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Abstract. The hash function Skein is the submission of Ferguson et
al. to the NIST Hash Competition, and is arguably a serious candidate
for selection as SHA-3. This paper presents the first third-party analy-
sis of Skein, with an extensive study of its main component: the block
cipher Threefish. We notably investigate near collisions, distinguishers,
impossible differentials, key recovery using related-key differential and
boomerang attacks. In particular, we present near collisions on up to 17
rounds, an impossible differential on 21 rounds, a related-key boomerang
distinguisher on 34 rounds, a known-related-key boomerang distinguisher
on 35 rounds, and key recovery attacks on up to 32 rounds, out of 72 in
total for Threefish-512. None of our attacks directly extends to the full
Skein hash. However, the pseudorandomness of Threefish is required to
validate the security proofs on Skein, and our results conclude that at
least 36 rounds of Threefish seem required for optimal security guaran-
tees.

1 Introduction

The hash function research scene has seen a surge of works since devastating
attacks [1–4] on the two most deployed hash functions, MD5 and SHA-1. This
led to a lack of confidence in the current U.S. (and de facto worldwide) hash
standard, SHA-2 [5], because of its similarity with MD5 and SHA-1.

As a response to the potential risks of using SHA-2, the U.S. National Insti-
tute of Standards and Technology (NIST) launched a public competition—the
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NIST Hash Competition—to select a new hash standard [6]. The new hash func-
tion, SHA-3, is expected to have at least the security of SHA-2, and to achieve
this with significantly improved efficiency. By the deadline of October 2008, NIST
received 64 submissions, 51 were accepted as first round candidates, and in July
2009 14 were selected as second round candidates, including Skein. Due to the
critical role of hash functions in security protocols, this competition catches the
attention not only from academia, but also from industry—with candidates from
IBM, Hitachi, Intel, Sony—and from governmental organizations.

Skein [7] is the submission of Ferguson et al. to the NIST Hash Competition.
According to its designers, it combines “speed, security, simplicity and a great
deal of flexibility in a modular package that is easy to analyze” [7, p.i]. Skein
supports three different internal state sizes (256-, 512-, and 1024-bit), and is one
of the fastest contestants on 64-bit machines.

Skein is based on the “UBI (The Unique Block Iteration) chaining mode” that
itself uses a compression function made out of the Threefish-512 block cipher.
Below we give a brief top-down description of these components:

• Skein makes three invocations to the UBI mode with different tags: the
first hashes the configuration block with a tag “Cfg”, the second hashes
the message with a tag “Msg”, and the third hashes a null value with a
tag “Out”.

• UBI mode hashes an arbitrary-length string by iterating invocations to
a compression function, which takes as input a chaining value, a message
block, and a tweak. The tweak encodes the number of bytes processed
so far, and special flags for the first and the last block.

• The compression function inside the UBI mode is the Threefish-512
block cipher in MMO (Matyas-Meyer-Oseas) mode, i.e., from a chaining
value h, a message block m, and a tweak t it returns Eh(t,m) ⊕m as
new chaining value.

• Threefish is a family of tweakable block ciphers based on a simple per-
mutation of two 64-bit words: MIX(x, y) = (x+ y, (x+ y)⊕ (y ≪ R)).
Threefish-512 is the version of Threefish with 512-bit key and 512-bit
blocks, and is used in the default version of Skein.

So far, no third-party cryptanalysis of Skein has been published, and the only
cryptanalytic results are in its documentation [7, §9]. It describes a near collision
on eight rounds for the compression function, a distinguisher for 17 rounds of
Threefish, and it conjectures the existence of key recovery attacks on 24 to 27
rounds (depending on the internal state size). Furthermore, [7, §9] discusses the
possibility of a trivial related-key boomerang attack on a modified Threefish, and
concludes that it cannot work on the original version. A separate document [8]
presents proofs of security for Skein when assuming that some of its components
behave ideally (e.g., that Threefish is an ideal cipher).

This paper presents the first external analysis of Skein, with a focus on the
main component of its default version: the block cipher Threefish-512. Table 1
summarizes our results.



Table 1. Summary of the known results on Threefish-512 (near collisions are for
Threefish-512 in MMO mode, related-key boomerang attacks make use of four related-
keys ,“

√
” designates the present paper).

Rounds Time Memory Type Authors

8 1 – 511-bit near-collision [7]
16 26 – 459-bit near-collision

√

17 224 – 434-bit near-collision
√

17 28.6 – related-key distinguisher? [7]
21 23.4 – related-key distinguisher

√

21 – – related-key impossible differential
√

25 ? – related-key key recovery (conjectured) [7]
25 2416.6 – related-key key recovery

√

26 2507.8 – related-key key recovery
√

32 2312 271 related-key boomerang key recovery
√

34 2398 – related-key boomerang distinguisher
√

35 2478 – known-related-key boomerang distinguisher
√

?: complexity deduced from the biases in [7, Tab.22].

The rest of the paper is organized as follows: §2 describes Threefish-512; §3
studies near-collisions for Skein’s compression function with a reduced Threefish-
512; §4 describes impossible differentials; §5 discusses and improves the key-
recovery attacks sketched in [7, §§9.3]. Finally, §6 uses the boomerang technique
to describe our best distinguishers and key-recovery attacks on Threefish. §7
concludes.

2 Brief Description of Threefish-512

Threefish-512 works on 64-bit words, and we write their hexadecimal value in
sans-serif font (e.g., 0123456789ABCDEF). The letter ∆ stands for a difference in
the most significant bit (MSB), i.e., ∆ = 8000000000000000. Notations are the
same as in the specification of Threefish [7, §§2.2]: a 512-bit plaintext block is
parsed as eight words v0,0, . . . , v0,7, and is encrypted through Nr = 72 rounds,
where round number d ∈ {0, . . . , Nr − 1} operates as follows:

1. If d ≡ 0 mod 4, add a subkey by setting ed,i ← vd,i + kd,i, i = 0, . . . , 7,
otherwise, just copy the state ed,i ← vd,i, i = 0, . . . , 7.

2. Set (fd,2i, fd,2i+1)← MIXd,i(ed,2i, ed,2i+1), i = 0, . . . , 3, where

MIXd,i(x, y) = (x+ y, (x+ y)⊕ (y ≪ Rd,i)) ,

with Rd,i a rotation constant dependent on d and i.
3. Permute the state words:

vd+1,0 ← fd,2 vd+1,1 ← fd,1 vd+1,2 ← fd,4 vd+1,3 ← fd,7

vd+1,4 ← fd,6 vd+1,5 ← fd,5 vd+1,6 ← fd,0 vd+1,7 ← fd,3 .



After Nr ≡ 0 mod 4 rounds, the ciphertext is set to

(vNr,0 + kNr,0), . . . , (vNr,7 + kNr,7) .

The s-th keying (counting from zero, thus which occurs at round d = 4s)
uses subkeys ks,0, . . . , ks,7. These are derived from the key k0, . . . , k7 and from
the tweak t0, t1 as

ks,0 ← k(s+0) mod 5 ks,4 ← k(s+4) mod 5

ks,1 ← k(s+1) mod 5 ks,5 ← k(s+5) mod 5 + ts mod 3

ks,2 ← k(s+2) mod 5 ks,6 ← k(s+6) mod 5 + t(s+1) mod 3

ks,3 ← k(s+3) mod 5 ks,7 ← k(s+7) mod 5 + s

where k8 = 5555555555555555⊕
⊕7

i=0 ki and t2 = t0 ⊕ t1.

3 Near Collisions for the UBI Compression Function

We extend the analysis presented in [7, §9] to find near-collisions for the compres-
sion function of Skein’s UBI mode; [7, §9] exploits local collisions, i.e., collisions
in the intermediate values of the state, which occur when particular differences
are set in the key, the plaintext, and the tweak.

The compression function outputs Ek(t,m) ⊕m, where E is Threefish-512.
Our strategy is simple: like in [7, §9], we prepend a four-round differential trail
to the first local collision at round four so as to avoid differences until the 13-th
round. Then, we follow the trail induced by the introduced difference.

The next two sections work out the details as follows:

• §§3.1 shows how to adapt the differential trail found in [7, §9] when a
4-round trail is prepended.

• §§3.2 describes the differential trails used and evaluates the probability
that a random input conforms.

• §§3.3 explains how to reduce the complexity of the attack by precom-
puting a single conforming pair for the prepended trail, and using some
conditions to speed up the search.

3.1 Adapting Differences in the Key and the Tweak

In [7, §§§9.3.4], Skein’s designers suggest to prepend a 4-round trail that leads to
the difference (0, 0, . . . , 0, ∆), previously used for the 8-round collision. However,
the technique as it is presented does not work. This is because the order of
keyings is then shifted, and so the original difference in the key and in the tweak
does not cancel the (0, 0, . . . , 0, ∆) difference at the second keying.

Therefore, for differences to vanish at the third keying, one needs a difference
∆ in k7 and t0, which gives a difference (0, . . . , 0, ∆) at the second keying, and
(0, 0, 0, 0, ∆, 0, 0) after the fourth. The difference in the state after (4+8) rounds
is thus the same as originally after eight rounds. Note that, as observed in [7,
§§9.4], at least seven keyings separate two vanishing keyings. See Table 2 for
details.



Table 2. Details of the subkeys and of their differences, given a difference ∆ in k7 and
t0 (leading to ∆ differences in k8 and t2).

s d
ks,0 ks,1 ks,2 ks,3 ks,4 ks,5 ks,6 ks,7

Differences

0 0
k0 k1 k2 k3 k4 k5 + t0 k6 + t1 k7

0 0 0 0 0 ∆ 0 ∆

1 4
k1 k2 k3 k4 k5 k6 + t1 k7 + t2 k8 + 1
0 0 0 0 0 0 0 ∆

2 8
k2 k3 k4 k5 k6 k7 + t2 k8 + t0 k0 + 2
0 0 0 0 0 0 0 0

3 12
k3 k4 k5 k6 k7 k8 + t0 k0 + t1 k1 + 3
0 0 0 0 ∆ 0 0 0

4 16
k4 k5 k6 k7 k8 k0 + t1 k1 + t2 k2 + 4
0 0 0 ∆ ∆ 0 ∆ 0

5 20
k5 k6 k7 k8 k0 k1 + t2 k2 + t0 k3 + 5
0 0 ∆ ∆ 0 ∆ ∆ 0

6 24
k6 k7 k8 k0 k1 k2 + t0 k3 + t1 k4 + 6
0 ∆ ∆ 0 0 ∆ 0 0

3.2 Differential Trails

We now trace the difference when prepending four rounds, i.e., when the differ-
ence is in k7 and in t0 only (and in the plaintext).

4-Round Trail. To prepend four rounds and reach the difference (0, . . . , 0, ∆),
one uses the trail provided in the full version [9] of this paper. The plaintext
difference is modified by the first keying (the MSB differences in the sixth and
eighth word vanish). The probability that a random input successfully crosses
the 4-round differential trail is 2−33 (either forward or backward).

12-Round Trail. The second keying adds ∆ to the last state word, making its
difference vanish. The state remains free of any difference up to the fourth keying,
after the twelfth round, which sets a difference ∆ in the fifth word state. Table 3
presents the corresponding trail for up to the 17-th round. After 17 rounds, the
weight becomes too large to obtain near collisions. On 16 rounds, adding the
final keying and the feedforward, one obtains a collision on 512− 53 = 459 bits.
Likewise, for 17 rounds, a collision can be found on 512− 78 = 434 bits.

3.3 Optimizing the Search

A direct application of the differential trails in the previous section gives a cost
233 to cross the first four rounds; then, after the twelfth round,



Table 3. Differential trail (linearization) used for near collisions, of probability 2−24.

Rd Difference Pr

13
0000000000000000 0000000000000000 8000000000000000 0000000000000000

1
0000000000000000 8000000000000000 0000000000000000 0000000000000000

14
8000000000000000 0000000000000000 8000000000000000 0000000000000000

1
0000000000000000 8000010000000000 0000000000000000 8000000000000000

15
8000000000000000 8000000000000000 8000010000000000 8000000000000100

2−1

8000000000000000 8008010000000400 8000000000000000 8000000000000000

16
0000010000000100 0000000100000000 0008010000000400 0000000400000000

2−5

0000000000000000 000A014004008400 0000000000000000 0804010000000100

17
8008010400000400 0000010100000140 800A014004008400 A805018020000100

2−18

8804010000000100 900A016801009402 0000010100000100 8008010420000401

• With 16 rounds: complexity is 21+5 = 26, so 239 in total, for finding a
collision over 459 bits.

• With 17 rounds: complexity is 21+5+18 = 224, so 256 in total, for finding
a collision over 434 bits.

A simple trick allows us to avoid the cost of crossing the first 4-round trail:
note that the first keying adds (k5 + t0) to the sixth state word, and (k6 + t1)
to the seventh; hence, given one conforming pair, one can modify k5, k6, t0, t1
while preserving the values of (k5 + t0) and (k6 + t1), and the new input will
also conform to the differential trail. It is thus sufficient to precompute a single
conforming pair to avoid the cost due to the prepended rounds.

To carry out this precomputation efficiently, a considerable speedup of the
233 complexity can be obtained by finding sufficient conditions to cross the first
round with probability one (instead of 2−21):

• A first set of conditions is on the words (v2i, v2i+1): whenever there is a
nonzero difference at a same offset, the bit should have a different value
in the first and in the second word (otherwise carries induce additional
differences).

• A second set of conditions concerns the differences that do not “collide”:
one should ensure that no carry propagates from the leftmost bits.

In total, there are 13 + 8 = 21 such conditions, which lets enough degrees of
freedom to satisfy the subsequent differential tails. Using techniques like neutral
bits [10], the probability may be reduced further, but the complexity 212 is low
enough for efficiently finding a conforming pair. By choosing inputs according to
the above conditions, while being careful to avoid contradictions, we can find a
conforming pair within a few thousand trials (see Appendix A for an example).

We can now use this pair to search for near collisions. It suffices to pick
random values for k5 and k6, then set t0 = −k5 and t1 = −k6 to get a set of 2128

distinct inputs. Experiments were consistent with our analysis, and examples of
near collisions are given in Appendix B.



3.4 Improved Distinguisher

Based on our trick to cross the first twelve rounds “for free”, we can improve the
distinguisher suggested in [7]. This distinguisher exploited the observation of a
bias 0.01 < ε ≤ 0.05 after 17 rounds (thus leading to a distinguisher requiring at
least 1/0.052 ≈ 400 samples). [7] suggested to combine it with the prepending of
four rounds, though no further details were given. Our observations show that
with the adapted difference in the key and the tweak, a bias about 0.3 exists
at the 385-th bit, after 21 rounds. We detected this bias using a frequency test
similar to that in [11, §§2.1]. This directly gives a distinguisher on 21 rounds,
and requiring only about 1/0.32 ≈ 11 samples.

4 Impossible Differentials

The miss-in-the-middle technique (a term coined by Biham et al. in [12]), was
first applied by Knudsen [13] to construct a 5-round impossible differential for
the block cipher DEAL. The idea was generalized by Biham et al. [12] to find
impossible differentials for ciphers of any structure. The idea is as follows: Con-
sider a cascade cipher E = Eβ ◦ Eα such that for Eα there exists a differential
(∆α

in → ∆α
out) and for (Eβ)−1 there exists a differential (∆β

in → ∆β
out), both

with probability one, where the equality is impossible (∆α
out 6= ∆β

out). It follows
that the differential (∆α

in → ∆β
in) cannot occur, for it requires ∆α

out = ∆β
out. This

technique can be extended to the related-key setting. For example, related-key
impossible differentials were found for 8-round AES-192 [14,15].

Below we first present probability-1 truncated differentials on the first 13
rounds (forward) and on the last seven rounds (backward) of 20-round Threefish-
512. A “miss-in-the-middle” observation then allows us to deduce the existence
of impossible differentials on 20 and 21 rounds.

4.1 Forward Differential

The first keying (s = 0) adds to the state v0,i, . . . , v0,7 the values k0, k1, . . . , k4,
k5 + t0, k6 + t1, k7. Then, the second keying (s = 1) adds k1, . . . , k5, k6 + t1, k7 +
t2, k8+1. By setting a difference ∆ in k6, k7, t1 and in the plaintext v0,7, we ensure
that differences vanish in the first two keyings, and thus nonzero differences only
appear after the eighth round, for third keying.

The third keying (s = 2) adds k2, . . . , k6, k7 + t2, k8 + t0, k0 + t2. Hence the
difference ∆ is introduced in e8,4 only. It gives a difference ∆ in f8,4, f8,5, thus in
v9,2, v9,5. After the tenth round, the state v10,· has the following difference with
probability one.

8000000000000000 0000000000000000 8000000000000000 0000000000000000

0000000000000000 8000040000000000 0000000000000000 8000000000000000 .

After the twelfth round (before the fourth keying), the state v12,· has again some
differences that occur with probability one (the X differences are uncertain, that



is, have probability strictly below one):

XXXXXXXXX4000000 0000000002000000 XXXXXXXXXXXX4000 0000000000000040

0000000000000000 XXXXXXXXXXXXX100 0000000000000000 XXXXXXXXX4000800 .

Given this class of differences, after the 13-th round (which starts by making
the fourth keying) we have the class of differences

XXXXXXXXXXXXXX40 XXXXXXXXX2000000 XXXXXXXXXXXXX100 XXXXXXXXXXXXXX10

XXXXXXXXXXXXX800 XXXXXXXXXXXXXXXX XXXXXXXXX2000000 XXXXXXXXXXXXXX40 .

There are in total 92 bits with probability-1 differences between the 13-th and
the 14-th round. These differences were empirically verified.

4.2 Backward Differential

The sixth keying (s = 5), which occurs after the 20-th round, returns the cipher-
text

c0 = v20,0 + k5 c4 = v20,4 + k0

c1 = v20,1 + k6 c5 = v20,5 + k1 + t2
c2 = v20,2 + k7 c6 = v20,6 + k2 + t0
c3 = v20,3 + k8 c7 = v20,7 + k3 + 5

By setting a difference ∆ in k6, k7, t1 (like for the forward differential), and in the
ciphertext words c1, c2, c5, we ensure that differences vanish in the sixth keying,
and thus nonzero differences only appear after the 17-th round, when making
the fifth keying (by computing backwards from the 20-th round).

The fifth keying (s = 4), after the 16-th round, subtracts from the state the
values k4, . . . , k8, k0 + t1, k1 + t2, k2 + 4. Hence, the difference ∆ is introduced
(backwards) in v16,2, v16,3, v16,5, v16,6. After inverting the 16-th round, we obtain
with probability one the difference

XXXXXXXX40000000 0000000040000000 0000000000000000 0000000000000000

8000000000000000 0000000000000000 XXXXXXXX10000000 0000000010000000 .

Finally, after inverting the 14-th round, we have the following difference with
probability one:

XXXXXXXXXXXX8000 XXXXXXXXXXXX8000 XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXX400000 XXXXXXXXXX800000 XX50000000800000 .

In total there are 134 bits of difference with probability one between the 14-th
and the 13-th round.

4.3 Miss-in-the-Middle

We showed that if there’s a difference ∆ in the key in k6 and k7, and in the
tweak in t1, then a difference ∆ in the plaintext word v0,7 propagates to give
probability-1 differences after up to 13 rounds. Then we showed that for the



same difference in the key and in the tweak, a difference ∆ in the ciphertext
words c1, c2, c5 guarantees (probability one) that between the 13-th and the 14-
th rounds we also have probability-1 differences.

Looking for example at the first word of the state: the forward differential
leads to a difference in the seventh bit, whereas the backward differential requires
this bit to be unchanged. Therefore, it is impossible that a difference ∆ in the
plaintext v0,7 leads to a difference ∆ in c1, c2, c5 with 20-round Threefish-512.

We can extend this impossible differential one more round: after the 20-th
round and the sixth keying the state has only differences ∆ in e20,1, e20,2, e20,3.
These differences always give the same difference after the 21-st round, because
they are only in MSB’s. This directly gives an impossible differential on 21
rounds of Threefish-512 (e.g., 21 out of 72). However contrary to the 20-round
impossible differential, it is irrelevant to Threefish-512 with exactly Nr = 21
rounds, because of the final keying that occurs after the 21-st round (which
makes some differences uncertain, because before the keying we have differences
in non-MSB’s).

5 Improved Key-Recovery Attacks

The documentation of Skein sketches key-recovery attacks on all Threefish ver-
sions, though the complexity is not studied. We analyzed these observations, and
could find better attacks than conjectured by the Skein designers.

To optimize the attack strategy in [7, §§9.3], the attacker has to determine
which key bits should be guessed. This is to minimize the noise over the bias
after a partial inversion of the last rounds, and thus to minimize the complexity
of the attack. The less key bits guessed, the better for the attacker (up to the
bound of half the key bits). One can easily determine which key bits do not
affect the bias when inverting one or two rounds. For example, two rounds after
round 21 (where the bias occurs), the 385-th bit does not affect the second,
third, fourth, and sixth state words. Hence, it is not affected by a wrong guess
of the key words k0, k2, k6. The bias is slightly affected by erroneous guesses of
k3 (which modifies the last state word in the keying), but it is still large (about
0.12 ≈ 2−3). It is thus sufficient to guess half the key (k1, k4, k5, k7) to be able
to observe the bias.

Note that the cost of the prepended rounds depends on which key words
are guessed: indeed, when guessing a word, one can adapt the corresponding
plaintext word in order to satisfy the conditions of the differential. Here the non-
guessed words imply a cost 212+18 = 230 to cross the first differential. The total
cost of recovering the 512-bit key on 23 rounds is thus about 230×26×2256 = 2292.

To attack more rounds, a more advanced search for the optimal set of bits to
be guessed is likely to reduce the complexity of our attacks. For this, we used the
same strategy as in the analysis of the Salsa20 and ChaCha stream ciphers [16].
Namely, we computed the neutrality of each key bit (i.e., the probability that
flipping the bit preserves the difference), and we chose to guess the bits that affect
the bias the most, using some threshold on their neutrality. More precisely, we



sort key bits according to their neutrality, then filter them with respect to some
threshold value. According to [16]’s terminology, this corresponds to partitioning
the key bits into “significant” and “non-significant” ones.

Recall that in §§3.4 we observed a bias at the 385-th bit after 4 + 17 rounds
of Threefish-512. A key recovery attack on 21 + n rounds consists in guessing
some key bits, inverting n rounds based on this guess, letting the other key bits
be random, and observing a bias in that bit. Complexity is determined by the
number of guessed bits and the value of the observed bias.

Inverting four rounds with all key bits whose neutrality is greater than 0.29
(we found 125 of those), we observe a bias 0.0365. Since some key bits are not
guessed, and thus assumed random, some of the conditions to conform to the
first round’s differential cannot be controlled. There are eight such additional
conditions, which means that the 4-round initial differential will be followed
with probability 2−12−8. Since our bias approximately equals to 2−4.8, and since
we need to guess 512 − 125 key bits, the overall complexity of the attack on
25-round Threefish-512 is about 212+8 × 22×4.8 × 2387 = 2416.6. Below we give
the mask corresponding to the 125 non-guessed bits, for each key word:

0000070060FFF836 0040030021FFFC0E 803C02F03FFFF83F 001001001603C006

00780E30007F000E 0000000000000000 0000000000000000 007001800E03F801 .

We can apply the same method on 26 rounds: with a neutrality threshold 0.17
we obtain 30 “significant” key bits, and we observe a bias about 0.017 when
all of them are random. The non-guessed bits give two additional conditions for
the first 4-round differential. In total, the complexity of the attack is thus about
212+2 × 22×5.9 × 2482 = 2507.8. Memory requirements are negligible.

6 Boomerang Attacks

Boomerang attacks were introduced by Wagner and first applied to block ci-
phers [17]. Roughly speaking, in boomerang attacks one uses two short differ-
ential trails rather than a long one to exploit the efficiency of the former trails.
Let E denote the encryption function of Threefish. View E as a cascade of four
subciphers

E = Eω ◦ Eγ ◦ Eβ ◦ Eα , (1)

so that E is composed of a core E′ = Eγ ◦ Eβ sandwiched by rounds Eα and
Eω. The boomerang distinguisher is generally described for E′ only, but for key
recovery attacks on Threefish we need to generalize the attack to the construction
in Eq. (1).

Recall that in related-key attacks, one assumes that the attacker can query
the cipher with other keys that have some specified relation with the original
key. This relation is often an XOR-difference. A related-key differential is thus
a triplet (∆in, ∆out, ∆k), associated with the probability

Pr
k,m

[Ek(m)⊕ Ek⊕∆k(m⊕∆in) = ∆out] = p .



Here, ∆in and ∆out are the input and output differences, ∆k is the key difference,
and p the probability of the differential.

For (related-key) boomerang attacks based on four related-keys, one exploits
two short related-key differentials: (∆β

in, ∆
β
out, ∆

β
k) for Eβ , of probability p and

(∆γ
in, ∆

γ
out, ∆

γ
k) for Eγ , of probability q.

A distinguisher then works as follows:

1. Pick a random plaintext m1 and form m2 = m1 ⊕∆β
in.

2. Obtain c1 = E′k(m1) and c2 = E′
k⊕∆βk

(m2).

3. Set c3 = c1 ⊕∆γ
out and c4 = c2 ⊕∆γ

out.
4. Obtain m3 = E′−1

k⊕∆γk
(c3) and m4 = E′−1

k⊕∆βk⊕∆
γ
k

(c4).

5. Check m3 ⊕m4 = ∆β
in.

For an ideal cipher, the final equality is expected to hold with probability 2−n

where n is the block length. The probability of the related-key boomerang dis-
tinguisher, on the other hand, is approximately p2q2 (see [17–20] for details).

Note that the boomerang attack can be generalized to exploit multiple dif-
ferentials. The success probability then becomes p̂2q̂2, where p̂ and q̂ are the
square roots of the sums of the squares of the differentials exploited6.

6.1 Exploiting Nonlinear Differentials

Differentials are often found via linearization, i.e., assuming that integer addi-
tions behave as XOR’s. One then evaluates the probability of the differential
with respect to the probability that each active addition behaves as XOR. This
probability equals 2−w, where w is the Hamming weight of the logical OR of the
two difference masks, excluding the MSB.

Yet one is not limited to such “linear” differentials, and the best differential—
in terms of probability—is not necessarily a linearization, as illustrated by the
work of Lipmaa and Moriai [21]: for integer addition, they presented efficient
algorithms for computing the probability of any differential, and for finding the
optimal differential. The problem was later studied in terms of formal rational
series with linear representation [22].

We used the algorithms in [21] to find the differentials of our boomerang
attacks. Note that it is not guaranteed that our trails are optimal, for the com-
bination of local optimal differentials (in terms of probability) may contribute to
a faster increase of the weight than (non-necessarily optimal) linear differentials.
Yet our best differentials are not completely linear.

6.2 Related-Key Distinguishers

Like in our previous attacks, we exploit differences in the key and in the plain-
text that vanish until the twelfth round (both for the forward and backward

6Throughout the paper, our differentials do not make use of this multiple differential
approach. One can further improve upon the differentials provided in this work by using
this technique.



differentials). Then, we follow a nonlinear differential trail until the middle of
the cipher, i.e., between the 16-th and 17-th rounds. Our differential trail for Eβ

has probability p = 2−86, and the one for Eγ has probability 2−113, leading to a
boomerang distinguisher on 34 rounds requiring about (pq)−2 = 2398 trials (see
full version [9]). Note that for the second part, MSB differences are set in the
key words k2 and k3, and in the tweak words t0 and t1 (thus giving no difference
in the seventh subkey).

6.3 Known-Related-Key Distinguishers

Although the standard notion of distinguisher requires a secret (key), the notion
of known-key distinguisher [23] is also relevant to set apart a block cipher from
a randomly chosen permutation. Moreover, when a block cipher is used within a
compression function, as Threefish is, known-key distinguishers may lead to dis-
tinguishers for the hash function because all inputs are known to the adversary.
If differences in the keys are used, we shall thus talk of known-related-key distin-
guisher. An example of such distinguisher is the exhibition of input/output pairs
that have some specific relation, aspresented in [23] for seven rounds of AES-
128. Here, we shall consider tuples (m1,m2,m3,m4, c1, c2, c3, c4) that satisfy the
boomerang property.

To build a known-related-key boomerang distinguisher on Threefish, we con-
sider the decryption function, i.e., we start from the end of the cipher: when
the key is known, the attacker can easily find a ciphertext that conforms to the
first differential (e.g., to the weight-83 differential at round 35), which we could
verify experimentally. In other words, the final differential (including the differ-
ences caused by the final key) is “free” when launching the boomerang. When it
returns, however, the 283 factor cannot be avoided if we want to exactly conform
to the differential (which is not strictly necessary to run a distinguisher). We thus
obtain a distinguisher on 35-round Threefish-512 with complexity 283 times that
of the the related-key distinguisher on 34 rounds, that is, approximately 2478

encryptions.
Several tricks may be used to obtain a similar distinguisher at a reduced

cost. For example, observing that the first and fourth (resp. second and third)
MIX functions of round 34 depend only on the first and second (resp. third and
fourth) MIX’s of round 35, one can speed-up the search for inputs conforming
to the first two rounds of the boomerang.

6.4 Extension to Key-Recovery

We now show how to build a key-recovery attack on top of a boomerang distin-
guisher for 32-round Threefish-512. We present some preliminary observations
before describing and analyzing our attack.

Using notations of Eq. (1): Eβ starts from the beginning and ends after the
key addition in round 16, and Eγ starts from round 17 and ends just before the
key addition after round 32. Our goal is to recover the last subkey. Restricted to
32 rounds, the boomerang distinguisher has probabilities p = 2−86 for Eβ and



q = 2−37 for Eγ , yielding an overall boomerang probability of p2q2 = 2−246. We
now introduce some notions required to facilitate the analysis of our attack.

Definition 1 (CS-sequence). Let δ be a 64-bit word of Hamming weight 0 ≤
w ≤ 64. The CS-sequence of δ is

Sδ = (|s0|, |s1|, · · · , |sw−1|) ,

where |si| is the bit length of the i-th block of consecutive zeros in δ finishing
with a one.

For example, for δ = 1000010402000000 we have

δ = 0001︸ ︷︷ ︸
s0

0000 0000 0000 0000 0001︸ ︷︷ ︸
s1

0000 01︸ ︷︷ ︸
s2

00 0000 001︸ ︷︷ ︸
s3

0 0000 · · · 0000 ,

and so the CS-sequence of δ is Sδ = (|s0|, |s1|, |s2|, |s3|) = (4, 20, 6, 9).
The following result is extensively used in the key recovery attack using

boomerang distinguisher whose proof is provided in the full version of this pa-
per [9].

Theorem 1. The number of possible differences Nδ after addition of difference
δ with zero or ∆ = 8000000000000000 difference modulo 264 can be directly
computed from the CS-sequence of δ as

Nδ = |s0|
∑

(k1,k2,...,kw−1)∈{0,1}w−1

w−1∏
i=1

|si|ki .

For instance, if δ = 1000010402000000 then

Nδ = 4
∑

(k1,k2,k3)∈{0,1}3
(20k1 × 6k2 × 9k3)

= 4× (1 + 9 + 6 + (6× 9) + 20 + (20× 6) + (20× 9) + (20× 9× 6))
= 4× 1470 = 5880 .

Applying Theorem 1, we have the number of possible output differences caused
by ∆γ

out just after the key addition followed by the related-key boomerang dis-
tinguisher for Threefish-512 is approximately 262. We obtain this number by
multiplying the number of possibilities for each word of the state (see Table 4).

The Attack. Our attack works in three steps: in the first step, we obtain
quartets satisfying the related-key boomerang relation; in the second, we recover
the partial key by using the possible right quartets obtained from the first step;
the last step is the brute force search of the rest of the key. The attack works as
follows.



Table 4. Number of possible output differences after the key addition in Threefish-
512, for each word. Multiplying these numbers, we obtain in total approximately 262

possible differences.

v32,i S∆γout
N∆γout

v32,0 (24, 15) 384
v32,1 (32) 32
v32,2 (0) 1
v32,3 (4, 20, 6, 9) 5880
v32,4 (1) 1
v32,5 (13, 2, 9, 2, 12, 11, 5) 957840
v32,6 (13, 11, 30) 4836
v32,7 (14) 14

1. Find right quartets
for i = 1, . . . , 2248

• Generate a random unique pair of chosen plaintexts (mi
1,m

i
2) with an

∆β
in difference and encrypt each plaintext with key k1 and k2 (having

∆β
k difference) respectively to obtain the corresponding ciphertexts

(ci1, c
i
2).

• for j = 1, . . . , 262

◦ Set ci,j3 = ci1⊕∆
′,j
out where ∆′,jout is set to the j-th possible differ-

ence caused by ∆γ
out.

◦ Decrypt ci,j3 with k3 and obtain the plaintext mi,j
3 .

◦ Store the values ci,j3 and mi,j
3 .

• for k = 1, . . . , 262

◦ Set ci,k4 = ci2⊕∆
′,k
out where ∆′,kout is set to the k-th possible differ-

ence caused by ∆γ
out.

◦ Decrypt ci,k4 with k4 and obtain the plaintext mi,k
4 .

◦ Calculate M = mi,k
4 ⊕∆

β
in and check whether M exists among

the stored values of mi,j
3 . If this is the case, store the possible

right quartet.

• Free the memory allocated for the stored values of (possibly wrong)
ci,j3 and mi,j

3 . Increment i.
2. Recover the partial key

For each ciphertext word having a nonzero difference of a (possibly) right
quartet (c1, c2, c3, c4) guess the corresponding output whitening key word
kω,l for l = 0, 3, 5, 6, and check

(c1,l − kω,l)⊕ (c3,l − k2
ω,l) = (c2,l − k3

ω,l)⊕ (c4,l − k4
ω,l) = ∆γ

out,l ,

where k2
ω,l = kω,l ⊕∆γ

k,l and k3
ω,l = k4

ω,l ⊕∆
γ
k,l. If this is the case, store

this kω,l.
3. Recover the full key

Run an exhaustive search of the remaining bits of the subkey.



Complexity Analysis. The goal of step 1 is to find enough quartets satisfying
the related-key boomerang trail. For each distinct 2248 plaintext-ciphertext pairs
(m1,m2) and (c1, c2), we correspondingly generate 262 new plaintext-ciphertext
pairs (m3, c3) and (m4, c4) by using the possible number of output differences
given in Table 4. We know that a right quartet has to satisfy one of the possi-
ble number of output differences ∆′out; hence it is guaranteed to find the right
quartet once it exists as we consider all possible combinations. Note that, in-
creasing the number of quartets in that manner does not increase the number of
right quartets, the reason simply being the newly generated plaintext-ciphertext
pairs (m3, c3) and (m4, c4) can only have one root right plaintext-ciphertext
pair (m1,m2) and (c1, c2). Therefore, the expected number of right quartets is
2248 · 2−246 = 22. On the other hand, we expect 2372 · 2−512 = 2−140 additional
false quartets.

The first loop at step 1 requires 262 reduced round Threefish decryptions
and approximately 270.5 bytes of memory. The second loop can be implemented
independently and requires 262 reduced round Threefish decryptions and 262

memory accesses. On the other hand, we need additional memory complexity
of 269.5 bytes for storing ∆′out values. Therefore, the overall complexity of the
first step is bounded by 2312 reduced round Threefish decryptions and about 271

bytes of memory. Note that the memory requirement for the surviving quartets
is negligible.

Step 2 tries to recover the last subkey by using the quartets that passed the
previous step. For each surviving quartet, we guess 64 bits of the final key at
each word, decrypt one round and check the output difference ∆γ

out,l . As the
computation at each word can be processed independently, the overall complexity
of this step is dominated by the previous step.

The probability that a false combination of quartets and key bits is counted
in step 2 is upper bounded by 2−2wl where wl is the minimum hamming weight
of the corresponding output difference ∆′,lout. Therefore, the right key is suggested
4 + 2−140 · 2−2wl ≈ 4 times by the right and additional false quartets. On the
other hand, a wrong key is expected to be hit 4·2−2wl+2−140 ·2−2wl ≈ 2−2 times.
Note that this only holds for the words having an XOR difference of hamming
weight two, for the rest the number of hits is strictly less than 2−2. We can use
Poisson distribution to calculate the success rate of our attack. For an expected
number of 2−2, the probability that a wrong key is suggested at most once is
0.97. However, the probability that the right key is suggested more than once is
more than 0.90. Therefore, we can find the right key or at least eliminate most
of the keys with high probability. The complexity of the rest of the attack is
dominated by the first step.

7 Conclusion

We applied a wide range of attack strategies to the core algorithm of Skein
(the block cipher Threefish-512), culminating with a distinguisher on 35-round
Threefish-512, and a key-recovery attack on 32 rounds. Other versions of Three-



fish are vulnerable to similar attack strategies (for example, our related-key
boomerang distinguisher works on up to 33 rounds of Threefish-256). To the
best of our knowledge, this is the first application of a key-recovery boomerang
attack to an “ARX” algorithm, and also the first application of the boomerang
technique to known-key distinguishers.

Despite its relative simplicity, the full Threefish seems to resist state-of-the-
art cryptanalytic techniques. Its balanced “ARX” structure combined with large
words provides a good balance between diffusion and non-linearity, and avoids
any particular structure exploitable by attackers. Using attacks on Threefish
to attack the hash function Skein (or its compression function) seems difficult,
because of the rather complex mode of operation of Skein. Although none of our
attacks directly extends to the hash mode, the pseudorandomness of Threefish
is required to validate the security proofs on Skein. Hence, 36 or more rounds of
Threefish seem to be required to provide optimal security.

Future works might apply the recent rebound attack [24] to Threefish, al-
though it looks difficult to combine it with the trick discussed in §§3.1; this
forces the attacker to use specific differences. Another research direction relates
to optimization of boomerang known- or chosen-key distinguishers.
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A Conforming Pair for the 4-Round Differential

When the key and the tweak are zero, the following two message blocks conform
to the differential described in §§3.2:

E979D16280002004 32B29AE900000000 D921590E00000000 5771CC9000000400

A62FF22800000000 484B245000040080 D3BEA4E800008010 7A72784300000000

A971917200100020 72B2DAE980002004 DD61588E01000400 5331CC1000000000

A62FF22800040090 C84B245000000000 D1BEA4E800000000 FA72784300008010



B Examples of Near Collisions

We provide an example of near collision on 459 bits for the reduced compression
function of Skein’s UBI mode. Both inputs always have k0 = · · · = k4 = k7 = 0,
and

k5 = C0DEC0DEC0DEC0DE.

On the 16-round compression function, the first input has message block

E979D16280002004 32B29AE900000000 D921590E00000000 5771CC9000000400

A62FF22800000000 484B245000040080 D3BEA4E800008010 7A72784300000000

and

k6 = 6B9B2C1000000000 t0 = 3F213F213F213F22 t1 = 9464D3F000000000

The second input has message block

A971917200100020 72B2DAE980002004 DD61588E01000400 5331CC1000000000

A62FF22800040090 C84B245000000000 D1BEA4E800000000 FA72784300008010

and

k6 = 6B9B2C1000000000 t0 = BF213F213F213F22 t1 = 9464D3F000000000

The corresponding digests are respectively

2A6DE91E3E8CDE3B BADAF451F59D3145 7C298A43FB73463F D8309C9E9E2594D5

35431D226A2022E3 0EA42EB45F9EEEB9 DF038EECD6504300 588A798B1266D67A

and

6A65A80EBE9CFF1F FADAB450759D1141 78618AC3FA73463F 5C709C1A9E2590D5

B5431D226A242273 8EAE2FF45B9A6A39 5D038EECD650C310 D08E788B1266576A


