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Nederlandse samenvatting
–Dutch Summary–

Een wachtrijsysteem is een wiskundige abstractie van een situatie waarin elemen-
ten, de zogenaamde klanten, in een systeem aankomen en wachten totdat ze be-
diend worden. Wachtrijsystemen zijn alomtegenwoordig. Voorbeelden bij uitstek
zijn mensen die aan een loket wachten om bediend te worden, vliegtuigen die
wachten om op te stijgen, files tijdens de spits etc. Wachtrijtheorie is de wiskun-
dige studie van wachtfenomenen. Aangezien vaak noch de aankomstmomenten
van de klanten, noch hun bedieningstijden vooraf bekend zijn, gaat wachtrijtheo-
rie er meestal van uit dat die stochastische variabelen zijn. Het wachtrijproces zelf
is dan een stochastisch proces en meestal ook een Markovproces, gegeven dat een
gepaste toestandsbeschrijving van het wachtrijproces geı̈ntroduceerd wordt. Dit
proefschrift onderzoekt numerieke oplossingsmethoden voor een bijzonder type
Markoviaanse wachtrijsystemen, namelijk voor wachtrijsystemen met gezamen-
lijke bediening. Deze wachtrijsystemen zijn erg anders dan traditionele wachtrij-
systemen doordat de klanten vooraan in de verschillende wachtrijen gelijktijdig
bediend worden. Bovendien is er slechts bediening als er klanten in alle wacht-
rijen aanwezig zijn. De afwezigheid van bediening wanneer één van de wachtrijen
leeg is veroorzaakt een bijzondere dynamiek die niet te vinden is bij traditionele
wachtrijsystemen.

Deze wachtrijen met gezamenlijke bediening vormen niet alleen een mooi wis-
kundig studieonderwerp, maar worden ook gemotiveerd door een brede waaier
aan toepassingen. De motivatie om wachtrijsystemen met gezamenlijke bedie-
ning te bestuderen kwam oorspronkelijk uit een bepaald proces in vooraadbeheer,
met name kitting. Een kittingproces verzamelt de benodigde onderdelen voor een
eindproduct in een speciaal ontworpen kist vooraleer het toe te leveren aan de as-
semblagelijn. De onderdelen en hun voorraden, zijnde de klanten en wachtrijen,
hebben een “gezamenlijke bediening” daar kitting niet kan doorgaan als sommige
onderdelen ontbreken. Nog steeds in het gebied van voorraadbeheer, vertoont de
ontkoppelingsvoorraad van een hybride make-to-stock/make-to-order systeem een
gezamenlijke bediening. Het productieproces voorafgaande aan de ontkoppelings-
voorraad is make-to-stock en wordt gedreven door vraagvoorspellingen. In te-
genstelling, het productieproces na de ontkoppelingsvooraad is make-to-order en
wordt gedreven door de werkelijke vraag daar de onderdelen van de ontkoppe-
lingsvooraad samengesteld worden volgens de specificaties van de klanten. Aan
het ontkoppelingspunt, is er naast de ontkoppelingsvoorraad ook een wachtrij van
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openstaande orders. Daar maatwerk enkel begint wanneer de ontkoppelingsvoor-
raad niet leeg is en er minstens een order aanwezig is, is er opnieuw sprake van
gezamenlijke bediening. Ook in telecommunicatie is er sprake van gezamenlijke
bediening, in het bijzonder bij de studie van energie-oogstende sensoren. Derge-
lijke sensoren halen energie uit de omgeving om hun volledige energieverbruik te
dekken of om hun levensduur te verlengen. Een oplaadbare batterij werkt heel ge-
lijkaardig aan een wachtrij waarbij klanten gediscretiseerde energiepaketten zijn.
Daar een sensor zowel waargenomen data als energie nodig heeft voor transmissie,
kan gezamenlijke bediening opnieuw geı̈dentificeerd worden.

In het Markoviaanse kader, komt het “oplossen” van een wachtrijsysteem on-
geveer overeen met het bepalen van de evenwichtsdistributie van het Markovpro-
ces dat het wachtrijsysteem beschrijft. Inderdaad, de belangrijkste prestatiematen
kunnen uitgedrukt worden in termen van de evenwichtsdistributie van het onderlig-
gende Markovproces. Voor een eindig ergodisch Markovproces, is de evenwichts-
distributie de unieke oplossing van N− 1 balansvergelijkingen aangevuld met de
normalisatievoorwaarde, waarbij N de grootte van de toestandsruimte is. Voor
wachtrijsystemen met gezamenlijke bediening groeit de grootte van de toestands-
ruimte van de Markovprocessen exponentieel met het aantal wachtrijen. Vandaar
dat, zelfs indien slechts enkele wachtrijen beschouwd worden, de omvang van
de toestandsruimte enorm is. Dit is het fenomeen van toestandsruimte-explosie.
Daar directe oplossingsmethoden van de Markovprocessen rekenkundig onmoge-
lijk zijn, richt dit proefschrift zich op het uitbuiten van bepaalde structurele eigen-
schappen van de bestudeerde Markovprocessen om de berekening van de even-
wichtsdistributie te versnellen.

De eerste eigenschap die gebruikt kan worden is de ijlheid van de genera-
tormatrix van het Markovproces. Inderdaad, het aantal gebeurtenissen dat zich
kan voordoen in eender welke toestand — of het aantal transities dat zich kan
voordoen naar andere toestanden — is veel kleiner dan de grootte van de toe-
standsruimte. Dit betekent dat de generatormatrix van het Markovproces voorna-
melijk met nullen gevuld is. Iteratieve methoden voor ijle lineaire systemen —
in het bijzonder de Krylov-deelruimtesolver GMRES — bleken computationeel
efficiënt te zijn voor het bestuderen van kittingprocessen met een beperkt aantal
wachtrijen. Voor meerdere wachtrijen (of een grotere toestandsruimte) kan deze
methode de evenwichtsdistributie echter onvoldoende snel berekenen. De toepas-
singen gerelateerd aan de ontkoppelingsvoorraad en de energie-oogstende sensor
hebben slechts twee wachtrijen. In dit geval vertoont de generatormatrix een ho-
mogene bloktridiagonale structuur. Dergelijke Markovprocessen kunnen efficiënt
worden opgelost door middel van matrix-geometrische methoden, zowel in het
geval dat de toestandsruimte een eindige grootte heeft als — en nog efficiënter
— in het geval dat deze oneindig is met eindige blokgrootte. Geen van de voor-
malige exacte oplossingsmethoden laat toe om systemen met vele wachtrijen te
bestuderen. Daarom ontwikkelen we een benaderende numerieke oplossingsme-
thode, gebaseerd op Maclaurin-reeksontwikkelingen. In plaats van zich toe te leg-
gen op de structurele eigenschappen van de Markovprocessen voor eender welke
parameterinstelling, maakt de reeksontwikkelingstechniek gebruik van structurele
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eigenschappen van het Markovproces wanneer een bepaalde parameter naar nul
gaat. Voor de wachtrijen met een exponentiële gezamenlijke bediening en met een
bedieningsintensiteit gaande naar nul heeft het resulterende proces een absorbe-
rende toestand en kunnen de toestanden geordend worden zodat de generatorma-
trix boven-diagonaal is. In dit geval is de oplossing wanneer de bedieningsinten-
siteit gelijk is aan nul triviaal en heeft het berekenen van de hogere-ordetermen in
de reeksontwikkeling rond nul een computationele complexiteit evenredig met de
grootte van de toestandsruimte. Dit is een geval van reguliere verstoring van de pa-
rameter. Daartegenover staat singuliere verstoring die hier wordt toegepast op het
kittingproces met phase-type-verdeelde bedieningstijden. Bij singuliere verstoring
heeft het Markovproces geen unieke evenwichtsdistributie wanneer de parameter
naar nul gaat. Vergelijkbare technieken zijn nog steeds van toepassing, hoewel
deze een ietwat grotere rekentijd vergen.

Tot slot merken we op dat de numerieke reeksontwikkelingstechnieken zich
niet beperken tot het analyseren van wachtrijen met gezamenlijke bediening. Door
een Markovproces met een multidimensionale toestandsruimte gelijkaardig aan
een wachtrijsysteem met gezamenlijke bediening te beschouwen tonen we aan dat
de reguliere reeksontwikkelingstechniek toegepast kan worden op een epidemiolo-
gisch model voor de studie van opinieverspreiding in een sociaal netwerk. Hierbij
is het interessant te bemerken dat de reeksontwikkelingstechniek complementair
is aan de gebruikelijke vloeistof-aanpak uit de epidemiologische literatuur.
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English Summary

A queueing system is a mathematical abstraction of a situation where elements,
called customers, arrive in a system and wait until they receive some kind of ser-
vice. Queueing systems are omnipresent in real life. Prime examples include
people waiting at a counter to be served, airplanes waiting to take off, traffic jams
during rush hour etc. Queueing theory is the mathematical study of queueing
phenomena. As often neither the arrival instants of the customers nor their ser-
vice times are known in advance, queueing theory most often assumes that these
processes are random variables. The queueing process itself is then a stochas-
tic process and most often also a Markov process, provided a proper description
of the state of the queueing process is introduced. This dissertation investigates
numerical methods for a particular type of Markovian queueing systems, namely
queueing systems with shared service. These queueing systems differ from tradi-
tional queueing systems in that there is simultaneous service of the head-of-line
customers of all queues and in that there is no service if there are no customers in
one of the queues. The absence of service whenever one of the queues is empty
yields particular dynamics which are not found in traditional queueing systems.

These queueing systems with shared service are not only beautiful mathemat-
ical objects in their own right, but are also motivated by an extensive range of
applications. The original motivation for studying queueing systems with shared
service came from a particular process in inventory management called kitting.
A kitting process collects the necessary parts for an end product in a box prior
to sending it to the assembly area. The parts and their inventories being the cus-
tomers and queues, we get “shared service” as kitting cannot proceed if some parts
are absent. Still in the area of inventory management, the decoupling inventory
of a hybrid make-to-stock/make-to-order system exhibits shared service. The pro-
duction process prior to the decoupling inventory is make-to-stock and driven by
demand forecasts. In contrast, the production process after the decoupling inven-
tory is make-to-order and driven by actual demand as items from the decoupling
inventory are customised according to customer specifications. At the decoupling
point, the decoupling inventory is complemented with a queue of outstanding or-
ders. As customisation only starts when the decoupling inventory is nonempty and
there is at least one order, there is again shared service. Moving to applications
in telecommunications, shared service applies to energy harvesting sensor nodes.
Such a sensor node scavenges energy from its environment to meet its energy ex-
penditure or to prolong its lifetime. A rechargeable battery operates very much
like a queue, customers being discretised as chunks of energy. As a sensor node
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requires both sensed data and energy for transmission, shared service can again be
identified.

In the Markovian framework, “solving” a queueing system corresponds to find-
ing the steady-state solution of the Markov process that describes the queueing
system at hand. Indeed, most performance measures of interest of the queueing
system can be expressed in terms of the steady-state solution of the underlying
Markov process. For a finite ergodic Markov process, the steady-state solution is
the unique solution of N− 1 balance equations complemented with the normali-
sation condition, N being the size of the state space. For the queueing systems
with shared service, the size of the state space of the Markov processes grows ex-
ponentially with the number of queues involved. Hence, even if only a moderate
number of queues are considered, the size of the state space is huge. This is the
state-space explosion problem. As direct solution methods for such Markov pro-
cesses are computationally infeasible, this dissertation aims at exploiting structural
properties of the Markov processes, as to speed up computation of the steady-state
solution.

The first property that can be exploited is sparsity of the generator matrix of
the Markov process. Indeed, the number of events that can occur in any state —
or equivalently, the number of transitions to other states — is far smaller than the
size of the state space. This means that the generator matrix of the Markov process
is mainly filled with zeroes. Iterative methods for sparse linear systems — in par-
ticular the Krylov subspace solver GMRES — were found to be computationally
efficient for studying kitting processes only if the number of queues is limited. For
more queues (or a larger state space), the methods cannot calculate the steady-state
performance measures sufficiently fast. The applications related to the decoupling
inventory and the energy harvesting sensor node involve only two queues. In this
case, the generator matrix exhibits a homogene block-tridiagonal structure. Such
Markov processes can be solved efficiently by means of matrix-geometric meth-
ods, both in the case that the process has finite size and — even more efficiently —
in the case that it has an infinite size and a finite block size. Neither of the former
exact solution methods allows for investigating systems with many queues. There-
fore we developed an approximate numerical solution method, based on Maclaurin
series expansions. Rather than focussing on structural properties of the Markov
process for any parameter setting, the series expansion technique exploits struc-
tural properties of the Markov process when some parameter is sent to zero. For
the queues with shared exponential service and the service rate sent to zero, the re-
sulting process has a single absorbing state and the states can be ordered such that
the generator matrix is upper-diagonal. In this case, the solution at zero is trivial
and the calculation of the higher order terms in the series expansion around zero
has a computational complexity proportional to the size of the state space. This is
a case of regular perturbation of the parameter and contrasts to singular perturba-
tion which is applied when the service times of the kitting process are phase-type
distributed. For singular perturbation, the Markov process has no unique steady-
state solution when the parameter is sent to zero. However, similar techniques still
apply, albeit at a higher computational cost.
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Finally we note that the numerical series expansion technique is not limited
to evaluating queues with shared service. Resembling shared queueing systems
in that a Markov process with multidimensional state space is considered, it is
shown that the regular series expansion technique can be applied on an epidemic
model for opinion propagation in a social network. Interestingly, we find that the
series expansion technique complements the usual fluid approach of the epidemic
literature.
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1
Introduction

This dissertation investigates queuing systems with multiple queues that are jointly
served. Joint service not only means that there is a departure in every queue
upon service completion, but also that service is only possible when each queue is
nonempty. Models with two queues and more than two queues are here referred
to as paired queueing models and coupled queueing models, respectively. We aim
to gain insights into the dynamics of such systems under uncertainty. Accurate
closed-form expressions of performance measures cannot be expected given the
complexity of these queueing systems. Therefore, we mainly rely on numerical
analysis techniques to accurately evaluate system performance with reasonable
computational effort. As will become clear in the following chapters, coupled
queueing systems find applications in diverse areas including inventory manage-
ment and telecommunications. Nevertheless, at the onset of this dissertation we
also would like to mention that these queueing systems are beautiful mathematical
objects in their own right, with particularly interesting dynamics.

This introductory chapter provides some background on as well as an outline of
the subject of the dissertation and is organised as follows. In Section 1.1, we give
a brief overview of the various applications of coupled queueing systems that have
motivated our investigations in these systems. In Section 1.2, we shortly describe
the nature and utility of stochastic modelling, as well as survey the numerical
techniques used throughout the dissertation. In Section 1.3, an outline of the later
chapters is provided, with special attention to the main modelling assumptions
of and differences between these chapters, both in terms of applications under
study and methodology. Finally, an overview of the publications on which this
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dissertation is based is given in Section 1.4.

1.1 Applications of paired and coupled queues

1.1.1 Kitting system

Many manufacturing systems pursue a high product variety strategy to gain a com-
petitive advantage. Indeed, companies try to differentiate themselves from their
competitors by supplying a wide assortment of assembled products. However, this
strategy is likely to increase the total material handling time and required storage
space at the assembly line [40]. To cope with this tendency, a kitting process can
be introduced in the production and assembly process. Kitting is a strategy for
supplying parts to an assembly line. More specifically, kitting collects the nec-
essary parts for a given end product into a container, referred to as a kit, prior
to arriving at the assembly line [7, 9, 41, 50, 58]. The overall material handling
time is reduced as activities like selecting and gripping parts are performed more
efficiently [40, 52]. Moreover, kitting mitigates storage space requirements at the
assembly station since no part inventories need to be kept there. Additional ben-
efits include reduced assembly times when parts are placed in proper positions in
the container and reduced operator walking times since kits are brought as a whole
to the assembly station.

The introduction of kitting obviously does not come for free as an additional
stage is introduced prior to assembly. Assessing whether or not it is beneficial to
introduce a kitting operation requires a deep understanding of its dynamics. Most
literature study kitting performance in a deterministic production environment [7,
12] but this may lead to an unrealistic optimal solution with high stock and idle
times. As to get a more detailed cost/benefit assessment of the kitting operation,
we study the performance of kitting operations under uncertainty in demand and
production times. Kitting involves multiple part inventories and kits can only be
compiled if all parts are available. Hence, the kitting process is modelled as a
paired or coupled queueing system if there are respectively two or more than two
queues. Figure 1.1 shows an abstract representation of a kitting process with two
types of parts. These parts arrive at their respective part inventories, the queues,
and ‘wait’ there until they are collected into a kit.

1.1.2 Hybrid MTS/MTO system

In supply chain management, well-known production strategies are make-to-stock
(MTS) and make-to-order (MTO). Under pure MTS management, the activities
are forecast-driven. Indeed, the end products are manufactured independently of
any customer requirements and are stocked in advance. In contrast, in a pure
MTO strategy, the activities are demand-driven. The manufacturing of a product
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part inventory

kitting

Figure 1.1: Kitting process with two parts.

product inventory

order backlog

orders

order processingproduction

Figure 1.2: Generic model for the decoupling point in an MTS/MTO system.

is triggered only when a customer order is placed. To benefit from both systems,
production is gradually moving towards a hybrid MTS/MTO strategy [59]. In
such systems, the decoupling point — the boundary between forecast-driven and
demand-driven activities — is positioned in the middle of the production process.
This leads to shorter delivery times than in a pure MTO system (which corresponds
to a decoupling point prior to delivery) and a higher production flexibility and
responsiveness to demand than in a pure MTS system (which corresponds to a
decoupling point prior to production) [23, 36, 49].

As firms suffer from increased demand fluctuations, inventory replenishment
issues and variable order processing times, we describe hybrid MTS/MTO sys-
tems as a stochastic inventory model with two queues: the order backlog, which
tracks the production orders that have not yet been processed, and the decoupling
inventory of semi-finished products. Production prior to the product inventory here
corresponds to the MTS stage of the hybrid MTS/MTO system. The MTO stage is
captured by the order processing times. When there are orders in the order back-
log, products in the product inventory, and previous orders have been completed,
a semi-finished product is processed into a finished product according to the order
instructions. Hence, the queues are paired as shown in Figure 1.2. The dynamics
of the system however differs considerably from the dynamics of the kitting pro-
cess, as the order queue has infinite capacity. Moreover, a threshold-based control
policy can be implemented: production of semi-finished products starts when the
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sensed data

transmission

energy opportunity

Figure 1.3: Stochastic model of energy harvesting sensor nodes.

inventory level goes below a certain value, referred to as the threshold value, and
stops when the inventory level reaches maximum capacity. Such a control is some-
times referred to as an (s,S) policy and reduces the number of times production
starts and stops due to the finite capacity of the decoupling inventory.

1.1.3 Energy harvesting sensor node

Sensor networks, formed by collections of intercommunicating sensor nodes, are
used to collect and monitor spatially distributed data like temperature, humidity,
movement, noise etc [2, 3]. As it is often not convenient to recharge or replace the
batteries, the lifetime of sensor nodes is largely determined by the energy of on-
board batteries. Applications for which this is mostly difficult are found in hard-
to-reach locations or locations where power lines do not exist such as for volcano
monitoring [64], habitat monitoring [39] and vehicle tracking [33]. To mitigate
or overcome this dependency, the necessary energy can be scavenged from the
sensor node’s environment. This alternative technique is called energy harvesting
[31, 35].

In this dissertation, we evaluate the performance of energy harvesting sensor
nodes under uncertainty in energy harvesting, energy expenditure, data acquisition
and data transmission. To this end, the sensor node is described as a system with
two queues: the accumulated harvested energy and the data packet buffer, as shown
in Figure 1.3. Indeed, a rechargeable battery operates very much like a queue:
charging the battery corresponds to arrivals of “energy customers”, and depletion
corresponds to the departure of these customers. Again, pairing of both buffers is
natural as any data transmission requires both the availability of data as well as
energy. While the buffer battery equivalence comes natural, it should be noted that
the operational point of a typical data buffer and a battery can differ considerably.
For the data buffer, one aims for small buffer content: the fewer packets one has to
store the better the performance. In contrast, for the battery it is beneficial to have
a lot of energy present.

Independently of the availability of sufficient battery power, data cannot al-
ways be transmitted. The introduction of these limited transmission opportunities
is motivated by but not restricted to scenarios where a mobile sink is responsible



INTRODUCTION 1-5

for data collection. A mobile sink moves towards the energy harvesting sensor
node and gathers the sensed data when it is located in the transmission range of
the sensor node. This means that data transmission is only possible when there is
sufficient energy, a data packet available and a transmission opportunity.

1.1.4 Opinion propagation in a social network

Given the rapid growth of companies in the internet sector and the ascent of so-
cial networks in particular (e.g. Facebook, LinkedIn, Twitter etc.), there is a very
strong interest in understanding how new opinions spread through a community
[29]. Indeed, the analysis of opinion propagation can improve our comprehension
of social relations among individuals online as well as offline.

In this dissertation, opinion spreading is described as a Markovian non-stand-
ard Susceptible-Infected-Recovered (SIR) epidemic model [4, 27]. Indeed, opin-
ion propagation holds many qualitative similarities with infectious diseases spread:
if an individual without a specific opinion about a topic (susceptible) encounters
an opinioned individual (infected), this individual may form an opinion with some
probability, and therefore also get opinioned. Afterwards, opinioned individuals
(infected) may, with some probability, stop transmitting their opinion to other in-
dividuals. Indeed, these individuals may become neutral to the topic (recovered).
We extend the standard stochastic model in two ways. We account for the situa-
tion where a non-opinioned (susceptible) individual becomes neutral (recovered)
directly and we allow for state-dependent infection and recovery rates.

If there are many individuals partaking in the spreading of the opinion, epi-
demic theory learns that deterministic approximations of the evolution of the num-
ber of opinioned persons are appropriate. In this case, the evolution of the state
of the individuals can be described by a set of differential equations. However,
when the population size is limited, deterministic epidemic theory does not apply.
In this case, opinion spreading can be captured by a multidimensional Markov
process which very much resembles the Markov processes of coupled queueing
systems, although individuals can now leave the system one by one (there is no
coupling). If the population size is small, the Markov process can be analysed by
standard solution methods. However, when the population size increases this is
no longer the case. We show that the methodology that was developed to study
coupled queueing systems, also applies to the opinion spreading model. This ob-
servation enables us to study epidemics in medium-sized populations.
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1.2 Methodology

Often, neither the arrival nor the departure process of the systems under study are
fully known. To cope with this inherent uncertainty, these are preferably modelled
as stochastic processes. In this section, we aim to convey the general ideas of sto-
chastic modelling and the numerical techniques used throughout the dissertation.

To this end, we first introduce the basic notions of Markov processes below.
Given the complexity of the dynamics of our Markov processes, accurate closed-
form solutions of the performance measures of interest cannot be expected. There-
fore, this research mainly relies on numerical techniques. Three techniques are
used and discussed in this section: (i) the iterative method for sparse linear sys-
tems GMRES, (ii) the matrix-geometric method, and (iii) the Maclaurin-series
expansion approach. We conclude this section by comparing speed and accuracy
of the different numerical techniques in Section 1.2.5.

1.2.1 Markov processes

A more specific and for us relevant stochastic process is the Markov process. In
fact, in this dissertation, all studied systems are described as continuous-time Mar-
kov processes with a discrete state space. This means that the Markov process is
defined for a continuous set of times and only adopts values in a countable collec-
tion. The vast majority distinguishes Markov processes from Markov chains based
on the time parameter: chains proceed in discrete time, processes in continuous
time [42]. A smaller number of authors however make the distinction between the
two based on the state space in which they are operating: if it is finite or countable,
then it is a Markov chain, else it is a Markov process [45]. Throughout this disser-
tation, we describe our continuous-time stochastic processes with a discrete state
space as Markov processes. For such a process {Xt , t ∈ R}, the future outcome
depends only on the current value or state of the process and not on its past. At
any point in time t and for any positive integer n, and for points t1, t2, . . . , tn < t0 ≤ t
the random variable Xt has the property,

P[Xt = xt |Xt0 = xt0 ,Xt1 = xt1 , . . . ,Xtn = xtn ] = P[Xt = xt |Xt0 = xt0 ].

This specific kind of ‘memorylessness’ is called the Markov property: the proba-
bility distribution of the future value of the process Xt is independent of the past
values of Xt1 to Xtn given the current value Xt0 .

A Markov process Xt with a countable state space X can be completely char-
acterised by the so-called generator matrix Q with elements

qi j = lim
4t→0

P[Xt+4t = j|Xt = i]
4t

, i 6= j, i, j ∈ X . (1.1)
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The parameter qi j is referred to as the transition rate from state i to state j ( j 6= i);
there is a transition from state i to state j in an interval of length dt with probability
qi jdt +o(dt). The diagonal elements of Q are defined as

qii =−∑
j 6=i

qi j . (1.2)

Note that the definition of qii implies that the row sums of Q are 0. Moreover,
assuming that the Markov process is in state i, it remains in state i for an expo-
nentially distributed time with rate −qii. We also use the term generator matrix
when the diagonal elements are equal to zero (qii = 0), which sometimes is nota-
tionally more convenient. Throughout the dissertation, the diagonal elements of
the generator matrices are explicitly defined.

The basic quantitative result that can be obtained from our Markov processes
is the stationary distribution. This distribution tells us how the system behaves
after a long period of time, when the effects of the initial state have faded out. In
this dissertation, we consider time-homogeneous Markov processes with a finite
and an infinite number of states. Time-homogeneity means that transition rates
are time-independent. For Markov processes with a finite state space, a unique
solution of the stationary distribution can be found if the Markov process has a
single communicating class. In the infinite case, it is additionally required that
the states in the communicating class are positive recurrent. This means that the
expected return time to each state of this class is finite. Under these conditions, the
stationary distribution πππ can be found and is the unique solution of the following
equations:

∑
i∈X

πiqi j = 0 and ∑
i∈X

πi = 1.

It is now useful to write the above equations in matrix form. Let πππ be the row
vector with elements πi. We then have,

πππQ = 0, (1.3)

and
πππ1 = 1, (1.4)

where 1 denotes a column vector of appropriate size. Equation (1.4) denotes the
so-called normalisation condition and states that the sum of the probabilities in
steady state must be equal to one. This condition is necessary to find the unique
solution of the stationary vector πππ together with the system of equations (1.3).
Throughout the dissertation, the stationary distribution of a queueing system is
also referred to as the steady-state probability vector.

In the remainder, a number of Markov processes are used as building blocks
for the paired and coupled queueing models. The most important processes are the
Markovian arrival process and the renewal process with phase-type renewal-time
distribution discussed below.
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Markovian arrival process A Markovian arrival process (MAP) is a continuous-
time Markov process {(N(t), J(t)), t ≥ 0}, with N(0) = 0, on the state space S
=N×{1, . . . ,m}, with m≥ 1. The function N(t) counts the number of arrivals in
interval [0, t] and J(t) represents the phase of the arrival process at time t. Assum-
ing that the states are ordered according to count first, the generator matrix Q of
the MAP has the following block matrix representation,

Q =


D0 D1 0 · · ·
0 D0 D1 · · ·
0 0 D0 · · ·
...

...
...

. . .

 . (1.5)

where D1 and D0 are matrices of size m×m. The elements of D1 and D0 represent
transitions which are and are not accompanied with arrivals, respectively.

Many familiar arrival processes represent special cases of MAPs. The simplest
example is the Poisson process where m = 1, D1 = λ and D0 =−λ where λ is the
arrival rate of the Poisson process. Another specific case of MAP is the interrupted
Poisson process (IPP). An IPP is a two-state MAP in which arrivals occur only in
one of the states, denoted as the active state, and state jumps do not cause arrivals.
In this case, m = 2 and the two matrices D1 and D0 are defined as follows:

D1 =

[
0 0
0 λ

]
, D0 =

[
−β β

α −(α+λ)

]
.

where α (β) is the rate at which the system goes from an active (inactive) to an
inactive (active) state in an infinitesimal time interval.

Phase-type distribution The phase-type distribution is a probability distribution
constructed by a mixture of exponential distributions occurring in phases [44]. The
sequence in which the phases occur may be a stochastic process in itself. More pre-
cisely, a phase-type distributed random variable describes the time until absorption
of a Markov process with one absorbing state. Special cases of interest for this re-
search are the exponential distribution, the Erlang distribution (with two or more
identical phases in sequence), the hyperexponential distribution (with two or more
non-identical phases and where each phase has a probability of occurring in a
parallel manner), and the hypoexponential distribution (with two or more phases
in sequence, that can be non-identical or a mixture of identical and non-identical
phases).
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1.2.2 Iterative methods

All numerical methods in this dissertation exploit structural properties of the Mar-
kov processes, as to find the stationary probability vector more efficiently. A first
structural property that can be exploited is the sparsity of the generator matrices.
Most processes in this dissertation possess the property that the number of states
that can be directly reached from a certain state is far smaller than the size of the
state space. This implies that the generator matrices are sparse.

The first methods developed for solving sparse linear systems of equations are
the so-called sparse direct solvers, which are clever implementations of Gaussian
elimination. These methods produce the result in a prescribed, finite number of
steps. However, these methods are computationally often too expensive for large
systems, even on today’s fastest supercomputers. To cope with this shortcoming,
researchers developed iterative methods. These methods are an attempt to solve a
system of equations by finding successive approximations to the solution starting
from an initial guess.

In this section, a brief introduction into the world of iterative techniques, and
in particular of the Krylov subspace method GMRES, is given. In Chapter 2, the
GMRES technique is implemented to find numerical solutions of a two-part kitting
process. Compared to other numerical techniques, the use of this technique in this
research is rather limited. This is because of the remaining difficulty to solve large
state-space systems (see Figure 1.5 in Section 1.2.5) and the keen interest we had
in other numerical techniques and their applications.

We now give a short introduction of the basic steps of an iterative method.
Consider a large sparse linear system of equations of the form

Ax = b. (1.6)

where A is the generator matrix of size n×n, b∈Rn is a known column vector, and
x∈Rn is the vector of unknowns. The first step is to define an initial guess x0 ∈Rn

that approximates the exact solution x. Once we have x0, we use it to generate a
new guess x1 which is used to guess x2 and so on. Each guess is improved by
reducing the error with a convenient and cheap approximation.

In the next part, we discuss two main types of iterative methods: stationary
and nonstationary methods. Nonstationary methods differ from stationary meth-
ods in that the computations involve information that changes at each iteration.
Stationary methods are older, less complex but usually also less effective. On
the other hand, nonstationary methods, also called Krylov subspace methods, are
more recent — the GMRES method discussed below dates back to 1986 — and
their analysis is more complex but they can be highly effective. Below is a brief
overview of the most important stationary iterative methods given.
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1.2.2.1 Stationary iterative methods

Stationary iterative methods, also called relaxation methods, involve passing from
one iterate to the next by modifying one or a few components of an approximate
vector solution at a time. The criteria used at each iteration is the minimisation of
the residual vector |b−Ax| of equation (1.6). Let the matrix A be decomposed
as A = D+L+U, where D is the diagonal component of A and L and U are
respectively the strictly lower and strictly upper-triangular components of A. This
matrix splitting allows us to describe properly the Jacobi, Gauss-Seidel and the
Successive Over-Relaxation method (SOR) [57], [60] (p. 125–138).

The simplest iterative method is the Jacobi iteration. The solution is obtained
iteratively via

x(k+1) = D−1(b−Rx(k)) (1.7)

where R=U+L. Note that the inverse of a diagonal matrix is trivial. The element-
based formula is then

x(k+1)
i =

1
aii

(
bi−∑

j 6=i
ai jx

(k)
j

)
. (1.8)

with i 6= j and x(k)j ∈ xk. The computation of x(k+1)
i requires each element in x(k)

except itself. This means that we cannot overwrite x(k)i with x(k+1)
i , as that value

will be needed in the remainder of the computation. The minimum amount of
storage comprises thus two vectors of size n. However, the new expression of the
solution vector x(k+1) is calculated by using only the old approximation x(k). So
the computed elements of x(k+1) are not already used. Therefore, this method pos-
sesses a high degree of natural parallelism and is thus very convenient to vectorise
and to parallelise [11].

The Gauss-Seidel iteration is defined as

x(k+1) = S−1
(

b−Ux(k)
)

where S = D+L. Equivalently

Dx(k+1) = b−Lx(k+1)−Ux(k)

By taking advantage of the triangular form of S, the elements of x(k+1) can be
computed sequentially using forward substitution:

x(k+1)
i =

1
aii

(
bi−∑

j<i
ai jx

(k+1)
j −∑

j>i
ai jx

(k)
j

)
. (1.9)

Unlike the Jacobi method, the approximate solution is updated immediately
after the new component is determined. The computation of x(k+1)

i uses only the
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elements of x(k+1) that have already been computed, and only the elements of x(k)

that have not yet advanced to iteration k+1. This means that only one storage vec-
tor is required, which can be advantageous for very large problems. The method
of Gauss-Seidel is therefore not convenient for vectorisation or parallelisation, but
typically converges faster than the Jacobi iteration.

The Successive Over-Relaxation method is a variant of the Gauss-Seidel and
the Jacobi method. The equation may be written as

ωA = (D+ωL)+(ωU− (1−ω)D) . (1.10)

This may be rewritten as:

(D+ωL)x(k+1) = ωb− (ωU− (1−ω)D)x(k) , (1.11)

where the constant ω is the relaxation factor. Note that if ω = 1, we have the
Gauss-Seidel method. Note also that the SOR method converges only if 0 < ω < 2
[65]. Analytically, this may be written as:

x(k+1) = (D+ωL)−1
(

ωb− (ωU+(ω−1)D)x(k)
)
. (1.12)

However, by taking advantage of the triangular form of (D+ωL), the elements
of x(k+1) can be computed sequentially using forward substitution:

x(k+1)
i = (1−ω)x(k)i +

ω

aii

bi−∑
j<i

ai jx
(k+1)
j −∑

j>i
ai jx

(k)
j

 (1.13)

where i = 1,2, . . . ,n. A last important stationary method is the Symmetric
Successive Over-Relaxation (SSOR). This method combines two successive Over-
Relaxation methods (SOR),

(D+ωL)x(k+
1
2 ) = ωb− (ωU− (1−ω)D)x(k),

(D+ωU)x(k+1) = ωb− (ωL− (1−ω)D)x(k+
1
2 ).

The main advantage of SSOR schemes is that the iteration matrix is similar to a
symmetric matrix when the original matrix is symmetric.

1.2.2.2 Krylov subspace solvers

The first step is to construct a sequence of approximations of the solution x of
equation (1.6) as

xm ∈ x0 +Km(A,r0). (1.14)

where x0 is the initial guess and

ri := b−Axi (1.15)
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is the ith residual. The order-m Krylov subspace Km(A,r0) is defined as the linear
subspace spanned by the images of r0 under the first m−1 powers of A,

Km(A,r0) = span{r0,Ar0,A2r0, . . . ,Am−1r0} . (1.16)

Suppose that after exactly m iterations the solution is contained in the current affine
Krylov subspace, i.e.

x ∈ x0 +Km(A,r0). (1.17)

This means that m is the smallest index for which the following formula holds

dim[Km(A,r0)] = dim[Km+1(A,r0)]. (1.18)

such that we have found an invariant subspace where rm = 0 and xm = x. Hence,
the Krylov procedure stops.

To find this approximate solution xm, an orthonormal basis {v1, v2, . . ., vm}
of the Krylov subspace Km(A,r0) is generated. Let Vm = [v1,v2, . . . ,vm]. The
next step is to seek an approximation of the solution of Ax = b in the set of x0 +

Km(A,r0) and of the form xm = x0 +Vmym for some ym ∈ Rm.
The difference between the Krylov methods arise in the choices of Vm and

ym. The generation of the orthonormal basis and the steps to determine ym for the
GMRES method are discussed next.

GMRES The generalized minimum residual method, is designed to solve non-
symmetric linear systems [60, 47, 10, 56]. The orthonormal basis of the GMRES
method is defined by using Arnoldi’s method. Hence, we first explain the Arnoldi
algorithm applied on the GMRES method [63].

Given the generator matrix A and the initial residual r0 as defined in equation
(1.6) and (1.15) respectively, the Arnoldi process begins with

v1 :=
r0

β
. (1.19)

where β := ‖r0‖. Suppose now that we have generated {v1,v2, . . . ,v j} as a ba-
sis for K j (A, v1). We now wish to find a vector v j+1 such that K j+1(A,v1) =

span{v1, v2,. . . ,v j+1}. The Arnoldi iteration uses the stabilised Gram-Schmidt
process to produce v j+1 as follows

hi, j =< Av j,v1 >, i = 1, . . . , j, (1.20)

v̄ j+1 = Av j−
j

∑
i=1

vihi j, (1.21)

h j+1, j = ‖v̄ j+1‖, (1.22)
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and if h j+1, j 6= 0,

v j+1 =
v̄ j+1

h j+1, j
(1.23)

From the above equations, we get

Av j =
j

∑
i=1

vihi j +v j+1h j+1, j⇒ Av j =
j+1

∑
i=1

v jhi, j (1.24)

If v̄j+1 = 0, then h j+1, j = 0 and span{v1, . . . ,v j}=K j(A,v1) is invariant under
A such that the Arnoldi process terminates.

This process runs for M = {1,2, . . . ,m} so that

AVm = Vm+1Hm+1,m. (1.25)

where Vm = [v1,v2, . . . ,vm] as defined previously and the matrix Hm+1,m denotes
the (m+1)×m upper Hessenberg matrix whose (i, j) entry hi j is such that

Av j =
j

∑
i=1

vihi j. (1.26)

if i≤ j+1 and hi j = 0 if i > j+1.
Based on the mth step of Arnoldi’s method given by equation (1.25), the iterate

xm in the mth step of GMRES (satisfying expression (1.14)) can be written as

xm = x0 +Vmym (1.27)

and the vector ym is chosen to minimise the norm of the residual rm such that

min
y∈Rm
‖b−Axm‖= min

y∈Rm
‖b−A(x0 +Vmy)‖

= min
y∈Rm
‖b−Ax0−AVmy‖

= min
y∈Rm
‖r0−Vm+1Hm+1,my‖

= min
y∈Rm
‖βv1−Vm+1Hm+1,my‖

= min
y∈Rm
‖Vm+1(βe1−Vm+1Hm+1,my)‖

= min
y∈Rm
‖βe1−Vm+1Hm+1,my‖.

where e1 is the first Euclidian vector [55] (p.25–27).
To sum up, the GMRES approximation is the unique vector of x0 +Km(A,r0)

which minimises the residual ‖b−Axm‖ where

xm = x0 +Vmym,
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and

ym = min
y
‖βe1−Vm+1Hm+1,my‖

Note. In Chapter 2, the GMRES method is compared with the LU decom-
position method [61]. This direct method decomposes the generator matrix Q of
equation (1.3) into a lower and upper-triangular matrix such that their product is
equal to this matrix. The solution of this equation is then obtained by solving two
triangular systems.

1.2.3 Matrix-geometric methods

A common characteristic of the studied paired and coupled queueing systems is
the structure of the state space; the generator matrix has a tridiagonal block struc-
ture with level-independent transition rates (see Chapters 3 – 6). Such a Mar-
kov process is called a homogeneous quasi-birth-death (QBD) process. To exploit
this structure, efficient numerical solution techniques such as the matrix-geometric
method have been developed [37, 43]. This section aims to convey a general idea
of the homogeneous QBD process and the matrix-geometric method.

The state of the Markov process can be written as (n,m), where n ≥ 0 and
0≤m≤M. The first coordinate n indicates the block-row number, called the level
of the Markov process, and the second coordinate m indicates the index within a
block element of size M +1, called the phase of the QBD. This means that states
belonging to a similar block matrix have the same level but a different phase.

The main property of QBD processes is the constraint of allowing only ‘neigh-
bouring’ transitions. In particular, the one-step transitions are restricted to states
in the same level (from state (n,∗) to state (n,∗)) or in two adjacent levels (from
state (n,∗) to state (n+1,∗) or (n−1,∗)).

Hence, we have a continuous-time Markov process with the following genera-
tor matrix Q:

Q =


B A2 0 0 · · ·
A0 A1 A2 0 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

...
. . .

 , (1.28)

where the block matrices A0 and A2 have nonnegative values and the block matri-
ces A1 and B have nonnegative off-diagonal elements and strictly negative diago-
nal elements. The row sums of Q are equal to zero, so that we have (B+A2)1 = 0
and (A0 +A1 +A2)1 = 0, where 1 and 0 are column vectors of adequate size with
all elements equal to zero and one, respectively.
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Next, let the steady-state probability vector πππ of the above defined homoge-
neous QBD process with equation (1.3) be partitioned conformally with the levels
of Q, i.e.

πππ = (πππ0,πππ1,πππ2, . . .)

where
πππi = (π(i,0),π(i,1),π(i,2), . . . ,π(i,M)).

This gives the following balance equations

πππ0B+πππ1A0 = 0

πππ0A2 +πππ1A1 +πππ2A0 = 0

πππ1A2 +πππ2A1 +πππ3A0 = 0
...

πππi−1A2 +πππiA1 +πππi+1A0 = 0 (1.29)

for i = 1,2, . . .

Stability condition According to theorem 7.2.3 of [37], if (i) the QBD is ir-
reducible, (ii) the number of phases is finite and (iii) the generator matrix A =

A0 +A1 +A2 is irreducible, then the QBD is positive recurrent if and only if,

πππAA01 < πππAA21

where 1 is the unit vector and πππA is the stationary distribution of the generator
matrix A. That is, πππA is the normalised solution of πππAA = 0. When this equation
is satisfied, the stationary distribution of the QBD process exists. Intuitively, ele-
ments of A0 move the process up a level while elements of A2 move the process
down a level. Hence, the so-called drift to higher numbered levels must be strictly
less than the drift to lower numbered levels. Note that, assuming all states to be
positive recurrent, and thus not only one class of states, this stability condition is
stronger than the one given in Section 1.2 for time-homogeneous infinite Markov
processes.

To solve such systems, we introduce the rate matrix R as the minimal nonneg-
ative solution of the nonlinear matrix equation

A2 +RA1 +R2A0 = 0 . (1.30)

Now assume that the equilibrium probabilities satisfy

πππi = πππi−1R, for i = 1,2, . . . .
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which can be rewritten as

πππi = πππ0Ri. for i = 0,1, . . . (1.31)

Provided that such an R can be found, it is easy to show that the solution above
solves the balance equations. Indeed, if we substitute equation (1.31) in equation
(1.29), we have

πππ0RiA2 +πππ0Ri+1A1 +πππ0Ri+2A0 = πππ0Ri(A2 +RA1 +R2A0) = 0 ,

for i = 0,1, . . ., where the last equality follows from (1.30). Hence, if R satisfies
equation (1.30), then the vectors πππi are geometrically related to each other. The
remaining unknown vector πππ0 satisfies,

πππ0B+πππ0RA0 = 0 . (1.32)

Moreover, the normalisation condition yields,

∞

∑
i=0

πππi1 = πππ0

∞

∑
i=0

Ri1 = πππ0(I−R)−11 = 1 (1.33)

where I is the identity matrix and 1 is a column vector of ones. Equations (1.32)
and (1.33) uniquely determine πππ0.

The former argument shows that the solution of the QBD reduces to finding
the solution of (1.30). Several iterative procedures exist for solving R in equation
(1.30). For example, starting with R equal to a matrix of zeros-entries, Gun [22]
uses the following simple recursion

R←−(A2 +R2A0)A−1
1 . (1.34)

In this dissertation the rate matrix R is computed by implementing the improved
iterative algorithm of [37, Chapter 8, p.179-187].

1.2.4 Series expansion

The queueing systems under study cannot always be analysed as QBD processes.
If we identify the level of the queue content of one queue and the phase with the
queue content of the other queue of a paired queueing system, the resulting Markov
process is a QBD. If we move beyond two queues, the phase can still describe the
queue content of all but one queue and we still obtain a QBD. However, now the
state-space explosion problem translates into increasing block sizes and matrix-
geometric methods are no longer computationally efficient.

Nevertheless, these systems can sometimes be easily solved when some pa-
rameter is sent to zero. Assuming the resulting generator matrix to have an upper-
triangular structure, the solution at zero is trivial as there is only one final state.
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Also, as we will see further, the derivatives with respect to that parameter can
easily be found. Hence, we use a series expansion in that parameter to approxi-
mate the steady-state probability vector of the Markov process (see Chapter 7 –
9). More specifically, we characterise the steady-state behaviour of the Markov
processes that describe kitting systems and opinion propagation by means of a
Maclaurin-series expansion in the departure rate µ. The general ideas behind the
methods are sketched below.

Consider a ‘perturbed’ Markov process with the following generator matrix

Qµ = Q(0)+µQ(1). (1.35)

In perturbation theory, Q(0) represents the unperturbed part, Q(1) the perturbed
part of Qµ and µ is the perturbation parameter. We now aim to find the steady-state
probability vector πππµ of the Markov process,

πππµQµ = 0 . (1.36)

Now, assume that πππµ is an analytic function of µ. That is, πππµ satisfies the following
series expansion representation,

πππµ =
∞

∑
n=0

µn
πππ
(n) = πππ

(0)+µπππ
(1)+µ2

πππ
(2)+ . . . (1.37)

To determine the different terms of πππµ, it is important to make a distinction be-
tween a regular and singular perturbation problem. In the former case, the Markov
process is irreducible in µ = 0 which means that we can find one unique steady-
state solution for πππ(0) by means of the equation:

πππ
(0)Q(0) = 0. (1.38)

In the latter case, the Markov process is reducible in µ= 0 (but typically irreducible
in the neighbourhood of µ = 0) which means that we cannot find a unique steady-
state solution for πππ(0) by means of equation (1.38). In this dissertation, we study
both types of perturbation.

Regular perturbation First we consider the studied regular perturbation prob-
lem. If we substitute (1.35) and (1.37) into (1.36) and take (1.38) into account, we
have

πππµQµ = πππ
(0)Q(0)+µ(πππ(1)Q(0)+πππ

(0)Q(1))+µ2(πππ(2)Q(0)+πππ
(1)Q(1))+ . . .= 0

such that,
πππ
(n+1)Q(0) =−πππ

(n)Q(1) (1.39)
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for n ≥ 0. Complementing equations (1.38) and (1.39) with the normalisation
conditions

πππ
(0)1 = 1, πππ

(n)1 = 0 , (1.40)

allows for recursive calculation of all πππ(n) for n≥ 1.

The perturbation technique is efficient if the equations (1.38) and (1.39) can be
solved efficiently. This is the case for the problems in Chapter 7 and 9, as Q(0) is
triangular. This regular perturbation technique is applied in Chapter 7 on kitting
processes with more than two parts. Indeed, the generator matrix of a kitting sys-
tem with Poisson arrivals and exponential service times has only positive elements
above its main diagonal when the service rate µ equals zero. In other words, Q(0)

has an upper-triangular structure when µ→ 0 is the perturbation parameter. This
triangular structure implies that the process is transient and that there is only one
final state. All queues will eventually fill up completely in the absence of service.
Hence, the Markov process for µ = 0 has a unique (and trivial) stationary distri-
bution and the perturbation is regular. This regular perturbation technique is also
applied in Chapter 9 on opinion propagation in a social network.

Singular perturbation In contrast to regular perturbation, the unperturbed gen-
erator matrix Q(0) of singular perturbation problems has more than one possible
final state when the parameter is sent to zero. In Chapter 8, a kitting system with
phase-type service times is analysed. When there is no service, all queues will
eventually be full but the system will remain in one of the phases of the service
process. Hence, the perturbation is singular as there is an absorbing state for each
phase of the phase-type distribution.

Nevertheless, the stationary distribution is analytic in a deleted neighbourhood
of 0 and there exists a unique analytic continuation for 0. Practically, the singular
perturbation reflects in not having enough equations to solve term by term in the
expansion, by consecutively equating terms in πππ(n). That is, Q(0) in equation (1.39)
has a rank lower than its size minus one. It is however possible to find the terms
of the expansion by combining the equations one gets for πππ(n) till πππ(n+k) for some
integer k. The value k is equal to the order of the Laurent series expansion of
the deviation matrix of the Markov process and can be determined by solving a
combinatorial problem.

For the singular perturbation problem of Chapter 8, we show that we only have
to combine two pairs of equations (k = 1). Moreover, we are only “missing” P−1
equations, for solving it directly, where P denotes the number of phases of the
phase-type distribution. In this case, the additional computational effort induced
by the singular perturbation is limited.
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Figure 1.4: The mean number of parts of type 2 of a two-part kitting process versus the
service rate µ for the different solution methods.

1.2.5 Performance analysis of the numerical solution methods

In this section, the proposed numerical techniques are compared in terms of speed
and accuracy. To this end, we study a two-part kitting process which can be solved
numerically by the different methods introduced above. Parts arrive according to
a Poisson process with rate λi at their respective part inventories with capacity Ci,
i = {1,2} and service times are exponentially distributed with rate µ. We choose
different λi for the queues, to ensure that there exists a stable QBD. Without loss
of generality, assume λ1 < λ2.

Before discussing the results found in Figures 1.4 and 1.5, the values of the pa-
rameters that affect speed and accuracy are given for each solution method. Con-
cerning the GMRES method, the maximum total number of iterations is defined
as the product of inner and outer iterations. In both figures, the number of inner
iterations equals 20 and the number of outer iterations equals 1. Concerning the
matrix-geometric method, the error term to calculate the rate matrix R iteratively
equals 10−10 and the maximum number of iterations is equal to 106. Finally, the
number of terms of the developed Maclaurin-series expansion equals 10.

Figure 1.4 depicts the mean number of parts of type 2 of a two-part kitting pro-
cess calculated with the different solution methods, as well as simulation results
which allow for assessing the accuracy of the solution methods. In this figure, the
service rate µ varies from 0 to 1 and the inventory capacity C1 =C2 equals 20 and
we assume that λ1 = 0.6 and λ2 = 0.8. For the QBD process, we make the infi-
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Figure 1.5: The CPU time (in seconds) to calculate the steady-state probability vector of a
two-part kitting system by the different solution methods.

nite buffer approximation for queue 1. As the figure shows, the level of accuracy
of the Maclaurin-series expansion and the matrix-geometric method vary accord-
ing to the service rate µ. As expected, the proposed Maclaurin-series expansion
is accurate for low values of µ while the matrix-geometric method is accurate for
high values of µ. Note that the stability condition of the QBD process (given in
Section 1.2.2) requires that µ > λ1(= 0.6). Concerning the Maclaurin-series ex-
pansion method, as the perturbation parameter µ is sent to zero, the kitting process
is obviously well approximated when the service rate has a value in the neigh-
bourhood of zero. Concerning the GMRES method, the level of accuracy does not
vary significantly according to the value of the service rate µ. Indeed, the GMRES
method is accurate for any value of µ varying from 0 and 1. To summarise, the re-
gions in which the Maclaurin-series expansion and the matrix-geometric method
are accurate are complementary for this set of parameter values whereas GMRES
is accurate for all µ.

However, the accuracy of GMRES does not come cheap in terms of compu-
tational effort. Figure 1.5 depicts the CPU time (averaged over 40 runs) needed
by the GMRES, matrix-geometric and Maclaurin-series expansion method to cal-
culate the steady-state probability vector versus the inventory capacity. In this
figure, C1 varies together with C2 for the GMRES and the Maclaurin-series expan-
sion method and is equal to infinity for the matrix-geometric method, as explained
above. The CPU time of the GMRES method includes the time to generate the
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sparse generator matrix and to calculate the steady-state probability vector. The
CPU time of the matrix-geometric method includes the time to generate the gener-
ator matrix of the QBD process and to calculate the rate matrix R and the steady-
state probability vector using the rate matrix R. The CPU time of the Maclaurin-
series expansion approach includes the time to develop the series expansion of the
steady-state probability vector. As the figure shows, the CPU time clearly varies
according to the value of the inventory capacity. Indeed, the computational com-
plexity increases as the state space size increases. When comparing the CPU time
of the different solution methods, the Maclaurin-series expansion method clearly
outperforms the other methods. The matrix-geometric method is shown to have
the highest CPU time for an inventory capacity of C2 varying from 5 to 28 and the
GMRES method is shown to have the highest CPU time for an inventory capacity
C1 = C2 varying from 28 to 40. To summarise, the Maclaurin-series expansion
method is clearly preferred for low values of µ. For high values of µ, the GMRES
and matrix-geometric method are here preferred when the inventory capacity is
respectively smaller and larger than 28.

1.3 Dissertation outline

In this section we explain how the chapters of this dissertation are interconnected.
As previously mentioned, we investigate three numerical methods applied on four
main applications arising in the context of inventory management and telecommu-
nications (see Figure 1.6).

In Chapter 2, we investigate the performance of kitting processes with two
parts. In particular, the impact of uncertainty in part arrivals and kit assembly
times on the behaviour of the part inventories is assessed. To this end, the kitting
system is modelled as a paired queueing system. Methodologically, the sparse
matrix technique GMRES is applied and compared with the LU decomposition
method in terms of speed. A cost-profit analysis is conducted with the aim of
determining the optimal inventory capacity.

The use of matrix-geometric methods starts in Chapter 3 with the performance
analysis of a hybrid MTS/MTO system. To account for uncertain demand, inven-
tory replenishment and order processing, these systems are described as stochastic
inventory models with two queues: the inventory of semi-finished products and the
order backlog. The main modelling differences with Chapter 2 are the assumption
of an infinite capacity of one of the queues (instead of finite) and a threshold-
based control policy. This means that production of semi-finished products starts
when the inventory level drops to a threshold value and stops when the capacity is
reached. Methodologically, the studied queueing system is analysed as a homoge-
neous quasi-birth-death (QBD) process and solved by matrix-geometric methods.

Chapter 4 extends Chapter 3 by increasing the versatility of the developed
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queueing model. In particular, we allow for a controlled and uncontrolled replen-
ishment of the semi-finished product inventory. Furthermore, a cost analysis is
conducted with the aim of determining the optimal value of the inventory capacity
and threshold.

In Chapter 5, we evaluate the performance of energy harvesting sensor nodes
under uncertainty in energy capture, energy expenditure, data acquisition and data
transmission by means of numerical examples. To this end, the energy harvesting
sensor node is again modelled as a paired queueing system. One queue has infi-
nite capacity and keeps track of not yet transmitted data packets. The other queue
has finite capacity and represents the energy level of the battery. As in Chapters
3 and 4, this system is modelled as a QBD and solved by matrix-geometric meth-
ods. The main difference with previous models is the introduction of limited time
periods in which a service can occur. This assumption is motivated by but not lim-
ited to scenarios where a mobile sink is responsible for data collection. A mobile
sink moves towards the energy harvesting sensor node and gathers the sensed data
when it is located in the transmission range of the sensor node. Hence, data trans-
mission is only possible when there is sufficient energy, a data packet available and
a transmission opportunity.

Chapter 6 extends Chapter 5 by increasing the versatility of the developed
queueing model. Indeed, we allow for simultaneous and non-simultaneous de-
partures from the data packet buffer and the battery level and for non-zero trans-
mission times. As in the previous chapter, the performance of energy harvesting
sensor nodes is evaluated under uncertainty in energy capture, energy expenditure,
data acquisition and data transmission by means of numerical examples.

Lastly, we consider an alternative methodology to assess the performance of
coupled queueing systems with finite capacity. Although the sparse matrix tech-
niques, as elaborated in Chapter 2, lead to quite efficient results compared to the
LU decomposition method, there is room for improvement. Indeed, scenarios with
more than two finite queues and a reasonable capacity require so much additional
calculations that the utility of the analysis as compared to simulations seems lim-
ited or are even out of reach due to memory consumption. Hence, mathematical
techniques based on series expansions are considered.

In Chapter 7, a numerical algorithm is presented which calculates the Maclau-
rin-series expansion of the steady-state probability vector, under the condition that
the generator matrix reduces to a triangular matrix when a certain rate is sent to
zero. The proposed algorithm is illustrated by a kitting process with more than two
parts and exponentially distributed service times. In this case, the solution when
the service rate is sent to zero is unique; the perturbation is regular. Furthermore,
a proof of convergence of the series expansion and a lower bound on the conver-
gence radius are provided. The convergence domain is illustrated by a numerical
example.
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Chapter 8 extends the results of Chapter 7 by also considering the singular
perturbation case. In particular, kitting systems with phase-type distributed service
times are assumed. In contrast with the regular case, the unperturbed generator
matrix has more than one recurrent class. A numerical method of analysis to cope
with singular perturbation is given which keeps the additional computational effort
limited.

Chapter 9 is devoted to the study of opinion propagation in a social network.
To model such dynamics, we use the contagion approach which is based on the
spreading of diseases. Specifically, opinion propagation is modelled as a Marko-
vian non-standard Susceptible-Infected-Recovered (SIR) epidemic model. As in
Chapter 7, we develop a Maclaurin-series expansion of the steady-state probabil-
ity vector in the departure rate. Assuming exponential departure times, we can
find a unique steady-state solution when the departure rate is sent to zero. This is
again a case of regular perturbation. Also, the fluid limit of the Markov process
is derived. By means of numerical examples, we show that the series expansion
approximation and fluid limit are complementary such that by combining them we
get accurate estimates of performance values for all parameter values.
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Abstract. Nowadays, customers request more variation in a company’s prod-
uct assortment leading to an increased amount of parts moving around on the shop
floor. To cope with this tendency, a kitting process can be implemented. Kitting is
the operation of collecting the necessary parts for a given end product in a specific
container, called a kit, prior to arriving at an assembly unit. As kitting performance
is critical to the overall cost and performance of the manufacturing system, this pa-
per analyses a two-part kitting process as a Markovian model. In particular, kitting
is studied as a paired queue, thereby accounting for stochastic part arrivals and kit
assembly times. Using sparse matrix techniques, we assess the impact of kitting
interruptions, bursty part arrivals and phase-type distributed kit assembly times on
the behaviour of the part buffers. Finally, a cost-profit analysis of kitting processes
is conducted.
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2.1 Introduction

Nowadays manufacturing systems are often composed of multiple in-house fabri-
cation units [12]. The semi-finished products stemming from these units are the
input materials for other fabrication units or for assembly lines. Hence, efficient
transport of materials between the different stages of the production process is
key for overall production cost minimisation. Kitting is a particular strategy for
supplying materials to an assembly line. Instead of delivering in containers, each
holding a single type part and all holding the same number of parts, kitting col-
lects the necessary set of parts for an individual end product in a specific container,
referred to as kit, prior to arriving at an assembly unit [1, 2, 12, 14, 15, 17].

Kitting mitigates storage space requirements at the assembly station since no
part inventories need to be kept there. Moreover, parts are placed in proper posi-
tions in the container such that assembly time reductions can be realised. Addi-
tional benefits include reduced learning time of the workers at the assembly sta-
tions and increased quality of the product. Although kitting is a non-value adding
activity, its application can reduce the overall materials handling time [15]. In-
deed activities such as selecting and gripping parts are performed more efficiently.
Furthermore, the whole operator walking time is drastically reduced or even elim-
inated since kits, each containing a complete set of components, are brought to
the assembly station [9]. The advantages mentioned above do not come for free
since the kitting operation itself incurs additional costs such as the time and ef-
fort for planning the allocation of the parts into kits and the kit preparation itself.
Moreover, the introduction of a kitting operation in a production process involves
a major investment and the effect on efficiency are uncertain. Therefore, it is im-
portant to analyse the performance of kitting in a production environment prior to
its actual introduction. This is the subject of the present paper.

In literature, most authors consider a kitting process as a queueing system with
stochastic part arrivals and kit assembly times. Hopp and Simon [8] developed
a model for a kitting process with exponentially distributed processing times for
kits and Poisson arrivals. They found accurate bounds for the required buffer ca-
pacity of kitting processes with two parts. Explicitly accounting for finite buffer
capacities, Som et al. [17] further refined the results of Hopp and Simon.

Of course real buffers always have a finite capacity, the capacity being con-
strained by the storage room. However, if the capacity is large enough, we can
have a good approximation of a process with a finite capacity on the basis of a
model with unlimited capacity. This means that there is always enough space for
upcoming parts, which simplifies the analysis. Unfortunately, the assumption of
an infinite buffer is not valid for kitting processes. If the capacity is assumed to
be infinite, then the model will degrade to an unstable stochastic system. Harri-
son [7] showed for a multiple input generalisation of the GI/G/1 queue that it is
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Figure 2.1: Kitting process: the buffers are on the left, and the triangularly shaped kitting
process is on the right.

necessary to impose a restriction on the size of the buffer to ensure stability in
the operations of a kitting process. Under this assumption, the probability to have
a certain long-term stock position is equal and independent of the current stock
position. This was also demonstrated by Latouche [10] who studied waiting lines
with paired customers. We can consider this analysis as an abstraction of a kitting
process with two types of parts.

In this work, we focus on a kitting process modulated by a Markovian environ-
ment. The introduction of this environment allows us to study kitting under more
realistic stochastic assumptions: kitting interruptions, bursty part arrivals, phase-
type distributed kit assembly times etc. Our paper extends the results on kitting in
a Markovian environment [5].

The remainder of this paper is organised as follows. Section 2.2 describes the
kitting process at hand. In Section 2.3, Chapman-Kolmogorov equations are de-
rived and their numerical solution is discussed. To illustrate our approach, Section
2.4 considers a number of numerical examples. In particular, we assess the impact
of kitting interruptions, bursty part arrivals and phase-type distributed kit assembly
times on the behaviour of the part buffers. Then, a cost-profit analysis of kitting
processes is conducted. Finally, conclusions are drawn in Section 2.5.

2.2 Model description

In this paper, we study a two-queue kitting process, as depicted in Figure 2.1.
Each queue has a finite capacity — let C` denote the capacity of buffer `, `= 1,2
— and models the inventory of parts of a single type. New parts arrive at the
buffers and, if both buffers are nonempty, a kit is assembled by collecting a part
from each buffer. Hence, departures from the buffers are synchronised, the buffers
are paired. Operation of part buffers therefore considerably differs from other
queueing systems.

Arrivals at both buffers are modelled by a Markovian arrival process and kit
assembly is not instantaneous. For ease of modelling, it is assumed that there is
a modulating Markov process, arrival and service rates depending on the state of
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this process. To be more precise, the kitting process is modelled as a continuous-
time Markov process with state space C1×C2×K , whereby C` = {0, . . . ,C`} for
`= 1,2 and with K = {1,2, . . . ,K} being the state space of the modulating process.
At any time, the state of the kitting process is described by the triplet [m,n, i], m
and n being the number of parts in the first and second buffer respectively, and i
being the state of the modulating process. We now describe the state transitions.

• The state of the modulating process can change when there are neither ar-
rivals nor departures. Let αi j denote the transition rate from state i to state j
(i, j ∈K , i 6= j) and let A denote the corresponding generator matrix.

• The state of the modulating process may remain the same or may change
when there is an arrival. Let λ

(`)
i j denote the (marked) transition rate from

state i to state j when there is an arrival at buffer `, ` = 1,2. Moreover,
let L` denote the corresponding generator matrix. Note that such marked
transitions from state i to state i are allowed.

• Analogously, the state of the modulating process may remain the same or
may change when there is a departure (in each buffer). Let µi j and M denote
the corresponding transition rate and generator matrix respectively.

Summarising, arrivals at and departures from the buffers are described by the gen-
erator matrices A, L1, L2 and M. So far, no diagonal elements of A have been
defined. To simplify notation, it will be further assumed that the diagonal elements
are chosen such that the row sums of A+L1 +L2 +M are zero.

The computational method employed here does not require any homogeneity
of the generator matrices. When required by the applications at hand, intensities
may depend on the buffer content. In this case, we introduce superscripts to make
this dependence explicit. For example, M(m,n) denotes the generator matrix of
state transitions with departure when there are m parts in buffer 1 and n parts in
buffer 2. In addition, we use arguments for rates as we already used superscripts
and subscripts to distinguish the arrival rates at the different queues. For example,
λ
(`)
i j (m,n) denotes the arrival rate at buffer `= 1,2 from state i to state j when there

are m parts in buffer 1 and n parts in buffer 2.
Example 1. In the most basic setting, parts arrive at the buffers in accor-

dance with an independent Poisson process with rate λ1 and λ2 and kit assembly
times are exponentially distributed with parameter µ. In this case, there is no need
to have a modulating Markov process, the state is completely described by the
number of parts in each buffer, (m,n). We have,

M =
[
µ
]
, L1 =

[
λ1

]
, L2 =

[
λ2

]
, A =

[
−λ1−λ2−µ

]
.
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Example 2. To account for burstiness in the arrival process of the parts at
the different buffers, the modulating process allows the mitigation of the Poisso-
nian arrival assumptions: We can replace the Poisson processes by a two-class
Markovian arrival processes. Multi-class Markovian arrival processes allow for
intricate correlation and can be efficiently characterised from trace data [4, 6]. As
we have two types of arrivals, the Markovian arrival process is described by the
generator matrix ΛΛΛ1 of transitions with arrivals at buffer 1, the generator matrix ΛΛΛ2

with arrivals at buffer 2 and the generator matrix ΛΛΛ0 without arrivals. As usual, the
diagonal elements of ΛΛΛ0 are negative and ensure that the row sums of ΛΛΛ0+ΛΛΛ1+ΛΛΛ2

are zero. Retaining exponentially distributed kit assembly times, we have,

L1 =ΛΛΛ1 , L2 =ΛΛΛ2 , A =ΛΛΛ0−µI , M = µI .

Here I denotes the identity matrix.

Example 3. As for the arrival processes, the model at hand is sufficiently
flexible to include phase-type distributed kit assembly times. The phase-type dis-
tribution is completely characterised by an initial probability vector τττ and the ma-
trix T which corresponds to non-absorbing transitions [11]. Let t′ = −T1 be the
column vector with the rates to the absorbing state and let f be a row vector with
zero-elements except the first one. Assuming Poisson arrivals in both buffers (with
rate λ1 and λ2, respectively), we get the following matrices,

L(m,n)
1 = λ1I

(
1−1{m=0,n>0}

)
+λ11τττ1{m=0,n>0}

L(m,n)
2 = λ2I

(
1−1{m>0,n=0}

)
+λ21τττ1{m>0,n=0}

A(m,n) = T1{m>0,n>0}−λ1I−λ2I

M(m,n) = t′τττ1{m>1,n>1}+ t′f(1−1{m>1,n>1})

Here, it is assumed that the background state equals 1 if one of the buffers is empty.
When service starts again, the background state is chosen in accordance with the
probability vector τττ.

2.3 Analysis
Having established the modelling assumptions and settled our notation, we now
focus on the analysis of the kitting process.

2.3.1 Balance equations

We aim to define a set of equations for the steady-state probability vector for the
Markov process [Q1(t),Q2(t),S(t)], Q`(t) being the number of parts in buffer ` at
time t and S(t) being the state of the background process at time t.



2-6 KITTING SYSTEM WITH TWO PARTS

· · · · · · · · ·

· · · m−1,n−1, i m−1,n, i m−1,n+1, i · · ·

· · · m,n−1, i m,n, i m,n+1, i · · ·

· · · m+1,n−1, i m+1,n, i m+1,n+1, i · · ·

· · · · · · · · ·

λ
(2)
ii

λ
(2)
ii λ

(2)
ii

λ
(2)
ii

λ
(2)
ii λ

(2)
ii λ

(2)
ii λ

(2)
ii

λ
(2)
ii

λ
(2)
ii λ

(2)
ii

λ
(2)
ii

λ
(1)
ii λ

(1)
ii λ

(1)
ii

λ
(1)
ii λ

(1)
ii λ

(1)
ii

λ
(1)
ii λ

(1)
ii λ

(1)
ii

λ
(1)
ii λ

(1)
ii λ

(1)
ii

µii µii

µii µii

µii

µii

Figure 2.2: Fragment of the transition rate diagram for state (m,n, i)
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Let πi(m,n) = limt→∞P[Q1(t) = m,Q2(t) = n,S(t) = i] be the steady-state
probability to be in state [m,n, i] and let πππ(m,n) be the vector with elements πi(m,n),
for i ∈K . Figure 2.2 shows a fragment of the transition rate diagram of the kitting
model in state [m,n, i]. As mentioned above, two independent input streams ar-
rive at the buffers with intensity λ

(`)
i j and are processed into kits with intensity µi j.

Upon completion of a kit, the content of both buffers is decreased by 1. Note that
we only show the transitions whereby the modulating Markov process remains in
state i. Moreover, possible dependence of the transition rates on the buffer sizes is
not indicated.

Based on the transition rate diagram, we now derive the balance equations of
the kitting process at hand.

• First, consider the case where both buffers are neither empty nor full (0 <

n <C1 and 0 < m <C2). We have,

πi(m,n)

 K

∑
j=1

λ
(1)
i j (m,n)+

K

∑
j=1

λ
(2)
i j (m,n)+µi j(m,n)+

K

∑
j=1, j 6=i

αi j(m,n)


=

K

∑
j=1

π j(m−1,n)λ(1)
ji (m−1,n)+

K

∑
j=1

π j(m,n−1)λ(2)
ji (m,n−1)

+
K

∑
j=1

π j(m+1,n+1)µ ji(m+1,n+1)

+
K

∑
j=1, j 6=i

π j(m+1,n+1)α ji(m,n) ,

for i, j ∈K or equivalently,

πππ(m−1,n)L(m−1,n)
1 +πππ(m,n−1)L(m,n−1)

2

+πππ(m+1,n+1)M(m+1,n+1)+πππ(m,n)A(m,n) = 0 .

• If buffer 1 is empty and buffer 2 neither empty nor full (m = 0 and 0 < n <

C2), we have,

πi(0,n)

 K

∑
j=1

λ
(1)
i j (0,n)+

K

∑
j=1

λ
(2)
i j (0,n)+

K

∑
j=1, j 6=i

αi j(0,n)


=

K

∑
j=1

π j(0,n−1)λ(2)
ji (0,n−1)+

K

∑
j=1

π j(1,n+1)µ ji(1,n+1)

+
K

∑
j=1, j 6=i

π j(0,n)α ji(0,n) ,
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for i, j ∈K or equivalently,

πππ(0,n−1)L(0,n−1)
2 +πππ(1,n+1)M(1,n+1)+πππ(0,n)(A+diag(M(0,n)1)= 0 .

• Similarly, if buffer 2 is empty and buffer 1 neither empty nor full (n = 0 and
0 < m <C1), we have,

πππ(m−1,0)L(m−1,0)
1 +πππ(m+1,1)M(m+1,1)+πππ(m,0)(A+diag(M(m,0)1)= 0 .

• If both buffers are empty (m = 0 and n = 0), we have,

πππ(1,1)M(1,1)+πππ(0,0)(A(0,0)+diag(M(0,0)1)) = 0 .

• If buffer 1 is empty and buffer 2 is full (m = 0 and n =C2), we get,

πππ(0,C2−1)L(0,C2−1)
2 +πππ(0,C2)(A(0,C2)+diag(M(0,C2)1+L(0,C2)

2 1)) = 0 .

• Similarly, if buffer 1 is full and buffer 2 is empty (m = C1 and n = 0), we
have,

πππ(C1−1,0)L(C1−1,0)
1 +πππ(C1,0)(A(C1,0)+diag(M(C1,0)1+L(C1,0)

1 1)) = 0 .

• Finally, if both buffers are full (m =C1 and n =C2), we find,

πππ(C1−1,C2)L
(C1−1,C2)
1 +πππ(C1,C2−1)L(C1,C2−1)

2

+πππ(C1,C2)(A(C1,C2)+diag(L(C1,C2)
1 1+L(C1,C2)

2 1)) = 0 .

2.3.2 Performance measures

Given the steady-state vectors πππ(m,n), we can now obtain a number of interesting
performance measures for the kitting system. For ease of notation, let π(t)(m,n) =
πππ(m,n)1 denote the probability to have m parts in buffer 1 and n parts in buffer
2. Moreover let π(1)(m) = ∑n π(t)(m,n) and π(2)(n) = ∑m π(t)(m,n) denote the
marginal probability mass functions of the queue content of buffer 1 and buffer 2,
respectively.

The following performance measures are of interest

• The mean buffer 1 and 2 content: EQ1 and EQ2 respectively,

EQ1 =
C1

∑
m

π
(1)(m)m , EQ2 =

C2

∑
n

π
(2)(n)n .
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• The variance of the buffer 1 and 2: VarQ1 and VarQ2 respectively,

VarQ1 =
C1

∑
m

π
(1)(m)m2− (EQ1)

2 , VarQ2 =
C2

∑
n

π
(2)(n)n2− (EQ2)

2 .

• The effective load of the system ρeff is the fraction of time that kitting is
ongoing. As kitting is only ongoing when none of the buffers is empty, we
have,

ρeff = 1−π
(1)(0)−π

(2)(0)+π
(t)(0,0) .

• Let the throughput η be defined as the number of kits departing from the
system per time unit. Taking into account all possible states from which we
can have a departure, we find,

η =
C1

∑
m=1

C2

∑
n=1

πππ(m,n)M(m,n)1.

• The shortage probability K is the probability that one of the buffers is empty,

K = π
(1)(0)+π

(2)(0)−π
(t)(0,0).

• The loss probability bi in buffer i is the probability that an arriving part
cannot be stored in buffer i, i = 1,2. By noting that the accepted arrival load
equals the departure rate, we find,

bi =
ρi−η

ρi
.

Where ρi is the arrival load of part i = {1,2}. If the arrival load in both
buffers are the same, then the loss probability is also the same: b1 = b2.
If the arrival load is not the same, then the excess load in the most loaded
buffer is lost as well.

2.3.3 Methodology: the sparse matrix technique

Queueing models for kitting processes are rather complicated. Indeed, the mod-
elled kitting process has a multidimensional state space. Even for relative moderate
buffer capacity, the multidimensionality leads to huge state spaces; this is the so-
called state-space explosion problem. For many queueing systems, infinite-buffer
assumptions may mitigate this problem. Given some buffer system with finite
capacity, more efficient numerical routines can be constructed for the correspond-
ing queueing system with infinite capacity. Unfortunately, as mentioned above,
the infinite-buffer capacity assumption is not applicable for kitting processes and
therefore cannot simplify the analysis. Recall that the infinite-capacity model is
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always unstable. For all input parameters except trivial ones (no arrivals), some or
all of the queues grow unbounded with positive probability.

Consequently, the multidimensionality of the state space and the inapplicabil-
ity of the infinite-buffer assumption yield Markov processes with a finite but very
large state space. However, the number of possible state transitions from any spe-
cific state is limited. This means that most of the entries in the generator matrix
are zero; the matrix is sparse. As illustrated by the numerical examples, using
sparse matrices and their associated specialised algorithms results in manageable
memory consumption and processing times, compared to standard algorithms.

The method used here to solve the sparse matrix equation is the projection
method GMRES (Generalized Minimum Residual). Details can be found in Stew-
art [18] (p.197–205), Philippe et al. [13], Buchholz [3] and Saad and Schultz [16].
To solve the linear equation Ax = b, the GMRES algorithm approximates x by the
vector xn ∈ Kn in a Krylov subspace Kn = span{b,Ab, ...,An−1b} which minimises
the norm of the residual ‖Axn−b‖. Since the residual norm is minimised at every
step of the method, it is clear that it is non-increasing. However, the work and stor-
age requirement per iteration increases linearly with the iteration count. Hence, the
cost of n iterations grows by O(n2) which is a major drawback of GMRES. This
limitation is usually overcome by restarting the algorithm. After a chosen number
of iterations m, the accumulated data is cleared and the intermediate results are
used as the initial data for the next m iterations [16].

To ensure fast convergence, it is also key to properly choose the initial vec-
tor that is passed on to the algorithm. We rely on MATLAB’s build in GMRES
algorithm and assume a uniform initial vector if no additional information about
the solution is known. However, it is often the case that there is additional infor-
mation about the solution. Indeed, calculation speed can be further improved as,
in practice, performance measures are not calculated for an isolated set of param-
eters. E.g., when a plot is created, a parameter is varied over a range of values.
In this case, a previously calculated steady-state vector for some set of parame-
ters can be used as a first estimate of the steady-state vector for a new “perturbed”
set of parameters. Using previously calculated steady-state vectors is trivial if the
state spaces corresponding to the parameter sets are equal. In this case, the previ-
ously calculated steady-state vector can be passed on unmodified. If the state space
changes, the steady-state vector must be rescaled to the new state space. In gen-
eral, adding zero-probability states if the state space increases or removing states
if the state space decreases, turns out to be ineffective. This is easily explained
by a simple example. Assume that we increase the queue capacity of one of the
part buffers. Typically, even for moderate load, a considerable amount of prob-
ability mass can be found for queue size equal to capacity. Increasing the queue
size and assigning zero probability to the new states is not a good estimate for the
new steady-state vector. Also for the system with higher capacity, a considerable



CHAPTER 2 2-11

amount of probability mass can be found when the queue size equals the capacity
(while zero probabilities were assigned).

2.4 Numerical results
With the balance equations at hand, we now illustrate our numerical approach by
means of some examples.

2.4.1 Bursty part arrivals

As a first example, we quantify the impact of production inefficiency on the per-
formance of a kitting process. To this end, we compare part buffers with Poisson
arrivals to corresponding kitting systems with interrupted Poisson arrivals. The ar-
rival interruptions account for inefficiency in the production process. Kit assembly
times are assumed to be exponentially distributed with service rate equal to one,
this value being independent of the number of parts in the different buffers. This
is a kitting process with Markovian arrivals as described in Example 2 in Section
2.2.

The interrupted Poisson process considered here is a two-state Markovian pro-
cess. In the active state, new parts arrive in accordance with a Poisson process with
rate λ whereas no new parts arrive in the inactive state. Let α and β denote the rate
from the active to the inactive state and vice versa, respectively. We then use the
following parameters to characterise the interrupted Poisson process,

σ =
β

α+β
, κ =

1
α
+

1
β
, ρ = λσ .

Note that σ is the fraction of time that the interrupted Poisson process is active,
the absolute time parameter κ is the average duration of an active and an inactive
period, and ρ is the arrival load of the parts.

Figure 2.3 shows the mean number of parts in buffer 1 versus the arrival load,
for various values of the buffer capacities C1 and C2 for Poisson arrivals (for both
buffers) as well as for interrupted Poisson arrivals (again for both buffers). We
set σ = 0.4 and κ = 10 for the interrupted Poisson processes. Clearly, the mean
buffer content increases as the arrival load increases as expected. Moreover, if
more buffer capacity is available, it will also be used: the mean buffer content
increases for increasing values of C1 = C2. Comparing interrupted Poisson and
Poisson processes, burstiness in the production process has a negative impact on
performance — more buffering is required — if the queues are not fully loaded
(ρ < 1). As for ordinary queues, the opposite can be observed for overloaded
buffers. In this case, the effect of a large burst is mainly reflected in loss and not
in additional queue content. Burstiness also yields larger periods without arrivals
during which the buffer size decreases.
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Figure 2.3: When the queues are not fully loaded, burstiness in the production process has
a negative impact on the performance.

By numerical examples, we can quantify the expected buffer behaviour - e.g.
more production yields higher buffer content, higher buffer capacity mitigates the
loss probability etc. However, less trivial behaviour can be observed as well. Fig-
ure 2.4 depicts the probability that the buffer is full versus the buffer capacity
C1 = C2. We compare performance of kitting with Poisson arrivals to kitting
with interrupted Poisson arrivals at one buffer and at both buffers. As in the
preceding figure, the interrupted Poisson processes are characterised by σ = 0.4
and κ = 10. The arrival load of both buffers ρ1 and ρ2 is equal to 0.8. As ex-
pected, the probability that the buffer is full decreases for increasing values of the
buffer capacities. Moreover, to reduce this probability, more buffer capacity is re-
quired for the case of two interrupted Poisson processes than for the case of two
Poisson processes. For the kitting process with one Poisson and one interrupted
Poisson process, non-trivial performance results can be observed. Namely, inter-
ruptions in the production of a part more negatively affect buffer performance of
the other part. Indeed, buffer 1 is full with higher probability if the arrivals at
buffer 2 are interrupted than if the arrivals at buffer 1 are interrupted. First note
that the loss probabilities in both buffers are the same. For the Poisson buffer,
parts are rejected at the arrival rate ρ1 whenever the buffer is full. For the IPP
buffer, parts are rejected when the buffer is full and the arrival process is in the
on-state at rate ρ2/σ. We define S as the background state of the arrival process.
This state equals 0 when the arrival process is in an off-state and equals 1 when
the arrival process is in an on-state. As the loss probability in both buffers is
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Figure 2.4: Irregularity in the production of a part leads to a higher probability to have a
full buffer for the other part.

the same, we have then P[Q1 = C1]ρ1 = P[Q2 = C2,S = 1]ρ2/σ, or equivalently,
P[Q1 = C1] = P[Q2 = C2|S = 1]. As the second queue is more likely to be full
when there are arrivals we have P[Q2 = C2|S = 1] ≥ P[Q2 = C2] which shows
P[Q1 =C1]≥ P[Q2 =C2].

2.4.2 Phase-type distributed kit assembly times

The second numerical example quantifies the impact of the distribution of the
kit assembly times on kitting performance. In particular, we here study Erlang-
distributed kit assembly times. Limiting ourselves to Poisson arrivals to both
buffers, this numerical example fits Example 3 of Section 2.2.

Figures 2.5 and 2.6 depict the mean number of parts in buffer 1 and the loss
probability in buffer 1 for the kitting process and, as a reference point, for the
M/E/1/n queue as well. In both figures, the arrival load is varied and different
values of the variance of the kitting time distribution are assumed as indicated.
The mean kitting time is equal to 1 for all curves and the capacity of both buffers is
equal to 20. In underload (ρ < 1), kitting performs worse than the M/E/1/n queue:
the mean buffer content and the loss probability have a higher value. This follows
from the fact that kitting stops when one of the buffers is empty. By increasing
the load, it is obvious that the buffer content converges to the capacity and the loss
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Figure 2.5: Given the mean kitting time, the corresponding kitting time distribution has only
a limited impact on the mean number of parts in buffer 1 in this case.

probability to one. It is most interesting to observe that the shape of the service
time distribution only has a small effect on these performance measures. Indeed,
there is no significant performance difference when σ2 equals 1/4 and when it
equals 1/8.

2.4.3 Cost and profit analysis

We now add a cost structure to the kitting process under study. In particular, cost
and profit for the kitting systems of Section 2.4.1 and 2.4.2 are analysed.

The proposed cost function is,

c1(EQ1 +EQ2)+ c2K + c3(b1 +b2)

where c1 is the holding cost of a part in the buffer, c2 is the shortage cost in one
or in both of the buffers and c3 is the loss cost. Note that for all figures, the input
parameters are symmetric for both parts such that EQ1 = EQ2 and b1 = b2.

Poisson arrivals

In Figure 2.7 the total cost of applying kitting systems versus the buffer capacity
(varying from 1 to 30) is depicted. Limiting ourselves to Poisson arrivals for both
buffers, ρi = λi = 0.8 for part i = {1,2}. We compare kitting performance for
different costs as depicted. As expected, higher cost values lead to higher total
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Figure 2.6: Given the mean kitting time, the corresponding kitting time distribution has only
a limited impact on the loss probability in this case.

cost. The cost structure also affects the optimal buffer capacity. When looking at
the different costs separately, we observe that a higher holding cost decreases the
optimal buffer capacity (from 15 to 12), a higher loss cost increases the optimal
capacity (from 12 to 14), whereas the optimal buffer capacity remains the same
(12) for a higher shortage cost. Obviously, buffering is interesting when the storage
cost is low and when the cost of rejecting parts (because of a full buffer) is high.
It is most interesting to observe that, as the capacity increases, the cost models
converge when the sum of the holding and the shortage cost (c1 + c2) is equal.
Indeed, as the loss tends to zero, the loss cost tends to zero as well. Furthermore,
when the capacity equals one, the state space of the kitting model has size 4 and
hence the cost is easily calculated explicitly,

total cost = (2(c1 + c3)(µ+2λ)+3µc2)(3µ+2λ)−1.

Bursty part arrivals

Next, we analyse the cost and the profit of kitting systems with different Marko-
vian arrivals. We use the same values to model the arrivals as in Figure 2.4. In
Figure 2.8(a) and 2.8(b) the total cost (left) and the profit (right) versus the buffer
capacity are depicted. We consider a holding cost c1 equal to 2, a shortage cost c2

equal to 55 and a loss cost c3 equal to 40. On the left figure, the optimal buffer
capacity for Poisson arrivals is 12, for an interrupted Poisson arrival at one buffer



2-16 KITTING SYSTEM WITH TWO PARTS

5 3015
20

50

80

C
1
=C

2

Cost of a kitting process with Poisson arrivals

 

 

c
1
=2 c

2
=55 c

3
=40

c
1
=2 c

2
=55 c

3
=60

c
1
=1 c

2
=55 c

3
=40

c
1
=2 c

2
=45 c

3
=40

Figure 2.7: Each type of cost has a different impact on the value of the optimal buffer
capacity.

it equals 22 and for an interrupted Poisson process at both buffers the optimal ca-
pacity is 28. As expected, the optimal buffer capacity increases as the burstiness in
the production process increases. Concerning the profit analysis, we assume that
the yield equals the throughput multiplied by a sale unit equal to 100. Assuming
a maximum storage room of 30 parts, we observe that the optimal buffer capac-
ity is 5, 11 and 12 for the depicted arrival processes respectively. Consequently,
kitting systems under production inefficiency require much higher storage space,
especially when profit is applied as the parameter to determine the optimal buffer
capacity. Moreover, the optimal capacity is very sensitive to the burstiness param-
eters σ and κ. In the example at hand, the plots suggest that the cost function is
a convex function of the buffer capacity. However, one can also easily choose the
cost parameters to obtain non-convex cost functions.

Phase-type kit assembly times

Finally, Figure 2.9(a) and 2.9(b) depict the cost (left) and the profit (right) for a
kitting system with Erlang-distributed kit assembly times versus the buffer capac-
ity. As in the preceding figure, the profit equals the difference between the yield
(equal to the throughput multiplied by 100) and the cost (defined by the parameters
c1 = 2, c2 = 55 and c3 = 40). Out of the numerical examples, we observe that the
shape of the service time distribution has a very limited impact on profit and cost.
These results confirm those found in Section 2.4.2.
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Figure 2.8: Production inefficiency results in higher required storage space.
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Figure 2.9: Given the mean kitting time, the corresponding kitting time distribution has only
a limited impact on the value of the optimal buffer capacity in this case.
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Figure 2.10: The GMRES method performs well in terms of speed.

2.4.4 Performance analysis of solution methods

We compare the performance of (sparse) GMRES and solving the Markov process
by standard LU decomposition [19] on a kitting process with Poisson arrivals with
rate λi = 0.8 for part i = {1, . . . ,2} and with exponentially distributed kit assembly
times with rate µ. Figure 2.10 depicts both methods in terms of speed versus the
state space for a kitting process starting from a symmetric buffer capacity C1 =

C2 = 1 to C1 =C2 = 60. While LU performance is better than GMRES when the
capacity (and state space) is small, the figure clearly shows that GMRES performs
considerably better than LU decomposition for a symmetric buffer capacity equal
or larger than 44.

2.5 Conclusion

In this paper, we evaluate the performance of two-part kitting processes in a Mar-
kovian setting. Furthermore, a cost-profit analysis is conducted. Note that the
particularity of the studied kitting systems is that the part buffers are paired. This
means that each demand requires both parts such that a kit can only be assembled
if both inventories are nonempty. Methodologically, we have applied sparse ma-
trix techniques (e.g. GMRES) as most of the entries in the generator matrix have a
value equal to zero. The solution is not exact but performs well in terms of solution
speed and accuracy.
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As our numerical results show, the interplay between the different queues leads
to complex performance behaviour. For example, interruptions in the production
of a part more negatively affect buffer performance of the other part. Overall, we
observe extreme sensitivity of kitting performance on arrival process parameters
while performance is reasonable insensitive to variation of the kitting time distri-
bution. Finally, we determine the optimal buffer capacity based on a cost-profit
analysis.
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Abstract. This paper investigates the performance of different hybrid push-
pull systems with a decoupling inventory at the semi-finished products and re-
ordering thresholds. Raw materials are ‘pushed’ into the semi-finished product
inventory and customers ‘pull’ products by placing orders. Furthermore, produc-
tion of semi-finished products starts when the inventory goes below a certain level,
referred to as the threshold value and stops when the inventory attains stock ca-
pacity. As performance of the decoupling stock is critical to the overall cost and
performance of manufacturing systems, this paper introduces a Markovian model
for hybrid push-pull systems. In particular, we focus on a queueing model with
two buffers, thereby accounting for both the decoupling stock as well as for pos-
sible backlog of orders. By means of numerical examples, we assess the impact
of different reordering policies, irregular order arrivals, the setup time distribution
and the order processing time distribution on the performance of hybrid push-pull
systems.
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3.1 Introduction

In a make-to-stock system (push type), products are stocked in advance, while in
a make-to-order system (pull type), a product only starts to be manufactured when
a customer order is placed, see a.o [26, 18, 14, 27, 9]. Nowadays, as a means to
respond quickly to growing variety, shorter product life cycles while keeping in-
ventory costs as low as possible, hybrid push-pull systems are introduced [25]. An
important issue in the overall performance of such hybrid systems is the position
of the decoupling point [25, 22]. Hoekstra et al. [12] defined the customer order
decoupling point (CODP) concept. These authors considered market, product and
production related factors as well as the desired service level and associated inven-
tory costs to locate the optimal decoupling point. Under different hybrid push/pull
control policies, Pandey and Khokhajaikiat [21] conducted a case study concerning
the design and performance evaluation of a multistage production system. Results
indicated that the choice of the optimal decoupling positions changes with the ex-
tent of raw material constraint operating at the stages and the demand lead time
variabilities. To account for a degree of customisation and short delivery times,
Blecker and Abdelkafi [2] considered a decoupling point at the inventory of semi-
finished products. Here, after an order is received, only the final completion step
still needs to be done. A case study at Phoenix showed that, by a hybrid approach,
the company would save 20 to 25 percent of the total late costs and inventory
costs compared to a pure push approach, which was at that time being used [6].
Research on the performance of the decoupling inventory in a hybrid push-pull
system is therefore of main importance. This is the subject of the present paper.

In the present setting, we use a queuing theoretic approach to study the hy-
brid push-pull system. Queuing theory has already been successfully applied to
assess decoupling points. Kaminsky and Kaya [15] considered a variety of com-
bined make-to-order (MTO) and make-to-stock (MTS) supply chains with a single
manufacturer and a single supplier in order to minimise a function of the total in-
ventory, lead times and tardiness. The arrival process at the manufacturer is treated
as a single facility with multiple classes of Poisson arrivals scheduled FCFS. As
in previous research, they concluded that costs can be cut dramatically by using
a combined system instead of pure MTO or MTS systems. Ohta and al. [20]
analysed a multi-product inventory system where demand for each item arrive ac-
cording to a Poisson process and the production time has an Erlang distribution.
An optimality condition that specifies whether each product should be produced
MTS or MTO is proposed. Bell [1] investigated a decoupling inventory between
two successive production stages, the demand at stage 2 being independent from
production at stage 1. The stages are decoupled by storing intermediate products.
Limits on the available storage capacity and the rates of flow production into and
out of the decoupling inventory are set, which enables the firm to determine the op-



CHAPTER 3 3-3

timum capacities for the storage facility and to determine the value of an additional
supply of intermediate product. Chang and Lu [5] studied a one-station production
system consistent with MTO and MTS productions and dealing with two types of
random demands: ordinary demand and specific demand. In this system, both
types of demand arrive according to a Poisson process and production times of the
workstation are exponentially distributed. Specific demand has a higher priority
with respect to ordinary demand and the performance of this system is studied by
means of matrix-geometric methods.

The present study of the decoupling stock closely relates to literature on two-
part assembly systems, sometimes termed paired queues or kitting processes. For
such systems, there are two queues, each storing a specific part, and production
only starts when both part buffers are non-empty. In the current setting, one part-
buffer corresponds to the decoupling stock, while the other corresponds to the list
of backlogged orders. Also, production only starts when both buffers are non-
empty. Indeed, each delivery of a finished product requires both the order speci-
fications and a semi-finished product and can only be satisfied if both are present.
If both part-buffers have unlimited capacity, Harrison [11] was the first to prove
that, assuming no arrival control strategy, this queueing system is inherently un-
stable. In particular, he studied the multiple-input extension of the GI/G/1 queue
in which arrivals in each stream are described by an independent renewal process
and service times are independent and identically distributed. He showed that part
waiting times converge to non-defective limiting distributions only if the buffer
capacities are bounded. This was also demonstrated by Latouche [16] who termed
the two-part assembly system as waiting lines with paired customers. He consid-
ered a system of infinite capacity queues with Poisson arrivals for both parts and
exponential services. The steady state is attained, i.e. the system is stable, if the
arrival rates depend on the difference between queue lengths in a certain way. [3]
extended Latouche’s research by considering two exponential distributions, one
for the part processing distribution, i.e. the synchronisation phase, and the other
for the assembly operation distribution. Approximations for the throughput rate
and average queue length were given. Lipper and Sengupta [19] is another exten-
sion of the work of Latouche. In this paper, multiple Poisson input streams arrive
in buffers with finite capacity. A more general structure in which parts are with-
drawn from infinite pools and processed prior to assembly has been studied by
Hopp et al. [13] and Som et al. [23]. Som and Wilhem [24] studied a two-queue
system in which each part is processed according to an exponential distribution
and the assembly operation times are generally distributed. They follow a matrix-
geometric approach to numerically determine the marginal distributions of both kit
and end-product inventory positions. Finally, assuming finite part-buffers, a two-
part assembly system in a Markovian environment is studied in [7] by numerically
solving the corresponding Markov processes by the generalized minimal residual
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method (GMRES).
Furthermore, this article analyses hybrid push-pull systems with a threshold

inventory: once the stock of semi-finished products drops below some level, this
is either communicated to the production department if the parts are produced in-
house or an order is placed with a third-party company if this is not the case. In
both cases, it may take some time, the reordering time, before the inventory is re-
plenished. Then, production stops when the semi-finished product inventory level
attains stock capacity. The studied inventory control system closely relates to the
well-known economic order quantity (EOQ) model [10]. This is a determinis-
tic fluid-model for a single inventory and determines optimal reordering policies
which balance the purchase, order and storage costs. While the single-part inven-
tory problem is well understood, both in a deterministic and a stochastic setting,
many issues of optimal inventory management in the multi-queue inventory case
remain unresolved, most prominently in the stochastic setting.

In contrast to previous research, this paper investigates a two-queue system
with one finite and one infinite buffer. Indeed, to limit involved costs, the de-
coupling stock needs to be sufficiently small. Hence, finite capacity is assumed.
However, no such assumption is imposed for the other queue: the order back-
log queue has an infinite capacity. Assuming a finite capacity product queue also
assures the existence of a steady-state solution, provided that the arrival rate of
orders is limited. In particular, this article analyses hybrid push-pull systems un-
der different threshold policies, assuming that production stops when the inventory
level reaches maximum capacity. Comparing versatility and numerical tractabil-
ity, we study the decoupling stock in a Markovian environment as in [7]. This
approach allows for assessing the effect of variability in the production process
of semi-finished products, the ordering process and the delivery process on the
performance of the decoupling stock.

The remainder of this paper is organised as follows. Section 3.2 describes
the decoupling stock model at hand. In Section 3.3, the decoupling inventory
system is analysed as a quasi-birth-death-process (QBD) and a number of specific
application scenarios for the decoupling inventory system are introduced. Also, the
numerical solution methodology is discussed and relevant performance measures
are determined. To illustrate our approach, Section 3.4 considers some numerical
examples. Finally, conclusions are drawn in Section 3.5.

3.2 Model description

The decoupling stock is modelled as a queueing model with two queues, as de-
picted in Figure 3.1. The product queue has finite capacity Cp and stores the
semi-finished products prior to being processed to finished products. Moreover,
production of semi-finished products starts when the inventory goes below the
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Figure 3.1: Decoupling inventory of semi-finished products in a hybrid push-pull system.

threshold value Tp and stops when the inventory level reaches capacity Cp. The or-
der queue keeps track of the orders that have not yet been delivered and has infinite
capacity. Arriving orders are served in accordance with a first-come-first-served
queueing discipline. Each order takes a semi-finished product from the product
queue and completes the product in accordance with order specifications. Note
that the two queues in the model at hand are tightly coupled. Departures from the
product queue are only possible when there are orders. Similarly, departures from
the order queue are only possible if there are semi-finished products in the product
queue.

Arrivals at both queues are modelled according to possibly dependent arrival
processes and order completion is not instantaneous. For ease of modelling, it is
assumed that there is a modulating Markov process, arrival and service rates de-
pending on the state of this modulating process. To be more precise, the decoupling
inventory system is a three-dimensional continuous-time Markov process with in-
finite state spaceN×{0,1,2, . . . ,Cp}×K , K = {0,1, . . . ,K} being the state space
of the modulating process. At any time, the state of the decoupling inventory sys-
tem is described by the triplet (n,m, i), n being the number of backlogged orders, m
being the number of semi-finished products and i being the state of the modulating
process. We now describe the state transitions.

• The state of the modulating process can change when there are neither ar-
rivals nor departures. Let αi j denote the transition rate from state i to state j
(i, j ∈K , i 6= j). Further, for ease of notation, let

αii =−∑
j 6=i

αi j.

and let A = [αi j]i, j∈K denote the corresponding generator matrix. Further, it
is assumed that when either of the queues is empty, different transition rates
(when there are neither arrivals nor departures) can be specified: let α̂i j and
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Â denote the transition rate from state i to state j and the corresponding
generator matrix, respectively.

• The state of the modulating process may remain the same or may change
when there is an arrival. Let λ

(p)
i j and λ

(o)
i j denote the (marked) transition

rate from state i to state j when there is an arrival at the product queue
and the order queue, respectively. Moreover, let ΛΛΛp = [λ

(p)
i j ]i, j∈K and ΛΛΛo =

[λ
(o)
i j ]i, j∈K denote the corresponding generator matrices. Note that marked

self transitions from state i to state i are allowed.

• Analogously, the state of the modulating process may remain the same or
may change when there is a departure (in each buffer). Let µi j and M denote
the corresponding transition rate and generator matrix respectively.

The transition rates are dependent on the product queue size, the state of the
modulating process and whether the order queue is empty, e.g. there are no product
arrivals when the queue is full, production starts only when the semi-finished prod-
uct inventory level goes below the threshold value and there are only departures if
both queues are non-empty.

3.3 Analysis

3.3.1 Quasi-birth-death process

The studied Markov process is a homogeneous quasi-birth-death process (QBD),
see [17]. In the present setting, the so-called level or block-row number, indicates
the number of backlogged orders while the phase, i.e. the index within a block
element, indicates both the content of the decoupling stock and the state of the
Markovian environment. The one-step transitions are restricted to states in the
same level (from state (n,∗,∗) to state (n,∗,∗)) or in two adjacent levels (from
state (n,∗,∗) to state (n+1,∗,∗) or state (n−1,∗,∗)).

We then find that the generator matrix of the Markov process has the following
block matrix representation,

Q =


L′p Lo 0 0 · · ·
W Lp Lo 0 · · ·
0 W Lp Lo · · ·
0 0 W Lp · · ·
...

...
...

...
. . .

 . (3.1)
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The blocks are given by,

Lo =



ΛΛΛ
(0)
o 0 0 · · · 0
0 ΛΛΛ

(1)
o 0 · · · 0

0 0 ΛΛΛ
(2)
o · · · 0

...
...

...
. . .

...
0 0 0 · · · ΛΛΛ

(Cp)
o


, (3.2)

Lp =


D(0)

ΛΛΛ
(0)
p 0 · · · 0

0 D(1) ΛΛΛ
(1)
p · · · 0

0 0 D(2) · · · 0
...

...
...

. . .
...

0 0 0 · · · D(Cp)

 , (3.3)

L′p =



D(0)
ΛΛΛ
(0)
p 0 · · · 0

0 D(1)
ΛΛΛ
(1)
p · · · 0

0 0 D(2) · · · 0
...

...
...

. . .
...

0 0 0 · · · D(Cp)


, (3.4)

W =


0 0 · · · 0 0

M(1) 0 · · · 0 0
0 M(2) · · · 0 0
...

...
. . .

...
...

0 0 · · · M(Cp) 0

 . (3.5)

with D(m) = A(m)−∂ΛΛΛ
(m)
o −∂ΛΛΛ

(m)
p −∂M(m) and D(m) = Â(m)−∂ΛΛΛ

(m)
o −∂ΛΛΛ

(m)
p

with m = (0,1,2, . . . ,Cp) being the number of semi-finished products in the buffer.
Note that ∂X represents a diagonal matrix with diagonal elements equal to the row
sums of X. Intensities in the generator matrices Λo, Λp, D, D and M are dependent
of the product buffer content m. Therefore, we introduce the superscript (m) to
make this dependence explicit. Note that if no superscript is indicated, the intensi-
ties in the generator matrix are equal for all numbers of semi-finished products in
the queue.

To simplify notation, states representing an inactive production and a prod-
uct queue content equal or less than the threshold value, are taken into account in
the generator matrix structure. However, as production is always active when the
semi-finished product inventory level is below the threshold value, the next tran-
sition changes the given inactive background state to an active one. The matrix
structure also considers states where the number of semi-finished products equals
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capacity and the background state is active. Again, the next transition changes the
background state into an inactive state.

In the general case, arrivals and departures at both queues are modelled accord-
ing to possibly dependent Markovian arrival processes (MAP) and phase-type dis-
tributed order processing times, respectively. The Markovian arrival processes are
described by the generator matrices B(m)

1 and B(m)
3 with arrivals of semi-finished

products and orders, respectively and the generator matrices B(m)
0 and B(m)

2 without
arrivals at the decoupling stock and the queue of backlogged orders, respectively.
Let P and O denote the size of the state space of the semi-finished product arrival
process P and the order arrival process O, respectively. The phase-type distribu-
tion is completely characterised by an initial probability vector τττ, by the matrix
T which corresponds to non-absorbing transitions and by t′ = −T1 which is the
column vector of rates to the absorbing state with 1 a column vector of ones [17].
Let T denote the size of the state space T of the production process.

We use the environment variable to track the states of both arrival processes
as well as of the state of the order processing time. It is notationally convenient
to define the environment variable as the triplet (xp,xo,xs) with xp the state of
the product arrival process, xo the state of the order arrival process and xs the
state of the order processing time. As all state variables are finite, we can easily
map the triplets on K . Accounting for a threshold-based replenishment policy,
we additionally have to specify the state of the product arrival process when it
restarts. Let ci be the probability that the production process restarts in state i ∈ P
and let c = [ci]i∈P . Remark that the inclusion of a start state allows for introducing
setup times. For example, a phase-type distributed setup time prior to production
is easily introduced as shown in the numerical examples.

When the inventory level m is equal or below Tp, production is always ongoing.
Hence for m≤ Tp the environment variable takes values in,

{(xp,xo,xs) : xp ∈ P ,xo ∈ O,xs ∈ T } .

When the inventory level is at least Tp but not full, the environment variable needs
to track whether production is on-going or not. For ease of notation, we assume
that the state of the production process (as in the preceding section) is augmented
with an additional state θ. When the production process is in this state, there is
no production. Hence, for inventory level m and Tp < m < Cp, the environment
variable takes values in,

{(xp,xo,xs) : xp ∈ P ∪{θ},xo ∈ O,xs ∈ T } .

In contrast to the preceding extension of the state description, we are sure that
there is no production when the inventory is full. In this case there is no need to
track the state of the production process. Hence for inventory level m = Cp, the
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environment variable takes values in,

{(xo,xs) : xo ∈ O,xs ∈ T } .

With the state space defined as above, we now construct the matrices ΛΛΛo, ΛΛΛp,
A, Â and M. Introducing the auxiliary matrices and vectors,

B̂i =

[
Bi 0B
0′B 0

]
B̃i =

[
Bi 0B

]

b1 =

[
B11B

0

]
C =

[
IB
c

]
f =
[
0′B 1

]
.

The symbols 0X and 1X represent column vectors of size X with zeroes and
ones, respectively. We get the following generator matrices,

ΛΛΛ
(m)
p =


B1⊗ IO⊗ IT for m < Tp

B̃1⊗ IO⊗ IT for m = Tp

B̂1⊗ IO⊗ IT for Tp < m <Cp−1
b1⊗ IO⊗ IT for m =Cp−1

ΛΛΛ
(m)
o =


IP⊗B3⊗ IT for m≤ Tp

IP+1⊗B3⊗ IT for Tp < m <Cp

B3⊗ IT for m =Cp

A(m) =



B0⊗ IO⊗ IT

+IP⊗B2⊗ IT

+IP⊗ IO⊗T for m≤ Tp

B̂0⊗ IO⊗ IT

+IP+1⊗B2⊗ IT

+IP+1⊗ IO⊗T for Tp < m <Cp

B2⊗ IT + IO⊗ IT for m =Cp

Â(m) =



B0⊗ IO⊗ IT

+IP⊗B2⊗ IT for m≤ Tp

B̂0⊗ IO⊗ IT

+IP+1⊗B2⊗ IT for Tp < m <Cp

B2⊗ IT for m =Cp
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M(m) =


IP⊗ IO⊗ t′τττ for 1 < m≤ Tp

C⊗ IO⊗ t′τττ for m = Tp +1
IP+1⊗ IO⊗ t′τττ for Tp +1 < m <Cp

f⊗ IO⊗ t′τττ for m =Cp

3.3.2 Methodology: the matrix-geometric technique

Consider the above defined Markov process on the three-dimensional state space
{(n,m, i) | n≥ 0,0≤m≤Cp, i = 0,1, . . . ,K} where i denotes the state of the mod-
ulating process, as the phase set i is defined in the finite state space K (see Sec-
tion 3.2). A well-known method for finding the stationary distribution of QBD
processes is the matrix-geometric method. With π(n,m, i) the stationary proba-
bility of the process being in state (n,m, i), and using the vector notation πππk =

(π(k,0,0),π(k,0,1), . . . ,π(k,Cp,K)), the probability vectors can be expressed as,

πππk = πππ0Rk. (3.6)

where the so-called rate matrix R is the minimal non-negative solution of the non-
linear matrix equation R2W+RLp +Lo = 0. Here, we compute the rate matrix
by implementing the iterative algorithm of [17, chapter 8].

3.3.3 Performance measures

Once the steady state probabilities have been determined numerically, we can cal-
culate a number of interesting performance measures for the decoupling inventory
system. For ease of notation, we introduce the marginal probability mass func-
tions of the queue content of the product queue and the order queue: π(p)(m) =

∑i∈K ∑
∞
n=0 π(n,m, i) and π(o)(m) = ∑i∈K ∑

Cp
m=0 π(n,m, i).

Note that as the queue of the backlogged orders is infinite, the throughput of
the decoupling inventory system η equals the order arrival rate λo. In addition, we
have the following performance measures.

• The mean semi-finished product queue and the order backlog content: EQp

and EQo respectively,

EQp =
Cp

∑
m

π
(p)(m)m , EQo =

∞

∑
n

π
(o)(n)n .

• The variance of the semi-finished product queue and the order backlog con-
tent: VarQp and VarQo respectively,

VarQp =
Cp

∑
m

π
(p)(m)m2− (EQp)

2 ,
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VarQo =
∞

∑
n

π
(o)(n)n2− (EQo)

2 .

• The mean lead time LT (calculated based on Little’s theorem) is the average
amount of time between the placement of an order and the completion to a
finished product:

LT =
EQo

λo

• As the product queue has finite capacity, production prior to the decoupling
stock may be blocked. This happens when there is a product arrival and
the queue is full. Hence, blocking corresponds to the loss probability in the
product buffer. The loss probability is most easily expressed in terms of the
throughput η. We have,

bp =
λp−η

λp
=

λp−λo

λp
.

We now illustrate our approach by means of some numerical examples.

3.4 Numerical examples

3.4.1 Poisson arrivals and exponential order processing times

As a first example, the difference between the mean semi-finished product queue
and the mean order backlog content versus the threshold value of the semi-finished
product inventory is depicted in Figure 3.2(a). We assume that semi-finished prod-
ucts and orders arrive according to a Poisson process with parameter λp = 1 and
λo = 0.85, respectively. The inventory capacity Cp equals 20 and order processing
times are exponentially distributed with service rate µ equal to 1 for all curves. As
the figure shows, the threshold value of 5 results on average in the same amount of
backlogged orders and semi-finished products in stock. Under and above this level,
products and orders are on average backlogged, respectively. Obviously, there is
on average more stock of semi-finished products and less backlog of orders as the
threshold value increases.

Figure 3.2(b) represents the trade-off between the upper bound of the proba-
bility to have the lead time higher or equal to 30 (left side) and the average stock
of the semi-finished products (right side). Note that we calculated the lead time
distribution by using the one-sided Chebyshev’s inequality. Under the same pa-
rameter assumptions of Figure 3.2(a), the upper bound of the probability to have
the lead time higher or equal to 30 decreases and the average stock increases as
the inventory capacity increases for each threshold value. Indeed, if more buffer
capacity is available, it will be used – the mean semi-finished product queue in-
creases such that there is on average less time required to deliver an order. Finally,
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Figure 3.2: There is a trade-off between the average stock of the semi-finished products and
the average number of backlogged orders and between the lead time.
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Figure 3.3: Given the mean setup time, the corresponding setup time distribution has a very
limited impact on the mean number of semi-finished products and on the mean lead time in
this case.

in this numerical example, we observe that the highest threshold value give the
average best results: the intersection between the two performance measures and
the necessary stock capacity have the lowest value.

3.4.2 Erlang distributed setup times

The second numerical example quantifies the impact of variability in the produc-
tion process of semi-finished products on the decoupling inventory system. In par-
ticular, we here study Erlang-distributed setup times – the setup time starts when
the semi-finished product inventory goes below a certain level and stops after some
Erlang distributed time. Then, the semi-finished products arrive according to a
Poisson process with arrival rate λp until the stock capacity is reached.
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Figure 3.3(a) 3.3(b) show the mean number of semi-finished products in the
buffer and the mean lead time of the system with a buffer capacity equal to 20
and a threshold value equal to 5. In both figures, the arrival rate is varied and
different values of the variance of the setup time process are assumed as indicated.
The order arrival rate λo equals 0.6, order processing times are assumed to be
exponentially distributed with service rate µ equal to 1 and the mean setup time
equals 1. As expected, the mean number of semi-finished products increases and
the mean lead time decreases as the arrival rate of the semi-finished products λp

increases. Furthermore, the shape of the setup time distribution has a very small
effect on both performance measures. In particular, the mean number of semi-
finished products and the mean lead time show respectively a slight decrease and
increase as the variance of the setup time distribution σ2

p increases. This is due to
the fact that the more regular the setup time, the less semi-finished products are on
average in stock and the more orders are on average backlogged.

3.4.3 Markovian arrival process for orders

We also quantify the impact of irregular order arrivals. To this end, we compare
both buffers with Poisson arrivals to corresponding decoupling inventory systems
with interrupted Poisson arrivals for the orders and Poisson arrivals for the semi-
finished products. The arrival interruptions account for inefficiency in the ordering
process. Order processing times are assumed to be exponentially distributed with
service rate µ equal to 1, this value being independent of the number of products
and orders in the different buffers.

The interrupted Poisson process considered here is a two-state Markovian pro-
cess. In the active state, new orders arrive in accordance with a Poisson process
with rate λo whereas no new orders arrive in the inactive state. Let α and β denote
the rate from the active to the inactive state and vice versa, respectively. We then
use the following parameters to characterise the interrupted Poisson process (IPP),

σ =
β

α+β
, κ =

1
α
+

1
β
, ρo = λoσ .

Note that σ is the fraction of time that the interrupted Poisson process is active,
the absolute time parameter κ is the average duration of an active and an inactive
period, and ρo is the arrival load of the orders.

Figure 3.4 shows the mean number of backlogged orders versus the arrival rate
of semi-finished products with buffer capacity Cp equal to 20 and the threshold
value Tp equal to 5 and 7 for Poisson arrivals as well as for interrupted Poisson
arrivals of orders. Order processing times are exponentially distributed with ser-
vice rate µ equal to one for all curves. In addition, we set σ = 0.8 and κ = 10 for
the interrupted Poisson processes (λo equals 0.6 for Poisson arrivals and 0.75 for
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Figure 3.4: Irregular order arrivals result in a higher average number of backlogged orders.

interrupted Poisson arrivals). As expected, the mean number of backlogged or-
ders decreases as the arrival rate of semi-finished products increases. Furthermore,
the impact of the threshold value on the average number of backlogged orders de-
creases as the arrival rate of semi-finished products increases – both Markovian
models converge to some value for Tp equal to 5 and 7. Finally, comparing in-
terrupted Poisson and Poisson processes, burstiness in the ordering process has a
negative impact on performance – there is on average more time required to deliver
an order.

3.4.4 Phase-type distributed order processing times

The last numerical example quantifies the impact of the distribution of the order
processing times on the decoupling inventory performance. In particular, we here
study Erlang-distributed order processing times.

Figure 3.5(a) and 3.5(b) depict the mean number of semi-finished products in
the buffer and the mean lead time of the decoupling inventory system. In both
figures, the arrival rate of semi-finished products is varied and different values of
the order processing time distribution are assumed as indicated. The service rate µ
equals 1 for all curves, the order arrival rate λo equals 0.6, the inventory capacity
Cp equals 20 and the threshold value Tp is equal to 5. Clearly, Figure 3.5(a) and
3.5(b) show respectively that the buffer content of semi-finished products increases
and the lead time decreases until a certain value as the arrival rate of semi-finished
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Figure 3.5: Given the mean order processing time, the corresponding order processing time
distribution has no significant impact on the mean number of semi-finished products and has
a significant impact on the mean lead time in this case.
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distribution decreases.
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products increases. Concerning the mean number of semi-finished products, we
can conclude that the order processing time distribution has no significant effect
on this performance measure. Indeed, we observe that the difference is very small
and that it decreases as the arrival rate of semi-finished products increases. How-
ever, the difference between a variance σ2

s equal to 1, 1/2 and 1/4 for the mean
lead time is significant, especially when the arrival rate λp is smaller than 0.7. Fur-
thermore, in this numerical example, the mean number of semi-finished products
decreases and the mean lead time increases as the variance increases. Figure 3.6
depicts the probability mass function of the product queue for a decoupling inven-
tory system when λp equals one. As the Figure shows, the zero probability in-
creases slightly as the variance of the order processing time distribution increases.
As for Erlang distributed setup times in Section 3.4.2, we have a coupling effect
between both performance measures – the mean number of semi-finished products
increases such that the mean number of backlogged orders (and thus the mean lead
time) decreases.

3.5 Conclusion

In this paper, we evaluate the performance of different hybrid push-pull systems
with a decoupling inventory at the semi-finished products and reordering thresh-
olds. In particular, we investigate the impact of different reordering policies, irreg-
ular order arrivals as well as the setup time distribution and the order processing
time distribution on the performance of hybrid push-pull systems. In the studied
hybrid push-pull systems, production of semi-finished products starts when the
inventory goes below the so-called threshold value and stops when the inventory
attains stock capacity. Decoupling means that the completion of a semi-finished
product is only possible when there is an order. These orders are backlogged and
can be satisfied only when the semi-finished products are available. Therefore, the
studied push-pull system is modelled as a homogeneous quasi-birth-death process
(QBD) and solved with matrix-analytic methods.

As our numerical examples show, there is trade-off to be made between the
inventory cost and the service level, as expected – e.g. a higher threshold value
causes on average a higher inventory cost and a smaller lead time. Furthermore,
irregular order arrivals have a negative impact on the performance of the hybrid
push-pull system. However, system performance is relatively insensitive to varia-
tion in the setup time distribution and partially insensitive to variation in the order
processing time distribution. Future work will focus on determining the total cost
of the studied hybrid push-pull systems.
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Abstract. This paper proposes a comprehensive methodology with reasonably
light complexity in terms of implementation and computation for evaluating the
performance of hybrid make-to-stock (MTS)/make-to-order (MTO) systems. In
such systems, semi-finished products are manufactured in advance and processed
into finished ones when a customer order is placed. To account for uncertainty
in demand, inventory replenishment and order processing, these systems are stud-
ied as stochastic inventory models with two “queues”: the decoupling inventory
and the order backlog. Hence, order processing can only occur when both queues
are nonempty. In this work, we exploit structural properties of the stochastic pro-
cesses at hand by using matrix-analytic methods. This method allows the study
of hybrid MTS/MTO systems under non-restrictive stochastic assumptions like ar-
rival correlation and non-exponential order processing times. Furthermore, the
hybrid MTS/MTO system can be managed by a continuous review (s,S)-policy in
which the replenishment of semi-finished products halts when the inventory is full
and restarts when the inventory level drops to a certain threshold value. Furnished
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with many numerical examples, we analyse the performance of hybrid MTS/MTO
systems by assessing the impact of inventory control, irregular order arrivals, setup
and order processing times. Finally, we study the central trade-off that exists in
these models, i.e. between inventory and service levels. To this end, a suitable cost
structure is introduced, and the optimal inventory capacities and thresholds with
respect to this cost structure are determined.

4.1 Introduction

In supply chain management, the position of the customer order decoupling point
(CODP) — the boundary between forecast-driven and demand-driven activities —
is a key strategic decision. Indeed, the position of the decoupling point has a great
impact on market and operational performance [13, 23]. The two most known
production strategies are make-to-stock (MTS) and make-to-order (MTO). Under
pure make-to stock management, the activities are only forecast driven. Indeed,
the end products are manufactured independently of any customer requirements
and are stocked in advance. Hence, high holding costs or stock-out costs are un-
avoidable in highly-fluctuating demand environments [23]. The main performance
criteria of such systems are fill rate, demand forecast, average work-in-process etc.
[25]. In contrast, the make-to-order system has only order-driven activities. In-
deed, the manufacturing of a product is triggered only when a customer order is
placed. Hence, response times may become quite long for high demand products.
The main criteria of such systems are the average response time, average order
delay, manufacturing lead time, due dates etc. [25]. To benefit from both systems,
production management is gradually moving toward a hybrid MTS/MTS strategy.
In such strategies, products are manufactured and stocked in the first stage of the
production (MTS) and are manufactured into end products only after a customer
order is received in the second stage (MTO). Ghrayeb et al. [10] investigated a
hybrid MTS/MTO system in an assemble-to-order manufacturing environment. In
most cases, the hybrid case is shown to inherit the strengths and to conceal the
weaknesses of both pure systems. Köber and Heinecke [15] investigated different
hybrid production strategies for supply chains with volatile and seasonal demand.
Gupta and Benjaafar [9] developed models to compute the costs and the benefits of
delaying differentiation in series production systems where the order lead times are
load dependent. As expected, a higher load favours later differentiation. Soman et
al. [25] proposed Hierarchical Production Planning (HPP) to deal with production
management decisions for MTS/MTO situations in food processing. The proposed
framework has three levels (strategic, tactical, operational): MTS/MTO decision,
capacity coordination and scheduling. These authors [26] also worked on an eco-
nomic lot scheduling problem of a food production system with different MTS and
MTO products. Rafiei and Rabbani [24] focused on the tactical level of the HPP
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for hybrid MTS/MTO production systems with pure MTS, pure MTO and hybrid
MTS/MTO products. The developed capacity coordination model is shown to be
applicable to a real industrial case.

In this work, we describe hybrid MTS/MTO systems as stochastic inventory
models to account for uncertainty in demand, inventory replenishment and order
processing. Kaminsky and Kaya [14] considered a variety of combined make-to-
order (MTO) and make-to-stock (MTS) supply chains in a stochastic environment.
As shown by the authors, costs can be cut dramatically by using a combined sys-
tem instead of pure MTO or MTS systems and that information exchange between
the supplier and the manufacturer is critical for effective lead time quotation. Adan
and Van der Wal [1] studied a production system with standard and non-standard
products as a stochastic process with unit order sizes and exponential production
times. They showed that the combination of pure MTS and pure MTO strategies
in a production system can significantly reduce lead times. Ohta et al. [21] and
Arreola and Decroix [2] proposed optimality conditions for MTO and MTS poli-
cies using a base-stock inventory policy. In both works, the production facility is
represented as a single server queueing model. In [21], a multi-product inventory
system is analysed where demand for each item arrives according to a Poisson
process and the production times follow an Erlang distribution. An optimality
condition that specifies whether each product should be produced according to a
MTS or a MTO strategy is proposed. In continuous make-to-stock operations, the
production of semi-finished products is halted when the inventory is full. Assum-
ing that there is a non-negligible setup time when the production of semi-finished
products is halted, a restart of the production whenever there is space in the prod-
uct inventory is inefficient. Hence, a continuous review (s,S)-policy is considered
in which replenishment starts when the inventory level drops to the threshold value
s and stops when level S is attained. The term ‘continuous review’ refers to the
uninterrupted monitoring of the inventory level to know whether or not level s is
reached. Most work conducted on (s,S)-policies assumes that any amount of in-
ventory can be replenished all at once [22, 20, 3, 11, 7]. However, in many real
manufacturing systems, the production facility can only produce one item at a time
and therefore inventory can only be replenished on an item-by-item basis. Moti-
vated by this fact, various authors have analysed hybrid MTS/MTO systems where
inventory is replenished on an item-by-item basis [12, 19, 17, 18].

In contrast to previous work on stochastic hybrid MTS/MTO systems, the
present study explicitly accounts for both inventory level and order backlog. This
considerably complicates the analysis as the stochastic model now consists of two
“queues”: a decoupling inventory and an order backlog. The performance of the
hybrid MTS/MTO system is assessed when (i) the replenishment of semi-finished
products is continuous and (ii) when the inventory is replenished in accordance
with a continuous review (s,S)-policy. In the latter case, we also introduce a cost
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Figure 4.1: Generic inventory model.

function to investigate the known trade-off between inventory and service level and
illustrate this trade-off by some numerical experiments. We show that by exploit-
ing structural properties of the stochastic processes involved, matrix-analytic solu-
tion techniques can be devised to accurately evaluate system performance with rea-
sonable computational complexity. Furthermore, the approach allows for studying
the MTS/MTO systems under non-restrictive stochastic assumptions by introduc-
ing a Markovian environment variable [6]: a Markovian arrival process to describe
the production of semi-finished products, a Markovian arrival process for demand,
phase-type distributed production times to complete semi-finished products etc.

The remainder of this paper is organised as follows. Section 4.2 describes the
hybrid MTS/MTO model at hand. In Section 4.3, the generic decoupling inventory
system is analysed as a quasi-birth-death-process (QBD), the numerical solution
methodology is discussed and relevant performance measures are determined. To
illustrate our approach, Section 4.4 considers some numerical examples. In partic-
ular, we analyse the cost and performance of hybrid MTS/MTO systems. Finally,
conclusions are drawn in Section 4.5.

4.2 Generic inventory model

We consider a generic inventory model, supporting hybrid MTS/MTO operations.
The system is depicted in Figure 4.1 and consists of a product inventory, an order
backlog and an order processing unit. The product inventory can store up to Cp

semi-finished products whereas the order backlog keeps track of the orders that
have not yet been delivered and has infinite capacity. Arriving orders are processed
in accordance with a first-come-first-served discipline. Each order takes a semi-
finished product from the decoupling inventory and sends it to the order processing
unit to complete the product in accordance with order specifications. Note that the
two “queues” — the product inventory and the order backlog — in the model at
hand are tightly coupled. Departures from the inventory are only possible when
there are backlogged orders. Similarly, departures from the order backlog are only
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possible if there are semi-finished products in the product inventory.
We study the inventory model at hand in a Markovian framework, which com-

bines modelling versatility with computationally efficient analysis techniques. To
be more precise, we propose a three-dimensional continuous-time Markov process
with infinite state space N×C ×K with N = {0,1,2, · · ·}, C = {0,1,2, . . . ,Cp}
and K = {1, . . . ,K}. At each point in time, the state of the inventory system is
described by the triplet (n,m, i) where n ∈ N denotes the number of backlogged
orders, m ∈ C denotes the number of semi-finished products in the inventory and
i ∈ K denotes the state of an auxiliary Markovian environment variable. The in-
troduction of such an environment variable provides the necessary versatility in
modelling. It allows for introducing order arrival correlation, non-exponential or-
der processing times, threshold-based inventory management, etc (cfr infra). We
now describe the (marked) transition rates of the environment variable.

• The environment variable can change when there are neither arrivals nor
departures. Let αi j denote the transition rate from state i to state j (i, j ∈
K , i 6= j). Further, let A = [αi j]i, j∈K denote the corresponding generator
matrix. Note that the diagonal elements of A equal 0. We allow for different
transition rates when either the inventory or the backlog is empty: let α̂i j

and Â denote the transition rate from state i to state j and the corresponding
generator matrix, respectively.

• The environment variable may remain the same or may change when there
is an arrival. Let λ

(p)
i j and λ

(o)
i j denote the (marked) transition rate from state

i to state j when there is an arrival at the product inventory and the order
backlog, respectively (i, j ∈ K ). Moreover, let ΛΛΛp = [λ

(p)
i j ]i, j∈K and ΛΛΛo =

[λ
(o)
i j ]i, j∈K denote the corresponding generator matrices. Note that marked

self-transitions from state i to state i are allowed.

• Analogously, the environment variable may either remain the same or may
change when there is a departure (in inventory and order backlog simulta-
neously). Let µi j (i, j ∈ K ) and M denote the transition rates and the corre-
sponding generator matrix respectively.

When required by the application at hand, the generator matrices, ΛΛΛo, ΛΛΛp, A,
Â and M may depend on the inventory level m. In this case, we use superscripts to
make this dependence explicit.

Having introduced the generic inventory model, we now focus on two partic-
ular instances. The first instance models a pure decoupling inventory of a hybrid
MTS/MTO system. Arrivals in the product inventory correspond to a make-to-
stock operation while the final production step is demand-driven or make-to-order.
Note that the MTS operation is blocked when the decoupling inventory is full.
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Dimensioning of the decoupling inventory aims at avoiding blocking while en-
suring product availability. However this is not always possible without further
control. Assuming that there is a non-negligible setup-time in the MTS stage, it
does not make sense to restart production whenever there is space in the inventory.
Therefore, the second instance assumes that the MTS operation is managed by an
(S,s)-policy: the MTS operation halts when the inventory is at level S and restarts
when the inventory level drops to level s.

4.2.1 Uncontrolled decoupling inventory

In this system, arrivals of products and orders are modelled as independent Marko-
vian arrival processes (MAP) and processing times constitute a sequence of inde-
pendent phase-type distributed random variables. The MAP can accurately capture
arrival correlation. Moreover, tools have been developed that characterise MAPs
from time-series [4, 5]. Particular subclasses of MAPs include the Poison process,
the interrupted Poison process and the renewal arrival process with phase-type dis-
tributed renewal times.

The MAP of the order arrival process is described by the generator matrix
Q1 of transitions with arrivals and the generator matrix Q0 without arrivals. Let
Q denote the size of the state space Q of the order arrival process. The MAP
of the product arrival process is described by the generator matrices P0 and P1,
governing state transitions without and with product arrivals, respectively. Let P
denote the size of the state space P of the product arrival process. Finally, the
phase-type distribution — the distribution of the time till absorption of a Markov
process with an absorbing state — of the order processing times is characterised by
an initial probability vector τττ, by the matrix T which corresponds to non-absorbing
transitions and by the column vector t′ of rates to the absorbing state. Let T denote
the size of the state space T of the production process.

We use the environment variable to track the states of both arrival processes
as well as of the state of the order processing time. It is notationally convenient
to define the environment variable as the triplet (xo,xs,xa) with xo the state of the
order arrival process, xs the state of the order processing time and xa the state of
the product arrival process. As all state variables are finite, we can easily map the
triplets on K . Assuming lexicographical order of the triplets, we get the following
matrices.

• Product and order arrivals correspond to marked transitions of the product
and order MAPs. Hence we have,

ΛΛΛp = IQ⊗ IT ⊗P1,

ΛΛΛo = Q1⊗ IT ⊗ IP.
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Here In is the n×n identity matrix.

• State transitions without arrivals or departures correspond to state transitions
of arrival, order and production process. However, there are no transitions
of the production process when either order backlog or product inventory
are empty. Hence, we get,

A = Q0⊗ IT ⊗ IP + IQ⊗T⊗ IP

+ IQ⊗ IT ⊗P0,

Â = Q0⊗ IT ⊗ IP + IQ⊗ IT ⊗P0.

• Finally, there is a departure when the phase type reaches its absorbing state.
We get,

M = IQ⊗ t′τττ⊗ IP.

4.2.2 Controlled decoupling inventory

As previously mentioned, the generic inventory model is sufficiently versatile to
study decoupling inventory systems following a threshold-based replenishment
policy. In such systems, replenishment of semi-finished products starts when the
inventory equals the threshold value Tp and stops when the inventory level reaches
capacity Cp. In literature, this is referred to as a (s,S)-policy, S being the capac-
ity and s the threshold [20, 3, 11, 7, 17, 18]. We do not use S and s so as to be
consistent with the uncontrolled inventory management.

We retain the assumptions on the order arrival process and on the order pro-
cessing times of the decoupling inventory above. We also retain the notation on
the production process. However, now we additionally have to specify the state
of the product arrival process when it restarts. Let bi be the probability that the
production process restarts in state i ∈ P and let b = [bi]i∈P . Remark that the
inclusion of a start state allows for introducing setup times. For example, a phase-
type distributed setup time prior to production is easily introduced as shown in the
numerical examples.

When the inventory level m is equal or below Tp, production is always ongoing.
Hence for m≤ Tp the environment variable takes values in,

{(xo,xs,xa) : xo ∈ Q ,xs ∈ T ,xa ∈ P} .

When the inventory level is at least Tp but not full, the environment variable needs
to track whether production is on-going or not. For ease of notation, we assume
that the state of the production process (as in the preceding section) is augmented
with an additional state θ. When the production process is in this state, there is
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no production. Hence, for inventory level m and Tp < m < Cp, the environment
variable takes values in,

{(xo,xs,xa) : xo ∈ Q ,xs ∈ T ,xa ∈ P ∪{θ}} .

In contrast to the preceding extension of the state description, we are sure that there
is no production when the inventory is full. Hence in this case there is no need to
track the state of the production process. Hence for inventory level m = Cp, the
environment variable takes values in,

{(xo,xs) : xo ∈ Q ,xs ∈ T } .

With the state space defined as above, we now repeat the construction of the
matrices ΛΛΛo, ΛΛΛp, A, Â and M. Due to the control of the production process, the
generator matrices as well as their sizes are now level-dependent. Introducing the
auxiliary matrices and vectors,

P̂i =

[
Pi 0P
0′P 0

]
P̃i =

[
Pi 0P

]

p1 =

[
P11P

0

]
B =

[
IP
b

]
f =
[
0′P 1

]
The symbols 0X and 1X represent column vectors of size X with zeroes and ones,
respectively. We get the following generator matrices,

ΛΛΛ
(m)
p =


IQ⊗ IT ⊗P1 for m < Tp

IQ⊗ IT ⊗ P̃1 for m = Tp

IQ⊗ IT ⊗ P̂1 for Tp < m <Cp−1
IQ⊗ IT ⊗p1 for m =Cp−1

ΛΛΛ
(m)
o =


Q1⊗ IT ⊗ IP for m≤ Tp

Q1⊗ IT ⊗ IP+1 for Tp < m <Cp

Q1⊗ IT for m =Cp

A(m) =



Q0⊗ IT ⊗ IP

+IQ⊗T⊗ IP

+IQ⊗ IT ⊗P0 for m≤ Tp

Q0⊗ IT ⊗ IP+1

+IQ⊗T⊗ IP+1

+IQ⊗ IT ⊗ P̂0 for Tp < m <Cp

Q0⊗ IT + IQ⊗T for m =Cp
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Â(m) =



Q0⊗ IT ⊗ IP

+IQ⊗ IT ⊗P0 for m≤ Tp

Q0⊗ IT ⊗ IP+1

+IQ⊗ IT ⊗ P̂0 for Tp < m <Cp

Q0⊗ IT for m =Cp

M(m) =


IQ⊗ t′τττ⊗ IP for 1 < m≤ Tp

IQ⊗ t′τττ⊗B for m = Tp +1
IQ⊗ t′τττ⊗ IP+1 for Tp +1 < m <Cp

IQ⊗ t′τττ⊗ f for m =Cp

4.3 Analysis

4.3.1 Quasi-birth-death process

The studied Markov process is a homogeneous quasi-birth-death process (QBD),
see [16]. In the present setting, the so-called level or block-row number, indicates
the number of backlogged orders while the phase, i.e. the index within a block
element, indicates both the content of the decoupling inventory and the state of the
Markovian environment variable. The one-step transitions are restricted to states
in the same level (from state (n,∗,∗) to state (n,∗,∗)) or in two adjacent levels
(from state (n,∗,∗) to state (n+1,∗,∗) or state (n−1,∗,∗)). Indeed, orders arrive
and are processed one by one such that the order backlog increases and decreases
in unit steps. We then find that the generator matrix of the Markov process has the
following block matrix representation,

Q =


L′p Lo 0 0 · · ·
W Lp Lo 0 · · ·
0 W Lp Lo · · ·
0 0 W Lp · · ·
...

...
...

...
. . .

 .

The blocks are given by,

Lo =



ΛΛΛ
(0)
o 0 0 · · · 0
0 ΛΛΛ

(1)
o 0 · · · 0

0 0 ΛΛΛ
(2)
o · · · 0

...
...

...
. . .

...
0 0 0 · · · ΛΛΛ

(Cp)
o


,
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Lp =


D(0)

ΛΛΛ
(0)
p 0 · · · 0

0 D(1) ΛΛΛ
(1)
p · · · 0

0 0 D(2) · · · 0
...

...
...

. . .
...

0 0 0 · · · D(Cp)

 ,

L′p =



D(0)
ΛΛΛ
(0)
p 0 · · · 0

0 D(1)
ΛΛΛ
(1)
p · · · 0

0 0 D(2) · · · 0
...

...
...

. . .
...

0 0 0 · · · D(Cp)


,

W =


0 0 · · · 0 0

M(1) 0 · · · 0 0
0 M(2) · · · 0 0
...

...
. . .

...
...

0 0 · · · M(Cp) 0

 .

with D(m) = A(m)− ∂A(m)− ∂ΛΛΛ
(m)
o − ∂ΛΛΛ

(m)
p − ∂M(m) and D(m) = Â(m)− ∂Â(m)−

∂ΛΛΛ
(m)
o − ∂ΛΛΛ

(m)
p with m = (0,1,2, . . . ,Cp) being the number of semi-finished prod-

ucts in the inventory. Note that ∂X represents a diagonal matrix with diagonal
elements equal to the row sums of X.

Having defined the different blocks of the QBD process, we now focus on the
solution method. Recall that the state of the Markov process is described by the
triplet (n,m, i), n is the size of the order backlog, m is the size of the product inven-
tory and i is the state of the environment variable. Let π(n,m, i) be the stationary
probability of the process to be in state (n,m, i). A well-known method for finding
the stationary distribution of QBD processes is the matrix-geometric method. Us-
ing the vector notation πππk = (π(k,0,0),π(k,0,1), . . . ,π(k,Cp,K)), the probability
vectors can be expressed as,

πππk = πππ0Rk. (4.1)

where the so-called rate matrix R is the minimal non-negative solution of the non-
linear matrix equation

R2W+RLp +Lo = 0. (4.2)

Several iterative procedures exist for solving equation (4.2). For example, Gun [8]
uses the following simple recursion

R←−(Lo +R2W)L−1
p . (4.3)

We compute the rate matrix by implementing the improved iterative algorithm of
[16, chapter 8, p.179-187].
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4.3.2 Performance measures

Once the steady state probabilities have been determined numerically, we can cal-
culate a number of interesting performance measures for the decoupling inventory
system. For ease of notation, we introduce the marginal probability mass func-
tions of the content of the product inventory and the order backlog: π(p)(m) =

∑i∈K ∑
∞
n=0 π(n,m, i) and π(o)(n) = ∑i∈K ∑

Cp
m=0 π(n,m, i). We have the following

performance measures.

• The mean semi-finished product inventory and the order backlog content:
EQp and EQo respectively,

EQp =
Cp

∑
m=1

π
(p)(m)m ,

EQo =
∞

∑
n=1

π
(o)(n)n .

• The variance of the semi-finished product inventory and the order backlog
content: VarQp and VarQo respectively,

VarQp =
Cp

∑
m=1

π
(p)(m)m2− (EQp)

2 ,

VarQo =
∞

∑
n=1

π
(o)(n)n2− (EQo)

2 .

• As the order backlog queue is infinite, the throughput of the hybrid MT-
S/MTO system η equals the order arrival rate:

η = πππ
(q)Q11q

The vector πππ(q) is the solution of πππ(q)(Q1 +Q0) = 0 and πππ(q)1q = 1.

• The mean lead time LT (calculated based on Little’s theorem) is the average
amount of time between the placement of an order and the completion of a
finished product:

LT =
EQo

η

We now illustrate our approach by means of some numerical examples.
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Type of decoupling inventory
uncontrolled (unctl) Cp 20

controlled (ctl) Cp 20
Tp 5

Semi-finished product arrivals
Poisson λp 1

setup times

constant (= Erlang-10) µp 2
αp 5

exponential (exp) µp 2
Order arrivals

Poisson ρo 0.6

IPP
σ 0.8
κ 10
ρo 0.6

Order processing

constant (= Erlang-10) µs 1
αs 10

exponential (exp) µs 1
Cost and profit function

holding & setup c1 1
c2 5

linear lead time cost c3 80

non-linear lead time cost c4 500
ω 0.3

Table 4.1: Parameter values of the different studied systems.

4.4 Numerical results

In this section, we analyse the performance of the above defined hybrid MTS/MTO
systems. In particular, we study the impact of inventory control, order correlation
and the distribution of the setup and order processing time on the mean lead time
and inventory level. Moreover, we define a cost function for hybrid MTS/MTO
systems with a controlled decoupling inventory and find the optimal inventory
capacity and threshold value for specific sets of parameters and cost values.

For further reference, the considered parameter values of all numerical results
are listed in Table 4.1. These parameter values are chosen only by way of illustra-
tion and are not to be considered as limiting.

4.4.1 Mean inventory level and mean lead time

We here focus on mean inventory level and mean lead time for controlled and
uncontrolled inventory management.

First, consider a decoupling inventory with Poisson arrivals of semi-finished
products with rate λp, no setup times and exponentially distributed order process-
ing times with rate µ = 1. The inventory capacity is Cp = 20 and in the case of the
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Figure 4.2: Impact of irregular order arrivals on the performance of hybrid MTS/MTO
systems with a controlled and uncontrolled decoupling inventory.

controlled inventory the threshold is Tp = 5 for all figures below.
To quantify the impact of irregularity in the order process, we further charac-

terise order arrivals by an interrupted Poisson process and benchmark the perfor-
mance measures against Poisson order arrivals. The interrupted Poisson process
is a two-state Markovian process such that new orders arrive in accordance with
a Poisson process in its active state while there are no arrivals when it is inactive.
This process is fully characterised by the arrival rate in the active state λo, by the
transition rate α from the active to the inactive state and by the transition rate β

from the inactive to the active state. For convenience, we use the more intuitive
parametrisation (σ,κ,ρo), with

σ =
β

α+β
, κ =

1
α
+

1
β
, ρo = λoσ .

Here σ is the fraction of time in which the interrupted Poisson process is active,
the absolute time parameter κ is the average duration of an active and an inactive
period, and ρo is the arrival load of the orders.

Figure 4.2 depicts the mean semi-finished product inventory and the mean lead
time for both Poisson and interrupted Poisson arrivals of orders versus the prod-
uct arrival rate λp. We set σ = 0.8 and κ = 10 which corresponds to moderate
correlation. The load of the IPP and the arrival rate of the Poisson process equal
ρo = 0.6. To simplify comparison between controlled and uncontrolled inventory
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Figure 4.3: Performance difference of hybrid MTS/MTO systems with regular and irregular
order arrivals.

management, Figure 4.3 depicts the mean lead time and inventory level of the un-
controlled management, expressed as a fraction of the corresponding performance
measure in the controlled case. The fractions for the mean lead time and mean
inventory level are respectively defined in % as

fLT =
LT(unctl)

LT(ctl)
, fQ =

EQp(unctl)
EQp(ctl)

Of course, when the production rate increases, we see an increase of the inventory
level and a decrease of the lead time. In absence of setup times, the controlled
inventory management differs from the uncontrolled case only by that production
restarts at the threshold Tp and not at Cp−1. As such, the threshold mechanism al-
lows to set the trade-off between mean inventory level and mean lead time. Indeed,
as Figures 4.2 and 4.3 show, the control considerably decreases the mean inven-
tory level at the cost of increased mean lead times. Correlation in the order process
affects these performance measures differently. Figure 4.2 shows that correlation
induces a decrease of the mean inventory level and an increase of the mean lead
time for both controlled and uncontrolled inventories. The increase of lead times
is expected. Correlation means long periods with more arrivals than processable
such that order arrivals see more backlog on arrival on average. The decrease of
the mean inventory level is not that easily explained. Here, one sees that corre-
lation in the order process induces longer periods where there is backlog, while
the conservation of the throughput learns that the periods without backlog are not
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Figure 4.4: Probability distribution of the semi-finished product inventory of hybrid MT-
S/MTO systems when λp equals 1.0 (a) and 0.62 (b)

longer. As the mean inventory level grows to the inventory capacity in the absence
of backlog and to some lower value when there is backlog, we observe an overall
decrease of the mean inventory level. Finally, note that for increasing λp, control
no longer matters for the lead time as production is sufficiently fast to ensure the
presence of semi-finished products. In contrast, correlation in the order process
does not affect the mean inventory level for increasing λp as is easily verified on
Figures 4.2 and 4.3.

Figures 4.4(a) and 4.4(b) depict the probability mass functions of the inventory
level for λp = 1.0 and 0.62, respectively. As in Figure 4.2, we set σ = 0.8 and
κ = 10 for the IPP and assume that the load of the IPP and the arrival rate of the
Poisson process equal ρo = 0.6. Note that λp is only slightly higher than λo in
Figure 4.4(b) whereas it is considerably larger in Figure 4.4(a). This explains the
obvious dissimilarity between the mass functions: for λp = 1.0 (Figure 4.4(a))
the inventory is filled up considerably faster than it is depleted. The inventory
is hardly ever empty in this case; the probability mass is concentrated on high
inventory levels. Further notice that the threshold is easily discernible. In contrast,
the inventory level is most often empty or of limited size for λp = 0.62 (Figure
4.4(b)) as the production rate is only slightly higher than the order arrival load.
Reaching the inventory capacity is a rare event in this case such that the probability
mass functions for the controlled and uncontrolled systems hardly differ.

We now consider the effect of setup times on performance. As before, we
benchmark the controlled inventory management against the uncontrolled case.
The inclusion of a phase-type distributed setup time prior to production is easily
accomplished as follows. Let F be the F×F generator matrix of the non-absorbing
transitions of the phase-type distribution, let f′ be the column vector of rates to the
absorbing state and let φφφ be the row vector of initial state probabilities. Assuming
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that production is a Poisson process after the setup, we get the following charac-
terisation of the arrival process:

P0 =

[
F f′
0′F 0

]
, P1 =

[
0F×F 0F

0′F λp

]
,

and,
b =

[
φφφ 0

]
.

Figure 4.5 shows the mean inventory level and the mean lead time versus the pro-
duction rate λp for hybrid MTS/MTO systems with controlled and uncontrolled
inventory management. The same parameter set is used as for the Poisson order
arrivals in Figures 4.2 and 4.3, but we now include a setup time prior to the pro-
duction in the controlled case. The setup time is either exponentially distributed
or Erlang-10 distributed, in either case with mean µp = 2. The Erlang-10 under
consideration proves to be a good approximation for constant setup times. It is
well known that by increasing the number of phases of an Erlang distribution, it is
possible to approximate the constant distribution arbitrarily well. Experimentation
with Erlang distributions with more than 10 phases revealed that the performance
measures at hand are visually indiscernible if we add more phases. As in Figure
4.2, we again see that the control allows to trade in shorter lead times for lower
inventory levels. The introduction of setup times further lowers the inventory level
but also induces an increase of the mean lead times. Most notable is the limited
effect of the distribution of the setup times on mean lead time (the curves visually
coincide) and the mean inventory level.

Finally, we study the impact of the order processing time distribution. We again
take the same parameters as for the Poison process in Figure 4.2 and now compare
exponentially distributed and constant order processing times. Figure 4.6 shows
the mean inventory level and mean lead time versus the product arrival rate for
hybrid MTS/MTO systems with controlled and uncontrolled inventory manage-
ment and for exponential and constant order processing times. Again, the constant
order processing times are approximated by an Erlang-10 distribution and it was
checked that having more phases does not significantly alter the performance mea-
sures. Similarly as for the setup-time distributions, we observe that the distribution
of the order processing times have only little impact on mean lead time and mean
inventory level.

4.4.2 Cost analysis

In view of the limited sensitivity of the mean lead time and mean inventory level
with respect to both setup and processing time distributions, we here limit the
discussion to exponentially distributed setup and order processing times. Moreover
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Figure 4.5: Impact of setups on the performance of hybrid MTS/MTO systems with a con-
trolled decoupling inventory and performance difference with the uncontrolled case.
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we assume Poisson product and order arrivals. Recall that the parameter values of
these distributions are listed in Table 4.1.

We now identify the various costs associated to the inventory model with a
controlled decoupling inventory. The holding cost relates to the inventory level.
Let c1 be the holding cost per time unit and per item in the inventory, the mean
holding cost per item then equals,

Ch =
1
η

c1 EQp .

We further associate a fixed cost c2 every time there is a setup. We have the
following setup cost per item,

Cs =
1
η

c2γ ,

where γ denotes the number of setups per time unit. The latter can be calculated by
summing the products of all probabilities of states from which a departure leads to
the start of the setup and the rate at which this departure occurs. Hence, we con-
sider the states where the product inventory equals Tp + 1, there is no production
and the order backlog is nonempty. We have,

γ =
∞

∑
n>0

∑
xo∈Q

∑
xs∈T

π(n,Tp +1,(xo,xs,θ))txs

To refer to the state changes in the environment variable, we denote this variable
by the triplet (xo,xs,θ) : xo ∈ Q ,xs ∈ T as defined in Section 4.2.2.

As increasing lead times correspond to diminishing service levels, a cost can
be associated with the lead time. We here consider two alternatives. First, we
assume that the cost of the lead time is proportional to the lead time. Let c3 be the
cost per time unit of lead time per product, the mean cost related to the lead times
then equals,

C` = c3 LT .

The linear increase of cost in terms of lead times may not very well reflect the
real cost associated with lead times. A more realistic function associates zero cost
with zero lead times and increasing but bounded costs for increasing lead times.
We therefore propose the following cost function,

c4(1− exp(−ωx)) ,

with c4 the maximum cost and where ω describes how fast the cost increases to this
maximum. Figure 4.7 compares the linear and non-linear lead-time cost functions
for c3 = 1 and c4 = 10. In the case of a non-linear increase of cost, we assume that
ω equals 0.2 or 0.5.
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Figure 4.7: Linear versus non-linear lead-time cost function.

Averaging over all lead times yields,

Ĉ` = c4(1−L∗(ω))

where L∗ is the Laplace transform of the lead time distribution. As orders are
processed in order of arrival, one readily observes that the size of the backlog
upon completion of a product arrival equals the number of arrivals that occurred
during the lead time of this order. Hence, as order arrivals occur according to a
Poisson process with rate ρo, the probability generating function of the backlog
size Uo(z) upon departure can be expressed in terms of the Laplace transform of
the lead time as follows,

Uo(z) = L∗(−ρo(z−1)) =
∞

∑
n=0

π
(o)(n)zn .

Here, the last equality follows from the observation that the distribution of the
backlog upon departures equals the distribution of the backlog upon arrivals which
in turn equals the distribution of the backlog at random times by the PASTA prop-
erty. Summarizing, we have the following cost,

Ĉ` = c4

(
1−

∞

∑
n=0

π
(o)(n)

(
ρo−ω

ρo

)n
)

.

Finally, in view of the costs defined above, we consider the following two
overall cost functions,
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Figure 4.8: Total cost of hybrid MTS/MTO systems with a controlled decoupling inventory
and a linear lead-time cost function.

C =Ch +Cs +C` ,

and,

Ĉ =Ch +Cs +Ĉ` .

Figure 4.8 depicts the total cost of hybrid MTS/MTO systems with a linear
lead-time cost function. The inventory capacity varies from 8 to 20 and the thresh-
old value Tp from 5 to 19. We assume a holding cost c1 equal to 1, a setup cost c2

equal to 5 and a linear lead time cost c3 equal to 80. As the figure shows, we have
a minimum cost when the inventory capacity equals 11 and the threshold value
equals 9. Obviously, when the inventory capacity and the threshold value increase,
the mean lead time decreases and the mean semi-finished product inventory in-
creases. The number of setups per time unit however increases when the threshold
value increases but decreases when the inventory capacity increases.

Figure 4.9 depicts the total cost for the case of a non-linear lead-time cost
function. The same holding and setup cost are assumed as in previous figure and
we here assume a non-linear lead time cost c4 equal to 500 and a rate ω equal to
0.3. The inventory capacity also varies from 8 to 20 and the threshold value from 5
to 19. As the figure shows, we have a minimum cost when the inventory capacity
equals 11 and the threshold value equals 8.



CHAPTER 4 4-21

T
p

6
8

10
12

14
16

18

C p

8

10

12

14

16

18

20

C

232

234

236

238

240

242

244

Figure 4.9: Total cost of hybrid MTS/MTO systems with a controlled decoupling inventory
and a non-linear lead-time cost function.

4.5 Conclusion
Hybrid make-to-stock (MTS)/ make-to-order (MTO) systems are described as sto-
chastic inventory models with two “queues”: the semi-finished product inventory
and the order backlog. We rely on matrix-analytic techniques to evaluate the per-
formance of such systems. Our approach allows to account for uncertainty in
demand, production and order processing times under non-restrictive stochastic
assumptions. Another advantage is its ease of use and computational efficiency in
comparison with simulation which makes it an adequate tool for managers. The
proposed methodology is sufficiently versatile to account for a continuous review
(s,S)-policy in which the replenishment of semi-finished products halts when the
inventory is full and restarts when the inventory level drops to a certain threshold
value. As the numerical examples show, the distribution of the setup and order
processing is shown to have limited impact on the mean lead time and inventory
level. However, inventory control and correlation in the order process decreases
the mean inventory level at the cost of increased mean lead times. Finally, to cap-
ture the trade-off between inventory and service level, we define a cost structure
for hybrid MTS/MTO systems with a controlled decoupling inventory.
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Abstract. Battery lifetime is a key impediment to long-lasting low power sen-
sor nodes. Energy or power harvesting mitigates the dependency on battery power,
by converting ambient energy into electrical energy. This energy can then be used
by the device for data collection and transmission. This paper proposes and anal-
yses a queueing model to assess performance of such an energy harvesting sensor
node. Accounting for energy harvesting, data collection and data transmission
opportunities, the sensor node is modelled as a paired queueing system. The sys-
tem has two queues, one representing accumulated energy and the other being the
data queue. By means of some numerical examples, we investigate the energy-
information trade-off.

5.1 Introduction

The problem of battery replacement and disposal is a key impediment to ubiquitous
use of wireless sensors networks. Sensor networks are formed by a collection of in-
tercommunicating sensor nodes, collecting spatially distributed data (temperature,
humidity, movement, noise, . . . ). Sensors networks can be used in a large range of
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applications, including military, environmental, home and health applications [1].
Despite vast improvements on power consumption and ongoing developments in
power management, the lifetime of wireless sensors is largely determined by the
energy of on-board batteries [13]. To overcome dependency on batteries, current
research effort focusses on wireless devices that extract the necessary energy from
their environment [6]. Possible power sources include electromagnetic radiation,
thermal energy as well as mechanical energy [8].

The specific dynamics of energy harvesting has also drawn the attention of
the modelling community. Sensors being autonomous in deciding which informa-
tion will be transmitted as well as when to transmit, various authors propose game
theoretic models; see e.g. [11] for power control games in wireless networks. Ac-
counting for energy harvesting, Tsuo et al. [15] consider a Bayesian game where
each node knows its local energy state. An evolutionary hawk and dove game
with harvesting nodes transmitting either at high or low power is studied in [2, 5].
Specifically focussing solar power, optimal energy management for a sensor node
that uses a sleep and wakeup strategy for energy conservation is studied by a bar-
gaining game in [12].

Neither of these game-theoretic models assume that acquired data can be tem-
porarily stored at the sensor node. To study data buffering at the sensor node,
queueing theoretic modelling applies. Sharma et al. [14] is a recent contribution
on such a queueing theoretic approach. These authors analytically study stochastic
stability of an energy harvesting node with data buffering and rely on simulation
to assess its performance. Also the present contribution investigates a queueing
model for a harvesting sensor node. In particular, we assess the performance of
an energy harvesting sensor node accounting for uncertainty in data acquisition,
in energy harvesting and in transmission opportunities. To this end, we investi-
gate a queueing system with two queues: one queue represents the data buffer and
one queue represents the available energy. Maximising versatility of the model at
hand while keeping the analysis numerically tractable, we model data acquisition,
energy harvesting and transmission by means of Markovian arrival processes; an
“arrival” representing some acquired data, some harvested energy and a transmis-
sion opportunity (an encounter with another node or a base station) respectively.

Such two-buffer queueing problems are sometimes termed paired queues —
pairing refers to the coupling between the queues, service is only possible if both
queues are non-empty — and have been studied in various contexts including
leaky-bucket access control [16, 17], kitting processes [4] in assembly and de-
coupling buffers in production systems [3].

Leaky-bucket access control in asynchronous transfer mode, introduces a vir-
tual buffer (a bucket) at sender nodes. The virtual buffer is filled with tokens ac-
cording to some well behaved process. For every transmission, a token is taken
from the bucket and transmission is only allowed if there are tokens present.
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Figure 5.1: Stochastic model of energy harvesting for low power sensor nodes.

Hence, the data buffer and leaky bucket constitute a paired queueing system. Kit-
ting is a particular strategy for supplying materials to an assembly line. Instead
of delivering parts in containers of equal parts, kitting collects the necessary parts
for a given end product into a specific container, called a kit, prior to arriving at
an assembly unit. As kits can only be completed if all parts are present, the part
buffers and the kitting operation constitutes a paired queueing system. Finally, de-
coupling buffers are used to reduce lead times in production systems by buffering
semi-finished products at some point in the production process. When there is de-
mand, semi-finished products are taken out of the decoupling buffer and finished
according to the demand. Again, paired queueing applies as the second production
stage only starts if there are semi-finished products and demand.

Finally, paired queues have also been studied in a more abstract setting. Con-
sidering a system with two paired queues, Harrison shows that it is necessary to
impose a restriction on the size of the buffer to ensure stability in the operations
of a kitting process [7]. Similar observations where made by Latouche [9] who
studied the difference of the queue lengths in such a paired queueing system.

The remainder of this paper is organised as follows. The paired queueing
model under investigation and the notationally conventions are introduced in the
next section. In Section 5.3, the system is analysed as a quasi-birth-death process
(QBD). Also, the numerical solution methodology is discussed and relevant perfor-
mance measures are determined. To illustrate our approach, Section 5.4 considers
some numerical examples. Finally, conclusions are drawn in Section 5.5.

5.2 Model description

The energy harvesting sensor node is modelled as a queueing system with two
queues, as depicted in Figure 5.1. The energy queue has finite capacity Ce and
stores energy extracted from the environment. The data queue keeps track of not
yet transmitted data packets and has infinite capacity.

The amount of stored energy is discretised for modelling convenience. We
make abstraction of the specifics of energy harvesting apart from the assumption
that there is a continuous chance to come by some ‘chunks’ of energy. Therefore,
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we assume that energy arrives in accordance with a Markovian arrival process
with state space KE . Let Ω0

E and Ω1
E denote the generator matrices of this arrival

process, governing the state transitions when there are no arrivals and when there
is an arrival, respectively. Analogously, the sensor picks up data in accordance
with a Markovian arrival process with state space KA: whenever it picks up data,
there is an arrival in the data queue. Let Ω0

A and Ω1
A denote the generator matrices

of this arrival process, governing the state transitions when there are no arrivals
and when there is an arrival, respectively.

Data can only be transmitted during transmission opportunities. Moreover, the
two queues are paired, meaning that data can only be transmitted if the energy
buffer is non-empty. Whenever a transmission occurs, a data packet departs but
the level of the energy buffer may or may not decrease (this assumption allows for
modelling the dynamics of the battery with fewer states). The arrivals of transmis-
sion opportunities being exogenous to the state of the sensor node, the departure
process is a marked Markov process with state space KD. The generator matrices
Ω0

D, Ω1
D and Ω2

D govern the state transitions of the departure process without trans-
mission opportunities, with a transmission opportunity that leads to a decrease of
the energy buffer and with a transmission opportunity that does not lead to such
a decrease. Note that for the matrices Ω0

E , Ω0
A and Ω0

D, diagonal elements are
assumed to be zero.

5.3 Analysis

Modulating Markov process For ease of modelling, we first consider the Mar-
kov process with state space K =KE×KA×KD that jointly describes the (marked)
state changes of energy, arrival and departure processes. In the remainder, let IE ,
IA and ID denote identity matrices with size |KE |, |KA| and |KD|, respectively.
Note that the symbol ⊗ denotes the Kronecker’s product.

• The matrix A governs the transitions, when there are neither arrivals nor
departures:

A = Ω
0
E ⊗ IA⊗ ID + IE ⊗Ω

0
A⊗ ID + IE ⊗ IA⊗Ω

0
D .

• The matrix BE governs the transitions when there is an arrival in the energy
buffer:

BE = Ω
1
E ⊗ IA⊗ ID .

• The matrix BA governs the transitions when there is an arrival in the data
buffer:

BA = IE ⊗Ω
1
A⊗ ID .
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• The matrices C1 and C2 govern the transitions when there is a departure that
drains the energy buffer and that does not drain this buffer, respectively:

C1 = IE ⊗ IA⊗Ω
1
D , C2 = IE ⊗ IA⊗Ω

2
D .

Remark. The matrices A till C2 above are defined in terms of the char-
acteristics of the different arrival processes. In the remainder, all results will be
expressed in terms of the matrices as defined above. Hence, these results remain
valid in the case that the different arrival processes are intercorrelated as well. In
that case there is a single marked Markov process, with marks for data arrivals,
energy arrivals and transmission opportunities.

Quasi-birth-death process Having defined these transition matrices, we now
focus on the queueing model at hand. To be more precise, the energy harvesting
sensor node system is a continuous-time Markov process with infinite state space
N×{0,1,2, . . . ,Ce}×K , K = {0,1, . . . ,K}. At any time, the state of the system
is described by the triplet [n,m, i], n being the number of data packets available, m
being the energy level and i being the state of the modulating process.

The studied Markov process is a homogeneous quasi-birth-death process (QB-
D), see [10]. In the present setting, the level or block-row index, indicates the data
packets available while the phase, i.e. the index within a block element, indicates
both the energy level and the state of the Markovian environment. The one-step
transitions are restricted to states in the same level (from state (n,∗,∗) to state
(n,∗,∗)) or in two adjacent levels (from state (n,∗,∗) to state (n+1,∗,∗) or state
(n−1,∗,∗)).

We then find that the generator matrix of the Markov process has the following
block matrix representation,

Q =


B0 A2 0 0 · · ·
A0 A1 A2 0 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

...
. . .

 . (5.1)

The blocks are given by,

B0 =


D BE 0 · · · 0
0 D BE · · · 0
0 0 D · · · 0
...

...
...

. . .
...

0 0 0 · · · D

 (5.2)
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A2 =


BA 0 0 · · · 0
0 BA 0 · · · 0
0 0 BA · · · 0
...

...
...

. . .
...

0 0 0 · · · BA

 (5.3)

A0 =


0 0 · · · 0 0

C1 C2 · · · 0 0
0 C1 · · · 0 0
...

...
. . .

...
...

0 0 · · · C1 C2

 (5.4)

A1 =


D BE 0 · · · 0
0 D BE · · · 0
0 0 D · · · 0
...

...
...

. . .
...

0 0 0 · · · D

 . (5.5)

with D = A− ∂A− ∂C1− ∂C2− ∂BA− ∂BE and D = D+C1 +C2, where the
notation ∂X represents a diagonal matrix with diagonal elements equal to the row
sums of X.

Numerical solution Having defined the different blocks of the QBD process,
we now focus on its solution. Recall that the state of the Markov process was
described by the triplet [n,m, i]; n is the size of the data buffer, m is the size of
the energy buffer and i is the state of the modulating process. Let π(n,m, i) be the
steady state probability to be in state [n,m, i]. A well-known method for finding
the stationary distribution of QBD processes is the matrix-geometric method. Us-
ing the vector notation πππk = (π(k,0,0),π(k,0,1), . . . ,π(k,Ce,K)), the probability
vectors can be expressed as,

πππk = πππ0Rk. (5.6)

where the so-called rate matrix R is the minimal non-negative solution of the non-
linear matrix equation

R2A0 +RA1 +A2 = 0 .

We compute the rate matrix by implementing the efficient iterative algorithm of
[10], chapter 8.
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Performance measures Once the steady state probabilities have been deter-
mined numerically, we can calculate a number of interesting performance mea-
sures for the harvesting energy sensor node. For ease of notation, we introduce
the marginal probability mass functions of the energy and the data queue content:
π(e)(m) = ∑i∈K ∑

∞
n=0 π(n,m, i) and π(d)(n) = ∑i∈K ∑

Ce
m=0 π(n,m, i).

Note that as the data queue is infinite, the throughput of the sensor node system
η equals the data arrival rate λd . In addition, we have the following performance
measures.

• The mean energy queue and the mean data queue: EQe and EQd respec-
tively,

EQe =
Ce

∑
m

π
(e)(m)m , EQd =

∞

∑
n

π
(d)(n)n .

• The variance of the energy queue and the data queue: VarQe and VarQd

respectively,

VarQe =
Ce

∑
m

π
(e)(m)m2− (EQe)

2 ,

VarQd =
∞

∑
n

π
(d)(n)n2− (EQd)

2 .

• The mean delay L (calculated based on Little’s theorem) is the average
amount of time between the arrival of a data packet its transmission:

L =
EQd

λd

• As the energy queue has finite capacity, energy harvesting may be blocked.
This happens when energy is captured but the queue is full. Hence, blocking
corresponds to the loss probability in the energy queue. The loss probability
is most easily expressed in terms of the throughput. We have,

be =
λe−η

λe
=

λe−λd

λe
.

5.4 Numerical results
We now illustrate our approach by means of some numerical examples.

Poisson arrivals and exponential data transmission opportunities As a first
example, the difference between the mean energy queue and the mean data queue
versus the capacity Ce is depicted in Figure 5.2(a). We assume that energy units
and data units arrive according to a Poisson process with parameter λe = 0.6 and
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Figure 5.2: There is a trade-off between the mean amount of stored energy and stored data
and between the delay.

λd = 0.6, respectively. The probability to use one unit of energy for data trans-
mission p equals 0.8 and the data transmission opportunities are exponentially
distributed with service rate µ equal to 1. As the figure shows, the buffer capacity
of 6 results more or less on average in the same amount of data and energy in the
buffer. Under and above the level, energy and data are on average backlogged,
respectively. Obviously, there is on average more amount of energy and less buffer
of data as the capacity increases.

Figure 5.2(b) represents the trade-off between the upper bound of the prob-
ability to have a delay higher or equal to 10 (left side) and the mean amount of
stored energy (right side). Note that we calculated the delay distribution by using
the one-sided Chebyshev’s inequality. Under the same parameter assumptions of
Figure 5.2(a), the upper bound of the probability to have a delay higher or equal to
10 decreases and the mean amount of stored energy increases as the energy capac-
ity increases for each service rate. Indeed, if more buffer capacity is available, it
will be used — the energy queue increases such that there is on average less time
required to transmit one data unit. Furthermore, we observe a slightly decrease
of the amount of energy as the service rate µ increases. Indeed, the more data is
transmitted per time unit, the higher the mean amount of energy used to transmit
data. Finally, the upper bound probability to have a delay equal or higher than 10
decreases as the service rate increases, as expected.

Markovian arrival process for energy We also quantify the impact of irregular
capture of energy. To this end we compare both buffers with Poisson arrivals to
corresponding system with interrupted Poisson arrivals for the energy and Poisson
arrivals for the data. The arrival interruptions account for inefficiency in the energy
harvesting process.
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Figure 5.3: Irregular capture of energy results in a higher mean number of stored data
packets (a) and a higher probability that the energy queue is full (b).

The interrupted Poisson process considered here is a two-state Markovian pro-
cess. In the active state, generated energy arrives in accordance with a Poisson
process with rate λe whereas no new energy arrives in the inactive state. Let α and
β denote the rate from the active to the inactive state and vice versa, respectively.
We then use the following parameters to characterise the interrupted Poisson pro-
cess (IPP),

σ =
β

α+β
, κ =

1
α
+

1
β
, λ

∗
e = λeσ .

Note that σ is the fraction of time that the interrupted Poisson process is active,
the absolute time parameter κ is the average duration of an active and an inactive
period, and λ∗e is the arrival load of energy.

Figure 5.3(a) shows the mean number of stored data packets versus the arrival
load of energy with buffer capacity Ce equal to 5 and 10 for Poisson arrivals as
well as for interrupted Poisson arrivals of energy. The probability to use one unit
of energy for data transmission equals 0.8 and transmission times are exponentially
distributed with service rate µ equal to 1. In addition, we set σ = 0.8 and κ = 10
for the interrupted Poisson process (e.g. λe = 0.8 for Poisson arrivals and λe = 1.0
for interrupted Poisson arrivals). The data arrival rate λd equals 0.6. As expected,
the mean number of stored data packets decreases as the arrival rate of energy
increases. Furthermore, the impact of the buffer capacity decreases as the arrival
rate of energy λe increases. Finally, comparing interrupted Poisson and Poisson
processes, burstiness in the energy harvesting process has a negative impact on
performance — there is on average more time required to transmit one data unit.
Figure 5.3(b) confirms the previous results. Indeed, the probability to have an
empty energy queue decreases as the buffer capacity of energy decreases and the
probability is higher for interrupted Poisson than for Poisson arrivals.
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Figure 5.4: Given the mean transmission time, the data transmission opportunity distribu-
tion has only a limited impact on the mean amount of stored energy (a) and has a significant
impact on the mean delay (b) in this case.

Phase-type distributed data transmission opportunities The last numerical
example quantifies the impact of the distribution of the data transmission opportu-
nity on the sensor node system. Figure 5.4(a) and 5.4(b) depict the mean amount of
energy in the queue and the mean delay of the sensor node system. In both figures,
the energy arrival rate λe is varied and different values of the variance of the data
transmission opportunity distribution are assumed as indicated. The probability to
use one unit of energy for data transmission p equals 0.8 and the mean service time
equals 1 for all curves. We consider a two-phase hyper-exponential distribution (in
which each phase has the same probability to occur) and a two-phase Erlang distri-
bution. Note that two corner cases coincide both with an exponential distribution:
a hyper-exponential distribution with unit variance and an Erlang distribution with
one phase. Furthermore, the data arrival rate λd equals 0.6 and the energy capacity
Ce equals 10. Clearly, Figure 5.4(a) and 5.4(b) show respectively that the energy
buffer content converges to maximum capacity and the mean delay decreases to
a certain value as the energy arrival rate increases. The second plot shows values
relative to the exponential distribution. Concerning the mean amount of stored
energy, we observe that the data transmission opportunity distribution has no sig-
nificant effect on this performance measure. However, the difference between σ2

equal to 1/2, 1 and 2 for the mean delay remains constant and is significant. Fi-
nally, the mean amount of stored energy and the mean delay show respectively a
slight decrease and increase as the variance of the data transmission opportunity
distribution σ2 increases.
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5.5 Conclusion
In this paper, we analyse the performance of different energy harvesting sensor
nodes. In particular, we investigate the impact of irregular capture of energy in
the environment as well as the data transmission opportunity distribution on the
performance of sensor node systems. In the studied system, both accumulated
energy and data needs to be available for transmission. Furthermore, we assume
that there is a probability that one unit of energy will whether or not be used to
transmit one unit of data. Therefore, the studied sensor node system is modelled as
a homogeneous quasi-birth-death process (QBD) and solved with matrix-analytic
methods.

As our numerical examples show, there is trade-off to be made between the
storage cost of energy and the service level of the sensor node, as expected —
e.g. a higher capacity causes on average a higher storage of energy and a smaller
time between data availability and data transmission. Furthermore, irregular cap-
ture of energy has a negative effect on the performance of the sensor node system.
However, system performance is partially insensitive to variation in the data trans-
mission opportunity distribution. Future work will focus on determining the total
cost of the studied sensor node system.

References
[1] IF. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci. Wireless sensor

networks: a survey, Computer Networks, 38(4), p.393–422, 2002.

[2] E. Altman, D. Fiems, M. Haddad and J. Gaillard. Semi-Dynamic Hawk and
Dove Game Applied to Power Control, Proceedings of INFOCOM 2012.

[3] E. De Cuypere, K. De Turck and D. Fiems. Performance analysis of a de-
coupling stock in a Make-to-Order system, Proceedings of the 14th IFAC
Symposium on Information Control Problems in Manufacturing, 2012.

[4] E. De Cuypere and D. Fiems. Performance evaluation of a kitting process,
Proceedings of the 17th International Conference on analytical and stochastic
modelling techniques and applications, Lecture Notes in Computer Science,
6751, 2011.

[5] M. Haddad, E. Altman, J. Gaillard and D. Fiems. A Semi-Dynamic Evolution-
ary Power Control Game, Proceedings of Networking 2012, Lecture Notes
in Computer Science, 2012.

[6] J.M. Gilbert and F. Balouchi. Comparison of Energy Harvesting Systems for
Wireless Sensor Networks, International Journal of Automation and Comput-
ing, 5, p.334, 2008.



5-12 ENERGY HARVESTING SENSOR NODE

[7] J.M. Harrison. Assembly-Like Queues, Journal of Applied Probability, 10,
p.354–367, 1973.

[8] H.S. Kim, J.-H. Kim and J. Kim. A Review of Piezoelectric Energy Harvest-
ing Based on Vibration, International Journal of Precision Engineering and
Manufacturing, 12, p.1129–1141, 2012.

[9] G. Latouche. Queues with paired customers, Journal of Applied Probability,
18, p.684–696, 1981.

[10] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in
Stochastic Modeling, SIAM, 1999.

[11] F. Meshkati, H.V. Poor and S.C. Schwartz. Energy-Efficient Resource Alloca-
tion in Wireless Networks, Signal Processing Magazine, IEEE, 24, p.58–68,
2007.

[12] D. Niyato and M.M. Rashid and V.K. Bhargave. Wireless sensor networks
with energy harvesting technologies: A game-theoretic approach to optimal
energy management, IEEE Wireless Communications, 14, p.90–96, 2007.

[13] J.A. Paradiso and T. Starner. Energy scavenging for mobile and wireless elec-
tronics, IEEE Pervasive Computing, 4, p.18–27, 2005.

[14] V. Sharma, U. Mukherji and V. Joseph. Optimal energy management policies
for energy harvesting sensor nodes, IEEE Transactions on Wireless Commu-
nications, 6, p.1326–1336, 2010.

[15] F.Y. Tsuo, H.P. Tan, Y.H. Chew and H.Y. Wei. Energy-Aware Transmission
Control for Wireless Sensor Networks Powered by Ambient Energy Harvest-
ing: A Game-Theoretic Approach, IEEE International Conference on Com-
munications, 2011.

[16] S. Wittevrongel and H. Bruneel. A heuristic analytic technique to calculate
the cell loss ration in a leaky bucket with bursty input traffic, AEU - Interna-
tional Journal of Electronics and Communications, 3, p.162–169, 1994.

[17] S. Wittevrongel and H. Bruneel. Analytic study of the queueing performance
and the departure process of a leaky bucket with bursty input traffic, AEU -
International Journal of Electronics and Communications, 1, p.1–10, 1996.



6
Performance evaluation of an energy

harvesting sensor node
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Abstract. Battery lifetime is a key impediment to long-lasting low power sen-
sor nodes and networks thereof. Energy harvesting — conversion of ambient en-
ergy into electrical energy — has therefore emerged as an alternative to battery
power. In this paper, we propose a Markovian model for studying the impact of
uncertainty in energy harvesting, energy expenditure, data acquisition and data
transmission on the performance of an energy harvesting sensor node. To this
end, the energy harvesting sensor node is described as a paired queueing system,
one queue corresponding to the energy battery and the other to the data buffer for
sensed data. We show that under non-restrictive assumptions on the data acquisi-
tion, transmission and energy harvesting processes, performance can be assessed
quickly by means of matrix-analytic methods. We illustrate our approach by means
of numerical examples and particularly highlight the effects of correlation in en-
ergy harvesting.
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6.1 Introduction

Sensor networks, formed by collections of intercommunicating sensor nodes (SN),
are used to collect and monitor spatially distributed data like temperature, humid-
ity, movement, noise, etc [1, 2, 35]. Sensor networks have a variety of applications
including military, environmental, home and health applications, see e.g. Akyildiz
et al. [1, 2] for an extensive overview of actual applications and Alemdar and
Ersoy [3] for specific applications in healthcare.

A typical SN includes a sensing subsystem, local data processing capability
and a data communication subsystem, all drawing power from an on-board battery
[26, 30]. As the lifetime of the sensor network mostly depends on the limited en-
ergy budget of its SNs, energy conservation has been a major concern in the design
of sensor networks since their inception. Indeed, the replacement of batteries is of-
ten expensive if not impossible once the SNs are deployed. According to Anastasi
et al. [5], controlling the communication subsystem is key to reducing energy con-
sumption. Ideally, the communication subsystem should be switched off when not
needed and waken up again when necessary. This basic idea is applied when oper-
ating under dynamic power management (DPM). DPM can be integrated into the
medium access control (MAC) protocol or may be implemented independently. A
detailed explanation of both approaches with a list of low duty cycle MAC proto-
cols and independent sleep/wakeup protocols are respectively given in Section 4.2
and 4.3 of [5].

Despite vast improvements on power consumption and ongoing developments
in power management, the limited energy budget of on-board batteries remains an
impediment for long-lasting sensor networks. To mitigate or overcome this depen-
dency on batteries, current research effort focusses on the development of sensors
that scavenge the necessary energy from their environment [24, 30]. This alter-
native technique is called energy harvesting. The specific nature of such wireless
sensor networks (EH-WSNs) requires a thorough understanding of the energy har-
vesting dynamics and its impact on performance. This is the subject of the present
paper. We first survey related literature.

Within the control community, Sharma et al. [29] study the optimal energy
consumption of an EH-WSN that periodically transmits data. The authors mainly
tackle existence questions. In particular, they show the existence of an α-discount
optimal and average cost optimal control policy assuming finite energy storage ca-
pacity. The same control problem is addressed by Yang and Ukulus [40], albeit in a
deterministic setting. That is, the amount of energy harvested and the data arrivals
are known in advance. Tutuncuoglu and Yener [34] consider optimal transmission
policies for short-term throughput maximisation and for transmission completion
time minimisation. Based on the concepts of information theory, Ozel and Ulukus
[23] derive optimal power allocation for a maximum average throughput and pro-
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vide a geometric interpretation for the resulting power allocation. Rajesh et al. [25]
find the Shannon capacity of a sensor node with an energy harvesting source and
show that the capacity achieving policies are related to throughput optimal poli-
cies. They also obtain the capacity when energy conserving sleep-wakeup modes
are supported and an achievable rate for a system with inefficiencies in energy stor-
age. Finally, Zhang and Seyedi [42] derive the overall probability of packet loss
in the network due to channel errors or lack of energy in the nodes. Based on this
result, a near-optimal design for dimensioning storage and harvesting components
of sensors is obtained.

Sensors being autonomous in deciding which information to transmit as well as
when to transmit, various authors propose game theoretic models; see e.g. [21] for
power control games in wireless networks. Tsuo et al. [33] consider a Bayesian
game where each node knows its local energy state. An evolutionary hawk and
dove game with harvesting nodes transmitting either at high or low power is stud-
ied in [4, 10]. With a focus on solar power, Niyato et al. [22] determined the
optimal energy management of sensor nodes adopting a sleep-wakeup strategy by
means of a bargaining game.

Other authors propose Markovian models to study EH-WSNs. In particular,
Jornet and Akyildiz [14] and Seyedi and Sikdar [27, 28] analyse the battery dy-
namics of a sensor node as a Markovian model with an energy harvesting buffer.
Ventura and Chowdhury [36] propose a similar model for an energy harvesting
body sensor network and allow for multiple sensor nodes harvesting from the same
energy source. Ho et al. [13] and Lee et al. [18] verify statistically that a Markov
modulated arrival process is appropriate for describing solar energy harvesting.
Sahu et al. [26] study stochastic stability of an energy harvesting node with data
buffering and rely on simulation to assess its performance.

The present work most closely relates to the Markovian models above but ex-
plicitly accounts for data buffering. This considerably complicates the analysis as
the energy harvesting sensor node now consists of two buffers: a finite-capacity
buffer modelling the available energy power and an infinite-capacity buffer which
tracks the temporarily stored data. Combining versatility and numerical tractabil-
ity, the energy harvesting sensor node is modelled as a Markovian queueing model
with two paired queues. Pairing refers to the coupling between the queues, data
transmission is indeed only possible if both queues are nonempty. These sys-
tems have been studied in various contexts including leaky-bucket access control
[37, 38], kitting processes [6, 9] and decoupling buffers in production systems [7].
While the Markovian setting at hand allows for computationally efficient perfor-
mance evaluation of the EH-WSN, it is not limiting in terms of versatility. Indeed,
the introduction of a Markovian environment variable allows for time-correlation
in both energy harvesting and data collection (cfr. infra).

Independently of the availability of sufficient battery power, we assume that the
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Figure 6.1: Stochastic model of energy harvesting for low power sensor nodes.

EH-WSN cannot send continuously and may require local storage as to await the
next transmission opportunity. The introduction of these transmission opportuni-
ties is motivated by but not limited to scenarios where a mobile sink is responsible
for data collection. A mobile sink moves towards the energy harvesting sensor
node and can gather the sensed data only when it is located in the transmission
range of the sensor node (and when there is sufficient energy to transmit). As
shown by the literature, sink mobility can improve the overall performance of a
wireless sensor node network [39, 19, 41, 20, 32]. Turgut and Bölöni [39] worked
on the transmission scheduling problem of sensor nodes using mobile sinks. In
particular, they develop a graph-theory-based optimal algorithm in order to min-
imise the energy consumption and the data loss of each node modelled as an au-
tonomous agent. Yun and Xia [41] propose a framework to maximise the network
lifetime by using a mobile sink. In this work, data is stored temporarily at the
sensor node and is transmitted when the mobile sink is at the most favourable lo-
cation. Liang et al. [19, 20] incorporate the travel distance of mobile sinks into
the problem formulation and proposed heuristics to find a feasible trajectory for
each mobile sink so that the network lifetime can be maximised. Ren and Liang
[32] formulate an optimisation problem to find an optimal close trajectory for the
mobile sink and to schedule the sojourn time at each sojourn location such that the
network throughput is maximised.

The remainder of this paper is organised as follows. The EH-WSN model
under investigation and the notationally conventions are introduced in the next
section. In Section 6.3, the stochastic process at hand is analysed as a quasi-
birth-death process (QBD). Also, the numerical solution methodology is discussed
and relevant performance measures are determined. To illustrate our approach,
Section 6.4 considers various numerical examples. Finally, conclusions are drawn
in Section 6.5.

6.2 Model description

Noting that a battery operates very much like a queue — energy chunks being
the “customers” in the queue, see [14] — the energy harvesting sensor node is
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modelled as a queueing system with two queues as depicted in Figure 6.1. Data
transmission is only possible when (i) there is sufficient energy, (ii) there is sensed
data available and (iii) there is a transmission opportunity. The stochastic processes
that describe data collection and storage, energy harvesting and storage, energy
expenditure and transmission opportunities are described below.

Concerning data acquisition, we assume that the sensor picks up data in accor-
dance with a Markovian arrival process with state space A . Let Ω1

A and Ω0
A denote

the generator matrices governing state transitions with and without data packet ar-
rivals respectively. Sensed data is temporarily stored in the data buffer which has
infinite capacity.

Remark 1. Here and in the remainder, we assume that generator matrices
only collect the transmission rates. Hence, the diagonal elements of the generator
matrices of unmarked transmissions like Ω0

A are zero. Of course marked trans-
missions without state change are possible such that the diagonal elements of the
generator matrices of the marked transitions like Ω1

A may be non-zero.

Analogously, energy harvesting is modelled by a Markovian arrival process
with state space E in accordance with the findings in [13]. Let Ω1

E and Ω0
E denote

the generator matrices governing the state transitions with and without energy ar-
rivals respectively. The energy queue has finite capacity Ce to reflect limitations
in energy storage. We however do not subscribe to the energy chunk paradigm
where each customer in the energy queue represents a chunk of energy. Instead,
we associate queue content with energy levels, the difference being that a packet
transmission does not necessarily requires a complete chunk of energy and that an
“energy arrival” corresponds to an increase of the energy level. While our mod-
elling assumptions still allow for considering the battery as a storage for energy
chunks, dropping the energy chunks in favour for energy levels enables one to
describe the dynamics of large batteries with less Markovian states which in turn
decreases the numerical complexity of the performance evaluation.

To introduce energy expenditure and transmission, a third marked Markov pro-
cess is introduced with state space D . This Markov process describes the depar-
tures from both energy and data queue and its generator matrices therefore depend
on whether or not data and energy is available. When both data buffer content and
energy level are non-zero, let Ωe

D, Ωd
D, Ωde

D and Ω0
D denote the generator matrices

governing the transitions when the energy level decreases, when there is a data
transmission completed, when the energy level decreases and a data transmission
is completed and when there is a state transition with neither an energy drop nor a
transmission completion respectively. When there is energy available and no data
in the buffer, let Ω̂e

D and Ω̂0
D denote the generator matrices governing the tran-

sitions when there is a decrease of energy and when there is no decrease of the
energy level. Finally, when there is no energy available, data transmission is also
not possible. Hence in these case only non-marked state transitions are possible.
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Let Ω̃D denote the corresponding generator matrix. The following two examples
illustrate the versatility of the introduced marked Markov process above.

Example 1. As a first example, consider an exogenous Markov process which
neither depends on queue content nor energy level. Let ΩD be its generator matrix
and let its state space D be partitioned into two non-overlapping sets Da and Db.
The chain describes the availability of a receiver (like a mobile sink): transmis-
sions occur at a rate µ when the chain is in Da (when there is data to send) and
there are no transmissions while being in Db. We further assume that the energy
buffer depletes at a rate θa during data transmission and at a rate θb when there is
no transmission. In accordance with [28] and [14], energy is required to communi-
cate with other nodes and to sense, compute and store data. This required amount
of energy increases during data transmission such that θa > θb. In this case, there
are no simultaneous departures from the data and energy queue. Hence, we have,

Ω
de
D = 0 .

While there is data and energy, the depletion rates of data and energy queues de-
pend on the state of the exogenous Markov process,

Ω
d
D =

[
µIa 0
0 0

]
, Ω

e
D =

[
θaIa 0

0 θbIb

]
,

where Ia and Ib are identity matrices of size |Da| and |Db|, respectively. In the
absence of data there are no data transmissions such that,

Ω̂
e
D = θbID ,

with ID the identity matrix of size |D|. Finally, as the state of the Markov process
changes independently of the presence of data and energy, we have,

Ω
0
D = Ω̂

0
D = Ω̃D = ΩD .

Example 2. Assuming the energy chunk paradigm, every data transmission
requires a single energy chunk from the battery and there is no energy loss when
there is no data. Hence, only simultaneous departures from both data and energy
queue are possible. This implies Ωe

D = Ωd
D = Ω̂e

D = Ω̂e
D = 0. Adopting the exoge-

nous Markov process with generator matrix ΩD from the preceding example, state
changes of this Markov process do not depend on the presence of data and energy
such that,

Ω
0
D = Ω̂

0
D = Ω̃D = ΩD .

Again assuming that transmissions occur at a rate µ when the chain is in Da and
that there are no transmissions while being in Db, the remaining generator matrix
Ωde

D then has the block matrix representation,

Ω
de
D =

[
µIa 0
0 0

]
.
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6.3 Analysis
We now show that the Markov process at hand is a quasi-birth-death-process
(QBD) and derive expressions for a number of performance measures of interest.
We first introduce some auxiliary matrices.

6.3.1 Auxiliary matrices

We first describe the transition matrices of the marked Markov process that tracks
all state information except the queue content and the energy level. This Markov
process has state space K = E ×A ×D = {1, . . . ,K} and its transition matrices
depend on the presence of data and energy. Let IE , IA and ID denote identity ma-
trices with size |E |, |A | and |D|, respectively and note that the symbol ⊗ denotes
the Kronecker’s product.

• When both energy level and queue content are non-zero, the unmarked tran-
sitions (when there are neither arrivals nor departures) are governed by,

A = Ω
0
E ⊗ IA⊗ ID + IE ⊗Ω

0
A⊗ ID + IE ⊗ IA⊗Ω

0
D .

Analogously, when there is energy but no data and when there is neither
energy nor data, the unmarked transitions are governed by,

Â = Ω
0
E ⊗ IA⊗ ID + IE ⊗Ω

0
A⊗ ID + IE ⊗ IA⊗ Ω̂

0
D .

and,
Ã = Ω

0
E ⊗ IA⊗ ID + IE ⊗Ω

0
A⊗ ID + IE ⊗ IA⊗ Ω̃D ,

respectively.

• The matrix BE governs the transitions when there is an arrival in the battery:

BE = Ω
1
E ⊗ IA⊗ ID .

• The matrix BA governs the transitions when there is an arrival in the data
buffer:

BA = IE ⊗Ω
1
A⊗ ID .

• The marked transitions when the energy level drops and/or when there is a
transmission again depend on the presence of data and energy. When there
is both data and energy, let CD, CE and CDE denote the generator matrices
governing the transitions when there is a transmission, an energy drop or
both, respectively:

CD = IE ⊗ IA⊗Ω
d
D ,

CE = IE ⊗ IA⊗Ω
e
D ,
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CDE = IE ⊗ IA⊗Ω
de
D .

When there is energy but no data, the matrix governing the transitions when
the energy level decreases is given by,

ĈE = IE ⊗ IA⊗ Ω̂
e
D .

Remark 2. In the remainder, all results will be expressed in terms of the
matrices as defined above. These results remain valid when the different arrival
processes are intercorrelated as well. In that case there is a single marked Markov
process, with marks for data arrivals, energy arrivals and data transmissions.

6.3.2 Quasi-birth-death process

Having defined these transition matrices, we now describe the queueing model at
hand as a quasi-birth-death process. Let Q(t) and C(t) be the number of packets
and the energy level at time t. Moreover, let E(t), A(t) and D(t) be the state of
the energy, data, and transmission process, respectively. The state (in the Mar-
kov sense) of the sensor node at time t can then be represented by the vector
[Q(t),C(t),E(t),A(t),D(t)] ∈ N× C ×K . For ease of notation, we further de-
scribe the state of the system by the triplet [n,m, i], n∈N being the number of data
packets available, m ∈ C being the battery level and i ∈ K being the state of the
modulating chain. Finally, the energy harvesting sensor node system is assumed
to be a continuous-time Markov process with infinite state spaceN×C ×K .

The studied Markov process is a homogeneous quasi-birth-death process (QB-
D), see [17]. In the present setting, the level or block-row index, indicates the data
packets available while the phase, i.e. the index within a block element, indicates
both the battery level and the state of the modulating chain. The one-step transi-
tions are restricted to states in the same level (from state [n,∗,∗] to state [n,∗,∗]) or
in two adjacent levels (from state [n,∗,∗] to state [n+1,∗,∗] or state [n−1,∗,∗]).

We then find the generator matrix of the Markov process with the following
block matrix representation,

Q =


B0 A2 0 0 · · ·
A0 A1 A2 0 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

...
. . .

 . (6.1)
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The blocks are given by,

B0 =



Ã BE 0 · · · 0
ĈE Â BE · · · 0
0 ĈE Â · · · 0
...

...
...

. . .
...

0 0 0 · · · Â


, (6.2)

A0 =


0 0 · · · 0 0

CDE CD · · · 0 0
0 CDE · · · 0 0
...

...
. . .

...
...

0 0 · · · CDE CD

 , (6.3)

A1 =


Ã BE 0 · · · 0

CE A BE · · · 0
0 CE A · · · 0
...

...
...

. . .
...

0 0 0 · · · A

 , (6.4)

A2 =


BA 0 0 · · · 0
0 BA 0 · · · 0
0 0 BA · · · 0
...

...
...

. . .
...

0 0 0 · · · BA

 . (6.5)

Having defined the different blocks of the QBD process, we now focus on the
solution method. Recall that the state of the Markov process is described by the
triplet [n,m, i]; n is the size of the data buffer, m is the size of the battery and i is
the state of the modulating chain. Let π(n,m, i) be the steady state probability to
be in state [n,m, i] and let πππ be the vector with elements π(n,m, i). The vector πππ

satisfies the balance equations,

πππ(Q−∂Q) = 0 .

Here the notation ∂X represents a diagonal matrix with diagonal elements equal to
the row sums of X . A well-known method for finding the stationary distribution
of QBD processes is the matrix-geometric method. Using the vector notation πππk =

(π(k,0,1), . . . ,π(k,Ce,K)), the probability vectors can be expressed as,

πππk = πππ0Rk. (6.6)
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where the so-called rate matrix R is the minimal non-negative solution of the non-
linear matrix equation

R2A0 +RĀ1 +A2 = 0 ,

with Ā1 =A1−∂A0−∂A1−∂A2. We compute the rate matrix by implementing the
improved iterative algorithm of [17, chapter 8, p.179-187]. Once the rate matrix is
found, the remaining unknown vector πππo is the unique solution of,

πππ0(I−R)−11 = 1 , πππ0(B̄0 +RA2) = 0 ,

with B̄0 = B0−∂A2 and where I is the identity matrix of size |K |(Ce +1) and 1 is
a column vector of ones.

6.3.3 Performance measures

Once the steady state probabilities have been determined numerically, we can cal-
culate a number of interesting performance measures for the harvesting energy
sensor node. For ease of notation, we introduce the marginal probability mass
functions of the battery level π(e)(m) and of the data buffer content π(d)(n),

π
(e)(m) = ∑

i∈K

∞

∑
n=0

π(n,m, i) ,

π
(d)(n) = ∑

i∈K

Ce

∑
m=0

π(n,m, i) .

Following performance measures can be computed from the analysis.

• The mean data buffer content EQd :

EQd =
∞

∑
n=1

π
(d)(n)n .

• Expressed in percentage, the mean battery level be is the average amount of
energy in the battery relative to its maximum capacity:

be =
EQe

Ce

where

EQe =
Ce

∑
m=1

π
(e)(m)m .

• The variance of the battery level and the data buffer content: VarQe and
VarQd respectively,

VarQe =
Ce

∑
m=1

π
(e)(m)m2− (EQe)

2 ,
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Battery capacity Ce 20
Data packet arrivals

Poisson λd 0.01
Energy reception

Poisson λe 0.5

IPP
σe 0.5
κe 10
λe 0.5

Type of transmission

On-off process κt 10
σt 0.1

Data transmission
Exponential (exp) µ 1.0

Energy expenditure
Idle θb 0.5
Sending θa 0.7

Table 6.1: Parameter values of the studied energy harvesting sensor nodes.

VarQd =
∞

∑
n=1

π
(d)(n)n2− (EQd)

2 .

• The mean data delay LT (calculated based on Little’s theorem) is the average
amount of time between the arrival of a data packet and its transmission:

LT =
EQd

λ
.

Here λ is the arrival rate. The latter can be determined from the following
expressions,

λ = τττΩ
1
A1 ,

with τττ the unique normalised solution of,

τττ(Ω0
A +Ω

1
A−∂Ω

0
A−∂Ω

1
A) = 0 .

6.4 Numerical results

Having established the modelling assumptions and the numerical analysis, we now
evaluate the performance of an energy harvesting sensor node that is randomly
visited by a mobile sink. Assuming no simultaneous departures from the data and
energy queue during data transmission, we adopt the assumptions of Example 1
of Section 6.2. For further reference, the parameter values used throughout this
section are displayed in Table 6.1. These parameter values are chosen only by way
of illustration and are not to be considered as limiting.
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We first assess the impact of irregularity in the energy harvesting process, by
comparing Poisson arrivals and interrupted Poisson arrivals of energy. The inter-
rupted Poisson process considered here is a two-state Markov process. In the active
state, energy arrives in accordance with a Poisson process with rate λ∗e whereas no
new energy arrives in the inactive state. Let αe and βe denote the rate from the
active to the inactive state and vice versa, respectively. For convenience, we use
the more intuitive parametrisation (σe,κe,λe), with

σe =
βe

αe +βe
, κe =

1
αe

+
1
βe

, λe = λ
∗
eσe .

where σe is the fraction of time in which the interrupted Poisson process is active,
the absolute time parameter κe is the average duration of an active and an inactive
period, and λe is the average arrival rate of harvested energy.

Figure 6.2 depicts the mean battery level be (recall that be is expressed as a
percentage of the total battery capacity) and the mean data delay LT versus the
average arrival rate of harvested energy λe. Here, for fair comparison, λe is the
arrival rate for the Poisson process and the average arrival rate for the IPP as de-
fined above. For the IPP, we set σe = 0.5 and κe = 10. Data transmission times
are exponentially distributed with service rate µ = 1 and the battery level depletes
at a rate θa = 0.7 during data transmission and at a rate θb = 0.5 when there is no
transmission. The availability of the mobile sink is captured by a two-state on-off
process. Let αt and βt be the rates from on to off and from off to on respectively.
Again, the alternative characterisation (σt ,κt) is used, with

σt =
βt

αt +βt
, κt =

1
αt

+
1
βt

.

The fraction of time in which the mobile sink is available to receive the data of
the sensor node equals σt = 10% and the average duration of an available and
non-available period equals κt = 10. Finally, we assume that data packets arrive
according to a Poisson process with rate λd = 0.01. Figure 6.2 shows that the
mean battery level increases and the mean data delay decreases, when the energy
harvesting rate increases, as expected. The effect of correlation in the energy har-
vesting process is less trivial. For low λe, we see that the mean battery level is
higher when there is correlation. This is easily explained by the fact that we have
longer periods where the battery level increases, followed by longer periods where
it decreases. When λe is high, we notice the opposite effect. Here the finite ca-
pacity of the battery comes into play. The battery cannot gain from longer periods
of energy harvesting as for higher λe the battery fills quickly and excess energy is
lost while the battery drains during longer periods without harvesting. For all λe,
we see that correlation negatively affects the mean waiting time. Correlation in
the harvesting process leads to longer periods with and without energy, such that
transmissions are more often postponed due to a lack of energy.
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Figure 6.2: The mean battery level and the mean data delay with Poisson and interrupted
Poisson energy arrivals.

Figure 6.3 depicts the probability mass functions of the battery level be with
capacity Ce = 40 and for Poisson and interrupted Poisson arrivals with λe equal to
0.2, 0.5 and 1.0. The other parameter values are given in Table 6.1. For λe = 1.0,
the inventory is filled up considerably faster than it is depleted for both Poisson
and IPP harvesting. The battery is hardly ever empty in this case; the probability
mass function is concentrated on high battery levels. Note that this situation is
obviously the most favourable for the performance of the energy harvesting sensor
node. Note also that, as the queue is in overload, the assumption of a limited
battery capacity is of main importance as it avoids the model to degrade to an
unstable stochastic system [16]. In contrast, when λe = 0.2, the battery level is
most often empty or of limited size. Reaching the battery capacity is a rare event
in this case. Finally, for λe = 0.5, we have a more or less equal probability to be in
one of the different battery levels. Comparing Poisson and IPP harvesting, we see
that for λe = 1.0, the probability mass for IPP is less concentrated than for Poisson
which confirms the harvesting loss noted in the preceding figure. Although less
out-spoken, we see the same for λe = 0.2 which is explained by longer periods of
harvesting during which higher energy-levels can be reached.

To further assess the impact of correlation, Figures 6.4 and 6.5 depict the mean
battery level and mean data delay for λe equal to 0.3, 0.5 and 1.0 versus log(κe).
We refer to table 6.1 for the remaining parameter values. As Figure 6.4 shows,
depending on the energy harvesting rate, the mean battery level decreases, is about
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Figure 6.3: Probability mass functions of the battery level for λe equal to 0.2, 0.5 and 1.0.

constant or increases as the absolute time parameter κe increases. This confirms
and complements the observations of Figure 6.2. When λe equals 1.0, the longer
the average period in which data is harvested, the higher the probability that energy
arrivals cannot be stored in the battery as the maximum capacity is already attained.
Hence, an increase in κe decreases the mean battery level. In contrast, when λe

equals 0.3, the battery is hardly ever full such that the longer the average period in
which harvested energy does and does not arrive, the larger the mean battery level.
Lastly, when λe equals 0.5, κe has no significant influence on the mean battery
level in the considered set of parameter values. Notice that this value is equal to the
mean depletion rate in absence of data. In Figure 6.5, the mean data delay increases
as the absolute time parameter κe increases. Indeed, a larger κe induces longer
periods without energy, such that the average number of data packets waiting in
the buffer and their waiting times increases.

In Figure 6.6, we depict the mean data delay and the mean battery level with
interrupted Poisson energy arrivals versus the data arrival rate λd . We assume
transmission rates µ equal to 0.8, 1.0 and 1.2. The other parameter values are given
in Table 6.1. As expected, the mean data delay increases and the mean battery level
decreases as the data arrival rate increases. Also, both effects are enhanced when
the data transmission rate decreases and the data arrival rate increases.

Finally, we study the impact of the absolute time parameter of the mobile sink
availability process κt on the performance of an energy harvesting sensor node.
Figure 6.7 and 6.8 depict the mean battery level and the mean data delay for σt
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Figure 6.4: The mean battery level for different energy harvesting rates.
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Figure 6.5: The mean data delay for different energy harvesting rates.
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Figure 6.6: The mean data delay and the mean battery level for different transmission rates.

equal to 0.025, 0.05 and 0.1 versus κt . The remaining parameter values are given
in Table 6.1. As the figures show, the larger the fraction of time in which the mobile
sink is available, the more data packets can be transmitted, the more energy is de-
pleted. Hence, the mean battery level increases and the mean data delay decreases
as σt increases. In Figure 6.7, we further observe that the values for κt and σt have
but a small impact on the mean battery level. We observe a decrease followed by
an increase of mean battery level as κe increases. This contrasts with Figure 6.8,
where a significant increase of the mean waiting time is observed for increasing κt .
Indeed, the longer the periods in which the mobile sink is not available to transmit,
the more data packets wait in the buffer on average.

6.5 Conclusion

In this paper, we analysed the performance of an energy harvesting sensor node
under uncertainty in energy harvesting, energy depletion, data acquisition and data
transmission. To this end, energy harvesting sensor nodes are described as sto-
chastic models with two queues: the battery and the data packet backlog. Indepen-
dently of the battery level, the sensor node can transmit sensed data to the receiver
only when it is located in the transmission range of the sensor node. The intro-
duction of these limited transmission opportunities is motivated by but not limited
to scenarios where a mobile sink is responsible for data collection. Hence, data
transmission is only possible when there is sufficient energy, a data packet avail-
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Figure 6.7: The mean battery level for different fractions of time that the mobile sink is
available.
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Figure 6.8: The mean data delay for different fractions of time that the mobile sink is
available.
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able and a transmission opportunity. Methodologically, the developed queueing
system is analysed as a homogeneous quasi-birth-death process (QBD) and solved
with matrix-analytic methods. By means of numerical examples, we evaluated the
impact of different parameters on the performance of an energy harvesting sensor
node. Correlation in the energy harvesting process decreases the performance of
the energy harvesting sensor node: data packets wait longer on average. Also, if
the energy harvesting rate is high, correlation induces long periods with more en-
ergy arrivals than can be stored in the battery with finite capacity. Hence, the mean
battery level decreases.
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Abstract. Motivated by kitting processes in assembly systems, we consider a
Markovian queueing system with K paired finite-capacity buffers. Pairing means
that departures from the buffers are synchronised and that service is interrupted if
any of the buffers is empty. To cope with the inherent state-space explosion prob-
lem, we propose an approximate numerical algorithm which calculates the first N
coefficients of the Maclaurin-series expansion of the steady-state probability vec-
tor in O(KNM) operations, M being the size of the state space.

7.1 Introduction

We consider a system of K queues, each queue having finite capacity. Let Ci denote
the capacity of the ith queue. Moreover, for each of the queues, customers arrive
in accordance with an independent Poisson process, let λi > 0 denote the arrival
rate in queue i. Departures from the different queues are paired which means that
there are simultaneous departures from all queues with rate µ as long as all queues
are non-empty. If one of the queues is empty, there are no departures.

The queueing system at hand is motivated by kitting processes in assembly
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systems. A kitting process collects the necessary parts for a given end product in a
container prior to assembly. While conceptually simple, kitting comes with many
advantages. Kitting clearly mitigates storage space requirements at the assembly
station since no part inventories need to be kept there. Moreover, parts are placed
in proper positions in the container such that assembly time reductions can be
realised [3, 9]. A kitting process is obviously related to a paired queueing system:
the inventories of the different parts that go into the kit correspond to the different
buffers, the kitting time corresponds to the service time and kitting is blocked if
one or more parts are missing.

Paired queueing systems have been studied by various authors. Harrison [4]
studies stability of paired queueing under very general assumptions: K≥ 2 infinite-
capacity buffers, generally distributed interarrival times at the different buffers and
generally distributed service times. He shows that it is necessary to impose a re-
striction on the size of the buffer to ensure stability of the queueing system. In
particular, the distribution of the vector of waiting times (in the different queues)
of the components of a paired customer is shown to be defective. The inherent in-
stability was also demonstrated in [8] where the excess — the difference between
the queue sizes — is studied in the two-queue case. Assuming finite capacity
buffers, Hopp and Simon developed a model for a two-buffer kitting process with
exponentially distributed processing times for kits and Poisson arrivals [5]. The
exponential service times and Poisson arrival assumptions were later relaxed in
[12] and [2], respectively. For paired queueing systems with more than two finite
buffers, the size of the state-space of the associated Markov process grows quickly,
even for the case of Poisson arrivals and exponential service times. Hence, most
authors focus on approximations; a recent account on approximations of multi-
buffer paired queueing systems can be found in [10]. Also the present letter inves-
tigates approximations for multi-buffer paired queueing systems. In particular, we
propose a numerical evaluation method for Markovian paired queueing systems
which relies on a Maclaurin-series expansion of the steady-state probability vec-
tor. For an overview on the technique of series expansions in stochastic systems,
which is known under the names light traffic analysis or stochastic perturbation,
we refer the reader to the surveys in [1, 7]. Finally, we note that the paired queue-
ing system somewhat resembles a fork-join queueing system; see e.g. [6] and the
references therein. However, in fork-join queueing systems both arrivals and de-
partures in the different buffers are synchronised, which leads to entirely different
dynamics.
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7.2 Maclaurin-series expansion

As arrivals in the different queues are modelled by Poisson processes and the ser-
vice time distribution is exponential, the state of the system is described by a vec-
tor i ∈ C whose kth element corresponds to the queue size of the kth buffer. Here
C = C1× . . .×CK denotes the state space of this continuous-time Markov process
(CTMC), with Ck = {0,1, . . . ,Ck} being the set of possible levels of queue k. Let
π(i) be the steady-state probability of state i, i∈C . These steady-state probabilities
satisfy the following set of balance equations,

π(i1, i2, . . . , iK)

(
µ

K

∏
`=1

1{i`>0}+
K

∑
`=1

1{i`<C`}λ`

)
=

π(i1 +1, i2 +1, . . . , iK +1)µ
K

∏
`=1

1{i`<C`}

+
K

∑
`=1

π(i1, . . . , i`−1, i`−1, i`+1, . . . , iK)λ`1{i`>0} , (7.1)

for all i = (i1, i2, . . . , iK) ∈ C and where 1{x} is the indicator function which equals
one if x is true and equals zero otherwise. While the former system of equations
is easily solved if there are only a few queues with low capacity, the size of the
state space explodes for even a moderate number of queues and reasonable queue
capacities and a direct solution is computationally infeasible.

To mitigate this state space explosion problem, we rely on a Maclaurin-series
expansion in µ. It is shown in the appendix that π(i) is analytic in µ = 0 and
therefore admits the representation,

π(i) =
∞

∑
n=0

πn(i)µn ,

for 0 ≤ µ < µ0 and for i ∈ C . Here µ0 is a non-negative value for which a lower
bound is provided in the appendix.

Substituting the former expression in the balance equations yields,

∞

∑
n=0

πn(i1, i2, . . . , iK)µn

(
µ

K

∏
`=1

1{i`>0}+
K

∑
`=1

1{i`<C`}λ`

)
=

∞

∑
n=0

πn(i1 +1, i2 +1, . . . , iK +1)µn+1
K

∏
`=1

1{i`<C`}

+
∞

∑
n=0

K

∑
`=1

πn(i1, . . . , i`−1, i`−1, i`+1, . . . , iK)λ`µn1{i`>0} . (7.2)
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For i ∈ C ∗ = C \{[C1,C2, . . . ,CK ]}, comparing the terms in µ0 on both sides of the
former equation yields,

π0(i1, i2, . . . , iK) = 0 , (7.3)

whereas comparing the terms in µn for n > 0 gives,

πn(i1, i2, . . . , iK) =
1

∑
K
`=1 1{i`<C`}λ`

×(
1{n>0}πn−1(i1 +1, i2 +1, . . . , iK +1)

K

∏
`=1

1{i`<C`}

+
K

∑
`=1

πn(i1, . . . , i`−1, i`−1, i`+1, . . . , iK)λ`1{i`>0}

−1{n>0}πn−1(i1, i2, . . . , iK)
K

∏
`=1

1{i`>0}

)
. (7.4)

For i = c .
= [C1,C2, . . . ,CK ], such a comparison does not yield an expression for

πn(i). To determine the remaining unknown, we invoke the normalisation condi-
tion:

∑
i∈C

π0(i) = 1 , ∑
i∈C

πn(i) = 0 .

Solving for πn(c) then yields,

π0(c) = 1 , πn(c) =− ∑
i∈C ∗

πn(i)

Once the series expansions of the steady state distribution has been obtained,
the expansion of various performance measures directly follows. Let X ∼ π, then
for a performance measure J = E[ f (X)] we have,

J = ∑
i∈C

f (i)π(i) = ∑
i∈C

f (i)
∞

∑
n=0

πn(i)µn =
∞

∑
n=0

∑
i∈C

f (i)πn(i)µn =
∞

∑
n=0

Jnµn , (7.5)

for 0≤ µ < µ0 with,
Jn = ∑

i∈C
f (i)πn(i) .

The interchange of the summations is justified by the finiteness of C and the con-
vergence of ∑n πn(i)µn for all i ∈ C . As such, any term Jn in the expansion of
a performance measure J can be calculated from the corresponding vector πn of
the expansion of the steady-state vector. Performance measures of interest in-
clude amongst others the `th order moment of the queue content of the kth queue
( f (i) = i`k), the blocking probability ( f (i) = 1−∏

K
j=1 1{i j>0}) and the throughput

( f (i) = µ∏
K
j=1 1{i j>0}).
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Computational complexity From (7.4), calculation of πn(i) takes at most K+2
additions and one division (assuming the rate sums are known). Hence, the compu-
tational complexity of calculating πn is O(KM), with M = |C | the size of the state
space. Having the same complexity for every additional term in the expansion,
calculating the first N coefficients then has complexity O(KMN).

As the size of the state space is very large, limited memory consumption is
equally important. To limit memory consumption to the size of storing only one
steady-state vector one can proceed as follows. Assuming one is mainly interested
in the expansion of a number of performance measures, note that once the nth term
of the expansion of the steady state vector is determined, the corresponding terms
in the expansions of various performance measures can be determined as well; see
(7.5). Hence, there is no need to keep track of previous terms of the expansion of
steady-state probabilities unless they are required for further calculations of coef-
ficients of steady state probabilities. From (7.4) one sees that πn(i) is expressed in
terms of πn−1(j), with j larger then i (lexicographically). This means that the coef-
ficients of the vector πn−1 can be overwritten progressively during the calculation
of πn and memory for only one vector of size M is needed.

7.3 Numerical results

To illustrate our series expansion approach, we now assess its accuracy by means
of some numerical examples. First, consider a system with K = 5 paired queues,
each queue having capacity C = 10. Moreover, the arrival intensity at each queue
is equal to λ = 1. Hence, the paired queueing system is symmetric and perfor-
mance measures are equal for all queues. Figures 7.1(a) and 7.1(b) depict the
mean queue content and the blocking probability in a queue versus the service rate
µ, respectively. For both figures, series expansions of various orders are depicted
as indicated (N = 1,2,5 for Figure 7.1(a) and N = 10,11,12 for Figure 7.1(b)),
as well as simulation results which allow for assessing the accuracy of the series
expansions. As expected, the mean queue content decreases and the blocking prob-
ability increases as the service rate µ increases. Moreover, for µ= 0, the queues are
completely filled as there is no service. From Figure 7.1(a), it is observed that the
approximation method at hand is accurate for low orders of the expansion (N = 5)
whereas more terms are needed to accurately determine the blocking probability
(N = 12); see Figure 7.1(b). As the computation time of the series expansion is
linear in the number of terms in the expansion, accurately assessing the block-
ing probability takes more than twice the computation time of assessing the mean
queue content.

Figure 7.2(a) depicts the mean of the queue content of the first and second
queue out of 5 paired queues, whereas Figure 7.2(b) depicts the corresponding
variances. For both figures, the expansion of order N = 20 is compared with sim-
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Figure 7.1: Mean queue content (a) and blocking probability (b) for a symmetric paired
queueing system.
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Figure 7.2: Mean (a) and variance (b) of the queue content of an asymmetric paired queue-
ing system.

ulation results. The capacity equals 10 for all queues, and the arrival intensity in
all but the first queue equals λi = 1, i = 2, . . . ,5. The arrival rate in the first queue
is lowered to λ1 = 0.8. In comparison with the symmetric paired queueing sys-
tem of Figure 7.1(a), the mean queue content increases for the second queue. This
does not come as a surprise. Decreasing the arrival rate in the first queue implies
that this queue is empty more often, thereby blocking service in the other queues.
Finally, note that the variance increases for increasing µ, µ = 0 corresponds to
the case that the queue content deterministically equals the queue capacity for all
queues, hence the variance is zero.
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Appendix: Convergence of the power series
We now justify the series expansion. The basic ideas in this section date back to the
seminal work of Schweitzer [11]. The series expansion is validated by explicitly
constructing such an expansion. We first introduce some additional notation and
the basic notion of the deviation matrix of a CTMC.

Let πππ(µ) denote the steady state solution [π(i)]i∈C of the balance equations. We
have made the dependence of πππ(µ) on µ explicit for ease of notation. The balance
equations can then be written in matrix notation as follows,

πππ
(µ)Q(µ) = πππ

(µ)(Q0 +µQ1) = 0 , (7.6)

where Q(µ) is the |C |× |C | generator matrix of the CTMC and where Q0 and Q1

are known matrices that do not depend on µ. In view of the system assumptions
it is readily seen that Q(0) = Q0 only has one recurrent state, i.e. c (the full state)
is recurrent and all the others are transient. Therefore, the stationary vector πππ(0)

exists, with state π(0)(c) = 1 and π(0)(i) = 0 for i ∈ C ∗.
Let D0 be the deviation matrix of the CTMC with generator matrix Q0,

D0 =
∫

∞

0
(P0(t)−Π0)dt . (7.7)

Here the family {P0(t) = exp(Q0t), t ≥ 0} is the Markov semigroup of the CTMC,
and Π0 = limt→∞ P0(t) = 1′πππ(0), 1′ being a column vector of ones. As the state-
space C is finite, the deviation matrix is well defined. Moreover, the deviation
matrix satisfies D01′ = 0 — the row sums are zero — and,

D0Q0 = Q0D0 = Π0− I . (7.8)

Theorem 1. The solution πππ(µ) of the CTMC adheres to the following power series
expansion,

πππ
(µ) =

∞

∑
k=0

(
πππ
(0)(Q1D0)

k
)

µk , (7.9)

for 0 ≤ µ < µ0, µ−1
0 being the spectral radius of Q1D0. Moreover, µ0 is bounded

from below by µ∗0 and µ∗1,

µ∗0 =

2
∫

∞

0

(
1−

K

∏
k=1

F(t;Ck,λk)

)
dt

−1

≥

(
2

K

∑
k=1

Ck

λk

)−1

= µ∗1 ,

with F being the Erlang distribution,

F(t;Ck,λk) = 1−
Ck−1

∑
n=0

1
n!

e−λkt(λkt)n .
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Proof Multiplying (7.6) by D0 and invoking (7.8) yields,

πππ
(µ)(Q0 +µQ1)D0 = πππ

(µ)(Π0− I)+πππ
(µ)µQ1D0 = 0 .

Moreover, we have πππ(µ)Π0 = πππ(µ)1′πππ(0) = πππ(0), such that,

πππ
(µ)(I−µQ1D0) = πππ

(0) .

The spectral radius of µQ1D0 is µ/µ0. Hence for µ < µ0, (I−µQ1D0) is invertible
and the Neumann series converges to the inverse,

∞

∑
k=0

(µQ1D0)
k = (I−µQ1D0)

−1 .

Combining the previous expressions immediately yields the series expansion (7.9).
As all elements but the last column of Π0 are zero, only the last column of D0

may contain negative values; see (7.7). Moreover, the row sums of D0 are zero,
hence the last column is equal in absolute value to the sum of the other columns.
The entries in the last column of D0 have the following interpretation,

[D0]ic =−
∫

∞

0
(1− [P0(t)]ic)dt =−E[Ti] ,

where Ti is a random variable denoting the time it takes to reach the full state c from
state i (assuming no departures). This interpretation shows that γ

.
= E[T0] ≥ E[Ti]

for all i ∈ C where 0 denotes the empty state.
The time to fill up the ith queue is Erlang distributed with Ci stages and rate λi

and the time to fill up all queues is the maximum of K Erlang distributed random
variables. Therefore, the cumulative distribution of T0 is the product of K Erlang
distributions and γ is calculated by integrating this distribution,

γ =
∫

∞

0

(
1−

K

∏
k=1

F(t;Ck,λk)

)
dt .

Moreover, the maximum of K non-negative random variables is bounded from
above by the sum of these random variables, which yields the following crude
upper bound for γ,

γ≤
K

∑
k=1

Ck

λk
, (7.10)

the kth term in the sum on the right-hand side corresponding to the mean time to
fill up the kth queue.

As the row sums of Q1 are zero (Q(µ) is a generator matrix for every µ), we
have Q1Π0 = 0. Moreover, for any induced matrix norm, we have ‖Q1D0‖ ≥ µ−1

0 .
Therefore, we find,

µ−1
0 ≤ ‖Q1D0‖= ‖Q1(D0 + γΠ0)‖ ≤ ‖Q1‖‖D0 + γΠ0‖ .
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Figure 7.3: spectral radius µ0 and lower bounds µ∗0 and µ∗1.

Particularly using the maximum absolute row sum norm, we have ‖Q1‖ = 2;
[Q1]ii =−1 if all queues are non-empty in state i and 0 if this not the case such that
the corresponding row sums equal 2 and 0 respectively. In view of the definition
of γ, one easily verifies that the matrix D0 + γΠ0 has no negative entries. Recall-
ing that D0 has zero row sums, this shows that all row sums of D0 + γΠ0 equal γ:
‖D0 + γΠ0‖= γ and,

1
µ0
≤ 2γ

.
=

1
µ∗0

,

which proves the lower bound µ∗0 for µ0. The lower bound µ∗1 follows from µ−1
0 ≤

2γ and the crude bound (7.10) for γ.

To illustrate Theorem 1, Figure 7.3 depicts µ0, the spectral radius of Q1D0 and
the lower bounds µ∗0 and µ∗1 for a system with K = 3 paired queues, each queue
having a varying capacity from 2 to 10. As the figure shows, the bounds are much
smaller than the convergence radius. It should be noted that both bounds are easy-
to-derive but also rather loose bounds on the convergence radius. The bounds
above can be made tighter by (1) not relying on the submultiplicative property of
the matrix norm; (2) a matrix norm which is more adapted to this model. Both
these approaches quickly lead to lengthy calculations and we consider them to be
outside of the scope of the paper.
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Abstract. We propose an efficient numerical scheme for the evaluation of
large-scale Markov processes, under the condition that their generator matrix re-
duces to a triangular matrix when a certain rate is sent to zero. The methodology
at hand is motivated by coupled queueing systems. Such systems are a natural ab-
straction for kitting processes in assembly systems and consist of multiple parallel
buffers which are coupled in the sense that departures from the different buffers are
synchronised and that there cannot be a service if any of the buffers is empty. As
multiple customer buffers are involved, the Markovian description of the system
obviously suffers from the state-space explosion problem. To cope with this prob-
lem, a numerical algorithm is presented which calculates the coefficients of the
Maclaurin-series expansion of the steady-state probability vector. While the se-
ries expansion is a regular perturbation problem for the coupled queueing system
with exponential service times, it is a singular perturbation problem if the service
time are phase-type distributed. By means of numerical examples, we show that
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the series expansion technique combined with a simple heuristic provides a high
numerical accuracy.

8.1 Introduction

Coupled queueing systems arise as a convenient abstraction for kitting processes.
A kitting process collects the necessary parts for a given end product in a container
prior to assembly. While conceptually simple, kitting comes with many advan-
tages. It clearly mitigates storage space requirements at the assembly station since
no part inventories need to be kept there. Moreover, parts are placed in proper po-
sitions in the container such that assembly time reductions can be realised [17, 23].
A kitting process is obviously related to a coupled queueing system: the invento-
ries of the different parts that go into the kit correspond to the different buffers, the
kitting time corresponds to the service time and kitting is blocked if one or more
parts are missing [9, 11].

There is considerable literature on the performance analysis of kitting sys-
tems with two buffers. Hopp and Simon [16] developed a model for a two-part
kitting process with Poisson arrivals and exponentially distributed kit processing
times. They found accurate bounds for the buffer capacities of both parts. Ex-
plicitly accounting for finite buffer capacities, Som et al. [26] further refined the
results of Hopp and Simon. The exponential service times and Poisson arrival
assumptions were later relaxed in [29] and [9]. Although results from the anal-
ysis of kitting systems with two buffers are useful, practical kitting systems as
well as other applications with coupled queues typically involve more than two
buffers. Such systems become however easily cumbersome and mathematically
intractable even for a moderate number of buffers and reasonable buffer capaci-
ties. Indeed, the state-space explosion problem prohibits an exact analysis of such
systems. Hence, approximation techniques have been proposed. Bonomi [7], Liu
and Perros [13] and Baynat and Dallery [4] used a decomposition approach to
analyse several independent two-buffer kitting systems. Ramakrishnan and Krish-
namurthy [23, 24] studied kitting systems as a fork/join synchronisation station.
In both works, they constructed and analysed a queueing system with two buffers
and applied an aggregation-based approach to approximate the system with more
than two buffers. A closed form approximation for the throughput and the mean
queue length is derived in terms of the input parameters.

In this paper, we approximate large-scale finite kitting systems which relies on
a Maclaurin-series expansion of the steady-state probability vector. This means
that the Markov process of interest is transformed in a set of Markov processes
parametrised by a certain variable known as the perturbation parameter. Such ap-
proximations go by different names including the power series method and the
perturbation technique. One has to distinguish between regular and singular per-
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turbation. In regular perturbation problems, the Markov process is irreducible
when the perturbation parameter is set to zero. Hence, a unique solution of the
stationary distribution of the Markov process can be found. This is not the case
for singular perturbation problems. Indeed, if the Markov process is decompos-
able when the parameter is set to zero, the unperturbed part of the operator has no
inverse and an approximation cannot be obtained [1, 20]. To cope with this inver-
sion problem, several authors provided methods which calculate the coefficients
of the Laurent series expansion of the deviation matrix of the Markov process.
Schweitzer and Stewart [28] derived a recurrent formula for the calculation of the
terms of the series for the case of linear perturbation. These results were gener-
alised to the case of analytic perturbation by Korolyuk and Turbin [19] and by
Avrachenkov [3]. In Avrachenkov’s work, three related methods to determine the
coefficients of the Laurent series are suggested. These three methods, based on
the recursive solution of the infinite set of fundamental equations, depend to some
extent on prior knowledge of the order of the pole at the singularity. This order
of the pole can be determined by using for instance the combinatorial method of
Hassin and Haviv [14].

This paper particularly focusses on the singular perturbation problem that arises
in Markov processes for kitting processes with phase-type distributed service times
when the service times are scaled up. The remainder of the paper is organised as
follows. In the next section, the coupled queueing model at hand is described and
the series expansion technique is introduced. For completeness we not only fo-
cus on the singular perturbation but also discuss the case of regular perturbation
(exponential service times). In Sections 8.3 and 8.4, we prove a decoupling re-
sult for the regular perturbation and evaluate the regular and singular perturbation
approach numerically, respectively. Finally, conclusions are drawn in Section 8.5.

8.2 Analysis

In this paper, we study the kitting process with K buffers, depicted in Figure 8.1.
Each buffer has a finite capacity — let C` denote the capacity of buffer `, ` =
{1, . . . ,K}— and models the inventory of parts of a single type. New parts arrive at
the buffers and, if both buffers are nonempty, a kit is assembled by collecting a part
from each buffer. Arrivals at the buffers are modelled according to independent
Poisson processes — let λ` denote the arrival rate in queue ` — and the consecutive
kit assembly times (or service times) constitute a sequence of independent and
identically phase-type distributed random variables.

A random variable has a phase-type distribution with M phases if its distribu-
tion has the representation,

F(x) = 1−aexp(xA)1′ ,
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part buffers

λ1

λ2

λK

C1

C2

CK

kitting

...

Figure 8.1: Kitting process with K queues

where a is a (row) probability vector of size M, where 1 is a row vector of ones and
where A is an M×M matrix with negative entries on the diagonal, non-negative
entries elsewhere and negative row-sums. A random variable has a phase-type
distribution if it is the time until absorption of a finite Markov process with state-
space M = {1,2, . . . ,M}. The vector a collects the probabilities of the initial state
of this Markov process, the non-diagonal entries of the matrix A are the transition
rates between non-absorbing states, and the absolute value of the row sums denote
the rates to the absorbing state. For further use, let ai be the ith element of a and
let αi j (i 6= j) be the i jth element of the matrix A. Moreover, let αi0 denote the rate
from state i to absorption,

αi0 =−
M

∑
j=1

αi j .

8.2.1 Regular perturbation

We first consider the case of regular perturbation, noting that a phase-type distri-
bution with one phase corresponds to an exponential distribution. Let µ be the rate
of this exponential distribution.

When the kit assembly time distribution is exponential, the state of the system
is described by a vector i ∈ C whose `th element corresponds to the queue size
of the `th buffer. Here, C = C1× . . .×CK denotes the state space of this Markov
process, with C` = {0,1, . . . ,C`} being the set of possible levels of buffer `. Let
π(i) be the steady-state probability of being in state i for this chain, i ∈ C . These
steady-state probabilities satisfy the following set of balance equations,

π(i)

(
µ

K

∏
`=1

1{i`>0}+
K

∑
`=1

1{i`<C`}λ`

)
= π(i+1)µ

K

∏
`=1

1{i`<C`}

+
K

∑
`=1

π(i− e`)λ`1{i`>0} , (8.1)
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for all i = (i1, i2, . . . , iK) ∈ C and where 1{x} is the indicator function which equals
one if x is true and equals zero otherwise. The symbol e` represents a row vector
with zero-elements except the `th element which is equal to one. Further, recall
that 1 represents a row vector of ones.

The former system of equations has C = (C1 +1)× . . .× (CK +1) unknowns.
Hence, even for a moderate number of buffers and reasonable buffer capacities the
size of the state space is very large. As direct computation of the steady-state prob-
ability vector has an asymptotic complexity of O(C3), we focus on approximating
the performance measures of interest by means of a series expansion approach.

To this end, we make the dependence of the steady state probabilities on µ
explicit and introduce the Maclaurin-series expansion of the steady-state probabil-
ities around µ = 0,

π(i) =
∞

∑
n=0

πn(i)µn , (8.2)

for i ∈ C . Substitution of the former expression in the balance equation (8.1),
comparing terms in µn for n = 01,2, . . . and solving for πn(i) yields,

π0(i) =
∑

K
`=1 π(i− e`)λ`1{i`>0}

∑
K
`=1 1{i`<C`}λ`

, (8.3)

and,

πn(i) =
1

∑
K
`=1 1{i`<C`}λ`

×
(

1{n>0}πn−1(i+1)
K

∏
`=1

1{i`<C`}

+
K

∑
`=1

πn(i− e`)λ`1{i`>0}−1{n>0}πn−1(i)
K

∏
`=1

1{i`>0}

)
, (8.4)

for i ∈ C . = C \{c} with c = [C1,C2, . . . ,CK ]. Evaluating (8.3) in lexicographical
order shows,

π0(i) = 0 , (8.5)

for i ∈ C . while (8.4) allows for calculating all πn(i) for i ∈ C . in lexicographical
order once the n− 1st terms are known. Finally, for the terms of the stationary
probabilities of state c we invoke the normalisation condition, yielding,

π0(c) = 0 , πn(c) =− ∑
i∈C .

πn(i) .

Remark 1. In order for a series expansion to make sense, the stationary vec-
tor is required to be analytic in a neighbourhood of µ = 0. For finite state spaces
(in contrast to infinite ones, see e.g. [1, 15]), this is fairly easy to establish. Finding
the steady state distribution is in this case essentially a finite-dimensional eigen-
problem. If a matrix depends analytically on a parameter, then the corresponding
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eigenvalues and eigenvectors are also analytic in case of null-space perturbation
[2]. Another possible path towards proving analyticity is via V -uniform ergodic-
ity of the unperturbed Markov process with generator Q(0) (see a.o [1]), which is
equivalent to the existence of a spectral gap (the distance between eigenvalue 0 of
the generator matrix Q(0) and the eigenvalue that is its nearest neighbour). For fi-
nite Markov processes, there is a spectral gap as long as there is only one recurrent
class. This means that the Markov process is irreducible when the perturbation
parameter is set to zero.

Remark 2. The numerical complexity of the algorithm is O(CKN) where N
is the number of terms in the series expansion, C is the size of the state space and
K is the number of buffers. This immediately follows from the observation that we
have to calculate N terms of the C stationary probabilities. For the calculation of
each term in the expansion, we sum O(K) terms.

8.2.2 Singular perturbation

As for the coupled queueing system with exponential service times, we now pro-
pose an efficient numerical scheme for the evaluation of kitting processes with
phase-type service times. We assume that the service times are scaled with factor
µ−1 and again consider the series expansion around µ = 0. Note that the rescaled
service times are phase-type distributed with generator matrix µA and initial prob-
ability vector a.

Let C ∗ be the subset of C such that all buffers are nonempty. For all i ∈ C \C ∗,
at least one buffer is empty meaning that there is no ongoing service. Hence i
captures the state of the Markov process. In contrast, for i∈ C ∗, service is ongoing
meaning that the service process is in some state j ∈M . Therefore, the state space
of the Markov process with phase-type service times is (C \C ∗)∪ (C ∗×M ).

With a slight abuse of notation, let π(i) be the steady state probability of state
i ∈ C \C ∗ and let π(i, j) be the steady state probability of state (i, j) ∈ C ∗×M .
Finally, let c = [C1, . . . ,CK ] as in the case of exponential service times and — for
ease of exposition — assume Ck > 1 for k = 1, . . . ,K.

We can now write down the balance equations:

π(i)
K

∑
`=1

1{i`<C`}λ` =
K

∑
`=1

π(i− e`)λ`1{i`>0}+
K

∏
`=1

1{i`<C`} µ
M

∑
k=1

π(i+1,k)αk0 ,

for i ∈C \C ∗ and

π(i, j)

 K

∑
`=1

1{i`<C`}λ`+µ
M

∑
k=0,k 6= j

α jk

=
K

∏
`=1

1{i`<C`} µ
M

∑
k=1

π(i+1,k)αk0a j

+
K

∑
`=1

π(i− e`, j)λ`1{i`>1}+
K

∑
`=1

π(i− e`)λ`1{i`=1}a j +µ
M

∑
k=1,k 6= j

π(i,k)αk j ,
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for i ∈ C ∗ and j ∈M .
Proceeding as for the kitting system with exponential service times, we intro-

duce the following Maclaurin series expansions,

π(i) =
∞

∑
n=0

πn(i)µn , π(i, j) =
∞

∑
n=0

πn(i, j)µn ,

for i ∈ C \ C ∗ and i ∈ C ∗, respectively. Plugging the above expansions in the
balance equations and comparing terms in µn yields,

πn(i) =
( K

∑
`=1

1{i`<C`}λ`

)−1( K

∏
`=1

1{i`<C`}

M

∑
k=1

πn−1(i+1,k)αk0

+
K

∑
`=1

πn(i− e`)λ`1{i`>0}

)
, (8.6)

for i ∈ C \C ∗ and n = 0,1, . . .,

πn(i, j) =
( K

∑
`=1

1{i`<C`}λ`

)−1(
−πn−1(i, j)

M

∑
k=0,k 6= j

α jk

+
K

∏
`=1

1{i`<C`}

M

∑
k=1

πn−1(i+1,k)αk0a j +
K

∑
`=1

πn(i− e`, j)λ`1{i`>1}

+
K

∑
`=1

πn(i− e`)λ`1{i`=1}a j +
M

∑
k=1,k 6= j

πn−1(i,k)αk j

)
, (8.7)

for i ∈ C ∗ \{c}. Here, we assumed π−1(i) = π−1(i, j) = 0 for all i ∈ C and j ∈M .
As for the regular perturbation, the former set of equations allow for recursive
calculation of the nth term in the expansion of all stationary probabilities in lexi-
cographical, once the n−1st terms are known.

For i = c, we fell back on the normalisation condition in the regular case. This
was possible as there was only one remaining unknown — πn(c) — for every term
in the series expansion. In this case however, there remain M unknown terms:
πn(c;1), . . . ,πn(c;M). Plugging the expansions in the balance equation for i = c
and comparing terms in µn yields,

πn−1(c, j)
M

∑
k=0,k 6= j

α jk =
K

∑
`=1

πn(c− e`, j)λ`+
M

∑
k=1,k 6= j

πn−1(c,k)αk j , (8.8)

for n= 0,1, . . .. These expressions however do not allow to calculate the remaining
unknowns. Therefore, we proceed as follows.

Let C♦ be the set of states (i, j), with i lexicographically larger than c− 1
and with j ∈M . Assuming that the probabilities πn−1(c;1), . . . ,πn−1(c;M) are
not known, equation (8.7) still allows to calculate all πn(i, j) for i ∈ C ∗ \C♦ and
j ∈M but no longer allows to determine πn(i, j) for i ∈ C♦, and j ∈M .
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For i∈ C♦, we therefore express πn(i, j) in terms of the probabilities πn−1(c, `)
as follows,

πn(i, j) = βn(i, j;0)+
M

∑
`=1

βn(i, j;`)πn−1(c, `) . (8.9)

In view of equation (8.7), the terms βn(i, j;`) in expression (8.9) adhere,

βn(c−1, j;0) =
( K

∑
`=1

λ`

)−1(
−πn−1(c−1, j)

M

∑
k=0,k 6= j

α jk

+
K

∑
`=1

πn(c−1− e`, j)λ`1{C`>2}+
K

∑
`=1

πn(c−1− e`)λ`1{C`=2}a j

+
M

∑
k=1,k 6= j

πn−1(c−1,k)αk j

)
, (8.10)

βn(c−1, j;k) =
( K

∑
`=1

λ`

)−1(
αk0a j

)
, (8.11)

βn(i, j;0) =
( K

∑
`=1

1{i`<C`}λ`

)−1( M

∑
k=1,k 6= j

πn−1(i,k)αk j−πn−1(i, j)
M

∑
k=0

α jk

+
K

∑
`=1

πn(i− e`, j)λ`1{i`>1,i−e`<c−1}

+
K

∑
`=1

βn(i− e`, j;0)λ`1{i`>1,i−e`≥c−1}+
K

∑
`=1

πn(i− e`)λ`1{i`=1}a j

)
, (8.12)

βn(i, j;k) =
( K

∑
`=1

1{i`<C`}λ`

)−1( K

∑
`=1

βn(i− e`, j;k)λ`1{i`>1,i−e`≥c−1}

)
, (8.13)

for i ∈ C♦ and j ∈M . Clearly, we can now calculate all βn(i, j;k) in lexicograph-
ical order.

Finally, plugging equation (8.9) in (8.8) yields a set off equations for the re-
maining unknowns πn−1(c, j), j ∈M :

πn−1(c, j)
M

∑
k=0,k 6= j

α jk =
M

∑
k=1,k 6= j

πn−1(c,k)αk j +
K

∑
`=1

(
βn(c− e`, j;0)

+
M

∑
k=1

βn(c− e`, j;k)πn−1(c,k)
)

λ` . (8.14)

Using arguments from Hassin and Haviv [14], one can show that the former set of
equations has rank M− 1. Complementing this set with the normalisation condi-
tion,

∑
j∈M

π0(c, j) = 1 ,
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∑
j∈M

πn(c, j) =− ∑
i∈C\C ∗

πn(i)− ∑
i∈C ∗\{c}

∑
j∈M

πn(i, j) . (8.15)

allows for determining πn−1(x, j), for j ∈M . Note that the right-hand side in the
second expression of equation (8.15) only contains known terms.

Summarising, assuming that the n− 1st term is calculated apart from the ele-
ments πn−1(c, j), j ∈M , we obtain the nth order terms (apart from the elements
πn(c, j), j ∈M ) and the elements πn−1(c, j), j ∈M as follows,

1. Calculate the nth terms in lexicographical order by equations (8.6) and (8.7)
up to but excluding state (c−1,1).

2. Calculate the terms βn(i, j;k) by equations (8.10) to (8.13) in lexicographical
order for all i ∈ C♦ \{c}, j ∈M and k ∈M ∪{0}.

3. Solve the system of equations (8.14) together with the normalisation condi-
tion given in (8.15).

4. Use equation (8.9) to calculate πn(i, j) for i ∈ C♦ \{c} and j ∈M .

Remark 3. In contrast to regular perturbation, the Markov process in this
section has multiple ergodic classes for µ = 0, implying that there exists no unique
stationary distribution. In fact, for µ = 0 there are M absorbing states (all queues
full and the service process in any of its M states). Nevertheless, the stationary dis-
tribution is analytic in a deleted neighbourhood of µ = 0 and there exists a unique
analytic continuation for µ = 0. Practically, the singular perturbation reflects in not
having enough equations to solve term by term in the expansion, by consecutively
equating terms in µn. It is however possible to find the terms of the expansion by
combining the equations one gets for µn until µn+k for some integer k. k is the or-
der of the Laurent series expansion of the deviation matrix of the Markov process
and can be determined by solving a combinatorial problem [14]. In this particular
case, we have k = 1.

Remark 4. The numerical complexity of the algorithm is O((C+2K)(K +

M)N +M3N). The first step has complexity O(C(K +M)), similar as for regular
perturbations. The second step has numerical complexity O(2KM(K +M)) as we
need to calculate O(2KM) different β’s for each term in the expansion. The third
step corresponds to the solution of system of M equations, which has complexity
O(M3). Finally, the last step has complexity O(2KM2) .

8.3 Decoupling result
While scrutinising numerical results of the algorithm, we noticed a peculiar pat-
tern in the case of exponential service times, which we will explain and establish in
the following. To this end, we first derive the series expansion of the mean queue
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content of a M/M/1/C queue with arrival rate λ and departure rate µ, for small
µ. As almost anything about this queueing system can be derived in closed-form,
the mean queue content not being an exception, this derivation is rather straight-
forward. Indeed, recall that the mean buffer content Q is equal to [8]:

Q =
ρ

1−ρ
− (C+1)ρC+1

1−ρC+1 ,

where ρ = λ/µ. As we are interested in small µ, we introduce r = ρ−1 = µ/λ and
write in powers of r:

Q =− 1
1− r

+
C+1

1− rC+1

=−
∞

∑
k=0

rk +(C+1)+ ∑
n=1

(C+1)r(C+1)n. (8.16)

This leads to repeating coefficients in the series expansion in r: C, −1, −1, · · · ,
−1, C, −1, · · · .

We noticed this exact series expansion for the first few terms of the mean queue
content of any queue in a coupled queueing system. This can be explained as
follows. Assume without loss of generality that C1 ≤C2 ≤ ·· · ≤CK and suppose
we are interested in the mean queue content of the ith queue. For series expansions
up to µn, with n<C1, we find the same series expansion as for the single M/M/1/Ci

queue with arrival rate λi and service rate µ. This is because of the n events rule: the
nth order coefficient is determined by sample paths in which n or fewer departures
occur. This means that the smallest queue never gets empty (hence no queue gets
empty) and thus the ith queue considered in isolation is indistinguishable from
said M/M/1/Ci queue. It is possible to take this argument a bit further: for a series
expansion of the mean content of the ith queue up to order n, we can consider an
adapted coupled queueing system that has a size that is certainly not larger than
the original system and includes: all queues j for which C j ≤ n plus the ith queue
itself, and compute the series expansion for this adapted system. Hence, for the
smallest queue, the expansion up to the order C2 follow the pattern of Equation
(8.16).

This result is not limited to just the mean queue content, but holds for any
performance measure that can be derived from the marginal distribution of a single
queue.
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8.4 Numerical results
We now assess the accuracy of the perturbation approach by means of several
numerical examples.

To establish the regions in which the results of the numerical scheme are accu-
rate enough, we propose a simple heuristic which compares the Nth and the 2Nth
order expansions. Let fN(µ) be the Nth order expansion in µ, we then accept our
Nth order approximation provided if∣∣∣∣ f2N(µ)− fN(µ)

f2N(µ)

∣∣∣∣< ε , (8.17)

or equivalently,

1− ε <

∣∣∣∣ fN(µ)
f2N(µ)

∣∣∣∣< 1+ ε . (8.18)

We can thus establish for each expansion order the region in which the inequal-
ity of the heuristic holds, and denote it as the heuristic convergence region. In the
plots, we render these regions with a short vertical line. We take an error term ε

equal to 10−4. Consider a system with K = 5 coupled queues, each queue hav-
ing capacity C = 10 and exponential service times. Moreover, the arrival streams
at each queue are Poisson with rate λ = 1. Figures 8.2 and 8.3 depict the mean
queue content and the blocking probability in log scale versus the exponentially
distributed service rate µ, respectively. The blocking probability is the probability
that service is blocked because at least one of the queues is empty. For both fig-
ures, series expansions of various orders are depicted as indicated (N = 1,2,5 for
Figure 8.2 and N = 12,15,18 for Figure 8.3), as well as simulation results which
allow for assessing the accuracy of the series expansions. As expected, the mean
queue content decreases and the blocking probability increases as the service rate
µ increases. Moreover, for µ = 0, the queues are completely filled as there is no
service. From Figure 8.2, it is observed that low orders of the expansion of the
mean queue content suffice for even quite large µ, whereas more terms are needed
to accurately determine the blocking probability; see Figure 8.3. This is because
the blocking probability is a rare event for low values of µ, and hence more terms
are required to increase the accuracy. The regions for which the inequality of the
heuristic holds in Figure 8.2 go up to µ = 0.03 for N = 1, up to µ = 0.09 for N = 2
and up to µ = 0.29 for N = 5 while the regions go up to µ = 0.17 for N = 12, up
to µ = 0.35 for N = 15 and up to µ = 0.45 for N = 18. As the computation time of
the series expansion is linear in the number of terms in the expansion, accurately
assessing the blocking probability takes more than twice the computation time of
assessing the mean queue content.

We also show what can be obtained by merely using the decoupling result of
Section 8.3 (hence without any computational cost at all). In Figure 8.4, the mean
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Figure 8.2: Mean queue content of a coupled queueing system with exponential service
times.
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Figure 8.3: Blocking probability (in log scale) of a coupled queueing system with exponen-
tial service times.
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Ci  = 5, i={1,..,5}

simulation C1  = 5 & Ci  = 10, i={2,..,5}

Figure 8.4: Mean queue content of a coupled queueing system with exponential service
times, using only the decoupling result.

number of items of the queue with capacity C1 = 5 of a 5 coupled queueing system
versus an exponential service rate is depicted. We notice an excellent correspon-
dence with the simulation results up to µ= 0.18 for 5 coupled queues with capacity
Ci = 5, i = 1, . . . ,5 and up to µ = 0.42 for 5 coupled queues with capacity C1 = 5
and Ci = 10, i = 2, . . . ,5. This is partially due to the fact that we can use the ex-
pansion up to order 10 in the asymmetric case instead of up to 5 in the symmetric
case such that a more accurate expansion is found to approximate the M/M/1/C1

queue.
Instead of exponential service times, we now assume coupled queueing sys-

tems with phase-type service times. Figure 8.5 depicts the mean queue content
of a coupled queueing system with a three-phase hyperexponential service time
distribution versus the service rate µ. As in previous figures, we assume 5 queues
of capacity 10 and a Poisson arrival rate of 1 for all queues. The phases have the
same probability to occur and we assume a mean service rate equal to 2µ. As Fig-
ure 8.5 shows, the regions for which the inequality of the heuristic holds in Figure
8.5 go up to µ = 0.06 for N = 2, up to µ = 0.09 for N = 3 and up to µ = 0.29
for N = 4. Comparing the results of the approximation method with those of the
simulation, we can derive that the performance assessment is highly accurate in
the heuristically determined region.

In Figure 8.6, different Poisson arrival rates for all queues (resp. equal to 1.0,
1.5 and 2.0) are considered. We assume the same parameter values as in Figure 8.5
and show the mean queue content. The expansion is of order N = 3. As expected,



8-14 KITTING SYSTEM WITH PHASE-TYPE SERVICE TIMES

0.0 0.1 0.2 0.3 0.4 0.5
µ

9.0

9.2

9.4

9.6

9.8

10.0

N = 1

N = 2

N = 5

simulation

Figure 8.5: Mean queue content of a coupled queueing system with three-phase hyperexpo-
nential service times.

the higher the arrival rate, the larger the mean queue content. Also, the regions for
which the inequality of the heuristic holds increases as the arrival rate increases.

Finally, Figure 8.7 depicts the mean queue content of a coupled queueing sys-
tem with a two-phase hyperexponential service time distribution versus the mean
service rate. The phases have probability 1

40 and 1− 1
40 to occur and the mean

service rate is equal to µ. The expansion is of order N = 20. The other parameter
values are the same as in Figure 8.5. For sake of clarity, we here only show perfor-
mance results with a value between 8 and 10. As the figure shows, a higher value
of the variance decreases the mean queue content.

8.5 Conclusion

To evaluate the performance of large-scale coupled queueing systems, we propose
a numerical algorithm which calculates the coefficients of the Maclaurin-series
expansion of the steady-state probability vector. Coupling means that service is
only possible when none of the queues are empty. In this paper, we consider both
regular and singular perturbation problems when the coupled queueing system has
respectively exponential and phase-type service times. As shown by the numerical
results, the Maclaurin-series expansion combined with the proposed heuristic give
a quite good approximation of the studied coupled queueing system in the regular
as well as in the singular case.



CHAPTER 8 8-15

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
µ

9.75

9.80

9.85

9.90

9.95

10.00

λ = 1.0

λ = 1.5

λ = 2.0

Figure 8.6: Mean queue content of a coupled queueing system with hyperexponential ser-
vice times and different arrival rates.
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Figure 8.7: Mean queue content of a coupled queueing system with hyperexponential ser-
vice times and different values of the variance.
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populations
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Abstract. We study the dynamics of opinion propagation in a medium-sized
population with low population turnover. Opinion spreading is modelled by a Mar-
kovian non-standard Susceptible-Infected-Recovered (SIR) epidemic model with
stochastic arrivals, departures, infections and recoveries. The system performance
is evaluated by two complementary approaches: a numerical but approximate solu-
tion approach which relies on Maclaurin-series expansions of the stationary solu-
tion of the Markov process and a fluid limit approach. Both methods are evaluated
numerically. Moreover, convergence to the fluid limit is proved, and explicit ex-
pressions for the fixed points of the differential equations are obtained for the case
of linearly increasing infection and arrival rates.

9.1 Introduction

Given the rapid growth of companies in the internet sector that base their revenue
model on advertisement (such as Google, Facebook etc.) [12] and the ascent of
social networks in particular, the study of opinion spreading is a trending topic,
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and there is a strong interest in understanding how new opinions spread through
a community. Apart from these economic considerations, the analysis of opinion
spreading can improve our comprehension of social relations among individuals,
both online and offline.

This paper studies opinion propagation by drawing parallels with the spread-
ing of diseases [3, 15]. Indeed, opinion propagation bears some similarity to the
spread of an infectious disease, and particularly to Kermack and McKendrick’s
classical compartmental SIR model for such propagation [21]. The acronym SIR
stands for susceptible (S), infectious (I) and recovered (R), and refers to the pos-
sible states that an individual can be in, the possible transitions between these
states following the order S→ I→ R. In particular, the SIR model assumes that
if a healthy individual encounters an infected individual, there is a chance that the
healthy individual gets infected. An infected individual then recovers from the
disease after some time, making him/her immune for the infection. This process
can be directly reformulated in terms of the propagation of opinions on a partic-
ular topic: a susceptible or non-opinioned individual has yet to form an opinion
on the topic, whereas infected or opinioned individuals do have such an opinion.
Susceptible individuals may form an opinion when they encounter infected indi-
viduals. Finally, individuals loose their interest in the topic after some time and
stop spreading their opinion. These individuals have recovered.

The SIR epidemic model has been predominantly applied to study disease, see
e.g. [15, 16, 17, 19], but there is some prior work in the areas of rumour and
opinion propagation as well. Concerning the latter, Zhao extends the SIR model
for opinion spreading in social networks by including a hibernator state in which
individuals temporary interrupt infecting others [33]. Moreno et al. study SIR
like spreading of rumours explicitly accounting for the network structure [26].
Bettencourt et al. [4] draw parallels between epidemics and idea diffusion by
applying several epidemiological models to empirical data. Woo et al. [31] show
the plausibility to describe the mechanism of violent topic diffusion in web forums
by using a SIR model while Fan et al. [13] propose an extended SIR model for
opinion dynamics in which individuals can have a positive or negative opinion
about a topic. Finally, some preliminary results on series expansion techniques
(cfr. infra) for stochastic SIR models for opinion propagation were presented in
[9].

SIR models are not the only models for studying opinion propagation in litera-
ture. For example, the threshold model starts from a random directed graph where
each node selects a random threshold [23]. Opinion propagation then evolves de-
terministically: a node becomes active (gets an opinion) if the fraction of its active
neighbours exceeds its threshold. In contrast to the threshold model, the dynamics
of the voter model are stochastic: each node changes its state to the state of a ran-
dom neighbour [24]. The Sznajd model [30] assumes more complex interactions
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between nodes: a node and a neighbouring node are selected at random. If the
neighbouring node is undecided, it adopts the opinion with some probability. If
both have the same opinion, they try to convince the other neighbours. Finally,
if they have different opinions, nothing happens. Specifically focussing on tweet
propagation, Yang et al. [32] propose a factor graph model based on the analysis of
the factors influencing the user’s retweet behaviour. Kawamoto et al. [20] model
the information diffusion as a random multiplicative process, with a particular fo-
cus on retweet behaviour. In [18], the traditional Susceptible-Infected-Susceptible
(SIS) epidemic model is studied in order to predict retweeting trends.

In this paper, we focus on a compartmental Markovian SIR model for opin-
ion spreading in medium-sized populations. While the total population of internet
users easily qualifies as large, the size of an online community — say, of people
contributing to an online forum or of people tweeting and retweeting some hash
tag — is often not that large. Moreover, these communities hardly remain con-
stant over time, with individuals joining and leaving all the time. Epidemics on
medium-sized populations are also interesting from a mathematical point of view.
Indeed, when the population is large, the fluid limit is accurate and the dynamics
of the epidemic are described by a set of differential equations. In contrast, when
the population size is small, the size of the state space of the epidemic Markov
process is small such that the steady-state probability vector is easily calculated.
For medium-sized populations, the fluid-limit is not yet accurate, while direct cal-
culation of the stationary vector is computationally infeasible.

The contributions of this paper are twofold. First, we investigate the perfor-
mance of opinion propagation in a Markovian framework by an approximate solu-
tion technique for Markov processes which relies on Maclaurin-series expansions
of the steady-state probability vector. This technique was recently applied to study
kitting processes [10]; a kitting process is a type of multi-buffer queueing system
in which service is synchronised between the different buffers and temporarily
blocked if one of the buffers is empty [8]. The epidemic process under considera-
tion generalises the Markovian SIR process in various ways. We assume that the
population size is bounded, but individuals join and leave the population over time
to account for the dynamic formation of online communities. Moreover, the as-
sumptions on infection and recovery rates are relaxed and individuals are allowed
to move from susceptible to recovered directly as community members not neces-
sarily want to spread the opinion to others. Secondly, in addition to the Maclaurin-
series approach, we consider a fluid limit of the Markov process at hand and for-
mally prove convergence. Fluid limits are a popular mathematical technique (see
e.g. [11], [28]) which (when a good scaling is found) allow for focussing on the
salient features of the stochastic process while discarding ‘second-order fluctua-
tions’ around this main trend. In the present paper, it helps to make the link with
more standard deterministic SIR models. We like to mention that the fluid scaling
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under study (arrival rates and location capacity are sent to infinity), differs sig-
nificantly and therefore complements the Maclaurin-series expansion limit (which
holds for low departure rates). We thus aim to view this computationally cum-
bersome Markov model from different limiting cases, and gain new insights by
combining them. We also note that the derivation of the fluid limit as performed in
this paper also lends itself naturally to refinements in the form of diffusion results,
but this is considered to be outside of the scope of the current paper.

The remainder of this paper is organised as follows. Section 9.2 introduces the
opinion spreading model at hand as well as some particular examples, discussed
further on. In Section 9.3, the balance equations are derived and the numerical
series expansion approach is explained. Next, we find a fluid limit for the epidemic
Markov process in Section 9.4. To illustrate both approaches, Section 9.5 considers
various numerical examples. Finally, conclusions are drawn in Section 9.6.

9.2 Model description
We consider an opinion propagation system as depicted in Figure 9.1. There are
at most L individuals in the community, each individual either being recovered (r),
infected (i) or susceptible (s) (this particular ordering instead of the traditional
s, i, r will prove useful for the Maclaurin analysis of Section 9.3). Let Xk(t)
be the number of individuals of type k ∈ K = {r, i,s} at time t, and let X(t) =
(Xr(t),Xi(t),Xs(t)) ∈ L = {(xr,xi,xs) ∈ N3|xi + xr + xs ≤ L}. For any x ∈ L , xk is
the number of individuals of type k ∈K and ||x||= |xr|+ |xi|+ |xs|= xr +xi+xs is
the L1 norm which corresponds to the total number of individuals. We consider a
Markovian opinion propagation system, the number of individuals of the different
types being the state of the Markov process. We make the following assumptions
on the arrival, infection and recovery rates of the Markov process.

• For, ||X(t)||< L, there is a new arrival of type k ∈K in the interval [t, t+dt)
with probability λk(X(t))dt + o(dt). The total arrival rate in state x ∈ L
is denoted by λ(x) = λr(x)+ λi(x)+ λs(x). To simplify notation, assume
λ(x) = λk(x) = 0 for ||x|| ≥ L and k ∈K .

• There is a departure of an individual of type k ∈ K in the interval [t, t +
dt) with probability µXk(t)dt + o(dt). Hence, the residence time of any
individual is exponentially distributed with mean 1/µ.

• A single susceptible (infected, susceptible) individual gets infected (recov-
ers, recovers) in the interval [t, t + dt) with probability αsi(X(t))dt + o(dt)
(αir(X(t))dt +o(dt), αsr(X(t))dt +o(dt)). To simplify further notation, we
assume αsi(x) = αsr(x) = 0 for xs = 0 and αir(x) = 0 for xi = 0. There can
be no infection or recovery if there are no individuals that can get infected
or that can recover.
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λs(x)µ λi(x)µ λr(x)µ

Figure 9.1: Opinion propagation model.

The Maclaurin-series expansion in Section 9.3 further requires that for every x ∈
L , (i) the total arrival rate λ(x) is non-zero, (ii) the infection rate αsi(x) and the
refusing rate αsr(x) are non-zero for xs > 0, and (iii) the recovery rate αir(x) is
non-zero for xi > 0.

We study this Markov model via its generator Q,

Q f (x) := lim
t→0

1
t

(
E[ f (X(t))|X(0) = x]− f (x)

)
,

for any bounded and measurable function f : L → R. It is straightforward to
deduce from the informal description above that

Q f (x) = ∑
k∈K

λk(x)[ f (x+ ek)− f (x)]+ ∑
k∈K

µ xk[ f (x− ek)− f (x)]

+ ∑
( j,k)∈K ∗

α jk(x)[ f (x− e j + ek)− f (x)], (9.1)

where er := [1,0,0], ei := [0,1,0], es := [0,0,1] and K ∗ := {(s, i),(i,r),(s,r)}.
Let π(·) denote the stationary distribution of the Markov process (which is

guaranteed to exist as the state space is finite and uni-chain), and — for further use
— let X denote a generic random variable distributed according to π. From the
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above generator representation we derive the following set of balance equations:

π(x)
(
||x||µ+λ(x)+αsi(x)+αir(x)+αsr(x)

)
= π(xr +1,xi,xs)µ(xr +1)+π(xr,xi +1,xs)µ(xi +1)+π(xr,xi,xs +1)µ(xs +1)

+π(xr−1,xi,xs)λr(xr−1,xi,xs)+π(xr,xi−1,xs)λi(xr,xi−1,xs)

+π(xr,xi,xs−1)λs(xr,xi,xs−1)+π(xr,xi−1,xs +1)αsi(xr,xi−1,xs +1)

+π(xr−1,xi +1,xs)αir(xr−1,xi +1,xs)

+π(xr−1,xi,xs +1)αsr(xr−1,xi,xs +1) , (9.2)

for x ∈ L . Here and in the remainder, we follow the convention that π(x) = 0 if
x /∈ L .

Prior to introducing the series expansions and fluid approximations, we first
introduce two particular examples of the Markov process. In Section 9.5 where we
present various numerical results, we return to these examples.

9.2.1 Constant infection and arrival rates

In the most basic setting, individuals arrive according to a Poisson process with
the (state-independent) parameter λk, k ∈K . Furthermore, if we assume that each
susceptible individual has a constant probability to get infected and to recover, i.e.
αsi(x) = xsαsi and αsr(x) = xsαsr, and that each infected individual has a constant
probability to recover, i.e. αir(x) = xiαir, then the mean number of each type in
steady state can be calculated explicitly.

Indeed, as the departure rate of each individual is equal to µ, the total number of
individuals ||X|| is distributed as the queue content of a classic M/M/L/L queue,
with arrival rate λ = λr +λi +λs and departure rate µ, for which the steady-state
distribution can be found in every queueing-theory textbook,

P[||X||= n] =
1
n!

(
λ

µ

)n

∑
L
m=0

1
m!

(
λ

µ

)m . (9.3)

Let pk denote the probability that a random departing individual is of type k ∈ K .
An individual leaves the system as a susceptible individual, provided it arrived in
the system as a susceptible individual and it leaves the system prior to infection or
recovery. Hence, we have,

ps =
λs

λ

µ
αsi +µ+αsr

,

the first factor being the probability that an arriving individual is susceptible and
the second factor being the probability that a susceptible individual leaves prior to
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infection or recovery. Analogously, an individual departs as an infected individual
if (i) it arrives as susceptible, gets infected and does not recover or (ii) it arrives as
infected and does not recover. Hence, we find,

pi =
λi

λ

µ
αir +µ

+
λs

λ

αsi

(αsi +αsr +µ)
µ

(αir +µ)
.

Finally, an individual leaves as recovered if it does not leave the system as a sus-
ceptible or infected individual, hence we have,

pr = 1− pi− ps =1− λs

λ

µ
αsi +µ+αsr

− λi

λ

µ
αir +µ

− λs

λ

αsi

(αsi +αsr +µ)
µ

(αir +µ)
.

Note that the rate at which an individual leaves the system does not depend on
the type of the individual. Therefore pk is the probability that a random individual
in the system is of type k. Moreover, individuals change type, independent of other
individuals. Hence, the distribution of the number of individuals of the different
types, conditioned on the total number of individuals in the system, is a multino-
mial distribution with parameters pr, pi and ps. Combining this observation with
equation (9.3), yields,

P[X = x] = P[||X||= ||x||] ||x||!
xr!xi!xs!

pxr
r pxi

i pxs
s =

(
λ

µ

)||x|| pxr
r p

xi
i pxs

s
xr!xi!xs!

∑
L
m=0

1
m!

(
λ

µ

)m ,

and,

P[Xk = n] =
L

∑
`=n

(
`

n

)
P[||X||= `] pn

k (1− pk)
`−n =

∑
L
`=n

(
λ

µ

)` pn
k

n!
(1−pk)

`−n

(`−n)!

∑
L
m=0

1
m!

(
λ

µ

)m .

9.2.2 A model for opinion spreading

The following example is more complex and does not have a simple solution.
We will rely on either a Maclaurin-series approach or on a fluid limit to estimate
performance.

We propose the following infection and recovery rates. It is reasonable to
assume that non-opinioned individuals are more likely to form an opinion if there
are more opinioned individuals. Therefore, we assume that the infection rate of
susceptible individuals is an affine function of the number of infected individuals,

αsi(x) =
(

α
0
si +α

1
sixi

)
xs .
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Moreover, the effects of other individuals on shifting to neutral (recovered) are
neglected. Therefore the rate at which non-opinioned and opinioned individuals
shift to neutral are constant, which implies,

αir(x) = α
0
irxi , αsr(x) = α

0
srxs .

Finally, having many individuals in the community, is likely to attract new opin-
ioned and non-opinioned individuals. Hence, we assume that the arrival rates of
the susceptible and infected individuals are affine functions of the total number of
individuals,

λi(x) = λ
0
i +λ

1
i ||x|| , λs(x) = λ

0
s +λ

1
s ||x|| ,

whereas neutral individuals arrive at a constant rate,

λr(x) = λ
0
r .

Note that the assumptions above are a generalisation of Kermack and McK-
endrick’s SIR model. In Kermack and McKendrick’s setting, the population is
fixed (λ0

i = λ1
i = λ0

s = λ1
s = λ0

r = µ = 0), the infection rate is proportional to the
number of infected individuals (α0

si = 0), and individuals do not recover without
being infected (α0

sr = 0).

9.3 Maclaurin-series expansions
While the system of equations (9.2) is easily solved when the maximum number of
individuals is limited, the state space size already explodes for relatively small L
and a direct solution is computationally infeasible. Indeed, numerical computation
of the steady-state vector has an asymptotic time complexity of O(M3), where
M =

(L+3
3

)
∼ L3/6 is the size of the state space. We introduce the numerical

Maclaurin-series approach in generic terms in the subsection below and survey
related work in Subsection 9.3.2. We then tailor the method to the Markov process
at hand in Subsection 9.3.3 and derive performance measures in Subsection 9.3.4.

9.3.1 Methodology

Notice that the generator matrix of the Markov process at hand can be decomposed
as follows,

Qµ = Q(0)+µQ(1) ,

with neither Q(0) nor Q(1) depending on µ. Moreover, Q(0) is still a proper gen-
erator matrix, it is the generator matrix of the Markov process when there are no
departures. As the size of the state space does not allow for a direct calculation of
πππ as the normalised solution of,

πππQµ = 0 ,



CHAPTER 9 9-9

we introduce the Maclaurin-series expansion of the steady state vector in µ,

πππ =
∞

∑
n=0

µn
πππ
(n).

In order for such an expansion to make sense, the vector πππ is required to be analytic
in a neighbourhood of µ = 0. For finite state spaces (in contrast to infinite ones, see
e.g. [2, 14]), this is fairly easy to establish. Finding the steady-state distribution
is in this case essentially a finite-dimensional eigenproblem. If a matrix depends
analytically on a parameter, then the corresponding eigenvalues and eigenvectors
are also analytic in case of null-space perturbation [1]. Another possible path
towards proving analyticity is via V -uniform ergodicity of the unperturbed Markov
process with generator Q(0) (see a.o [2]), which is equivalent to the existence of a
spectral gap (the distance between eigenvalue 0 of the generator matrix Q(0) and
the eigenvalue that is its nearest neighbour). For finite Markov processes, there
is a spectral gap as long as there is only one recurrent class for µ = 0. Hence,
provided that Q(0) is a generator matrix with one recurrent class (this condition is
also denoted as ‘regular perturbation’, as opposed to ‘singular perturbation’), the
expansion makes sense and πππ(0) is the normalised solution of the equation,

πππ
(0)Q(0) = 0 .

Every subsequent term πππ(n) can be found by identifying equal powers of µ in the
equation,

∞

∑
n=0

µn
πππ
(n)(Q(0)+µQ(1)) = 0 ,

which leads to the following equation for πππ(n+1),

πππ
(n+1)Q(0) =−πππ

(n)Q(1) .

The normalisation condition of πππ implies that the elements of πππ(n) sum to 0 for
each n > 0. This fact and the former equation allows for recursively solving the
terms in the expansion.

As we now have to solve a linear system of equations for each term πππ(n) in the
expansion, plus an additional vector-matrix product, it appears that we have not
gained very much. However, if we impose the extra condition that Q(0) is triangu-
lar for some ordering of the state space (either upper or lower triangular), then the
resulting linear systems of equations can be solved by backward substitutions, with
considerably reduced computational complexity. As a worst case, its computation
time is O(M2). However, the number of transitions from a state is typically much
smaller than the state space, such that the computation time typically is O(M).
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9.3.2 Related work

Prior to applying the series expansion method to the Markov model at hand, we
survey work on series expansions of stochastic models. For an overview, we refer
the reader to [22] and [5]. The first work seems to be by Schweitzer in 1968
[29]. Ever since, it has been applied in many forms and flavours, and is known
under various names such as perturbations, light-traffic expansions, Taylor-series
expansions and so on. This technique is in principle not confined to the Markov
framework (see e.g. [6], which utilises Palm theory), although many interesting
examples indeed fall within this framework.

There are roughly three methods to establish series expansions of stochastic
models. The first makes use of the direct derivation sketched above and forms the
basis of the computational method that we propose in this paper and will evaluate
in the next subsection. The second makes use of sample-path arguments. Con-
sider the case that µ denotes a particular event rate. For example, for light-traffic
approximations, µ denotes the arrival rate; in the worked-out example of Section
9.3, the parameter denotes the service rate, and hence constitutes a ‘low-service
rate’ approximation. An important result for this strand of research is what we can
call the n events rule, which states that for an nth order expansion, only sample
paths with n or fewer of such events must be considered. This can be intuited
from the non-rigorous reasoning that a sample path containing n such events has a
probability of order µn. However due to the fact that the number of sample paths is
uncountable and thus the probability of every individual path is zero, making this
rigorous is non-trivial. For series expansions revolving around a Poisson process
with a small rate, to which the examples in this work essentially belong, this was
made rigorous by Reiman and Simon [27]. Important work extending this to a
Palm calculus context was presented in [6].

The third approach to series expansions is via the following updating formula,
which has been established in general Markov settings, see eg. [14]:

πππ = πππ0

∞

∑
k=0

[µQ(1)D]k.

where D denotes the deviation matrix of Q(0). In this case, a successful application
revolves around finding this deviation matrix D, defined as follows:

D =
∫

∞

0
([P0(t)]i j−Π0)dt , (9.4)

with P0(t) the Markov semigroup of the continuous-time Markov process and
Π0 = limt→∞ P0(t).

As the matrix D is closely related to Poisson’s equation for Markov processes,
this technique is sometimes also denoted as such [25]. Note that the matrix D
pertains to the unperturbed Markov process, so that in this updating formula we
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see another justification for the n events rule. Indeed, as the events are in fact
nothing else than the transitions recorded in Q(1), transitions which do not occur
in Q(0) and hence nor in D, it follows that in the vector πππ(n) = πππ(0)(Q(1)D)n, only
those states that can be reached with n events (or less) can be non-zero. To the
best of our knowledge, a rigourous identification of the sample-path method and
the updating formula has not yet been attempted.

9.3.3 Application

In view of the method described above, let πn(x) be the nth component of the
expansion,

π(x) =
∞

∑
n=0

πn(x)µn ,

for x ∈ L . Substituting the former expression in the balance equations (9.2), we
get

∞

∑
n=0

πn(x)µn
(
||x||µ+λ(x)+αsi(x)+αir(x)+αsr(x)

)
= 1{||x||<L}

(
∞

∑
n=0

πn(xr +1,xi,xs)µn+1(xr +1)+
∞

∑
n=0

πn(xr,xi +1,xs)µn+1(xi +1)

+
∞

∑
n=0

πn(xr,xi,xs +1)µn+1(xs +1)
)
+

∞

∑
n=0

πn(xr−1,xi,xs)λr(xr−1,xi,xs)µn

+
∞

∑
n=0

πn(xr,xi−1,xs)λi(xr,xi−1,xs)µn +
∞

∑
n=0

πn(xr,xi,xs−1)λs(xr,xi,xs−1)µn

+
∞

∑
n=0

πn(xr,xi−1,xs +1)αsi(xr,xi−1,xs +1)µn

+
∞

∑
n=0

πn(xr−1,xi +1,xs)αir(xr−1,xi +1,xs)µn

+
∞

∑
n=0

πn(xr−1,xi,xs +1)αsr(xr−1,xi,xs +1)µn . (9.5)

For x ∈ L∗ = L \ {(L,0,0)}, comparison of the terms in µ0 on both sides of the
former equation yields,

π0(x)
(

λ(x)+αsi(x)+αir(x)+αsr(x)
)

=
∞

∑
n=0

π0(xr−1,xi,xs)λr(xr−1,xi,xs)+
∞

∑
n=0

π0(xr,xi−1,xs)λi(xr,xi−1,xs)

+
∞

∑
n=0

π0(xr,xi,xs−1)λs(xr,xi,xs−1)
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+
∞

∑
n=0

π0(xr,xi−1,xs +1)αsi(xr,xi−1,xs +1)

+
∞

∑
n=0

π0(xr−1,xi +1,xs)αir(xr−1,xi +1,xs)

+
∞

∑
n=0

π0(xr−1,xi,xs +1)αsr(xr−1,xi,xs +1) .

Evaluating this expression in lexicographical order shows,

π0(x) = 0 , (9.6)

for x ∈ L \ {(L,0,0)}. By the normalisation condition of πππ0 we further get π0

(L,0,0) = 1. This result is not unexpected. In the absence of departures, the
population size reaches its boundary and no new arrivals are possible. Moreover,
every individual in the population will recover after some time, such that there are
but recovered individuals.

Comparison of the terms in µn for n > 0 in equation (9.5) gives,

πn(x) =
1

∆(x)

(
1{||x||<L}

(
πn−1(xr +1,xi,xs)(xr +1)+πn−1(xr,xi +1,xs)(xi +1)

+πn−1(xr,xi,xs +1)(xs +1)
)
+πn(xr−1,xi,xs)λr(xr−1,xi,xs)

+πn(xr,xi−1,xs)λi(xr,xi−1,xs)+πn(xr,xi,xs−1)λs(xr,xi,xs−1)

+πn(xr,xi−1,xs +1)αsi(xr,xi−1,xs +1)

+πn(xr−1,xi +1,xs)αir(xr−1,xi +1,xs)

+πn(xr−1,xi,xs +1)αsr(xr−1,xi,xs +1)−πn−1(x)||x||
)
,

for x ∈ L \{(L,0,0)} with,

∆(x) =
(

λ(x)+αsi(x)+αir(x)+αsr(x)
)
.

As detailed in [10], we can use the above equation to compute new terms very
efficiently, by iterating over the state space in lexicographic order, as on the RHS
only entries of either order n−1 or lexicographically smaller entries of order n are
present. Moreover, the assumptions on the arrival process assure that ∆(x)> 0 for
all x ∈ L \ {(L,0,0)}. As for the 0th order term, the normalisation condition is
used to find the nth order expansion of π(L,0,0),

πn(L,0,0) =−∑
x

πn(x) .
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9.3.4 Performance measures

Once the series expansion of the steady-state distribution has been obtained, the
expansion of various performance measures directly follows. Let X ∼ π, then for
a performance measure J = E[ f (X)], we have

J = ∑
x∈L

f (x)π(x)= ∑
x∈L

f (x)
∞

∑
n=0

πn(x)µn =
∞

∑
n=0

∑
x∈L

f (x)πn(x)µn =
∞

∑
n=0

Jnµn , (9.7)

with
Jn = ∑

x∈L
f (x)πn(x) .

The interchange of the summations is justified by the finiteness of L and the con-
vergence of ∑n πn(x)µn for all x ∈ L . As such, any term Jn in the expansion of a
performance measure J can be calculated from the corresponding vector πππn of the
expansion of the steady-state vector πππ. Performance measures of interest include
amongst others the jth order moment of the number of individuals of type k ∈ K
( f (x) = xk

j).

9.4 Fluid limit

In this section, we develop a fluid limit for the model described in this contribution,
relying on the monograph of Ethier and Kurtz [11], and on the survey article by
Darling and Norris [7].

9.4.1 Convergence for the generic epidemic process

Let {Xε
r (t),X

ε
i (t),X

ε
s (t)} denote the continuous-time Markov process indexed by

the scaling parameter ε, which affects the system in the following way: step sizes
are scaled by ε, whereas the transition rates are scaled by ε−1. We assume that the
Markov process takes values in a compact set U ⊂ R3, where U := {x ∈ R3 : x≥
0, ||x|| ≤ L}.

In particular, the generator of the scaled process is as follows,

Qε f (x) = ∑
k∈K

ε
−1

λ̄k(x)[ f (x+ εek)− f (x)]+ ∑
k∈K

ε
−1µxk[ f (x− εek)− f (x)]

(9.8)

+ ∑
( j,k)∈K ∗

ε
−1

ᾱ jk(x)[ f (x− εe j + εek)− f (x)], (9.9)

for suitable functions λ̄k(·) and k ∈K , ᾱ jk(·), ( j,k) ∈K ∗, which we require to be
Lipschitz continuous on U . Note that this means in particular that the arrival rates
λ̄k(·) must not go discontinuously to zero at the border ∂U of U , and therefore
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we smoothen these functions in a certain manner. In terms of numerical results,
the exact manner with which these are smoothened is not important, as we have
found that the fluid limit gives the best results when the system steers clear from
the boundary as ε→ 0, that is

P[d(Xε(t),∂U)< δ]→ 0,

where d(·, ·) denotes the Euclidean distance.
Let us introduce the transition rates qε(x,x′) corresponding to Qε in the obvious

manner. By ‘Tayloring’, we find that

Qε f (x)→ ∑
k∈K

λ̄k(x)∂xk f (x)− ∑
k∈K

µxk∂xk f (x) (9.10)

+ ∑
( j,k)∈K ∗

ᾱ jk(x)[−∂x j +∂xk ] f (x)+O(ε2). (9.11)

Note that the limit is exact when f is a linear function, as the second order deriva-
tives of f , which feature in the O(ε2) term, are evidently all zero. It is well-known
that a generator of this type has a deterministic solution that can be formulated in
terms of the following system of (non-linear) differential equations:

ẋs(t) = λs(x(t))− ᾱsi(x(t))− ᾱsr(x(t))−µxs(t);

ẋi(t) = λi(x(t))+ ᾱsi(x(t))− ᾱir(x(t))−µxi(τ);

ẋr(t) = λr(x(t))+ ᾱir(x(t))+ ᾱsr(x(t))−µxr(t) ,

which has in general no closed-form solution but can be solved efficiently with a
suitable numerical procedure for differential equations. Let us denote this system
of equations in shorthand as ẋ = b(x), for a suitably defined vector field b(·) on
U , with Lipschitz constant K.

We show an error bound for the fluid limit using Proposition 4.2 from [7].
Consider the following events:

Ω0 :=
{
|Xε(0)−x(0)| ≤ δ

}
,

Ω1 :=
{∫ t0

0
|β(Xε(t))−b(x(0))| ≤ δ

}
,

Ω2 :=
{∫ t0

0
γ(Xε(t))≤ A(ε)t0

}
.

where
β(x) = ∑

x′
q(x,x′)(x′−x),

and
γ(x) = ∑

x′
q(x,x′)|x′−x|2.
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We have per Proposition 4.2 that

P

(
sup
t≤t0
|Xε(t)−x|> κ(ε)

)
≤ 4A(ε)t0/δ

2 +P(Ωc
0∪Ω

c
1∪Ω

c
2).

where δ = κ(ε)e−Kt0/3.
A simple calculation shows that P(Ωc

1) = 0 and also P(Ωc
2) = 0 if we choose

ε
−1A(ε) = ∑

k∈K
[max

x
λ̄k(x)+max

x
µxk]+2 max

( j,k)∈K ∗
ᾱ jk(x).

If we choose κ(ε) such that κ(ε)2/ε→ 0, and if Xε(0) to x(0) then we have indeed
convergence to the fluid limit.

9.4.2 Equilibrium points for the opinion spreading model

In this section, we calculate the equilibrium points for the opinion spreading model
introduced in Subsection 9.2.2 by solving b(x) = 0. We have

0 =

(
λ

0
s +λ

1
s ||x||

)
−
(

α
0
si +α

1
sixi

)
xs−α

0
srxs−µxs ; (9.12)

0 =

(
λ

0
i +λ

1
i ||x||

)
+

(
α

0
si +α

1
sixi

)
xs−α

0
irxi−µxi ; (9.13)

0 = λ
0
r +α

0
irxi +α

0
srxs−µxr . (9.14)

where ||x||= xr + xi + xs. By subtracting (9.12) from (9.13), we can eliminate the
quadratic part in ᾱsi(x). Then, we find solutions for xi and xr by solving this new
linear equation together with equation (9.14). These solutions are substituted in
equation (9.12) such that we get the following quadratic equation in xs:

f (xs) = x2
s

α1
si

a

(
−µ2 +λ

1
s α

0
sr +λ

1
i α

0
sr−µα

0
sr +λ

1
s µ+λ

1
i µ
)

+ xs

(
1
a

(
− (λ1

s )
2µ+λ

1
s µ2− (λ1

s )
2
α

0
ir−λ

1
s λ

1
i µ

+λ
1
s α

0
irµ−λ

1
s α

0
irλ

1
i +α

1
siλ

1
s λ

0
r +α

1
siλ

1
i λ

0
r +α

1
siµλ

0
s

+α
1
siµλ

0
i

)
+λ

1
s −α

0
sr−µ−α

0
si

)
+

(
λ1

s

a

(
−µλ

0
s −µλ

0
i −α

0
irλ

0
s −µλ

0
r −α

0
irλ

0
i −α

0
irλ

0
r

)
+λ

0
s

)
with a = α0

irλ
1
s +α0

irλ
1
i +λ1

s µ+λ1
i µ−α0

irµ−µ2.
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To examine the stability of the system, we define the Jacobian matrix at each
of the equilibrium points from the above quadratic equation. We have

J =


dFs
dxs

dFi
dxs

dFr
dxs

dFs
dxi

dFi
dxi

dFr
dxi

dFs
dxr

dFi
dxr

dFr
dxr


where Fs, Fi and Fr are respectively equal to equations (9.12), (9.13) and (9.14).
We get

J =

λ1
s −α0

si−α1
sixi−µ λ1

i +α0
si +α1

sixi αsr
λ1

s −α1
sixs λi +α1

sixs−αir−µ αir

λ1
s

λi
L −µ

 . (9.15)

Note that if all eigenvalues have a negative real part, the equilibrium point is stable,
otherwise the equilibrium point is unstable. Numerical results will be given in the
next section.

9.5 Numerical results

To illustrate our numerical approach, we now assess the accuracy of the series
expansion technique and the fluid limit by means of several numerical examples.

9.5.1 Constant infection and arrival rates

First, consider the first example as described in Subsection 9.2.1. Recall, that for
this particular example, the solution can be calculated explicitly. We here compare
the accuracy of the series expansion with the exact result. To this end, Figures
9.2(a) and 9.2(b) depict the mean number of infected and susceptible individuals,
respectively, versus the arrival rate of infected individuals λi. The maximum pop-
ulation size is L = 50 and we further assume λr = λs = 1 and αir = αsi = αsr = 1.
Moreover, the departure rate µ is set to 0.05. The exact result is compared with the
approximation by an Nth order expansion in µ for N = 2, N = 4 and N = 8. For
N = 8, we observe that the approximation is accurate, apart from a slight deviation
for small λi. In contrast, for N = 2 and N = 4, the results of the series expansions
are clearly not accurate for the considered parameter settings.

To establish the regions in which the results of the series expansion are accurate
enough, we propose a simple heuristic which compares the Nth and the 2Nth order
expansions. Let fN(µ) be the Nth order expansion in µ, we then accept our Nth
order approximation provided if∣∣∣∣ f2N(µ)− fN(µ)

f2N(µ)

∣∣∣∣< ε , (9.16)
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Figure 9.2: Mean number of infected (a) and susceptible (b) individuals.
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Figure 9.3: Mean number of recovered individuals.
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or equivalently,

1− ε <

∣∣∣∣ fN(µ)
f2N(µ)

∣∣∣∣< 1+ ε . (9.17)

Let ΩN denote the region where these inequalities hold. In Figure 9.3, we
divide the region where these inequalities hold and do not hold for N = {2,5,10}
with ε = 0.01 by means of a line. The same parameter settings as in Figures 9.2(a)
and 9.2(b) are considered and the arrival rate of infected individuals is assumed
to be equal to 3. As can be observed, the regions for which the inequality of the
heuristic hold go up to µ = 0.041 for N = 2, up to µ = 0.052 for N = 5 and up to
µ = 0.061 for N = 10. Comparing the results of the approximation method with
the exact result, we observe that the performance assessment is accurate in the
heuristically determined region.

9.5.2 Opinion spreading model

We now consider the opinion spreading model as described in Section 9.2.2. In this
case, the exact solution cannot be calculated and we rely on simulation to assess the
accuracy of our results. Figures 9.4(a), 9.4(b) and 9.5 depict respectively the mean
number of recovered individuals, the mean number of infected individuals and the
mean number of susceptible individuals versus the lifetime rate µ varying from 0
to 0.6. Moreover, the maximum population size equals L = 20 , the arrival rates λ0

k
where k = {r, i,s} and λ1

i where i = {i,s} are respectively equal to 3 and 0.1 and
the rates at which an individual changes of type, α0

si, α1
si,α

0
sr and α0

ir, are equal to 3.
Series expansions of various orders N are depicted as indicated (N = 1, 5, 10), as
well as simulation results. As expected, the mean number of recovered individuals
decreases and the mean number of infected and susceptible individuals increase as
the departure rate increases. Moreover, for µ = 0, the population consists only of
recovered individuals as their lifetime is infinite such that all individuals recover
eventually. As the figures show, the approximation for N = 5 is already accurate
for the mean number of recovered, infected and susceptible individuals.

We also consider the fluid approximation of the opinion spreading model. In
Figure 9.6(a), we depict the stable equilibrium point of the quadratic equations
given in Subsection 9.4.2. The parameter settings are the same as in Figure 9.4
and 9.5 but for a varied λ1

i from 0 to 1 and a constant µ = 0.7. By evaluating
the eigenvalues of the Jacobian matrix (9.15) at the equilibrium points, we can
determine the stability of these solutions. In Figure 9.6(b), we show the unstable
equilibrium as well. As indicated on the figure, the equilibrium points of the dotted
line give stable solutions while the equilibrium points of the solid line are unstable
nodes. Indeed, the equilibrium points depicted by the solid line have at least one
eigenvalue that has a positive real part while the eigenvalues derived from the
dotted line all have a negative real part.
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Figure 9.4: Mean number of recovered (a) and infected (b) individuals.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
µ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N = 1

N = 5

N = 10

simulation

Figure 9.5: Mean number of susceptible individuals.
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Figure 9.6: Stable equilibrium point of xs (a) and stable and unstable equilibrium points of
xs (b) for λ0

k = 3, µ = 0.7 α0
si = α1

si = α0
sr = α0

ir = 3.

0.0 0.5 1.0 1.5 2.0
t

0

10

20

30

40

50

xr (t)

xi(t)

xs (t)

(a)

0.0 0.5 1.0 1.5 2.0
t

0

10

20

30

40

50

xr (t)

xi(t)

xs (t)

(b)

Figure 9.7: Fluid model for M = 100, λ0
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ir = 3
and L = 50.
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Figure 9.8: Mean number of recovered individuals calculated by the Maclaurin-series ex-
pansion (left) and the fluid limit (right).

The fluid limit also allows for evaluating the evolution to equilibrium. The
transient behaviour predicted by the fluid approximation is shown in Figures 9.7(a)
and 9.7(b). We assume the same parameter settings except for the maximum num-
ber of individuals L which is now equal to 50 instead of 20. The start values
are respectively xr(0) = 0,xi(0) = 50 and xs(t) = 0 and xr(0) = 0,xi(0) = 0 and
xs(t) = 50 in Figures 9.7(a) and 9.7(b). As the figures show, a large number of
infected or susceptible individuals quickly lead to a relative large number of re-
covered individuals.

Finally, we combine series- and fluid approximations. In Figure 9.8, we depict
the mean number of recovered individuals as calculated by the Maclaurin-series
expansion with N = 10 for µ varying from 0.0 to 0.95 as well as the mean number
of recovered individuals as calculated by the fluid limit of the system for µ varying
from 0.75 to 1.45. Moreover, both approximations are compared with simulation
results. The other parameters are the same as in Figure 9.4 and 9.5. This fig-
ure clearly demonstrates that both approximations are complementary: the series
expansion and the fluid limit approximate well the mean number of recovered indi-
viduals for low and high values of µ, respectively. It can be seen that the accuracy
of the series expansion deteriorates as µ increases while the accuracy of the fluid
limit deteriorates for decreasing µ. In this case, combining both approximations
yields a good approximation for the whole range of µ going from 0 to 1.45 (from
0 to 0.83 with the series expansions and from 0.83 to 1.45 with the fluid limit).
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9.6 Conclusion

In this paper, we evaluate the propagation of an opinion in a size-limited population
that has a low population turnover. Furthermore, we assume that individuals can
have either no opinion (S), an opinion that they want to spread (I) or an opinion
that they don’t want to transmit or no opinion as they become neutral or lose their
interest in the topic (R). Moreover, the evaluation method at hand allows for arrival
rates of the three types as well as for rates at which an individual changes type that
are state-dependent.

To cope with the inherent state space explosion, we propose an approximative
numerical algorithm for the Markovian epidemic process. In particular, a numeri-
cal algorithm is applied which calculates the first N coefficients of the Maclaurin-
series expansion of the steady-state probability vector. From the numerical results,
we show that the series expansion approach gives us a good approximation for
the opinion model in a heuristically determined region. Complementary to the se-
ries expansion approach, we derive a fluid limit of the Markov process where the
arrival rates of the three types and the population size are sent to infinity.
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10
Conclusions

In this dissertation, we investigated a particular type of Markovian queueing sys-
tems, namely queueing systems with shared service. Shared service means that
there is a departure in every queue upon service completion and that service is only
possible when each queue is nonempty. To gain insights into the dynamics of such
systems under uncertainty, we used and developed state-of-the-art modelling and
numerical solution techniques. More specifically, we exploited structural proper-
ties of the Markov processes that describe queueing systems with shared service,
so as to speed up computation of the steady-state solution.

In Chapter 2 we investigated a two-part kitting system in a Markovian setting.
As kits can only be compiled when both parts are available, the kitting process is
modelled as a two-queue system with shared service. The introduction of a Marko-
vian environment allows the study of kitting performance under non-restrictive sto-
chastic assumptions like bursty part arrivals and phase-type distributed kit assem-
bly times. As most of the entries in the generator matrix equal zero, we exploited
the sparse property of the generator matrix of the Markov process that describe
such systems by using the GMRES method. Although this method performs better
than the LU decomposition with respect to speed, increasing the number of queues
(or increasing the state space) leads to inefficient calculations of the steady-state
performance measures.

Another structural property of some Markov processes we considered is the
repetitive block-triangular structure of their generator matrices. Such processes
are called quasi-birth-death (QBD) and can be solved efficiently by the matrix-
geometric methods. Restricting ourselves to a system with two queues, the queue
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content of one queue can be identified as the level of the QBD and the queue con-
tent of the other queue as the phase of the QBD. In this dissertation, we assumed
the number of levels and phases to be respectively infinite and finite. Accounting
for the repetitive finite block structure of the QBD process when calculating the
steady-state probability vector reduces significantly the computational complexity.
If we move beyond two queues, the phase can still describe the queue content of
all but one queue and we still obtain a QBD. Note however that the state-space
explosion translates into increasing block sizes and matrix-geometric methods are
no longer computationally efficient.

In Chapter 3 and 4, hybrid MTS/MTO systems with order backlog are analysed
as homogeneous QBD processes and solved by matrix-geometric methods. As or-
der processing can only start when there is an order and a semi-finished product
available, service is shared. Moreover, a threshold-based control policy was im-
plemented: production of semi-finished products starts when the inventory level
drops below a certain value, referred to as the threshold value, and stops when the
inventory level reaches maximum capacity. Under uncertainty of demand, pro-
duction and service times, the performance analysis of hybrid MTS/MTO systems
with and without a threshold-based control policy was conducted. As shown in
the numerical results, the setup time and order processing time distribution have
a limited impact on the mean lead time and inventory level. However, inventory
control and correlation in the order process decreases the mean inventory level at
the cost of increased mean lead times.

Similar to hybrid MTS/MTO systems, energy harvesting sensor nodes are anal-
ysed as homogeneous QBD processes and solved by matrix-geometric methods in
Chapter 5 and 6. A rechargeable battery operates very much like a queue, cus-
tomers being discretised as chunks of energy. As a sensor node requires both
sensed data and energy for transmission, shared service can again be identified.
The performance of such sensor nodes is evaluated under uncertainty in energy
capture, energy consumption, data acquisition and data transmission. We also ac-
counted for the transmission range of the sensor node by assuming limited time
periods in which data can be transmitted. As shown in the numerical results, cor-
relation in the energy harvesting process decreases the performance of the energy
harvesting sensor node: data packets wait longer on average. Also, if the energy
harvesting rate is high, correlation induces long periods with more energy arrivals
than can be stored in the battery with finite capacity. Hence, the mean battery level
decreases.

As stated earlier, neither of the former solution methods allows for investi-
gating systems with many queues. Therefore, we developed an approximation
technique based on a Maclaurin-series expansion of the steady-state probability
vector. When the departure rate is sent to zero, the resulting generator matrix has
an upper-triangular structure. In this case, the solution at zero is trivial as there
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is only one final state. The calculation of the higher order terms in the series ex-
pansion results in a computational complexity proportional to the size of the state
space.

Chapter 7 studied kitting systems with exponential service times as regular
perturbation problems. Indeed, the Markov process is irreducible when the pertur-
bation parameter is sent to zero which means that we can find one unique steady-
state solution. In this Chapter, a proof of convergence of the series expansion and
a lower bound on the convergence radius are provided. The convergence domain
is illustrated by a numerical example.

Chapter 8 builds on the results of Chapter 7 by proposing an efficient numerical
scheme for the evaluation of singular perturbation problems. In this case, kitting
systems with phase-type service times are considered. When there is no service,
all queues will eventually be full but the system will remain in one of the phases
of the service process. Hence, the perturbation is singular. As shown in the nu-
merical results of both Chapters 7 and 8, the Maclaurin-series expansion combined
with a proposed heuristic give a quite good approximation of the studied queueing
systems with shared service in the regular as well as in the singular case.

Chapter 9 studied single opinion propagation systems as a Markovian SIR epi-
demic model. Accounting for limited population size, opinion spreading can be
captured by a multidimensional Markov process which is very similar to the Mar-
kov process of the queueing systems with shared service. Although individuals
leave the system one by one, i.e. there is no shared service, we showed that the de-
veloped numerical algorithm can be utilised to approximate the steady-state prob-
ability vector of the epidemic model. Assuming exponential departure rates, the
perturbation problem is regular. The fluid limit of the Markov process is also de-
rived. As shown by the numerical examples, the Maclaurin-series expansion and
the fluid limit complement each other: both methods approximate well the stud-
ied performance measures for low and high values of the perturbation parameter,
respectively.

10.1 Future work

In this dissertation, applications in inventory management and telecommunica-
tions motivate the study of queueing systems with shared service. The developed
queueing models and considered analysis techniques can however be extended to
other applications. An example of a sector using queueing systems with shared
service is that of healthcare operations management. Indeed, different types of
customers (i.e. nurses, patients, beds, medicine etc.) need to be in place for a
service (i.e. surgery) to proceed. Other possible future work concerns the exten-
sion of the already developed queueing models. For example, the studied kitting
processes can be extended to and compared with the threshold-based case. This
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analysis would determine the optimal replenishment strategy given a specific set
of parameter values. The studied kitting processes can also be complemented with
a queue of outstanding orders in order to further comprehend the complexity of
the dynamics of hybrid push-pull systems. Finally, we could expand the single
opinion propagation model to a model with multiple opinions. As in the case of
single opinion, system performance can then be evaluated by two complementary
approaches: the Maclaurin-series expansion and the fluid limit of the system at
hand. Concerning the developed Maclaurin-series expansion, we foresee that the
conditions can be relaxed to a block triangular structure for the unperturbed part
of the generator matrix. Indeed, these additional complexities are expected to be
manageable if the size of the blocks remains small.


