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We consider a two-node queue modeled as a two-dimensional random walk. In particular,
we consider the case that one or both queues have finite buffers. We develop an approxi-
mation scheme based on the Markov reward approach to error bounds in order to bound
performance measures of such random walks. The approximation scheme is developed in
terms of a perturbed random walk in which the transitions along the boundaries are differ-
ent from those in the original model and the invariant measure of the perturbed random
walk is of product-form. We then apply this approximation scheme to a tandem queue
and some variants of this model, for the case that both buffers are finite. The modified
approximation scheme and the corresponding applications for a two-node queueing system
in which only one of the buffers has finite capacity have also been discussed.

Keywords: error bounds, finite state space, performance measure, product-form, random walk,
two-node queue

1. INTRODUCTION

Van Dijk and Lamond [41] pioneered in developing error bounds for the throughput in
a tandem queue using the product-form modifications and a Markov reward approach.
The method has since been further developed by van Dijk [39] and van Dijk and Puter-
man [43] and has been applied to, for instance, Erlang loss networks [11], to networks with
breakdowns [38], to queueing networks with non-exponential service [42], and to wireless
communication networks with network coding [18]. An extensive description and overview
of various applications of this method can be found in van Dijk [40]. A disadvantage of
the error bound method mentioned above is that the verification steps that are required
to apply the method can be technically quite complicated. Goseling, Boucherie, and van
Ommeren [19] developed a general verification technique for the two-node queue, i.e., for
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2 Y. Chen et al.

random walks in the quarter-plane. This verification technique is based on formulating the
application of the error bounds method as solving a linear program. In doing so, it avoids
completely the induction proof required in van Dijk and Puterman [43].

It is of interest to extend and generalize the method of Goseling et al. [19] to more gen-
eral queueing networks, for instance, with more than two nodes, with finite buffers at some
of the nodes, and with overflow behavior. For these networks, currently no methods exist
by which we can analyze them. The current work provides the necessary intermediate step
in building up our approach from the first ideas in Goseling et al. [19] toward a completely
general method.

The main contribution of the current work is to provide an approximation scheme
which can be readily applied to approximate performance measures for any two-node queue
in which one or both queues have finite buffer capacity. The essential difference between our
work and Goseling et al. [19] can be summarized as follows. In Goseling et al. [19] a linear
program is constructed in which some of parameters are derived from the structure of the
network. More precisely, these parameters are derived by hand in Goseling et al. [19]. In the
current work, since we consider finite buffers, we have a state space with more boundaries
and, therefore, a more complicated structure. The most important part of our generalization
of Goseling et al. [19] consists of deriving the parameters of the linear program by means
of a second linear program. In addition, we demonstrate how both linear programs can
be obtained in a methodological way using a mathematical programming language. We
emphasize that the methods that are developed in this paper do not rely on the fact that
the underlying state-space is two-dimensional. Therefore, it seems feasible, but part of future
work, that our method can be further generalized to queueing networks with more than two
nodes.

The two-node queue itself, has been extensively studied. In Section 7 we provide a
comparison between our work and existing methods.

The remainder of this paper is organized as follows. In Section 2, we present the model
and formulate the research problem. In Section 3, we provide an approximation scheme to
bound performance measures for any two-node queue with finite buffers at both queues. We
bound performance measures for a tandem queue with finite buffers and some variants of this
model in Section 4. In Section 5, we extend the approximation scheme to any two-node queue
with finite buffers at only one queue. In Section 6, this extended approximation scheme has
been applied to a coupled-queue with finite buffers at only one queue. In Section 7, we
compare our method with the existing methods. Finally, we provide concluding remarks in
Section 8.

2. TWO-NODE QUEUE WITH FINITE BUFFERS AT BOTH QUEUES

2.1. Two-node queue with finite buffers at both queues

The two-node queue with finite buffers at both queues is a queueing system with two servers,
each of them having finite storage capacity. If a job arrives at a server which does not have
any more storage capacity, then the job is lost. In general, the two queues influence each
other, i.e., the service rate at one of the queues depends on the number of jobs at the
other.

Such a queueing system is naturally modeled as a two-dimensional finite random walk,
which we introduce next. The connection between the continuous-time queueing system
and the discrete-time random walk, obtained through uniformization, is made explicit for
various examples in Sections 4 and 6.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964819000238
Downloaded from https://www.cambridge.org/core. Twente University Library, on 06 Aug 2019 at 11:08:32, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964819000238
https://www.cambridge.org/core


PERFORMANCE MEASURES FOR THE TWO-NODE QUEUE WITH FINITE BUFFERS 3

Figure 1. C-partition of S with components C1, C2, . . . , C9.

2.2. Two-dimensional finite random walk on both axis

We consider a two-dimensional random walk R on S where

S = {0, 1, 2, . . . , L1} × {0, 1, 2, . . . , L2}.
We use a pair of coordinates to represent a state, i.e., for n ∈ S, n = (i, j). The state space
is naturally partitioned in the following components (see Figure 1):

C1 = {1, 2, 3, . . . , L1 − 1} × {0}, C2 = {0} × {1, 2, 3, . . . , L2 − 1},
C3 = {1, 2, 3, . . . , L1 − 1} × {L2}, C4 = {L1} × {1, 2, 3, . . . , L2 − 1},
C5 = {(0, 0)}, C6 = {(0, L2)}, C7 = {(L1, L2)}, C8 = {(L1, 0)},
C9 = {1, 2, 3, . . . , L1 − 1} × {1, 2, 3, . . . , L2 − 1}.

We refer to this partition as the C-partition. The index of the component from the C-
partition of state n ∈ S is denoted by k(n), i.e., n ∈ Ck(n). Take for instance, C5 = (0, 0).
Then the index of (0, 0) is 5, hence, k((0, 0)) = 5, i.e., (0, 0) ∈ C5.

Transitions for the states from S are restricted to the neighboring points (horizontally,
vertically, and diagonally). The transition from a component of the C-partition to another
component from the C-partition also has this restriction. For instance, let us consider C5.
The neighbors, N5, is the product set {0, 1} × {0, 1}, which denotes the coordinates of the
transitions, either horizontally or vertically. For k = 1, 2, . . . , 9, we denote by Nk the neigh-
bors of a state in Ck. More precisely, N1 = {−1, 0, 1} × {0, 1}, N2 = {0, 1} × {−1, 0, 1},
N3 = {−1, 0, 1} × {−1, 0}, N4 = {−1, 0} × {−1, 0, 1}, N5 = {0, 1} × {0, 1}, N6 = {0, 1} ×
{−1, 0}, N7 = {−1, 0} × {−1, 0}, N8 = {−1, 0} × {1, 0}, and N9 = {−1, 0, 1} × {−1, 0, 1}.
Also, let N = N9.

Let pk,u denote the transition probability from state n in component Ck to n + u, where
u ∈ Nk. For C5, we now have pk,u from state n = (0, 0) in component Ck, where k = 5, to
(0, 0) + u, where u ∈ N5. This means u could be (0, 0), (0, 1), (1, 0), and (1, 1). For instance,
p5,(1,0) is the transition probability from state (0, 0) in component C5 to (0, 0) + (1, 0), i.e.,
(1,0), transition to the right. The transition diagram of a two-dimensional finite random
walk can be found in Figure 2. The transitions from a state to itself are omitted. The system
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4 Y. Chen et al.

Figure 2. Two-dimensional finite random walk on S. The transitions from a state to itself
are omitted.

is homogeneous in the sense that the transition probabilities (incoming and outgoing) are
translation invariant in each of the components, i.e.,

pk(n−u),u = pk(n),u, for n − u ∈ S and u ∈ Nk(n). (1)

Equation (1) not only implies that the transition probabilities for each part of the state space
are translation invariant but also ensures that also the transition probabilities entering the
same component of the state space are translation invariant.

We assume that the random walk R that we consider is aperiodic, irreducible, positive
recurrent, and has invariant probability measure m(n), where m(n) satisfies for all n ∈ S,

m(n) =
∑

u∈Nk(n)

pk(n+u),−um(n + u).

2.3. Problem formulation

Our goal is to approximate the steady-state performance of the random walk R. The
performance measure of interest is

F =
∑
n∈S

m(n)F (n),

where F (n) : S → [0,∞) is linear in each of the components from C-partition, i.e.,

F (n) = fk(n),0 + fk(n),1i + fk(n),2j, for n = (i, j) ∈ S. (2)

The constants fk(n),0, fk(n),1, and fk(n),2 are allowed to be different for different components
from the C-partition of S.
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PERFORMANCE MEASURES FOR THE TWO-NODE QUEUE WITH FINITE BUFFERS 5

Figure 3. Perturbed random walk R̄.

When L1 and L2 are not too large, the invariant measure m(n) could be obtained
numerically by solving a system of linear equations. However, when L1 or L2 is relatively
large, the complexity of solving a very large system of linear equations cannot be neglected
anymore. Therefore, in general, we will use a perturbed random walk of which the invariant
measure has a closed-form expression to approximate the performance measure F .

We approximate the performance measure F in terms of the perturbed random walk R̄.
We consider the perturbed random walk R̄ in which only the transition probabilities along
the boundaries (C1, . . . , C8) are allowed to be different, i.e., for instance, p1,(−1,0), p1,(1,0),
p1,(0,0) for the state from C1 are allowed to be different in R̄, p2,(0,1), p2,(0,−1), p2,(0,0) for
the state from C2 are allowed to be different in R̄, etc. An example of a perturbed random
walk R̄ can be found in Figure 3.

We use p̄k,u to denote the probability of R̄ jumping from any state n in component Ck

to n + u, where u ∈ Nk. Moreover, let qk,u = p̄k,u − pk,u. The probability measure m̄ of R̄
is of product-form,i.e.,

m̄(n) = αρiσj ,

where n = (i, j) for some (ρ, σ) ∈ (0, 1)2 and α �= 0. The measure m̄ is the invariant measure
of R̄, i.e., it satisfies

m̄(n) =
∑

u∈Nk(n)

p̄k(n+u),−um̄(n + u), (3)

for all n ∈ S.
In the following sections, we are going to find upper and lower bounds of F in terms of

the perturbed random walk R̄ defined above.

3. PROPOSED APPROXIMATION SCHEME

In this section, we establish an approximation scheme to find upper and lower bounds for
performance measures of a two-dimensional finite random walk.

In Goseling et al. [19], an approximation scheme based on a linear programming problem
is developed for a random walk in the quarter-plane. This approximation scheme has also
been used in Chen, Boucherie, and Goseling [12]. We will show in this paper that the
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6 Y. Chen et al.

technique can be extended to cover our model, i.e., a two-dimensional finite random walk.
We will explain how this is achieved in the following sections.

3.1. Markov reward approach to error bounds

The fact that R and R̄ differ only along the boundaries of S makes it possible to obtain
the error bounds for the performance measures via the Markov reward approach. An
introduction to this technique is provided in van Dijk [40]. We interpret F as a reward
function, where F (n) is the one-step reward if the random walk is in state n. We denote by
F t(n) the expected cumulative reward at time t if the random walk starts from state n at
time 0, i.e.,

F t(n) =

{
0, if t = 0,

F (n) +
∑

u∈Nk(n)
pk(n),uF t−1(n + u), if t > 0,

(4)

For convenience, let F t(n + u) = 0 where u ∈ {(s, t)|s, t ∈ {−1, 0, 1}} if n + u /∈ S. Terms
of the form F t(n + u) − F t(n) play a crucial role in the Markov reward approach and
are denoted as bias terms. Let Dt

u = F t(n + u) − F t(n). For the unit vectors e1 = (1, 0),
e2 = (0, 1), let Dt

1(n) = Dt
e1

(n) and Dt
2(n) = Dt

e2
(n).

The next result in van Dijk [40] provides bounds for the approximation error for F . We
will use two non-negative functions F̄ and G to bound the performance measure F .

Theorem 1 ([40]): Let F̄ : S → [0,∞) and G: S → [0,∞) satisfy

∣∣∣∣∣∣F̄ (n) − F (n) +
∑

u∈Nk(n)

qk(n),uDt
u(n)

∣∣∣∣∣∣ ≤ G(n), (5)

for all n ∈ S and t ≥ 0. Then

∑
n∈S

[F̄ (n) − G(n)]m̄(n) ≤ F ≤
∑
n∈S

[F̄ (n) + G(n)]m̄(n). (6)

3.2. A linear programming approach

In this section we present a linear programing approach to bound the errors. Due to our
construction of R̄, the random walks R and R̄ differ only in the transitions that are along
the unit directions, i.e.,

qk,u = p̄k,u − pk,u = 0 for u �= {e1, e2,−e1,−e2, (0, 0)}. (7)

This restriction will significantly simplify the presentation of the result.
To start, consider the following optimization problem. We only consider how to obtain

the upper bound for F here because the lower bound for F can be found similarly.

Problem 1:

minimize
∑
n∈S

[F̄ (n) + G(n)]m̄(n), (8)
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PERFORMANCE MEASURES FOR THE TWO-NODE QUEUE WITH FINITE BUFFERS 7

subject to

∣∣∣∣∣F̄ (n) − F (n) +
∑

s=1,2

(
qk(n),es

Dt
s(n) + qk(n),−es

Dt
s(n − es)

)∣∣∣∣∣
≤ G(n), for n ∈ S, t ≥ 0, (9)

F̄ (n) ≥ 0, G(n) ≥ 0, for n ∈ S. (10)

The variables in Problem 1 are the functions F̄ (n), G(n) and the parameters are
F (n), m̄(n), qk(n),es

and Dt
s(n) for n ∈ S, s = 1, 2. Hence, Problem 1 is a linear programming

problem over two non-negative variables F̄ (n) and G(n) for every n ∈ S.
This linear programming problem has infinitely many constraints because we have

unbounded time horizon. We will first bound the bias term Dt
s(n) uniformly over t. Then

we have a linear programming problem with a finite number of variables and constraints.
However, further reduction is still needed because the number of variables and constraints
will increase rapidly if L1 and L2, which define the size of the state space, increase. Our
contribution is to reduce Problem 1 to a linear programming problem where the number of
variables and constraints does not depend on the size of the finite state space. By doing so,
we will achieve a constant complexity in the parameters L1 and L2.

We now verify that the objective in Problem 1 is indeed an upper bound on the perfor-
mance measure F . Consider Dt

(0,0)(n) = 0, Dt
−es

(n) = −Dt
es

(n − es) for s = 1, 2 and (7), it
follows directly that (9) is equivalent to (5). Therefore, it follows from Theorem 1 that the
objective of Problem 1 provides an upper bound on F .

3.3. Bounding the bias terms

The main difficulty in solving Problem 1 is the unknown bias terms Dt
s(n). It is in general

not possible to find closed-form expressions for the bias terms. Therefore, we introduce two
functions As: S → [0,∞) and Bs : S → [0,∞), s = 1, 2. We will formulate a finite number
of constraints on functions As and Bs where s = 1, 2 such that for any t and s = 1, 2 we
have

− As(n) ≤ Dt
s(n) ≤ Bs(n), (11)

i.e., the functions As and Bs provide bounds on the bias terms uniformly over all t ≥ 0. In
the next section, we will find a finite number of constraints that imply (11). Our method is
based on the method that was developed in Goseling et al. [19] for the case of an unbounded
state space.

For notational convenience, as will become clear below, we define a finer partition of S,
the Z-partition. This partition is depicted in Figure 4. For example, we have Z1 = {(0, 0)},
Z2 = {(1, 0)}, Z3 = {2, . . . , L1 − 2} × {0}, Z4 = {(L1 − 1, 0)}, and Z5 = {(L1, 0)}, the rest
of the elements in the partition are determined similarly. Let kz(n) denote the label of
component from Z-partition of state n ∈ S, i.e., n ∈ Zkz(n). Similar to the definition of Nk,
let Nz

k denote the neighbors of a state n in Zk from the Z-partition of S.
The constraints which ensure (11) are obtained based on an induction in t. More

precisely, we express Dt+1
s as a linear combination of Dt

1 and Dt
2 as

Dt+1
s (n) = F (n + es) − F (n) +

∑
v=1,2

∑
u∈Nz

k(n)

cs,kz(n),v,uDt
v(n + u), (12)

where the cs,kz(n),v,u, s ∈ {1, 2}, k ∈ {1, 2, . . . , 25}, v ∈ {1, 2}, u ∈ Nz
k are constants. We now

assume that such constants cs,kz(n),v,u always exist. In the next section, we will explain how
to obtain these constants cs,k,v,u based on a linear programming problem.
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8 Y. Chen et al.

Figure 4. Z-partition of S with components Z1, Z2, . . . , Z25.

We are now ready to bound the bias terms based on (12). The result, which is easy to
verify, states that if As: S → [0,∞) and Bs: S → [0,∞) where s = 1, 2 satisfy

F (n + es) − F (n)

+
∑

v=1,2

∑
u∈Nz

k(n)

max{−cs,kz(n),v,uAs(n + u), cs,kz(n),v,uBs(n + u)} ≤ Bs(n),

F (n) − F (n + es)

+
∑

v=1,2

∑
u∈Nz

k(n)

max{−cs,kz(n),v,uBs(n + u), cs,kz(n),v,uAs(n + u)} ≤ As(n),

for all n ∈ S, then

−As(n) ≤ Dt
s(n) ≤ Bs(n),

for s = 1, 2, n ∈ S and t ≥ 0.
After bounding the bias terms, we are able to rewrite the linear programing Problem 1

into Problem 2 with plugging in the upper and lower bounds for Dt
s(n).

Problem 2:

minimize
∑
n∈S

[F̄ (n) + G(n)]m̄(n),

subject to F̄ (n) − F (n) +
∑

s=1,2

max{qk(n),es
Bs(n) + qk(n),−es

As(n − es),

− qk(n),es
As(n) − qk(n),−es

Bs(n − es)} ≤ G(n),
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PERFORMANCE MEASURES FOR THE TWO-NODE QUEUE WITH FINITE BUFFERS 9

F (n) − F̄ (n) +
∑

s=1,2

max{qk(n),es
As(n) + qk(n),−es

Bs(n − es),

− qk(n),es
Bs(n) − qk(n),−es

As(n − es)} ≤ G(n)

F (n + es) − F (n) +
∑

v=1,2

∑
u∈Nz

k(n)

max{−cs,kz(n),v,uAs(n + u),

cs,kz(n),v,uBs(n + u)} ≤ Bs(n),

F (n) − F (n + es) +
∑

v=1,2

∑
u∈Nz

k(n)

max{−cs,kz(n),v,uBs(n + u),

cs,kz(n),v,uAs(n + u)} ≤ As(n),

F̄ (n) ≥ 0, G(n) ≥ 0, As(n) ≥ 0, Bs(n) ≥ 0,

for n ∈ S, s ∈ {1, 2}.

3.4. Constants cs,kz(n),v,u based on a linear programming

Unlike the procedure to find the constants cs,kz(n),v,u manually in Goseling et al. [19], we
find the constants required to bound the bias terms automatically here based on linear
programming. The reason is that due to the large number of C and Z components finding
these constants manually is cumbersome and error-prone. Moreover, automating the search
procedure for these constants is a necessary intermediate step in building up our approach
from the first idea in Goseling et al. [19] toward a completely general method that can be
used in analyzing two-dimensional random walks with more complex behavior.

Next, we formulate the sufficient conditions on cs,kz(n),v,u such that (12) holds.
Using (4), we have

Dt+1
s (n) = F (n + es) − F (n)

+
∑

d∈k(n+es)

pk(n+es),dF
t(n + es + d) −

∑
u∈Nk(n)

pk(n),uF t(n + u). (13)

Thus, (12) holds if and only if

∑
d∈k(n+es)

pk(n+es),dF
t(n + es + d) −

∑
u∈Nk(n)

pk(n),uF t(n + u)

=
∑

v=1,2

∑
u∈Nz

k(n)

cs,kz(n),v,uDt
v(n + u)

=
∑

v=1,2

∑
u∈Nz

k(n)

cs,kz(n),v,u

[
F t(n + u + ev) − F t(n + u)

]
. (14)

Then, the sufficient condition for (14) to hold is that for each w ∈ Nk(n) ∪ es + Nk(n+es), the
coefficient of F t(n + w) at the LHS is equal to its coefficient at the RHS. We can interpret
cs,kz(n),v,u as a flow from n + u to n + u + ev. For each w ∈ Nk(n) ∪ es + Nk(n+es), n + w
has a demand of 1(w − es ∈ Nk(n+es))pk(n+es),w−es

− 1(w ∈ Nk(n))pk(n),w from the LHS
of (14). Therefore, (14) holds if the demand at each node is equal to the difference between
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10 Y. Chen et al.

the inflow and outflow of the node, i.e.,∑
v=1,2

1(w − ev ∈ Nk(n))cs,kz(n),v,w−ev
−

∑
v=1,2

1(w ∈ Nk(n))cs,kz(n),v,w (15)

= 1(w − es ∈ Nk(n+es))pk(n+es),w−es
− 1(w ∈ Nk(n))pk(n),w, (16)

for kz(n) ∈ {1, 2, . . . , 25}, s ∈ {1, 2}, and w ∈ Nk(n) ∪ es + Nk(n+es). We formulate a linear
programming problem with (15) as the constraints. Then, any feasible solution of the linear
programming problem guarantees that (12) holds.

3.5. Fixed number of variables and constraints

The final step is to reduce Problem 2 to a linear programming problem with fixed number
of variables and constraints regardless of the size of the state space.

We first introduce the notion of a piecewise-linear function on the Z-partition. A func-
tion F : S → [0,∞) is called Z-linear if the function is linear in each of the components
from Z-partition, i.e.,

F (n) = fkz(n),0 + fkz(n),1i + fkz(n),2j, for n = (i, j) ∈ S.

where fkz(n),0, fkz(n),1, and fkz(n),2 are the constants that define the function. In similar
fashion we define C-linear functions on the C-partition of S.

Now, in Problem 2 we put the additional constraint that the variables F̄ , G, As, and Bs

are C-linear functions. Hence, these functions are defined in terms of variables, the number
of which is independent on L1 and L2. Hence, the number of variables in the resulting linear
programming problem is independent of L1 and L2.

It remains to show that the number of constraints is independent of L1 and L2. Following
the reasoning on the properties of Z-partition below (12) it is easy to see that all constraints
in Problem 2 can be formulated as a non-negativity constraint on a Z-linear function. Such
a constraint on a Z-linear function induces at most 4 constraints per component in the
Z-partition, one constraint for each corner of the component. This indicates that the number
of constraints does not depend on the size of the state space, since the number of constraints
are fixed as well.

3.6. The optimal solutions

We are now able to find the upper and lower bounds of F based on the linear programming
problem here.

Let P denote the set of (F̄ , G) for which we are able to find functions As and Bs where
s = 1, 2 such that all constraints in Problem 2 are satisfied. Then, we find the upper and
lower bounds for F as follows,

Fup = min

{∑
n∈S

[F̄ (n) + G(n)]m̄(n)|(F̄ , G) ∈ P
}

,

and

Flow = max

{∑
n∈S

[F̄ (n) − G(n)]m̄(n)|(F̄ , G) ∈ P
}

.

We have now presented the complete approximation scheme to obtain the upper and lower
bounds for F using the perturbed random walk R̄ of which the probability measure is of
product-form.
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PERFORMANCE MEASURES FOR THE TWO-NODE QUEUE WITH FINITE BUFFERS 11

Figure 5. Tandem queue with finite buffers.

3.7. The perturbed random walk with product-form invariant measure

Our construction of R̄ is based on queueing networks with blocking. Sufficient conditions
for these networks to have a product-form invariant are given in, for instance, Balsamo and
De Nitto-Persone; Berezner, Krzesinski, and Taylor; Economou and Fakinos [3–5,14]. More
details of the conditions from Balsamo and De Nitto-Persone; Berezner et al.; Economou and
Fakinos [3–5,14], which are used to preserve product-form invariant measures for blocking
systems, are given when constructing specific perturbed random walks in the applications
of the approximation schemes.

In the next section, we will consider some examples: a tandem queue with finite buffers
and some variants of this model (Figure 5).

4. APPLICATION TO THE TANDEM QUEUE WITH FINITE BUFFERS

In this section, we investigate the applications of the approximation scheme proposed in
Section 3.

4.1. Model description

Consider a two-node tandem queue with Poisson arrivals at rate λ. Both nodes have a single
server. At most a finite number of jobs, say L1 and L2 jobs, can be present at nodes 1 and
2. This includes the jobs in service. An arriving job is rejected if node 1 is saturated, i.e.,
there are L1 jobs at node 1. The service time for the jobs at both nodes is exponentially
distributed with parameters μ1 and μ2, respectively.

When node 2 is saturated, i.e., there are L2 jobs at node 2, node 1 stops serving. When
it is not blocked, it instantly routes to node 2. All service times are independent. We also
assume that the service discipline is first-in first-out.

The tandem queue with finite buffers can be represented by a continuous-time Markov
process whose state space consists of the pairs (i, j) where i and j are the number of
jobs at node 1 and node 2, respectively. We now uniformize this continuous-time Markov
process to obtain a discrete-time random walk. We assume without loss of generality that
λ + μ1 + μ2 ≤ 1 and uniformize the continuous-time Markov process with uniformization
parameter 1. We denote this random walk by RT . All transition probabilities of RT , except
those for the transitions from a state to itself, are illustrated in Figure 6.

4.2. Perturbed random walk of RT

We now present a perturbed random walk R̄T . The invariant measure of the perturbed
random walk R̄T is of product-form and only the transitions along the boundaries in R̄T

are different from those in RT .
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12 Y. Chen et al.

Figure 6. Transition diagram of RT .

Figure 7. Transition diagram of R̄T .

In the perturbed random walk R̄T , the transition probabilities in the components
C3, C4, C7, C8 are different from those in RT . More precisely, we have p̄3,(−1,0) = μ1,
p̄4,(0,1) = λ, p̄7,(−1,0) = μ1, p̄8,(0,1) = λ, see Figure 7. Here we have used ”the overtake full
stations” protocol in Economou and Fakinos [14, Example 1] to construct the perturbed
random walk R̄T . In particular, this protocol means that in a tandem queue, if a job over-
takes a full station and moves forward with the same probabilities, then using the results
from Economou and Fakinos [14] we conclude that the product-form invariant measure is
retained. In our example, we see that in the perturbed random walk R̄T for which the tran-
sition probabilities are demonstrated in Figure 7, when the first queue is full, i.e., i = L1,
the arrivals will skip the first queue and join the second queue. Moreover, when the second
queue is full, i.e., j = L2, the customers which finish their services in the first queue will skip
the second queue and leave the two-station tandem queue system. Therefore, the invariant
measure of the perturbed random walk R̄T is of product-form.
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PERFORMANCE MEASURES FOR THE TWO-NODE QUEUE WITH FINITE BUFFERS 13

Figure 8. The blocking probability F0.

With the normalizing constant α which depends on L1 and L2, we obtain

m̄(i, j) = α

(
λ

μ1

)i (
λ

μ2

)j

.

It can be readily verified that m̄(i, j) is the probability measure of the perturbed ran-
dom walk R̄T by substitution into the global balance equations (3) together with the
normalization requirement.

4.3. Bounding the blocking probability

In this section, we provide error bounds for the blocking probability for the tandem queue
with finite buffers using our approximation scheme provided in Section 3. Moreover, we
show that our results are better than those obtained by van Dijk and Lamond [41].

For a given performance measure F , we use Fup, F low to denote the upper and lower
bounds for F obtained based on our approximation scheme and F̃up, F̃ low to denote the
upper and lower bounds based on the method suggested by van Dijk and Lamond [41].

We use F0 to denote the blocking probability, i.e., the probability that an arriving job
is rejected. We now consider an example that has also been considered in van Dijk and
Lamond [41].

Example 1: Consider a tandem queue with finite buffers, we have λ = 0.1, μ1 = 0.2,
μ2 = 0.2.

We would like to compute the blocking probability of the queueing system. Hence, for
the performance measure function F (n), defined in (2), we set the coefficients fk,d where
with k = 1, 2, . . . , 9, d = 0, 1, 2 to be f8,0 = 1, f4,0 = 1, f7,0 = 1 and others 0. The error
bounds can be found in Figure 8. Clearly, our results outperform the error bounds obtained
in van Dijk and Lamond [41]. Moreover, the difference between the upper and lower bounds
of F0 are captured in Figure 9. This indicates that our error bounds are tighter than those
in van Dijk and Lamond [41].

In addition to the improved bounds, there is another advantage to our method. There is
a limitation to the model modification approach that is used in van Dijk and Lamond [41].
This method requires a different model modification for each specific performance measure.
For instance, the specific model modifications which are used to find error bounds for the
blocking probability of a tandem queue with finite buffers in van Dijk and Lamond [41]

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964819000238
Downloaded from https://www.cambridge.org/core. Twente University Library, on 06 Aug 2019 at 11:08:32, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964819000238
https://www.cambridge.org/core


14 Y. Chen et al.

Figure 9. The difference between bounds of F0.

cannot be used to obtain error bounds for the average number of jobs in the first node. In
addition, extra effort is needed to verify that the model modifications are indeed valid for a
specific performance measure. In the next section, we will show that our method can easily
provide error bounds for other performance measures without extra effort.

4.4. Bounds for other performance measures

In this section, we will demonstrate the error bounds for other performance measures for
Example 1, i.e., a tandem queue with finite buffers.

Let F1 be the average number of jobs at node 1 and F2 be the average number of jobs
at node 2.

In general, the models (i.e., the perturbed systems), used to bound the blocking prob-
ability in van Dijk and Lamond [41] cannot be used to bound F1 and F2. The method in
van Dijk and Lamond [41] requires different upper and lower bound models for different
performance measures. Moreover, this method also requires an effort to verify that they
are indeed the upper and lower bound models for this specific performance measure. Our
approximation scheme does not have this disadvantage. For different performance measures,
we only need to change the coefficients fk,d where k = 1, 2, . . . , 9 and d = 0, 1, 2 in F (n),
which is defined in (2).

It can be readily verified that the performance measure F is F1 if and only if we assign
the following values to the coefficients: f1,1 = 1, f8,1 = 1, f9,1 = 1, f4,1 = 1, f3,1 = 1, f7,1 = 1
and others 0. Figure 10 presents the error bounds of F1. Similarly, the performance measure
F is F2 if and only if we assign the following values to the coefficients: f2,2 = 1, f9,2 =
1, f4,2 = 1, f6,2 = 1, f3,2 = 1, f7,2 = 1 and others 0. Figure 11 presents the error bounds of
F2.

The results show that tight bounds have been achieved with our approximation scheme.
Moreover, the only thing we need to change for different performance measures is the input
function, which does not require further model modifications. In the next section, we will
show that our approximation scheme could also give error bounds for the performance
measures of the tandem queue with finite buffers which has a slower or faster server when
another node is idle or saturated, respectively, without model modifications as well.

4.5. Tandem queue with finite buffers and server slow-down/speed-up

In this section, we consider two variants of the tandem queue with finite buffers. More
specifically, we provide error bounds for the blocking probabilities when one server in the
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PERFORMANCE MEASURES FOR THE TWO-NODE QUEUE WITH FINITE BUFFERS 15

Figure 10. Average number of jobs at node 1, F1.

Figure 11. Average number of jobs at node 2, F2.

tandem queue with finite buffers is slower or faster if another node is idle or saturated,
respectively.

4.5.1. Tandem queue with finite buffers and server slow-down Tandem queue with server
slow-down has been previously studied in, for instance, Miretskiy, Scheinhardt, and Mandjes;
van Foreest et al. [31,45]. A specific type of tandem queue with finite buffers and server
slow-down has been considered in Miretskiy et al.; van Foreest et al. [31,45]. More precisely,
the service speed of node 1 is reduced as soon as the number of jobs in node 2 reaches some
pre-specified threshold because of some sort of protection against frequent overflows.

We consider a different scenario with server slow-down. In our case, the service rate at
node 2 reduces when node 1 is idle. This comes from a practical situation that when node
1 is idle, the working pressure for node 2 decreases and can shift some working capacity
to other tasks. Therefore, we consider a two-node tandem queue with Poisson arrivals at
rate λ. Both nodes have a single server. At most a finite number of jobs, say L1 and L2

jobs, can be present at nodes 1 and 2, respectively. An arriving job is rejected if node 1 is
saturated. The service time for the jobs at both nodes are exponentially distributed with
parameters μ1 and μ2, respectively. While node 2 is saturated, node 1 stops serving. When
it is not blocked, it instantly routes to node 2. While node 1 is idle, the service rate of node
2 becomes μ̃2 where μ̃2 < μ2. All service times are independent. We also assume that the
service discipline is first-in first-out.
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16 Y. Chen et al.

Figure 12. Tandem queue with server slow-down and blocking.

Figure 13. Blocking probability with server slow-down.

The tandem queue with finite buffers and server slow-down can be represented by a
continuous-time Markov process whose state space consists of the pairs (i, j) where i and
j are the number of jobs at node 1 and node 2, respectively. We assume without loss of
generality that λ + μ1 + μ2 ≤ 1 and uniformize this continuous-time Markov process with
uniformization parameter 1. Then we obtain a discrete-time random walk. We denote this
random walk by Rsd

T , all transition probabilities of Rsd
T , except those for the transitions

from a state to itself, are illustrated in Figure 12.
It can be readily verified that the random walk R̄T as defined in Section 4.2 is a

perturbed random walk of Rsd
T as well, i.e., the transition probabilities in R̄T only differ

from those in Rsd
T along the boundaries. We next consider a numerical example.

Example 2 (slow-down): Consider a tandem queue with finite buffers and server slow-
down, we have λ = 0.1, μ1 = 0.2, μ2 = 0.2, and μ̃2 = 0.5μ2.

The error bounds for the blocking probability of Example 2 are illustrated in Figure 13.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964819000238
Downloaded from https://www.cambridge.org/core. Twente University Library, on 06 Aug 2019 at 11:08:32, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964819000238
https://www.cambridge.org/core


PERFORMANCE MEASURES FOR THE TWO-NODE QUEUE WITH FINITE BUFFERS 17

Figure 14. Tandem queue with finite buffers and server speed-up.

Notice that our approximation scheme is sufficiently general in the sense that the error
bounds for the performance measures of all tandem queue with server slow-down and block-
ing mentioned in the previous paragraphs can be obtained with our approximation scheme.
There are no restrictions on the input random walk.

4.5.2. Tandem queue with finite buffers and server speed-up It is also of great interest
to consider a tandem queue with finite buffers and server speed-up.

We consider the following scenario with server speed-up: The service rate at node 2
increases when node 1 is saturated. This comes from a practical situation, for instance,
when node 1 is saturated, the working pressure for node 2 increases to eliminate the jobs in
the queueing system. Therefore, we consider a two-node tandem queue with Poisson arrivals
at rate λ. Both nodes have a single server. At most a finite number of jobs, say L1 and L2

jobs, can be present at nodes 1 and 2, respectively. An arriving job is rejected if node 1 is
saturated. The service time for the jobs at both nodes are exponentially distributed with
parameters μ1 and μ2, respectively. When node 2 is saturated, node 1 stops serving. When
it is not blocked, it instantly routes to node 2. When node 1 is saturated, the service rate of
node 2 becomes μ̄2 where μ̄2 > μ2. All service times are independent. We also assume that
the service discipline is first-in first-out.

Tandem queue with finite buffers and server speed-up can be represented by a
continuous-time Markov process whose state space consists of the pairs (i, j) where i and
j are the number of jobs at node 1 and node 2, respectively. We assume without loss of
generality that λ + μ1 + μ̄2 ≤ 1 and uniformize this continuous-time Markov process with
uniformization parameter 1. Then we obtain a discrete-time random walk. We denote this
random walk by Rsu

T , all transition probabilities of Rsu
T , except those for the transitions

from a state to itself, are illustrated in Figure 14.
Again, it can be readily verified that the random walk R̄T as defined in Section 4.2 is

a perturbed random walk of Rsu
T because only the transitions along the boundaries in R̄T

are different from those in Rsu
T . We next consider the following numerical example.

Example 3 (speed-up): Consider a tandem queue with finite buffers and server speed-up,
we have λ = 0.1, μ1 = 0.2, μ2 = 0.2, and μ̄2 = 1.2μ2.
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18 Y. Chen et al.

Figure 15. Blocking probability with server speed-up.

The error bounds for the blocking probability of Example 3 can be found in Figure 15.
In the next section, we will extend our approximation scheme to the two-dimensional

random walk in which one dimension is finite and another dimension is infinite.

5. TWO-NODE QUEUE WITH FINITE BUFFERS AT ONE QUEUE

The two-node queue with finite buffers at one queue is a queueing system with two servers,
one of them having finite storage capacity. Without loss of generality, we assume node 1 has
finite capacity. If a job arrives at node 1 when it does not have any more storage capacity,
then the job is lost. There is no restriction to the capacity of node 2. In general, the two
queues influence each other. In particular, the service rate at node 2 depends on the number
of jobs at node 1. Again we model this queueing system as a two-dimensional random walk
for which the state space is finite in one dimension.

5.1. Model

We consider a two-dimensional random walk R̃ on S̃ where

S̃ = {0, 1, 2, . . . , L1} × {0, 1, 2, 3, . . .}.
The transition diagram of the two-dimensional random walk R̃ on S̃ can be found in

Figure 17. The transitions from a state to itself are omitted. The C-partition of the state
space S̃ can be found in Figure 16.

5.2. The modified approximation scheme

Next, we introduce the modified approximation scheme which will be used to find the upper
and lower bounds.

We define the notations which would be needed in the approximation scheme later sim-
ilarly as those in Section 2. For the perturbed random walk, we now consider the perturbed
random walk ¯̃R as depicted in Figure 18. Similarly to the perturbed random walk used in
Section 2, only the transitions along the boundaries (the dashed transition probabilities)
are allowed to be different from those in the original model.

For the approximation scheme, we again use the Markov reward approach to obtain
the error bounds. Moreover, the construction of the linear programming remain the same.
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PERFORMANCE MEASURES FOR THE TWO-NODE QUEUE WITH FINITE BUFFERS 19

Figure 16. C-partition of S̃ with components C1, C2, . . . , C6.

Figure 17. Two-dimensional finite random walk R̃ on S̃.

Figure 18. Perturbed random walk ¯̃R on state space S̃.
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20 Y. Chen et al.

Figure 19. Z̃-partition of S̃ with components Z̃1, Z̃2, . . . , Z̃25.

However, the procedure of bounding the bias terms becomes different for the model consid-
ered here due to the different state space S̃. More specifically, we now use the Z̃-partition
of S̃, which is depicted in Figure 19, for bounding the bias terms.

The constants cs,kz(n),v,u which are required to find the biased terms can be obtained
from a linear programming problem automatically. This procedure is again similar to that
in Section 3. More precisely, we solve the linear program with the constraints (15) to obtain
cs,kz(n),v,u for which (12) holds.

After bounding the biased terms, we are able to find the optimal solutions based on
the linear programming problem with fixed number of variables and constraints, similarly
to Section 3.

Although the number of states now becomes countably infinite, the number of con-
straints in the induced linear programming problem remains finite. The reason of this is the
same as that in Goseling et al. [19] which deals with two-dimensional unbounded random
walks. For instance, if we require a linear function a + bi + cj where (i, j) ∈ S to be non-
negative in C6 from Figure 16, we would have finite linear constraints a + b × L1 + c × 1 ≥ 0
and c ≥ 0. More details of building these linear constrains can be found in Gosling et al. [19,
Lemma 4].

In the following section, we will consider some applications of the model discussed here.

6. APPLICATION TO THE COUPLED-QUEUE WITH FINITE BUFFERS AT ONE
QUEUE

In this section, we apply the approximation scheme to a coupled-queue with finite buffers at
one queue. The two coupled processors problem has been extensively studied. In particular,
Fayolle and Iasnogorodski [16] reduce the problem of finding the generating function of the
invariant measure to a Riemann–Hilbert problem. However, when we have finite buffers, the
methods developed in Fayolle and Iasnogorodski [16] for a coupled-queue with infinite buffers
are no longer valid. Knessl and Morrison considered a coupled-queue with each having a
finite capacity of customers in Knessl and Morrison [25]. In particular, the capacity of the
first queue is scaled to be large, while that of the second queue is held constant. Asymptotic
limit of heavy traffic situation appears to be quite accurate numerically in Knessl and
Morrison [25]. For the queueing system of two queues which can be modeled as quasi-birth-
and-death process, the decay rates are also investigated, for instance, in Kroese, Scheinhardt,
and Taylor; Latouche, Nguyen, and Taylor; Miyazawa [26,28,32].
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PERFORMANCE MEASURES FOR THE TWO-NODE QUEUE WITH FINITE BUFFERS 21

Figure 20. Coupled-queue with finite buffers at one queue.

Our work aims at obtaining relatively tight numerical bounds efficiently. Also, the aim
is to further develop these methods such that they can be applied more widely.

6.1. Model description

Consider a two-node queue with Poisson arrivals at rate λ1 for node 1 and λ2 for node 2.
Both nodes have a single server and at most L1 jobs can be present at nodes 1 and there is
no restriction for the capacity of node 2. When neither of the nodes is empty they involve
independently, but when one of the queues becomes empty the service rate at another
queue changes. An arriving job for node 1 is rejected when node 1 is saturated. The service
time at both nodes is exponentially distributed with parameters μ1 and μ2, respectively,
when neither of the queue is empty. When node 1 is empty, the service rate at node 2
becomes μ̃2 where μ̃2 > μ2. When node 2 is empty, the service rate at node 1 becomes μ̃1

where μ̃1 > μ1. All service requirements are independent. We also assume that the service
discipline is first-in first-out.

This coupled-queue with finite buffers at one queue can be represented by a continuous-
time Markov process whose state space consists of the pairs (i, j) where i and j are the
number of jobs at node 1 and node 2, respectively. We assume without loss of general-
ity that λ1 + λ2 + μ̃1 + μ̃2 ≤ 1 and uniformize this continuous-time Markov process with
uniformization parameter 1. Then we obtain a discrete-time random walk. We denote this
random walk by RC . All transition probabilities of RC , except those for the transitions from
a state to itself, are illustrated in Figure 20.

6.2. Perturbed random walk R̄C

We now display a perturbed random walk R̄C of RC such that the probability measure of
R̄C is of product-form and only the transitions along the boundaries in R̄C are different
from those in RC .

For the coupled-queue, the requirement of independence would be enough to guarantee
a product-form invariant measure. Therefore, if we force both queues involve independently,
then the invariant measure of the perturbed random walk R̄C in Figure 21 is of product-form.
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Figure 21. Transition diagram of the perturbed random walk R̄C .

With the normalizing constant α which depends on L1, we obtain

m̄(n) = α

(
λ1

μ1

)i (
λ2

μ2

)j

where n = (i, j). (17)

It can be readily verified that m̄(n) is the probability measure of the perturbed random walk
R̄C by substituting it into the global balance equations (3) together with the normalization
requirement.

We next illustrate a numerical example of a coupled-queue with finite buffers at one
queue.

6.3. Numerical results

Example 4: Consider a coupled-queue with finite buffers at one queue, we have λ1 = λ2 =
0.15, μ1 = μ2 = 0.2, μ̃1 = μ̃2 = 0.25.

We approximate the average number of jobs in node 1. We use F1 to denote the average
number of jobs in node 1. The upper and lower bounds of F1, which are denoted by Fup

1

and F low
1 , can be found in Figure 22.

We see from the results in Figure 22 that our approximation scheme can also be extended
to finite random walks at one axis. Moreover, note that when L1, i.e., the size of the first
dimension, is increasing, the values of the upper and lower bounds reach a limit.

In the next numerical example, we will fix the service rate. We present the error bounds
for the corresponding performance measure when the occupation rate, i.e., ρ = λ

μ increases,
even close to 1.

Example 5: Consider a coupled-queue with finite buffers at one queue, we have μ1 = μ2 =
0.2, μ̃1 = μ̃2 = 0.25, L1 = 20. Let ρ changes from 0.5 to 0.95.

We see from Figure 23 that the error bounds are quite tight as well.
Next, we present several examples for blocking probability, which is again denoted by

F0, based on Example 5 in which the size of the buffers in the first dimension increases from
20 to 10000.
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Figure 22. Average number of jobs in node 1.

Figure 23. Average number of jobs in node 1 when ρ increases.

Example 6: Consider a coupled-queue with finite buffers at one queue, we have μ1 = μ2 =
0.2, μ̃1 = μ̃2 = 0.25, L1 = 20 and the occupation rate increases from 0.5 to 0.95.

The bounds for blocking probabilities are very close in this case, hence, we convert
these probabilities by applying logarithm to the y axis in Figure 24 and also in following
examples (Figures 25 and 26).

Example 7: Consider a coupled-queue with finite buffers at one queue, we have μ1 = μ2 =
0.2, μ̃1 = μ̃2 = 0.25, L1 = 500 and the occupation rate increases from 0.98 to 0.99.

Next, we also extend these numerical results to the case when L1 = 10000.

Example 8: Consider a coupled-queue with finite buffers at one queue, we have μ1 = μ2 =
0.2, μ̃1 = μ̃2 = 0.25, L1 = 10000 and the occupation rate increases from 0.98 to 0.99.

We see from the above examples that relatively tight bounds are obtained efficiently
based on our approach.
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Figure 24. The converted blocking probability (y = log Y ), L1 = 20.

Figure 25. The converted blocking probability (y = log Y ), L1 = 500.

Figure 26. The converted blocking probability (y = log Y ), L1 = 10000.
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7. RELATED LITERATURE

For the two-node queue with finite buffers at both queues or at one queue, there exist other
methods to obtain the equilibrium distribution. The most prominent methods are direct
solution of the global balance equations and the matrix analytical method.

7.1. Two-node queue with finite buffers at both queues

When both buffers are finite, we may directly solve the global balance equations or use
modified matrix analytical methods.

When the buffer size is relatively small, we may directly solve the global balance equa-
tions to obtain the equilibrium distribution and corresponding performance measures. The
complexity of this approach is at least O(L2

1), where L1 is the size of the smaller buffer.
Our approach has complexity that is O(1), i.e., is constant in the buffer size.

For the two-node queue with finite buffers at both queues, the modified matrix ana-
lytical method may be used to obtain the equilibrium distribution of an irreducible finite
quasi-birth-and-death process (QBD), see de Nitto Persone and Grassi; Elhafsi and Molle;
Grassmann and Tavakoli; Gun and Makowski; Hajek; Le Boudec; Li [13,15,20–22,29,30] and
the references therein. A comprehensive comparison for variations of the matrix analytical
method for solving finite QBDs can be found in Elhafsi and Molle [15, Section 4]. The
common element of these methods is reduction of the global balance equations to a smaller
(finite) system of equations and to express the equilibrium distribution as a function of the
solution of this reduced system. The methods differ in both the way the reduced system is
obtained and the way the equilibrium distribution is computed from this solution. Strong
assumptions are required for the approach in de Nitto Persone and Grassi; Elhafsi and Molle;
Grassmann and Tavakoli; Gun and Makowski; Hajek; Le Boudec; Li [13,15,20–22,29,30]. The
common element is the assumption that some intermediate matrices must be non-singular.
Before each application of the matrix analytical method we must verify non-singularity of
these matrices and the approach fails when the assumptions are violated. Our approach
serves as an efficient alternative to obtain performance bounds. The complexity of the
methods in de Nitto Persone and Grassi; Elhafsi and Molle; Grassmann and Tavakoli; Gun
and Makowski; Hajek; Le Boudec; Li [13,15,20–22,29,30] is cubic and in some special cases
quadratic, see Elhafsi and Molle [15, Section 4]. The complexity of our approach is O(1).

7.2. Two-node queue with finite buffers at one queue

For the standard QBD, the matrix analytic method is a mature method to obtain the equi-
librium probabilities. Implementations of the matrix analytical method are available in Bini
and coworkers [8–10]. The computational complexity for QBDs is in general O(N3), where N
is the number of phases in the QBD, see Latouche and Ramaswami [27]. There are methods
to reduce the complexity of the matrix manipulations required in using matrix analytical
methods to analyze QBDs, see Bini et al.; He et al.; Perez and Van Houdt; Poloni [6,7,23,
33,35]. For our approach, the complexity is a O(1). The matrix analytical method achieves
high accuracy. For engineering purpose, our approach can be used to obtain upper and lower
bounds for performance measures within a few seconds regardless the size of the system.

7.3. Tandem queue

A special case of the two-node queue with finite buffers at both queues which has been
extensively studied so far, is the tandem queue with finite buffers. An extensive survey of
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results on this topic is provided in Balsamo; Perros [2,34]. Most of these papers focus on
the development of approximations or algorithmic procedures to find steady-state system
performance such as throughput and the average number of customers in the system. A
popular approach used in such approximations is decomposition, see Asadathorn and Chao;
Gershwin [1,17]. The main variations of a two-node queue with finite buffers at both queues
are: three or more stations in the tandem queue [36], multiple servers at each station [44,46],
optimal design for allocating finite buffers to the stations [24], general service times [37,42],
etc. Numerical results of such approximations often suggest that the proposed approxima-
tions are indeed bounds on the specific performance measure, however rigorous proofs are
not always available. Moreover, these approximation methods cannot be easily extended to
a general method, which determines the steady-state performance measure of any two-node
queue with finite buffers at both queues.

We have applied our approximation scheme to a tandem queue with finite buffers at
both queues. We have shown that the error bounds for the blocking probability are improved
compared to the error bounds for the blocking probability provided in van Dijk and Lam-
ond [41]. The method in van Dijk and Lamond [41] is based on specific model modifications.
Apart from this, our approximation scheme is more general in the sense that other inter-
esting performance measures could also be obtained easily. This is an advantage over the
methods used in van Dijk; van Dijk and Lamond; van Dijk and Puterman [39,41,43] where
different model modifications are necessary for different performance measures. Moreover,
we have shown that the error bounds can also be obtained for variations of the tandem
queue with finite buffers. In particular, we considered the case that one server slows-down
or speeds-up when another server is idle or saturated.

8. CONCLUSION AND OUTLOOK

In this paper, we presented a general approximation scheme for a two-node queue with
finite buffers at either one or both queues, which establishes error bounds for a large class
of performance measures. Our work is an extension of the linear programming approach
developed in Goseling et al. [19] to approximate performance measures of random walks in
the quarter-plane. However, we emphasize once again, that the main goal of our work is not
aiming at providing a superior method for the two-node queue. Instead, we aim to develop
a method for the two-dimensional model which is extendible to more general models, for
instance, higher dimensional models.

We first developed an approximation scheme for a two-node queue with finite buffers
at both queues. We then apply this approximation scheme to obtain bounds for the perfor-
mance measures of a tandem queue in which both buffers are finite and some variants of
this model. We also extend the approximation scheme to deal with a two-node queue with
finite buffers at only one queue. We applied our approximation scheme to a coupled-queue
with finite buffers at one queue. The approximation scheme gives tight bounds for various
performance measures, like the blocking probability and the average number of jobs at node
1. We also obtain error bounds for the blocking probabilities when the size of the buffers in
one dimension is really large.

The numerical results we have obtained indicate that the performance bounds for our
examples are relatively tight. This matches our expectation because a linear programming
problem is deployed to find the best performance bound, which would be tighter than van
Dijk’s performance bound which provides an arbitrary feasible solution from our linear
programming problem.

A limitation of our approach is that there is no guarantee for the existence of a feasible
solution for the linear programming problems. Indeed, in some cases no bounds can be
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established. As part of future work we will establish sufficient conditions under which bounds
are guaranteed to exist. Also, we will provide insight into the quality of these bounds.

Generalization of the approximation scheme used in this paper is possible. For instance,
it seems feasible to extend our approximation scheme to the random walks with non-nearest
neighbours or in higher dimensions. However, the construction of the perturbed random
walks with product-form invariant measures of these cases would require theoretical investi-
gations. An extension to random walks with state-dependent transitions also seems feasible.
In particular, for a specific two-dimensional model with state-dependent transitions, the
performance bounds obtained via an approximation scheme based on the Markov reward
approach are given in van Dijk and van der Wal [44].
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3. Balsamo, S. & De Nitto-Personé., V. (1991). Closed queueing networks with finite capacities: blocking
types, product-form solution and performance indices. Performance Evaluation 12(2): 85–102.

4. Balsamo, S. & De Nitto-Personé., V. (1994). A survey of product form queueing networks with blocking
and their equivalences. Annals of Operations Research 48(1-4): 31–61.

5. Berezner, S.A., Krzesinski, A.E., & Taylor., P.G. (1997). A product-form “loss network” with a form of
queueing. Journal of Applied Probability 34(4): 1075–1078.

6. Bini, D.A., Latouche, G., & Meini., B. (2002). Solving matrix polynomial equations arising in queueing
problems. Linear Algebra and its Applications 340: 225–244.

7. Bini, D.A., Latouche, G., & Meini., B. (2005). Numerical methods for structured Markov chains. Oxford,
England: Oxford University Press.

8. Bini, D.A., Meini, B., Steffe, S., & Van Houdt., B. (2006) Structured Markov chains solver: software
tools. Proceedings from the 2006 Workshop on Tools for Solving Structured Markov Chains.

9. Bini, D.A., Meini, B., Steffe, S., & Van Houdt., B. (2009) Structured Markov chains solver: tool
extension. Proceedings of the Fourth International ICST Conference on Performance Evaluation
Methodologies and Tools.

10. Bini, D.A., Meini, B., Steffe, S., Perez, J.F., & Van Houdt., B. (2012). SMCsolver and Q-MAM: tools
for matrix-analytic methods. ACM SIGMETRICS Performance Evaluation Review 39(4): 46–46.

11. Boucherie, R.J. & van Dijk., N.M. (2009). Monotonicity and error bounds for networks of Erlang loss
queues. Queueing Systems 62(1–2): 159–193.

12. Chen, Y., Boucherie, R.J., & Goseling., J. (2016). Invariant measures and error bounds for random
walks in the quarter-plane based on sums of geometric terms. Queueing Systems 84(1–2): 21–48.

13. de Nitto Persone, V. & Grassi., V. (1996). Solution of finite QBD processes. Journal of Applied
Probability 33(4): 1003–1010.

14. Economou, A. & Fakinos., D. (1998). Product form stationary distributions for queueing networks with
blocking the rerouting. Queueing Systems 30: 251–260.

15. Elhafsi, E.H. & Molle, M. (2007). On the solution to QBD processes with finite state space. Stochastic
Analysis and Applications 25: 763–779.

16. Fayolle, G. & Iasnogorodski., R. (1979). Two coupled processors: the reduction to a riemann-hilbert
problem. Probability Theory and Related Fields 47(3): 325–351.

17. Gershwin., S.B. (1987). An efficient decomposition method for the approximate evaluation of tandem

queues with finite storage space and blocking. Operations Research 35(2): 291–305.
18. Goseling, J., Boucherie, R.J., & van Ommeren., J.C.W. (2013). Energy–delay tradeoff in a two-way

relay with network coding. Performance Evaluation 70(11): 981–994.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964819000238
Downloaded from https://www.cambridge.org/core. Twente University Library, on 06 Aug 2019 at 11:08:32, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964819000238
https://www.cambridge.org/core


28 Y. Chen et al.

19. Goseling, J., Boucherie, R.J., & van Ommeren., J.C.W (2016). A linear programming approach to error

bounds for random walks in the quarter-plane. Kybernetika (Prague) 52(5): 757–784.
20. Grassmann, W.K. & Tavakoli., J. (2005). Two-stations queueing networks with moving servers, blocking,

and customer loss. Electronic Journal of Linear Algebra 13: 72–89.
21. Gun, L. & Makowski, A.M. (1988). Matrix-geometric solution for finite capacity queues with phase-type

distributions. In Courtouis, P.J. & Latouche, G., (eds.), Performance ’87, Brussels, Belgium, 269–282.
22. Hajek., B.E. (1982). Birth-and-death processes on the integers with phases and general boundaries.

Journal of Applied Probability 19(3): 488–499.
23. He, C., Meini, B., Rhee, N.H., & Sohraby., K. (2004). A quadratically convergent Bernoulli-like algorithm

for solving matrix polynomial equations in Markov chains. Electronic Transactions on Numerical

Analysis 17: 151–167.
24. Hillier, F.S. & So., K.C. (1995). On the optimal design of tandem queueing systems with finite buffers.

Queueing Systems 21(3–4): 245–266.
25. Knessl, C. & Morrison., J.A. (2012). Asymptotic analysis of two coupled queues with vastly different

arrival rates and finite customer capacities. Studies in Applied Mathematics 128(2): 107–143.
26. Kroese, D.P., Scheinhardt, W.R.W., & Taylor., P.G. (2004). Spectral properties of the Tandem Jackson

network seen as a quasi-birth-and-death process. The Annals of Applied Probability 14(4): 2057–2089.
27. Latouche, G. & Ramaswami, V. (1999). Introduction to Matrix-Analytic Methods in Stochastic

Modeling. Philadelphia: ASA-SIAM.
28. Latouche, G., Nguyen, G.T., & Taylor., P.G. (2011). Queues with boundary assistance and the many

effects of truncations. Queueing Systems 69(2): 175–197.
29. Le Boudec, J.Y. (1991). An efficient solution method for Markov models of ATM links with loss priorities.

IEEE Journal on Selected Areas in Communications 9(3): 408–417.
30. Li., S.Q. (1989). Overload control in a finite message storage buffer. IEEE Transactions on Communi-

cations 37(12): 1330–1338.
31. Miretskiy, D.I., Scheinhardt, W.R.W., & Mandjes., M.R.H. (2011). State-dependent importance

sampling for a slowdown tandem queue. Annals of Operations Research 189(1): 299–329.
32. Miyazawa., M. (2009). Tail decay rates in double QBD processes and related reflected random walks.

Mathematics of Operations Research 34(3): 547–575.
33. Perez, J.F. & Van Houdt., B. (2011). Quasi-birth-and-death processes with restricted transitions and

its applications. Performance Evaluation (Special issue QEST 2009) 68(2): 126–141.
34. Perros., H.G. (1994). Queueing networks with blocking. Oxford, England: Oxford University Press, Inc.
35. Poloni., F. (2010) Algorithms for quadratic matrix and vector equations. PhD thesis, University of Pisa.
36. Shanthikumar, J.G. & Jafari., M.A. (1994). Bounding the performance of tandem queues with finite

buffer spaces. Annals of Operations Research 48(2): 185–195.
37. van Dijk., N.M. (1987). A formal proof for the insensitivity of simple bounds for finite multi-server non-

exponential tandem queues based on monotonicity results. Stochastic Processes and Their Applications
27: 261–277.

38. van Dijk., N.M. (1988). Simple bounds for queueing systems with breakdowns. Performance Evaluation
8(2): 117–128.

39. van Dijk., N.M. (1998). Bounds and error bounds for queueing networks. Annals of Operations Research
79: 295–319.

40. van Dijk, N.M. (2011). Error bounds and comparison results: The Markov reward approach for queueing
networks. In Boucherie, R.J. & Van Dijk, N.M., (eds.), Queueing Networks: A Fundamental Approach,
volume 154 of International Series in Operations Research & Management Science. Berlin, Germany:
Springer.

41. van Dijk, N.M. & Lamond., B.F. (1988). Simple bounds for finite single-server exponential tandem
queues. Operations Research 36(3): 470–477.

42. van Dijk, N.M. & Miyazawa., M. (2004). Error bounds for perturbing nonexponential queues.
Mathematics of Operations Research 29(3): 525–558.

43. van Dijk, N.M. & Puterman., M.L. (1988). Perturbation theory for Markov reward processes with
applications to queueing systems. Advances in Applied Probability 20(1): 79–98.

44. van Dijk, N.M. & van der Wal., J. (1989). Simple bounds and monotonicity results for finite multi-server
exponential tandem queues. Queueing Systems 4(1): 1–15.

45. van Foreest, N.D., van Ommeren, J.C.W., Mandjes, M.R.H., & Scheinhardt., W.R.W. (2005). A tandem

queue with server slow-down and blocking. Stochastic Models 21(2-3): 695–724.
46. van Vuuren, M., Adan, I.J.B.F., & Resing-Sassen, S.A.E. (2006). Performance analysis of multi-server

tandem queues with finite buffers and blocking. In Liberopoulos, G., Papadopoulos, C.T., Tan, B.,
Smith, J.M., Gershwin, S.B. (eds.), Stochastic Modeling of Manufacturing Systems. Berlin, Germany:

Springer, 169–192.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964819000238
Downloaded from https://www.cambridge.org/core. Twente University Library, on 06 Aug 2019 at 11:08:32, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964819000238
https://www.cambridge.org/core

	1 Introduction
	2 Two-node queue with finite buffers at both queues
	2.1 Two-node queue with finite buffers at both queues
	2.2 Two-dimensional finite random walk on both axis
	2.3 Problem formulation

	3 Proposed approximation scheme
	3.1 Markov reward approach to error bounds
	3.2 A linear programming approach
	3.3 Bounding the bias terms
	3.4 Constants cs,kz(n),v,u based on a linear programming
	3.5 Fixed number of variables and constraints
	3.6 The optimal solutions
	3.7 The perturbed random walk with product-form invariant measure

	4 Application to the Tandem queue with finite buffers
	4.1 Model description
	4.2 Perturbed random walk of RT
	4.3 Bounding the blocking probability
	4.4 Bounds for other performance measures
	4.5 Tandem queue with finite buffers and server slow-down/speed-up
	4.5.1 Tandem queue with finite buffers and server slow-down
	4.5.2 Tandem queue with finite buffers and server speed-up


	5 Two-node queue with finite buffers at one queue
	5.1 Model
	5.2 The modified approximation scheme

	6 Application to the coupled-queue with finite buffers at one queue
	6.1 Model description
	6.2 Perturbed random walk C
	6.3 Numerical results

	7 Related literature
	7.1 Two-node queue with finite buffers at both queues
	7.2 Two-node queue with finite buffers at one queue
	7.3 Tandem queue

	8 Conclusion and outlook

