE8584CAA73Bx

C = 3C6EF372FE94F82Bx

D = A54FF53A5F1D36F1x

E = 510E527FADE682D1x

F = 9B05688C2B3E6C1Fx

G = 1F83D9ABFB41BD6Bx

H = 5BE0CD19137E2179x

2.3 Test vectors
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Message Authentication Codes
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1. UMAC

1.1 Introduction

1.1.1 Overview

UMAC is a message authentication code submitted to NESSIE by Ted Krovetz,
John Black, Shai Halevi, Hugo Krawczyk and Phillip Rogaway [379]. The design
of UMAC is based on families of universal hash functions, and it uses the AES
block cipher (described in Part B of the NESSIE portfolio) as a component.
Many options are available in an implementation of UMAC, resulting in different
versions of the algorithm, but in the descriptions provided in this chapter we will
focus on two specific versions named UMAC32 and UMAC16.

1.1.2 Outline of the primitive

The UMAC message authentication code maps a message M consisting of an
arbitrary number of bits onto a fixed length output under control of a secret key
K. An unusual feature of UMAC is that the authentication also depends on a
nonce (in addition to depending on the message and key). This nonce is a value
that should not be repeated when authenticating messages under the same key
(it is usually implemented by a counter). Note that the nonce does not have to
be secret, it may be transmitted along with the message.

The design of UMAC is based on a universal hash function family, named
UHASH. The procedure of authentication can be summarised by the following
formula:

UMAC(K,M,Nonce) = UHASH(K,M)⊕ PDF(K,Nonce) .

That is, UHASH is used to compress the message M to a fixed length, and a
pad derivation function (PDF) is used to transform the nonce into a pad value of
the same length. The message authentication value is then computed by bitwise
addition (exclusive-or) of the compressed message and the pad value. Note that
both UHASH and the PDF function are keyed: UHASH uses a key to choose
a particular hash function from the universal hash family; PDF uses a key for
internal encryption with the AES block cipher. A number of subkeys need to be
generated from the user key K and this is done by means of a key derivation
function.

UHASH itself consists of three seperate layers, where each layer is based on
a different universal hash function family:
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1. Compression: The first layer uses the fast NH hash family to compress the
message by a fixed ratio.

2. Hash-to-fixed-length: The second layer uses a polynomial hash family, which
generates an output of a fixed length.

3. Strengthen-and-fold: The third layer uses an inner-product hash family, which
reduces the length of its input to a more appropriate size.

1.1.3 Security and performance

There is a security proof for UMAC. The core of the design, the UHASH function,
does not depend on any cryptographic assumptions, and its strength is specified
by a purely mathematical property stated in terms of collision probability (this
property is proven in an absolute sense). Therefore, the security of UMAC de-
pends on the cryptographic function, AES, that is used for the derivation of key
material and for the computation of the pad value. This means that an attack
that breaks UMAC (finding a forgery with probability significantly higher than
the established collision probability) would lead to an attack of comparable com-
plexity that breaks AES (in the sense of distinguishing AES from a family of
random permutations).

Because UHASH relies on simple operations (additions and multiplications
of 16-bit, 32-bit and 64-bit numbers), the UMAC algorithm is very efficient in
software implementations, especially when it is used to authenticate long data
streams. Several parameters can be chosen for UMAC in order to optimise an
implementation for a particular platform. For maximum speed, the environment
should provide sufficient space for the storage of internal keys of approximately
1.5 KB and it should support the multiplication of 32-bit operands into a 64-bit
result. Note that the efficiency of UMAC comes at the cost of a greater complexity
(and less compact implementations) compared to other MAC algorithms. Also,
the procedure for key-setup consumes significant time so UMAC is not suited for
applications where the key needs to be changed frequently (i.e., where each key
is used to authenticate only a small amount of data).

1.2 Description

As noted in the introduction to this chapter many options are available in the
implementation of UMAC and this is reflected by a number of parameters, where
each choice for this set of parameters results in a different version of the algorithm.
However, two named parameter sets have been specified, UMAC32 and UMAC16.
The parameters for these two versions have been chosen to give good efficiency
on a wide variety of platforms. The main difference between the two versions is in
the word length which is equal to 32 bits for UMAC32 and 16 bits for UMAC16.
In the following we give detailed specifications for both UMAC32 and UMAC16.
The default output length of these algorithms is equal to 64 bits, but we will
generally describe how to produce outputs of length equal to 32, 64, 96 or 128
bits in order to provide different security levels. We conclude with a discussion
on the parameters of UMAC and other versions of the algorithm.
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1.2.1 Definitions and Notations

In this section we introduce some notations specific to this chapter. See also
Part A of the NESSIE portfolio for generic notations used in this book.

Operations on integers.

– prime(x) is the largest prime smaller than 2x

Operations on strings.

– S[i] is the i-th bit of the string S (indices begin at 1)
– S[i . . . j] is the substring of S consisting of bits i through j
– zeroes(n) is the string made of n 0-bits
– ones(n) is the string made of n 1-bits
– padzero(S,w) is the string S ‖ zeroes(n) where n is the smallest number so that

the bitlength of S ‖ zeroes(n) is divisible by w
– padonezero(S,w) is the string S ‖ ones(1) ‖ zeroes(n) where n is the smallest

number so that the bitlength of S ‖ ones(1) ‖ zeroes(n) is divisible by w
– bytereverse(S,w) computes a new w-bit string from the original w-bit string
S, by reversing the order of the bytes. That is, if S = S1 ‖ · · · ‖Sw/8 then
bytereverse(S,w) = Sw/8 ‖ · · · ‖S1, where the bitsize of S is w and the bitsize
of each Si is 8.

Conversions between strings and integers.

– str2uint(S) is the non-negative integer x such that the binary representation
of x corresponds to the string S. More formally, if S is n bits long then
str2uint(S) = S[1]× 2t−1 + S[2]× 2t−2 + · · ·+ S[t− 1]× 21 + S[t]

– uint2str(x,w) is the w-bit string S such that str2uint(S) = x
– str2sint(S) is the integer x such that the binary representation of x in two’s

complement corresponds to the string S. More formally, if S is n bits long then
str2sint(S) = −S[1]× 2t−1 + S[2]× 2t−2 + · · ·+ S[t− 1]× 21 + S[t]

– sint2str(x,w) is the w-bit string S such that str2sint(S) = x

Mathematical operations on strings.

– For UMAC32 we interpret
– S +w T as uint2str(str2uint(S) + str2uint(T ) mod 2w, w)
– S ×w T as uint2str(str2uint(S)× str2uint(T ) mod 2w, w)

– For UMAC16 we interpret
– S +w T as uint2str(str2sint(S) + str2sint(T ) mod 2w, w)
– S ×w T as uint2str(str2sint(S)× str2sint(T ) mod 2w, w)

1.2.2 Encryption and Key derivation functions

In this section we describe the encryption and key derivation functions that are
used by both UMAC32 and UMAC16.
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Encryption function: AES.
The block cipher AES is used as encryption function. AES takes a plaintext T and
key K, both strings of 128 bits, to compute a ciphertext string Y = AES(K,T )
of 128 bits. Note that in general other key lengths are possible for AES (192 or
256 bits) but the default key length specified in UMAC32 and UMAC16 is 128
bits. For a description of AES we refer to Part B of the NESSIE portfolio.

Key derivation function: KDF.
We describe below the key derivation function that is used. This function ex-
pands the user-supplied key into the subkeys used internally by UMAC32 and
UMAC16. It uses the AES cipher in output-feedback mode to produce the re-
quired pseudorandom bits. Note that the index parameter determines the initial
plaintext. Using the same key but different values for index generates different
pseudorandom outputs.

Description:
Input: a string K of 128 bits

an integer index, with 0 ≤ index < 256
a positive integer Subkeylen

Output: a string Y of Subkeylen bits

1. Let t := dSubkeylen/128e
2. Set T := zeroes(120) ‖ uint2str(index, 8)
3. Let the initial value of Y be the empty string
4. For i := 1 to t do the following steps

a) T := AES(K,T )
b) Y := Y ‖T

5. Y := Y [1 . . . Subkeylen]
6. Return the final value of Y

1.2.3 UMAC32

UMAC32 is a universal hash based message authentication code with 32-bit word
length. It is targeted to processors with good 32- and 64-bit support. We give a full
specification of the algorithm, where we first describe the individual components
and conclude by showing how all these components fit together in the UMAC32
construction. Some readers may prefer to read these sections backwards, in order
to get a top-down description.

1.2.3.1 Components of UHASH32

In this section we describe the components of UHASH32. There are three levels
of hashing in UHASH32, each of them based on a different universal hash family.

NH hash with 32-bit wordsize: NH32.
We describe below a universal hash family that hashes an input string M using a
key K by considering M and K to be arrays of 32-bit integers, and performing a
sequence of arithmetic operations on them. Note that in order to accommodate
processors with small-scale vector parallelism, NH32 accesses data-words in pairs
which are four words apart.
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Description:
Input: a string K of 8192 bits

a string M , with Mlen ≤ 8192 and divisible by 256
Output: a string Y of 64 bits

1. Divide M and K into substrings of 32 bits, according to little-endian
convention
a) Set t := Mlen/32 (number of 32-bit words in M)
b) Let M1, . . . ,Mt be strings of 32 bits such that M = M1 ‖ · · · ‖Mt

c) For i = 1 to t do Mi := bytereverse(Mi, 32)
d) Let K1,K2, . . . ,Kt be strings of 32 bits such that K[1 . . .Mlen] =

K1 ‖K2 ‖ · · · ‖Kt

e) For i = 1 to t do Ki := bytereverse(Ki, 32)
2. Set the initial value of Y := 0
3. Process the substrings Mi and Ki (1 ≤ i ≤ t)

a) Set i := 1
b) While i < t do the following five steps

i. Y := Y +64 ((Mi+0 +32 Ki+0)×64 (Mi+4 +32 Ki+4))
ii. Y := Y +64 ((Mi+1 +32 Ki+1)×64 (Mi+5 +32 Ki+5))
iii. Y := Y +64 ((Mi+2 +32 Ki+2)×64 (Mi+6 +32 Ki+6))
iv. Y := Y +64 ((Mi+3 +32 Ki+3)×64 (Mi+7 +32 Ki+7))
v. i := i+ 8

4. Return the final value of Y

First-layer hash: L1HASH32.
We describe below the first level of hashing in UHASH32. It is based on the
NH32 hash function. This function requires a key which is just as long as the
message being hashed. Therefore, in order to limit the amount of key material
that is needed, we use a key of fixed length (8192 bits) and process the mes-
sage in blocks of this length (or shorter). Each block is hashed with NH32 and
length information is included. The results are concatenated to form the output
of L1HASH32. Note that the blocks of 8192 bits are compressed to 64-bit strings,
which corresponds to a compression ratio of 128.

Description:
Input: a string K of 8192 bits

a string M of Mlen bits, with Mlen < 267

Output: a string Y of 64× dMlen/8192e bits

1. Divide M into substrings of 8192 bits (the final substring may be shorter)
a) Set t := dMlen/8192e
b) Let M1,M2, . . . ,Mt be strings such that M = M1 ‖M2 ‖ · · · ‖Mt,

where the length of Mi is 8192 bits for 1 ≤ i < t and the length of
Mt is tlen bits with tlen ≤ 8192

2. Let the initial value of Y be the empty string
3. Process the substrings Mi (1 ≤ i < t)

a) Len := uint2str(8192,64)
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b) For i := 1 to (t− 1) do Y := Y ‖ (NH32(K,Mi) +64 Len)
4. Process the final substring Mt

a) Len := uint2str(tlen,64)
b) Mt := padzero(Mt,256)
c) Y := Y ‖ (NH32(K,Mt) +64 Len)

5. Return the final value of Y

Polynomial hash with 64-bit wordsize: POLY64.
We describe below a polynomial hashing scheme which treats an input message as
a sequence of coefficients of a polynomial, and the key as the point at which this
polynomial is evaluated. The largest prime smaller than 264 is used as modulus,
and the message is divided in 64-bit words. Words that are larger than 264 − 232

are split into two words. This guarantees that all words are smaller than the
prime modulus.

Description:
Input: an integer k,with 0 ≤ k ≤ prime(64)− 1

a string M of Mlen bits, with Mlen divisible by 64
Output: an integer y, with 0 ≤ y ≤ prime(64)− 1

1. Set p := prime(64) = 264 − 59
2. Divide M into substrings of 64 bits

a) Set t := Mlen/64
b) Let M1, . . . ,Mt be strings of 64 bits such that M = M1 ‖ · · · ‖Mt

3. Set the initial value of y := 1
4. Process the substrings Mi. That is, for i := 1 to t do

a) m := str2uint(Mi)
b) If (m < 264 − 232) then y := (k × y +m) mod p

else do the following two steps
i. y := (k × y + (p− 1)) mod p
ii. y := (k × y + (m− 59)) mod p

5. Return the final value of y

Polynomial hash with 128-bit wordsize: POLY128.
We describe below a 128-bit variant of the polynomial hashing scheme. The
largest prime smaller than 2128 is used as modulus, and the message is divided
in 128-bit words. Words that are larger than 2128 − 296 are split into two words.
This guarantees that all words are smaller than the prime modulus.

Description:
Input: an integer k,with 0 ≤ k ≤ prime(128)− 1

a string M of Mlen bits, with Mlen divisible by 128
Output: an integer y, with 0 ≤ y ≤ prime(128)− 1

1. Set p := prime(128) = 2128 − 159
2. Divide M into substrings of 128 bits

a) Set t := Mlen/128
b) Let M1, . . . ,Mt be strings of 128 bits such that M = M1 ‖ · · · ‖Mt
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3. Set the initial value of y := 1
4. Process the substrings Mi. That is, for i := 1 to t do

a) m := str2uint(Mi)
b) If (m < 2128 − 296) then y := (k × y +m) mod p

else do the following two steps
i. y := (k × y + (p− 1)) mod p
ii. y := (k × y + (m− 159)) mod p

5. Return the final value of y

Second-layer hash: L2HASH32.
We describe below the second level of hashing in UHASH32. It is based on the
POLY64 and POLY128 hash functions. The security guarantee of a polynomial
hashing scheme degrades linearly in the length of the message being hashed: if
two messages of n words are hashed the collision probability is no more than n/p
(where p denotes the prime modulus that is used). The scheme described below
hashes n words under the modulus prime(64) until n/prime(64) reaches a certain
bound. Then the result obtained so far is prepended to the remaining message
and hashing continues under the modulus prime(128) which is substantially larger
than prime(64). Note that the dynamic use of POLY64 and POLY128 gives good
performance for short messages while still accomodating longer ones. The keys
used for the polynomial hashing are restricted to particular subsets to allow for
optimisations (some potential arithmetic carries can be disregarded during the
computation). L2HASH32 produces an output of a fixed length of 128 bits.

Description:
Input: a string K of 192 bits

a string M of Mlen bits, with Mlen < 267

Output: a string Y of 128 bits

1. Extract key values and restrict them to special key-sets
a) Let K64 be a string of 64 bits, and let K128 be a string of 128 bits,

such that K = K64 ‖K128

b) Define two strings:
Mask64 := uint2str(01FFFFFF01FFFFFFx, 64)
Mask128 := uint2str(01FFFFFF01FFFFFF01FFFFFF01FFFFFFx, 128)

c) Compute two integers:
k64 := str2uint(K64 ∧Mask64)
k128 := str2uint(K128 ∧Mask128)

2. If Mlen ≤ 220 then y := POLY64(k64,M)
else do the following four steps
a) Let M1 be a string of 220 bits, and let M2 be a string of less than

267 − 220 bits, such that M = M1 ‖M2

b) M2 := padonezero(M2, 128)
c) y := POLY64(k64,M1)
d) y := POLY128(k128, uint2str(y, 128) ‖M2)

3. Return Y := uint2str(y, 128)
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Third-layer hash: L3HASH32.
We describe below the third level of hashing in UHASH32. It hashes a 128-bit
input to a fixed length of 32 bits using a simple inner-product hash with affine
translation. A 36-bit prime modulus is used to improve security.

Description:
Input: a string K of 512 bits

a string T of 32 bits
a string M of 128 bits

Output: a string Y of 32 bits

1. Set p := prime(36) = 236 − 5
2. Divide M and K into substrings of 16 bits and 64 bits respectively

a) Let M1, . . . ,M8 be strings of 16 bits such that M = M1 ‖ · · · ‖M8

b) Let K1, . . . ,K8 be strings of 64 bits such that K = K1 ‖ · · · ‖K8

3. Convert the substrings into numbers. That is, for i := 1 to 8 do
a) mi := str2uint(Mi)
b) ki := str2uint(Ki) mod p

4. Compute the output as follows
a) y := ((m1 × k1 +m2 × k2 + · · ·+m8 × k8) mod p) mod 232

b) Return Y := uint2str(y, 32)⊕ T

1.2.3.2 Three-layer hashing scheme: UHASH32

We describe below the universal hash function UHASH32 that is used by
UMAC32 to compress the message input to a result of a fixed length. The com-
ponents described in the previous section are combined in a straightforward man-
ner. A message is first hashed with L1HASH32, its output is then hashed with
L2HASH32, whose output is then hashed with L3HASH32. If the message is no
longer than 8192 bits to begin with, L2HASH32 is skipped as an optimisation.
Because the output of L3HASH32 is only 32 bits long, multiple iterations of
the three-layer hash scheme are used with different keys each time. All of these
subkeys are derived from the user-supplied key with the key derivation function
KDF. To reduce memory requirements L1HASH32 reuses most of its key material
between iterations.

Description:
Input: a string K of 128 bits

a string M of Mlen bits, with Mlen < 267

an integer Outlen = 32, 64, 96, or 128
Output: a string Y of Outlen bits

1. Set t := Outlen/32
2. Derive the needed key material from K

a) K1 := KDF(K, 0, 8192 + (t− 1)× 128)
b) K2 := KDF(K, 1, t× 192)
c) K3 := KDF(K, 2, t× 512)
d) T3 := KDF(K, 3, t× 32)
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3. Let the initial value of Y be the empty string
4. Iterate the three-layer hashing scheme. That is, for i := 1 to t do

a) Define the subkeys to be used in this iteration
i. K1i := K1[(i− 1)× 128 + 1 . . . (i− 1)× 128 + 8192]
ii. K2i := K2[(i− 1)× 192 + 1 . . . i× 192]
iii. K3i := K3[(i− 1)× 512 + 1 . . . i× 512]
iv. T3i := T3[(i− 1)× 32 + 1 . . . i× 32]

b) A := L1HASH32(K1i,M)
c) If Mlen ≤ 8192 then B := zeroes(64) ‖A

else B := L2HASH32(K2i, A)
d) C := L3HASH32(K3i, T3i, B)
e) Y := Y ‖C

5. Return the final value of Y

1.2.3.3 Message authentication code: UMAC32

The UMAC32 algorithm computes a message authentication value when given
a key, message and nonce. It uses UHASH32 to compress the message and AES
to encrypt the nonce. The exclusive-or (XOR) of the two resulting strings forms
the output message authentication value. In the description below we consider
output lengths of 32, 64, 96 or 128 bits, determined by the parameter Outlen.

Description:
Input: a string K of 128 bits

a string M of Mlen bits, with Mlen < 267

a string Nonce of Nlen bits, with 8 ≤ Nlen ≤ 128
and Nlen divisible by 8

an integer Outlen = 32, 64, 96, or 128
Output: a string Y of Outlen bits

1. Hash := UHASH32(K,M,Outlen)
2. KEnc := KDF(K, 128, 128)
3. Nonce := Nonce ‖ zeroes(128−Nlen)
4. Pad := AES(KEnc, Nonce)
5. Pad := Pad[1 . . . Outlen]
6. Return Y := Hash⊕ Pad

Reuse of the encrypted nonce for short output lengths. When the param-
eter Outlen in the description above is equal to 32 or 64 bits, the AES output
Pad := AES(KEnc, Nonce) can be reused for several authentications (using a
different substring of the AES output each time). This reduces the average time
spent by AES for each authentication. We refer to [379] for more information on
this optimisation.

1.2.4 UMAC16

UMAC16 is a universal hash based message authentication code with 16-bit word
length. It is targeted to processors with good 16- and 32-bit support. We give a full
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specification of the algorithm, where we first describe the individual components
and conclude by showing how all these components fit together in the UMAC16
construction. Some readers may prefer to read these sections backwards, in order
to get a top-down description.

1.2.4.1 Components of UHASH16

In this section we describe the components of UHASH16. There are three levels
of hashing in UHASH16, each of them based on a different universal hash family.

NH hash with 16-bit wordsize: NH16.
We describe below a universal hash family that hashes an input string M using a
key K by considering M and K to be arrays of 16-bit integers, and performing a
sequence of arithmetic operations on them. Note that in order to accommodate
processors with small-scale vector parallelism, NH16 accesses data-words in pairs
which are eight words apart.

Description:
Input: a string K of 8192 bits

a string M , with Mlen ≤ 8192 and divisible by 256
Output: a string Y of 32 bits

1. Divide M and K into substrings of 16 bits, according to little-endian
convention
a) Set t := Mlen/16 (number of 16-bit words in M)
b) Let M1, . . . ,Mt be strings of 16 bits

such that M = M1 ‖ · · · ‖Mt

c) For i = 1 to t do Mi := bytereverse(Mi, 16)
d) Let K1, . . . ,Kt be strings of 16 bits

such that K[1 . . .Mlen] = K1 ‖ · · · ‖Kt

e) For i = 1 to t do Ki := bytereverse(Ki, 16)
2. Set the initial value of Y := 0
3. Process the substrings Mi and Ki (1 ≤ i ≤ t)

a) Set i := 1
b) While i < t do the following nine steps

i. Y := Y +32 ((Mi+0 +16 Ki+0)×32 (Mi+8 +16 Ki+8))
ii. Y := Y +32 ((Mi+1 +16 Ki+1)×32 (Mi+9 +16 Ki+9))
iii. Y := Y +32 ((Mi+2 +16 Ki+2)×32 (Mi+10 +16 Ki+10))
iv. Y := Y +32 ((Mi+3 +16 Ki+3)×32 (Mi+11 +16 Ki+11))
v. Y := Y +32 ((Mi+4 +16 Ki+4)×32 (Mi+12 +16 Ki+12))
vi. Y := Y +32 ((Mi+5 +16 Ki+5)×32 (Mi+13 +16 Ki+13))
vii. Y := Y +32 ((Mi+6 +16 Ki+6)×32 (Mi+14 +16 Ki+14))
viii. Y := Y +32 ((Mi+7 +16 Ki+7)×32 (Mi+15 +16 Ki+15))
ix. i := i+ 16

4. Return the final value of Y
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First-layer hash: L1HASH16.
We describe below the first level of hashing in UHASH16. It is based on the
NH16 hash function. This function requires a key which is just as long as the
message being hashed. Therefore, in order to limit the amount of key material
that is needed, we use a key of fixed length (8192 bits) and process the mes-
sage in blocks of this length (or shorter). Each block is hashed with NH16 and
length information is included. The results are concatenated to form the output
of L1HASH16. Note that the blocks of 8192 bits are compressed to 32-bit strings,
which corresponds to a compression ratio of 256.

Description:
Input: a string K of 8192 bits

a string M of Mlen bits, with Mlen < 267

Output: a string Y of 32× dMlen/8192e bits

1. Divide M into substrings of 8192 bits (the final substring may be shorter)
a) Set t := dMlen/8192e
b) Let M1,M2, . . . ,Mt be strings such that M = M1 ‖M2 ‖ · · · ‖Mt,

where the length of Mi is 8192 bits for 1 ≤ i < t and the length of
Mt is tlen bits with tlen ≤ 8192

2. Let the initial value of Y be the empty string
3. Process the substrings Mi (1 ≤ i < t)

a) Len := uint2str(8192,32)
b) For i := 1 to (t− 1) do Y := Y ‖ (NH16(K,Mi) +32 Len)

4. Process the final substring Mt

a) Len := uint2str(tlen,32)
b) Mt := padzero(Mt,256)
c) Y := Y ‖ (NH16(K,Mt) +32 Len)

5. Return the final value of Y

Polynomial hash with 32-bit wordsize: POLY32.
We describe below a polynomial hashing scheme which treats an input message as
a sequence of coefficients of a polynomial, and the key as the point at which this
polynomial is evaluated. The largest prime smaller than 232 is used as modulus,
and the message is divided in 32-bit words. Words that are larger than 232−6 are
split into two words. This guarantees that all words are smaller than the prime
modulus.

Description:
Input: an integer k,with 0 ≤ k ≤ prime(32)− 1

a string M of Mlen bits, with Mlen divisible by 32
Output: an integer y, with 0 ≤ y ≤ prime(32)− 1

1. Set p := prime(32) = 232 − 5
2. Divide M into substrings of 32 bits

a) Set t := Mlen/32
b) Let M1, . . . ,Mt be strings of 32 bits such that M = M1 ‖ · · · ‖Mt

3. Set the initial value of y := 1
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4. Process the substrings Mi. That is, for i := 1 to t do
a) m := str2uint(Mi)
b) If (m < 232 − 6) then y := (k × y +m) mod p

else do the following two steps
i. y := (k × y + (p− 1)) mod p
ii. y := (k × y + (m− 5)) mod p

5. Return the final value of y

Polynomial hash with 64-bit wordsize: POLY64.
See the description of UMAC32 for a specification of this function.

Polynomial hash with 128-bit wordsize: POLY128.
See the description of UMAC32 for a specification of this function.

Second-layer hash: L2HASH16.
We describe below the second level of hashing in UHASH16. It is based on the
POLY32, POLY64 and POLY128 hash functions. The security guarantee of a
polynomial hashing scheme degrades linearly in the length of the message being
hashed: if two messages of n words are hashed the collision probability is no
more than n/p (where p denotes the prime modulus that is used). The scheme
described below hashes n1 words under the modulus prime(32) until n1/prime(32)
reaches a certain bound. Then the result obtained so far is prepended to the re-
maining message and hashing continues under the modulus prime(64) which is
substantially larger than prime(32). The hashing continues for n2 more words un-
til n2/prime(64) also reaches a certain bound, at which time a new larger prime
modulus prime(128) is used for the remaining message. Note that the dynamic
use of the different polynomial hash functions gives good performance for short
messages while still accomodating longer ones. The keys used for the polynomial
hashing are restricted to particular subsets to allow for optimisations (some po-
tential arithmetic carries can be disregarded during the computation). L2HASH16
produces an output of a fixed length of 128 bits.

Description:
Input: a string K of 224 bits

a string M of Mlen bits, with Mlen < 267

Output: a string Y of 128 bits

1. Extract key values and restrict them to special key-sets
a) Let K32 be a string of 32 bits, let K64 be a string of 64 bits, and let

K128 be a string of 128 bits, such that K = K32 ‖K64 ‖K128

b) Define three strings:
Mask32 := uint2str(1FFFFFFFx, 32)
Mask64 := uint2str(01FFFFFF01FFFFFFx, 64)
Mask128 := uint2str(01FFFFFF01FFFFFF01FFFFFF01FFFFFFx, 128)

c) Compute three integers:
k32 := str2uint(K32 ∧Mask32)
k64 := str2uint(K64 ∧Mask64)
k128 := str2uint(K128 ∧Mask128)
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2. If Mlen ≤ 214 then y := POLY32(k32,M)
else if Mlen ≤ 236 then do the following four steps
a) Let M1 be a string of 214 bits, and let M2 be a string of no more

than 236 − 214 bits, such that M = M1 ‖M2

b) M2 := padonezero(M2, 64)
c) y := POLY32(k32,M1)
d) y := POLY64(k64, uint2str(y, 64) ‖M2)

else do the following five steps
a) Let M1 be a string of 214 bits, let M2 be a string of 236 − 214 bits,

and let M3 be a string of less than 267 − 236 bits, such that M =
M1 ‖M2 ‖M3

b) M3 := padonezero(M3, 128)
c) y := POLY32(k32,M1)
d) y := POLY64(k64, uint2str(y, 64) ‖M2)
e) y := POLY128(k128, uint2str(y, 128) ‖M3)

3. Return Y := uint2str(y, 128)

Third-layer hash: L3HASH16.
We describe below the third level of hashing in UHASH16. It hashes a 128-bit
input to a fixed length of 16 bits using a simple inner-product hash with affine
translation. A 19-bit prime modulus is used to improve security.

Description:
Input: a string K of 256 bits

a string T of 16 bits
a string M of 128 bits

Output: a string Y of 16 bits

1. Set p := prime(19) = 219 − 1
2. Divide M and K into substrings of 16 bits and 32 bits respectively

a) Let M1, . . . ,M8 be strings of 16 bits such that M = M1 ‖ · · · ‖M8

b) Let K1, . . . ,K8 be strings of 32 bits such that K = K1 ‖ · · · ‖K8

3. Convert the substrings into numbers. That is, for i := 1 to 8 do
a) mi := str2uint(Mi)
b) ki := str2uint(Ki) mod p

4. Compute the output as follows
a) y := ((m1 × k1 +m2 × k2 + · · ·+m8 × k8) mod p) mod 216

b) Return Y := uint2str(y, 16)⊕ T

1.2.4.2 Three-layer hashing scheme: UHASH16

We describe below the universal hash function UHASH16 that is used by
UMAC16 to compress the message input to a result of a fixed length. The com-
ponents described in the previous section are combined in a straightforward man-
ner. A message is first hashed with L1HASH16, its output is then hashed with
L2HASH16, whose output is then hashed with L3HASH16. If the message is no
longer than 8192 bits to start with, L2HASH16 is skipped as an optimisation.
Because the output of L3HASH16 is only 16 bits long, multiple iterations of
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the three-layer hash scheme are used with different keys each time. All of these
subkeys are derived from the user-supplied key with the key derivation function
KDF. To reduce memory requirements L1HASH16 reuses most of its key material
between iterations.

Description:
Input: a string K of 128 bits

a string M of Mlen bits, with Mlen < 267

an integer Outlen = 32, 64, 96, or 128
Output: a string Y of Outlen bits

1. Set t := Outlen/16
2. Derive the needed key material from K

a) K1 := KDF(K, 0, 8192 + (t− 1)× 128)
b) K2 := KDF(K, 1, t× 224)
c) K3 := KDF(K, 2, t× 256)
d) T3 := KDF(K, 3, t× 16)

3. Let the initial value of Y be the empty string
4. Iterate the three-layer hashing scheme. That is, for i := 1 to t do

a) Define the subkeys to be used in this iteration
i. K1i := K1[(i− 1)× 128 + 1 . . . (i− 1)× 128 + 8192]
ii. K2i := K2[(i− 1)× 224 + 1 . . . i× 224]
iii. K3i := K3[(i− 1)× 256 + 1 . . . i× 256]
iv. T3i := T3[(i− 1)× 16 + 1 . . . i× 16]

b) A := L1HASH16(K1i,M)
c) If Mlen ≤ 8192 then B := zeroes(96) ‖A

else B := L2HASH16(K2i, A)
d) C := L3HASH16(K3i, T3i, B)
e) Y := Y ‖C

5. Return the final value of Y

1.2.4.3 Message authentication code: UMAC16

The UMAC16 algorithm computes a message authentication value when given
a key, message and nonce. It uses UHASH16 to compress the message and AES
to encrypt the nonce. The exclusive-or (XOR) of the two resulting strings forms
the output message authentication value. In the description below we consider
output lengths of 32, 64, 96 or 128 bits, determined by the parameter Outlen.

Description:
Input: a string K of 128 bits

a string M of Mlen bits, with Mlen < 267

a string Nonce of Nlen bits, with 8 ≤ Nlen ≤ 128
and Nlen divisible by 8

an integer Outlen = 32, 64, 96, or 128
Output: a string Y of Outlen bits

1. Hash := UHASH16(K,M,Outlen)
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2. KEnc := KDF(K, 128, 128)
3. Nonce := Nonce ‖ zeroes(128−Nlen)
4. Pad := AES(KEnc, Nonce)
5. Pad := Pad[1 . . . Outlen]
6. Return Y := Hash⊕ Pad

Reuse of the encrypted nonce for short output lengths. When the param-
eter Outlen in the description above is equal to 32 or 64 bits, the AES output
Pad := AES(KEnc, Nonce) can be reused for several authentications (using a
different substring of the AES output each time). This reduces the average time
spent by AES for each authentication. We refer to [379] for more information on
this optimisation.

1.2.5 Parameters of UMAC and other versions of the algorithm

We have given specifications for two particular versions of UMAC (named
UMAC32 and UMAC16). More generally, other versions of UMAC can be speci-
fied according to the parameters described below. For each parameter we discuss
its role, the values chosen for it in UMAC32 and UMAC16, and other values
that may be used. For more information on the use of UMAC with different
parameters than in UMAC32 and UMAC16 see [379].

– Word length: defines the bitsize of a “word”. Allowed values are 16 bits (as
in UMAC16) and 32 bits (as in UMAC32). Generally, an implementation of
UMAC will be efficient if the processor on which it runs has good support
for operations on data types of this size. This is the case if the word length
chosen is equal to the native word size of the target machine, but in some cases
a word length smaller than the native word size turns out to be preferrable
(e.g., when this allows to exploit small-scale vector parallelism supported by
the processor).

– Key length: defines the bitsize of the user-supplied key. For both UMAC32 and
UMAC16, the key length is 128 bits. Alternatively, a key length of 256 bits
may be chosen. In this case the KDF function is based on AES with 256-bit
key. Furthermore the derived key KEnc, used for AES-encryption of the nonce,
should then have a length of 256 bits (instead of 128).

– Output length: defines the bitsize of the UMAC output. The default output
length is 64 bits, although we have allowed output lengths of 32, 64, 96 or
128 bits in the specifications of UMAC32 and UMAC16 in order to provide
different security levels. More generally, any output length up to 256 bits that
is a multiple of 8 bits may be defined for UMAC.

– Block length: defines the bitsize of the blocks in which the message is divided
in the first layer L1HASH. This length is equal to 213 = 8192 bits for both
UMAC32 and UMAC16. More generally, lengths of 28, 29, . . . , 228 bits are al-
lowed. Larger block lengths mean greater compression and higher performance,
but more storage needed for internal keys. When the data being hashed and
the key used no longer simultaneously fit the processor cache, the performance
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will decrease. Note that the second layer L2HASH is skipped when the message
is not longer than one block.

– Little-endian or big-endian: specifies which endian-orientation will be followed
in the reading of data to be hashed. Both UMAC32 and UMAC16 favour pro-
cessors with little-endian architecture, because these processors automatically
carry out the bytereverse operation, as specified in the functions NH32 and
NH16. For implementations targeted to big-endian processors one may use a
version of UMAC without this byte-reversal in the function NH.

– Signed or unsigned: specifies whether the strings manipulated in the hash func-
tion are to be considered initially as signed or unsigned integers. For UMAC16
the signed representation is used, and for UMAC32 the unsigned representation
(see the interpretation of the operations +w and ×w).

1.3 Test vectors for UMAC32

The following test vectors are generated for UMAC32 with an output length of
64 bits. The test vectors are denoted as quadruplets (message, nonce, key, MAC).
This correponds to MAC = UMAC32(key, message, nonce, 64).

Two sets of test vectors are given, for two different values of the key. One
particular nonce value is used for all test vectors. Note that in practice one must
use a random secret key that is generated by a secure key generation algorithm.
The nonce must be a number that doesn’t repeat when authenticating messages
under the same key; these numbers can be provided by a counter or a random
number generator and do not have to be secret.

The key and MAC are denoted as hexadecimal numbers of 16 bytes (128 bits)
and 8 bytes (64 bits) respectively. The message and nonce are denoted as ASCII
strings (e.g., the character "1" corresponds to the hexadecimal byte 31x and the
character "a" corresponds to the hexadecimal byte 61x).

1.3.1 Set 1

message = "" (empty string)
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = B4B4A647B14B68A2

message = "a"
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = 4E4AC79DB8D94582

message = "abc"
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = 66BAA8C9F523155A
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message = "message digest"
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = 8418F6C20938F3F3

message = "abcdefghijklmnopqrstuvwxyz"
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = BBE67587E1CFF5AD

message = "abcdbcdecdefdefgefghfghighij
hijkijkljklmklmnlmnomnopnopq"

nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = 7203A61AC5892CF8

message = "A...Za...z0...9"
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = 8B7079B2341BFDEA

message = 8 times "1234567890"
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = 3315478D6D287209

message = "Now is the time for all "
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = 9CD818CCE76C6070

message = "Now is the time for it"
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = 346DB75B3328BAC1

message = 1 million times "a"
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = 83F416954359BF09

1.3.2 Set 2

message = "" (empty string)
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = FF2ECE16C08698D3
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message = "a"
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 1A6F8D49C06E45E4

message = "abc"
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 256ABE68D8C28A02

message = "message digest"
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 4232400D2FF7A5DD

message = "abcdefghijklmnopqrstuvwxyz"
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = D599E5F2A4D5434A

message = "abcdbcdecdefdefgefghfghighij
hijkijkljklmklmnlmnomnopnopq"

nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = D735E16B8AD0587F

message = "A...Za...z0...9"
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = FD7A926ABAD80321

message = 8 times "1234567890"
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 5DAD9004B3DB0280

message = "Now is the time for all "
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 09DC488E3E93B941

message = "Now is the time for it"
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = AA09663BDE4C24B1

message = 1 million times "a"
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 930A8AD2BAF5C7A1
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1.4 Test vectors for UMAC16

The following test vectors are generated for UMAC16 with an output length of
64 bits. The test vectors are denoted as quadruplets (message, nonce, key, MAC).
This correponds to MAC = UMAC16(key, message, nonce, 64).

Two sets of test vectors are given, for two different values of the key. One
particular nonce value is used for all test vectors. Note that in practice one must
use a random secret key that is generated by a secure key generation algorithm.
The nonce must be a number that doesn’t repeat when authenticating messages
under the same key; these numbers can be provided by a counter or a random
number generator and do not have to be secret.

The key and MAC are denoted as hexadecimal numbers of 16 bytes (128 bits)
and 8 bytes (64 bits) respectively. The message and nonce are denoted as ASCII
strings (e.g., the character "1" corresponds to the hexadecimal byte 31x and the
character "a" corresponds to the hexadecimal byte 61x).

1.4.1 Set 1

message = "" (empty string)
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = ADC025707C249BEB

message = "a"
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = A6E03B4542C7CD2E

message = "abc"
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = 85D682506D04F881

message = "message digest"
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = 2196A961BC198425

message = "abcdefghijklmnopqrstuvwxyz"
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = 2975651EB8FE20CC

message = "abcdbcdecdefdefgefghfghighij
hijkijkljklmklmnlmnomnopnopq"

nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = 453066F118536AC6
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message = "A...Za...z0...9"
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = 3563645DF1F3A0B6

message = 8 times "1234567890"
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = CF07D9A8F4B32DC7

message = "Now is the time for all "
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = 6070AB5BB7559135

message = "Now is the time for it"
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = FC8C75AD9776F587

message = 1 million times "a"
nonce = "123456789"
key = 00112233445566778899AABBCCDDEEFF
MAC = 336121DAA5C135C7

1.4.2 Set 2

message = "" (empty string)
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 2511CCA2391013F4

message = "a"
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 4ABD61A21EC4C65D

message = "abc"
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 0B77207ACFBEBA28

message = "message digest"
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 46362C34678676DF
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message = "abcdefghijklmnopqrstuvwxyz"
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 34EEFA9A6DF25298

message = "abcdbcdecdefdefgefghfghighij
hijkijkljklmklmnlmnomnopnopq"

nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = F187F5BC514A5E05

message = "A...Za...z0...9"
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = C869A08C7F73EF24

message = 8 times "1234567890"
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = A844FC0885A7238C

message = "Now is the time for all "
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = B56F03EB69DADF21

message = "Now is the time for it"
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 90287B810E096BBB

message = 1 million times "a"
nonce = "123456789"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 397BD9D499A54416
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2. TTMAC

2.1 Introduction

2.1.1 Overview

TTMAC (also known as Two-Track-MAC) is a message authentication code sub-
mitted to NESSIE by Bert den Boer and Bart Van Rompay [609]. TTMAC is
used to compress messages of arbitrary length into a 160-bit output, under con-
trol of a 160-bit secret key; its design is based on the (unkeyed) hash function
RIPEMD-160 with some (small) modifications. RIPEMD-160 is one of the hash
functions included in the standard ISO/IEC 10118-3 [306]. It was proposed in
1996 by Hans Dobbertin, Bart Preneel and Antoon Bosselaers [531] as a strength-
ened version of RIPEMD, a hash function developed in the framework of the EU
project RIPE [116]. Both RIPEMD-160 and TTMAC are constructed from an
underlying compression function that uses two parallel trails of computation.

2.1.2 Outline of the primitive

TTMAC maps a message M consisting of an arbitrary number of bits into a
160-bit block TTMAC(K,M) under control of a 160-bit key K. The algorithm
is based on the iteration of a compression function that tranforms an input block
of 320 bits and a message block of 512 bits into an output block of 320 bits.

First, the message is expanded to an appropriate length and divided into
message blocks M0 . . .Mt−1 where each block Mi (0 ≤ i ≤ t − 1) consists of
512 bits. Next, an initial value is defined as follows: two duplicate copies of the
key are concatenated and the resulting string of 320 bits forms the initial value:
H0 = (K‖K).

The compression function F is used to transform a 320-bit input block Hi and
a 512-bit message block Mi into a 320-bit output block Hi+1 = F(Hi,Mi). Hi+1

then forms the input to the next iteration of the compression function together
with the next message block Mi+1.

The last message block Mt−1 is processed by a slightly modified variant of the
compression function F′, and an output transformation G finalises the computa-
tion, where G takes a 320-bit input and produces a 160-bit output. This results
in the following outline of the TTMAC algorithm:

1. Expand the message M and divide it into message blocks M0 . . .Mt−1.
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2. Use the key K to define H0 = (K ‖K).
3. For 0 ≤ i ≤ t− 2 compute Hi+1 = F(Hi,Mi).
4. Compute Ht = F′(Ht−1,Mt−1).
5. Compute the message authentication value TTMAC(K,M) = G(Ht).

2.1.3 Security and performance

The security of TTMAC can be proven based on the assumption that the un-
derlying compression function is pseudo-random. This function is very similar to
the compression function used by RIPEMD-160. There are no known short-cut
attacks on TTMAC and the security level depends on the length of the key (160
bits) and on the length of the message authentication value (the default is 160
bits but this can be truncated to 32, 64, 96, or 128 bits). Note that the large
size of the internal state in TTMAC (320 bits) gives the algorithm a high level
of security against attacks based on internal collisions.

The performance of TTMAC is close to the performance of the unkeyed hash
function RIPEMD-160 and this is already the case for the shortest possible mes-
sage (512 bits after expansion). Furthermore, since the key is used only to de-
termine the initial value for the computation, TTMAC has optimal key-agility.
Therefore TTMAC is very useful for applications that require the authentication
of short messages, where the key is changed for every authentication.

The design of TTMAC is oriented towards a fast software implementation on
32-bit architectures: it is based on a simple set of operations on 32-bit words.
Moreover, since no substitution tables are used the implementation can be quite
compact as well. The large input block size is unfavorable for compact hardware
implementations, but a high speed in hardware is certainly possible. Parallelism
can only be used to run both halves of the compression function simultaneously,
as every register in each half gets updated sequentially.

2.2 Description

2.2.1 High level description

Let M = (m0,m1, . . . ,mn−1) be a message consisting of n bits, and let K =
(k0, k1, . . . , k159) denote the 160-bit secret key. The message authentication value
TTMAC(K,M) is computed as described below. Note that the wordlength in
TTMAC is 32 bits. This means that all operations are performed on 32-bit words.

key representation. The key K is represented as a sequence of five words
(K0,K1,K2,K3,K4).

message expansion. The message M is expanded to a message W consisting
of 16t words W0,W1, . . . ,W16t−1, where t = ((n+ 64) div 512) + 1. That is, the
message is expanded such that it becomes a multiple of 512 bits long, and then
it is represented as a sequence of words. Note that the expansion is done even if
M already is a multiple of 512 bits long.
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compression. The resulting message W is compressed as follows using a com-
pression function F and a modified compression function F′.

– Define ten words H0,0,H0,1, . . . ,H0,9 as

H0,0 := K0 , H0,1 := K1 , H0,2 := K2 , H0,3 := K3 , H0,4 := K4 ,

H0,5 := K0 , H0,6 := K1 , H0,7 := K2 , H0,8 := K3 , H0,9 := K4 .

– For i = 0, 1, . . . , t − 2 the words Hi+1,0,Hi+1,1, . . . ,Hi+1,9 are computed
as follows from the words Hi,0,Hi,1, . . . ,Hi,9 and sixteen message words
W16i,W16i+1, . . . ,W16i+15:

(Hi+1,0, . . . ,Hi+1,9) := F((Hi,0, . . . ,Hi,9); (W16i, . . . ,W16i+15)) .

That is, each 16-word message block is used to transform (Hi,0,Hi,1, . . . ,Hi,9)
into (Hi+1,0,Hi+1,1, . . . ,Hi+1,9) for the current value of i.

– For i = t− 1 the words Ht,0,Ht,1, . . . ,Ht,9 are computed in the same manner
but with a different compression function:

(Ht,0, . . . ,Ht,9) := F′((Ht−1,0, . . . ,Ht−1,9); (W16t−16, . . . ,W16t−1)) .

output transformation. The ten-word output from the previous step is trans-
formed into a five-word result using an output transformation G:

(Hout,0,Hout,1,Hout,2,Hout,3,Hout,4) := G(Ht,0,Ht,1, . . . ,Ht,9) .

optional truncation. One out of four optional functions T1,T2,T3, or T4 may
be used to truncate the final result of the computation:

(Htrunc,0, . . . ,Htrunc,i−1) := Ti(Hout,0,Hout,1,Hout,2,Hout,3,Hout,4) ,

where i = 1, 2, 3, or 4 and the truncated output consists of i words.

message authentication value. The default message authentication value
TTMAC(K,M) is the 160-bit string that consists of the concatenation of the
five 32-bit strings corresponding to the five words Hout,0,Hout,1,Hout,2,Hout,3

and Hout,4. That is,

TTMAC(K,M) := Hout,0 ‖Hout,1 ‖Hout,2 ‖Hout,3 ‖Hout,4 .

Here the first byte corresponds to the least significant byte of Hout,0 and the
last byte corresponds to the most significant byte of Hout,4 according to the
little-endian convention.

If desired, message authentication values of a shorter length (32, 64, 96 or 128
bits) can be generated. In this case, the truncation function Ti (i = 1, 2, 3, or 4)
is applied, and the truncated message authentication value TTMAC32i(K,M)
is the 32i-bit string that consists of the concatenation of the i 32-bit strings
corresponding to the words Htrunc,0, . . . ,Htrunc,i−1. That is,

TTMAC32i(K,M) := Htrunc,0 ‖ . . . ‖Htrunc,i−1 ,

(according to the little-endian convention).
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2.2.2 Representation of the key

The 160-bit key K = (k0, k1, . . . , k159) is transformed into a sequence of five
words (K0,K1,K2,K3,K4) according to little-endian convention:

Ki :=
3∑
j=0

7∑
l=0

k(32i+8j+l)28j+(7−l) , 0 ≤ i ≤ 4 .

2.2.3 Expanding the message

Let t = ((n + 64) div 512) + 1. The n-bit message M = (m0,m1, . . . ,mn−1) is
expanded to the 16t-word message W = (W0,W1, . . . ,W16t−1) in the following
three steps.

1. First of all, the following r bits are appended to the message M , where
1 ≤ r ≤ 512 and n+ r ≡ 448 mod 512:

mn := 1 ,
mn+1 := mn+2 := · · · := mn+r−1 := 0 .

In other words, append a single 1-bit and a number of 0-bits until the ex-
panded message is 64 bits shorter than a multiple of 512 bits. Note that the
padding is always done, even if the message is already 64 bits shorter than a
multiple of 512 bits. In that case, the message is expanded by 512 bits.

2. This (n + r)-bit extended message is transformed into n+r
32 = 16t − 2 words

W0,W1, . . . ,W16t−3 according to little-endian convention:

Wi :=
3∑
j=0

7∑
l=0

m(32i+8j+l)28j+(7−l) , i = 0, 1, . . . , 16t− 3 .

3. Finally, the expansion is completed by appending the length n of the original
message in the following way:

W16t−2 := n mod 232 ,

W16t−1 := (n mod 264) div 232 .

2.2.4 The compression function F

Given a 10-word input block (H0,H1, . . . ,H9) and a 16-word message block
(W0,W1, . . . ,W15), the compression function F computes a 10-word output block
(R0, R1, . . . , R9) in the manner described below. That is,

(R0, R1, . . . , R9) := F((H0,H1, . . . ,H9); (W0,W1, . . . ,W15)) .

1. Use two functions FLT and FRT (the left and right trail) in the following
way (the details of the functions are given below).

(P0, P1, . . . , P4) := FLT((H0,H1, . . . ,H4); (W0,W1, . . . ,W15)) ,
(P5, P6, . . . , P9) := FRT((H5,H6, . . . ,H9); (W0,W1, . . . ,W15)) .
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2. Compute a new set of ten words by subtracting the input words from the
results of the previous step.

Qj := Pj −Hj mod 232 , 0 ≤ j ≤ 9 .

3. To finish the compression function, the ten words Qi(0 ≤ i ≤ 9) are mixed
in two linear transformations FLM and FRM (the details are given below).

(R0, R1, . . . , R4) := FLM(Q0, Q1, . . . , Q9) ,
(R5, R6, . . . , R9) := FRM(Q0, Q1, . . . , Q9) .

The functions FLT and FRT

The functions FLT and FRT, which are known as the left and right trail of
the compression function, are identical to the functions used in the compression
function of RIPEMD-160. They consist of 80 sequential steps which we describe
below. We first define the functions and constants that are used.

Non-linear functions at bit level:

fj(X,Y, Z) = X ⊕ Y ⊕ Z , 0 ≤ j ≤ 15 ,
fj(X,Y, Z) = (X ∧ Y ) ∨ (X̄ ∧ Z) , 16 ≤ j ≤ 31 ,
fj(X,Y, Z) = (X ∨ Ȳ )⊕ Z , 32 ≤ j ≤ 47 ,
fj(X,Y, Z) = (X ∧ Z) ∨ (Y ∧ Z̄) , 48 ≤ j ≤ 63 ,
fj(X,Y, Z) = X ⊕ (Y ∨ Z̄) , 64 ≤ j ≤ 79 .

Additive constants (hexadecimal notation):

ULj = 00000000x , URj = 50A28BE6x , 0 ≤ j ≤ 15 ,
ULj = 5A827999x , URj = 5C4DD124x , 16 ≤ j ≤ 31 ,
ULj = 6ED9EBA1x , URj = 6D703EF3x , 32 ≤ j ≤ 47 ,
ULj = 8F1BBCDCx , URj = 7A6D76E9x , 48 ≤ j ≤ 63 ,
ULj = A953FD4Ex , URj = 00000000x , 64 ≤ j ≤ 79 .

Selection of message word:
sL[ 0 . . . 15] = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ]
sL[16 . . . 31] = [ 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8 ]
sL[32 . . . 47] = [ 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12 ]
sL[48 . . . 63] = [ 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2 ]
sL[64 . . . 79] = [ 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 ]
sR[ 0 . . . 15] = [ 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12 ]
sR[16 . . . 31] = [ 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2 ]
sR[32 . . . 47] = [ 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13 ]
sR[48 . . . 63] = [ 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14 ]
sR[64 . . . 79] = [ 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 ]
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Rotation constants:
vL[ 0 . . . 15] = [ 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8 ]
vL[16 . . . 31] = [ 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12 ]
vL[32 . . . 47] = [ 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5 ]
vL[48 . . . 63] = [ 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12 ]
vL[64 . . . 79] = [ 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 ]
vR[ 0 . . . 15] = [ 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6 ]
vR[16 . . . 31] = [ 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11 ]
vR[32 . . . 47] = [ 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5 ]
vR[48 . . . 63] = [ 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8 ]
vR[64 . . . 79] = [ 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 ]

1. Suppose that the input block (H0,H1, . . . ,H9) and the 16-word message
block (W0,W1, . . . ,W15) are given. First copy the words of the input block
into registers (AL, BL, CL, DL, EL) and (AR, BR, CR, DR, ER):

AL := H0 , BL := H1 , CL := H2 , DL := H3 , EL := H4 ,

AR := H5 , BR := H6 , CR := H7 , DR := H8 , ER := H9 .

2. The function FLT (left trail of the compression function) consists of the
following steps for 0 ≤ j ≤ 79 (additions are mod 232):

temp := (AL + fj(BL, CL, DL) +WsL[j] + ULj) ≪vL[j] +EL ,

AL := EL ,

EL := DL ,

DL := CL ≪10 ,

CL := BL ,

BL := temp .

3. The function FRT (right trail of the compression function) consists of the
following steps for 0 ≤ j ≤ 79 (additions are mod 232):

temp := (AR + f79−j(BR, CR, DR) +WsR[j] + URj) ≪vR[j] +ER ,

AR := ER ,

ER := DR ,

DR := CR ≪10 ,

CR := BR ,

BR := temp .

4. Finally, set (P0, P1, P2, P3, P4) equal to (AL, BL, CL, DL, EL) and similarly
set (P5, P6, P7, P8, P9) equal to (AR, BR, CR, DR, ER). Then (P0, P1, . . . , P4)
and (P5, P6, . . . , P9) form the outputs of the functions FLT and FRT respec-
tively.
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The functions FLM and FRM

The linear transformations FLM and FRM are used to mix the outputs of
the two trails of the compression function. For an input block (Q0, Q1, . . . , Q9),
the function FLM computes five words R0, R1, . . . , R4 as follows (operations are
mod 232):

R0 := (Q1 +Q4)−Q8 ,

R1 := Q2 −Q9 ,

R2 := Q3 −Q5 ,

R3 := Q4 −Q6 ,

R4 := Q0 −Q7 .

For an input block (Q0, Q1, . . . , Q9), the function FRM computes five words
R5, R6, . . . , R9 as follows (operations are mod 232):

R5 := Q3 −Q9 ,

R6 := (Q4 +Q2)−Q5 ,

R7 := Q0 −Q6 ,

R8 := Q1 −Q7 ,

R9 := Q2 −Q8 .

2.2.5 The modified compression function F′

Given a 10-word input block (H0,H1, . . . ,H9) and a 16-word message block
(W0,W1, . . . ,W15), the modified compression function F′ computes a 10-word
output block (R0, R1, . . . , R9) in the manner described below. That is,

(R0, R1, . . . , R9) := F′((H0,H1, . . . ,H9); (W0,W1, . . . ,W15)) .

1. Use the two functions FLT and FRT in the following way. These functions
are identical to the ones used in the compression function F, however their
role is reversed in the modified compression function F′.

(P0, P1, . . . , P4) := FRT((H0,H1, . . . ,H4); (W0,W1, . . . ,W15)) ,
(P5, P6, . . . , P9) := FLT((H5,H6, . . . ,H9); (W0,W1, . . . ,W15)) .

2. Compute a new set of ten words by subtracting the input words from the
results of the previous step.

Rj := Pj −Hj mod 232 , 0 ≤ j ≤ 9 .

Note that the modified compression function F′ does not use the functions
FLM and FRM.



Dra
ft

Apr
il
19

, 2
00

4

612 Book III. The NESSIE portfolio — Part D. Message Authentication Codes

Use of the functions FLT and FRT

The modified compression function F′ uses the same functions FLT and FRT

as the compression function F, but their role is reversed. This results in the
following changes to the description (compared to Sect. 2.2.4):

1. Suppose that the input block (H0,H1, . . . ,H9) and the 16-word message
block (W0,W1, . . . ,W15) are given. First copy the words of the input block
into registers (AR, BR, CR, DR, ER) and (AL, BL, CL, DL, EL):

AR := H0 , BR := H1 , CR := H2 , DR := H3 , ER := H4 ,

AL := H5 , BL := H6 , CL := H7 , DL := H8 , EL := H9 .

4. Finally, set (P0, P1, P2, P3, P4) equal to (AR, BR, CR, DR, ER) and similarly
set (P5, P6, P7, P8, P9) equal to (AL, BL, CL, DL, EL). Then (P0, P1, . . . , P4)
and (P5, P6, . . . , P9) form the outputs of the functions FRT and FLT respec-
tively.

2.2.6 The output transformation G

Given a 10-word input block (H0,H1, . . . ,H9), the output transformation G com-
putes a 5-word output block (R0, R1, R2, R3, R4) in the manner described below.
That is,

(R0, R1, R2, R3, R4) := G(H0,H1, . . . ,H9) .

Compute five words R0, R1, R2, R3, R4 as follows:

Rj := Hj −Hj+5 mod 232 , 0 ≤ j ≤ 4 .

2.2.7 The truncation functions Ti

Given a 5-word input block (H0,H1,H2,H3,H4), the truncation function Ti

computes an i-word output block (R0, . . . , Ri−1) in the manner described below.
That is,

(R0, . . . , Ri−1) := Ti(H0,H1,H2,H3,H4) .

– The function T1 computes one word R0 as follows:

R0 := H0 +H1 +H2 +H3 +H4 .

– The function T2 computes two words R0, R1 as follows:

R0 := H0 +H1 +H3 ,

R1 := H1 +H2 +H4 .

– The function T3 computes three words R0, R1, R2 as follows:

R0 := H0 +H1 +H3 ,

R1 := H1 +H2 +H4 ,

R2 := H2 +H3 +H0 .
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– The function T4 computes four words R0, R1, R2, R3 as follows:

R0 := H0 +H1 +H3 ,

R1 := H1 +H2 +H4 ,

R2 := H2 +H3 +H0 ,

R3 := H3 +H4 +H1 .

Note that all additions are mod 232.

2.3 Test vectors for TTMAC

The following test vectors are generated for TTMAC with the default output
length of 160 bits. The test vectors are denoted as triples (message, key, MAC).
This correponds to MAC = TTMAC(key, message). Two sets of test vectors are
given, for two different values of the key. Note that in practice one should use a
random secret key that is generated by a secure key generation algorithm.

The key and MAC are denoted as hexadecimal numbers of 20 bytes (160 bits).
These numbers are the concatenation of five hexadecimal words consisting of
four bytes (32 bits) each. The message is denoted as an ASCII string (e.g., the
character "a" corresponds to the hexadecimal byte 61x). Note that the little-
endian convention is used for conversion between bytes and four-byte words (e.g.,
the message string "abcd" corresponds to the hexadecimal word 64636261x).

2.3.1 Set 1

message = "" (empty string)
key = 00112233445566778899AABBCCDDEEFF01234567
MAC = 2DEC8ED4A0FD712ED9FBF2AB466EC2DF21215E4A

message = "a"
key = 00112233445566778899AABBCCDDEEFF01234567
MAC = 5893E3E6E306704DD77AD6E6ED432CDE321A7756

message = "abc"
key = 00112233445566778899AABBCCDDEEFF01234567
MAC = 70BFD1029797A5C16DA5B557A1F0B2779B78497E

message = "message digest"
key = 00112233445566778899AABBCCDDEEFF01234567
MAC = 8289F4F19FFE4F2AF737DE4BD71C829D93A972FA

message = "abcdefghijklmnopqrstuvwxyz"
key = 00112233445566778899AABBCCDDEEFF01234567
MAC = 2186CA09C5533198B7371F245273504CA92BAE60
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message = "abcdbcdecdefdefgefghfghighij
hijkijkljklmklmnlmnomnopnopq"

key = 00112233445566778899AABBCCDDEEFF01234567
MAC = 8A7BF77AEF62A2578497A27C0D6518A429E7C14D

message = "A...Za...z0...9"
key = 00112233445566778899AABBCCDDEEFF01234567
MAC = 54BAC392A886806D169556FCBB6789B54FB364FB

message = 8 times "1234567890"
key = 00112233445566778899AABBCCDDEEFF01234567
MAC = 0CED2C9F8F0D9D03981AB5C8184BAC43DD54C484

message = "Now is the time for all "
key = 00112233445566778899AABBCCDDEEFF01234567
MAC = DD77E545DD4552C9A3D441A11ADB9A7178780BD3

message = "Now is the time for it"
key = 00112233445566778899AABBCCDDEEFF01234567
MAC = A9D7E53597BBF8B187AE5B32E96C2BE5F63A69B4

message = 1 million times "a"
key = 00112233445566778899AABBCCDDEEFF01234567
MAC = 27B3AEDB5DF8B629F0142194DAA3846E1895F3D2

2.3.2 Set 2

message = "" (empty string)
key = 0123456789ABCDEF0123456789ABCDEF01234567
MAC = AAB071094FD5843B8509D4202CC8D50D98676EE9

message = "a"
key = 0123456789ABCDEF0123456789ABCDEF01234567
MAC = CEF8E42E78BC879C81579A48B8190B8E71E5832C

message = "abc"
key = 0123456789ABCDEF0123456789ABCDEF01234567
MAC = 6B4514D4F0AA0496DB4B6BD4352D8C778F6AC3DC

message = "message digest"
key = 0123456789ABCDEF0123456789ABCDEF01234567
MAC = EA1048408269CD0D10EB58F53878DF03E4D966FE

message = "abcdefghijklmnopqrstuvwxyz"
key = 0123456789ABCDEF0123456789ABCDEF01234567
MAC = DC4A53AB697D0F3579EF8C2A6073D421BEA8D1E5

message = "abcdbcdecdefdefgefghfghighij
hijkijkljklmklmnlmnomnopnopq"

key = 0123456789ABCDEF0123456789ABCDEF01234567
MAC = 1C346FF07021E5655E74E3D4B914768105793C28
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message = "A...Za...z0...9"
key = 0123456789ABCDEF0123456789ABCDEF01234567
MAC = C870219D72D51FDC8A5C63977D60BF393C50738D

message = 8 times "1234567890"
key = 0123456789ABCDEF0123456789ABCDEF01234567
MAC = BC737B0864B58E2FF0164D9732860C3F9AC4CF75

message = "Now is the time for all "
key = 0123456789ABCDEF0123456789ABCDEF01234567
MAC = 56244897814A3A1D893CBDAEE398A422C638DBAE

message = "Now is the time for it"
key = 0123456789ABCDEF0123456789ABCDEF01234567
MAC = 207040D6BA62517EDD2CD32E15E9EE0479EA448D

message = 1 million times "a"
key = 0123456789ABCDEF0123456789ABCDEF01234567
MAC = CAB10B780471AA8EDB4C3C02565624D6A4D4209A
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3. EMAC

3.1 Introduction

3.1.1 Overview

EMAC is a generic construction for a block cipher-based message authentication
scheme, proposed in 1997 by Erez Petrank and Charles Rackoff [518]. EMAC
was not formally submitted to NESSIE but has been included in the evaluation
as existing standard. It is one of the message authentication schemes included
in the ISO/IEC standard 9797-1 [303]. The EMAC scheme is a variant of the
CBC-MAC, that is a message authentication code based on the CBC-mode (Ci-
pher Block Chaining) of a block cipher. EMAC uses a block cipher as a black
box, so that existing code can be reused and the underlying block cipher can be
easily replaced. NESSIE recommends the use of one of the 128-bit block ciphers
described in Part B of the NESSIE portfolio (AES or Camellia) as underlying
block cipher for EMAC.

3.1.2 Outline of the primitive

Suppose that a 128-bit block cipher is given and let EK denote encryption with
the block cipher using a q-bit key K. Then the EMAC scheme based on this
block cipher maps a message M consisting of an arbitrary number of bits onto
an 128-bit block EMAC(K,M), under control of a key K of q bits long.

First, the message is expanded to an appropriate length and divided into
message blocks M0 . . .Mt−1 where each block Mi (0 ≤ i ≤ t− 1) consists of 128
bits. These message blocks Mi are encrypted by the block cipher (with key K)
in CBC-mode and there is an additional encryption at the end using a different
key K ′. The outline of EMAC is as follows.

1. Expand the message M and divide it into message blocks M0 . . .Mt−1.
2. Derive a secondary key K ′ from the key K by complementing the first four

bits of every byte of K.
3. Set the initial value to zero: H0 = 0.
4. For 0 ≤ i ≤ t− 1: compute Hi+1 = EK(Hi ⊕Mi).
5. Compute the output transformation: EMAC(K,M) = EK′(Ht).
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3.1.3 Security and performance

The security of EMAC is closely related to the security of the underlying block
cipher. In [518] Petrank and Rackoff give a security proof for EMAC based on
the assumption that the underlying block cipher is pseudo-random. The security
level depends on the size of the internal state (this is equal to the block size of
the cipher) and on the lengths of the key and message authentication value.

The EMAC construction has the advantage that it allows the reuse of an
existing block cipher implementation. The performance of EMAC is close to the
performance of the block cipher that is used, except in the case of short messages
when there is a significant overhead (this is for messages of a few blocks, where the
block length is 128 bits). The overhead occurs because of the extra encryption in
the output transformation. Changing the key for EMAC requires two executions
of the key schedule of the block cipher.

3.2 Description

Let EK denote encryption with a 128-bit block cipher using a q-bit key K. Both
the input and output of EK are 128 bits long. We suggest to use a 128-bit block
cipher from the NESSIE portfolio, that is E = AES or Camellia. We refer to
Part B for the specification of these block ciphers. Note that both AES and
Camellia have q = 128, 192, or 256.

Let M = (m0,m1, . . . ,mn−1) be a message consisting of n bits, and let K =
(k0, k1, . . . , kq−1) denote a q-bit secret key. The message authentication value
EMAC(K,M) is computed as follows.

Message expansion. Let t = (n div 128) + 1. First of all, the n-bit message
M is expanded to a 128t-bit message M = (m0,m1, . . . ,m128t−1). This is done
by appending the following r bits to the original message, where 1 ≤ r ≤ 128 and
n+ r = 128t, a multiple of 128 bits:

mn := 1 ,
mn+1 := mn+2 := · · · := mn+r−1 := 0 .

In other words, append a single 1-bit and a number of 0-bits until the length of
the expanded message is a multiple of 128 bits. Note that the padding is always
done, even if the message length is already a multiple of 128 bits. In that case,
the message is expanded by 128 bits.

Next, the expanded message is divided into tmessage blocksM0,M1, . . . ,Mt−1

where each block Mi (0 ≤ i ≤ t− 1) consists of 128 bits:

Mi = (m128i,m128i+1, . . . ,m128i+127) .

Secondary key. Compute a secondary key K ′ = (k′0, k
′
1, . . . , k

′
q−1) consisting of

q bits, by complementing alternate substrings of four bits of K starting with the
first (leftmost) four bits:
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k′4i+j := k̄4i+j for j = 0, 1, 2, 3 and i = 0, 2, . . . (even) ,
k′4i+j := k4i+j for j = 0, 1, 2, 3 and i = 1, 3, . . . (odd) .

In hexadecimal notation this is equivalent to:

K ′ := K ⊕ F0F0...F0x .

Compression. The message M is compressed using the block cipher E with the
key K in CBC-mode (Cipher Block Chaining), according to the following steps:

– Define a 128-bit initial value H0 by setting this value equal to zero.

H0 := 0000...00x .

– For i = 0, . . . , t− 1 compute a new 128-bit value Hi+1 from the value Hi and
the message block Mi:

Hi+1 := EK(Hi ⊕Mi) .

That is, compute the bitwise exclusive-or (XOR) of the previously obtained
value Hi and the message block Mi and encrypt Hi⊕Mi with the block cipher
E using the key K. The resulting value Hi+1 is 128 bits long.

Output transformation. Encrypt the final value Ht obtained from the com-
pression stage with the block cipher E using the secondary key K ′. The result
Hout is 128 bits long.

Hout := EK′(Ht) .

Optional truncation. If desired one may optionally truncate the output of the
previous step to p bits, by selecting the p leftmost bits of Hout (p < 128).

Htrunc := p ` Hout .

Message authentication value. The default message authentication value
EMAC(K,M) is the 128-bit string corresponding to the value Hout.

EMAC(K,M) := Hout .

If desired, message authentication values of a shorter length p < 128 can
be generated by applying the truncation operation. In this case, the truncated
message authentication value EMACp(K,M) is the p-bit string corresponding
to the value Htrunc.

EMACp(K,M) := Htrunc .

3.3 Test vectors for EMAC using AES

The following test vectors are generated for EMAC using AES (128-bit key) as
underlying block cipher, with the default output length of 128 bits. The test
vectors are denoted as triples (message, key, MAC). This correponds to MAC =
EMAC(key, message). Two sets of test vectors are given, for two different values
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of the key. Note that in practice one should use a random secret key that is
generated by a secure key generation algorithm.

The key and MAC are denoted as hexadecimal numbers of 16 bytes (128 bits).
The message is denoted as an ASCII string (e.g., the character "a" corresponds
to the hexadecimal byte 61x).

3.3.1 Set 1

message = "" (empty string)
key = 00112233445566778899AABBCCDDEEFF
MAC = CAC6EB80AD0FC891CCE693B8BF587063

message = "a"
key = 00112233445566778899AABBCCDDEEFF
MAC = 644A572D2F05EB7FA77290ABFCF048A7

message = "abc"
key = 00112233445566778899AABBCCDDEEFF
MAC = D55DD2CA1C89E488F62A5F694357B517

message = "message digest"
key = 00112233445566778899AABBCCDDEEFF
MAC = 1B62443A4740E470A6FC858F1F7B9053

message = "abcdefghijklmnopqrstuvwxyz"
key = 00112233445566778899AABBCCDDEEFF
MAC = 691A07CA6E0CD6EEF39524DCB0434361

message = "abcdbcdecdefdefgefghfghighij
hijkijkljklmklmnlmnomnopnopq"

key = 00112233445566778899AABBCCDDEEFF
MAC = 0582D1FB4C7E830C976EED9116DBAD49

message = "A...Za...z0...9"
key = 00112233445566778899AABBCCDDEEFF
MAC = BF6C86A90D71B083045EEE09AD7D706D

message = 8 times "1234567890"
key = 00112233445566778899AABBCCDDEEFF
MAC = 444D6404975C32D3DF715A8C50FCB20F

message = "Now is the time for all "
key = 00112233445566778899AABBCCDDEEFF
MAC = 08B8167B1A02BECC09B1E43974F5CEB0

message = "Now is the time for it"
key = 00112233445566778899AABBCCDDEEFF
MAC = C0953563FB7C979CC389EF2F49521B85

message = 1 million times "a"
key = 00112233445566778899AABBCCDDEEFF
MAC = 579EDDB29886AC068C08D4EEFB1AB076
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3.3.2 Set 2

message = "" (empty string)
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 33BD8D7DE983CD8D452695152A53AE8A

message = "a"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = DC525ADE636062644FA0B53468FFAB7E

message = "abc"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = BDF207BB71B862988C3ED0DCED005460

message = "message digest"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = B6D4B0F97C0B5AD662CAC18BBD5514DA

message = "abcdefghijklmnopqrstuvwxyz"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 41256D33451F4CFDB1845BD7F26C8CA3

message = "abcdbcdecdefdefgefghfghighij
hijkijkljklmklmnlmnomnopnopq"

key = 0123456789ABCDEF0123456789ABCDEF
MAC = EE83D79574167C7A139047156D2B26BD

message = "A...Za...z0...9"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 497C2A4E4DA3C237F69779E084489A6D

message = 8 times "1234567890"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 4C76C4509DBE50FAD2B32D969C082677

message = "Now is the time for all "
key = 0123456789ABCDEF0123456789ABCDEF
MAC = D1F8838FDE9D149D897C0470478774A5

message = "Now is the time for it"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = CEBB575BDA40FF9BBF53557DC352D328

message = 1 million times "a"
key = 0123456789ABCDEF0123456789ABCDEF
MAC = 3DDFDF81FA36B6A5E7A2DCFD50F590C3
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4. HMAC

4.1 Introduction

4.1.1 Overview

HMAC is a generic construction for a hash-based message authentication scheme,
proposed in 1996 by Mihir Bellare, Ran Canetti and Hugo Krawczyk [44]. HMAC
was not formally submitted to NESSIE but has been included in the evaluation as
existing standard. The HMAC scheme using SHA-1 as underlying hash function
has been standardised by NIST as FIPS-198 [473], and the generic scheme is
included in the ISO/IEC standard 9797-2 [304]. HMAC uses a hash function (or
its compression function) as a black box, so that existing code can be reused and
the underlying hash function can be easily replaced. NESSIE recommends the use
of one of the collision-resistant hash functions described in Part C of the NESSIE
portfolio (Whirlpool, SHA-256 or SHA-512) as underlying hash function for
HMAC.

4.1.2 Outline of the primitive

Suppose that a hash function H with l-bit output is given, and that this hash
function is based on the iteration of a compression function F that processes
message blocks of b bits. Then the HMAC scheme based on this hash function
maps a message M consisting of an arbitrary number of bits onto an l-bit block
HMAC(K,M), under control of a key K up to b bits long (and not shorter than
l bits).

1. If necessary, expand the key K so that it is b bits long. Compute K1 by
bitwise exclusive-or of K and a b-bit constant C1; compute K2 by bitwise
exclusive-or of K and a b-bit constant C2. Note that K1 and K2 are b bits
long.

2. Use the hash function H to compress the concatenation of K1 and the mes-
sage M : H(K1‖M). The result is l bits long.

3. Use the hash function H to compress the concatenation of K2 and the result
from step 2: HMAC(K,M) = H(K2 ‖H(K1 ‖M)). The resulting message
authentication value is l bits long.
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4.1.3 Security and performance

The security of HMAC is closely related to the security of the underlying hash
function H. In [44] Bellare, Canetti and Krawczyk give a security proof for HMAC
based on the following assumptions on the underlying hash function H and the
compression function F (where H is an iterated construction applying F on mes-
sage blocks of a fixed length):

– The hash function H is collision-resistant when the initial value is secret.
– The compression function F keyed by the initial value is a strong MAC algo-

rithm (this means that its output is hard to predict).
– The values F(K ⊕ C1) and F(K ⊕ C2) cannot be distinguished from truly

random values. This means that the compression function F is a ‘weak’ pseudo-
random function (‘weak’ because the opponent has no direct access to K).

The security level depends on the size of the internal state (this is equal to the
output size of the hash function), on the length of the key and on the length of
the message authentication value.

The HMAC construction has the advantage that it allows the reuse of an
existing hash function implementation. The performance of HMAC is close to the
performance of the hash function that is used, except in the case of short messages
when there is a significant overhead (this is for messages of a few blocks; the block
length depends on the compression function and is 512 bits for Whirlpool and
SHA-256, and 1024 bits for SHA-512). The overhead occurs because of step 3 in
the outline of Sect. 4.1.2. Changing the key for HMAC requires two computations
of the compression function.

4.2 Description

Let H be a collision-resistant hash function with an output length of l bits, and
based on the iteration of a compression function F that works on message blocks
of b bits long. We suggest to use a collision-resistant hash function from the
NESSIE portfolio, that is H = Whirlpool, SHA-256 or SHA-512. We refer to
Part C for the specification of these hash functions. Note that Whirlpool has
l = 512, b = 512; SHA-256 has l = 256, b = 512; SHA-512 has l = 512, b = 1024.

Let M = (m0,m1, . . . ,mn−1) be a message consisting of n bits, and let
K = (k0, k1, . . . , kq−1) denote a q-bit secret key with l ≤ q ≤ b. The message
authentication value HMAC(K,M) is computed as follows.
key expansion. If the length of the key is shorter than one message block for
the compression function (q < b), b − q 0-bits are appended to the key. This
results in a key K = (k0, k1, . . . , kb−1) of b bits long.

kq := kq+1 := · · · := kb−1 := 0 .

additive constants. Define the following two b-bit constants (hexadecimal no-
tation):

C1 := 3636...36x , C2 := 5C5C...5Cx .
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inner computation of H. Use the hash function H to compute

H1 := H(K ⊕ C1 ‖M) .

That is, compute the bitwise exclusive-or (XOR) of the key K and the constant
C1, concatenate K ⊕C1 (this corresponds to a b-bit string) with the message M
(an n-bit string) and apply the hash function H on the concatenated string of
b+ n bits. The result H1 is l bits long.

outer computation of H. Use the hash function H to compute

H2 := H(K ⊕ C2 ‖H1) .

That is, compute the bitwise exclusive-or (XOR) of the key K and the constant
C2, concatenateK⊕C2 (this corresponds to a b-bit string) with the valueH1 (this
corresponds to an l-bit string) and apply the hash function H on the concatenated
string of b+ l bits. The result H2 is l bits long.

optional truncation. If desired one may optionally truncate the output of the
previous step to p bits, by selecting the p leftmost bits of H2 (p < l).

Htrunc := p ` H2 .

message authentication value. The default message authentication value
HMAC(K,M) is the l-bit string corresponding to the value H2.

HMAC(K,M) := H2 .

If desired, message authentication values of a shorter length p < l can be
generated by applying the truncation operation. In this case, the truncated mes-
sage authentication value HMACp(K,M) is the p-bit string corresponding to
the value Htrunc.

HMACp(K,M) := Htrunc .

4.2.1 Implementation note

Both the inner computation and the outer computation of the hash function H
start with a message block (b bits) depending on the key K and a constant C1

or C2. This message block will be the first input to the compression function F
used by the hash function in an iterative manner. To speed up the computation
of HMAC, the values F(K ⊕ C1) and F(K ⊕ C2) can be precomputed once (at
the time of generation of the key K), stored in memory and used to initialise
the inner and outer computation of H for every message that is authenticated
with the key K. This method saves the application of the compression function
on two b-byte blocks K ⊕ C1 and K ⊕ C2 for each message authenticated with
this key. Here we assume that the implementation has access to the code of the
compression function, and not only to the code of the hash function.
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4.3 Test vectors for HMAC using SHA-256

The following test vectors are generated for HMAC using SHA-256 as underlying
hash function and a key of 512 bits, with the default output length of 256 bits.
The test vectors are denoted as triples (message, key, MAC). This correponds to
MAC = HMAC(key, message). Two sets of test vectors are given, for two different
values of the key. Note that in practice one should use a random secret key that
is generated by a secure key generation algorithm.

The key and MAC are denoted as hexadecimal numbers of 64 bytes (512 bits)
and 32 bytes (256 bits) respectively. The message is denoted as an ASCII string
(e.g., the character "a" corresponds to the hexadecimal byte 61x). Note that
in SHA-256 the big-endian convention is used for conversion between bytes and
four-byte words (e.g., the message string "abcd" corresponds to the hexadecimal
word 61626364x).

4.3.1 Set 1

message = "" (empty string)
key = 00112233445566778899AABBCCDDEEFF

0123456789ABCDEF0011223344556677
8899AABBCCDDEEFF0123456789ABCDEF
00112233445566778899AABBCCDDEEFF

MAC = B379757F089F3EC3B41BFD184048AB43
6FAE7E09F8C7E3461C825ED37E544303

message = "a"
key = 00112233445566778899AABBCCDDEEFF

0123456789ABCDEF0011223344556677
8899AABBCCDDEEFF0123456789ABCDEF
00112233445566778899AABBCCDDEEFF

MAC = FAED6AEB172995459B58DBAF70AF44A1
D31E94D6EB45A7A33631AB5DE415C459

message = "abc"
key = 00112233445566778899AABBCCDDEEFF

0123456789ABCDEF0011223344556677
8899AABBCCDDEEFF0123456789ABCDEF
00112233445566778899AABBCCDDEEFF

MAC = 742CB1AE5D0949615F9D2866EFB1BE21
2C766C96C44AAF1902E10740B19DEBF5

message = "message digest"
key = 00112233445566778899AABBCCDDEEFF

0123456789ABCDEF0011223344556677
8899AABBCCDDEEFF0123456789ABCDEF
00112233445566778899AABBCCDDEEFF

MAC = 300EC2BDCFECD094802B31B20A8CA9CF
E3BDDAB867963BE2F39B87D70BC02817
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message = "abcdefghijklmnopqrstuvwxyz"
key = 00112233445566778899AABBCCDDEEFF

0123456789ABCDEF0011223344556677
8899AABBCCDDEEFF0123456789ABCDEF
00112233445566778899AABBCCDDEEFF

MAC = 038045116F21FEBF34FDC678B8E87982
9DF1AB83DBBFC1105A762029F3CD934C

message = "abcdbcdecdefdefgefghfghighij
hijkijkljklmklmnlmnomnopnopq"

key = 00112233445566778899AABBCCDDEEFF
0123456789ABCDEF0011223344556677
8899AABBCCDDEEFF0123456789ABCDEF
00112233445566778899AABBCCDDEEFF

MAC = AB65232F3BD2450297264E3FD828E1DD
4666BEB965C54CF842A4AD5E453192A6

message = "A...Za...z0...9"
key = 00112233445566778899AABBCCDDEEFF

0123456789ABCDEF0011223344556677
8899AABBCCDDEEFF0123456789ABCDEF
00112233445566778899AABBCCDDEEFF

MAC = 76FA502215729DB8B77D3799B221A8FD
B538393947A16730B5E84FC2837635C6

message = 8 times "1234567890"
key = 00112233445566778899AABBCCDDEEFF

0123456789ABCDEF0011223344556677
8899AABBCCDDEEFF0123456789ABCDEF
00112233445566778899AABBCCDDEEFF

MAC = 5DEDB7B986F4A9B2ECA41D8BA42A4723
6DA659D76A4DFCAAE4E82E1BED9D6068

message = "Now is the time for all "
key = 00112233445566778899AABBCCDDEEFF

0123456789ABCDEF0011223344556677
8899AABBCCDDEEFF0123456789ABCDEF
00112233445566778899AABBCCDDEEFF

MAC = 37781AF322155A96B9D902CED73A71B7
13C8A2E26F67E38DCB7A269BAD1F4184

message = "Now is the time for it"
key = 00112233445566778899AABBCCDDEEFF

0123456789ABCDEF0011223344556677
8899AABBCCDDEEFF0123456789ABCDEF
00112233445566778899AABBCCDDEEFF

MAC = CC60A0459AEA28348CBC27FF9CDD4204
19A7872107C0F5DFE3D6A43DB7D72445
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message = 1 million times "a"
key = 00112233445566778899AABBCCDDEEFF

0123456789ABCDEF0011223344556677
8899AABBCCDDEEFF0123456789ABCDEF
00112233445566778899AABBCCDDEEFF

MAC = BB459133294AF921181055854C16B063
36E9B0514761BA2396B8A0A8028393BA

4.3.2 Set 2

message = "" (empty string)
key = 0123456789ABCDEF0123456789ABCDEF

0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF

MAC = 5FE3C3165038E39BB4EDD8F359DEE4EC
498B42EAC720DCE4AE3C72A59004C864

message = "a"
key = 0123456789ABCDEF0123456789ABCDEF

0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF

MAC = 3E68B80599468985E22387166FC3CE56
FB3A163C2FA74DA24E1EE60646620D31

message = "abc"
key = 0123456789ABCDEF0123456789ABCDEF

0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF

MAC = 3A2232B8A45BAC227251703663B6C127
049A44301EC1CC94BBF137DD803BA5F3

message = "message digest"
key = 0123456789ABCDEF0123456789ABCDEF

0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF

MAC = 63D6AD7C0708C100C8E3762F38290D8D
26B7685C108B838EEE1E4BB30EAA93DD

message = "abcdefghijklmnopqrstuvwxyz"
key = 0123456789ABCDEF0123456789ABCDEF

0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
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MAC = B2E53839554FD9DC715D72CAB7A1EB9A
4375FFB195711AAD59A6B29BF91BF33E

message = "abcdbcdecdefdefgefghfghighij
hijkijkljklmklmnlmnomnopnopq"

key = 0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF

MAC = 52B1479DC3283500CEA71E3B1AD7BF96
425A1669F22CC81F89CC0BE89CEF89B7

message = "A...Za...z0...9"
key = 0123456789ABCDEF0123456789ABCDEF

0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF

MAC = CD6A1D7D07CEAA8770F5617A39A3369B
3993759C33B9B02483AF573AB4CAE1DF

message = 8 times "1234567890"
key = 0123456789ABCDEF0123456789ABCDEF

0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF

MAC = D2BC3DAC84555DD0C27BFF9FA17CB1B3
7BA9CE77C1B7A2C1E7DFD192B12BF625

message = "Now is the time for all "
key = 0123456789ABCDEF0123456789ABCDEF

0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF

MAC = 420142767320C2C9EC8E0BC6EB6C25CD
A6342CD94F881200F90D7AF948F9AC53

message = "Now is the time for it"
key = 0123456789ABCDEF0123456789ABCDEF

0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF

MAC = C4BE6C24D373A293AF43CB500B1DBCCE
61755F5B5E064FB7B08136F029FC90BF

message = 1 million times "a"
key = 0123456789ABCDEF0123456789ABCDEF

0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
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0123456789ABCDEF0123456789ABCDEF
MAC = 50008B8DC7ED3926936347FDC1A01E9D

5220C6CC4B038B482C0F28A4CD88CA37
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1. PSEC-KEM

1.1 Introduction

1.1.1 Overview

PSEC-KEM is a key encapsulation mechanism based on the security of the Diffie-
Hellman key agreement protocol on elliptic curves. The Diffie-Hellman key agree-
ment protocol [201] was developed by Whitfield Diffie and Martin Hellman in
1976, and was the first example of an asymmetric cryptosystem. Since then it
has been the basis for many of the most popular and efficient cryptosystems
used today. The use of elliptic curve groups for cryptography was first suggested
simultaneously by Koblitz [373] and Miller [446].

PSEC-KEM was submitted to the NESSIE project by the Nippon Telegraph
and Telephone (NTT) Corporation of Japan [238]. It is also included in the draft
ISO/IEC standard on asymmetric encryption, ISO/IEC 18033-2 [312,584].

1.1.2 Outline of the primitive

The action of PSEC-KEM takes place in a prime order cyclic subgroup of an
elliptic curve group, generated by a point P . The public-private key pair for the
scheme is the same as in a Diffie-Hellman scheme, i.e. the public key consists of the
point P (sometimes thought of as a parameter of the system) and a pointW = sP
for some randomly generated s, and the private key is s. PSEC-KEM produces
symmetric keys of some pre-specified length KeyLen. The scheme makes use of
a key derivation function KDF (·) , which maps octets strings of an arbitrary
length to octet strings of length KeyLen (see Sect. 3).

The encapsulation algorithm takes a fixed length random seed r and the public
key as input. It works in several stages. First it generates a random symmetric
key K and a random integer α suitable for use with the Diffie-Hellman protocol
from the random seed r, using a key derivation function. It then runs the Diffie-
Hellman protocol to generate the first part of the encapsulation C1 = αP and a
mask seed Q = αW . It uses both Q and C1 to generate a mask M for the initial
seed r via a mask generating function. Lastly it computes the second part of the
encapsulation C2 by XORing the seed r with the mask M .

The decapsulation algorithm takes as input both parts, C1 and C2, of an
encapsulated key and the private key, and outputs the symmetric key K. It
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also works in several stages. First it recovers the mask seed Q using the Diffie-
Hellman protocol, i.e. setting Q = sC1. It then computes the mask M from
Q and C1 via the mask generating function. It can then compute the seed r by
XORing the second part of the encapsulation C2 with the mask M . Having found
r, the decapsulation algorithm can apply the relevant key derivation function to
find both the secret key K and the random integer α used by the encapsulation
algorithm in the Diffie-Hellman protocol. The decapsulation algorithm releases
the symmetric key K only if the first part of the encapsulation was correctly
formed from α, i.e. only if C1 = αP .

1.1.3 Security and performance

There is a security proof for PSEC-KEM that uses a distinguishing attacker in
the adaptive chosen ciphertext model (IND-CCA2 model) to construct a short
list of solutions for a computational Diffie-Hellman problem [195,584]. The proof
uses the random oracle model and has a tight reduction. This proof is a strong
security argument. It suggests that, given an encapsulation of a key, the best
technique to distinguish between the real key and a randomly generated key is
to invert the instance of the Diffie-Hellman protocol used in the encapsulation.

Side channel attacks are a problem for any asymmetric encryption scheme
based on elliptic curve groups and PSEC-KEM is no exception. It is also vul-
nerable to a fault attack. However it does not appear to be any more vulnerable
to these attacks then any other elliptic curve based scheme and countermeasures
exist for all of these attacks. It is unclear to what extent the attacks of Lim and
Lee [399], Biehl et al. [58] and Antipa et al. [23] are effective against PSEC-KEM;
however it is recommended that all key and ciphertext elliptic curve points are
validated before use.

The performance characteristics for PSEC-KEM are good. The encapsulation
algorithm appears to be close to optimal for a Diffie-Hellman based primitive.
The decapsulation algorithm is slower: requiring two scalar multiplications rather
than one. This extra computational overhead is necessary to provide a stronger
security proof.

The main advantage of PSEC-KEM is its flexibility. The scheme gives a good
performance profile with a high level of security, and should be suitable for almost
all applications.

1.2 Description

1.2.1 Parameter generation

First, a security parameter should be chosen. For a security parameter k, the
order of the cyclic group should be an integer whose length (in octets) is greater
than or equal to the value given in the following table.

k 72 80 112 128
Size of subgroup order 18 20 28 32
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The scheme should be defined over a finite field Fq of characteristic 2 or over a
prime field. An elliptic curve E(Fq) should be chosen on which the computational
Diffie-Hellman problem is intractable. A point P on E(Fq) needs to be selected
where P has prime order p and the length of p corresponds to the value defined
in the table above for the security parameter k. Let l(k) be the length of p, the
order of the elliptic curve subgroup.

The length of the symmetric key produced by the KEM, KeyLen, is defined
by the requirements of the DEM.

1.2.2 Key generation

Key generation for PSEC-KEM is the same as for any Diffie-Hellman based
scheme.

Description:
Input: A security parameter 1k

A fixed length random string r
An elliptic curve E(Fq)
A point P on the elliptic curve E(Fq)
The order of P , p

Output: A PSEC-KEM public key pk
A PSEC-KEM secret key sk

1. Verify p is a prime. If not, output “error” and abort.
2. Verify the fact that P is a point on the elliptic curve E(Fq) and that P

has order p. If not, output “error” and abort.
3. Generate an integer s in the range [2, p− 1] using the random seed r in

such a way that every possible value of s will be generated with approx-
imately equal probability.

4. Set W := sP .
5. Set pk := (W ).
6. Set sk := (s).
7. Output the public key pk and the secret key sk.

1.2.3 Encapsulation algorithm

To generate a symmetric key of length KeyLen and an encapsulation of that key
the following algorithm is executed.

Description:
Input: A PSEC-KEM public key pk = (W )

A fixed length random string r
The length of the random string r, rLen
An elliptic curve E(Fq)
A point P on the elliptic curve E(Fq)
The order of P , p
The size of required symmetric key KeyLen

Output: A symmetric key K of length KeyLen
An encapsulation C
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1. Validate the public key and the system parameters.
2. Set H := KDF (I2OSP(0, 4)||r,KeyLen+ l(k) + 16).
3. Parse H as t||K where t is an octet string of length l(k) + 16 and K is

an octet string of length KeyLen.
4. Set α := OS2IP(t) mod p.
5. Set Q := αW .
6. Set C1 := ECP2OSP(αP ).
7. Set C2 := KDF (I2OSP(1, 4)||C1||ECP2OSP(Q), rLen)⊕ r.
8. Set C := (C1, C2).
9. Output the symmetric key K and the encapsulation C.

1.2.4 Decapsulation algorithm

To decapsulate an encapsulated key of length KeyLen the following algorithm is
executed.

Description:
Input: A PSEC-KEM private key sk = (s)

An encapsuled key C
An elliptic curve E(Fq)
A point P on the elliptic curve E(Fq)
The order of P , p
The size of required symmetric key KeyLen

Output: A symmetric key K of length KeyLen

1. Validate the private key and the system parameters.
2. Parse C as (C1, C2).
3. Set X := OS2ECPP(C1).
4. Verify that X is a point on E(Fq) and that X lies in the subgroup gen-

erated by P . If not, output “error” and abort.
5. Set rLen to be the length of C2.
6. Set Q := sX.
7. Set r := C2 ⊕KDF (I2OSP(1, 4)||C1||ECP2OSP(Q), rLen).
8. Set H := KDF (I2OSP(0, 4)||r,KeyLen+ l(k) + 16).
9. Parse H as t||K where t is an octet string of length l(k) + 16 and K is

an octet string of length KeyLen.
10. Set α := OS2IP(t) mod p.
11. Check C1 = ECP2OSP(αP ). If not, output “error” and abort.
12. Output K.

1.2.5 Guidelines for implementation

It is important to validate all inputs to the encapsulation and decapsulation algo-
rithms before they are used. In the case of key material and system parameters,
this prevents chosen modulus attacks and fault attacks.

In particular it is necessary to trust the properties of the elliptic curve points.
So, for both the encapsulation and decapsulation algorithm it is necessary to
trust that
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– p is a prime number whose length is as defined by the security parameter and,
– P is a point on the elliptic curve E(Fq) and P has order p.

If these conditions do not hold then the algorithm should output “error” and
abort. The two obvious methods to validate the system parameters are to check
that the properties hold during the execution of the algorithm (which may be
computationally expensive), or to have some kind of certified trust mechanism in
place so the algorithm can trust that the system parameters have been correctly
validated by some third party.

It is also necessary, in the encapsulation algorithm, to check the properties of
the elliptic curve point W given in the public key. In particular it is necessary to
check that W is a point that lies on the elliptic curve E(Fq) and that W lies in
the subgroup generated by P .

1.3 Test vectors

The following test vectors were generated by PSEC-KEM with a security param-
eter k = 80. The algorithms use the key derivation function Mech1 (see Sect. 3)
with the hash function SHA-1. The algorithm was run on an elliptic curve E(Fq)
where q is the prime number
q = 8223961F0E209569238C61C0801A3C2B2634F651

and the Weierstrass equation of E is y2 = x3 + ax+ b where
a = 43655667BBC2C6818E67576128B54D8910E81E38

b = 585ED69A1A5E3AF3549DF5829428663C08677BC3

We chose the point P to be the elliptic curve point with co-ordinates (xP , yP )
where
xP = 44A82D7665486DE731466714B05403C3C8852A1D

yP = 2CEFA73540C723F2B25E5E8EC1E98B0E17B6F0B8

The point P has prime order p where p = q. Hence p has length 20 (octets); this
corresponds to a security parameter k = 80. The algorithm was asked to produce
keys of length KeyLen = 16 octets.

The test vectors were generated using a public key (W ) where W = (xW , yW )
is an elliptic curve point and
xW = 16741D8B8750ED51BCD8D30CF5A86B06BFA8F022

yW = 7A98E5DE25931089B03F8D9D4BDB471CDCBEC57A

The corresponding private key was (s) where
s = 81117F9AED24B2E00A234D9919BE9E8094CFE905

Elliptic curve points were stored in an uncompressed format.
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1.3.1 Test vectors for key encapsulation

The following are the correct results of the key encapsulation algorithm being
run with a fixed length random seed r, producing a symmetric key K and an
encapsulated key C = (C1, C2).

r = 30313233343536373839616263646566 676A68696A6B6C6D6E6F707172737475

K = 09AD82F3600D4D0CB420FF032A21E7A4

C1 = 0472500F21F2F048D3A226EECA8F1635 A611E5F91319123663348E7E758DE3D9
53B9C547DD5ACB13B5

C2 = 199D62F5C8403009AC30DC2B2B9CA63A D200E3D69CD51AA4C758E11B2F09AEC7

1.3.2 Test vectors for key decapsulation

The following key encapsulation C = (C1, C2) correctly decapsulates to give the
symmetric key K.
C1 = 0426992349860E2AF901E34E517D3011 D454239C7E208EA94F29B4F82F09C3F3

0DAE21795A2F7DE48D

C2 = 3C591D799AF57710E04A978B6C068900 14178290FAACDF6487180F94BC81FC10

K = 264E3A9B8501D9D7BF9AB5F14E9CDE09

The following key encapsulation C = (C1, C2) fails to decapsulate owing to step
11 of the decapsulation algorithm (failure of the integrity check).
C1 = 0426992349860E2AF901E34E517D3011 D454239C7E208EA94F29B4F82F09C3F3

0DAE21795A2F7DE48D

C2 = 11111111111111111111111111111111 11111111111111111111111111111111



Dra
ft

Apr
il
19

, 2
00

4

2. RSA-KEM

2.1 Introduction

2.1.1 Overview

RSA-KEM is a key encapsulation mechanism based on the famous RSA encryp-
tion algorithm. The RSA encryption algorithm was proposed in 1978 by Ronald L.
Rivest, Adi Shamir and Leonard M. Adleman [543]. The KEM-DEM method for
constructing a hybrid asymmetric encryption algorithm was proposed by Ronald
Cramer and Victor Shoup [171] and has been widely adopted by developers and
standards bodies. RSA-KEM was not formally submitted to NESSIE but has
been included in the evaluation as a de facto standard for a KEM-DEM based
hybrid encryption scheme and as an algorithm which is included in the draft ISO
standard on asymmetric encryption, ISO/IEC 18033-2 [312,584].

2.1.2 Outline of the primitive

The public key is an RSA modulus n = pq with an intractable factorisation and
a public exponent e ≥ 3. The secret key is 1/e mod LCM(p − 1)(q − 1) which
can be easily pre-computed given p and q. The only parameter is KeyLen, the
length of the symmetric key that the KEM is required to produce. The scheme
also uses a key derivation function which maps input octet strings of arbitrary
lengths to octet strings of length KeyLen (see Sect 3).

The encapsulation algorithm takes as input a random seed r and the public
key. It computes a symmetric key by applying the key derivation function to r.
It computes the encapsulation by computing C = re mod n.

The decapsulation algorithm takes as input an encapsulation C and the secret
key. It computes the key by applying the key derivation function to C1/e mod n.

2.1.3 Security and performance

There is a security proof of RSA-KEM that uses a distinguishing attacker in the
adaptive chosen ciphertext model (IND-CCA2 model) to solve the RSA problem
(or the e-th root problem depending on the key generation mechanism) [193,195,
584]. The proof uses the random oracle model and has a tight reduction; indeed
the reduction appears to be close to optimal for KEMs derived from one-way
trapdoor permutations. This “proof” is a strong security argument. It suggests
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that, given an encapsulation of a key, the best technique to distinguish between
the real key and a randomly generated key is to compute the e-th root of the
encapsulation.

The RSA encryption algorithm exhibits some homomorphic properties, most
noticeably that if C1 = me

1 mod n and C2 = me
2 mod n then C1C2 mod n is the

encryption of m1m2 mod n. Whilst this is highly desirable in certain applications,
it does allow unknown messages to be manipulated in quite specific ways. In RSA-
KEM we rely on the nature of the key derivation function to destroy any relations
between keys that might result from relations in the encapsulations. Hence the
use of a good key derivation function is critical.

There is also an attack against the RSA cryptosystem that can be applied to
RSA-KEM. It has been shown that if the secret exponent d is less than n0.292

then it can be recovered from the modulus n and public exponent e [106]. It has
been conjectured that it will be possible to recover d from n and e providing
d < n0.5.

Side channel attacks are a threat against RSA-KEM. In particular, the expo-
nentiation operation is vulnerable to simple power analysis, the key derivation
function might be vulnerable to a Hamming weight attack and the scheme is
vulnerable to fault/chosen modulus attacks. Countermeasures exist for all known
types of attack against RSA-KEM.

The performance characteristics of RSA-KEM are good. Both the encapsu-
lation and decapsulation algorithms only require one modular exponentiation.
Performance can be further improved by choosing an advantageous encryption
exponent such as e = 65537 or, if fast encryption is a priority, e = 3. No such
advantageous decryption exponent can be chosen. However for adequate security,
it will be necessary to choose a large modulus, and so the size of both the public
and secret key will be larger than in many elliptic curve schemes.

2.2 Description

2.2.1 Parameter generation

First, a security parameter should be chosen. For a security parameter k, the
length of the modulus (in octets) should be greater than or equal to the value
given in the following table.

k 72 80 112 128
Modulus length 128 192 512 750

The length of the symmetric key produced by the KEM, KeyLen, is defined
by the requirements of the DEM.

2.2.2 Key generation

There are two methods to generate a valid key pair for RSA-KEM. Both take as
input a security parameter 1k and a random string of some fixed length r. Let
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l(k) be the modulus length corresponding to the security parameter k. The first
method works as follows.

Description:
Input: A security parameter 1k

A fixed length random string r
Output: An RSA-KEM public key pk

An RSA-KEM secret key sk

1. Generate a prime p of length dl(k)/2e using the PrimeGen(r, l(k)) rou-
tine.

2. Set r := NextRand(r).
3. Generate a prime q 6= p of length dl(k)/2e using the PrimeGen(r, l(k))

routine.
4. Set r := NextRand(r).
5. Set n := pq.
6. Check that n has length l(k). If not, goto step 1.
7. Generate an odd public exponent e in the range [3,LCM(p − 1, q − 1))

using the random seed r in such a way that every possible value of e will
be generated with approximately equal probability.

8. Set r := NextRand(r).
9. Check that GCD(e, (p− 1)(q − 1)) = 1. If not, goto step 7.

10. Set d ≡ e−1 mod (p− 1)(q − 1).
11. Check that d > n0.5. If not, goto step 7.
12. Set pk := (n, e).
13. Set sk := (n, d).
14. Output the public key pk and the secret key sk.

The second method works as follows.

Description:
Input: A security parameter 1k

A fixed length random string r
Output: An RSA-KEM public key pk

An RSA-KEM secret key sk

1. Select a public exponent e, an odd integer greater than two.
2. Generate a prime p of length dl(k)/2e using the PrimeGen(r, l(k)) rou-

tine.
3. Set r := NextRand(r).
4. Check that GCD(e, p− 1) = 1. If not, goto step 2.
5. Generate a prime q 6= p of length dl(k)/2e using the PrimeGen(r, l(k))

routine.
6. Set r := NextRand(r).
7. Check that GCD(e, q − 1) = 1. If not, goto step 2.
8. Set n := pq.
9. Check that n has length l(k). If not, goto step 2.

10. Check that e < LCM(p− 1, q − 1). If not, goto step 2.
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11. Set d ≡ e−1 mod (p− 1)(q − 1).
12. Check that d > n0.5. If not, goto step 2.
13. Set pk := (n, e).
14. Set sk := (n, d).
15. Output the public key pk and the secret key sk.

Care must be taken when implementing the second method that, for a given
security parameter, e is small enough so that primes p and q can be found such
that e < LCM(p− 1, q − 1).

2.2.3 Encapsulation algorithm

To generate a symmetric key of length KeyLen and an encapsulation of that key
the following algorithm is executed.

Description:
Input: An RSA-KEM public key pk = (n, e)

A fixed length random string r
The size of required symmetric key KeyLen

Output: A symmetric key K of length KeyLen
An encapsulation C

1. Validate the public key and the system parameters.
2. Set Len to be the length of n in octets.
3. Generate a random integer m in the range [0, n) using the random seed
r in such a way that every possible value for m will be generated with
approximately equal probability.

4. Set M := I2OSP(m,Len).
5. Set K := KDF (M,KeyLen).
6. Set Craw := me mod n.
7. Set C := I2OSP(Craw, Len)
8. Output the symmetric key K and the encapsulation C.

2.2.4 Decapsulation algorithm

To decapsulate an encapsulated key of length KeyLen the following algorithm is
executed.

Description:
Input: An RSA-KEM private key sk = (n, d)

An encapsulated key C
The size of required symmetric key KeyLen

Output: A symmetric key K of length KeyLen

1. Validate the private key and the system parameters.
2. Set Len to be the length of n in octets.
3. Check that C is an octet string of length Len. If not, output “error” and

abort.
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4. Set Craw = OS2IP(C).
5. Check that Craw is an integer in the range [0, n). If not, output “error”

and abort.
6. Set m := Cd mod n.
7. Set M := I2OSP(m,Len).
8. Set K = KDF (M,KeyLen).
9. Output K.

2.2.5 Guidelines for implementation

It is important to validate all inputs to the encapsulation and decapsulation algo-
rithms before they are used. In the case of key material and system parameters,
this prevents chosen modulus attacks and fault attacks. In the case of RSA-KEM
it is usual to use some certified trust mechanism so the algorithm can trust that
the system parameters and the keys are valid.

2.3 Test vectors

The following test vectors were generated by RSA-KEM with a security param-
eter k = 80. The algorithms use the key derivation function Mech1 (see Sect. 3)
with the hash function SHA-1. The algorithm was asked to produce keys of length
KeyLen = 16 octets. The test vectors were generated using a public key
n = 9923916CF5589CE08EB945D635AE4534 2D443EC2E7D46980CCF48DC877ADA2C1

0F92A33D77D8AFB83DEA73C48CB5D42F 5A9D34F10A004C6904EEFFAEFF1DB64B
6DD770283F4F9B67370F570353DE0DFD 392CF6AA35FCE915D0F45B8087D90CBD
CE2C5C1205680ED36E69D5FC1C46D5C2 7BFA5BF0AD8D2C94C454EF33F21254EE
2704C031EEE0F19282D6F104A566B434 A5B562F24308FC2598BFBC9CEB7277FA
6149CD20C217A8AF9CEC19791C3D5DDA 4721877675F3ACB8B80E4012EA3622B1

e = 00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000010001

and a private key
n = 9923916CF5589CE08EB945D635AE4534 2D443EC2E7D46980CCF48DC877ADA2C1

0F92A33D77D8AFB83DEA73C48CB5D42F 5A9D34F10A004C6904EEFFAEFF1DB64B
6DD770283F4F9B67370F570353DE0DFD 392CF6AA35FCE915D0F45B8087D90CBD
CE2C5C1205680ED36E69D5FC1C46D5C2 7BFA5BF0AD8D2C94C454EF33F21254EE
2704C031EEE0F19282D6F104A566B434 A5B562F24308FC2598BFBC9CEB7277FA
6149CD20C217A8AF9CEC19791C3D5DDA 4721877675F3ACB8B80E4012EA3622B1

d = 870401F293B9C5CE82673CF868A9B660 134CE91CC472D575F6BDE2C78D24ACAB
1484CFA1A1298D7B9E3338506152EAB9 B9658348C4ED9070C325C88DCC65B0D4
7E0A84DB273E93A003BE65940C7C69CF 097AE81B17B05CFC9C16E519C42C0C7B
6A01AF12FF709FD952489E38ADF57776 1CA0B49A7E0CD71330C641B5CD3F3E3E
728E489506F545158535E1011B8F85F2 D4A0285594D6530A18FB0D1895662A22
F7D60506962412FA2EC5E0F3CA0CA6DC 2B139053E0A15E53D95A337A7F3AF731
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The random integer m in the encapsulation algorithm is derived from the fixed
length octet string r by setting m = OS2IP(r).

2.3.1 Test vectors for key encapsulation

The following are the correct results of the key encapsulation algorithm being
run with a seed r, producing a symmetric key K and a encapsulated key C.
r = 00000000000000000000000000000000 00000000000000000000000000000000

00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00003031323334353637383961626364 65666768696A6B6C6D6E6F7071727374
75767778797A4142434445464748494A 4B4C4D4E4F505152535455565758595A

K = A2926ABCAF5AE7AC2ECDA7FEF959EE1B

C = 7F6A4A769F055D72E01B09CB6F8726CD 4D9EFEE126CC70194E7EC4B2896548C3
AD3A3A26C2006A80E8B93027480C885B A49494E318DD200DA5CEA006A0B384DE
F0F9EDFC98553BB7D917AA7B8EE355B5 29854E6808D37125D32F124A2D68DEF6
693E6308C7ED8EFA5B491A7CDA9BDD20 6B155527789203DDF829C4A6F0BE50B6
1436C4D63C785A068BECBC9008D4EB5D FCCF9DC3DB281F2B30A5C3DAD645F058
18687B0BB115302D5E1E0B2BC4F6A416 D9CCA5E98C17D240E4EF08603F584A25

2.3.2 Test vectors for key decapsulation

The following key encapsulation C correctly decapsulates to give the symmetric
key K.
C = 07D4816C8406394DB9FB6884FC802A83 C20968C1502167FC19AFED75C15187F6

80A2E2A3E1E18D04645044F4EDFFFB55 C7F252E400B491FDA5C06FBBE9FF5EE9
AEC472208881A0D11EC4739FC0409008 D39DAD6DA9D35F9880D7F570459CDFCF
779377988216C14309152201CB6A3620 C1FB7AAF806AF44D8C51449545F2E01A
C5B8AE1063354629C212EC357B5EE2F2 777FD058B1F48E560E1643982B4B1BB7
DD5131AE621BA102A6A84DBA7CE1108D 3F32C2D9DFDFED02F2126E9B82638B0C

K = D65B0E88B014E0C22F6F66CE453AE0E9

The following key encapsulation C fails to decapsulate owing to step 3 of the
decapsulation algorithm (the key encapsulation is not a correct size).
C = 11111111111111111111111111111111 11111111111111111111111111111111

The following key encapsulation C fails to decapsulate owing to step 5 of decap-
sulation algorithm (the key encapsulation represents an integer bigger than the
modulus).
C = 9923916CF5589CE08EB945D635AE4534 2D443EC2E7D46980CCF48DC877ADA2C1

0F92A33D77D8AFB83DEA73C48CB5D42F 5A9D34F10A004C6904EEFFAEFF1DB64B
6DD770283F4F9B67370F570353DE0DFD 392CF6AA35FCE915D0F45B8087D90CBD
CE2C5C1205680ED36E69D5FC1C46D5C2 7BFA5BF0AD8D2C94C454EF33F21254EE
2704C031EEE0F19282D6F104A566B434 A5B562F24308FC2598BFBC9CEB7277FA
6149CD20C217A8AF9CEC19791C3D5DDA 4721877675F3ACB8B80E4012EA3622B2
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3.1 Introduction

3.1.1 Overview

ACE-KEM is a key encapsulation mechanism based on the security of the Diffie-
Hellman key agreement protocol in certain groups, in particular in the multi-
plicative group of integers modulo a prime and in a prime order subgroup of an
elliptic curve group. The Diffie-Hellman key agreement protocol [201] was devel-
oped by Whitfield Diffie and Martin Hellman in 1976, and was the first example
of an asymmetric cryptosystem. Since then it has been the basis for many pop-
ular and efficient cryptosystems used today. The use of elliptic curve groups in
cryptography was first suggested simultaneously by Koblitz [373] and Miller [446].

ACE-KEM was submitted to the NESSIE project by IBM’s Zurich Research
Laboratory [563]. It is also included in the draft ISO/IEC standard on asymmetric
encryption, ISO/IEC 18033-2 [312,584].

3.1.2 Outline of the primitive

The action of ACE-KEM takes place in a prime order cyclic subgroup of some
large group. This larger group could be either the multiplicative group of integers
modulo a prime or an elliptic curve group. We will assume that the group action
of this group is written additively and that the prime order cyclic subgroup is
generated by an element P .

The public-private key pair of the scheme consists of four Diffie-Hellman keys,
i.e. the public key is the set of group elements P , W = wP , X = xP , Y = yP
and Z = zP , and the corresponding private key is the set of integers w, x, y and
z.

ACE-KEM produces symmetric keys of some pre-specified length KeyLen.
The scheme makes use of a key derivation function KDF (·), which maps octet
strings of an arbitrary length to octet strings of length KeyLen (see Sect. 3).
The scheme also uses a hash function Hash(·), which maps octet strings of an
arbitrary length to octet strings of a fixed length. This fixed length should be
smaller than the length of the order of the subgroup generated by P .

The encapsulation algorithm takes a fixed length random seed r and the public
key as input. First it computes a symmetric key K and an encapsulation of that
key C1 using a technique similar to ECIES-KEM, in other words it sets C1 = rP ,
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Q = rZ and K = KDF (C1||Q). Next it computes a second encapsulation C2 =
rW , a hash value α = Hash(C1||C2) and a final encapsulation C3 = rX + αrY .

The decapsulation algorithm takes as input the three parts of the encap-
sulated key C1, C2 and C3, and the private key. It computes the hash value
α = hash(C1||C2) and the integer t = x+ yα. It now checks that the encapsula-
tion is valid by checking that C2 = wC1 and C3 = tC1. If this check is successful
then the algorithm computes Q = zC1, K = KDF (C1||Q) and outputs the
symmetric key K.

3.1.3 Security and performance

There are several security proofs for ACE-KEM and it is the only practical scheme
that has a proof which does not rely on the random oracle model.

The first security proof uses a distinguishing attacker in the adaptive cho-
sen ciphertext model (IND-CCA2 model) to solve the decisional Diffie-Hellman
problem [171]. This proof does not use the random oracle model and has a tight
reduction. Hence it is a very strong security argument. It proves that for an attack
to be successful the scheme must either use a weak hash function, use a weak key
derivation function or be built on a curve for which the decisional Diffie-Hellman
problem is easily solved.

The second security proof uses a distinguishing attacker in the adaptive chosen
ciphertext (IND-CCA2 model) to solve the gap Diffie-Hellman problem [171].
This proof uses the random oracle model and has a tight reduction. This proof is
a strong security argument. It suggests that, given an encapsulation of a key, the
best technique to distinguish between the real key and a randomly generated key
is to solve the instance of the Diffie-Hellman protocol used in the encapsulation.
However this proof assumes that the scheme is built on a group for which the
decisional Diffie-Hellman problem is easily solved.

The precise nature of ACE-KEM’s vulnerabilities to side channel attacks de-
pends upon the group used to implement the scheme. However, whether the
scheme is implemented on the multiplicative group of integers modulo a prime or
on an elliptic curve group, the scheme is vulnerable to both simple power analysis
and to fault attacks. However it does not appear to be any more vulnerable to
these attacks than any other Diffie-Hellman based scheme implemented on that
group, and countermeasures exist for all of these attacks. It is unclear to what
extent the attacks of Lim and Lee [399], Biehl et al. [58] and Antipa et al. [23]
are effective against ACE-KEM; however it is recommended that all key and
ciphertext group elements are validated before use.

The performance characteristics for ACE-KEM are not good however. Hence
ACE-KEM is only recommended for situations where security is more important
than speed. For even greater security several asymmetric schemes could be used
in sequence. Such a sequence should include both ACE-KEM and RSA-KEM
(with suitably independent and randomly generated keys).
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3.2 Description

3.2.1 Parameter generation

First, the group on which the scheme is going to be based should be chosen. This
group should either be a prime order subgroup G of the group H of multiplicative
integers modulo a prime, or a prime order subgroup G of an elliptic curve group
H. The size of the subgroup G, and possibly the group H, may well depend upon
the size of the security parameter k. The parameters that need to be chosen for
each type of group will be dealt with separately.

It is also necessary to be able to encode elements of the group as octet strings.
For this purpose we define two functions: GE2OSP which encodes a group element
as an octet string, and OS2GEP which decodes an octet string as a group element.
The particular form of these functions will be detailed separately for each type
of group.

3.2.1.1 Parameter generation for modular arithmetic groups

In the modular arithmetic setting, ACE-KEM is a scheme that acts in a prime
order, cyclic subgroup G of the multiplicative group of integers modulo a prime
q. Hence H contains q−1 elements. Let G have order p. For a security parameter
k, p and q should be chosen to have length (in octets) greater than or equal to
the value given in the following table.

k 72 80 112 128
Length of q 128 192 512 750
Length of p 18 20 28 32

It is necessary for the hash function to produce an output whose length is less
than the length of p. Also, in order to ensure that the group H has a subgroup
G of the required size, it is necessary (and sufficient) for p to divide q − 1.

A generator P ∈ H for G also needs to be selected. The simplest way to do
this is to select an element P ′ ∈ H uniformly at random and set P = αP ′ where
α = (q − 1)/p. If P 6= 1 then P is a generator for a subgroup of order p.

Let the length of q be qLen. The encoding function, GE2OSP(X), will be
I2OSP(X, qLen) and the decoding function, OS2GEP(X), will be OS2IP(X). The
group action will be given by multiplication modulo q, i.e. to “add” two elements
of the group we multiply the two integers together and take the result modulo q.

The length of the symmetric key produced by the KEM, KeyLen, is defined
by the requirements of the KEM.

3.2.1.2 Parameter generation for elliptic curve groups

For a security parameter k, the order of the cyclic subgroup G should be a prime
p whose length (in octets) is greater than or equal to the value given in the
following table.

k 72 80 112 128
Length of p 18 20 28 32
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The scheme should be defined over a finite field Fq of characteristic 2 or over a
prime field. An elliptic curve E(Fq) should be chosen on which either

– the decisional Diffie-Hellman problem is intractable, or
– the computational Diffie-Hellman problem is intractable there exists an algo-

rithm that correctly solves the decisional Diffie-Hellman problem.

A point P on E(Fq) needs to be selected where P has order p and the length of
p corresponds to the value defined in the table above for the security parameter
k.

The encoding function, GE2OSP(X), will be ECP2OSP(X) and the decoding
function, OS2GEP(X), will be OS2ECPP(X). The action of the group will be
given by addition of elliptic curve points, i.e. to ‘add” two group elements one
merely adds the two points on the elliptic curve.

The length of the symmetric key produced by the KEM, KeyLen, is defined
by the requirements of the DEM.

3.2.2 Key generation

The key generation algorithm for ACE-KEM is as follows.

Description:
Input: A security parameter 1k

A fixed length random string r
A group H
A cyclic, prime order subgroup G of H
A group element P that generates G
The order of P , p

Output: An ACE-KEM public key pk
An ACE-KEM secret key sk

1. Verify p is a prime. If not, output “error” and abort.
2. Verify the fact that P is an element of the group G and that P has order
p. If not, output “error” and abort.

3. Generate an integer w in the range [2, p − 1] using the random seed
r in such a way that every possible value of w will be generated with
approximately equal probability.

4. Set r := NextRand(r).
5. Generate an integer x in the range [2, p− 1] using the random seed r in

such a way that every possible value of x will be generated with approx-
imately equal probability.

6. Set r := NextRand(r).
7. Generate an integer y in the range [2, p− 1] using the random seed r in

such a way that every possible value of y will be generated with approx-
imately equal probability.

8. Set r := NextRand(r).
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9. Generate an integer z in the range [2, p− 1] using the random seed r in
such a way that every possible value of z will be generated with approx-
imately equal probability.

10. Set W := wP .
11. Set X := xP .
12. Set Y := yP .
13. Set Z := zP .
14. Set pk := (W,X, Y, Z).
15. Set sk := (w, x, y, z).
16. Output the public key pk and the secret key sk.

3.2.3 Encapsulation algorithm

To generate a symmetric key of length KeyLen and an encapsulation of that key
the following algorithm is executed.

Description:
Input: An ACE-KEM public key pk = (W,X, Y, Z)

A fixed length random string r
A group H
A cyclic, prime order subgroup G of H
A group element P that generates G
The order of P , p
The size of required symmetric key KeyLen

Output: A symmetric key K of length KeyLen
An encapsulation C

1. Validate the public key and the system parameters.
2. Generate a random integer s in the range [0, p) using the random seed
r in such a way that every possible value for s will be generated with
approximately equal probability.

3. Set Q := GE2OSP(sZ).
4. Set C1 := GE2OSP(sP ).
5. Set K := KDF (C1||Q,KeyLen).
6. Set C2 := HGE2OSP(sW ).
7. Set α := OS2IP(Hash(C1||C2)).
8. Set C3 := GE2OSP(sX + αsY ).
9. Set C := (C1, C2, C3).

10. Output the symmetric key K and the encapsulation C.

3.2.4 Decapsulation algorithm

To decapsulate an encapsulated key of length KeyLen the following algorithm is
executed.
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Description:
Input: An ACE-KEM private key pk = (w, x, y, z)

An encapsulated key C
A group H
A cyclic, prime order subgroup G of H
A group element P that generates G
The order of P , p
The size of required symmetric key KeyLen

Output: A symmetric key K of length KeyLen

1. Validate the private key and the system parameters.
2. Parse C as (C1, C2, C3).
3. Set P1 := OS2GEP(C1).
4. Verify that P1 is an element of the group H and that P1 lies in the

subgroup generated by P . If not, output “error” and abort.
5. Set P2 := OS2GEP(C2).
6. Verify that P2 is an element of the group H and that P2 lies in the

subgroup generated by P . If not, output “error” and abort.
7. Set P3 := OS2GEP(C3).
8. Verify that P3 is an element of the group H and that P3 lies in the

subgroup generated by P . If not, output “error” and abort.
9. Set α := OS2IP(Hash(C1||C2)).

10. Set t := x+ αy mod p.
11. Check that P2 = wP1. If not, output “error” and abort.
12. Check that P3 = tP1. If not, output “error” and abort.
13. Set Q := GE2OSP(zP1).
14. Set K = KDF (C1||Q,KeyLen).
15. Output K.

3.2.5 Guidelines for implementation

It is important to validate all inputs to the encapsulation and decapsulation algo-
rithms before they are used. In the case of key material and system parameters,
this prevents chosen modulus attacks and fault attacks.

In particular it is necessary to trust the properties of the group elements. So,
for both the encapsulation and decapsulation algorithms it is necessary to trust
that

– p is a prime number whose length is as defined by the security parameter and,
– P is an element of the group H and P has order p.

If these conditions do not hold then the algorithm should output “error” and
abort. The two obvious methods to validate the system parameters are to check
the properties hold during the execution of the algorithm (which may be com-
putationally expensive), or to have some kind of certified trust mechanism in
place so the algorithm can trust that the system parameters have been correctly
validated by some third party.



Dra
ft

Apr
il
19

, 2
00

4

3. ACE-KEM — 3.3 Test vectors 651

It is also necessary, in the encapsulation algorithm, to check the properties of
the group elements W , X, Y and Z in the public key. In particular it is necessary
to check that each of these elements is a member of the group H and that they
lie in the subgroup generated by P .

In the modular arithmetic case both of these checks are easy. An integer Q
is an element of H if and only if it lies in the range [1, q − 1] and it is in the
subgroup generated by P if and only if pQ = 1 mod q.

It is slightly harder to perform the check in the elliptic curve case. A point
Q ∈ Fq×Fq is an element of H if and only if its co-ordinates satisfy the equation
defining the elliptic curve. More information about the structure of the elliptic
curve group H is needed in order to check that an element Q ∈ H is in the
subgroup generated by P .

In either case, care should also be taken that, should the decapsulation al-
gorithm fail (i.e. output “error” and abort), no information in any form should
be returned to the users as to the cause of the failure. This includes information
that may be obtainable from side-channels (such as timing information or power
consumption information). Most notably the user should not be able to tell if the
decapsulation algorithm fails to decapsulate a key because of a failed check in
step 11 or in step 12 of the algorithm.

3.3 Test vectors

The following test vectors were produced using the modular arithmetic version of
ACE-KEM with a security parameter k = 80. This should in no way be construed
as a recommendation of that version of ACE-KEM over the elliptic curve version.
The algorithms use the hash function SHA-1 and the key derivation function
Mech2 (see Sect. 3) with the hash function SHA-1. The algorithm was asked to
produce keys of length KeyLen = 16 octets.

The test vectors were generated using modular arithmetic over a finite field
Fq where q has length 192 (octets) and a subgroup of prime order p where p has
length 21 (octets). The subgroup was generated by an element P . The parameters
p, q and P have the following values.
q = F63D79988776665293AFD497B15FCC77 1F52D012676993E8BFDF57A99BD50564

EAB8752416C4D56F335F91E5F6C6848C 6C03F1A96CDBD112A802BA6C2618B962
01BAC254C2069FAF232ADE367FBF4B00 8A2CD76D8E0E7FA287DDE8A91A906ABF
367F47BA07E0AB95A7044A63330A8282 C55FC1AA862AB8E38AB195A68FAC6CB1
43DA3831680AD753622021B7582EDEA7 691C866F33FEDBB982AFF50993877E6F
8FA8AC6F41234EE51C642567EFAF2D12 5D4A99C383B932E8355AC7B276796B99

p = 91BA928B7789602576872652D07BAE14D863CF8D5B

P = 9A1C3BFAEE3570DB8FF99B324D965DA0 97990C7F1458A27729E71B7A2D6917E3
B68AE4908BF3F588DECD34E8848DE578 17EA566D3AD130A4AF63B69F9A8E920F
5E8182DE1B439615447D3CFB29BC4780 D93DFDA7558F4988B70BE22125528D8A
14336CD94FE5D52DFC21B420B6A492A8 3F46285B4647059B0241A216A7D22196
047966A99BB9C18216CE871970154CCA DB571B046F9195D8E3FC28C0259AE90F
2140B3A1FB0FF90B88F63C8FA38A9421 B058399632F00E6640000F7ACB63198C
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The test vectors were produced using a public key (W,X, Y, Z) where W , X, Y
and Z are the following integers.
W = 507AB6F4D38DC8F36B60F975D1EAF191 046549D0D9336A61CA3DB2731279EF6A

99DC4854B572B0BD095F6A3A74F4A3C8 8DD996792B99B7ECAD13F28B2C08B584
2E6CA574F6B7A3FFE5E2BBF9541B2098 103AC75D82010FB79228CB71F2BB0E8C
829BBECED204F1B9E9EE85A8AF55030E E9AA548A2A8E570A50FFC6AFED719295
5A2D78A3A98EAFDC0FD65A1D71B4F2E8 9E98FF39F428DBBD866714D630CE2BCA
1D1F93645824AB29DF1DA7D3D45AB29F B54C2F5BD8BEC366A5C74F5408B07094

X = 9B1A7E9A5B8A14C4B6D2F3FA92A69CA1 BEED7F9F3F50DC37ED9FD38FB09C097F
7F693523826B90B4951CC165F71EB884 43F9E9DDC7A840876A8BCE9D46615C0C
42604F83B01980CDC8BDB8A749B6B223 A1F3E433D9D160BCF304A37094D8D935
7FBE8B9384794E7D3206BBC2F915B186 B1BCED307CB398E4440AE8C301FB4C5F
4F79EA9BDDCE3959F86FBC904DC229A2 DA0F93B0EF07C97AE383C19430C671D4
4C131A70429FF917376459A49C0967AD 9A039B12C23E62B89E7D1762197F2EF2

Y = 0FEA8BCBC351B50817BA75CAB58F6333 9D3C884F775C2D3359774AB87DEC6B93
6B1EF29737790F7E08507C93EA3A18D3 C4E15F160E44C708D1F837720ED0A12A
0716164E26744A5743B37DB885B3943B 71D1FCB1331905DCAF172FB81D0163B9
28BEC52A1D7E8DE4995782B15A675521 6EE4D60925B8CE8BEAC8EE90C2AC6C9F
018CFA8514B574CC5D671A7866811F71 E5DCB66ED6476B566395CB8C0AAAD9AD
981DAB6701889D22E3CD69036796EEB6 04C5C966839FCBADDAE7C027B912E744

Z = EB5C4FDB37DAE7EA0B07024831F281AE B97771BCB8FEF8408FE0295DE843883E
913ECEDDC63285D728999C3FDF6C8818 C26B82763168202DB917C66B310B8D15
886F14D402352FAE87E2691FC308B5D2 0FA3C4C4BE0F70F227D9C4D183EA4F2D
58A990FCE0E7340BCA261B46B3ADA468 F0212E06947029F0F04DF266C0E1FC44
9E37401987284DC0B15471D606177522 CF342CD1B960F3CA72597B8F13F22917
3C26062D51DF7552EB4680B7E63C0BEC 53B1C26C19BEC973983358B672A314CB

The corresponding private key is (w, x, y, z) where w, x, y, z are the following
integers.
w = 854B4B8962F278651290D25F0616AB83C3F885B6E3

x = 72A5AE967910CDE05D287AF608514012D5E002101F

y = 2715CE067E9608FDA9A0A1B6FC51085A2867C89448

z = 41816B06DADE4B10D703F14853F039C1E83AF3FE7D

The random integer s in the encapsulation algorithm is derived from the fixed
length octet string r by setting s = OS2IP(r).
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3.3.1 Test vectors for key encapsulation

The following are the correct results of the key encapsulation algorithm being
run with a seed r, producing a symmetric key K and an encapsulated key C =
(C1, C2, C3).

r = 303132333435363738396162636465666768696A6B

K = 798B355BEF635E9B0E9055C5C3B99D2F

C1 = 3764D7B60FA7667E7E61EAFCBB03FB13 E3FC22BD0CBFBF22B31FA708CB4CBB89
936D3F455EBBC79093522383CB606707 E0B7CA1F6826F3442C912C1044858611
8FA6F885309F94CD3D75FE2136525785 F378B6D5E59E237B70BD38E15FC4F45F
E7C0CAC4A1F7EB77BFB8555AC556291C 84E76FC8DAA0B8940ECFCA2B75AF82EF
75F7B12529700F00A260B18F81D444DA 0BCB2263D50A13B4986068B4DAF43771
D34829DC5B3A75B0A0DC717C2A2B2746 88DA41DA6D1DEE08580B4A82B0380F2E

C2 = F2CDC24EE70CFB13D269D13A6611BA87 65D167B49C950EFEBA1F65092BCFA4C1
8672A0A06511D512FD8E99F6931D0BEA 00407393B5C963F14E5DD8C7356F8280
861E56FBFDBBB73DD63974F6DE18F196 B1D9F820759E7858CC5F1EE7556C9B38
E6359F8F1577916A75BBA9C0A992CBAC 1F0572C3414204C90F7115920131684E
78AEE0A785FEF9BAC0D52A87F5C5E92A 8C7CEDB7AE6AB03CDF29FABA316955E1
3A9BE8A9BBEB9AFE904F5DEF94CD42CB EC0425638E536A6D882B30F8732CBED4

C3 = 77602C9E02C0E9F0535374AD20E9135D D4978C5C5D981F12DD64E7CC7AC9914C
BA566BA94479A6A614B7EF060B5E2F4F 077D5A55534E5C496052016EE0441D41
84F01D59D33D2633BCB22179611C250D 97842111D5D19B7B0117E3ABD9928FAD
518959310913ADFBA3299F1F5C16E223 308758D2E78707A45794A15BA596A9F1
A9BBEF3FCA87E0F4BD66CE15BFF09826 3900C7A1A133230F93B301ED29557025
160CDC7178C31BA1051853F97051734B C9F18278A0639B989DB40790D427BFEF

3.3.2 Test vectors for decapsulation

The following key encapsulation c = (C1, C2, C3) correctly decapsulates to give
the symmetric key K.
C1 = 40F09FE0D10B290183336B0E67FD2811 424E13A1E3624C52BB6A0C1AB8C60BE3

C312F528392F10B0C2383C78D3923A38 E26B2A70905B42F4B676DED2C2F98DC2
7BF94C60B1457F5780F32379C18A2741 FD1D32285BDA06F11F88FEB4D3A9459D
97CDA8DE2404616FA8F7312C2E7B3B46 7D8D2F3506F9CD0C1BEC2B87E49352ED
C7BE5114CBA10FC50294E309C352E7A3 72DA66D0EDCED06A059EFC506B04EA6B
A03DDECCC560E1A7D007533A8940A223 41965EE7BCF46DE89CBD65E4D3BA1BFE

C2 = 9E06428DF618F0595FDEDA33F4E36921 82A06BFED2CACDD5FFD8007098F6B722
40839A3B50F9985A3EEB6FC655F2AACE 01B59783E04B096B994EB628C35EAE99
DBF9D0089D47500384C31E68D2DF7DF6 1EE557E6B6AB53DD8F5901FA5FD05077
F1B7EFB0389D949A501C597855BCC70D 93B1AF007E3B7607715ACA507C82B250
F3DBD97A9FFD73615EFA6CC8258A483C 143234C5460AD8D1B52F74BD5F66D4BF
D396B629BB2920CE7FB481F1BA3FECE6 0B7FEB05B2D37FACFFBAB261EC6A904A

C3 = 1477B83628AAF3989E3284B3EDE68307 614C5654454551C7186F5FF556797589
F8878D4C89C563EACFD8F979C2764D62 2FA2C1058E400D71A00F03646FE3659E
9657EF71728816946CF0AED33A0DE953 87D78D1C86FA78D42C7DD61F4983C021
B3DFC63BCDFA70BAB4B97228597E81F6 1DA8A2C9A22CD6034BBA7F8D5B4F7DDE
FCFBF3EEBD9C4AC5893F61593A19FE78 15F67F82327C49185C45C0D5116B374B
F17DEA58BA5D954C046230B035DBBBF7 1BE731A50440D5639875EC335A22AE5F

K = 480C18969F0D38100178221C069A555A
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The following key encapsulation C = (C1, C2, C3) fails to decapsulate owing to
step 11 of the decapsulation algorithm (the integrity check on P1 and P2).
C1 = 40F09FE0D10B290183336B0E67FD2811 424E13A1E3624C52BB6A0C1AB8C60BE3

C312F528392F10B0C2383C78D3923A38 E26B2A70905B42F4B676DED2C2F98DC2
7BF94C60B1457F5780F32379C18A2741 FD1D32285BDA06F11F88FEB4D3A9459D
97CDA8DE2404616FA8F7312C2E7B3B46 7D8D2F3506F9CD0C1BEC2B87E49352ED
C7BE5114CBA10FC50294E309C352E7A3 72DA66D0EDCED06A059EFC506B04EA6B
A03DDECCC560E1A7D007533A8940A223 41965EE7BCF46DE89CBD65E4D3BA1BFE

C2 = 11111111111111111111111111111111 11111111111111111111111111111111
11111111111111111111111111111111 11111111111111111111111111111111
11111111111111111111111111111111 11111111111111111111111111111111
11111111111111111111111111111111 11111111111111111111111111111111
11111111111111111111111111111111 11111111111111111111111111111111
11111111111111111111111111111111 11111111111111111111111111111111

C3 = 227D5E0F060C3394B971174A304ED7F5 D6315A9C809EA8F5878AEE1F125566E2
903CBF17A4DE79AC33B7D95212EAB2DA 73C961705AAD3D61ED9906116B4464C0
7786E58A76F1C4610B49BB2C47665949 E7F6664772FF7F36E5BA049F6E6E4803
1537ABEF6DD3F3A2DC10C97541E9762D D9815D84BC986BDAFED82258931DDDBE
44D161B0F16B0ED004565C4DF2271191 D89332D60198E102B9F3DFB87A013CA0
E1504B5F949D7EEDAD3857FDB8A2784A 7B58718731F647054601D32DBDDE9AE9

The following key encapsulation C = (C1, C2, C3) fails to decapsulate owing to
step 12 of the decapsulation algorithm (the integrity check on P1 and P3).
C1 = 40F09FE0D10B290183336B0E67FD2811 424E13A1E3624C52BB6A0C1AB8C60BE3

C312F528392F10B0C2383C78D3923A38 E26B2A70905B42F4B676DED2C2F98DC2
7BF94C60B1457F5780F32379C18A2741 FD1D32285BDA06F11F88FEB4D3A9459D
97CDA8DE2404616FA8F7312C2E7B3B46 7D8D2F3506F9CD0C1BEC2B87E49352ED
C7BE5114CBA10FC50294E309C352E7A3 72DA66D0EDCED06A059EFC506B04EA6B
A03DDECCC560E1A7D007533A8940A223 41965EE7BCF46DE89CBD65E4D3BA1BFE

C2 = 9E06428DF618F0595FDEDA33F4E36921 82A06BFED2CACDD5FFD8007098F6B722
40839A3B50F9985A3EEB6FC655F2AACE 01B59783E04B096B994EB628C35EAE99
DBF9D0089D47500384C31E68D2DF7DF6 1EE557E6B6AB53DD8F5901FA5FD05077
F1B7EFB0389D949A501C597855BCC70D 93B1AF007E3B7607715ACA507C82B250
F3DBD97A9FFD73615EFA6CC8258A483C 143234C5460AD8D1B52F74BD5F66D4BF
D396B629BB2920CE7FB481F1BA3FECE6 0B7FEB05B2D37FACFFBAB261EC6A904A

C3 = 11111111111111111111111111111111 11111111111111111111111111111111
11111111111111111111111111111111 11111111111111111111111111111111
11111111111111111111111111111111 11111111111111111111111111111111
11111111111111111111111111111111 11111111111111111111111111111111
11111111111111111111111111111111 11111111111111111111111111111111
11111111111111111111111111111111 11111111111111111111111111111111
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1. RSA-PSS

1.1 Introduction

1.1.1 Overview

The RSA-PSS signature scheme was proposed in 1996 by Mihir Bellare and
Phillip Rogaway [54] as an example of digital signature scheme with an efficient
proof of security. It is a randomized digital signature scheme with appendix,
based on the RSA trapdoor permutation discovered by Ronald L. Rivest, Adi
Shamir and Leonard Adleman [543]. The RSA-PSS submitted to NESSIE by
RSA Security [326] is slightly different from the original scheme. These modifica-
tions were made by Mihir Bellare, Phillip Rogaway and Burt Kaliski to facilitate
implementation and integration into existing protocols.

1.1.2 Outline of the primitive

The public key is an RSA modulus n = pq with intractable facorisation. The
parameters are the octetlength ln of the modulus, the octetlength lH of the output
of a hash function Hash and the public exponent e ≥ 3.

The signing algorithm works as follows: first one computes a hash value h
from the message m and a random seed r, then the bijective PSS encoding of h
and r to an element x ∈ Z/nZ. The signature appendix is s = x1/e mod n.

The verification algorithm works as follows: The element x = se mod n is
computed. Then h and r are deduced from x with the inverse of the PSS encoding.
The value h is compared with the hash of the message and r.

The PSS encoding hides the random seed r before it is raised to the power 1/e.
Essentially, it computes x = (r ⊕MGF(h))‖h where MGF is a mask generating
function.

1.1.3 Security and performance

There is a security proof of RSA-PSS that uses an existential forger under adap-
tive chosen message attack to solve the RSA problem, in the random oracle model,
with tight reduction [54,151,322]. This “proof” is a strong security argument. It
means that it is very likely that the best technique to forge a new RSA-PSS sig-
nature if one had access to a black box that makes valid signatures is to compute
e-th roots modulo the public key, or to find a collision in the hash function.
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If a source of external randomness is not available then RSA-PSS becomes
the older RSA-FDH scheme, which has similar proven security, but with a loose
reduction. This means that the modulus length should probably be increased in
that case.

Side-channel attacks against RSA-PSS are a threat, but the fact that the
signature algorithm is randomised protects against some of those attacks.

The performances of RSA-PSS are very good for signature verification, in
particular for very small public exponents like 3. The performances for signature
generation are not so good, and the length of the appendix might be considered
to large.

A variant of RSA-PSS allows partial message recovery. It has same security
and performances, but the signed message is shorter.

A public modulus n = pqr or n = pq can speedup the signature generation,
but the security may be lower and the first variant is patented.

1.2 Description

1.2.1 Parameter generation

First a security parameter k should be chosen, and will give an indication on
the computing power that an attacker should need to break the scheme. The
minimal octetlength ln of the modulus and the minimal octetlength lH of the
output of the hash function are deduced from this security parameter according
to the following table.

k 72 80 112 128

ln
128

1024/8
192

1536/8
512

4096/8
750

6000/8

lH
18

144/8
20

160/8
28

224/8
32

256/8

Any odd exponent e ≥ 3 can be chosen, but it is recommended to use e = 65537
or distinct random e for each public key, unless fast verification is a priority and
e = 3 is chosen.

Another parameter is the hash function used in the scheme. For more flexi-
bility, a hash function identifier may be embedded in the signature. Therefore a
parameter of the scheme is the function named ChooseHash, which can be of two
types. Either this function takes as input a one-octet string which is the value BC
and outputs a lH-bit hash function, or this function takes as input a two-octet
string HashID‖CC (with HashID being some hash function identifier) and out-
puts a lH-bit hash function depending on HashID. Any secure hash function can
be chosen. SHA-1 is the default value used in the test vectors.

1.2.2 Key generation

When given a modulus octetlength ln, the public exponent e and a source of
randomness, many different algorithms can be described for generating the keys.
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The output distribution of the resulting public (and private) keys is dependent on
the algorithm, and in particular is dependent on the technique used to generate
random prime numbers. Such techniques are described e.g. in ISO-18032 [311] and
the PrimeGen routine used below is supposed to generate impredictible random
primes of a given size.

An example of key generation algorithm is given below. The important cri-
terion for a key generation algorithm for RSA-PSS is that is does not generate
weak keys and that the keys are impredictible (one necessary condition is that
its output set is sufficiently large). The techniques for generating RSA keys have
not been evaluated by NESSIE, therefore the following algorithm is given as an
example.

Description:
Input: The modulus length ln

The odd exponent e ≥ 3
A source of randomness R

Output: An RSA-PSS public key pk
An RSA-PSS secret key sk

1. Generate a prime p of length dln/2e using the PrimeGen(R, dln/2e) rou-
tine.

2. Check that GCD(e, p− 1) = 1. If not, goto step 1.
3. Generate a prime q of length dln/2e using the PrimeGen(R, dln/2e) rou-

tine.
4. Check that q 6= p. If not, goto step 3.
5. Check that and GCD(e, q − 1) = 1. If not, goto step 3.
6. Set n := pq.
7. Check that n has length ln. If not, goto step 1.
8. Check that e < LCM(p− 1, q − 1). If not, goto step 1.
9. Set d ≡ e−1 mod (p− 1)(q − 1).

10. Check that d > n0.5. If not, goto step 1.
11. Set pk := n.
12. Set sk := (n, d) or sk := (p, q).
13. Output the public key pk and the secret key sk.

Note that steps 4, 8 and 10 can be omitted. Since the PrimeGen routine is supposed
to generate impredictible random primes, the checks made in these steps will be
OK with very high probability.

Parameter and public key certification. The parameters and the public
key should be certified. Public Key Infrastructures were not in the scope of the
evaluation made by the NESSIE project, we will make the hypothesis that a
public key pk is distributed with some certification data cert, which commits the
public key to some parameters and to some validity deadline.
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1.2.3 Signature generation

We describe below the signature generation algorithm that is recommended by
NESSIE, which is slightly different from the submitted signature generation al-
gorithm.

Description:
Input: The parameters e, ln, lH and ChooseHash

The private key sk and the certification cert
The message m
The random seed r of octetlength lr

Output: The appendix s

1. Choose a trailer value TF and deduces Hash = ChooseHash(TF ).
2. Compute h0 = Hash(cert‖m).
3. Compute h = Hash(0(8 octets)‖h0‖r).
4. Compute c = 0...01‖r of length lc = ln − lH − t − 1 where t is the

octetlength of TF .
5. Compute a = c⊕MGF(h, lc) where MGF is defined by Mech1 (cf. sect. 3)

and outputs the first octets of Hash(h‖0(4 octets))‖Hash(h‖1(4 octets))‖...
6. Compute the integer x = OS2IP(a‖h‖TF ).
7. Compute the integer s = x1/e mod n.

The main differences between this description and the RSA-PSS signature scheme
that was submitted to NESSIE are:

– The mapping ChooseHash : TF → Hash is required to be explicitely described
as a parameter of the scheme when the public key is validated and disseminated.
This is a restriction compared to the submitted scheme where HashID could
be any value defined in ISO/IEC 10118.

– If ChooseHash requires a two-octet trailer field, then all hash functions that
are allowed have the same output length. This is a restriction compared to the
submitted scheme.

– The certification data is prepended to the message before hashing. Compati-
bility with the submitted scheme is obtained if the certification data is empty.

1.2.4 Signature verification

We describe below the signature verification algorithm that is recommended by
NESSIE, which is slightly different from the submitted signature verification al-
gorithm.

Description:
Input: The parameters e, ln, lH and ChooseHash

The public key n and the certification cert
The message m and the appendix s

Output: The boolean value valid / invalid
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1. Compute the integer x = se mod n.
2. Compute the octet string a‖b‖TF = I2OSP(x, ...) where TF has one or

two octets (depending on ChooseHash) and b has lH bits.
3. If TF is valid then deduce Hash = ChooseHash(TF ), else the output will

be invalid and Hash takes an arbitrary value.
4. Compute h0 = Hash(cert‖m).
5. Compute c = a⊕MGF(b, lc) where MGF is defined by Mech1 (cf. sect. 3)

and outputs the first octets of Hash(b‖0(4 octets))‖Hash(b‖1(4 octets))‖...
6. If the first octets of c are zeroes followed by the 01 octet, compute r such

that c = 0...01‖r, else give an arbitrary value to r and the output will be
invalid.

7. Compute h = Hash(0(8 octets)‖h0‖r).
8. Output invalid if b 6= h or the output was previously set to invalid, else

output valid.

1.2.5 Guidelines for implementation

1.3 Test vectors

The following test vectors are generated for RSA-PSS with the default parameters
for a security parameter k = 80. The modulus length is ln = 192 octets, which
corresponds to 1536 bits, the public exponent is e = 65537 and the hash function
is SHA-1, with a trailer field of BC. Here the certification data cert is the empty
string.

1.3.1 Test vector for signature generation

n = 9923916CF5589CE08EB945D635AE4534 2D443EC2E7D46980CCF48DC877ADA2C1
0F92A33D77D8AFB83DEA73C48CB5D42F 5A9D34F10A004C6904EEFFAEFF1DB64B
6DD770283F4F9B67370F570353DE0DFD 392CF6AA35FCE915D0F45B8087D90CBD
CE2C5C1205680ED36E69D5FC1C46D5C2 7BFA5BF0AD8D2C94C454EF33F21254EE
2704C031EEE0F19282D6F104A566B434 A5B562F24308FC2598BFBC9CEB7277FA
6149CD20C217A8AF9CEC19791C3D5DDA 4721877675F3ACB8B80E4012EA3622B1

d = 870401F293B9C5CE82673CF868A9B660 134CE91CC472D575F6BDE2C78D24ACAB
1484CFA1A1298D7B9E3338506152EAB9 B9658348C4ED9070C325C88DCC65B0D4
7E0A84DB273E93A003BE65940C7C69CF 097AE81B17B05CFC9C16E519C42C0C7B
6A01AF12FF709FD952489E38ADF57776 1CA0B49A7E0CD71330C641B5CD3F3E3E
728E489506F545158535E1011B8F85F2 D4A0285594D6530A18FB0D1895662A22
F7D60506962412FA2EC5E0F3CA0CA6DC 2B139053E0A15E53D95A337A7F3AF731

m = 0000000000000000000000000000000000000000
r = 00000000000000000000
s = 4E436D1345A84E64413168077B2304AC 9DB2F5CCE403FEAC076398ECA093FD3A

40D8AA3E2AFD5E49C3AA60BE57AB8622 884341E1D8A9047DFC95DE5A2010E056
CF9F5BC39B4E54C878BCD8BB688A56F6 A12BE4BBF05BCC30C2A4F3A39252BC9F
FC2289468755FD8B8F2CEE9ECBA90D22 8715EE8D48AA85ADF139AB31DA3BA3F4
4DEDB6EF06EE47CF23EB178C0417AD13 F9148212A0C6CE2115AEBEB2A55F26EC
8EDF92B1571E8DA133C5F1DCBE3200C4 D83B6D808732A015EC82750CFBF5112E
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1.3.2 Test vectors for signature verification

The following is a valid signature.
n = 9923916CF5589CE08EB945D635AE4534 2D443EC2E7D46980CCF48DC877ADA2C1

0F92A33D77D8AFB83DEA73C48CB5D42F 5A9D34F10A004C6904EEFFAEFF1DB64B
6DD770283F4F9B67370F570353DE0DFD 392CF6AA35FCE915D0F45B8087D90CBD
CE2C5C1205680ED36E69D5FC1C46D5C2 7BFA5BF0AD8D2C94C454EF33F21254EE
2704C031EEE0F19282D6F104A566B434 A5B562F24308FC2598BFBC9CEB7277FA
6149CD20C217A8AF9CEC19791C3D5DDA 4721877675F3ACB8B80E4012EA3622B1

m = BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
s = 8ADA14B5C5DDF605C836960DE14E50ED 4A10378120D13928FBA4DDC3F8CB748C

9CD66286E161D939FF30BB55E62C3FD0 8091D0BD6E3A2EF558EFDE0F2340247F
7CC340123FB8795EFAE56742534BAE52 A1D445C15BFCCE70F46DF223EDB34671
D3C721E72048CF54C77A9DEE8E9E4B5C 851374690A8D4EF7BE95ABA9819D8A1D
DD2DC551EE748C534B28FB0D50421A42 05A9049E0F3DCF74792F42591E6812A9
2F0624C71E7D3FA3598BA4150792F677 D0ECB5AE860761210A4DE31479FB5094

The following is an invalid signature where invalidity is detected at step 3.
n = 9923916CF5589CE08EB945D635AE4534 2D443EC2E7D46980CCF48DC877ADA2C1

0F92A33D77D8AFB83DEA73C48CB5D42F 5A9D34F10A004C6904EEFFAEFF1DB64B
6DD770283F4F9B67370F570353DE0DFD 392CF6AA35FCE915D0F45B8087D90CBD
CE2C5C1205680ED36E69D5FC1C46D5C2 7BFA5BF0AD8D2C94C454EF33F21254EE
2704C031EEE0F19282D6F104A566B434 A5B562F24308FC2598BFBC9CEB7277FA
6149CD20C217A8AF9CEC19791C3D5DDA 4721877675F3ACB8B80E4012EA3622B1

m = BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
s = 33333333333333333333333333333333 33333333333333333333333333333333

33333333333333333333333333333333 33333333333333333333333333333333
33333333333333333333333333333333 33333333333333333333333333333333
33333333333333333333333333333333 33333333333333333333333333333333
33333333333333333333333333333333 33333333333333333333333333333333
33333333333333333333333333333333 33333333333333333333333333333333

The following is an invalid signature where invalidity is detected at step 6.
n = 9923916CF5589CE08EB945D635AE4534 2D443EC2E7D46980CCF48DC877ADA2C1

0F92A33D77D8AFB83DEA73C48CB5D42F 5A9D34F10A004C6904EEFFAEFF1DB64B
6DD770283F4F9B67370F570353DE0DFD 392CF6AA35FCE915D0F45B8087D90CBD
CE2C5C1205680ED36E69D5FC1C46D5C2 7BFA5BF0AD8D2C94C454EF33F21254EE
2704C031EEE0F19282D6F104A566B434 A5B562F24308FC2598BFBC9CEB7277FA
6149CD20C217A8AF9CEC19791C3D5DDA 4721877675F3ACB8B80E4012EA3622B1

m = BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
s = 0631045A205ECCB2ABBE872614B90D8A F0890C96D6D96112CCFCDC522A961539

7D675446D5ADFFB92C68BF57DD70DB04 490C27D0EF439C781B6727616F9A133A
33CAD7A7327F0DBD7D0EF9C0204004A4 1D4F51852F8B60A4870F2EF0A0FB5C08
19E41FA31D44CB9A578E00405C268E12 D563922C5A79AEE0C6D062A349950135
675DACE973138F78AEFE6534D71C398A 581E1D8482523941174E88EEB5E07686
37BE874C8C94C50F112DAF01B37F4831 837C0C189123CE9246AAA87923317742
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The following is an invalid signature where invalidity is detected at step 8.
n = 9923916CF5589CE08EB945D635AE4534 2D443EC2E7D46980CCF48DC877ADA2C1

0F92A33D77D8AFB83DEA73C48CB5D42F 5A9D34F10A004C6904EEFFAEFF1DB64B
6DD770283F4F9B67370F570353DE0DFD 392CF6AA35FCE915D0F45B8087D90CBD
CE2C5C1205680ED36E69D5FC1C46D5C2 7BFA5BF0AD8D2C94C454EF33F21254EE
2704C031EEE0F19282D6F104A566B434 A5B562F24308FC2598BFBC9CEB7277FA
6149CD20C217A8AF9CEC19791C3D5DDA 4721877675F3ACB8B80E4012EA3622B1

m = 3333333333333333333333333333333333333333
s = 8ADA14B5C5DDF605C836960DE14E50ED 4A10378120D13928FBA4DDC3F8CB748C

9CD66286E161D939FF30BB55E62C3FD0 8091D0BD6E3A2EF558EFDE0F2340247F
7CC340123FB8795EFAE56742534BAE52 A1D445C15BFCCE70F46DF223EDB34671
D3C721E72048CF54C77A9DEE8E9E4B5C 851374690A8D4EF7BE95ABA9819D8A1D
DD2DC551EE748C534B28FB0D50421A42 05A9049E0F3DCF74792F42591E6812A9
2F0624C71E7D3FA3598BA4150792F677 D0ECB5AE860761210A4DE31479FB5094
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2. ECDSA

2.1 Introduction

2.1.1 Overview

The Elliptic Curve Digital Signature Scheme (ECDSA), submitted to NESSIE
by Certicom Corp., is the elliptic curve analog of the Digital Signature Scheme
(DSA). It is a randomized signature scheme with appendix, based on the discrete
logarithm problem on elliptic curves. Ellipitic curve cryptosystems first appeared
in 1985, and ECDSA was proposed in 1992 by Scott Vanstone [610]. It was
accepted as an ISO [309] standard in 1998, accepted as an ANSI [21] standard in
1999 and accepetd in 2000 as an IEEE [299] standard.

2.1.2 Outline of the primitive

The parameters of the scheme are a well chosen elliptic curve E(F) over a suitable
finite field F and a point G on this curve such that the subgroup 〈G〉 generated
by G has prime order q. The scheme makes use of a function H that takes an
input of arbitrary length, and outputs an element of {1, . . . , q − 1}. The private
key is an integer d in {1, . . . , q−1}. The public key is the point Q of E(F) defined
by Q = dG.

The signing algorithm for a message m works as follows: the signer chooses
at random an integer k in {1, . . . , q − 1} and computes the point R = kG, which
first coordinate is denoted xR. He then computes the integers r = xR mod q,
e = H(m) and s = k−1(e + dr) mod q. If s = 0, the signer chooses another k,
else, the appendix is (r, s).

The verification algorithm works as follows: the receiver first checks that s is
in {1, . . . , q−1}. He computes e = H(m), u1 = es−1 mod q, u2 = rs−1 mod q and
the point T = u1G+ u2Q. If T = O, the signature is rejected. Else, the receiver
compares r to xT mod q, where xT is the first coordinate of T .

2.1.3 Security and performance

There is no proof of security for ECDSA, neither in the standard model nor in the
random oracle model. Recently, Brown has published a proof of security in the
generic group model that applies to ECDSA but some specific properties of the
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scheme invalidate this generic proof. However, there exist proofs in the random
oracle model that apply to variants of ECDSA, suggesting that ECDSA is secure.

ECDSA is subject to some side-channel attacks, in particular the scalar multi-
plication operation. However, efficient countermeasures can be implemented. An
overview can be found in [508].

From the perfomance point of view, the main advantage of ECDSA is the
keys and signature lengths, which are really short. For instance, with a field of
size 160 bits, the public key is 40 bytes long, the private one is 20 bytes long and
the signature length is 40 bytes. Signature generation and verification are also
really fast.

The choice of the field (a prime or a characteristic 2 finite field) can influence
the performances.

2.2 Description

2.2.1 Parameter generation

The set of parameters for ECDSA is Param = (l, F I, a, b,G, q, h,Hid), where l is
the security parameter. FI is the Field Identifier that specifies the finite field
F. If F = Fp, with p an odd prime, FI = (p). If F = F2m , FI = (m, f(X)), where
f(X) is the irreducible polynomial specifying the polynomial basis representation
used for the elements of the field. The integers a and b are the coefficients that
define an elliptic curve E(F). G is a point on E(F) of order a large prime q, and
h is the cofactor h = #E(F)/q. A parameter of the scheme is the function H that
takes an input of arbitrary length and outputs a element of {1, . . . , q − 1}. Hid
is a value that indicates the function H that has been chosen. The parameters
are subject to the following requirements:

- taking logarithms on E(F) should be intractable;
- #E(F) 6= #F;
- (#F)B 6≡ 1 mod q for any 1 ≤ B < 20;
- h ≤ 4.

The user can either generate himself these parameters, or choose to use recom-
mended ones. Methods to generate the parameters can be found in [300] and [136],
and recommended parameters are available in [137].

2.2.1.1 Key generation

The key generation algorithm inputs a valid set of parameters for the ECDSA,
and outputs a valid key pair (pk, sk).

Description:
Input: The set of parameters Param
Output: An ECDSA public key pk

An ECDSA secret key sk

1. Generate a random integer d such that d ∈ {1, . . . , q − 1}.
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2. Compute the point Q := dG.
3. Set pk := Q and sk := d.
4. Output the public key pk and the secret key sk.

Parameter and public key certification. It is necessary to ensure that the
domain parameters and the public key have the requise properties. This is done
to avoid attacks enabled by the use of invalid parameters. Methods for validating
domain parameters and public keys can be found in [300] and [136].

2.2.1.2 Signature generation

The signature generation is described below. It uses the sGen routine, which takes
as additional input an integer randomly generated.

Description of the signature generation algorithm:
Input: The parameters Param

The secret key sk = d
The message m

Output: The appendix S

1. Run the sGen routine.
2. If sGen returns “fail”, go back to step 1.
3. If sGen returns the pair (r, s), output the appendix:

S := I2OSP(r)‖I2OSP(s).

Description of the sGen routine:
Input: The parameters Param

The secret key sk = d
The message m
A random integer k in {1, . . . , q − 1}

Output: The integer pair (r, s) or “fail”

1. Compute the point R := kG. Let R = (xR, yR).
2. Convert the field element xR to an integer i := FE2IP(xR).
3. Compute r := i mod q.
4. Compute the integer e := H(m).
5. Compute the integer s := k−1(e+ dr) mod q.

If s = 0, return “fail”.
6. Output the integer pair (r, s).

2.2.1.3 Signature verification

Below is escribed the signature verification algorithm recommended by NESSIE,
which is slightly different from the submitted one.

Description:
Input: The parameters Param

The public key pk
The message m and the appendix S

Ouput: The boolean value valid / invalid
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1. Parse the octet string S as S1‖S2, where S1 and S2 are dlog2(q)/8e octet
long.

2. Compute the integers r := OS2IP(S1) and s := OS2IP(S2).
3. Verify that s ∈ {1, . . . , q − 1}.
4. Compute the integer e := H(m).
5. Compute the integer w := s−1 mod q.
6. Compute the integer u1 := ew mod q.
7. Compute the integer u2 := rw mod q.
8. Compute the point T := u1G+ u2Q. Let T = (xT , yT ).

If T = O, output invalid and stop.
9. Convert the field element xT to an integer j := FE2IP(xR).

10. Compute the integer t := j mod q.
11. If t = r, output valid.

Else output invalid.

2.3 Test vectors

TODO
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3. SFLASH

3.1 Introduction

3.1.1 Overview

The SFLASH signature scheme described here is a modified version of the orig-
inal submission SFLASH. The SFLASH signature scheme has been submitted
to NESSIE by Patarin et al. [514]. It is based on multivariate polynomials. The
first cryptosystem of this kind has been proposed in 1988 by Matsumoto and
Imai [428]: the C∗ cryptosystem. It has been broken by Patarin in 1995 [512]. A
variation of the scheme, secure against this attack and called the C∗−− cryptosys-
tem, has been proposed by Patarin, Courtois and Goubin in 1998 [515]. SFLASH
is a C∗−− scheme with a special choice of the parameters. It has been broken by
Gilbert and Minier [259], so the scheme has been modified to avoid this attack.
The only difference between SFLASH (new version) and the original submission
SFLASH is the choice of the underlying field.

At the time when NESSIE made its selection, for the size of the parameters
of SFLASH were such that all attacks against the underlying MQ hard problem
required more computational power than 280 Triple-DES operations. However,
some improvements have been published since then [156]. The size of the param-
eters of SFLASH have been increased to resist this new attack and a new variant
of SFLASH is recommended by its submitters [162,163].

3.1.2 Outline of the primitive

The underlying field is K = F128. L denotes an extension of degree 37 of K. F is
the function from L to L defined by F(x) = x12811+1.

The secret key consists in two affine bijections s and t of K37 and a 80-bit
string ∆. The public key is the function G from K37 to K26 defined as the
26 polynomials (P1, . . . , P26), where (P1, . . . , P37) are the quadratic polynomials
describing the function t ◦ F ◦ s from K37 to K37.

The signing algorithm works as follows: the message is hashed in a 182-bit
string y, which is then hashed together with the secret string ∆ to give a 77-bit
string r. The signature appendix is s = s−1 ◦ F−1 ◦ t−1(y‖r).

The verification algorithm works as follows: the message is hashed as above
into y. The verifier then computes the value y′ = G(s) and compares it with y.
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3.1.3 Security and performances

The security of SFLASH is based on the one-wayness of the function G, which
is not well defined. Indeed, there is no proof of security that reduces the security
of SFLASH to a trusted mathematical problem. However, the results concerning
the two kind of possible attacks are sufficient for short term security.

The first attack is to solve a random set of quadratic equations. This is the
MQ problem and it is NP-hard. However, some relatively efficient algorithms
exist to solve this problem [128, 164, 224], but for the parameters of SFLASH,
they require more computational effort than 280 Triple-DES.

The second one is to attack the C∗−− scheme [515], but this would also require
more than 280 Triple-DES.

SFLASH has been designed to be a very fast signature scheme, both for signa-
ture generation and verification. Furthermore, it is designed to be implemented
on low-cost smart-cards, without any co-processor. A highly optimized such im-
plementation is described in [12], and SFLASH seems to be the fastest signature
scheme on low-cost smart-cards. The drawback is the size of the public key, which
might be found too large.

3.2 Description

3.2.1 Parameters of the scheme

The SFLASH signature scheme uses two fields and a function which are fixed.
The first field is K = F128 = F2[X]/(X7 +X + 1), It is represented as a

F2-vector space by the bijection π between F2
7 and K defined by:

∀b = (b0, . . . , b6) ∈ {0, 1}7, π(b) = b6X
6 + . . .+ b1X + b0

The second one is the extension ofK of degree 37 defined by L = K[X]/(X37+
X12+X10+X2+1). The field L is represented as aK-vector space by the bijection
φ between K37 and L defined by:

∀a = (a0, . . . , a36) ∈ K37, φ(a) = a36X
36 + . . .+ a1X + a0

The function that will be used is the function F from L to L defined by
F(x) = x12811+1.

3.2.2 Key generation

The secret key consists in two affine bijections of K37, s and t, and an 80-bit
string ∆. The affine bijection s (resp. t) will be described by the 37× 37 square
matrix SL (resp. TL) and the 37 × 1 column matrix SC (resp. TC) over K with
respect to the canonical basis of K37.

So, in order to generate the complete key of SFLASH, the following elements
have to be generated:
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– The secret invertible 37×37 matrix SL and the secret 37×1 column matrix SC ,
all the coefficients being in K, that describes the affine bijection s.

– The secret invertible 37×37 matrix TL and the secret 37×1 column matrix TC ,
all the coefficients being in K, that describes the affine bijection t.

– The 80-bit secret string ∆.

Note that generating an element of K is equivalent to generating a 7-bit string.
The key generation uses the following functions, described below:

– the function Aff-Bij-Gen generates a 37 × 37 invertible matrix and a 37 × 1
column matrix.

– the function next-8bit-random-string outputs a random 8-bit string.

The key generation is then as follows, representing ∆ as a 10-byte string:

1. (SL, SC) := Aff-Bij-Gen()
2. (TL, TC) := Aff-Bij-Gen()
3. for i from 0 to 9
∆[i] := next-8bit-random-string()

The public key is deduced from the secret one. By construction, the function
t ◦ φ−1 ◦F ◦ φ ◦ s from K37 to K37 is a quadratic transformation over K, i.e. for
x = (x0, . . . , x36), y = (y0, . . . , y36) in K37, the equation y = t ◦φ−1 ◦F ◦φ ◦ s (x)
can be written as follows:

y0 = P0(x0, . . . , x36)
...

y36 = P36(x0, . . . , x36)

where each Pi is a quadratic polynomial of the form:

Pi(x0, . . . , x36) =
∑

0≤j<k<37

ζi,j,k xjxk +
∑

0≤j<37

νi,j xj + ρi

The public key is the function G from K37 to K26 defined by the 26 first
quadratic polynomials, i.e. G(x0, . . . , x36) = (y0, . . . , y25), and is computed from
the secret key.

3.2.2.1 The function Aff-Bij-Gen

This function generates a random 37 × 37 invertible matrix with entries in K.
Two different methods can be used.

The first method is to generate a random 37 × 37 matrix with entries in K
until it is invertible.

The second one is to generate an invertible 37 × 37 matrix by using the LU
decomposition. Suitable random matrix L and U are generated, and the product
LU is an invertible matrix.

Description: (using the LU decomposition)
Input:
Output: a 37× 37 invertible matrix and a 37× 1 column matrix



Dra
ft

Apr
il
19

, 2
00

4

672 Book III. The NESSIE portfolio — Part F. Digital signature schemes

1. for i from 1 to 37 do
a) Ci := (next-8bit-random-string() & 127)
b) for j from 1 to 37 do

i. if i < j then
Ui,j := (next-8bit-random-string() & 127 )
Li,j := 1

ii. else if i > j then
Li,j := (next-8bit-random-string() & 127 )
Ui,j := 1

iii. else if i = j then
do z := (next-8bit-random-string() & 127) until z 6= 0
Ui,j := z
Ui,j := 1

2. Compute M = LU .
3. Return M,C.

3.2.2.2 The function next-8bit-random-string

This function outputs a random 8-bit string each time it is asked to. It is initialised
with a seed, and uses the hash function SHA-1.

Initialization: tab is a string of 55 bytes.

tab = seed‖count3‖count2‖count1‖count0

The first 51 bytes are the seed seed: it is a byte string that should have a
minimum of 80 bits of entropy, and its size is 51 bytes (if it is shorter, it is
padded with 0s). The last 4 bytes of tab are used as a counter, initialized to
0.

count = count3 2563 + count2 2562 + count1 256 + count0

rando is a string of 20 bytes, position is a byte initialized to 19.
Description:

Input: tab, rando, position.
Output: an 8-bit string.
1. if position = 19 then

a) count := count + 1
b) rando := sha1(tab)
c) position := −1

2. position := position+1
3. return rando[position]

3.2.3 Signature generation

Let the bit-string m be the message to sign. The signing algorithm works as
follows:

1. Compute the 160-bit strings h1 and h2 as:

h1 = SHA-1(m), h2 = SHA-1(h1).
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2. Let v be the following 182-bit string:

v = [h1‖h2]0→181

3. Then compute the 77-bit string:

w = [SHA-1(v‖∆)]0→76

4. Let y be the string of 26 elements of K defined by:

y = π([v]0→6), π([v]7→13), . . . , π([v]175→181)

5. Let r be the string of 11 elements of K defined by:

r = π([w]0→6), π([w]7→13), . . . , π([w]70→76)

6. Let x be the string of 37 elements of K defined by:

x = (x0, . . . , x36) = s−1 ◦ φ−1 ◦ F−1 ◦ φ ◦ t−1(y‖r)

7. The signature appendix is the 259-bit string:

s = π−1(x0)‖ . . . ‖π−1(x36)

3.2.4 Signature verification

To verify a signed message (m, s), the following algorithm is used:

1. Compute the 160-bit string h1 and h2 as:

h1 = SHA-1(m), h2 = SHA-1(h1).

2. Let v be the following 182-bit string:

v = [h1‖h2]0→181

3. Let y be the string of 26 elements of K defined by:

y = π([v]0→6), π([v]7→13), . . . , π([v]175→181)

4. Let y′ be the string of 26 elements of K defined by:

y′ = G (π([s]0→6), π([s]7→13), . . . , π([s]252→258))

5. If y′ = y, accept the signature. Else, reject it.

3.2.5 Guidelines for implementation

As SFLASH has been specifically designed to be used on smart-cards, the fol-
lowing are guidelines for the implementation of the scheme on these plate-forms,
where one should try to use as less memory as possible. More details can be found
in [12].
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Fig. 60. The SFLASH signature generation algorithm.
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Fig. 61. The SFLASH signature verification algorithm.
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3.2.5.1 Computation in K and L
Addition is easy both in K and in L. The field K is of characteristic 2 so two ele-
ments are added by XORing their representations. In L, addition of two elements
is done by adding the corresponding coefficients in their polynomial representa-
tion.

The simplest way to implement multiplication in K is to use two tables.
Indeed, the multiplicative group K∗ is cyclic, generated by an element α, so
each element of K can be seen as a power of α. One table Exp implements the
exponentiation:

Exp[e] = αe,

and the second one Log gives the exponent of a non-zero element:

Log[x] = ex, where x = αex .

The product of two elements x, y in K is then:

xy = Exp [Log[x] + Log[y]] .

Mulitplication in L is more costly: we have to compute the product of two
polynomials, which will be of degree 72, and to reduce it modulo the irreducible
ponynomial X37 +X12 +X10 +X2 + 1. It is worth implementing seperatly the
squaring of an element. Indeed, the square of a polynomial can be computed
faster than multiplying it with itself since only the squares of the coefficients
have to be computed, as mentionned in [12].

3.2.5.2 Computing the inverse of F

The function F from L to L is defined by:

∀x ∈ L, F(x) = x12811+1.

The signature generation algorithm requires the computation of its inverse. We
have:

z = F−1(y)⇐⇒ z = yh, where h = (12811 + 1)
−1

mod (12837 − 1).

Instead of computing this with the classical “square and multiply” algorithm,
Akkar et al. suggest in [12] to use a special addition chain, favouring the pow-
ers 128 and 1287. Indeed, these powers are easy to handle, as the application
x 7−→ x128 is K-linear on L. This method drastically reduces the number of
multiplications. So, to compute z = F−1(y), we perform the following steps:

1. z0 :=
(
y2
)2

2. z1 := y × z0
3. z2 :=

(
z0

2
)2

4. z3 := z1 × z2
5. z4 := z3

2 × z3
6. z5 :=

(
z2

2
)2
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7. z6 :=
((
z5

128
)128)128

× z4

8. z7 :=
((
z6

128 × z6
)128 × z6)128

9. z8 :=
(
(z7 × z4)128

)1287

10. z9 := z5
1287 × z7 × z5 × z8

11. z :=

(((
z9

1287
)1287)128

× z8

)1287

× z9

This method requires only 12 multiplications in L, instead of 145 with the classical
“square and multiply” algorithm.

Being linear over K, the operation x 7−→ x1287
is fulfilled by a fixed ma-

trix multiplication. This computation can be accelerated by using a technique
related to the Gray code. The idea is to find a road in the matrix that minimizes
the number of XORs. This technique, as explained in [12], accelerates a lot the
operation, but also increases the code size.

The function x 7−→ x128 = x27
can be implemented by performing 7 squares,

which is faster than a matrix multiplication.

3.2.5.3 Side-channel attacks

Steinwandt et al. [595] report DPA-based attacks against SFLASH. Akkar et
al. [12] propose as a countermeasure to this kind of attack to mask all the inter-
mediate values. This is done by using the homomorphic properties of the functions
t,F, s. The implementation of this countermeasure doubles the running time of
SFLASH.
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1. GPS

1.1 Introduction

Current asymmetric identification techniques follow the paradigm of interactive
proofs of knowledge of some secret. They allow to build practical schemes that
possess the zero-knowledge property, intuitively that the only information con-
veyed by the prover to the verifier is the knowledge of its own secret. This is
an optimal property which sometimes is not malleable enough to achieve good
performance. This has led to the emergence of the witness indistinguishability
condition, whereby it is very difficult for an active attacker to trace back the
holder of some secret. This is explained in detail in Book II, Chap. 8.

The prototypes of many identification schemes are the Fiat-Shamir scheme
(see Book I, Sect. 8.4.1) and the Schnorr identification scheme (see Book I,
Sect. 8.4.2), based respectively on the RSA problem and the discrete logarithm
problem.

1.1.1 Overview

GPS has been submitted by ENS, France Télécom and La Poste. GPS is essen-
tially a modified version of the Schnorr identification scheme. Unlike the Schnorr
scheme, GPS uses a generator g with unknown order and the exponent is calcu-
lated in Z rather than modulo the order of g.

1.1.2 Outline of the primitive

The GPS identification scheme consists of ` iterations of an identification round,
where ` is part of the security parameters of the scheme. We describe one round
of the GPS identification scheme.

Let A, B, S be parameters with |A| ≥ |S|+ |B|+80, |B| = 32 and |S| greater
than 140 bits. It would be better if |S| = 180 meaning A is approximately a 300-
bit number. Let n be a RSA modulus (n = pq where p, q are 512-bit primes). The
factorisation of n should be unknown to all except maybe a trusted authority,
which enables the scheme to be rendered identity-based. Also, let g be a random
element of Z/nZ, coprime to n and s ∈ [1, S]. Define I = g−s (mod n).

Public parameters. The public parameters are A, B, S, g, I and n.
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Private parameters. The private parameter is s.
Let us examine a protocol round.

1. Commitment : the prover picks r ∈ {0, . . . , A − 1} at random and sends to
the verifier x = gr (mod n).

2. Challenge: the verifier chooses a random c ∈ {0, . . . , B − 1} and sends it to
the prover.

3. Response: the prover checks that c ∈ {0, . . . , B − 1}, computes y = r + sc
and sends it to the verifier.

4. Verification: the verifier checks that y ∈ {0, . . . , A + (B − 1)(S − 1) − 1},
computes z = gyIc (mod n) and accepts the prover if and only if z = x.

Below is a schematic description of the 3-fold interaction between the prover
and the verifier in one round of the protocol.

Prover Verifier
choose r ∈ {0, . . . , A− 1}
compute x = gr (mod n)

x−−−−→
c←−−−− choose c ∈ {0, . . . , B − 1}

check c ∈ {0, . . . , B − 1}
compute y = r + cs

y−−−−→ check y ∈ {0, . . . , A+ (B − 1)(S − 1)− 1}
accept if gyIc = x (mod n)

1.1.3 Security and performance

The GPS protocol is computationally zero-knowledge if ` and B are polynomial
in |n| and `SB/A is negligible. It is witness-indistinguishable if n is a product of
two primes p and q such that (p− 1)/2 and (q− 1)/2 have no small prime factor,
and if g is a quadratic residue modulo one of the prime factors and a quadratic
non-residue modulo the other, provided |B| > 2 ord(g).

Performance is very fast for the response step of the protocol, namely a few
hundred cycles only. Other steps compare favourably against ISO/IEC 9798-5
standards (see Book II, Sect. 8.3.2) at a few million cycles. The only slow part is
typically the parameter generation (done only once), since one has to choose an
RSA-type modulus n.

1.2 Description

We introduce some notation for a description of an implementation of GPS. Let
Rand(k) be a function which outputs a random integer between 1 and k, possibly
using an auxiliary input (salt). We denote by (rm . . . r0)2 the representation of
an integer r to the base 2.

In the Figs. 62 and 63, we suppose the relevant parameters input to the
algorithms have been uploaded into some registers. We do not delve into the
ways to store those quantities, contenting ourselves in calling a multiplication of
X and Y as a single operation, regardless of the size of the operands.



Dr
af
t

Ap
ri
l
19
,
20
04

1. GPS — 1.3 Test vectors 683

Input: The public and private parameters A, B, S, g, I, n, s and the challenge c.
Output: Prover’s transcript x, y in the execution of one round of the GPS identification
scheme.

/* generation of a random seed r = (rm . . . r0), with m = |A| */
Compute Rand(A− 1) = r = (rm . . . r0)

/* computation of x = gr (mod n) by the square and multiply algorithm */
x← 1
For i from m to 0

x← x2 (mod n)
If (ri == 1) then x← gx (mod n)

Output x
Compute y = r + cs
Output y.

Fig. 62. On the prover’s side

Input: The public parameters A, B, S, g, I, n and the response y
Output: 1 if the execution of one round of the GPS identification scheme is successful, 0
otherwise.

/* generation of a random challenge c = (ct . . . c0), with t = |B| */
Compute c = (ct . . . c0) = Rand(B − 1)

/* computation of v = gyIc (mod n) using the Straus-Shamir trick. We write y =
(yu . . . y0). Since u > t, we can also write c = (cu . . . c0) by padding an initial string
of zeroes. */

v ← 1
a← gI /* trick to speed up computation if space available */
For i from u to 0

v ← v2 (mod n)
If

`
(yi, ci) != (0, 0)

´
then v ← vgyiIci (mod n) /* using register a this counts as one

multiplication */
Output 1 if (x == v)

Fig. 63. On the verifier’s side

1.3 Test vectors

We reproduce below the Maple code used to generate test vectors. The modulus
n is the product of two primes p and q of 768 bits each, so that the length of n
is 1536 bits.

> p:=79727899923569440438389630137288496738592515774469850369151286
1327427938711905808556049567059264576187327138785842088187968938620
8186495622570383151678357809768617978373363102905982623825708833673
62238169268153631016285513967839863;

p := 79727899923569440438389630137288496738592515774469850369151\
2861327427938711905808556049567059264576187327138785842088\
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1879689386208186495622570383151678357809768617978373363102\
90598262382570883367362238169268153631016285513967839863

> convert(p,hex);

83774F2A38137979F6E131F153757FEFFC3212E558371BC067695B62E89C2D32\
B4AC1B64DA2C34451851FAD91DB6F3A032CB6171BCF7A01C06245CA3B0\
9B4505C4C705DCB27E3AB5A18A3A42BFC5F565FE5C40B0935188FB6FA0\
F3FF8C25AA77

> q:=12193019031363139338267302215457750908954216765863622703694979
1575750422723316900422902902490813087526070693592004563458729617449
7555930429227722458049412001106869706108073554227057985159156549508
944893686347331038904494739939720039;

q := 12193019031363139338267302215457750908954216765863622703694\
9791575750422723316900422902902490813087526070693592004563\
4587296174497555930429227722458049412001106869706108073554\
227057985159156549508944893686347331038904494739939720039

> convert(q,hex);

C90E0A709F78176A6C22EC2380A2377ED6FDA45056BDFFFF3BA3C4508EC06A84\
05D7CDAFD67EFB4E91E7C91D501B8C5A806DB9C852630CED17804CC1FB\
C42F2BC65B5550F026DAF4F236CCFB8F99CF7149DCD3C9AA5E1F00AEC0\
B33E5808FB67

> n:=p*q;

n := 97212380109869796953499244473820098433967663075756597844214\
9672350514985222855154136369796359763011611647274261006703\
2327339332934766114006461146952804339807410186849377580749\
7600584935009624616315317020715480332776440389123549533955\
1364898385867930848698412881403423843629245820987106637416\
3787943534062689928262584289342593687920920799272813046647\
0178849835303044792967676693368644052612134402018561019472\
5545667291311399759128553738536005398098974277804114657

> convert(n,hex);

673FE30AF9856A3966707223394C4FDC761EFFFC304414EF3C13295873AE93A3\
66499D8606CDB642D57247B38AD6DD270B86D9CFEB2B763001770F1253\
86D8913B62C9298CF933CC48B77C991578D76FDB78FBDE4682D08331BC\
FADFDDEF96FD9340BD3E83D6420719C37BE88E9566CBB8A2A62099D86D\
FD67D74AC877F13B0E9E4BB19603005A85C1655791D2CF0A8C3BF28E2A\
922F4B188850C85A0DC1CE08D832FF5CBB7FDEA3DC367CBB4BB19AE320\
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773B0F5F2F5A8333B78BD28D0242E1

> g:=2;

g := 2

> convert(g,hex);

2

> A:=2^239;

A := 88342353238919216479164875037145925791374194843780947906080\
3100646309888

> convert(A,hex);

800000000000000000000000000000000000000000000000000000000000

> S:=2^159;

S := 730750818665451459101842416358141509827966271488

> convert(S,hex);

8000000000000000000000000000000000000000

> B:=2^15;

B := 32768

> convert(B,hex);

8000

> s:=rand(S)();

s := 35620251835065055772407314658131821056897746859

> convert(s,hex);

63D447004789E2CC3BA125E0AFE82092C9687AB

> Ipub:=g &^ (-s) mod n;

Ipub := 63594877365622234880568330328212166477308320785916634869\
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4589546345333022098150515178367218800378876693428836743052\
5631755545720081631332104131766420425331765069202692271209\
1036978247237094052676825101926413551477691184110173410536\
6104180792447620721540049264316377911821103187391173814010\
4478106658708533974941146120293012181033568185097927780386\
0497721001235800617281724152658353403410696352110168175858\
3978925348794366283683649642397686302236589774817655662677

> convert(Ipub,hex);

438B57CCA73AD273F2B05AC45471FB3FC1C83FC9DD3273F3A61493F4F38D5A1A\
F2873E2760D0F2226A6A716CE7F947DA138A036E8ED625A2EC4BF4C666\
45190B8EF201C261DA050FE8C2791EC7C79CF7C9AB0108390165971250\
F729E11740B6ADA131F3BD28510845EEB2784583869E05941556B12054\
0D4D067546EC9D950A06529E81C47402B9EA3CBCB80E5D4E34D713BBE6\
54498C87BC9204A66EC0BD199A88F7231378DB503204F82F8CF423A894\
ACF9C376D53295120366550EC62855

> r:=rand(A)();

r := 19579854405359543016325980706869175206996148465084739316743\
7407082494718

> convert(r,hex);

1C5E9256EED9663A380722DF413D36E1A14E79C2520F44945DF47927BAFE

> g&^r mod n;

5673702143156668336795415632017583560347247288573482040456624861\
4285371028392797549664244051800806931654569932317265599423\
8439516056824077106032212263556926418687999212562001987222\
2637981799727936238764349748489352954494816999568207744658\
0421463226012018942345355034785155002847867478176490723409\
6279723352510011758067995366608498562622664875735337279307\
5524820406467401013919418072358772105840786702686774171325\
34449288290178178186954765726306749409146360427342

> convert(%,hex);

3C42B4032CE04AC011721CA2FB1502CCB7C5B13B7C753475DB06F91044698955\
167FF533841B6AC7F8552E7EB8BFDAC19A547E10EB0381D8235FD257DD\
C050233056E7CAC3C9477A4EAD7093D91F2EAF08DBB844B7C4186FEAF9\
0B850DAE30E826770C55ED4E33ACAA5E4FBEED2BD9A2414A3556662BB8\
F037CFF924297F4373F45AA631AAA37878CF9EB46E73D882752F3746AE\
6E9FED153553C449A753584317ECB0D042EE82B7A18258231BDC872401\
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FE73CC04DFF88D7C03C5E28485F34E

> c:=rand(B)();

c := 10072

> convert(c,hex);

2758

> y:=r+c*s;

y := 19579854405359543016361857424517452731170117112408409686912\
2481188858566

> convert(y,hex);

1C5E9256EED9663A38FC9D5BD86D2070D2831A84F60FD1E076E6BB916AC6

> (g&^y mod n)*(Ipub&^c mod n) mod n;

5673702143156668336795415632017583560347247288573482040456624861\
4285371028392797549664244051800806931654569932317265599423\
8439516056824077106032212263556926418687999212562001987222\
2637981799727936238764349748489352954494816999568207744658\
0421463226012018942345355034785155002847867478176490723409\
6279723352510011758067995366608498562622664875735337279307\
5524820406467401013919418072358772105840786702686774171325\
34449288290178178186954765726306749409146360427342

> convert(%,hex);

3C42B4032CE04AC011721CA2FB1502CCB7C5B13B7C753475DB06F91044698955\
167FF533841B6AC7F8552E7EB8BFDAC19A547E10EB0381D8235FD257DD\
C050233056E7CAC3C9477A4EAD7093D91F2EAF08DBB844B7C4186FEAF9\
0B850DAE30E826770C55ED4E33ACAA5E4FBEED2BD9A2414A3556662BB8\
F037CFF924297F4373F45AA631AAA37878CF9EB46E73D882752F3746AE\
6E9FED153553C449A753584317ECB0D042EE82B7A18258231BDC872401\
FE73CC04DFF88D7C03C5E28485F34E
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About the NESSIE submission “Using the
general next bit predictor like an evaluation
criteria”
by Markus Dichtl and Pascale Serf ∗

Abstract. In this paper, we are dealing with a testing methodology
based on machine learning, submitted to NESSIE by J.C. Hernandez,
J.M. Sierra, C. Mex-Perera, D. Borrajo, A. Ribagorda, and P. Isasi. We
show that their evaluation method suggested for measuring the unpre-
dictability of pseudorandomly generated bit streams only works for linear
feedback shift registers with a very small number of tabs. Contrary to
what they claim, it neither works for LFSRs with a cryptologically rea-
sonable number of tabs, nor for the truncated linear congruential gener-
ator.
Hence, this method is considered not suitable for the evaluation of cryp-
tographic algorithms.

Keywords. cryptography, cryptology, machine learning, learning algo-
rithm C4.5, artificial intelligence, pseudorandomly generated bit stream,
linear feedback shift register, truncated linear congruential generator, pre-
dictability, evaluation criteria

1 Summary of the Suggested Evaluation Method

J.C. Hernandez, J.M. Sierra, C. Mex-Perera, D. Borrajo, A. Ribagorda, and
P. Isasi submitted to NESSIE a testing methodology for measuring the unpre-
dictability of a pseudorandomly generated key stream. They propose to use ma-
chine learning techniques: frames of a fixed length from the bit stream together
with the bit immediately following the frame are used as learning data for a clas-
sification algorithm. The idea is to assign the frames to two classes, namely those
followed by 0 bits and those followed by 1 bits. A learning algorithm is supposed
to learn this classification from training data. The submitters suggest to use the
learning algorithm C4.5 by J.R. Quinlan, which seems to be used quite often for
machine learning. C4.5 builds a decision tree from the learning data and applies
some heuristic simplifications to the decision tree.

∗ Siemens AG, Corporate Technology, München, Germany
{Markus.Dichtl,Pascale.Serf}@mchp.siemens.de
August 22, 2001
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2 Examples of the Application of the Evaluation Method
and their Reproducibility

2.1 Linear Feedback Shift Register

As an example, the submitters examine the linear feedback shift register with
primitive polynomial x15 + x+ 1. The results are very surprising. Therefore, we
tried to reproduce them by applying the learning tool, exactly as the submitters
describe in their submission. We can confirm that the learning algorithm indeed
finds out that the output bit is the XOR of 2 earlier bits. The submitters found
100% accuracy only for a framelength of 20 bits, and an accuracy of 97% for a
framelength of 15. We obtained 100% accuracy for both framelengths.

The result of the submitters for a framelength of 10 is very surprising. It is
theoretically impossible to make relevant predictions in this case, because the bits
whose XOR determines the output bit are not contained in the frame, and from
the theory of linear feedback shift registers, it is well known that all 10-tuples
from a LFSR of length 15 occur about the same number of times. Nevertheless,
the submitters claim to be able to make predictions with an accuracy of 95%. In
our experiments, the success rate achieved was very close to 50%.

Since the problem to find out that the result bit is the XOR of 2 input bits is
rather easy, we also tested cryptographically better LFSRs with more tabs. The
length of the LFSRs was 15, and we used 5000 frames of length 20 for learning.
The success rate was very close to 50% with 8 tabs. With 6 and 4 tabs, the success
probabilities were better than 50%.

Why does the learning algorithm not succeed with many tabs? When we solve
linear equations, the problem is easy, no matter what the number of tabs is. The
problem can be solved with just 15 frames. However, the learning algorithm does
not know about the linear structure of the problem, it has to find that out for
itself. Unfortunately, decision trees are not very well suited to represent XORs of
many variables. The size of the decision tree grows exponentially with the number
of tabs. When few tabs are used, the heuristic simplification algorithms used by
C4.5 prefer the simpler decision tree representing the linear relationship to the
many other, more complicated decision trees also in concordance with the data.
When the number of tabs grows, the exponential growth of the correct decision
tree makes it less and less attractive for the heuristic simplification.

2.2 Truncated Linear Congruential Generator

The submitters also claim to obtain results with a truncated linear congruential
generator. We also tried to verify these results. We used a framelength of 80. The
paper gave an accuracy of 100% for the next bit prediction, but our result was
only 50.1%. Now one might think that we just did not apply the method correctly,
but finally we found out how to reproduce the results from the paper. We just
had to implement the truncated linear congruential generator wrongly, and then
we almost got the results from the paper. Our error rates and the error rates of
the submitters only differed by 0.1%. This small difference might be explained
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by some imprecision in the description of the experiment of the submitters. They
claim to have generated 100000 bits, and to have used 50000 frames for learning
and 50000 frames for testing. However, it takes 100080 bits to obtain 100000
frames. In our experiment, we used exactly 100000 frames.

The generator is defined by the iteration x := (a ∗ x) mod m . The problem
is that the multiplication a ∗ x of 32-bit-integers must be done with a precision
of 64 bits (or maybe some bits less, but 32 bits is definitely not enough). When
this is implemented using standard C arithmetic, a reduction modulo 232 is done
implicitly before the reduction modulo m. And apparently this happened to the
submitters. The consequence of this mistake is that the generator enters a cycle
of length 1651. There is a pre-period of length 18064. Of course, the machine
learning algorithm just learns the cycle, and is then able to predict the next
bits. The submitters give a strange explanation why their algorithm gives better
predictions for the test data than for the learning data. We think to have a better
explanation: the data used in the learning phase contained the pre-period, which
had not been learned perfectly; the test data contained only data from the cycle,
which had been learned perfectly.

3 Conclusion

The results of our experiments indicate that the suggested evaluation method for
pseudorandom bit sequences does not work as the submitters claim. The only case
for which the claim of the submitters could be verified are linear feedback shift
registers with a very small numbers of tabs. These LFSRs are much too simple
to be cryptologically relevant. For the truncated linear congruential generator,
the approach of the submitters did not work at all.

Because of these shortcomings the submission is considered not suitable for
the evaluation of cryptographic algorithms.
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Constructive Methods for the Generation of
Prime Numbers
by Marc Joye and Pascal Paillier ∗

Abstract. The generation of prime numbers underlies the use of most
public-key cryptosystems, essentially as a primitive needed for the cre-
ation of RSA key pairs. Surprisingly enough, despite decades of intense
mathematical studies on primality testing and an observed progressive in-
tensification of cryptography, prime number generation algorithms remain
scarcely investigated and most real-life implementations are of dramati-
cally poor performance.
This paper shows simple techniques that substantially improve all algo-
rithms previously suggested or extend their capabilities. We derive fast
implementations on appropriately equipped portable devices like smart-
cards embedding any kind of cryptographic coprocessor. This allows on-
board generation of RSA keys featuring a very attractive (average) pro-
cessing time.
Our motivation here is to help transferring this task from terminals where
this operation usually took place until now, to portable devices themselves
in near future for more confidence, security, and compliance with network-
scaled distributed protocols such as electronic cash or mobile commerce.

1 Introduction

Undoubtedly, the lack of efficient prime number generators severely restricts the
development of public-key cryptography in embedded environments. Several al-
gorithms that generate prime numbers do exist, some of them being well-known
and popular [121,122,168,430], but most of them are hardly adapted to the com-
putational context of portable devices like smart cards or PDA’s, where memory
capabilities and processing power are somewhat limited. A noticeable exception
is found in a recent heuristic algorithm by Joye, Paillier and Vaudenay [332].

This paper improves their algorithm in multiple directions. First, we give
a more general description with extended parameter choices that fit any given
(crypto-)processor architecture. Second, we present new techniques that speed up
the entire process and reduce the standard statistical deviation, especially in the
generation of so-called units. Third, we consider the issue of length extendibil-

∗ Security Technology Department, Gemplus, France
http://www.gemplus.com/
{marc.joye,pascal.paillier}@gemplus.com

This is an extended version of our results presented at the 2nd Open NESSIE
Workshop (Egham, UK, September 12–13, 2001).
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ity, that is, algorithmic solutions for obtaining primes of arbitrary, dynamically
chosen bit-size.

The prime number generation algorithms we consider here find their main
application in the generation of RSA keys on embedded platforms. This context
of use implies the additional condition on a prime q being generated, that q − 1
be coprime to the public RSA exponent e. We show how our algorithms may
automatically fulfil this latter condition at negligible cost, at least for small or
smooth values of e. Finally, as an illustrative application of our techniques, we
show how to efficiently generate a random safe (resp. quasi-safe) RSA modulus
as the product of two safe (resp. quasi-safe) primes. This answers a problem left
open in [332].

The rest of the paper is organised as follows. In Section 2, we review the
RSA primitive, both in standard and CRT modes, thereby fixing notations. The
following sections constitute the core of the paper as we show how to generate
an RSA modulus of prescribed length, for a given public exponent. In Section 7,
we explain how to generate a safe RSA modulus in a more efficient way. Finally,
we conclude in Section 8.

2 The RSA Primitive

RSA is certainly the most widely used cryptosystem today. We give hereafter a
short description which allows us to introduce notations, referring the reader to
the original paper [543] or any textbook in cryptography (e.g. [441]) for further
detail.

Let N = pq be the product of two large primes. We let e and d denote a pair
of matching public and private exponents according to

e d ≡ 1 (mod λ(N)) ,

with gcd(e, λ(N)) = 1 and λ being Carmichæl’s function. As N = pq, we have
λ(N) = lcm(p−1, q−1). Given x < N , the public operation (e.g. message encryp-
tion or signature verification) consists in raising x to the e-th power modulo N ,
i.e. in computing y = xe mod N . Then, given y, the corresponding private opera-
tion (e.g. decryption of a ciphertext or signature generation) computes yd mod N .
From the definition of e and d, we obviously have that yd ≡ x (mod N). The
private operation can be carried out at higher speed through Chinese remainder-
ing (CRT mode [167, 202]). Computations are independently performed modulo
p and q and then recombined. In this case, private parameters are (p, q, dp, dq, iq)
with dp = d mod (p− 1) ,

dq = d mod (q − 1) , and
iq = q−1 mod p .

We then obtain yd mod n as

CRT(xp, xq) = xq + q [iq(xp − xq) mod p] ,
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where xp = ydp mod p and xq = ydq mod q. We expect a theoretical speed-up
factor close to 4 (see [167]), compared to the standard, non-CRT mode.

Thus, an RSA modulus N = pq is the product of two large prime numbers p
and q. If n denotes the bit-size of N then p must lie in the range

[⌈
2n0−1/2

⌉
, 2n0

]
and q must lie in the range

[⌈
2n−n0−1/2

⌉
, 2n−n0

]
for some 1 < n0 < n, so

that 2n−1 < N = pq < 2n. For security reasons, so-called balanced moduli are
generally preferred, which means n0 = dn/2e.

The next section describes an efficient (trial-division free, as opposed to
[109, 122, 168, 430]) algorithm for producing a prime q uniformly distributed in
some given interval [qmin, qmax], or a sub-interval thereof, qmin and qmax being
two arbitrarily chosen integers and qmin < qmax. Our proposal actually consists
in a pair of algorithms: the prime generation algorithm itself and an algorithm
for generating invertible elements, also called units [332]. We assume that a ran-
dom number generator is available, and that some fast (pseudo) primality (resp.
compositeness [26, 115, 372, 450, 521, 540, 590]) testing function T is provided as
well. As this paper focuses on prime number generation and not on primality
testing, we refer the reader to the excellent survey in [441, Chapter 4].

3 Generic Prime Number Generation

Let 0 < ε ≤ 1 denote a quality parameter (a typical value for ε is 10−3). Our
setup phase requires to choose a product of (distinct) primes Π =

∏
i pi such

that there exist integers t, v, w satisfying

(P1) 1− ε < wΠ − 1
qmax − qmin

≤ 1;

(P2) vΠ + t ≥ qmin;
(P3) (v + w)Π + t− 1 ≤ qmax;
(P4) the ratio φ(Π)/Π is as small as possible.

The primes output by our algorithm lie, in fact, in the sub-interval [vΠ +
t, (v + w)Π + t− 1] ⊆ [qmin, qmax] as illustrated on Fig. 3.

� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �

����� � � ���
	

������� �
���

� �
���
� �
���
� �

Fig. 64. ε-approximated output domain

The error in the approximation is captured by the value of ε meaning that a
smaller value for ε gives better results (cf. Property (P1)). The minimality of the
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ratio φ(Π)/Π in Property (P4) ensures that Π contains a maximum number of
distinct primes and that these primes are as small as possible. Given any triplet
(qmin, qmax, ε), computing the tuple (Π, v,w, t) that best matches Properties (P1)-
(P4) is easy. We do not describe that pre-computation stage explicitly here due
to lack of space.

Parameters: l = vΠ, m = wΠ, t, and a ∈ (Z/mZ)∗ \{1}
Output: a random prime q ∈ [qmin, qmax]

1. Randomly choose k ∈ (Z/mZ)∗

2. Set q ← [(k − t) mod m] + t + l
3. If (T(q) = false) then

a) Set k ← ak (mod m)
b) Go to Step 2

4. Output q

Fig. 65. Generic prime generation algorithm for q ∈ [qmin, qmax].

We now proceed to describe our prime number generation algorithm in its
most generic version, as depicted on Fig. 65. The first step requires the random
selection of an integer k ∈ (Z/mZ)∗, and we show how to do that efficiently later
in the paper. At this stage, it is worthwhile noticing that if a and k both belong
to (Z/mZ)∗ so does their product ak mod m, since (Z/mZ)∗ is a (multiplicative)
group. Therefore, throughout the above algorithm, k remains coprime to m and
also to Π — remember that Π contains a large number of prime factors by
Property (P4). This, in turn, implies that q is coprime to Π as q ≡ [(k − t) mod
m]+ t+ l ≡ k (mod Π) and k ∈ (Z/ΠZ)∗. Hence, this technique ensures built-in
coprimality of our prime candidate q with a large set of small prime numbers.
Consequently, the probability under which q is prime at Step 3 is in fact quite
high. When q is found to be composite, a new candidate is derived by “recycling”
q in a way that preserves its coprimality to Π. An interesting feature is that
each and every prime lying in the prescribed range (and therefore each and every
prime in [qmin, qmax] except an ε fraction of it, cf. Fig. 3) can be selected by
our technique. Finally, note that the order of a in (Z/mZ)∗ should be made as
large as possible in order to prevent the search sequence, i.e. the list of successive
candidates, from falling into a periodic, prime-free infinite loop.1

The previous algorithm is actually very general and can be adapted in numer-
ous ways, depending on hardware capabilities of the targeted processor architec-
ture. Public-key crypto-processors generally allow super-fast (modular) additions,
subtractions and multiplications over large integers, and this renders other types
of computations comparatively prohibitive, unless specific hardware is integrated
to support these. In the sequel, we give a possible implementation to illustrate

1 This event may occur with very small probability, though, unless the order of a in
(Z/mZ)∗ happens to be trivially small.
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this, in which we attempt to increase our algorithm’s performance to its upper-
most level while running on a general-purpose crypto-processor. Other choices of
parameters may lead to better results on specific platforms.

3.1 An Implementation Example

The optimal value for t is certainly t = 0. Moreover, it is advantageous to choose
the constant a so that performing a multiplication by a modulo m turns out to
be a somewhat trivial operation. In the end, the best possible choice is a = 2,
because multiplying by 2 then reduces to a single bit shift or addition, possibly
followed by a subtraction. Unfortunately, 2 must belong to (Z/mZ)∗ and owing
to Property (P4), 2 is a factor of Π and so of m, a contradiction. A simple trick
here consists in choosing m odd (so that 2 ∈ (Z/mZ)∗) and in slightly modifying
the above framework in order to ensure that a prime candidate q be always odd.
We require Π =

∏
i pi (with pi 6= 2) and integers v and w (w odd) satisfying:

(P2’) vΠ + 1 ≥ qmin;
(P3’) (v + w)Π − 1 ≤ qmax.

Another improvement consists in letting the value of l vary as a random
multiple of Π instead of fixing it. This allows to compute modulo Π instead of
modulo m, resulting in faster arithmetic. Putting it all together, we obtain the
algorithm shown on Fig. 66.

Parameters: Π odd, v, w, l
Output: a random prime q ∈ [qmin, qmax]

1. Randomly choose k ∈ (Z/ΠZ)∗

2. Randomly choose j ∈ {v, . . . , v + w − 1}
3. Define l← j Π
4. Set q ← k + l
5. If (q even) then q ← Π − k + l
6. If (T(q) = false) then

a) Set k ← 2k (mod Π)
b) Go to Step 4

7. Output q

Fig. 66. Faster prime generation algorithm

Note that if k+l is even thenΠ−k+l is odd sinceΠ−k+l ≡ Π+(k+l) ≡ Π ≡
1 (mod 2). Hence, as before, any candidate q belonging to our search sequence
is coprime to 2Π: we get gcd(q, 2) = 1 as q is odd, and gcd(q,Π) = 1 as q ≡ ±k
(mod Π) and ±k ∈ (Z/ΠZ)∗.

A complexity analysis is easily driven from the work of [332]. The expected
number of calls to T, i.e. the number of primality or compositeness tests required
in average, heuristically amounts to ln 2·|qmax|·φ(Π)

Π . Naturally the exact, concrete
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efficiency of our implementation also depends on hardware-related features. In
any case, in practice, a spectacular execution speed-up2 is generally observed
in comparison with usual, incremental and trial-division-based prime number
generators.

4 Generation of Units

All prime generation algorithms presented in this paper (as well as those in [332])
require the random selection of some element k ∈ (Z/mZ)∗. This section provides
an algorithm that efficiently produces such an element with uniform output dis-
tribution. We base our design on the next two propositions.

Proposition 4.1. For all k ∈ Z/mZ, k ∈ (Z/mZ)∗ if and only if kλ(m) ≡ 1
(mod m).

Proof. We have k ∈ (Z/mZ)∗ if and only if, for all primes pi | m, gcd(k, pi) =
1 meaning that kpi−1 ≡ 1 (mod pi) so that kλ(m) ≡ 1 (mod m) by Chinese
remaindering. ut

Proposition 4.2. For all k and r ∈ Z/mZ s.t. gcd(r, k,m) = 1, we have

[k + r(1− kλ(m))] ∈ (Z/mZ)∗ .

Proof. Let
∏
i pi

δi denote the prime factorisation ofm. Define ω(k, r) := [k+r(1−
kλ(m))] ∈ Z/mZ. Let pi be a prime factor of m. Suppose that pi | k then ω(k, r) ≡
r 6≡ 0 (mod pi) since gcd(r, pi) divides gcd(r, gcd(k,m)) = gcd(r, k,m) = 1.
Suppose now that pi - k then kλ(m) ≡ 1 (mod pi) and so ω(k, r) ≡ k 6≡ 0
(mod pi). Therefore for all primes pi | m, we have ω(k, r) 6≡ 0 (mod pi) and
thus ω(k, r) 6≡ 0 (mod piδi), which, invoking Chinese remaindering, concludes
the proof. ut

We benefit from these facts by devising the unit generation algorithm shown
on Fig. 67. This algorithm is self-correcting in the following sense: as soon as k
is relatively prime to some factor of m, it remains coprime to this factor after
the updating step k ← k + rU . This is due to Proposition 4.2. What happens
in simple words is that, viewing k as the vector of its residues k mod pδi

i for all
pδi
i | m (i.e. the RNS representation of k based on m, see [202]), non-invertible

coordinates of k are continuously re-randomised until invertibility is reached for
all of them. In this respect, it is not difficult to prove that the output distribution
is uniform provided that the random number generator has a uniform output
distribution. Besides, the cost of this unit generator can be formally evaluated
and roughly amounts to a couple of exponentiations3 modulo m with exponent
2 which usually amounts to one order of magnitude.
3 The running time happens to be rather insensitive to the choice of Π’s prime factors,

provided that the first small primes are included.
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Parameters: m and λ(m)
Output: a random unit k ∈ (Z/mZ)∗

1. Randomly choose k ∈ [1, m)

2. Set U ← (1− kλ(m)) mod m
3. If (U 6= 0) then

a) Choose a random r ∈ [1, m)
b) Set k ← k + rU (mod m)
c) Go to Step 2

4. Output k

Fig. 67. Our unit generation algorithm

λ(m), in average (again, we do not include these results here due to the lack of
space). Note also that all computations fall into the range of operations easily
and efficiently performed by any crypto-processor.

5 Length Extendibility

So far, our implementation parameters are Π, a, the triplet (v, w, t) and λ(m)
with m = vΠ. These values are chosen once and for all and heavily depend on
qmin = d2n0−1/2e and qmax = 2n0 , if n0 denotes the bit-size of prime numbers
being generated. Now, the feature we desire here (and this is motivated by code
size limitations embedded platforms usually have to work with), consists in the
ability to use the parameters sized for n0 to generate primes numbers of bit-
size n 6= n0. A performance loss is acceptable compared to the situation when
parameters are generated for both lengths.

We propose an implementation solving that problem for any n ≥ n0, provided
that a was chosen odd and that arithmetic computations can still be carried out
over n-bit numbers on the processor taken into consideration. It is an extended
version of the algorithm depicted on Fig. 65. We exploit the somewhat obvious,
following facts:

1. letting qmax(x) = 2x and qmin(x) = d2x−1/2e, we have of course qmax(n) =
qmax(n0)2n−n0 and qmin(n) ≈ qmin(n0)2n−n0 ,

2. given Π(n0) chosen as in Section 3, we take
Π(n) = Π(n0) ,
v(n) = v(n0)2n−n0 ,
w(n) = w(n0)2n−n0 , and
t(n) = t(n0)2n−n0 ,

hence l(n) = l(n0)2n−n0 and m(n) = m(n0)2n−n0 ,
3. a(n) = a(n0), hence a(n) ∈ (Z/m(n)Z)∗ since a(n0) is taken odd,
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4. given λ(n0) = λ(m(n0)), it is easy to see that denoting λ(n) = λ(n0)2n−n0 ,
we have again λ(n) = λ(m(n)), or at least λ(n) ∝ λ(m(n)) which is a
sufficient condition for the unit generation algorithm to be effective.

These transformations happen to preserve Properties (P1), (P2) and (P3) we
required earlier, with ε(n) = ε(n0). The reader easily sees that all parameters
for some bit-size n may, as a direct consequence, be replaced by the respective
parameters computed for n0 multiplied by 2n−n0 , except for Π(n) = Π(n0).
By performing this replacement, we just accept to live with under-optimised
performances because the ratio φ(Π(n))/Π(n) will not be chosen minimal. Still,
our algorithm will output n-bit primes in a correct manner, for any dynamic
choice of n ≥ n0, with a granularity of one single bit. Our extended algorithm is
depicted on Fig. 68.

Parameters: l(n0) = v(n0)Π(n0), m(n0) = w(n0)Π(n0),
t(n0), a(n0) ∈ (Z/m(n0)Z)∗\ {1}, n0

Input: bit-size n ≥ n0

Output: a random prime q ∈ [qmin(n), qmax(n)]

1. Set m← m(n0)2
n−n0, t← t(n0)2

n−n0 and l← l(n0)2
n−n0

2. Randomly choose k ∈ (Z/mZ)∗

3. Set q ← [(k − t) mod m] + t + l
4. If (T(q) = false) then

a) Set k ← a(n0) · k (mod m)
b) Go to Step 3

5. Output q

Fig. 68. Our scalable prime generation algorithm

In Step 2, the random unit generation is executed with parameters m(n0)2n−n0

and λ(n0)2n−n0 instead of m(n0) and λ(n0). This does not affect the algorithm
whatsoever. Another observation is that the order of a(n) modulo m(n) is neces-
sarily larger than (or equal to) the order of a(n0) modulo m(n0). It is therefore
large enough for all our choices of n provided that a(n0) was correctly chosen in
the first place.

6 Public Exponent

This section deals with the generation of a prime q such that the condition
gcd(e, q − 1) = 1 is automatically satisfied. Let e =

∏
i ei

νi denote the prime
factorisation of our public exponent e. Because the RSA primitive induces a per-
mutation (i.e. gcd(e, λ(N)) = 1), it turns out that RSA primes p and q must be
such that gcd(ei, p− 1) = 1 and gcd(ei, q − 1) = 1 for each prime ei dividing e.

First, let us assume that ei | Π for all i. This happens in the most popular
scenario where e is some small prime (like 3 or 17) or when e is chosen smooth.
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Let α be an integer coprime to Π and of maximal order modulo ei for all ei
dividing e, i.e.

gcd(α,Π) = 1 and order(α mod ei, ei) = ei − 1 for each ei | e .

In practice, the choice of a value for α may be done easily using Chinese remain-
dering. Note that for such an α, we get that order(α, ei) is simultaneously even
for all prime factors {ei}i. We define e+ = gcd(e,Π) =

∏
i ei and denote by

k0 the initial value for k that the unit generation algorithm of Fig. 67 gets by
invoking the random number generator in Step 1. It is easily seen that if we force

k0 ≡ α (mod e+) , (1)

then the unit k eventually output by the algorithm will also verify that k ≡ α
(mod e+). This is due to the algorithm’s self-correctness. We then adapt the
generic prime generation algorithm by choosing a = α2. By doing this, every
candidate q generated by the sequence will satisfy

q ≡ α2j+1 (mod e+) ,

for some integer j, because e+ | Π. So we can never have q ≡ 1 (mod ei) since
α is of even order modulo ei and q is an odd power of α. Consequently, q 6≡ 1
(mod ei) for all i, which implies gcd(q − 1, e) = 1.

So our technique works when ei | Π for all i, that is, when e has only small
prime factors. To deal with cases when ei - Π for some ei | e, we face the following
options:

– either e is a prime number itself (like Fermat’s fourth prime 216 + 1) and we
add the verification step

q − 1
?≡ 0 (mod e)

before or after the primality test T is applied;
– or e is not prime but its factorization is known. We already know that q 6≡ 1

(mod ei) when ei | Π, so we have to ensure that the same holds when ei - Π.
To do this, we simply check if q − 1 ≡ 0 (mod ei) for all prime factors ei - Π,
or equivalently (but preferably) invoke Proposition 4.1 and make sure that

(q − 1)λ(e−) 6≡ 1 (mod e−) ,

where e− =
∏
i ei for all ei - Π.

In both cases, unfortunately, adding at least one complementary test to the
implementation cannot be avoided. Finally, forcing k0 ≡ α (mod e+) in Eq. (1)
is easily done by picking a random number r and setting k0 = α+ er (mod Π).

7 Generating Safe and Quasi-Safe Primes

We now show how to apply our generic techniques to the specific case of generat-
ing safe primes. A similar algorithm for quasi-safe primes is obtained in the same
spirit with minor variations.
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7.1 Safe Primes

We start by listing the properties fulfilled by a number q generated by our algo-
rithm:

1. q is an n-bit number for a given bit-size parameter n,
2. q belongs to [qmin, qmax] where qmin = d2n−1/2e and qmax = 2n,
3. q is a prime number,
4. (q − 1)/2 is a prime number.

Using earlier notations, parameters (Π, l = vΠ, t,m = wΠ,λ(m)) are pre-
computed as in Section 3 so that m − 1 lower-approximates the window width
qmax − qmin up to a fixed precision, say ε = 10−3. We assume that we dispose
of a random number generator over [1,Π), a fast primality testing function T()
mapping integers to {true, false}, and an algorithm for generating invertible
elements modulo m as described in Section 4.

All the point here resides in the way the search sequence is carried out. It
should ideally verify that each and every candidate q(i) be such that both q(i)

and (q(i) − 1)/2 are coprime to Π. It is somewhat easy to guarantee that for q(i)

by ensuring (like in previous sections) that

q(i) ≡ ai k (mod Π)

for some initially (uniformly) generated k ∈ (Z/mZ)∗ and a ∈ (Z/mZ)∗. How-
ever, the later constraint on (q(i) − 1)/2 is a bit more delicate. Our need here is
to ensure that for each prime divisor p 6= 2 of Π,

q(i) 6≡ 1 (mod p) , (2)

and q(i) ≡ 3 (mod 4) if 2 divides Π.
To fulfil the condition given by Eq. (2), we will make sure that q(i) mod p

just cannot be an element of QR(p), the subgroup of quadratic residues mod p.
Doing so, we ensure that q(i) 6≡ 1 (mod p) whenever p | Π. We proceed in the
following manner. First, the constant a is chosen in QR(m). Then, we choose
once for all a parameter u ∈ (Z/mZ)∗ such that

for all (odd) primes p dividing Π, we have u 6∈ QR(p) .

From there on, the initial unit k is chosen as k = u ·χ2 mod m for some random
χ ∈ (Z/mZ)∗ and we set as before

q(i) = [(aik − t) mod m] + t+ l .

Then, for each and every odd p | Π, q(i) ≡ aiuχ2 mod p has a Legendre symbol
different from 1, and consequently q(i) − 1 cannot be 0 modulo p, i.e. q(i) − 1
is coprime to (the odd part of) Π. When Π is even, we have to make sure, in
addition to the above, that q(i) ≡ 3 mod 4 meaning that the last two bits in
the binary representation of q(i) are forced to . . . 112, thereby guaranteeing that
(q(i)−1)/2 is an odd number and consequently that (q(i)−1)/2 ∈ (Z/ΠZ)∗. This
is done by choosing Π a multiple of 4 and by forcing k ≡ 3 (mod 4) and a ≡ 1
(mod 4). Putting all this together and letting Π = 4Πodd (with Πodd =

∏
i pi

for primes pi > 2) drives us to the algorithm described on Fig. 69.
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Parameters: Π = 4 Πodd, l = vΠ, m = wΠ, t
a ∈ QR(m) \ {1} s.t. a ≡ 1 (mod 4), and
u ∈ (Z/mZ)∗ s.t. u /∈ QR(p),∀p | Πodd

Output: a random prime q ∈ [qmin, qmax] with (q − 1)/2 prime

1. Randomly choose χ ∈ (Z/mZ)∗

2. Set k = 4uχ2 +
`
4− (Πodd mod 4)

´
Πodd mod m

3. Set q ← [(k − t) mod m] + t + l
4. If (T(q) = false or T((q − 1)/2) = false) then

a) Set k ← ak (mod m)
b) Go to Step 2

5. Output q

Fig. 69. Safe prime generation algorithm for q ∈ [qmin, qmax].

7.2 Quasi-Safe Primes

A d-quasi-safe prime is a prime number q such that (q−1)/2d is a prime number.
It is straightforward to extend our algorithm to the case of d-quasi-safe prime
numbers. In this case, the constraint q(i) ≡ 3 (mod 4) has to be extended to
q(i) ≡ 2d + 1 (mod 2d+1).

7.3 Efficiency

Heuristically, about

ρ =
(
φ(Π)
Π

ln qmax + 1
)(

φ(Π)
Π

ln qmax

)
primality tests are required. This is ≈ 25 times faster than incremental search
algorithms (where we iterate q = q + 2 until q and (q − 1)/2 are simultaneously
prime) for 512-bit numbers.

7.4 Security

Since the groups of quadratic (resp. non) residues modulo p | Π are all cyclic and
contain (p−1)/2 elements, the set of possible outputs of our algorithms is a frac-
tion of the set of safe primes, the ratio being 2−ν where ν is the number of distinct
primes dividing Π. So there exists a loss of roughly ν bits of entropy compared
to the uniform distribution over safe primes (heuristically). This may not be a
lot, because typically ν = 74 for 512-bit numbers and safe primes, although being
quite scarce, remain numerous (about 2512−2·log 512 = 2494). Besides, as n →∞,
ν becomes negligible before n − 2 log n (see prior literature [332]), making the
bias vanishing asymptotically.
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8 Conclusion

We devised simple computation techniques that improve the work of [332] in
multiple ways. It is argued that our algorithms present much better performances
than previous, classical methods.

We also would like to stress that our prime generation algorithm may support
additional modifications mutatis mutandis in order to simultaneously reach other
properties on q — for instance forcing the last bits of q to fit the Rabin-Williams
cryptosystem with even public exponents. Independently, some applications re-
quire that the pair of primes satisfy specific properties such as being strong or
compliant with ANSI X9.31 recommendations [20]. We refer the reader to [332]
for a collection of mechanisms allowing to produce such primes. We point out
that our improvements may coexist perfectly with these.

We also proposed a specific implementation for generating safe prime numbers
which really boosts real-life execution performances. We stress that, implementing
our techniques, a complete RSA key generation process can be executed on any
given crypto-enhanced embedded processor in nearly all circumstances and with
extremely attractive running times.
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Cryptanalysis of LILI-128
by Steve Babbage ∗

Abstract. LILI-128 is a stream cipher that was submitted to NESSIE.
Strangely, the designers do not really seem to have tried to ensure that
cryptanalysis is no easier than by exhaustive key search. We show that
there are indeed attacks faster than exhaustive key search. We also demon-
strate a related key attack which has very low complexity, and which could
be of practical significance if the cipher were used (misused?) in a certain
rather natural way.

Keywords. LILI-128, stream cipher, NESSIE, time-memory tradeoff,
rekeying, related key attack.

1 Introduction

LILI-128 is a synchronous stream cipher designed by Dawson, Clark, Golić, Mil-
lan, Penna and Simpson [187], and submitted to NESSIE. It uses a 128-bit key.

No very serious effort seems to have been made by the designers to ensure
that cryptanalysis of this cipher is as hard as exhaustive search on a 128-bit key.
For instance they write that:

. . . we conjecture that the complexity of divide and conquer attacks on
LILI-128 is at least 2112 operations. . .This is a conservative estimate,
and the true level of security may be much higher.

But it seems reasonable to insist that any cipher recommended by NESSIE should
not be subject to any attack faster than exhaustive key search. In this note we
show that there are indeed attacks faster than exhaustive key search. We also
demonstrate a related key attack which has very low complexity, and which could
be of practical significance if the cipher were used in a certain rather natural way.

2 Overview of LILI-128

There are two LFSRs: LFSRc, which is 39 bits long, and LFSRd, which is 89
bits long (so a total of 128 bits of internal state). Both have primitive feedback
polynomials. For each keystream bit:
∗ Vodafone Group R&D, Newbury, UK
steve.babbage@vodafone.com
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– The keystream bit is produced by applying a nonlinear function fd to 10 of
the bits in LFSRd. fd is balanced, of course; it has nonlinear order 6 and
correlation immunity of degree 3. The stages from which the inputs are taken
form a full positive difference set.

– LFSRc is clocked once. Two bits from LFSRc determine an integer c in the
range {1, 2, 3, 4}.

– LFSRd is clocked c times.

The keystream generator is initialised simply by loading the 128 bits of key
into the registers. Keys that cause either register to be initialised with all zeroes
are considered invalid.

3 Time-Memory Tradeoff Attack

The simplest observation to be made is that the size of the internal state is
only 128 bits, and so there are clearly time-memory tradeoff attacks faster than
exhaustive search if any significant quantity of observed keystream is available
(see [1, 2]).

The usual time-memory tradeoff involves:

– a preprocessing stage in which a large dictionary is built containing many
(state, 128-bit keystream sequence) pairs, sorted by keystream sequence;

– an actual attack stage, in which observed (overlapping) 128-bit keystream se-
quences are looked up in the dictionary; if a match is found, then with high
probability the associated state was the internal state of the generator when
that observed keystream sequence was produced.

The basic attack introduced by Babbage [27] has complexity1 T = D = N/M
and P = M = N/D, where T is the time for the actual attack stage, D is
the quantity of observed keystream, N is the size of the internal state space (so
2128 in this case), M is the amount of memory required, and P is the time for
the preprocessing stage. Even if a generous 240 observed keystream bits were
available, the dictionary would require memory for 288 records, which is clearly
impractical.

Biryukov, Shamir and Wagner [87,89] introduced techniques for saving mem-
ory, allowing a more flexible tradeoff TM2D2 = N2 (and still P = N/D) for
any D2 ≤ T ≤ N . In this case, with 240 observed keystream bits and memory
for 236 records, the time for an actual attack is 2104. The memory and observed
keystream requirements are just about feasible, and the time for both stages is
faster than exhaustive search (although logarithmic terms have been omitted,
which in practice would push the time closer to 2128). With only 228 observed
keystream bits and memory for 236 records, T becomes 2128, so there is no im-
provement over exhaustive search.

But it must be remembered that this tradeoff is just about finding a common
item in two lists: list A of keystream sequences generated from known states, and
1 We ignore logarithmic terms.
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list B of observed keystream sequences. One list is sorted into a dictionary, and
then items on the other list are looked up in the dictionary. As observed in [27],
it can be either of the lists that is sorted into a dictionary. So even with only
228 observed keystream bits, an attack is possible with time complexity 2100 and
memory 228: sort the observed overlapping 128-bit keystream sequences into a
dictionary, then repeatedly (around 2100 times) try a random state, generate 128
bits of keystream from it, and look for the result in the dictionary.

It is clear that any significant quantity of consecutive keystream bits (or,
more generally, regularly spaced linear combinations of keystream bits) can be
used in this way for an attack that is faster than exhaustive key search. The more
observed bits, the faster the attack.

4 Solving Simultaneous Linear Equations

Guess the 39 key bits used to initialise the clock control register LFSRc. For
the correct guess, you then know exactly how many times LFSRd has been
clocked when each keystream bit is generated. Each keystream bit is thus a 6th

order function of ten bits, each of which is a known linear combination of the
remaining 89 key bits. So each keystream bit is a known linear combination of
all the possible products of up to 6 of those 89 bits.

There are
∑6
i=1

(
89
i

)
= 625173825 ≈ 1.16 × 229 products of up to 6 from 89

bits. So with roughly that many observed keystream bits, the problem reduces
to solving simultaneous linear equations in that many variables. (We also have
to reject incorrect guesses for LFSRc, but that is simple — either the linear
equations will be inconsistent, or else their solutions will be inconsistent when
interpreted as products of secret key bits.)

Without trying to implement it, it is difficult to know exactly how long
solving that many simultaneous equations would take in practice. Coppersmith
and Winograd [148] have an asymptotic time complexity for matrix inversion of
O(n2.376), but with a large constant factor. Strassen’s algorithm [599] has com-
plexity 7n2.807−6n2, so 284.8 in this case; the overall attack would therefore have
time complexity 239+84.8 = 2123.8, which is marginally less than exhaustive key
search. However, just storing the coefficients of the equations would require 258

bits, which is impractical. So, with today’s computers and algorithms, this seems
to be an academic rather than a practical attack.

A rather similar attack is considered by the designers in [187], but they suggest
that roughly 239

(
89
6

)
keystream bits would be required. As we see above, by

guessing the contents of LFSRc and then performing a linearity attack just on
LFSRd, we eliminate the factor 239.

5 Rekeying / Related Key Attacks

It is very common for stream ciphers to be used repeatedly with the same secret
key, loaded in combination with some varying non-secret initialisation vector.
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There is therefore good reason to consider the effect of this rekeying — which in
effect amounts to a related key attack, but with rather more justification than
related key attacks tend to have against block ciphers.

The simplest way to combine a secret key and an IV is to XOR them together.
(The use of IVs for encryption of multiple frames in WEP, in which a secret
component is concatenated with a varying IV, can be viewed as a special case of
this.) If LILI-128 is rekeyed in this way, then the system can become extremely
weak, as we now explain.

Note: when this paper was originally written, the designers of LILI-128 had
not specified a rekeying mechanism. Since then, they have [186]; the mechanism
they propose avoids the attack described here. So this attack now serves as:

– a warning that, if LILI-128 is to be used for a rekeyed application, the mecha-
nism proposed in [186] should be used, rather than the more näıve one described
above;

– a general related key attack, with as much chance of becoming relevant as a
related key attack on a block cipher (see [345] for a discussion on how these
attacks can become relevant in practical situations).

Suppose that:

– the 128-bit secret key is k;
– a number of successive 128-bit IVs are v1...vr;
– LILI-128 is loaded (i.e. the registers initialised) with k ⊕ vi;
– the corresponding keystream sequences are available to the cryptanalyst.

The attack proceeds in two phases, which we will first outline and then de-
scribe in slightly more detail:

Phase 1: Guess the 39 secret key bits used to initialise the clock control register
LFSRc, and quickly reject incorrect guesses, so that the correct value is known.
For each IV vi , we now know exactly how many times LFSRd has been clocked
when each keystream bit is generated.

Phase 2: Compare several keystream bits produced using different IVs but
when LFSRd has been clocked exactly the same number of times. Deduce
the secret key components of the 10 input bits to the nonlinear function fd at
that point. Repeat several times, to obtain plenty of linear equations in the 89
secret key bits used to initialise LFSRd. Solve those linear equations to obtain
the secret key bits.

For the detail, we will introduce some notation. When LFSRd is initialised
with just the secret key k (i.e. with IV all 0s), and then clocked t times, let the
10-bit vector representing the inputs to the nonlinear output function fd be kt.
When LFSRd is initialised with just vi and then clocked t times, let the 10-bit
vector representing the inputs to fd be vit.

Clearly, when LFSRd is initialised with k ⊕ vi and then clocked t times, the
10-bit vector representing the inputs to fd is kt ⊕ vit.
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Detail of phase 1. We can reject incorrect guesses for LFSRc as follows. Find
a value t, and different IVs vi and vj , such that vit and vjt are equal, and for
which keystream bits are in fact generated in each case when, according to our
guess, LFSRd has been clocked exactly t times. (For any fixed t, the probability
that a keystream bit will be generated when LFSRd has been clocked exactly t
times is approximately 0.4.) If our guess is correct, the two keystream bits must
be equal. If it is incorrect then they will be equal with probability roughly 1

2 .
Roughly 39 comparisons will suffice to reject all incorrect guesses, and identify

the correct one.
For this method to work, there are tradeoffs between the number r of different

IVs available and the length l of each keystream sequence; the nature of the
tradeoffs depends to some extent on the nature of the IVs. If different IVs are
independently random, then there are roughly (0.4)(2−10)

(
r
2

)
l pairs of keystream

bits with the same values of vit and vjt; this formula reaches the required value
of ≈ 39 for instance when r = 32 and l = 202, or when r = 16 and l = 832, or
when r = 64 and l = 50. We need l ≥ 20 to ensure that the whole of LFSRc is
covered. The analysis is slightly more complex if successive IVs are related, e.g.
if they are successive values of some counter.

If we guess all 39 bits of LFSRc together, and then look to reject incorrect
guesses, then the complexity is slightly greater than 239. But in fact we can break
the work down and guess just a couple of bits at a time. (Guess the two secret key
bits contributing to the first integer c ∈ {1, 2, 3, 4}; confirm or reject this guess
as described above; go on to the two secret key bits contributing to the second
integer c; etc etc.) So the complexity of Phase 1 is very low indeed.
Detail of phase 2. We now know exactly how many times LFSRd has been
clocked when each keystream bit is generated. We proceed to determine the
contents of LFSRd.

For some value t, find several different IVs vi such that in each case keystream
bits are generated when LFSRd has been clocked exactly t times. Then consider
all possible values for kt. For the correct value of kt, the observed keystream bit
for IV vi will always equal fd(kt ⊕ vit); for incorrect values of kt, equality will
hold with probability roughly 1

2 . Roughly ten different IVs will suffice to reject
all incorrect guesses, and determine the correct one.

Determining kt gives us ten linear equations in the secret key bits used to
initialise LFSRd. Repeating 10 or 11 times will give us 100–110 equations, which
should be enough to determine those 89 secret key bits (there will be some over-
lap between the equations since the same register bit will appear repeatedly in
different positions).

The complexity of Phase 2 is again extremely low. If even very short (not much
more than 10-bit) keystream sequences are available for 25 different IVs, then for
enough values of t the expected number of times a keystream bit is generated
when LFSRd has been clocked exactly t times is approximately 10, which is
sufficient. Slightly fewer keystream sequences will suffice if they are longer (the
values of t with ten or more “hits” will be more scattered).
Other comments and summary. There are variations on the above process.
k0 can be determined without knowing anything at all about LFSRc. Phases 1
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and 2 could be combined: guess the first few bits used from LFSRc, and one of
k1, k2, k3 and k4, rejecting inconsistent guesses for both together; determine the
rest of k1, k2, k3 and k4; go on to the next few bits used from LFSRc, and so on.
And we don’t necessarily have to reject all but one possibility at every stage —
we can keep a few possibilities “live” at once, as long as the number doesn’t keep
growing. With this combined approach it suffices to have roughly 30 sequences
of a little over 20 bits each. Anyway, it is clear that an attack of this kind can
be performed if a rather small number of rather short keystream sequences are
available. And the complexity of the attack is very low (real-time, even, as far as
that makes sense for an attack on multiple uses of the same cipher).

We have restricted ourselves to keys related by XORing different known IVs.
If the IVs are chosen by the cryptanalyst — which is an optimistic but not
completely fanciful assumption — then variations become possible with even
smaller data requirements. Keys with more general chosen relationships would
open up a host of other possibilities, but of less practical significance.

6 Design Criteria for the Nonlinear Function

The keystream bit is computed using a non-linear function on 10 of the bits in
LFSRd. Amongst other criteria, the function was chosen to have fairly high order
correlation immunity (order 3). This choice was made to give resistance against
correlation attacks.

This seems to be a misguided application of correlation immunity. Having no
correlation to subsets of up to three of the input bits is rather pointless, because
there is correlation to sums of four or more bits — and any sum of the bits from
four or more stages of an LFSR is itself a linear sequence from the same LFSR.
When all input bits come from one LFSR, sums of small numbers of input bits
are no more in need of protection from correlation attacks than sums of large
numbers of input bits.

As noted in section 4.3 of [187], there is merit in having at least first order
correlation immunity, to prevent attacks that track a bit from one position in
LFSRd to another. But correlation immunity of order greater than one seems an
inappropriate criterion (the input stages to fd form a full positive difference set, so
no two bits appear together twice as inputs). A more appropriate criterion might
have been to choose a balanced, first order correlation immune function with
minimum correlation to any linear function of more than one bit. (It may be that
any such function achieves only marginally better nonlinearity than the LILI-128
function — this observation is about the criteria for selecting the function rather
than the function itself.)

7 Conclusions

General. If a general-purpose cipher has a 128-bit key, it is expected that there
should be no attack faster than 128-bit exhaustive search. But it does not appear



Dra
ft

Apr
il
19

, 2
00

4

Cryptanalysis of LILI-128 713

that the designers of LILI-128 have really tried to ensure that there are no attacks
faster than exhaustive key search; there are various faster attacks, including at
least one very straightforward one.

Related key attacks. For better or for worse, related key attacks against block
ciphers are taken seriously. A related key attack faster than exhaustive key search
against one of the AES candidates would have been enough to remove it from
contention. We have demonstrated a related key attack against LILI-128 which
requires only a few tens of related keys, and has very low complexity; these related
keys could be available in practical use if the system is rekeyed in a certain näıve
way, rather than according to the designers’ recent recommendation, or in any
other context in which a related key attack could become practical.
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Differential, Linear, Boomerang and Rectangle
Cryptanalysis of Reduced-Round Camellia
by Taizo Shirai ∗

Abstract. We propose a new search method to obtain differential char-
acteristics and linear approximations with high probability from certain
truncated paths of non-trivial rounds of Camellia. Using this technique,
we show the differential characteristic with probability p = 2−102 for
8-round Camellia without FL/FL−1 and whitenings (denoted as Camel-
lia*), the linear approximation with probability p = 2−118.62 for 9-round
Camellia* and a distinguisher for boomerang and rectangle attacks with
probability p̂ = 2−50.97, q̂ = 2−9.48 for 8-round Camellia. Moreover, us-
ing these results, we describe the following key recovery attacks which are
faster than exhaustive key search of the 256-bit key cipher, the differential
attack on 11-round Camellia*, the linear attack on 12-round Camellia*,
the boomerang attack on 9-round Camellia and and the rectangle attack
10-round Camellia.

Keywords. Camellia, the differential attack, the linear attack, the boom-
erang attack, the rectangle attack, differential characteristic, linear ap-
proximation

1 Introduction

Camellia is a 128-bit block cipher designed by NTT and Mitsubishi Electric
Corporation, which was suggested as a candidate for the NESSIE project and se-
lected for the 2nd phase of the project, and also suggested as a candidate for the
CRYPTREC project in Japan [24, 631, 633]. The number of attackable rounds
or security measurement of Camellia have been considered in many published
papers [25, 287, 292, 338, 339, 355, 392, 578, 602, 627]. However, in relation to two
basic cryptanalysis, the differential cryptanalysis (DC) and the linear cryptanaly-
sis (LC), the immunity of Camellia has been discussed only by the upper bounds
of maximum differential characteristic probability (MDCP) and maximum linear
characteristic probability (MLCP) [25,77,421,578]. No method has been reported
to find concrete differential characteristics and linear approximations effective for
the attacks on non-trivial rounds of Camellia. Even though the maximal probabil-
ity cannot be found, finding differential characteristics or linear approximations
with high probability near to the upper bounds should be considered as useful
∗ Sony Corporation

7-35 Kitashinagawa 6-chome, Shinagawa-ku, Tokyo, 141-0001 Japan
Taizo.Shirai@jp.sony.com
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measurements for the cipher. Particularly revealing the probability is necessary
to mount key recovery attacks.

At FSE2002, Shirai et al. proposed an improved algorithm for evaluation of
the upper bounds of MDCP and MLCP [578]. The algorithm is based on discard-
ing truncated paths which contain algebraic contradictions, yielding successful
reevaluation of the lower bound of the least number of active S-boxes for Camel-
lia without FL/FL−1 and whitenings(denoted as Camellia*).

We found that the underlying relation between output values of active S-
boxes can be obtained by modifying Shirai et al.’s algorithm. The relation is
very effective to reduce the search space of the differential characteristics and
the linear approximations. Finally, we construct a feasible algorithm to search
differential characteristics and the linear approximations with high probability
near the upper bounds.

We apply the proposed method for experimental analysis of Camellia. As a
result, we found an 8-round differential characteristic of Camellia* with probabil-
ity p = 2−102, a 9-round linear approximation with probability p = 2−118.62 and
an 8-round distinguisher for boomerang and rectangle attacks with probability
p̂ = 2−50.97, q̂ = 2−9.48.

Moreover, using these results, we describe the following key recovery attacks
which are faster than exhaustive key search of 256-bit key: the differential attack
on 11-round Camellia*, the linear attack on 12-round Camellia*, the boomerang
attack on 9-round Camellia and and the rectangle attack on 10-round Camellia.

This paper is organized as follows: In section 2, we give a short description of
Camellia. In Section 3, we show a search methodology using the relation informa-
tion obtained from Shirai et al.’s algorithm. In Section 4 we present results of the
proposed method. In Section 5 we show attacks on Camellia* and Camellia by
using the result s shown in the previous section. Section 6 contains a comparison
of our result versus other reported results. Section 7 summarizes our conclusions.

2 Definition

In this paper, we use the following definitions.

Definition 0.1. (Differential Probability of f) The differential Probability
of function f is defined as follows:

DPf (∆x,∆y) =
]{x ∈ {0, 1}n|f(x)⊕ f(x⊕∆x) = ∆y}

2n

Definition 0.2. (Linear Probability of f) The linear Probability of function
f is defined as follows:

LPf (Γx, Γy) =
(

2
]{x ∈ {0, 1}n|x · Γx = f(x) · Γy}

2n
− 1
)2

Definition 0.3. (reduced row-echelon matrix) A matrix is a reduced row-
echelon matrix if
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– All rows of zero (if exists) are at the bottom of the matrix.
– The first nonzero number in a row is a 1 (leading 1).
– Each leading 1 is to the right of the leading 1’s in the rows above it.
– Each column that contains a leading 1 has zeros everywhere else.

Any matrix can be transformed into an unique reduced row-echelon matrix by per-
forming a finite sequence of elementally row operations called sweep out method.

3 A Description of Camellia

Camellia is a Feistel block cipher with a block size of 128 bits and accepts 128,
192 and 256 key bits [24]. The number of rounds are determined by a key length,
18 rounds for 128 bits key, 24 rounds for 192 and 256 bits keys. The F-function
of Camellia is composed of a so-called SPN type structure.

F

Ki 
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64 64
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Fig. 70. the i-th round of a Feistel Network with SPN round function

In the i-th round, 64 bits of key Ki and 64 bits of data Xi are the input to
the F-function. The input of F-function is split up into 8 bytes, represented by
Xi = (Xi[1], Xi[2], . . . , Xi[8]). After the key addition operation, each byte enters
one of four type of S-boxes S1, S2, S3 and S4, which is determined by the position
of the byte. Then the output of S-boxes Si = (Si[1], Si[2], . . . , Si[8]) enters the
linear transformation layer P : {0, 1}64 → {0, 1}64. The output of the linear
transformation layer Yi = (Yi[1], Yi[2], . . . , Yi[8]) is calculated as follows:0BBBBBBBB@

Yi[1]
Yi[2]
Yi[3]
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where addition in the above computation is exclusive-or operation. Also let
aij , (1 ≤ i, j ≤ 8) be an element of the above matrix in the i-th row and the j-th
column. Fig. 70 shows the i-th round of Camellia.

Camellia also includes a key scheduling algorithm, key whitening layers and
key-dependent linear functions FL and FL−1 which are inserted every 6 rounds.
Details of these components are described in [24]. We assume that round keys
are independent and uniformly random.

Property 3.1. All S-boxes used in Camellia are differentially 4-uniform bijective
functions generated by affine and inverse functions on GF (28). The maximum
differential probability (MDP) of the S-boxes are 2−6. For a fixed input differ-
ence ∆X, DPS(∆X,∆Y ) = 2−6 occurs 1 time for a output difference ∆Y , and
DPS(∆X,∆Y ) = 2−7 occurs 126 times for other ∆Y s. And this property also ap-
plicable to a fixed output difference ∆Y . The values of linear probability can take
one of nine probability in {2−6, 2−6.39, 2−6.83, 2−7.36, 2−8, 2−8.83, 2−10, 2−12, 0}.
Therefore, the MLP are also 2−6.

4 Search Methodology

In this section we show a method to get differential characteristics and linear
approximations from a given truncated path.

A truncated path is a differential characteristic or linear approximation which
is represented in truncated way. In the case of Camellia, each byte value in differ-
ences or linear masks is mapped to ’0’ or ’1’ according to whether the value is 0
or not, respectively [352,578]. Shirai et al. showed an evaluation algorithm to de-
termine whether a given truncated path contain an algebraic contradiction [578].

We found the new underlying relation in truncated paths which hold no con-
tradiction as follows. The upper side of Fig. 71 shows example of a truncated
differential path with 9 active S-boxes for 5-round Camellia*. We note that 9 is
the lower bound of the least number of active S-boxes for 5-round Camellia* [578].
Let the variables be the bytes of plaintext difference and output difference of S-
boxes which is corresponding to 1’s in the truncated path. The direct search
algorithm to generate differential characteristics tries to evaluate all possible val-
ues of the variables. However, the number of variables is 14 (9 active S-boxes and
5 nonzero bytes of the plaintext), implying that the complexity (28)14 = 2112 is
too large for limited resources.

We solve the computation problem by labeling each variable as free or not.
The lower side of Fig. 71 represents all variables by using the free variables in
the truncated path. In this case there are only 4 free variables w, x, y and z
among 14 variables. It means that the total number of candidates of differential
characteristics is only (28)4 = 232. With such sufficiently reduced variables we can
search all paths exhaustively for finding the paths holding the best differential
characteristic probability (DCP).
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Fig. 71. Truncated Differential Path and Free Variable Representation
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4.1 Algorithm to Find Free Variables of Truncated Paths

Now we show an algorithm to get the information of the free variables for a given
truncated differential path.

A Feistel network can be divided into two series, one is called“the right chain”
which starts from the right half of plain text and output values of the F-functions
in the odd rounds are added to the chain, and the other part is called “the left
chain”which start from left half of plain text. We continue to explain our method
with the case of the right chain.

Given the properties of SPN type F-functions, the differential data

∆Y2i−1[j],∆X2i[j], (1 ≤ i ≤ r/2)

in the right chain can be expressed as the following linear forms, where r is the
round number. (Without loss of generality we assume r is even.):

∆Y2i−1[j] =
8∑
k=1

ajk∆S2i−1[k] (3)

∆X2i[j] = ∆PR[j] +
i∑
l=1

8∑
k=1

ajk∆S2l−1[k] (4)

From the above representation we get 8r linear equations in the right chain.
Each variable in the equations has a truncated differential value 0 or 1 deter-

mined by a given truncated differential path. Removing variables corresponding
to 0 from these equations, we can obtain a system of homogeneous linear equa-
tions which also contains 8r equations.

Let M ·v be a matrix and vector form of the system of linear equations. After
transforming M into reduced row echelon matrix Mre (see definition 3), label
each variable as free or bound as follows.

– Label variable as ’bound’ if it corresponds to a leading 1 in Mre

– Label variable as ’free’ if it is not labeled as ’bound’

Fig. 72 shows an example of a reduced row-echelon matrix. In this example,
variables v1, v2, v3, v4, v6 correspond to leading 1’s, thus these variables are labeled
as bound. Thus the number of free variables is 4. More generally, let n be the
column number and r be the rank of Mre, the number of free variables is n− r,
which is known as dimension of the kernel space.

The same method can also be applied to retrieve linear approximations by
replacing the linear transformation matrix with the matrix which transforms the
output linear mask into the input linear mask [337,578].

Let I be the sum of number of free variables in both the chains. If I is small
enough, we can search all candidates of differential paths and linear approxi-
mations for a given truncated path. Tables 57, 58 show the distribution of the
numbers of free variables for truncated differential paths and truncated linear
paths with the least number of active S-boxes obtained from Shirai et al.’s re-
sult [578]. In the next section we show our experimental search of DCP, DLP,
p̂, q̂ from truncated paths with sufficiently small I.
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v1 v2 v3 v4 v5 v6 v7 v8 v9

1 0 0 0 1 0 1 0 1
0 1 0 0 0 0 1 1 0
0 0 1 0 1 0 1 0 0
0 0 0 1 1 0 0 0 1
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Fig. 72. An Example of Reduced Row-Echelon Matrix with 9 variables

Table 57. Distribution of Truncated Differential Paths

Round Active Total I = 1 I = 2 I = 3 I = 4 I = 5 I = 6 I = 7 I = 8 I = 9
1 0 255 8 28 56 70 56 28 8 1 0
2 1 16 0 16 0 0 0 0 0 0 0
3 2 8 0 0 8 0 0 0 0 0 0
4 7 1328 0 0 16 136 424 496 224 32 0
5 9 80 0 0 0 8 32 32 8 0 0
6 12 1008 0 8 48 148 224 284 216 72 8
7 14 196 0 0 16 44 56 52 24 4 0
8 16 36 0 0 0 16 16 4 0 0 0
9 20 812 0 0 0 56 88 228 296 128 16
10 22 156 0 0 0 0 16 72 56 12 0

Active - the lower bound of the least number of active S-boxes
Total - the total number of truncated paths

Table 58. Distribution of Truncated Linear Paths

Round Active Total I = 1 I = 2 I = 3 I = 4 I = 5 I = 6 I = 7 I = 8 I = 9
1 0 255 8 28 56 70 56 28 8 1 0
2 1 16 0 16 0 0 0 0 0 0 0
3 2 8 0 0 8 0 0 0 0 0 0
4 6 16 0 4 8 4 0 0 0 0 0
5 9 240 0 8 32 64 80 48 8 0 0
6 12 1948 0 24 160 320 448 544 352 92 8
7 14 192 0 0 0 20 56 80 32 4 0
8 17 1560 0 0 8 120 424 568 344 88 8
9 19 144 0 0 0 16 72 48 8 0 0
10 22 792 0 0 0 48 280 320 128 16 0
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5 Experimental Search

5.1 Searching for the Best DCP and DLP

In this section we show a method to calculate the best DCP and LCP by combin-
ing pre-computed differential and linear probabilities of S-boxes and path candi-
dates obtained from truncated paths with well reduced number of free variables
I.

From the definition of I, there are 28I possible solutions in a truncated path
with I free variables. Let C be the set of all solutions for a given truncated path.
Then the DCP determined by ci ∈ C, denoted DCP (ci) , can be obtained by
using the following lemma.

Lemma 0.1. For ci ∈ C, let α, α1, αr be the total number of active S-box, the
number of active S-boxes in the first round, and the number of active S-boxes in
the last round. For the j-th active S-box of ci (1 ≤ j ≤ α), let ∆Ici,j ,∆Oci,j be
the input and output differences, and let Sci,j be a kind of the S-box (S1, S2, S3

and S4). Then DCP (ci) is,

DCP (ci) = 2−6(α1+αr)
α−αr∏
i=α1+1

DPSci,j
(∆Ici,j ,∆Oci,j) (5)

Proof. Basically, we can construct the characteristic probability DCP (c) for ci
as follows:

DCP ′(ci) =
α∏
i=1

DPSci,j (∆Ici,j ,∆Oci,j) (6)

Furthermore, the differential probability DCPSci,j
can be replaced by the

probability 2−6, which is the best one, in the first round and the last round.
Because we can arbitrarily change the input differences in the first round and
output differences in the last round. Thus we can obtain the equation (5). ut

In the same manner, the values LCP (di) for di ∈ D can be obtained by replacing
DPSci,j

(∆Ici,j ,∆Oci,j) with LPSdi,j
(ΓIdi,j , ΓOdi,j) where D is a set of linear

approximations and di is a candidate in D.

5.2 Searching for the Best p̂ and q̂

The boomerang attack and the rectangle attack employ the differential attack as
a building block and use two short round probabilities p̂, q̂ to construct distin-
guisher [69,71,211,344,616]. The p̂, q̂ are defined as follows:

p̂ =
√√√√∑

β

α→β

Pr2[α→ β] and q̂ =
√√√√∑

γ

γ→δ

Pr2[γ → δ]

Calculating accurate p̂ and q̂ is a computationally difficult problem, so we
calculated them approximately by characteristic probabilities. Using DCP (ci),
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α1, αr defined before, we approximately calculated all possible combinations of
the output differences of active S-boxes in the last round and the input differences
of active S-boxes in the first round, respectively.

p̂(ci) = DCP (ci)

√√√√1 +
αr∑
i=1

αr
Ci · 126i

(2i)2

q̂(ci) = DCP (ci)

√√√√1 +
α1∑
i=1

α1Ci · 126i

(2i)2

Using these formulas, we searched the best p̂(ci) and q̂(ci) from all path
candidates.

5.3 Search Results

We found the best DCP, DLP, p̂ and q̂ by experiments. In this experiment, we
searched for all truncated paths whose number of free variables I ≤ 4 due to the
limitation of the computational power. For example the search for a path with
I = 5 takes a few days by our algorithm. Results are shown in Table 59.

Table 59. Search Results

Round Active Upper Bound [578] Best DCP Best p̂, q̂ Active Upper Bound [578] Best LCP
1 0 1 1 1 0 1 1
2 1 2−6 2−6 2−3.49 1 2−6 2−6

3 2 2−12 2−12 2−9.49 2 2−12 2−12

4 7 2−42 2−42 2−27.83 6 2−36 2−36.77

5 9 2−54 2−56 2−50.98 9 2−54 2−54.39

6 12 2−72 2−74 2−66.08 12 2−72 2−72.39

7 14 2−84 2−88 2−82.98 14 2−84 2−84.77

8 16 2−96 2−102 2−96.98 17 2−102 2−102.77

9 20 2−120 2−130 2−127.49 19 2−114 2−118.62

10 22 2−132 − − 22 2−132 −

From the above results, we can conclude that 9-round Camellia* is distin-
guishable from random permutation using a linear approximation with proba-
bility 2−118.62. Taking into account that p̂q̂ ≥ 2−64 is a necessary condition for
boomerang and rectangle distinguisher, we can construct 8-round distinguisher
by 4-round and 4-round blocks, 3-round and 5-round blocks or 5-round and 3-
round blocks.

We show a an example of a 9-round linear approximation with probability
2−119.02 in Fig. 73. We note that this is not the best one in LCP (ci) but the
best one in LCP ′(c) which has not replaced the probability of active S-boxes
in the first and last round. This approximation is used in efficient key recovery
linear attacks in the next section. The distribution of linear probabilities of 19
active S-boxes is shown in Table. 60 where LPSn(ΓX,ΓY ) denotes the linear
probability of the S-box Sn with input mask ΓX and output mask ΓY .
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Fig. 73. An Example of Linear Approximation for 9-round Camellia*
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Table 60. Distribution of Linear Probability of 19 Active S-boxes

LPS4(3bx, fbx) = 2−6 2 times
LPS2(fbx, 70x) = 2−6.39 3 times
LPS3(fbx, 70x) = 2−6.39 3 times
LPS4(fbx, 70x) = 2−6.39 3 times
LPS1(70x, fbx) = 2−6.39 4 times
LPS2(70x, fbx) = 2−6 4 times

6 Attacking Camellia* and Camellia

6.1 Differential Attack on 11-round 256-bit key Camellia*

First we show the differential attack on 11-round 256-bit key Camellia*. We use
the following differential characteristic obtained by the search experiment.

(∆IL1, ∆IR1) = (0x6400000000000064, 0x0000640064323232)→
(∆IL2, ∆IR2) = (0x0000640064000000, 0x6400000000000064)→
(∆IL3, ∆IR3) = (0x0064000000000000, 0x0000640064000000)→
(∆IL4, ∆IR4) = (0x0064006400640000, 0x0064000000000000)→
(∆IL5, ∆IR5) = (0x0064006400640000, 0x0064006400640000)→
(∆IL6, ∆IR6) = (0x0064000000000000, 0x0064006400640000)→
(∆IL7, ∆IR7) = (0x0000640064000000, 0x0064000000000000)→
(∆IL8, ∆IR8) = (0x6400000000000064, 0x0000640064000000)→

(∆OL8, ∆OR8) = (0x0000640064323232, 0x6400000000000064) p = 2−102

Let K ′
9 be the subkey bit of K9 corresponding to 5 active S-boxes in the

9th round determined by ∆OL8. The following key recovery algorithm finds the
40-bit K ′

9 and 64-bit K10 and K11 in the 10th and 11th round.

1. Initialize array of 2168 counters
2. Encrypt 2104 plaintext pairs with difference ∆PL.
3. For each ciphertext pairs do the following:

a) For each key value of K10 and K11 do the following:
i. Decrypt the last two rounds using the key
ii. Discard pairs with ∆OR9 6= (0x0000640064323232)
iii. For each pair, calculate ∆S9 = P−1(∆OL9⊕0x6400000000000064).

A. If all of ∆S9[1],∆S9[2],∆S9[4] are not 0, discard the pair.
B. For each key value of K ′

9 do the following: If the key suggests the
current ∆S9, increment the related counter.

4. Look over the counters, and choose the one with the maximum value.

After the step A, the number of remaining pairs is about 2104+128−64−24 =
2144 and the number of expected suggested keys is 1 for each pair. Therefore the
S/N is equal to 4/(2144/2168) = 226 which is large enough. The data complexity
is 2105, memory complexity is 2168 and time complexity is total of 2105 11-round
encryptions, 2235 2-round decryption, 2168 P−1 operations and 240 ·2145 = 2187.32

S-box lookups.
Also we can attack 9-round and 10-round Camellia* using the same 8-round

differential characteristic. Table 5 summarizes the complexity of these key recov-
ery algorithms.
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Table 61. Summery of the complexity of the differential attacks

Round Key Length Data Time Memory
9 128,192,256 2105 2105Enc. 240

10 192,256 2105 2165.7Enc. 2104

11 256 2105 2231.5Enc. 2168

Enc. - Encryptions

6.2 Linear Attack on 12-round 256-bit key Camellia*

Next, we show the steps of a linear attack on 12-round 256-bit key Camellia*
using the 9-round linear approximation shown in Fig. 73.

(ΓIL1, Γ IR1) = (0x0070003b70003b00, 0xfbfb00fb00000000)
(ΓOL9, ΓOR9) = (0xfbfb0000fbfb0000, 0x0070000070000000) p = 2−119.02

We use a same technique of Biham et al.’s algorithm to reduce time complexity
of the key recovery algorithm by employing two counters [68]. The linear mask
of ΓOR9 only contain nonzero values at 2nd and 5th byte. When one round
decryption is applied to the 10-th round, these two bytes are affected by the
output of 7 S-boxes in the round. Let X ′

10 and K ′
10 be the input data and subkey

corresponding to these 7 S-boxes in the 10th round.
The following key recovery algorithm finds the 56-bit subkey K ′

10 and whole
of K11 and K12 in the 11th and 12th round.

Given 2120 plaintexts and ciphertexts, perform the following:

1. Initialize array of 2185 counters (C1)
2. For each plaintext and ciphertext pair (PL, PR,CL,CR) do the following:

a) For each possible combination of K11 and K12 do the following:
i. Decrypt CL,CR with K11,K12. Let OL10, OR10 be the decrypted

data.
ii. Calculate the parity a = (ΓIL1 ·PL)⊕(ΓIR1 ·PR)⊕(ΓOL9 ·OR10)⊕

(ΓOR9 ·OL10)
iii. Advance the C1 counter which is related to the 185-bit value such

that the parity a, the 56-bit value in OR10 corresponding to subkey
K ′

10, K11 and K12.
3. Initialize array of 2184 counters (C2)
4. For each key K ′

10 and all possible 56-bit data v do the following:
a) Regard v as a data at X ′

10, then decrypt v using K ′
10 for 1-round.

b) Let a′ be the parity of the decrypted data with mask ΓOL9.
c) For each possible combination of K11 and K12 do the following:

i. Increase the C2 counter related to K ′
10,K11,K12 by the number in

the C1 counter related to a′ and v,K11,K12, and decrease it by the
number in C1 related to a′ ⊕ 1 and v,K11,K12.

5. Look over the counters, and choose the one with the maximum absolute value.

The data complexity is 2120, memory complexity is 2184 + 2185 and the time
complexity is 2248 times 2 round decryption and C1 count up operations and
256 · 256 = 2112 decryption of 7 S-boxes, and 2248 C2 count up operations.
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Also we can attack 10-round and 11-round Camellia* using the same 9-round
linear approximation. Table 62 summarizes the complexity of these key recovery
algorithms.

Table 62. Summery of the complexity of the linear attacks

Round Key Length Data Time Memory
10 128,192,256 2120 2121MA 256.6

11 192,256 2120 2181.5Enc. 2120.6

12 256 2120 2245.4Enc. 2184.6

MA-Memory Access, Enc-Encryptions

6.3 Boomerang and Rectangle Attack on 10-round 256-bit key
Camellia

The boomerang attack and the rectangle attack use the differential attack as a
building block [69,71,211,344,616]. Let E be a cipher which can be described as
a cascade E = Ef ◦ E1 ◦ E0 ◦ Eb such that each of E0 and E1 has a differential
with high probability. Biham et al. showed an efficient key recovery algorithm to
find the subkey in the Eb and Ef [71].

Eb E0 E1 EfPlaintext Ciphertext

FL

FL-1

E

6 rounds

PR

PL

CR

CL

Fig. 74. Building blocks

It is important for this analysis that even though linear functions exist be-
tween E0 and E1, the functions don’t affect on the boomerang and the rectangle
attacks. Because the FL/FL−1 functions are designed as key dependent linear
functions, we can attack Camellia if we can construct a decomposition including
FL/FL−1 just between E0 and E1 as Fig. 74.

We use the following two types of round decomposition for these attacks:
(Eb, E0, E1, Ef ) = (1 round, 5 rounds, 3 rounds, 0 round) and (1 round, 5 rounds,
3 rounds, 1 round) with probabilities p̂ = 2−50.98 for 5-round E0 and q̂ = 2−9.49

for 3-round of E1, where the input difference α = (0xc1000000000000c1,
0x0000000000010101) and the output difference δ = (0x0100000000000000,
0xf1f1f100f10000f1) shown in Fig. 75. The ’∗’ in the figure denotes the dif-
ference value which varies according to output difference values of active S-boxes
in the last round and the first round, respectively.
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F

F

F

F

F

F

F

F

(0xc1000000000000c1) (0x0000000000010101)

(0x00000000c10000c1) (0x****************)

(0x0000000000dddddd)

(0x******00**0000**)

(0x0100000000000000) (0xf1f1f100f10000f1)

(0x0100000000000000)

(0x0000000000000000)

(0x00000000c10000c1)

(0xc1000000000000c1)(0x0000000000dddddd)

(0x0000000000000000)(0xc1000000000000c1)

(0x0000000000000000) (0xc1000000000000c1)

Fig. 75. Detail of 5-round E0 and 3-round E1 decompositions

With the above settings, we employ the exactly same steps of the boomerang
and the rectangle attacks described in [71]. The complexity of the attacks can be
estimated by the parameters (rb, tb,mb, rf , tf ,mf , n, p̂, q̂) selected appropriately.
In this case n = 128 and the parameters of Eb and Ef are as follows: The 5 bytes
of the right half of α equal 0 and the number of active S-box in Eb is 3, then
rb = 128 − 8 ∗ 5 = 88, tb = log21273 ≈ 21,mb = 8 ∗ 3 = 24. Similarly we set
parameters of attack (rf , tf ,mf ) of Ef as: rf = 104, tf ≈ 34.9,mf = 40.

Table 63 summarizes the parameters and complexity of the boomerang attack
and the rectangle attack. These results show that 9-round Camellia is attackable
by the rectangle and boomerang attacks with 192 and 256 bit keys, and 10-round
Camellia is attackable by the rectangle attacks with 256 bit key.

Table 63. Parameters and Complexity of Rectangle and Boomerang Attacks

Round Eb E0 E1 Ef rb mb tb rf mf tf p̂ q̂ Attack Data Time Memory
9 1 5 3 0 88 24 21 0 0 0 2−50.98 2−9.49 R. 2126.45 2170.9MA 2126.45

B. 2123.9 2169.9MA 272

10 1 5 3 1 88 24 21 104 40 34.9 2−50.98 2−9.49 R. 2126.45 2240.9MA 2126.45

MA-Memory Access, R. - Rectangle Attack, B. - Boomerang Attack

7 Conclusions

In this paper, we have proposed a new method to retrieve differential paths and
linear approximations and successfully found differential paths with high DCP
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and linear approximation with high LCP and p̂, q̂ effective to the boomerang and
rectangle attacks.

Table 64 summarizes previously published attacks applied to 256-bit key
Camellia. As a result, we have shown that the linear attack is the largest round
attack on Camellia*. And we have also shown that not only algebraic attacks but
also probabilistic attacks can work for Camellia by using the boomerang and the
rectangle attacks.

Table 64. Comparison of Attackable Rounds

Attack Rounds FL/FL−1 Data Time Memory Type
Square [292] 6 No 211.7 2112Enc. 2104 CP

Truncated Differential [392] 8 No 283.6 255.6Enc. 216 CP
Square [627] 9 Yes 260.5 2202.2Enc. 2193 CP

Boomerang (This paper) 9 Yes 2123.9 2169.9MA 272 ACPC
Rectangle (This paper) 10 Yes 2126.5 2240.9MA 2126.45 CP

Higher Order Differential [339] 10 No 221 2254.7Enc. 2240 CP
Differential (This paper) 11 No 2104 2231.5Enc. 2168 CP

Higher Order Differential [287] 11 Yes/No 293 2255.6Enc. 2248 CC/CP
Linear (This paper) 12 No 2119.1 2246.5Enc. 2184.6 KP

CP-Chosen Plaintext,CC - Chosen Ciphertext, KP -Known Plaintext,
ACPC - Adaptive Chosen Plaintext and Ciphertext,
Enc. - Encryptions, MA-Memory Access
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Efficient FPGA Implementations of Block
Ciphers Khazad and MISTY1
by François-Xavier Standaert, Gaël Rouvroy, Jean-Jacques

Quisquater and Jean-Didier Legat ∗

Abstract. The technical analysis used in determining which of the
NESSIE candidates will be selected as a standard block cipher includes
efficiency testing of both hardware and software implementations of can-
didate algorithms. Reprogrammable devices such as Field Programmable
Gate Arrays (FPGA’s) are highly attractive options for hardware im-
plementations of encryption algorithms and this report investigates the
significance of FPGA implementations of the block ciphers Khazad and
MISTY1. A strong focus is placed on high throughput circuits and we
propose designs that unroll the cipher rounds and pipeline them in order
to optimise the frequency and throughput results. In addition, we im-
plemented solutions that allow to change the plaintext and the key on
a cycle-by-cycle basis with no dead cycle. The resulting designs fit on a
VIRTEX1000 FPGA and have throughput between 8 and 9 Gbits/s. This
is an impressive result compared with existing FPGA implementations of
block ciphers within similar devices.

1 Introduction

The NESSIE project is about to put forward a portfolio of strong cryptographic
primitives that has been obtained after an open call and been evaluated using
a transparent and open process. These primitives include block ciphers, stream
ciphers, hash functions, MAC algorithms, digital signature schemes, and public-
key encryption schemes. The technical analysis used in determining which of the
NESSIE candidates will be selected as a standard block cipher includes efficiency
testing of both hardware and software implementations of candidate algorithms.

NESSIE candidate Khazad is a 64-bit block cipher that accepts a 128-bit
key. Although Khazad is not a Feistel cipher, its structure is designed so that by
choosing all round transformations components to be involutions, the inverse op-
eration of the cipher differs from the forward operation in the key scheduling part
only. This property makes it possible to reduce the required chip area in hard-
ware implementations. The overall cipher design follows the Wide Trail Strategy,
favours component reuse, and permits a wide variety of implementation tradeoffs.
Encryption algorithm MISTY1 is a 64-bit block cipher with a 128-bit key and a
∗ UCL Crypto Group

Laboratoire de Microélectronique
Université Catholique de Louvain
Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium
{standaert,rouvroy,quisquater,legat}@dice.ucl.ac.be
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variable number of rounds. Mitsuru Matsui, the designer (1996), recommends a
8-round version. It is a Feistel cipher that allows very efficient hardware imple-
mentations. MISTY1 is designed on the basis of the theory of provable security
against differential and linear cryptanalysis. In this report, we study the suit-
ability of Khazad and MISTY1 for hardware implementations. Fast encryption
modules are detailed and compared to AES RIJNDAEL and SERPENT in an
effort to determine the efficiency of NESSIE candidates for hardware implemen-
tations within commercially available FPGA’s.

This report is organised as follows. The description of the hardware, synthesis
tools and implementation tools is in section 2. Section 3 gives a short mathemat-
ical description of Khazad and we propose a description of the diffusion layer
that allows efficient pipelining. Our implementations of Khazad are in section
4. Section 5 gives a short mathematical description of MISTY1 and the corre-
sponding implementations are in section 6. Comparisons with RIJNDAEL and
SERPENT appear in section 7. Finally, conclusions are in section 8.

2 Hardware description

All our implementations were carried out on a XILINX VIRTEX1000BG560-6
FPGA. In this section, we briefly describe the structure of a VIRTEX FPGA
as well as the synthesis and implementation tools that were used to obtain our
results.

Configurable Logic Blocks (CLB’s). The basic building block of the VIR-
TEX CLB is the logic cell (LC). A LC includes a 4-input function generator, carry
logic and a storage element. The output from the function generator in each LC
drives both the CLB output and the D input of the flip-flop. Each VIRTEX CLB
contains four LC’s, organised in two similar slices. Figure 76, shows a detailed
view of a single slice. Virtex function generator are implemented as 4-input look-
up tables (LUT’s). In addition to operate as a function generator, each LUT
can provide a 16×1-bit synchronous RAM. Furthermore, the two LUT’s within
a slice can be combined to create a 16×2-bit or 32×1-bit synchronous RAM or
a 16×1-bit dual port synchronous RAM. The VIRTEX LUT can also provide a
16-bit shift register.

The storage elements in the VIRTEX slice can be configured either as edge-
triggered D-type flip-flops or as level-sensitive latches. The D inputs can be driven
either by the function generators within the slice or directly from slice inputs,
bypassing function generators.

The F5 multiplexer in each slice combines the function generator outputs. This
combination provides either a function generator that can implement any 5-input
function, a 4:1 multiplexer, or selected functions of up to nine bits. Similarly, the
F6 multiplexer combines the outputs of all four function generators in the CLB
by selecting one of the F5-multiplexer outputs. This permits the implementation
of any 6-input function, an 8:1 multiplexer, or selected functions up to 19 bits.
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Fig. 76. The VIRTEX slice.

The arithmetic logic also includes a XOR gate that allows a 1-bit full adder
to be implemented within an LC. In addition, a dedicated AND gate improves
the efficiency of multiplier implementations.

Finally, VIRTEX FPGA’s incorporate several large RAM blocks. These com-
plement the distributed LUT implementations of RAM’s. Every block is a fully
synchronous dual-ported 4096-bit RAM with independent control signals for each
port. The data widths of the two ports can be configured independently.

Target FPGA. A VIRTEX1000BG560-6 FPGA contains 12288 slices and 32
RAM blocks, which means 24576 LUT’s and 24576 flip-flops. In the following
report, we compare the number of LUT’s, registers and slices. We also evaluate
the delays and frequencies thanks to our synthesis and implementation tools.
The synthesis was performed with FPGA Express (SYNOPSYS) and the imple-
mentation with XILINX ISE-4. Finally, our circuits models were described using
VHDL.

3 Block cipher description: Khazad

Khazad is an iterated block cipher that operates on a 64-bit cipher state rep-
resented as vectors in GF (28)8. It uses a 128-bit key represented as a vector
in GF (28)16, and consists of a series of applications of a key-dependent round
transformation to the cipher state. In the following, we will individually define
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the component mappings and constants that build up Khazad, then specify the
complete cipher in terms of these components.
Notation. Let s be a cipher state or a key ∈ GF (28)8, then si is the i-th byte
of the state s and si(j) is the j-th bit of this byte.
The nonlinear layer γ. Function γ : GF (28)8 → GF (28)8 consist of the par-
allel application of a non-linear substitution box S:

γ(a) = b⇔ bi = S[ai], 0 ≤ i ≤ 7 (7)

The substitution box is illustrated on figure 77, where P and Q are 4-bit input
× 4-bit output look up tables. They were defined in order to optimise the re-
sistance against differential and linear cryptanalysis and allow efficient hardware
implementations.

Fig. 77. The Khazad substitution box.

The diffusion layer θ. Function θ : GF (28)8 → GF (28)8 is a linear mapping
based on a [16, 8, 9] MDS1 code:

θ(a) = b⇔ b = a.H (8)

With:

H =



01 03 04 05 06 08 0B 07
03 01 05 04 08 06 07 0B
04 05 01 03 0B 07 06 08
05 04 03 01 07 0B 08 06
06 08 0B 07 01 03 04 05
08 06 07 0B 03 01 05 04
0B 07 06 08 04 05 01 03
07 0B 08 06 05 04 03 01


1 MDS: Maximum Distance Separable.



Dra
ft

Apr
il
19

, 2
00

4

Efficient FPGA Implementations of Block Ciphers Khazad and MISTY1 735

We propose the following description of the diffusion layer that allows to introduce
pipeline levels inside the layer:

b0 = a0 ⊕ a1 ⊕ a3 ⊕ a6 ⊕ a7 ⊕X(a1 ⊕ a4 ⊕ a6 ⊕ a7)⊕X
2
(a2 ⊕ a3 ⊕ a4 ⊕ a7)⊕X

3
(a5 ⊕ a6)

b1 = a0 ⊕ a1 ⊕ a2 ⊕ a6 ⊕ a7 ⊕X(a0 ⊕ a5 ⊕ a6 ⊕ a7)⊕X
2
(a2 ⊕ a3 ⊕ a5 ⊕ a6)⊕X

3
(a4 ⊕ a7)

b2 = a1 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕X(a3 ⊕ a4 ⊕ a5 ⊕ a6)⊕X
2
(a0 ⊕ a1 ⊕ a5 ⊕ a6)⊕X

3
(a4 ⊕ a7)

b3 = a0 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕X(a2 ⊕ a4 ⊕ a5 ⊕ a7)⊕X
2
(a0 ⊕ a1 ⊕ a4 ⊕ a7)⊕X

3
(a5 ⊕ a6)

b4 = a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕ a7 ⊕X(a0 ⊕ a2 ⊕ a3 ⊕ a5)⊕X
2
(a0 ⊕ a3 ⊕ a6 ⊕ a7)⊕X

3
(a1 ⊕ a2)

b5 = a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕ a6 ⊕X(a1 ⊕ a2 ⊕ a3 ⊕ a4)⊕X
2
(a1 ⊕ a2 ⊕ a6 ⊕ a7)⊕X

3
(a0 ⊕ a3)

b6 = a0 ⊕ a1 ⊕ a5 ⊕ a6 ⊕ a7 ⊕X(a0 ⊕ a1 ⊕ a2 ⊕ a7)⊕X
2
(a1 ⊕ a2 ⊕ a4 ⊕ a5)⊕X

3
(a0 ⊕ a3)

b7 = a0 ⊕ a1 ⊕ a4 ⊕ a6 ⊕ a7 ⊕X(a0 ⊕ a1 ⊕ a3 ⊕ a6)⊕X
2
(a0 ⊕ a3 ⊕ a4 ⊕ a5)⊕X

3
(a1 ⊕ a2)

Where b7, b6, ..., b0 represent the eight bytes of the cipher state and X is defined
at the byte level as: X : GF (28)→ GF (28) : X(a) = b⇔

b(7) = a(6)
b(6) = a(5)
b(5) = a(4)

b(4) = a(3)⊕ a(7)
b(3) = a(2)⊕ a(7)
b(2) = a(1)⊕ a(7)

b(1) = a(0)
b(0) = 0⊕ a(7)

Finally, we define functions X2 ≡ X ◦X and X3 ≡ X ◦X ◦X.

The key addition σ. The affine key addition σ[k] : GF (28)8 → GF (28)8 con-
sists of the bitwise addition (exor) of a key vector k ∈ GF (28)8:

σ[k](a) = b⇔ bi = ai ⊕ ki, 0 ≤ i ≤ 7 (9)

The round constants. The constant for the r-th round is a vector cr ∈
GF (28)8, defined as:

cri = S[8r + i], 0 ≤ r ≤ 8, 0 ≤ i ≤ 7 (10)

The round function ρ. The r-th round function is the composite mapping
ρ[k] : GF (28)8 → GF (28)8, parameterised by the key vector k ∈ GF (28)8 and
given by:

ρ[k] ≡ σ[k] ◦ θ ◦ γ (11)

The key schedule. The key schedule expands the cipher key K ∈ GF (28)16

into a sequence of round keys K0,K1, ...;K8, plus two initial values K−2 and
K−1 corresponding to the most and least significant parts of the cipher key K.
Every round key is an element of GF (28)8 that we derive as follows:

Kr = ρ[cr](Kr−1)⊕Kr−2, 0 ≤ r ≤ 8 (12)
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The complete cipher. Khazad is defined for the cipher key K as the trans-
formation Khazad[K] = α[K0,K1, ...,K8] applied to the plaintext, where

α[K0,K1, ...,K8] = σ[K8] ◦ γ ◦ (©7
r=1ρ[K

r]) ◦ σ[K0] (13)

Our implementation is based on this description of Khazad.

4 Implementation: Khazad

4.1 Objectives

FPGA’s are very efficient devices and they are suitable for high work frequencies.
As opposed to custom hardware or software implementations, little work exist
in the area of block cipher implementations within existing FPGA’s. Results
available in the public literature sometimes mention encryption rates comparable
with software ones. We believe that these performances can be greatly improved
using today’s technology as soon as inherent constraints of FPGA’s are taken
into account.
The VIRTEX slice offers great flexibility to implement various logic functions, but
it also constraints the designer to an efficient usage of its resources. Regarding
the inner structure of Khazad, we determined that an optimal circuit should
limit its critical path inside one slice, without consuming slices for register usage
only.

4.2 Components

Table 65 evaluates the hardware cost of some basic elements of Khazad. Their
structure, very close to the VIRTEX LUT, allow a direct and efficient implemen-
tation. Practically, we optimised our circuit by keeping its critical path inside the
slice of Fig. 76, and making an efficient use of its registers.

Table 65. Some combinatorial components of Khazad.

Component Nbr of LUT
X 3
S 24

γ layer 192
Key addition σ 64

Actually, the most critical function in terms of implementation is the diffusion
layer θ. In the precedent section, we gave a combinatorial description of it that
allow us to consider different pipeline levels. For efficiency purposes, we also
combined θ with the key addition layer σ, because of their relevant compatibility.
Figure 78 illustrates the computation of an output byte b0 of the diffusion layer
θ combined with key addition σ. The key point of this architecture is the central
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Fig. 78. Khazad: output byte b0 of the diffusion layer θ combined with key addition
σ.

bitwise XOR operation between 4 bytes. As the VIRTEX slice contains, a 4-input
LUT and an additional XOR gate, we can efficiently combine this operation with
the bitwise key addition and perform the resulting task in one cycle.

0a1a2a3a4a5a6a7a

0b1b2b3b4b
5b6b7b

⊕ ⊕ ⊕

Fig. 79. The function X of Khazad.

The upper part of θ don’t permit this kind of optimisation. Looking at Fig-
ures 78, 79, we see that the byte a2 ⊕ a3 ⊕ a4 ⊕ a7 is an input of function
X2 = X ◦ X. This can’t be done inside one slice. Consequently, we considered
two circuits depending on the diffusion-addition layer implemented:

1. A fast and expensive implementation using three registers levels inside the
layer.

2. A slower but less expensive implementation where the grey register of θ is
removed.

A tradeoff has to be done between a low-delay (pipeline of X,X2, X3 functions)
and a low area where we avoid the implementation of useless registers in the left
branch of θ.
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Table 66. Khazad: implementations of the diffusion layer θ combined with key addi-
tion σ.

Type Nbr of LUT Nbr of registers Estimated delay (ns)
Fast implementation 384 576 5.2

Low area implementation 384 320 7.3

Table 66 gives the implementation results of our two implementations. In this
section, the delay is estimated after synthesis2. Note that in the fast implemen-
tation, the critical path corresponds to a look up table and an exor operation in
the left branch of θ.

4.3 The round and key round functions

Based on the above components, we propose two solutions for the round and key
round functions, with a difference of one register level. Figure 80 illustrates the
round function of Khazad. Figure 81 illustrates its key round. Depending on the
use of the grey register, we obtain the results of table 67.

Table 67. Khazad: implementations of the round and key round.

Type Nbr of LUT Nbr of registers Estimated delay (ns)
Fast round 576 768 5.5

Low area round 576 512 7.3
Fast key round 768 832 5.6

Low area key round 756 576 7.3

4.4 The complete cipher

The implementation of the complete Khazad cipher directly results from the
precedent descriptions. Our results are summarised by the next figure and table:
Figure 82 illustrates our two versions of the complete cipher. Finally, table 68
summarises our implementation results for the block cipher Khazad. In this
section, the frequency is estimated after synthesis3 and implementation4.

Table 68. Implementations of Khazad.

Type Nbr of Nbr of Nbr of Latency Output every Freq. after Freq. after
LUT registers slices (cycles) (cycles) Synt. (MHz) Impl. (MHz)

Fast Khazad 11328 13568 8800 62 1 175 148
Low area Khazad 11072 9600 7175 53 1 137 123

2 FPGA Express (SYNOPSYS).
3 FPGA Express (SYNOPSYS).
4 Xilinx ISE4.
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Fig. 82. Khazad.

From these results, we observe very high frequencies after synthesis. However
critical delays mainly occurs when trying to place and route these synthesis re-
sults. The resulting implemented designs have surprising critical paths including
20% of logic and 80% of routes. We conclude that the real bottleneck of such
large ciphers is in the difficulty of having an efficient place and route. Actually,
constraints come from shift registers and high fanout. Implementation could prob-
ably be improved by replacing the last stage of shift registers by flip-flops, but
the additional degree of freedom for the routes would be balanced with additional
resources. Anyway, the resulting designs are very efficient as we will underline in
section 7.

5 Block cipher description: MISTY1

MISTY1 is an iterated block cipher that operates on a 64-bit block with a 128-
bit key and with a variable number of rounds n. We describe the algorithm with
n = 8, as recommended in [425, 426]. In the following subsections, we describe
the data randomising part and the key scheduling part of MISTY1 with their
different components.
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5.1 Data randomising part

Figure 84 shows the data randomising part of MISTY15. The 64-bit plaintext P is
divided in two 32-bit parts. Both parts are transformed into the 64-bit ciphertext
using bitwise XOR operations, sub-functions FOi (1 ≤ i ≤ (n = 8)) and sub-
functions FLi (1 ≤ i ≤ (n+ 2 = 10)).

FOi function. Figure 83 shows the structure of FOi6. This function split the
input into two 16-bit strings. Then, it transforms both strings into the output with
bitwise XOR operations and sub-functions FIij (1 ≤ j ≤ 3). KOij (1 ≤ j ≤ 4)
and KIij (1 ≤ j ≤ 3) are the left j-th 16 bits of KOi and KIi, respectively.

FIij function. Figure 83 also shows the structure of FIij . The input is divided
into two parts: a 9-bit string and a 7-bit string. These strings are transformed
into the output using bitwise XOR operations and substitutions tables S7 and S9.
In the beginning and the end of FIij function, the 7-bit string is zero-extend to
9 bits, and in the middle part, the 9-bit string is truncated to 7 bits eliminating
its highest two bits (MSB). KIij1 and KIij2 are the left 7 bits and the right 9
bits of KIij , respectively.

FLi function. The structure of FLi function is illustrated on figure 83. The
32-bit input is divided into two equal parts. The function transforms both parts
into the output with bitwise AND, OR and XOR operations. KLij1 (1 ≤ j ≤ 2)
is the left j-th 16 bits of KLi.

S7 and S9 substitution functions. For the selection of S7 and S9 substitution
functions, Matsui considers three criteria:

1. Their average differential/linear probability must be minimal,
2. Their delay time in hardware is as short as possible,
3. Their algebraic degree is high, if possible.

Based on these criteria, for the S7 substitution function, Matsui chooses the
following mathematical description:

y0 = x0 +x1x3 +x0x3x4 +x1x5 +x0x2x5 +x4x5 +x0x1x6 +x2x6 +x0x5x6 +x3x5x6 +1
y1 = x0x2+x0x4+x3x4+x1x5+x2x4x5+x6+x0x6+x3x6+x2x3x6+x1x4x6+x0x5x6+1
y2 = x1x2 + x0x2x3 + x4 + x1x4 + x0x1x4 + x0x5 + x0x4x5 + x3x4x5 + x1x6x3x6 +
x0x3x6 + x4x6 + x2x4x6

y3 = x0 + x1 + x0x1x2 + x0x3 + x2x4 + x1x4x5 + x2x6 + x1x3x6 + x0x4x6 + x5x6 + 1
y4 = x2x3 +x0x4 +x1x3x4 +x5 +x2x5 +x1x2x5 +x0x3x5 +x1x6 +x1x5x6 +x4x5x6 +1
y5 =
x0+x1+x2+x0x1x2+x0x3+x1x2x3+x1x4+x0x2x4+x0x5+x0x1x5+x3x5+x0x6+x2x5x6

y6 = x0x1 + x3 + x0x3 + x2x3x4 + x0x5 + x2x5 + x3x5 + x1x3x5 + x1x6 + x1x2x6 +
x0x3x6 + x4x6 + x2x5x6

Based on the same above criteria, the S9 function is defined as:

5 Where registers needed for efficiency purposes are already mentioned.
6 Where registers needed for efficiency purposes are already mentioned.
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y0 = x0x4 + x0x5 + x1x5 + x1x6 + x2x6 + x2x7 + x3x7 + x3x8 + x4x8 + 1
y1 = x0x2 +x3 +x1x3 +x2x3 +x3x4 +x4x5 +x0x6 +x2x6 +x7 +x0x8 +x3x8 +x5x8 +1
y2 = x0x1 + x1x3 + x4 + x0x4 + x2x4 + x3x4 + x4x5 + x0x6 + x5x6 + x1x7 + x3x7 + x8

y3 = x0 + x1x2 + x2x4 + x5 + x1x5 + x3x5 + x4x5 + x5x6 + x1x7 + x6x7 + x2x8 + x4x8

y4 = x1 + x0x3 + x2x3 + x0x5 + x3x5 + x6 + x2x6 + x4x6 + x5x6 + x6x7 + x2x8 + x7x8

y5 = x2 + x0x3 + x1x4 + x3x4 + x1x6 + x4x6 + x7 + x3x7 + x5x7 + x6x7 + x0x8 + x7x8

y6 = x0x1 +x3 +x1x4 +x2x5 +x4x5 +x2x7 +x5x7 +x8 +x0x8 +x4x8 +x6x8 +x7x8 +1
y7 = x1 +x0x1 +x1x2 +x2x3 +x0x4 +x5 +x1x6 +x3x6 +x0x7 +x4x7 +x6x7 +x1x8 +1
y8 = x0 +x0x1 +x1x2 +x4 +x0x5 +x2x5 +x3x6 +x5x6 +x0x7 +x0x8 +x3x8 +x6x8 +1

Both substitution boxes are defined as ROM tables in [425]. To optimise the
number of logic cells used in FPGA implementations, we prefer to implement S7

and S9 functions directly as logical expressions. With enough pipelined stages,
we keep the critical path of the design under control.

5.2 Key scheduling part

Figure 85 shows the key scheduling part of MISTY17. Ki (1 ≤ i ≤ 8) is the left
i-th 16 bits of the secret input key K. K

′

i (1 ≤ i ≤ 8) corresponds to the output
of FIij where the input of FIij is assigned to Ki and the key KIij is set to
K(i+1)mod8.

The assignment between key scheduling subkeys Ki/ K
′

i and the round sub-
keysKOij ,KIij ,KLij is defined as follows, where i equals to (i−8) when (i > 8):

Table 69. Subkeys distribution.

Encrypt Round KOi1 KOi2 KOi3 KOi4 KIi1 KIi2 KIi3 KLi1 KLi2

Key round Ki Ki+2 Ki+7 Ki+4 K
′
i+5 K

′
i+1 K

′
i+3 K i+1

2
(odd.i) K

′
i+1
2 +6

(odd.i)

K
′
i
2+1

(even.i) K i
2+4(even.i)

This concludes the mathematical description of MISTY1 algorithm. The next
section explains our FPGA design choices in order to be efficient in term of speed
and resources used.

6 Implementation: MISTY1

In order to achieve the fastest FPGA implementation of MISTY1, we decided to
limit the critical path to only one 4-input LUT and routes. Consequently, we do
not use additional XOR’s and multiplexors F5, F6 available in the VIRTEX slice.
However, these functions could be used in order to reduce the area requirements
of MISTY1.

Based on this delay constraint, we modified the mathematical description of
the algorithm in order to regroup a maximum number of functions in a minimum
number of 4-input LUT’s. This strategy leads to very fast designs.
7 Where registers needed for efficiency purposes are already mentioned.
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6.1 S7 and S9 implementations

For S7 and S9 implementations, we used the logical expressions in place of sub-
stitution tables in order to reduce the number of logic cells used. The logical
functions have to be pipelined in order to limit the critical path to only one 4-
input LUT and routes. For S7 and S9, we designed two 2-stage pipelined versions.
The next table shows the results that we obtained after synthesis:

Table 70. MISTY1: S7 and S9 synthesis results.

Component Nbr of LUT’s Nbr of FF’s Nbr of pipelined stages
S7 45 45 2
S9 44 35 2

6.2 FOi, FIij, FLi implementations

Figure 83 details how we implemented FOi, FIij , FLi functions in order to limit
the critical path to only one 4-input LUT and routes. As mentioned on the figure,
we have to put an additional output pipeline stage into FIij function in order to
correspond with the key scheduling part. The next table shows the results that
we obtained after synthesis:

Table 71. MISTY1: FOi, FIij , FLi synthesis results.

Component Nbr of LUT’s Nbr of FF’s Nbr of pipelined stages
FOi 565 633 24
FIij 158 195 7
FLi 32 32 1

6.3 The data randomising part of MISTY1

For the same delay constraints, we obtained the design detailed in figure 84.
Additional registers for input and output bits are needed to increase the speed
performances and these are packed into IOBs. We finally get a 208-stage pipelined
design.

6.4 The key scheduling part of MISTY1

Figure 85 shows the key scheduling part of MISTY1. Additional registers for
input key bits are also packed into IOBs in order to increase performances. The
assignment between key scheduling subkeys Ki/ K

′

i and the round subkeys KOij ,
KIij , KLij is defined in table 5. We do the same in hardware putting the correct
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number of pipelined stages for every round subkeys. Therefore, to achieve the key
distribution, we use 16-bit shift registers, every one fitting in one LUT. Figure 86
represents the subkeys distribution.

Table 72 summarises the result that we obtained for the complete key schedul-
ing part.

Table 72. MISTY1: Key scheduling synthesis results.

Nbr of LUT’s Nbr of FF’s Nbr of pipelined stages
4912 2352 208

6.5 The complete cipher

The complete MISTY1 combines the data randomising part and the key schedul-
ing part from the precedent descriptions. Our results are summarised in table 73
where the latency is the number of pipelined stages. We propose a post-map8

8 XILINX ISE4.
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and a post-implementation9 estimated frequency. The second one takes the rout-
ing delays into account. From this result, we observe a very high frequency after

Table 73. Implementation of MISTY1.

Nbr of Nbr of Nbr of Latency Output every Frequency (MHz) Frequency (MHz)
LUT registers slices (cycles) (cycles) Post-map Post-implementation
10920 8480 8386 208 1 204 140

mapping phase but the final design only runs at 140 MHz. As we observed for
Khazad, critical delays are mainly caused by the routing task. Because the crit-
ical path was limited to one 4-input LUT, the problem is even more critical than
for Khazad. We conclude that:

1. It is not so easy to deal with routing delays. They are no systematic tools to
prevent these ones. All we can do, is to locate the problem and to redesign
the global circuit. Nevertheless, routing problems usually come from shift
registers and high fanout. Implementation could probably be improved by
replacing the last stage of shift registers by flip-flops.

2. Trying to reduce the critical path to only one 4-input LUT is not always the
best choice. Indeed, if a big part of the critical path is due to route, the use
of additional XORs, F5,F6 can reduce the number of logic cells used without
increasing the critical path.

Anyway, the resulting design is very efficient and suitable for FPGA, as proved
in the next section.

7 Comparison with AES RIJNDAEL, SERPENT and
MISTY1

In order to evaluate our implementation results and the hardware suitability
of Khazad and MISTY1, we compare them with similar results obtained with
the Advanced Encryption Standard RIJNDAEL and SERPENT [218]. We chose
RIJNDAEL because of its status of new encryption standard and SERPENT
because it seems that it was the best AES candidate regarding FPGA implemen-
tations. However, comparisons between Khazad and MISTY1 seem to be more
relevant because they were implemented using the same methodology.
In [218], the Xilinx VIRTEX1000BG560-4 was selected as the target device
for evaluation of AES candidates. Table 74 compares RIJNDAEL, SERPENT,
MISTY1 and Khazad encryption circuits in terms of hardware cost, frequency
and throughput for VIRTEX1000bg560-6 component. The hardware cost in LUT
and registers is replaced by a number of slices. We also investigate the ratio
Throughput/Area which is a good measurement of hardware efficiency.

9 XILINX ISE4.



Dra
ft

Apr
il
19

, 2
00

4

748 Book IV. Selected research papers

Table 74. Comparisons with RIJNDAEL, SERPENT and MISTY1.

Type Nbr of Output every Estimated Throughput Throughput/Area
slices (clk edges) frequency (MHz) (Mbits/s) (Mbits/s/slices)

RIJNDAEL [218] 10992 2.1 31.8 1938 0.18
SERPENT [218] 9004 1 38 4860 0.54

MISTY1 8386 1 140 8960 1.07
Fast Khazad 8800 1 148 9472 1.07

Low area Khazad 7175 1 123 7872 1.09

8 Conclusions

We propose efficient FPGA implementations of block ciphers Khazad and
MISTY1. The structure of Khazad is very close to AES RIJNDAEL and offers
comparable security. However, improvements have been done concerning imple-
mentation aspects and these allow very efficient FPGA implementations for high
throughput applications. Although its keyround is still very expensive, Khazad
is a very suitable block cipher for FPGA implementation in the context described
for these experiments. MISTY1 offers similar performances and its main bottle-
neck is to be found in the routing delays. By avoiding these problems, we could
greatly improve the design frequency.

Upon comparison, our implementations of Khazad and MISTY1 offer better
results than those reported for RIJNDAEL and SERPENT in [218], but the
implementation of RIJNDAEL with the design methodology described in this
paper will deserve a forthcoming work and allow more relevant comparisons.

Concerning Khazad and MISTY1, we believe that both ciphers have inter-
esting properties for hardware implementations. MISTY1 offers slight advantages
in terms of hardware cost: it has the Feistel structure and low-cost substitution
boxes. Its key scheduling is also less expansive than Khazad. However, the in-
tensive use of shift registers to pipeline the Feistel network makes the algorithm
structure more complex and the design more difficult to route. It results in a larger
latency. Looking at the final results, the ratio Throughput/Area illustrates that
both ciphers are very close and sufficiently efficient but potential improvements
exist for MISTY1. It seems that reconfigurable hardware implementations will
not be the bottleneck for the selection of Khazad or MISTY1 as a NESSIE
cipher.
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High Probability Linear Hulls in Q
by Liam Keliher, Henk Meijer and Stafford E. Tavares ∗

Abstract. In this paper, we demonstrate that the linear hull effect is sig-
nificant for the Q cipher. The designer of Q performs preliminary linear
cryptanalysis by discussing linear characteristics involving only a single
active bit at each stage [434]. We present a simple algorithm that com-
bines all such linear characteristics with identical first and last masks into
a linear hull. The expected linear probability of the best such linear hull
over 7.5 rounds (8 full rounds minus the first S-substitution) is 2−90.1. In
contrast, the best known expected differential probability over the same
rounds is 2−110.5 [73]. Choosing a sequence of linear hulls yields a straight-
forward attack that can recover a 128-bit key with success rate 98.4%,
using 297 known 〈plaintext, ciphertext〉 pairs and 232 trial encryptions.

Keywords. Block cipher, Q, NESSIE, linear cryptanalysis, linear hulls.

1 Introduction

Q is a block cipher submitted to the NESSIE project by Leslie McBride [434].
Q has a straightforward SPN structure with s-boxes based on those in Rijn-
dael (the AES winner) [470] and Serpent [17]. (The Serpent-like s-boxes can be
implemented with an efficient bit-slicing technique [17]; for clarity, we will use
the equivalent representation that involves bitwise permutations before and after
application of these s-boxes).

The structure of the s-boxes and linear transformations allows the construc-
tion of linear characteristics with one active bit in each mask. We refer to such lin-
ear characteristics as restricted characteristics. Nyberg’s linear hull concept [487]
(the counterpart of differentials in differential cryptanalysis [388]) allows us to
combine a large number of restricted linear characteristics into a single linear hull
that can then be used to attack the cipher.
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We present a simple algorithm for calculating the expected linear probability
(ELP) of the linear hulls formed by this method over various numbers of rounds.
The best such linear hull over 7.5 rounds (8 full rounds minus the first AES s-box
substitution) has ELP 2−90.1. In contrast, the best known expected differential
probability (EDP) over the same rounds is 2−110.5 [73].

2 Description of Q

2.1 Basic Components

The Q cipher is based on the substitution-permutation network (SPN) architec-
ture [226,296,342,343]. Q has a block size of N = 128 bits. Q uses three different
s-boxes, one 8 × 8 s-box named S (this is the AES s-box [470]), and two 4 × 4
s-boxes named A and B (B is used in Serpent [17], and A is “Serpent-like”). Each
substitution stage uses multiple copies of a single s-box in parallel to process the
128-bit input (16 copies of S, or 32 copies of A or B).

Before continuing, we need to clarify the convention used for numbering con-
secutive bytes and words, namely that numbering begins at 0 with the object
in the lowest memory location—this is also the least significant object, since Q
uses “little-endian” ordering. This convention extends to numbering the bits of
bytes/nibbles, i.e., the least significant bit is numbered 0. Pictorially, numbering
always increases from left to right (it follows that the bits in a 128-bit block are
numbered 0 . . . 127, left to right).

Three linear transformations are used in the cipher. The permutation P op-
erates on a 128-bit block represented as four 32-bit words, W0,W1,W2,W3, as
follows: W0 is unchanged; W1,W2, andW3 are right rotated by one byte, two
bytes, and three bytes, respectively.

The other two linear transformations are bitwise permutations that we term
PreSerpent( ) and PostSerpent( ), since they are located before and after each
application of s-boxes A and B. If we again view the 128-bit block as consisting
of wordsW0,W1,W2,W3, PreSerpent( ) sends the bits ofW0 to the first (leftmost)
input bits of the 32 identical 4 × 4 s-boxes, the bits of W1 to the second input
bits of these s-boxes, and so on. This is represented in Figure 87. PostSerpent( )
is simply the inverse of PreSerpent( ).

2.2 High-Level Structure

Q accepts keys of any length, although keys longer than 256 bits are shortened
to 256 bits. We will consider the version of Q that consists of 8 “full rounds” and
uses a key of at most 128 bits. (A modified form of our attack can be applied
for keys longer than 128 bits.) McBride also proposed a 9-round version of Q for
“high security applications” [434].

The Q key-scheduling algorithm generates twelve 128-bit subkeys named
KW 1, KA, KB , K0,K1, . . . ,K7, KW 2. Only two details of the key-scheduling
algorithm are important for our attack. First, although KA and KB are 128 bits
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W1 W2 W3W0

Fig. 87. PreSerpent( ) bitwise permutation

PreSerpent( ), A, PostSerpent( )

PreSerpent( ), B, PostSerpent( )

Substitution (S)

⊕KA

⊕KB

⊕Kr

Permutation (P )

Fig. 88. Structure of a full round of Q



Dra
ft

Apr
il
19

, 2
00

4

752 Book IV. Selected research papers

in length, each contains only 32 bits of information, since each is the concatena-
tion of four 32-bit words, any two of which are rotations of each other. Second,
the key-scheduling algorithm is reversible—as a consequence, given any subkey
other than KA or KB , it is easy to determine all the remaining subkeys [434].

For 0 ≤ r ≤ 7, round r has the structure in Figure 88.1 Note that a full round
actually contains three substitution stages (S, A, and B). The entire cipher is
described by:

⊕KW1 , Round0, . . . ,Round7, ⊕KA, Substitution(S), ⊕KB , ⊕KW2 .

It follows that the 8-round version of Q contains a total of 25 substitution stages.
The use of KA and KB can be viewed as making the substitution with S key-
dependent. However, Q also conforms to the standard SPN structure in which a
subkey is XOR’d before each fixed substitution stage [343] (using the standard
terminology, the version of Q we are considering consists of 25 rounds and has
repeated subkeys).

3 Linear Probability

Given a bijective mapping B : {0, 1}d → {0, 1}d, and masks a,b ∈ {0, 1}d, the
associated linear probability (LP) value is defined as

LP(a,b) def= (2 · Prob {a •X = b •B(X)} − 1)2 ,

where X is a random variable uniformly distributed over {0, 1}d, and • denotes
the inner product over GF(2). Note that LP(a,b) ∈ [0, 1]; nonzero LP values
indicate a correlation between the input and output of B, with higher values
indicating a greater correlation.

If B is parameterized by a key, k, we write LP(a,b;k), and the expected LP
(ELP) over the uniform distribution of keys is denoted

ELP(a,b).

3.1 LP Values for the Q S-boxes

In what follows, we will only be interested in LP values for the s-boxes of Q
corresponding to masks containing a single 1. We give these values in Tables 75,
76, and 77. Entry [i, j] is the LP value for input (output) mask with 1 in position
i (j) and all other bits equal to 0. (Recall that we number bits from left to right
starting at 0, with 0 indicating least significance.) For S, we denote this entry
LPS [i, j] (entries for A and B are subscripted accordingly).

1 This figure is taken from [434]; however, it disagrees slightly with the test code in-
cluded in McBride’s NESSIE submission, which specifies that permutation P should
be applied before application of subkey Kr .
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Table 75. LP values for s-box S
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Table 76. LP values for s-box A
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Table 77. LP values for s-box B
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4 Linear Cryptanalysis

Linear cryptanalysis (LC) is a known-plaintext attack due to Matsui [421]. We
make use of the version known as Algorithm 2. We do not give the details of LC
here (see [343] for a description of LC applied to SPNs). It suffices to say that
the attacker attempts to find one or more of the outermost subkeys by choosing
input/output masks a,b ∈ {0, 1}N (recall that N is the block size) for a core
subset of the substitution stages such that the corresponding value LP(a,b;k)
is relatively large (ideally, maximized).

In general, LP(a,b;k) cannot be computed because k is unknown, so re-
searchers have adopted the practice of using the expected value ELP(a,b) (over
all independently chosen and uniformly random subkeys) [297,342,343,613]. If

NL =
c

ELP(a,b)

is the number of known 〈plaintext, ciphertext〉 pairs used by the attacker (this is
called the data complexity), the success rate of Algorithm 2 is given in Table 78.
Note that this is the same as Table 3 in [421], except that the constant values
differ by a factor of 4, since Matsui uses bias values, not LP values.2

Table 78. Success rates for Algorithm 2

c 8 16 32 64

Success rate 48.6% 78.5% 96.7% 99.9%

4.1 Linear Characteristics and Linear Hulls

Computing ELP(a,b) directly appears to be infeasible for most block ciphers,
but an efficient first approximation can be found using linear characteristics (or
simply characteristics). Let T denote the number of core substitution stages over
which ELP values are required. A T -stage characteristic is a (T+1)-tuple of N -bit
values, Ω = 〈a1,a2, . . . ,aT ,aT+1〉. We view at and at+1 as input and output
masks, respectively, for the tth substitution stage (1 ≤ t ≤ T ). The expected
linear characteristic probability of Ω, denoted ELCP(Ω), is defined as

ELCP(Ω) def=
T∏
t=1

ELP(at,at+1) . (14)

Note that at and at+1 determine input/output masks for each s-box in round t.
Those s-boxes having nonzero input and output masks are called active s-boxes.

2 The corresponding table in [343] has an error, in that the constants have not been
multiplied by 4 to reflect the use of LP values.



Dra
ft

Apr
il
19

, 2
00

4

High Probability Linear Hulls in Q 755

Moreover, the bits in any mask that are equal to 1 are called active bits. If a
characteristic, Ω, results in any s-box having a zero input mask and a nonzero
output mask, or vice versa, it is easy to show that the ELP for that substitution
stage is 0, and therefore ELCP(Ω) = 0 by (14). For simplicity, we exclude all
such characteristics from further consideration.

The attacker typically finds the characteristic, Ω = 〈a1,a2, . . . ,aT ,aT+1〉,
whose ELCP is maximal (called the best characteristic [423]), and then sets a =
a1, b = aT+1, and uses the approximation

ELP(a,b) ≈ ELCP(Ω) . (15)

However, more careful analysis requires the concept of linear hulls, due to Ny-
berg [487]. Given masks a and b for the T stages under consideration, the corre-
sponding linear hull, denoted ALH (a,b),3 is the set of all T -stage characteristics
whose first mask is a and whose final mask is b. Nyberg then shows that

ELP(a,b) =
∑

Ω∈ALH (a,b)

ELCP(Ω).

It follows that (15) does not hold in general. The difference between the ELCP of
a characteristic and the ELP value it is used to approximate is called the linear
hull effect. If analysis is based on characteristics instead of linear hulls, the linear
hull effect may result in an overestimation of the data complexity required for a
given success rate—this is beneficial for an attacker, but potentially problematic
for a cipher designer.

5 Computing Linear Hulls for Q

McBride performs preliminary linear cryptanalysis of Q by considering the forma-
tion of characteristics in which every N -bit mask contains a single active bit [434].
We call these restricted characteristics. McBride estimates that the ELCP of the
best characteristic over 8 rounds is in the range of 2−118 (i.e., bias value = 2−60).
However, as we show below, it is straightforward to combine restricted charac-
teristics into linear hulls4 for which the ELP value is much higher than this, i.e.,
the linear hull effect is significant for Q.

In order to form linear hulls over T core stages, our algorithm uses a 3-
dimensional data structure DS[ ] of size 128 × (T + 1) × 128, in which each
entry is a record of two values: an integer Count, and a real value ELP.5 After
running the algorithm, DS[i, t, j] contains information about the linear hull over
substitution stages 1 . . . t whose first (last) mask contains a single 1 in position
3 Nyberg originally used the term approximate linear hull, hence the abbreviation ALH.
4 Technically, we are building sub-linear hulls, since we are including only a subset of

all the characteristics belonging to a particular linear hull.
5 Our approach has strong similarities to the construction of differentials for Q by

Biham et al. [73]; however, whereas Biham et al. use a linear algebraic approach, we
opt for an algorithmic description.
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i (j)—specifically, the Count field is the number of restricted characteristics in
the linear hull, and the ELP field is the sum of the ELCP values of those restricted
characteristics.

For the presentation of the algorithm, and for Theorem 0.1 below, we strip
off the first and last S-substitution stages, so T = 23 (these results are easily
generalized to any number of substitution stages). The algorithm is given in
Figure 89 and Figure 90. (The pseudocode for subroutine ApplyB( ) is omitted,
as it is symmetric to that for ApplyA( )—simply replace LPA with LPB . Also, the
pseudocode for subroutine PostSerpent( ) is omitted, as it is simply the inverse
of PreSerpent( ).) Note that we use the shorthand x += y to mean x ← x + y.
The values that are important for our attack on 8-round Q will be stored in the
entries DS[i, 23, j].

Theorem 0.1. If DS[ ] is filled using the algorithm in Figures 89 and 90, then
for 0 ≤ i, j ≤ 127 and 0 ≤ t ≤ 23, DS[i, t, j].Count is the number of restricted
characteristics over the first t of the 23 substitution stages whose first (last) mask
contains a single 1 in position i (j), and for which ELCP > 0; and DS[i, t, j].ELP
is the sum of the ELCPs of these characteristics.

Proof. Let 0 ≤ i ≤ 127 be fixed. The theorem is easily proven using induction
on t. Trivially, the base case (t = 0) is made true for all j by the first For loop
in the main program (Figure 89). We assume the statement holds for some t ≥ 0
and demonstrate its truth for (t+1). Note that the truth of the statement is not
affected by the linear transformations (bitwise permutations) in Q; we simply
perform the “bookkeeping” of permuting the elements of DS[i, t, ·] accordingly.6

Therefore, we need only consider the effect of the (t + 1)st substitution stage
on DS[i, t, ·], and without loss of generality we can limit our consideration to
substitution using S. Further, without loss of generality we will consider only the
effect of the first (leftmost) copy of S, denoted S0. The inputs/outputs for S0 are
bits 0 . . . 7 of the respective blocks.

Let ̃ ∈ {0, . . . , 7}. Consider all restricted characteristics over the first (t+ 1)
substitution stages whose first (last) mask has bit i (̃ ) active. Clearly all these
characteristics make S0 active. Therefore, in any of these characteristics, the mask
preceding the (t+1)st substitution stage must have the position of its (only) active
bit in the range 0 . . . 7. It follows that

DS[i, t+ 1, ̃ ].Count =
7∑
j=0

DS[i, t, j].Count, (16)

with one proviso: if LPS [j, ̃ ] = 0, then extending any t-stage restricted char-
acteristic enumerated by DS[i, t, j].Count (for 0 ≤ j ≤ 7) to (t + 1) stages will
6 This works because given a mask before a linear transformation in Q, the correspond-

ing mask after the linear transformation is obtained by processing the mask through
the linear transformation. This applies to Q because all linear transformations are
bitwise permutations. However, this does not hold in general—for an arbitrary linear
transformation represented as a binary matrix, output masks are transformed to input
masks via multiplication by the transpose of the linear transformation [177].
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produce a value ELCP = 0 (by (14)). Therefore, we omit all such j by modifying
(16) as follows:

DS[i, t+ 1, ̃ ].Count =
∑

0≤j≤7
LPS [j,̃ ]>0

DS[i, t, j].Count (17)

(this is done via the If statement in subroutine ApplyS( )). It is easily seen that
DS[i, t + 1, ̃ ].ELP is correctly assigned the sum of the ELCP values of all the
characteristics enumerated by (17). ut

5.1 Computational Results

We ran our algorithm for varying numbers of rounds by modifying the main
program in Figure 89 appropriately. The best ELP values found are given in
Table 79. For comparison, we include Table 80, which contains the corresponding
best expected differential probability (EDP) values from [73]. The ELP values
represent a minimum improvement in the exponent of approximately 17 relative
to [73]; the improvement in the exponent is 20.4 for the case that is of primary
interest to us: 7 full rounds with A+B prepended, hereafter denoted A+B+ 7.

Table 79. Best ELP values

Number of Full rounds With additional With additional
rounds only S appended A + B prepended

6 2−72.3 2−77.2 2−78.8

7 2−83.7 2−88.6 2−90.1

8 2−95.1 2−100.0 2−101.5

9 2−106.4 2−111.3 -

Table 80. Corresponding best EDP values from Biham et al. [73]

Number of Full rounds With additional With additional
rounds only S appended A + B prepended

6 2−92.9 2−105.35 2−95.5

7 2−107.9 2−120.35 2−110.5

8 2−122.9 2−135.35 2−125.5

9 2−137.9 2−150.35 -
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For i = 0 to 127

For i = 0 to 127

Initialize all Count and ELP fields in DS[ ] to 0

DS[i, 0, i].Count← 1

DS[i, 0, i].ELP ← 1

t← 0

ApplyA (i, t); t += 1

Permute (i, t)

ApplyB (i, t); t += 1

For Round = 1 to 7

ApplyS (i, t); t += 1

ApplyA (i, t); t += 1

Permute (i, t)

ApplyB (i, t); t += 1

Subroutine ApplyS (i, t)

J ← {j : DS[i, t, j].Count > 0}
For j ∈ J

BoxIndex← j div 8

InBit← j mod 8

For OutBit = 0 to 7

If LPS [InBit, OutBit] > 0

̃← 8× BoxIndex + OutBit

DS[i, t + 1, ̃ ].Count += DS[i, t, j].Count

DS[i, t + 1, ̃ ].ELP += DS[i, t, j].ELP× LPS [InBit, OutBit]

Fig. 89. Pseudocode for computation of linear hulls over 23 core stages
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For j ∈ J
BoxIndex ← j div 4

InBit ← j mod 4

For OutBit = 0 to 3

If LPA[InBit, OutBit] > 0

̃← 4× BoxIndex + OutBit

J ← {j : DS[i, t, j].Count > 0}

PreSerpent (i, t)

DS[i, t + 1, ̃ ].Count += DS[i, t, j].Count

PostSerpent (i, t + 1)

Subroutine ApplyA (i, t)

DS[i, t + 1, ̃ ].ELP += DS[i, t, j].ELP× LPA[InBit, OutBit]

Subroutine PreSerpent (i, t)

For j = 0 to 127

Temp[j]← DS[i, t, j]

For j = 0 to 127

̃← 4× (j mod 32) + (j div 32)

Subroutine Permute (i, t)

Partition DS[i, t, ·] into 4 “words” of size 32 (W0, W1, W2, W3):

Ws ← 〈DS[i, t, 32s], . . . , DS[i, t, 32s + 31] 〉, for s = 0 . . . 3

Leave W0 unchanged

Right rotate W1 by 8, W2 by 16, W3 by 24

DS[i, t, ̃ ]← Temp[j]

Fig. 90. Pseudocode for other subroutines
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5.2 Recovering the Full Key

A linear hull over A+B+7 with input/output masks that each contain a single 1
can be used to derive two bytes of keying information: the byte XOR’d before
the active copy of S in the first substitution stage, and the byte XOR’d after the
active copy of S in the last substitution stage. Therefore we need 216 counters
to carry out linear cryptanalysis using such a linear hull. Note that the bytes we
obtain are in fact pieces of the 128-bit vectors (KW 1⊕KA) and (KB ⊕KW 2),
respectively, i.e., they do not give us subkey bytes directly.

By carrying out linear cryptanalysis with 16 different linear hulls, each of
which activates a different copy of S in the last substitution stage, we can sys-
tematically recover the bytes of (KB⊕KW 2). Using our algorithm, we found the
best linear hull for attacking each of these bytes; these are given in Table 81. The
smallest of the 16 ELP values is approximately 2−91, so opting for a 99.9% suc-
cess rate for each linear hull requires a data complexity of 64

2−91 = 297 (Table 78).
Assuming that the success rates of the 16 individual attacks are independent, the
overall success rate is (0.999)16 ≈ 98.4%.

Once we have determined (KB⊕KW 2), we can exhaustively search all 232 bits
of information in KB (see Section 2.2). For each guess of KB we obtain a guess
of KW 2, and this yields the remaining subkeys by running the key-scheduling
algorithm backward. A trial encryption can be used to discard each wrong guess
of KB , so at most 232 trial encryptions are required.

6 Conclusion

We have considered the vulnerability of Q to linear cryptanalysis based on linear
hulls. We present a straightforward algorithm that combines all characteristics
consisting of masks containing a single 1 (termed restricted characteristics) into
the corresponding linear hulls, and we compute the expected linear probability
(ELP) of each such linear hull (since we limit our consideration to restricted
characteristics, the value we obtain is actually a lower bound on the ELP value
of the full linear hull). The ELP of the best such linear hull over 7.5 rounds (8 full
rounds minus the first S-substitution) is 2−90.1, a significant improvement over
the best known expected differential probability (EDP) value for the same rounds,
namely 2−110.5 [73]. We can use the linear hulls found by our algorithm to recover
a 128-bit key with success rate 98.4%, using 297 known 〈plaintext, ciphertext〉
pairs and 232 trial encryptions.

There are a number of reasons for the success of our approach. First, each
of the three s-boxes in Q has multiple nonzero LP values corresponding to in-
put/output masks containing a single 1. In contrast, one of the design criteria for
A and B was that no single-bit input difference can produce a single-bit output
difference with nonzero probability [434]. This is the main reason that our ELP
values are superior to the EDP values in [73]. Second, the linear transformations
in Q have (very) low diffusion, allowing a mask containing a single 1 to be trans-
formed into a mask also containing a single 1. Third, it is easy to combine a large
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Table 81. Best linear hulls for attacking bytes of KW 2

Byte of Active bits ELP Number of characteristics
KW 2 (input,output) in linear hull

0 (31, 3) 2−91.1 94,726,326

1 (7, 11) 2−91.1 94,726,326

2 (15, 19) 2−91.1 94,726,326

3 (23, 27) 2−91.1 94,726,326

4 (31, 35) 2−90.1 191,795,706

5 (7, 43) 2−90.1 191,795,706

6 (15, 51) 2−90.1 191,795,706

7 (23, 59) 2−90.1 191,795,706

8 (23, 67) 2−90.2 188,281,125

9 (31, 75) 2−90.2 188,281,125

10 (7, 83) 2−90.2 188,281,125

11 (15, 91) 2−90.2 188,281,125

12 (7, 99) 2−90.2 183,092,934

13 (15, 107) 2−90.2 183,092,934

14 (7, 115) 2−90.2 183,092,934

15 (15, 123) 2−90.2 183,092,934

number of restricted characteristics into a single linear hull, enabling the attack
presented above. Finally, the cryptanalyst’s job is made easier by the fact that
finding a 128-bit subkey such as KW 2 allows all the subkeys to be recovered.
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Improved Analysis of the BMGL Keystream
Generator
by Johan H̊astad and Mats Naslund ∗

Abstract. In this paper we give an improved security analysis of the
NESSIE submission BMGL. The new analysis improves also asymptoti-
cally some of the theoretical results on which the BMGL keystream gen-
erator is based. We also give an alternative, bootstrapped version of the
generator which is implementation-wise very close to the original genera-
tor and offers even stronger provable security properties.

1 Introduction

The BMGL keystream generator, [285], was submitted in response to the NESSIE
call for primitives, [633]. The construction is based on theoretical results due to
Blum and Micali [101], and Goldreich and Levin [269] (hence the acronym).
BMGL uses the Rijndael/AES block cipher [181] as the cryptographic core. In
the sequel, we fix a (known) plaintext block and identify Rijndael/AES with
the natural mapping of keys onto ciphertexts. BMGL can then be shown to have
certain provable security properties under the (weakest possible) assumption: that
the above function does not significantly loose its one-way function properties
when iterated.

The main contribution in [285] is an “exact” analysis for fixed security pa-
rameter (key size) of the results in [101, 269]. By also introducing completely
new elements to the analysis when many bits are output per application of the
underlying core, an order of magnitude of improvement also in the asymptoti-
cal analysis is obtained, and these things together enables the authors to obtain
relatively strong, provable properties already for keysizes around 100–200 bits.
It also gives the (thus far) fastest generator with such provable properties: the
equivalent of about two Rijndael applications are needed per 40 bits of output
keystream.

The proofs in [285] reduces the (assumed) failure of BMGL to pass a “statis-
tical test”, to an inversion algorithm for the iterated Rijndael cipher, using the
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statistical test as a black box. The reduction relies on the existence of a certain
location in the output keystream where there is concentration of the test’s advan-
tage. To get a uniform reduction, the main part of the workload in that reduction
is to actually determine this location. In this paper we provide a new method
to find this location, or “index”. In fact, we can provide evidence that the new
method is optimal up to a small constant.

A second ingredient in the original proof is an averaging argument that is
used to show that the inversion succeeds on average, for a random input, rather
than on a “small” subset of all inputs (which would normally be the result by
a careless application of Markov’s inequality). Here, we improve this averaging
argument even further.

Finally, as mentioned, the original BMGL generator iterates the Rijndael ci-
pher. The provable security goes down with the number of iterations needed, i.e.
with the output keystream length. Using a result by Goldreich, Goldwasser, and
Micali, [268], on the construction of pseudo-random functions we give an alterna-
tive, “bootstrapped” version of BMGL, which we call GGM (or “BMGL2”). This
generator can use BMGL as a black box, and has the benefit that it never iterates
Rijndael more than a constant number of times, giving an even stronger security
preservation in the reduction. (For the suggested parameters, 16 iterations are
enough for most practical purposes.)

2 Preliminaries

The length of binary string x is denoted |x|, and by {0, 1}n we denote the set of
x such that |x| = n. We write Un for the uniform distribution on {0, 1}n. Except
otherwise noted, log refers to logarithm in base 2.

Let G : {0, 1}n → {0, 1}L(n) and let A be an algorithm with binary output.
We say that A is a (L(n), T (n), δ(n))-distinguisher for G, if A runs in time T (n)
and |Prx∈Un [A(G(x)) = 1] − Pry∈UL(n) [A(y) = 1]| ≥ δ(n). (We call δ(n) the
advantage of A.) If no such A exists, G is called (L(n), T (n), δ(n))-secure.

Our model of computation is slightly generous but realistic. We assume that
simple operations like arithmetical operations and exclusive-ors on small1 size
integers can be done in unit time.

3 Improved Analysis of BMGL

We shall assume the reader is familiar with [285]. For self-containment however,
we again give the definition of BMGL.

Definition 4. Let n, and m,L, λ be integers such that L = λm and let f :
{0, 1}n → {0, 1}n. Let Mm be the set of all m × n boolean matrices and for
x ∈ {0, 1}n, R ∈Mm, let BmR (x) denote the binary matrix-vector product R · x.
1 We need words of size n where n is size of the input on which we apply our one-way

function, e.g. n = 128 or 256 for a typical block cipher.
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The generator BMGLfn,m,L(x,R) stretches n + nm bits to L bits as follows.
The input is interpreted as x0 = x and R ∈Mm. Let xi = f(xi−1), i = 1, 2, . . . , λ
and let the output be {BmR (xi)}λi=1.

In BMGL the choice of f is

f(x) , Rijndael(x, P ),

the Rijndael encryption of a fixed, known plaintext P (e.g. P = 00 . . . 0) using
key x, and where Rijndael is configured to have the block size equal to the key
size, n.

We relate the difficulty of inverting an iterated function f to that of dis-
tinguishing outputs of BMGLfn,m,L from random bits. Our measure of success
is

Definition 5. For a function f : {0, 1}n → {0, 1}n, let f (i)(x) denote f iterated
i times, f (i)(x) , f(f (i−1)(x)), f (0)(x) , x.

Let A be a probabilistic algorithm which takes an input from {0, 1}n and has
output in the same range. We then say that A is a (T, δ, i)-inverter for f if when
given y = f (i)(x) for an x chosen uniformly at random, in time T with probability
δ it produces z such that f(z) = y.

It is in Theorem 3 of [285] shown that a random function can be expected to be
(T, δ, i)-invertible for T/δ ∼ 2n/i. This leads to the following definition:

Definition 6. A σ-secure one-way function is an efficiently computable function
f that maps {0, 1}n → {0, 1}n, such that the average time over success ratio for
inverting the ith iterate is at most σ2n/i. That is, f cannot be (T, δ, i)-inverted
for any T/δ < σ2n/i.

A block cipher, f(p, k), |p| = |k| = n, is called σ-secure if the function fp(k),
for fixed, known plaintext p, is a σ-secure one-way function of the key k.

Hence, for our “practical” choice, f = Rijndael, we expect it to be about 1-secure
in the above terminology.

The objective is to show that if BMGLfn,m,L is not (L, T, δ)-secure for “prac-
tical” values of L, T, δ, then there is also a practical attack on the underlying
one-way function f . In particular, we can show the following theorem (an im-
provement to Theorem 4 in [285]).

Theorem 2. Suppose that G = BMGLfn,m,L is based on an n-bit function
f , computable by E operations, and that G produces L bits in time S. Sup-
pose that this generator can be (L, T, δ)-distinguished. Then, setting δ′ = δm

L ,
there exists integers i ≤ L/m , λ, 0 ≤ j ≤ 2 log δ′−1, such that for k =
max (m, 1 + log ((2n+ 1)δ′−2)− j), f can be (T ′, dj/2, i)-inverted, where dj is
given by Eq. (22) and Eq. (23), page 774, and T ′ equals

(1 + o(1))2m+k(2m+ k + 1 + T + S + E)(n+ 1).

Values of i and j such that f can be ((8 + o(1))T ′, dj/16, i)-inverted can, with
probability at least 1/4, be found in time O(δ′−2(T + S)). The O(·) hides an
absolute constant, numerically estimated by Eq. (20), p. 772.
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The improvement is in the running time (preprocessing) to find i and a better
total average time/success ratio of the inversion. We shall in Section 5 see exactly
how this translates into the concrete security of BMGL when concrete examples
are studied (and values for dj are calculated). The time-success ratio for most
ranges of δ and T is worst when the value of j is small. For j ∈ O(1) and
m, k,E ≤ S ≤ O(T ) the ratio is O(n2L2δ−22mT ). The preprocessing time (to
find i, j) is small compared to the running time except in the cases when j is
large. In those cases the time to find j is still smaller than the running time of
the inverter while the running time to find i might be larger for some choices of
the parameters.

Before proceeding, for completeness we outline the key steps of the proof to
the above theorem (i.e. to Theorem 4 of [285]) and indicate where we are able to
make improvements.

– We show that an assumed distinguisher translates into an algorithm, P (i),
that given f (i)(x) distinguishes BmR (f (i−1)(x)) from randomness with some
advantage. We also show how to find i. (This is Lemma 5 in the original paper,
and is here improved in Lemma 3).

– We show that such a distinguisher can be used to produce an algorithm that
given y = f (i)(x) and the advantage, εx, of the distinguisher for this particular
x, produces a“small”set of candidates for a z with f(z) = y. (This is Theorem 6
in the original paper.)

– The proof of the original Theorem 6 relies on a result enabling us to generate a
number of random, pairwise independent matrices, {Rt} ⊂ Mm for which we
already know each BmRt

(x), or rather, a small set of candidates thereof. (This
is Lemma 7 in the original paper, and a slight improvement appears below in
Lemma 4.)

– The proof of Theorem 4 in the original paper follows from the above and a
careful strategy to“guess”the correct εx to use in the application of the original
Theorem 6. We here give an improved guessing-strategy that in a similar way
establishes Theorem 2 above.

The other needed results (Lemma 8 and 9 in [285]) are needed also here, but
are essentially unchanged. We would like to point out a small error here. The
(fixed) Si in Lemma 9 should be replaced by a set of matrices {Sji }2

k

j=1 defined by
Sji = sji⊗vi, where {sji}2

k

j=1 are (pairwise) independent, random m-bit strings and
where Sji is used in the jth sample. This ensures the pairwise independence of
the samples, which otherwise only holds when 〈x, vi〉2 = 0. Then, S in Lemma 8
is replaced by the set Si = {Sji }, given i.

In the original paper, an improved inversion algorithm based on error-
correcting codes was also given. This is applicable here too, offering corresponding
further improvements. However, we omit the details. We now proceed to give the
new, improved analysis details.

As mentioned, the first, and main step in the improvement is the lemma below
which provides us with a more efficient method for finding the i-value mentioned
in Theorem 2.
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Lemma 3. Let L = λm. Suppose that BMGLfn,m,L runs in time S(L). If this
generator is not (L, T (L), δ)-secure, then there is an algorithm P (i), 1 ≤ i ≤ L/m
that, using T (L)+S(L) operations, given f (i)(x), R, for random x ∈ Un, R ∈Mm,
distinguishes BmR (f (i−1)(x)) from Um with advantage δ′ = δm

L .
P (i) depends on an integer i, and using c1δ′−2(T (L)+S(L)) operations, where

c1 is the constant given by Eq. (20), page 772, a value of i achieving advantage
δi ≥ δ′/2 can be found with probability at least 1/2.

All (some rather lengthy) proofs appears in the Appendix.
We conjecture that the time needed to find i is optimal up to the value of the

constant c1. Even if a good value i was given to us at no cost, the straightforward
way by sampling to verify that it actually is as good as claimed would take
time Ω(δ′−2(T (L) + S(L))). It is not difficult to see that the below proof can be
modified to find an i with δi arbitrarily close to δ′, rather than just δ′/2. The
cost is simply an increase in the constant c1.

Finally, another slight improvement is in the following Lemma which corre-
sponds to Lemma 7 in [285]. The improvement is in a more careful analysis of
the matrix-generation which reduces the running time by a factor k3.

Lemma 4. Fix any x ∈ {0, 1}n. For m < k, from m + k randomly chosen
a0, . . . , am−1 and b0, . . . , bk−1 ∈ {0, 1}n, it is possible in time 2m2k + k2 +m +
4k to generate a set of 2k uniformly distributed, pairwise independent matrices
R1, . . . , Rs ∈ Mm. Furthermore, there is a collection of m × (m + k) matrices
{Mj}2

k

j=1 and a vector z ∈ {0, 1}m+k such BmRj (x) = Mjz for all j.

The construction generalises that of Rackoff for the case m = 1, see [266]. If
k < m, we use k′ = m above and then simply only take the first 2k matrices.

Based on the above the (new, improved) proof of Theorem 2 is given in the
Appendix.

4 Applying the GGM construction

As shown, the BMGL generator can produce any number of output bits. We
here investigate an alternative way, inspired by a construction of pseudo random
functions due to Goldreich, Goldwasser and Micali, [268]. It has the advantage
that we iterate f fewer times and hence the assumption needed for security is
weaker.

The construction can be based on any PRG, G : {0, 1}n → {0, 1}2n, though
we for concreteness think of G = G(x,R) = BMGLfn,m,2n(x,R) for some f .
For simplicity of notation, we shall exclude R from it, keeping in mind that
probabilities should be taken also over the choice of R. First, let us assume that
we know in advance how may output bits that are desired. We apply [268] to
obtain 2dn output bits (where d is given) from n(m+ 1) bits.

Definition 7. Fix n, d ∈ N. Let G(x) be a generator, stretching n bits to 2n
bits, and let G0(x) (G1(x)) be the first (last) n bits of G(x). For x ∈ {0, 1}n,
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s ∈ {0, 1}d put gx(s) , Gsd
(Gsd−1(· · ·Gs2(Gs1(x)) · · · )), and define GGMG

d,n :

{0, 1}n → {0, 1}2dn by

GGMG
d,n(x) , gx(00 . . . 0), gx(00 . . . 1), · · · , gx(11 . . . 1)

(the concatenation of gx applied to all d-bit inputs).

The construction can be pictured as a full binary tree T = (V,E) of depth n.
Associate v ∈ V with its breadth-first order number; the root is 1 and the children
of v are 2v, 2v + 1. Given x, the root is first labelled by L(1) = x. For a non-leaf
v labelled L(v) = y ∈ {0, 1}n, label its children by L(2v) = G0(y), L(2v + 1) =
G1(y), respectively. The output of GGMG

d,n is simply the concatenation of all the
“leaves” of the tree.

Notice an advantage of the above method when G = BMGLfn,m,2n. To pro-
duce L = 2dn bits, each application of G iterates f 2n/m times instead of 2dn/m,
which, in light of Theorem 3 of [285], retains more of the one-wayness of f .

Lemma 5. Suppose that D1 is a (2dn, T, δ)-distinguisher for GGMG
d,n(x) where

G can be computed in time S. Then, there is an integer i ≤ 2d and algorithm Di

that is an (2n, T + 2dS, 2−dδ)-distinguisher for G.
Di depends on i, and a value of i achieving advantage δi ≥ 2−(d+1)δ can be

found with probability at least 1/2 in time c122dδ−2(T + 2dS) where c1 is the
constant given by Eq. (20), page 772.

Proof (Proof sketch.). Consider a binary tree, T , describing a computation of
GGMG

d,n as above. The tree has depth d, 2d − 1 internal vertices and 2d leaves.

We construct hybrid distributions H0, . . . ,H2d−1 on the vertex-labels of such
trees. Again, associate each v ∈ V by its breadth-first order number. Then, Hi

is defined by a simulation algorithm, GGM i(x), which on input x, assigns labels
as follows. Assign the root, v = 1, the label x. For v ∈ V , v = 1, 2, . . . , i, label v’s
children by letting L(2v),L(2v+ 1) be independent, random n-bit strings. Then,
for v = i+1, . . . , 2d−1: L(2v) = G0(L(v)), L(2v+1) = G1(L(v)). Finally return
labels of the leaves in T .

Observe that H2d−1 gives the uniform distribution over the labels (in partic-
ular the leaves) and H0 labels the vertices exactly as GGMG

n,d does on a random
seed x. Since D1 distinguishes GGMG

d,n(x) from random 2dn-bit strings with ad-
vantage δ, for some i ≤ 2d, it must be the case that D1 distinguishes Hi,Hi+1

with advantage at least 2−dδ.
To find i, we use the same analysis as in the proof of Lemma 7 (see appendix)

with λ = 2d, m = 2n, and Fi(x, z) defined by the labelling according to Hi.
We now construct Di: when Di gets input γ ∈ {0, 1}2n, it selects random x

and feeds D1 a value y, computed as GGM i+1(x) with the following exception:
i+1 is not assigned any label2, and the children of i+1 are assigned the left/right
n-bit half of γ respectively. It is not too hard to see that if γ is random, we giveD1

2 As the labels of non-leaves are never exposed, one can conceptually think of the
process as labelling i + 1 afterwards.
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a value according to exactly the same distribution as Hi+1, whereas if γ = G(x′),
D1 is given a value from the same distribution as GGM i(x), i.e. Hi. Thus, by
returning D1’s answer to y, Di’s advantage equals that of D1.

4.1 Unknown Output Length

If the length of the “stream” is unknown beforehand, we let the basic genera-
tor G expand n bits to 3n bits. Apply the tree-construction as above, labelling
left/right children by the first, respectively second n-bit substring of G’s output.
The remaining n bits are used to produce an output at each vertex as we traverse
the tree breadth-first. The analysis is analogous. To save memory, the traversal
can be implemented in iterative depth-first fashion.

5 Concrete Examples

What does all this say? Suppose that we base the construction on Rijndael and
that we want to generate L = 230 bits, applying our construction with m = 40
(40 bits per iteration). One choice of parameters gives the following corollary.

Corollary 6. Consider G = BMGLRijndael
256,40,230 (using key/block length 256) and

where Rijndael is computable by E operations, and assume that G runs in time
S. If G can be (230, T, 2−32)-distinguished, then there is i < 225, and 0 ≤ j ≤ 114
such that setting k = max (40, 123− j), Rijndael can be (T ′, dj , i)-inverted for
T ′ = 249+k(81 + k + T + S + E).

Similarly, setting G′ = BMGLRijndael
256,40,512 and then using GGMG′

22,256 (to gen-
erate the same length outputs), the result holds for some i < 13.

This is simply substituting the parameters and noting that the o(1) in Theorem 2
comes from disregarding the time to construct the matrices described in Lemma 4
and for the current choice of parameters using (1 + o(1))(n + 1) ≤ 29 is an
overestimate.

Assuming that we have a simple statistical test such as Diehard tests, [416], or
those by Knuth, [372], it is reasonable to assume3 that 81+k+T +E ≤ S. From
the first part of the corollary, then, the essential part of computing the generator
comes from the roughly 225 computations of Rijndael and we end up with a time
for the inverter equivalent to at most 275+k Rijndael computations. The maximum
of 2k(dj/2)−1 is obtained for j = 5 in which case it equals 2124 · 7.5 ≤ 2127. We
conclude that in this case we get a time-success ratio that is equivalent to at most
2202 computations of Rijndael and since i ≤ 225, Rijndael would not be 2−29-
secure. (This is a factor 16 better than the security bound obtained in [285].) As
the situation is now, this is probably not a “catastrophe” for AES, but had such
a flaw been known at the time AES was selected, we are convinced that Rijndael
would not have been chosen.

3 Common “practical” tests are almost always much faster than the generator tested.
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Alternatively, bootstrapping BMGL by the GGM method, we conclude from
the second part of the corollary that such a test would mean that Rijndael cannot
be even 2−50-secure. Thus, though somewhat more cumbersome to implement,
the GGM method is more security preserving.

The level of protection against other distinguishers can easily be deduced from
the formulas: allowing the distinguisher (for GGM) to use time equivalent to 250

Rijndael applications, we deduce that Rijndael would not be 2−16-secure.
If we want to find the values of i and j efficiently the time-success ratio

increases by a factor about 26. Note that for the case with small j the time
needed to find i and j is much smaller than the running time of the inverter.

6 Summary and Conclusions

We have given a stronger analysis of the concrete BMGL generator and also im-
proved some theoretical results on which the construction is based. An alternative
construction, BMGL2/GGM has also been given and we have seen that although
somewhat more difficult to implement, even stronger security can be obtained.
Acknowledgement. We thank Gustav Hast, Bernd Meyer, and anonymous re-
viewers for helpful comments.

A Proofs

Proof sketch of Lemma 3. The proof uses an optimised version of the so called
universality of the next-bit-test, by Yao [626], see also [101].

Using standard “hybrid argument”, we define efficiently sampleable distribu-
tions Hi, i = 0, 1, . . . , λ, on {0, 1}L such that H0 equals the distribution of
outputs of the generator, and so that Hλ is the uniform distribution on {0, 1}L.
We simply iteratively apply f and R, λ − i times, to random strings to obtain
Hi. By assumption, D distinguishes H0 and Hλ with advantage δ, and let δi be
the advantage D has in distinguishing Hi−1 and Hi for i = 1, . . . λ. From the
triangle inequality follows the existence of an i, with δi ≥ δ′. With this i known,
one easily constructs the algorithm P (i).

We need to find such an i efficiently. This is treated next in Lemma 7, by
setting Fi(x, z) = BR(f(x)), BR(f (2)(x)), . . . , BR(f (λ−i)(x)).

Lemma 7. Let {Fi(x, z)}λi=0 be a set of functions, Fi : {0, 1}n × ({0, 1}m)i →
({0, 1}m)λ−i and where each Fj is computable in time ≤ S. Let Hi be the distri-
bution on ({0, 1}m)λ induced by (z, Fi(x, z)) when x ∈ Un, z ∈ (Um)i.

Suppose that H0, Hλ (= (Um)λ) are distinguishable with advantage δ, by an
algorithm D running in time T . Then, a value of i < λ for which Hi,Hi+1 can
be distinguished with advantage δ′ = δ

2λ , can with probability at least 1
4 , be found

in time c1δ′−2(T + S) where c1 is an absolute constant.
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Proof. Let δi be the advantage on Hi,Hi+1. The problem is that even though
Ei[δi] = δ′, there is a large number of possibilities for the individual δi. Basically,
these possibilities all lie between the two extreme cases: (1) There are a few large
δi, while most are close to 0. (2) All δi are about the same, but none is very large.
Suppose we try random i’s. In the first case, we may need to try many i, but it can
be done with a rather low sampling accuracy. In the second case, we expect to find
a fairly good i rather quickly, but we need a higher precision in the sampling.
The idea is therefore to divide the sampling into a number stages, {S(j)}j≥0,
each with different sampling accuracy. Stage S(j) chooses some random i-values
and samples D on Hi,Hi+1. As soon as a sufficiently “good” i is detected, the
procedure terminates. Below we quantify the needed accuracy and the criterion
for selecting the good i.

For j ∈ {0, 1, . . . ,−2 log δ′} let aj be the fraction of i such that δi ≥ 2(j−1)/2δ′.
By the assumption of the lemma we have

a0 +
∞∑
j=1

aj(2(j−1)/2 − 2(j−2)/2) ≥ 1− 2−1/2. (18)

Define b0 to be d4(1− 2−1/2)−1e and

bj = d4(1− 2−1/2)−1(2(j−1)/2 − 2(j−2)/2)e = d2(j+3)/2e,

for j > 0. The bj-values, together with a parameter Tj now define the sampling
accuracy. Given these values, we determine i as follows.

In stage S(j), j = −2 log δ′,−2 log δ′ − 1, . . . , 0 choose bj different random
values of i and sample Hi and Hi+1 each Tjδ

′−2 times and run D on each of
the samples. If the difference in the number of 1-outputs is at least (2(j−1)/2Tj −√
Tj/2)δ′−1 choose this i and halt. If no i is ever chosen halt with failure. We

need to analyse the procedure and determine Tj .
Suppose that at stage j an i is picked such that δi ≥ 2(j−1)/2δ′. We claim

that the algorithm halts with this i as output with probability at least 1/2. To
establish this first consider the following fact, the proof of which we leave to the
reader.

Fact 8. Let X be a random variable with mean µ and standard deviation σ. Then
we have

Pr[X ≤ µ− σ] ≤ 1/2.

From this, the above claim now follows since the expected difference in the number
of 1-outputs when δi ≥ 2(j−1)/2δ′ is at least 2(j−1)/2Tjδ

′−1 and the standard
deviation (being the sum of Tjδ′−2 variables each being the difference of two 0/1-
valued variables) is at most δ′−1

√
Tj/2. This implies that the probability that

the algorithm halts for an individual iteration during stage j is at least aj/2. The
probability that algorithm will fail to output any number is thus bounded by∏

j

(1− aj/2)bj ≤ e−
P

j ajbj/2 ≤ e−2,
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where the last inequality follows from (18) and the definition of bj .
We must bound the probability that algorithm terminates with an i such

that δi ≤ δ′/2. Let us analyse the probability that such an i would be output
during an individual run of stage j provided that it is chosen as a candidate.
The expected difference of the number of 1-outputs in the two experiments is
at most Tjδ′−1/2 and we have to estimate the probability that it is at least
(Tj2(j−1)/2 −

√
Tj/2)δ′−1. This is, provided

Tj(2(j−1)/2 − 1/2)−
√
Tj/2 ≥ 0, (19)

by a simple invocation of Chernoff bounds, at most

e
−

(Tj(2(j−1)/2−1/2)−
√

Tj/2)2

2Tj .

Let us call this probability pj . The overall probability of ever outputting an i
with δi ≤ δ′/2 is bounded by ∑

j

bjpj .

We now define Tj to be the smallest number satisfying (19) such that pj <
2−(j+3)b−1

j and such that Tjδ′−2 is an integer. We get that with this choice
the probability of outputting an i with δi ≤ δ′/2 is at most 1/4 and hence the
probability that we do get a good output is at least (1− e−2) 3

4 ≥ .64. The total
number of samples of the algorithm is bounded by c1δ′−2, where

c1 , 2
∑
j

bjTj . (20)

Note that this sum converges since Tj ∈ O(j2−j) and bj ∈ O(2j/2). In fact,
it can numerically be calculated to be bounded by 5300. Moreover, the sum is
completely dominated by the first term which is over 4600, and the sum of all
but the first three terms is bounded by 250. Thus, a more careful analysis what
to do for small j could lead to considerable improvements in this constant.

Before we continue let us make some needed definitions. Let bin(i) be the
map that sends the integer i, 0 ≤ i < 2m to its binary representation as an
m-bit string. In the sequel, we perform some computations in F2k , the finite
field of 2k elements, represented as Z2[t]/(q(t)) where q(t) is a polynomial of
degree k, irreducible over Z2. We assume that such q is available to us. If not,
it can be found in expected time at most k4 which is negligible compared to
our other running times considered. Viewing F2k as a vector space over F2, for
any γ =

∑k−1
i=0 γit

i ∈ F2k , we let in the natural way bin(γ) denote the vector
(γ0, . . . , γk−1) corresponding to γ’s representation over the standard polynomial
basis. Note also that bin(γ) can be interpreted as a subset of [0..k − 1] in the
obvious way.

Proof of Lemma 4. Pick randomly and independently a set of m strings,
a0, . . . , am−1, and k strings, b0, . . . , bk−1, each of length n. The jth matrix, Rj is
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now defined by {ai}, {bl}, and an element αj ∈ F2k as follows. Its ith row, Rji ,
0 ≤ i < m, is defined by

Rji , ai ⊕
(
⊕l∈bin(αj ·ti)bl

)
,

where αj is the lexicographically jth element of F2k (i.e. the lexicographically
jth binary string), and the multiplication, αj · ti, is carried out in F2k , and ⊕ is
bitwise addition mod 2.

Clearly the matrices are uniformly distributed, since the ai are chosen at
random. To show pairwise independence it suffices to show that an exclusive-or
of any subset of elements from any two matrices is unbiased. Since the columns
are independent, it is enough to show that the exclusive-or of any non-empty set
of rows from two distinct matrices Rj1 and Rj2 is unbiased. Take such a set of
rows, S1 ⊂ Rj1 , and S2 ⊂ Rj2 . We may actually assume that S1 = S2 = S, say,
since otherwise, the a-vectors makes the result uniformly distributed. In this case
the xor can be written as

⊕i∈S ⊕l∈bin((αj1+αj2 )·ti) bl,

but this is the same as

⊕l∈bin((αj1+αj2 )·(
P

i∈S t
i))bl,

which is unbiased if, and only if, bin((αj1 + αj2) · (
∑
i∈S t

i)) 6= 0. However,∑
i∈S t

i 6= 0, and as αj1 6= αj2 , αj1 + αj2 6= 0 too, so we have two nonzero
elements and hence their product is nonzero.

Notice that if we know
∑
i alixi and

∑
i blixi mod 2 for all al, bl (a total of m+

k bits), then by the linearity of the above construction, we also know the matrix-
vector products Rjx for all j. To calculate all the matrices we first compute the
reduction of ti for all i = k + 1, . . . , 2k in GF [2k]. Using an iterative procedure
this can be done with 3k operations on k bit words and since we only care about
k ≤ n these can be done in unit time. Now generate the vectors a and b in
time m+ k operations. Then we compute ⊕l∈bin(ti)bl for each i = 0, . . . , 2k using
k2 operations. By using a gray-code construction each row of a matrix can now
be generated with two operations and thus the total number of operations is
2m2k + k2 +m+ 4k.

Proof of Theorem 2. First we apply Lemma 3 to see that there is an i for which
we have an algorithm P (i) that when given f (i)(x) runs in time S(L)+T (L) and
distinguishes BmR (f (i−1)(x)) from random bits with advantage at least δ′′, where
δ′′ is δ′/2 or δ′ depending on whether we want to find i efficiently, or only show
existence (i.e. uniform/non-uniform algorithm). Since δ′′ is an average over all x
we need to do some work before we can apply the equivalent of Theorem 6 in the
original paper.

For each x we have an advantage δx. Let aj be the fraction of x with δj ≥
2(j−1)/2δ′′. Since the expected value of δx is δ′′ we have

a0 +
∞∑
j=1

aj(2(j−1)/2 − 2(j−2)/2) ≥ 1− 2−1/2. (21)
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Now define

d0 ,
1
2
(1− 2−1/2) (22)

and

dj , (2j(j + 1)2(j−1)/2)−1 (23)

for j ≥ 1. Since

d0 +
∞∑
j=1

dj(2(j−1)/2 − 2(j−2)/2) = 1− 2−1/2, (24)

we must have aj ≥ dj for some j and this is our choice for j in the existential
part. We now apply Theorem 6 in the original paper with ε = 2(j−1)/2δ′. To
eliminate the list we apply f to each element in it to see if it is a correct pre-
image in which case it is output. Since whenever δx ≥ ε we have a probability
1/2 of having f (i−1)(x) in the list and hence the probability of being successful
for a random x is at least dj/2.

To get a uniform algorithm, we need to sample to find a suitable value of j.
Consider the following procedure for parameters d and Tj to be determined.

For j = −2 log δ′′,−2 log δ′′ − 1, . . . , 0 choose d(j + 3)d−1
j different random

values of x and run P (i), for each x, Tjδ′′−2 each on the two distributions given
by choosing the m extra bits as BmR (f (i−1)(x)) or as random bits. If the difference
in the number of 1-outputs for the two distributions is at least (2(j−1)/2Tj −√
Tj/2)δ′′−1 for at least d(j + 3)/4 different values, choose this j and apply the

algorithm of Theorem 6 from [285] with ε = 2(j−2)/2δ′′ = 2(j−4)/2δ′.
First we analyse the probability that the algorithm outputs j if it ever gets

to a stage where aj ≥ dj . For each x chosen, the probability that it will satisfy
δx ≥ 2(j−1)/2δ′′ and yield the desired difference is by the choice of j and Fact 8,
at least aj/2 ≥ dj/2. Thus, for sufficiently large d, with probability at least
1 − 2−(j+3), this desirable distance will be detected d(j + 3)/4 times and j will
be output. Hence, except with this probability the algorithm will produce some
output and we have to analyse the probability that a worse j is output at an
earlier stage.

We claim that unless aj−1 ≥ dj/8, the probability of j being output is 2−(j+3).
Suppose that aj−1 < dj/8 and consider an individual execution in stage j. For a
suitable choice of Tj we will prove that the probability that we observe a difference
greater than (2(j−1)/2Tj −

√
Tj/2)δ′′−1 is bounded by dj/6. This is sufficient, for

large enough d, to establish the claim.
By assumption δx ≤ 2(j−2)/2δ′′ except with probability dj/8 and thus we need

to prove that given that this inequality is true, the probability to get the desired
difference is at most dj/24. By assumption the expected value of the observed
difference is 2(j−2)/2Tjδ

′′−1, and by applying Chernoff bounds it is hence sufficient
to choose Tj large enough so that

e
−

(Tj(2(j−1)/2−2(j−2)/2)−
√

Tj/2)2

2Tj ≤ dj
24
.
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This can be done with Tj = O((j + 3)2−j). The expected number of samples
computed, given that j0 is the largest value such that aj0 ≥ dj0 , is at most

∞∑
j=j0

d(j + 3)d−1
j Tjδ

′′−2 + 2−(j0+3)

j0−1∑
j=0

d(j + 3)d−1
j Tjδ

′′−2,

which is O(j402−j0/2δ′−2).
In the case where we efficiently find i and j, the final value of ε for which we

call upon Theorem 6 (in [285]) is a factor 2−3/2 smaller than in the existential
case, and hence the increase in the running time is increased by a factor 8+ o(1),
where the o(1) comes from the increase in the additive term k. By the above
argument the guarantee for the fraction of the inputs for which the procedure
has probability at least 1/2 of finding the inverse image, is at least 1/8 of that in
the existential case.
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Some modes of use of the GPS identification
scheme
by Marc Girault, Guillaume Poupard and Jacques Stern ∗

Abstract. In this note, we present various modes of use of the GPS iden-
tification scheme, so that the reader can better evaluate the potentialities
of this scheme. Some of them are not new, while other ones result from
very recent research1.

Keywords. Identification, digital signatures, discrete logarithm, on-line/
off-line, on the fly, RSA, server-aided verification.

1 Introduction

GPS is an identification scheme, which has been submitted for evaluation to
NESSIE project. In essence, it is a (statistically) zero-knowledge protocol based
on both discrete logarithm and integer factorisation. As in many other discrete-
logarithm-based schemes, GPS can be used in an on-line/off-line manner [222]:
almost all the computations can be performed by the prover before the interaction
with the verifier. But contrary to all the other discrete-logarithm-based schemes,
it can be used in an on the fly [526] manner: the prover only has one multiplication
and one addition to do, without any modular reduction, after he received the
challenge from the verifier.

∗ Marc.Girault@francetelecom.com
France Telecom R&D, 42 rue des Coutures,
BP 6243, F-14066 Caen Cedex 4, France.

Guillaume.Poupard@m4x.org
DCSSI Crypto Lab, 51 boulevard de La Tour-Maubourg,
75700 Paris 07 SP, France.

Jacques.Stern@ens.fr

École normale supérieure, Département d’informatique,
45 rue d’Ulm, F-75230 Paris Cedex 05, France.

1 Actually, this note should be viewed as a complement of the NESSIE submission
document, and therefore does not replicate many contents of this document, such as
motivation, notations, ways of achieving short coupons etc. It should also be seen as
a review, rather than a research paper; in particular, security proofs are outside of
its scope.
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In this note, we wish to point out another important advantage of GPS,
namely its great flexibility, due to its mathematical specific features2, but leading
to very practical consequences. We illustrate this flexibility by presenting several
variants and/or options of the basic GPS scheme, called modes of use, and which
will allow the reader to better evaluate the potentialities of this scheme. In brief,
we show how to (1) convert it into a digital signature scheme, (2) use it in
another group where computing discrete logarithms is hard (Z∗p with p prime,
elliptic curves, etc.), (3) accelerate the verification with the aid of a (possibly
untrusted) server, (4) make it at least as secure as RSA, (4bis) make it at least
as secure as RSA using a public key identical to a RSA public key, (4ter) make
it at least as secure as RSA using a key pair identical to a RSA key pair.

Note that (1), (2), (4) and (4bis) are not new while (3) is dated 2002 (rump
session of Eurocrypt 2002 [264]) and (4ter) is dated 2003 [261]. The latter mode
of use can be viewed as an on the fly variant of RSA (in the sense that its key
pairs are the same as RSA ones), which naturally integrates the server-aided
verification option (in the sense that no extra parameter or key is required to
offer this option).

We also recall the extensive use of this scheme (even though rarely referred to)
in other areas than identification/signature, such as group signatures, electronic
cash, fair encryption etc., more generally in many protocols which use complex
proofs of knowledge.

2 Basic GPS scheme

We first recall in Fig. 91 the basic GPS identification scheme, as described in
the NESSIE submission “GPS, an asymmetric identification scheme for on the
fly authentication of low cost smart cards, version 2.0 (October 12, 2001)”. The
security of this scheme is based on the intractability of extracting (“short” if S <
n) discrete logarithms. (Note that, since n is composite, this problem is closely
related to factorisation problem, see section 3.4). Assuming that, the following
properties can be proven [526]:

– an honest user is always accepted
– given a public key v, if an attacker is accepted with non-negligible probability,

then he can be used to efficiently compute discrete logarithms modulo n in
base g (in other words, if we assume that the discrete logarithm problem is
intractable, such attacks cannot exist)

– even if a prover is identified many times, essentially no information about his
secret can be learned by passive eavesdroppers or cheating verifiers.

Typically:

– n is at least 1024-bit long, so that factorisation algorithms are inefficient3

2 Mainly: it can be implemented as it is in any (finite) group, and when this group is
Z∗n, it may rely on a harder problem than factorisation.

3 Actually, we must distinguish two cases: 1) n is a “universal” or “system” parameter,
i.e. the same for all the users of a common system or application; 2) n is a “user”
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Parameters: n a composite modulus
g ∈ Z∗n
A, B and S three integers such that A >> B.S

Secret key: s ∈ [0, S[
Public key: v = g−s (mod n)

Prover Verifier
choose r ∈ [0, A[
compute x = gr (mod n)

x−−−−−−−−→
choose c ∈ [0, B[

c←−−−−−−−−
check c ∈ [0, B[
compute y = r + cs

y−−−−−−−−→
check
y ∈ [0, A + (B − 1)(S − 1)[ and
gyvc = x (mod n)

Fig. 91. Basic GPS identification scheme.

– s is at least 160-bit long (i.e. S ≥ 2160) so that discrete logarithm algorithms
are inefficient

– c is 16, 32 or 64-bit long (i.e. B = 216, 232 or 264)
– >> means “64 or 80-bit more”
– g = 2, in order to speed-up exponentiations.

More precisely, n and g must be chosen so that the order of g modulo n be
“sufficiently” large (and the discrete logarithm modulo n in base g a “sufficiently”
hard problem). Preferably, g will be of order close or equal to the maximum
possible order λ(n), where λ(n) denotes the “Carmichaël function” of n. For
example, we will choose n as the product of two distinct large safe primes p and
q 4, and g of order λ(n) = (p−1)(q−1)

2 or 1
2λ(n). It happens that, for such a choice

of n, “almost all” integers between 2 and n are such “good” values of g, and that
a very simple test allows to check it, namely : gcd(g − 1, n) = gcd(g + 1, n) = 1.
Moreover, g = 2 is always good (since gcd(1, n) = gcd(3, n) = 1).

When n is 1024-bit long, s 160-bit and c 64-bit, the following performances
have been demonstrated :

– y can be computed in less than 1 millisecond by a low-cost microprocessor
card at 10 MHz frequency (in a negligible time by a crypto-processor card or
a personal computer)

– the computation of x and the verification can be done in less than 100 millisec-
onds by a crypto-processor card or a personal computer at 500 MHz frequency

parameter, i.e. is distinct for each user and is part of his public key. In the first case,
n should be chosen still larger, e.g. 2048 bits. In the second case, we can assume that
the user knows the factorisation of n, which allows him to speed-up the computation
of x by using the well-known Chinese Remainder Technique.

4 A prime p is safe if p−1
2

is prime.
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with standard Java libraries, and less than 10 milliseconds in a personal com-
puter with specific C libraries5.

3 Six modes of use of GPS

Now, we describe six variants and/or options of GPS. Note that all these modes
of use are, to some extent, independent to each other, and consequently several
of them can be combined (e.g. 3.1 with any other one, 3.3 with 3.4.1 or 3.4.2
etc.).

3.1 Digital signature scheme

By using a standard method from Fiat and Shamir [229], GPS identification
scheme can be easily turned into a digital signature scheme as shown in Fig. 92
(we denote by H a collision-free hash-function, of output less than B, and by
m the message to be signed). The same sizes/values of parameters can be used,

Parameters: n a composite modulus
g ∈ Z∗n
A, B and S three integers such that A >> B.S

Secret key: s ∈ [0, S[
Public key: v = g−s (mod n)

Prover Verifier
choose r ∈ [0, A[
compute x = gr (mod n)
compute c = H(x, m)
compute y = r + cs

c,y−−−−−−−−−→
check:
c ∈ [0, B[
y ∈ [0, A + (B − 1)(S − 1)[ and
H(gyvc (mod n), m) = c

Fig. 92. GPS signature scheme.

except c, which should be at least 160-bit long, in order to prevent from finding
collisions on H by using a birthday attack.

Let us recall [526] that if the hash functionH is replaced by a random function
and if an attacker is able to forge a valid signature under an adaptively chosen
message attack, then he must be able to compute discrete logarithms modulo n
in base g. Once again, if we assume the intractability of short discrete logarithms,
then forgery of valid signatures is infeasible.

5 Even without using the Chinese Remainder Technique.
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3.2 Using other groups

Actually, the exponentiations involved in GPS can be performed in any (finite)
group where computing discrete logarithms is assumed to be hard, no matter
its order is known or not. This allows variants using groups with interesting
cryptographic properties, such as the multiplicative group of Zp, elliptic curves
or even class groups of imaginary quadratic orders [129].

3.2.1 Schnorr on the fly

If we use the group Z∗p, with p a prime, instead of Z∗n, with n a composite integer,
then we obtain a variant of GPS, which is solely based on the discrete logarithm
problem. Moreover, if the parameters are chosen in the same way as those of
the Schnorr scheme [560], then we obtain a scheme which is compatible with
Schnorr’s one in that the verification equation is exactly the same (and which
consequently can be considered as the on the fly version of the Schnorr scheme,
in that the computation of y involves no modular reduction).

Parameters: p a prime
q a prime such that q|p− 1
g of order q modulo p
A, B two integers such that A >> B.q

Secret key: s ∈ [0, q[
Public key: v = g−s (mod p)

Prover Verifier
choose r ∈ [0, A[
compute x = gr (mod p)

x−−−−−−−−→
choose c ∈ [0, B[

c←−−−−−−−−
check c ∈ [0, B[
compute y = r + cs

y−−−−−−−−→
check:
y ∈ [0, A + (B − 1)(q − 1)[
[optionally reduce y mod q]
check gyvc = x (mod p)

Fig. 93. Schnorr on the fly identification scheme.

3.2.2 Elliptic curve variant

Since the group operation is traditionally denoted by an addition in elliptic curves,
we can (straight-forwardly) rewrite the elliptic-curve version of GPS in Fig. 94.
The elliptic curves to be recommended are exactly the same as for any other
discrete-logarithm-based scheme. For example, an elliptic curve on the field Zp
, with p a (at least) 160-bit prime may be an appropriate choice. We refer the
reader to the abundant literature on this topic.
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Parameters: (EC, +) an elliptic curve
G a point of EC
A, B and S three integers such that A >> B.S

Secret key: s ∈ [0, S[
Public key: V = −sG

Prover Verifier
choose r ∈ [0, A[
compute X = rG

X−−−−−−−−→
choose c ∈ [0, B[

c←−−−−−−−−
check c ∈ [0, B[
compute y = r + cs

y−−−−−−−−→
check:
y ∈ [0, A + (B − 1)(S − 1)[ and
yG + cV = X

Fig. 94. GPS elliptic-curve identification scheme.

It has also been proposed to benefit from the fact that knowing the cardinality
of the group in which GPS works is not required, by using elliptic curves with-
out necessary counting their cardinality [152]. However the efficiency of modern
counting algorithms is such that those variants are today of little interest.

3.3 Server-aided verification

Verification step is not so fast in basic GPS scheme, since it involves an expo-
nentiation with a somewhat large exponent. In contrast, verification is fast in the
GQ (Guillou-Quisquater) identification scheme [277].

A key observation made in [264] is that GPS verification step can be trans-
formed into a GQ verification step, provided the exponentiation can be delegated
to a (powerful) server. This implies to add at least a new (public) parameter to
those already existing, namely the “GQ exponent”. Another observation is that
this server can be any third party, even an untrusted one. This is useful in envi-
ronments where (a) the whole transaction must be very rapid, (b) the (secure)
verification chip is not powerful enough but is embedded in a device including
another (insecure but powerful) chip. Such a situation may occur e.g. in a card-
reader device or in a mobile telephone.

The resulting scheme is described in Fig. 95. The security of this option is
based on the intractability of the RSA problem if the order of g is close to the
maximal order modulo n and if s is “full-size” (see section 3.4.1). The basic idea
of the proof is that a collusion between a dishonest prover and a third party able
to be accepted by an honest verifier can be used as an extractor of eth roots
modulo n (and therefore a RSA forger).



Dra
ft

Apr
il
19

, 2
00

4

Some modes of use of the GPS identification scheme 783

Parameters: n a composite modulus
e a prime integer
f, g ∈ Z∗n with g = fe (mod n)
A, S two integers such that A >> e.S

Secret key: s ∈ [0, S[
Public key: v = g−s (mod n)

Prover Verifier Third party
choose r ∈ [0, A[
compute
x = gr (mod n)

x−−−−−−−−→
choose c ∈ [0, e[

c←−−−−−−−−
check c ∈ [0, e[
compute
y = r + cs

y−−−−−−−−→
check:
y ∈ [0, A + (e− 1)(S − 1)[
(all the operations below are performed
modulo n)

y−−→
Y = fy

Y←−−
check Y efc = x

Fig. 95. GPS, server-aided verification mode of use.
.
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3.4 RSA security as a minimum

We now focus on versions which are at least as secure as RSA. Note that basic
GPS scheme is not necessarily so, since the underlying assumption is the hardness
of computing a short (< S) discrete logarithm, as opposed to a full-size discrete
logarithm, which is not (a priori) harder than factorisation nor eth root modulo
n problem.

3.4.1 Full-size variant

Of course, the most straight-forward way to make GPS at least as secure as RSA
consists to choose a full-size secret s, i.e. to choose S in the order of magnitude
of n. In that case, the underlying problem is computing a (full-size) discrete
logarithm modulo n, which is well known to be at least as hard than factorisation
and therefore at least as hard as RSA.

Note that, since the data r and y are much greater than n in such a set-up,
they could be reduced modulo λ(n) 6 – in case n is a user parameter, see Section
2 – so as to speed up the computation of x and/or the verification step. On the
other hand, computation of y will be substantially slower since there is now a
modular reduction to perform.

3.4.2 Half-size variant

In [529], the authors present a variant of GPS, whose security is equivalent to
factorisation, while the secret key is only half the size of n and the public key is
reduced to a RSA modulus (see Fig. 96). This is achieved by choosing a partic-
ular value of s (as a function of n), instead of being a random integer in some
prescribed interval. Of course, this set-up implies that n is a user parameter and
not a universal one. Let us recall the main properties of this scheme:

– an honest user is accepted with overwhelming probability
– given a public key n, if an attacker is accepted with non-negligible probability,

then he can be used to efficiently factor n. In other words, if we assume that
factoring large integers is intractable, such attacks cannot exist

– even if a prover is identified many times, no information about his secret can
be learned by eavesdroppers or verifiers.

3.4.3 RSA on the fly

We end with a mode of use which is in some sense the convergence of modes
presented in sections 3.3 and 3.4.2 (see Fig. 97). The result [261] can be viewed
as an on the fly version of RSA, in that keys of this mode coincide with RSA keys
(not in the sense that the signature would be a RSA signature). Moreover, it is
at least as secure as RSA. These features make it a good alternative to RSA in
environments where generating a RSA signature is too slow, without having to
change the keys (hence without having to change the key management primitives:
key generation, key certificates etc.), and without taking any security risk. There
is only one particular extra-requirement: the RSA-like public exponent must be
large enough, as the level of security will be dependent on its value. This is not
6 Or modulo ϕ(n), the Euler function of n.
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Parameters: n a composite modulus
g ∈ Z∗n
A, B two integers such that A >> B.

√
n

Secret key: s = n− ϕ(n)
Public key: n

Prover Verifier
choose r ∈ [0, A[
compute x = gr (mod n)

x−−−−−−−−→
choose c ∈ [0, B[

c←−−−−−−−−
check c ∈ [0, B[
compute y = r + cs

y−−−−−−−−→
check:
y ∈ [0, A + 4B

√
n[ and

gy−nc = x (mod n)

Fig. 96. Half-size variant.

always a restriction: 65537 is a very common RSA exponent, while it may provide
an adequate level of security in zero-knowledge authentication.

In addition, the fact that a public exponent is already part of the public key
allows to integrate the server-aided verification option without modifying the set-
up: the decision to use (option 2) or not (option 1) this possibility can be made
at the very last moment by the verifier, and it therefore needs not be anticipated.
With option 1, the security of the scheme is equivalent to factorisation, while in
option 2 it is equivalent to RSA. It is worth rephrasing this scheme by choosing
f = 2, which implies g = 2e (mod n). The description of the scheme becomes
Fig. 98.

4 Using GPS as a proof of knowledge

The basic GPS scheme has been extensively used in many areas. Mainly, this is
because one often has to prove the knowledge of a discrete logarithm in a group
the order of which one ignores. GPS is essentially the only scheme to achieve that.
Another reason is that the absence of modular reduction naturally allows to prove
that two different exponentials, possibly computed in different groups, have the
same discrete logarithm. We now briefly recall some of these applications.

4.1 Bounded range commitment

In 1989, Schnorr [560] proposed his famous signature scheme, which may be
viewed as a proof of knowledge of a discrete logarithm modulo a prime number.
Since then, many authors have tried to adapt the scheme in order to get control
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Parameters: n a composite modulus
e a prime integer and d an integer such that ed = 1 (mod ϕ(n))
f, g ∈ Z∗n with g = fe (mod n)
A an integer such that A >> e.n

Secret key: d
Public key: (n, e)

Prover Verifier Third party
choose r ∈ [0, A[
compute
x = gr (mod n)

x−−−−−−−−→
choose c ∈ [0, e[

c←−−−−−−−−
check c ∈ [0, e[
compute
y = r − cd

y−−−−−−−−→
check y ∈ [−(e− 1)(n− 2), A[
(all the operations below are performed
modulo n)

Option 1
check gyfc = x

Option 2
y−−→ Y = fy

Y←−−
check Y efc = x

Fig. 97. RSA on the fly.
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Parameters: n a composite modulus
e a prime integer and d an integer such that ed = 1 (mod ϕ(n))
A an integer such that A >> e.n

Secret key: d
Public key: (n, e)

Prover Verifier Third party
choose r ∈ [0, A[
compute
x = 2er (mod n)

x−−−−−−−−→
choose c ∈ [0, e[

c←−−−−−−−−
check c ∈ [0, e[
compute
y = r − cd

y−−−−−−−−→
check
y ∈ [−(e− 1)(n− 2), A[
(all the operations below are performed
modulo n)

Option 1
check 2ey+c = x

Option 2
y−−→

Y = 2y

Y←−−
check Y e2c = x

Fig. 98. RSA on the fly (with f=2).
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over the size of the secret value. Such a bounded-range commitment has many
applications and has been used for group signature by Camenisch and Michels
[132], electronic cash by Chan, Frankel and Tsiounis [139], verifiable secret sharing
by Fujisaki and Okamoto [240] and finally for proving that a modulus is the
product of two safe primes by Camenisch and Michels [133]. Furthermore, Boudot
[117] proposed efficient proofs that a committed number lies in an interval.

All those proposals use the GPS scheme even if most of them do not refer
to. Except for Boudot’s result, these protocols are only able to prove that the
discrete logarithm is not “too far” from a fixed range. Their analysis is complex
(and sometimes erroneous as in the Eurocrypt ’98 version of [133] or in [32]) and
their security is often based on non-standard assumptions such as the so-called
“strong RSA assumption” needed to make proofs efficient [35,240].

4.2 Fair encryption of asymmetric secret keys

The GPS scheme has also been used in [528] and [118] to design proofs of fair
encryption of secret keys, for any encryption scheme based on the discrete log-
arithm problem or on the intractability of the factorisation, including RSA and
its variants. The asymmetric secret keys can be encrypted using a homomorphic
public key cryptosystem like Paillier’s scheme [510].

More precisely, the protocol proposed in [528] allows proving that a ciphertext
enables a third party to recover the El Gamal secret key related to a public one.
Such a proof is very short and the workload of the third party during recovery is
very small. A scheme for fair encrypting the factorisation of a public modulus is
also described.

4.3 Short proof of knowledge for factoring

Proofs of knowledge for the factorisation of an integer n have been known for a
long time. But, even if they are claimed efficient according to complexity theoret-
ical arguments, none of them can be considered practical for many applications
because of their significant communication complexity: the proof is much longer
than the object it deals with. A new strategy has been used in [529]. The protocol
is a proof of knowledge of a small common discrete logarithm of (zn (mod n)) for
a few randomly chosen elements z modulo n. This scheme is very efficient: only
three modular exponentiations both for the prover and the verifier are needed to
obtain a very high level of security.

The scheme can be viewed as a parallelised version of the PS scheme [527]
with a few randomly chosen bases instead of just one.

5 Conclusion

We have presented various modes of use of the identification scheme GPS. Some
of them can be viewed as particular instances of the basic scheme, such as sub-
mitted to NESSIE project, and have the following (and unique to our knowl-
edge) attractive feature: they combine factorisation-based security and on the fly
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computation. Moreover, they all support the so-called “server-aided verification”
option, which is of interest when transaction time is a critical parameter. Other
ones are transpositions to other groups than Z∗n, which offer an alternative to
factorisation as an underlying hard problem. All of them can be converted into
digital signature schemes using the Fiat-Shamir heuristic. Finally the wide util-
isation of GPS in other contexts than identification and signature has also been
demonstrated. All these modes of use give strong evidence of the great flexibility
and the numerous potentialities of the GPS scheme.
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eds.), no. 1965 in Lecture Notes in Computer Science, pp. 231–237, Springer-
Verlag, 2000. [p. 340]

154. N. T. Courtois,“Higher order correlation attacks, XL algorithm, and cryptanalysis
of Toyocrypt.” in Proceedings of ICISC’02 (K. Kim, ed.), no. 2587 in Lecture
Notes in Computer Science, Springer-Verlag, 2002. Also available at http://
eprint.iacr.org/2002/087/. [p. 153]

155. N. T. Courtois, “Generic attacks and the security of Quartz.” in Proceedings
of Public Key Cryptography – PKC’03 (Y. Desmedt, ed.), no. 2567 in Lecture
Notes in Computer Science, pp. 351–364, Springer-Verlag, 2003. Also available
at http://www.minrank.org/quartzbounds.pdf. An earlier version appeared in
Proceedings of the Second NESSIE Workshop, 2001. [p. 281, 282]

156. N. T. Courtois, “Algebraic attacks over GF (2k), application to HFE challenge
2 and Sflash-v2.” in Proceedings of Public Key Cryptography – PKC’04 , Lecture
Notes in Computer Science, Springer-Verlag, 2004. [p. 308, 669]

157. N. T. Courtois, M. Daum, and P. Felke, “On the security of HFE, HFEv- and
Quartz.” in Proceedings of Public Key Cryptography – PKC’03 (Y. Desmedt,
ed.), no. 2567 in Lecture Notes in Computer Science, pp. 337–350, Springer-
Verlag, 2003. Also available at http://eprint.iacr.org/2002/138/, and also in
Proceedings of the Third NESSIE Workshop, 2002. [p. 268, 310]



Dra
ft

Apr
il
19

, 2
00

4

Book V. References 803

158. N. T. Courtois, L. Goubin, W. Meier, and J.-D. Tacier, “Solving underfined sys-
tems of multivariate quadratic equations.” in Proceedings of Public Key Cryptog-
raphy – PKC’02 (D. Naccache and P. Paillier, eds.), no. 2274 in Lecture Notes in
Computer Science, pp. 211–227, Springer-Verlag, 2002. [p. 112, 115]

159. N. T. Courtois, L. Goubin, and J. Patarin, “Quartz, an asymmetric signa-
ture scheme for short signatures on PC (first version).” Primitive submit-
ted to NESSIE, Sept. 2000. See also http://www.minrank.org/quartz/ or
[160]. [p. 310]

160. N. T. Courtois, L. Goubin, and J. Patarin,“Quartz, 128-bit long digital signature.”
in Proceedings of CT-RSA’01 (D. Naccache, ed.), no. 2020 in Lecture Notes in
Computer Science, pp. 282–297, Springer-Verlag, 2001. [p. 803]

161. N. T. Courtois, L. Goubin, and J. Patarin, “Quartz, an asymmetric sig-
nature scheme for short signatures on PC (second revised version).” Primi-
tive submitted to NESSIE, Sept. 2001. See also http://www.minrank.org/
quartz/. [p. 39, 53, 277, 281, 310, 358]

162. N. T. Courtois, L. Goubin, and J. Patarin, “SFLASH: a fast asymmetric signature
scheme - Statement issued by the authors.” Technical report, NESSIE external
documents, Oct. 2003. Available from http://www.cryptonessie.org/tweaks.
html. [p. 669]

163. N. T. Courtois, L. Goubin, and J. Patarin, “SFLASHv3: a fast asymmet-
ric signature scheme.” Available at http://eprint.iacr.org/2003/211/,
2003. [p. 308, 669]

164. N. T. Courtois, A. Klimov, J. Patarin, and A. Shamir, “Efficient algorithms for
solving overdefined systems of multivariate polynomial equations.” in Proceedings
of Eurocrypt’00 (B. Preneel, ed.), no. 1807 in Lecture Notes in Computer Science,
pp. 392–407, Springer-Verlag, 2000. [p. 70, 112, 115, 153, 308, 670]

165. N. T. Courtois and J. Pieprzyk, “Cryptanalysis of block ciphers with overdefined
systems of equations.” in Proceedings of Asiacrypt’02 (Y. Zheng, ed.), no. 2501 in
Lecture Notes in Computer Science, pp. 267–287, Springer-Verlag, 2002. Different
version of the preprint [166]. [p. 70, 77, 85, 89, 107, 112, 115, 185, 528]

166. N. T. Courtois and J. Pieprzyk, “Cryptanalysis of block ciphers with overde-
fined systems of equations.” Available at http://eprint.iacr.org/2002/044/,
2002. [p. 803]

167. C. Couvreur and J.-J. Quisquater, “Fast decipherment algorithm for RSA public-
key cryptosystem.” Electronics Letters, vol. 18, pp. 905–907, 1982. [p. 696, 697]

168. C. Couvreur and J.-J. Quisquater, “An introduction to fast generation of
large prime numbers.” Philips Journal of Research, vol. 37, pp. 231–264,
1982. [p. 695, 697]

169. R. Cramer and I. B. Damg̊ard,“New generation of secure and practical RSA-based
signatures.” in Proceedings of Crypto’96 (N. Koblitz, ed.), no. 1109 in Lecture
Notes in Computer Science, pp. 173–185, Springer-Verlag, 1996. [p. 260]

170. R. Cramer and V. Shoup, “Signature schemes based on the strong RSA assump-
tion.” in Proceedings of Conference on Computer and Communications Security
– CCS’99 , pp. 46–52, ACM Press, 1999. [p. 300]

171. R. Cramer and V. Shoup, “Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack.” 2001. Available at
http://www.shoup.net/papers/cca2.ps. [p. 225, 231–233, 235, 639, 646]

172. P. Crowley and S. Lucks,“Bias in the LEVIATHAN stream cipher.” in Proceedings
of Fast Software Encryption – FSE’01 (M. Matsui, ed.), no. 2355 in Lecture Notes
in Computer Science, pp. 211–218, Springer-Verlag, 2001. [p. 168]

173. Cryptrec, “Cryptrec liaison report to ISO/IEC 18033-2 and 18033-3.” Technical
report, Cryptography Research and Evaluation Committees, Oct. 2002. [p. 385]

174. J. Daemen, Cipher and Hash Function Design Strategies Based on Linear and
Differential Cryptanalysis. Doctoral dissertation, K. U. Leuven, Mar. 1995. [p. 85]



Dra
ft

Apr
il
19

, 2
00

4

804 Book V. References

175. J. Daemen, R. Govaerts, and J. Vandewalle, “Cryptanalysis of 2.5 rounds of IDEA
(extended abstract).” Technical report 93/1, Department of Electrical Engineer-
ing, ESAT–COSIC, Mar. 1993. [p. 84]

176. J. Daemen, R. Govaerts, and J. Vandewalle,“Weak keys for IDEA.” in Proceedings
of Crypto’93 (D. R. Stinson, ed.), no. 773 in Lecture Notes in Computer Science,
pp. 224–231, Springer-Verlag, 1994. [p. 82, 85]

177. J. Daemen, R. Govaerts, and J. Vandewalle,“Correlation matrices.” in Proceedings
of Fast Software Encryption – FSE’94 (B. Preneel, ed.), no. 1008 in Lecture Notes
in Computer Science, pp. 275–285, Springer-Verlag, 1995. [p. 756]

178. J. Daemen, L. R. Knudsen, and V. Rijmen, “The block cipher Square.”
in Proceedings of Fast Software Encryption – FSE’97 (E. Biham, ed.),
no. 1267 in Lecture Notes in Computer Science, pp. 149–165, Springer-Verlag,
1997. [p. 68, 69, 111, 112]

179. J. Daemen, L. R. Knudsen, and V. Rijmen,“Linear frameworks for block ciphers.”
Designs, Codes, and Cryptography , vol. 22, no. 1, pp. 65–87, 2001. [p. 68, 69]

180. J. Daemen, M. Peeters, G. van Assche, and V. Rijmen, “Noekeon.” Primitive
submitted to NESSIE, Sept. 2000. [p. 37, 52, 133, 134, 357]

181. J. Daemen and V. Rijmen, “AES proposal: Rijndael.” Selected as the Advanced
Encryption Standard. Available from http://csrc.nist.gov/encryption/aes/,
Sept. 1999. [p. 15, 16, 22, 69, 111–113, 131, 144, 521, 763]

182. J. Daemen and V. Rijmen, “The wide trail design strategy.” in Proceedings of
Cryptography and Coding – CC’01 (B. Honary, ed.), no. 2260 in Lecture Notes
in Computer Science, pp. 222–238, Springer-Verlag, 2001. [p. 111]

183. J. Daemen and V. Rijmen, The design of Rijndael: AES — The Advanced En-
cryption Standard . Springer-Verlag, 2002. [p. 519, 520]

184. I. B. Damg̊ard and M. Koprowski, “Generic lower bounds for root extraction and
signature schemes in general groups.” in Proceedings of Eurocrypt’02 (L. R. Knud-
sen, ed.), no. 2332 in Lecture Notes in Computer Science, pp. 256–271, Springer-
Verlag, 2002. Also available at http://eprint.iacr.org/2002/013/. [p. 300]

185. D. W. Davies and S. Murphy, “Pairs and triplets of DES S-Boxes.” Journal of
Cryptology , vol. 8, pp. 1–25, 1995. [p. 68]

186. E. Dawson, J. D. Golic, W. Millan, and L. Simpson, “Response to initial report
on LILI-128.” in Proceedings of the Second NESSIE Workshop, 2001. [p. 710]

187. E. Dawson, W. Millan, L. Penna, L. Simpson, and J. D. Golic, “LILI-128.” Prim-
itive submitted to NESSIE, Sept. 2000. [p. 38, 53, 358, 707, 709, 712]

188. C. De Cannière, “Guess and determine attack on SOBER.” Public report,
NESSIE, 2001. NES/DOC/KUL/WP5/010. [p. 166]

189. C. De Cannière, J. Lano, B. Preneel, and J. Vandewalle, “Distinguishing attacks
on Sober-t32.” in Proceedings of the Third NESSIE Workshop, 2002. [p. 165]

190. A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung, “How to share a function
securely.” in Proceedings of Symposium on Theory of Computing – STOC’94 ,
pp. 522–533, ACM Press, 1994. [p. 312]

191. H. Demirci, “Square-like attacks on reduced rounds of IDEA.” in Proceedings
of Selected Areas in Cryptography – SAC’02 (K. Nyberg and H. M. Heys, eds.),
no. 2595 in Lecture Notes in Computer Science, Springer-Verlag, 2002. [p. 84, 138]

192. A. W. Dent, “An evaluation of EPOC-2.” Public report, NESSIE, 2001.
NES/DOC/RHU/WP5/017. [p. 243, 343]

193. A. W. Dent, “ACE-KEM and the general KEM-DEM structure.” Public report,
NESSIE, 2002. NES/DOC/RHU/WP5/023. [p. 228, 229, 235, 248, 639]

194. A. W. Dent, “Adapting the weaknesses of the random oracle model to
the generic group model.” in Proceedings of Asiacrypt’02 (Y. Zheng, ed.),
no. 2501 in Lecture Notes in Computer Science, pp. 100–109, Springer-Verlag,
2002. NES/DOC/RHU/WP5/021. Also available at http://eprint.iacr.org/2002/
086/. [p. 223, 272]



Dra
ft

Apr
il
19

, 2
00

4

Book V. References 805

195. A. W. Dent, “A designer’s guide to KEMs.” Public report, NESSIE, 2002.
NES/DOC/RHU/WP5/029. Also available at http://eprint.iacr.org/2002/
174/. [p. 229, 240, 248, 634, 639]

196. A. W. Dent, “An implementation attack against the EPOC-2 public-key cryp-
tosystem.” Electronics Letters, vol. 38, no. 9, p. 412, 2002. [p. 244]

197. A. W. Dent and E. Dottax, “An overview of side-channel attacks on the
NESSIE asymmetric encryption primitives.” Public report, NESSIE, 2002.
NES/DOC/RHU/WP5/020. [p. 224, 237, 241, 244, 247, 249, 345]

198. J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-L.
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