94 research outputs found

    A Computational Framework for the Mixing Times in the QBD Processes with Infinitely-Many Levels

    Full text link
    In this paper, we develop some matrix Poisson's equations satisfied by the mean and variance of the mixing time in an irreducible positive-recurrent discrete-time Markov chain with infinitely-many levels, and provide a computational framework for the solution to the matrix Poisson's equations by means of the UL-type of RGRG-factorization as well as the generalized inverses. In an important special case: the level-dependent QBD processes, we provide a detailed computation for the mean and variance of the mixing time. Based on this, we give new highlight on computation of the mixing time in the block-structured Markov chains with infinitely-many levels through the matrix-analytic method

    Spectral properties of the tandem Jackson network, seen as a quasi-birth-and-death process

    Get PDF
    Quasi-birth-and-death (QBD) processes with infinite ``phase spaces'' can exhibit unusual and interesting behavior. One of the simplest examples of such a process is the two-node tandem Jackson network, with the ``phase'' giving the state of the first queue and the ``level'' giving the state of the second queue. In this paper, we undertake an extensive analysis of the properties of this QBD. In particular, we investigate the spectral properties of Neuts's R-matrix and show that the decay rate of the stationary distribution of the ``level'' process is not always equal to the convergence norm of R. In fact, we show that we can obtain any decay rate from a certain range by controlling only the transition structure at level zero, which is independent of R. We also consider the sequence of tandem queues that is constructed by restricting the waiting room of the first queue to some finite capacity, and then allowing this capacity to increase to infinity. We show that the decay rates for the finite truncations converge to a value, which is not necessarily the decay rate in the infinite waiting room case. Finally, we show that the probability that the process hits level n before level 0 given that it starts in level 1 decays at a rate which is not necessarily the same as the decay rate for the stationary distribution.Comment: Published at http://dx.doi.org/10.1214/105051604000000477 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Linear Programming Approach to Error Bounds for Random Walks in the Quarter-plane

    Full text link
    We consider the approximation of the performance of random walks in the quarter-plane. The approximation is in terms of a random walk with a product-form stationary distribution, which is obtained by perturbing the transition probabilities along the boundaries of the state space. A Markov reward approach is used to bound the approximation error. The main contribution of the work is the formulation of a linear program that provides the approximation error

    Aggregate matrix-analytic techniques and their applications

    Get PDF
    The complexity of computer systems affects the complexity of modeling techniques that can be used for their performance analysis. In this dissertation, we develop a set of techniques that are based on tractable analytic models and enable efficient performance analysis of computer systems. Our approach is three pronged: first, we propose new techniques to parameterize measurement data with Markovian-based stochastic processes that can be further used as input into queueing systems; second, we propose new methods to efficiently solve complex queueing models; and third, we use the proposed methods to evaluate the performance of clustered Web servers and propose new load balancing policies based on this analysis.;We devise two new techniques for fitting measurement data that exhibit high variability into Phase-type (PH) distributions. These techniques apply known fitting algorithms in a divide-and-conquer fashion. We evaluate the accuracy of our methods from both the statistics and the queueing systems perspective. In addition, we propose a new methodology for fitting measurement data that exhibit long-range dependence into Markovian Arrival Processes (MAPs).;We propose a new methodology, ETAQA, for the exact solution of M/G/1-type processes, (GI/M/1-type processes, and their intersection, i.e., quasi birth-death (QBD) processes. ETAQA computes an aggregate steady state probability distribution and a set of measures of interest. E TAQA is numerically stable and computationally superior to alternative solution methods. Apart from ETAQA, we propose a new methodology for the exact solution of a class of GI/G/1-type processes based on aggregation/decomposition.;Finally, we demonstrate the applicability of the proposed techniques by evaluating load balancing policies in clustered Web servers. We address the high variability in the service process of Web servers by dedicating the servers of a cluster to requests of similar sizes and propose new, content-aware load balancing policies. Detailed analysis shows that the proposed policies achieve high user-perceived performance and, by continuously adapting their scheduling parameters to the current workload characteristics, provide good performance under conditions of transient overload

    Perturbation analysis in finite LD‐QBD processes and applications to epidemic models

    Get PDF
    In this paper, our interest is in the perturbation analysis of level‐dependent quasi‐birth‐and‐death (LD‐QBD) processes, which constitute a wide class of structured Markov chains. An LD‐QBD process has the special feature that its space of states can be structured by levels (groups of states), so that a tridiagonal‐by‐blocks structure is obtained for its infinitesimal generator. For these processes, a number of algorithmic procedures exist in the literature in order to compute several performance measures while exploiting the underlying matrix structure; among others, these measures are related to first‐passage times to a certain level L(0) and hitting probabilities at this level, the maximum level visited by the process before reaching states of level L(0), and the stationary distribution. For the case of a finite number of states, our aim here is to develop analogous algorithms to the ones analyzing these measures, for their perturbation analysis. This approach uses matrix calculus and exploits the specific structure of the infinitesimal generator, which allows us to obtain additional information during the perturbation analysis of the LD‐QBD process by dealing with specific matrices carrying probabilistic insights of the dynamics of the process. We illustrate the approach by means of applying multitype versions of the susceptible‐infective (SI) and susceptible‐infective‐susceptible (SIS) epidemic models to the spread of antibiotic‐sensitive and antibiotic‐resistant bacterial strains in a hospital ward

    Perturbation Analysis of a Variable M/M/1 Queue: A Probabilistic Approach

    Get PDF
    Motivated by the problem of the coexistence on transmission links of telecommunication networks of elastic and unresponsive traffic, we study in this paper the impact on the busy period of an M/M/1 queue of a small perturbation in the server rate. The perturbation depends upon an independent stationary process (X(t)) and is quantified by means of a parameter \eps \ll 1. We specifically compute the two first terms of the power series expansion in \eps of the mean value of the busy period duration. This allows us to study the validity of the Reduced Service Rate (RSR) approximation, which consists in comparing the perturbed M/M/1 queue with the M/M/1 queue where the service rate is constant and equal to the mean value of the perturbation. For the first term of the expansion, the two systems are equivalent. For the second term, the situation is more complex and it is shown that the correlations of the environment process (X(t)) play a key role

    A linear programming approach to error bounds for random walks in the quarter-plane

    Get PDF
    summary:We consider the steady-state behavior of random walks in the quarter-plane, in particular, the expected value of performance measures that are component-wise linear over the state space. Since the stationary distribution of a random walk is in general not readily available we establish upper and lower bounds on performance in terms of another random walk with perturbed transition probabilities, for which the stationary distribution is a geometric product-form. The Markov reward approach as developed by van Dijk is used to bound the perturbation error. The main contribution of the work is the formulation of finite linear programs that provide upper and lower bounds to the performance of the original random walk. Most importantly, these linear programs establish bounds on the bias terms. This leverages an important drawback in the application of the Markov reward approach, which in existing literature is based on meticulously crafted bounds on the bias terms

    Numerical methods for queues with shared service

    Get PDF
    A queueing system is a mathematical abstraction of a situation where elements, called customers, arrive in a system and wait until they receive some kind of service. Queueing systems are omnipresent in real life. Prime examples include people waiting at a counter to be served, airplanes waiting to take off, traffic jams during rush hour etc. Queueing theory is the mathematical study of queueing phenomena. As often neither the arrival instants of the customers nor their service times are known in advance, queueing theory most often assumes that these processes are random variables. The queueing process itself is then a stochastic process and most often also a Markov process, provided a proper description of the state of the queueing process is introduced. This dissertation investigates numerical methods for a particular type of Markovian queueing systems, namely queueing systems with shared service. These queueing systems differ from traditional queueing systems in that there is simultaneous service of the head-of-line customers of all queues and in that there is no service if there are no customers in one of the queues. The absence of service whenever one of the queues is empty yields particular dynamics which are not found in traditional queueing systems. These queueing systems with shared service are not only beautiful mathematical objects in their own right, but are also motivated by an extensive range of applications. The original motivation for studying queueing systems with shared service came from a particular process in inventory management called kitting. A kitting process collects the necessary parts for an end product in a box prior to sending it to the assembly area. The parts and their inventories being the customers and queues, we get ``shared service'' as kitting cannot proceed if some parts are absent. Still in the area of inventory management, the decoupling inventory of a hybrid make-to-stock/make-to-order system exhibits shared service. The production process prior to the decoupling inventory is make-to-stock and driven by demand forecasts. In contrast, the production process after the decoupling inventory is make-to-order and driven by actual demand as items from the decoupling inventory are customised according to customer specifications. At the decoupling point, the decoupling inventory is complemented with a queue of outstanding orders. As customisation only starts when the decoupling inventory is nonempty and there is at least one order, there is again shared service. Moving to applications in telecommunications, shared service applies to energy harvesting sensor nodes. Such a sensor node scavenges energy from its environment to meet its energy expenditure or to prolong its lifetime. A rechargeable battery operates very much like a queue, customers being discretised as chunks of energy. As a sensor node requires both sensed data and energy for transmission, shared service can again be identified. In the Markovian framework, "solving" a queueing system corresponds to finding the steady-state solution of the Markov process that describes the queueing system at hand. Indeed, most performance measures of interest of the queueing system can be expressed in terms of the steady-state solution of the underlying Markov process. For a finite ergodic Markov process, the steady-state solution is the unique solution of N−1N-1 balance equations complemented with the normalisation condition, NN being the size of the state space. For the queueing systems with shared service, the size of the state space of the Markov processes grows exponentially with the number of queues involved. Hence, even if only a moderate number of queues are considered, the size of the state space is huge. This is the state-space explosion problem. As direct solution methods for such Markov processes are computationally infeasible, this dissertation aims at exploiting structural properties of the Markov processes, as to speed up computation of the steady-state solution. The first property that can be exploited is sparsity of the generator matrix of the Markov process. Indeed, the number of events that can occur in any state --- or equivalently, the number of transitions to other states --- is far smaller than the size of the state space. This means that the generator matrix of the Markov process is mainly filled with zeroes. Iterative methods for sparse linear systems --- in particular the Krylov subspace solver GMRES --- were found to be computationally efficient for studying kitting processes only if the number of queues is limited. For more queues (or a larger state space), the methods cannot calculate the steady-state performance measures sufficiently fast. The applications related to the decoupling inventory and the energy harvesting sensor node involve only two queues. In this case, the generator matrix exhibits a homogene block-tridiagonal structure. Such Markov processes can be solved efficiently by means of matrix-geometric methods, both in the case that the process has finite size and --- even more efficiently --- in the case that it has an infinite size and a finite block size. Neither of the former exact solution methods allows for investigating systems with many queues. Therefore we developed an approximate numerical solution method, based on Maclaurin series expansions. Rather than focussing on structural properties of the Markov process for any parameter setting, the series expansion technique exploits structural properties of the Markov process when some parameter is sent to zero. For the queues with shared exponential service and the service rate sent to zero, the resulting process has a single absorbing state and the states can be ordered such that the generator matrix is upper-diagonal. In this case, the solution at zero is trivial and the calculation of the higher order terms in the series expansion around zero has a computational complexity proportional to the size of the state space. This is a case of regular perturbation of the parameter and contrasts to singular perturbation which is applied when the service times of the kitting process are phase-type distributed. For singular perturbation, the Markov process has no unique steady-state solution when the parameter is sent to zero. However, similar techniques still apply, albeit at a higher computational cost. Finally we note that the numerical series expansion technique is not limited to evaluating queues with shared service. Resembling shared queueing systems in that a Markov process with multidimensional state space is considered, it is shown that the regular series expansion technique can be applied on an epidemic model for opinion propagation in a social network. Interestingly, we find that the series expansion technique complements the usual fluid approach of the epidemic literature
    • 

    corecore