36 research outputs found

    Static and Dynamic Characteristics of Cerebral Blood Flow During the Resting State in Schizophrenia

    Get PDF
    Background: The cerebral network that is active during rest and is deactivated during goal-oriented activity is called the default mode network (DMN). It appears to be involved in self-referential mental activity. Atypical functional connectivity in the DMN has been observed in schizophrenia. One hypothesis suggests that pathologically increased DMN connectivity in schizophrenia is linked with a main symptom of psychosis, namely, misattribution of thoughts. Methods: A resting-state pseudocontinuous arterial spin labeling (ASL) study was conducted to measure absolute cerebral blood flow (CBF) in 34 schizophrenia patients and 27 healthy controls. Using independent component analysis (ICA), the DMN was extracted from ASL data. Mean CBF and DMN connectivity were compared between groups using a 2-sample t test. Results: Schizophrenia patients showed decreased mean CBF in the frontal and temporal regions (P < .001). ICA demonstrated significantly increased DMN connectivity in the precuneus (x/y/z = −16/−64/38) in patients than in controls (P < .001). CBF was not elevated in the respective regions. DMN connectivity in the precuneus was significantly correlated with the Positive and Negative Syndrome Scale scores (P < .01). Conclusions: In schizophrenia patients, the posterior hub—which is considered the strongest part of the DMN—showed increased DMN connectivity. We hypothesize that this increase hinders the deactivation of the DMN and, thus, the translation of cognitive processes from an internal to an external focus. This might explain symptoms related to defective self-monitoring, such as auditory verbal hallucinations or ego disturbance

    The neural basis of unwanted thoughts during resting state.

    Get PDF
    Human beings are constantly engaged in thought. Sometimes thoughts occur repetitively and can become distressing. Up to now the neural bases of these intrusive or unwanted thoughts is largely unexplored. To study the neural correlates of unwanted thoughts, we acquired resting-state fMRI data of 41 female healthy subjects and assessed the self-reported amount of unwanted thoughts during measurement. We analyzed local connectivity by means of regional homogeneity (ReHo) and functional connectivity of a seed region. More unwanted thoughts (state) were associated with lower ReHo in right dorsolateral prefrontal cortex (DLPFC) and higher ReHo in left striatum (putamen). Additional seed-based analysis revealed higher functional connectivity of the left striatum with left inferior frontal gyrus (IFG) in participants reporting more unwanted thoughts. The state-dependent higher connectivty in left striatum was positively correlated with rumination assessed with a dedicated questionnaire focussing on trait aspects. Unwanted thoughts are associated with activity in the fronto-striatal brain circuitry. The reduction of local connectivity in DLPFC could reflect deficiencies in thought suppression processes, whereas the hightened activity in left striatum could imply an imbalance of gating mechanisms housed in basal ganglia. Its functional connectivity to left IFG is discussed as the result of thought-related speech processes

    Turbo-FLASH based arterial spin labeled perfusion MRI at 7 T.

    Get PDF
    Motivations of arterial spin labeling (ASL) at ultrahigh magnetic fields include prolonged blood T1 and greater signal-to-noise ratio (SNR). However, increased B0 and B1 inhomogeneities and increased specific absorption ratio (SAR) challenge practical ASL implementations. In this study, Turbo-FLASH (Fast Low Angle Shot) based pulsed and pseudo-continuous ASL sequences were performed at 7T, by taking advantage of the relatively low SAR and short TE of Turbo-FLASH that minimizes susceptibility artifacts. Consistent with theoretical predictions, the experimental data showed that Turbo-FLASH based ASL yielded approximately 4 times SNR gain at 7T compared to 3T. High quality perfusion images were obtained with an in-plane spatial resolution of 0.85×1.7 mm(2). A further functional MRI study of motor cortex activation precisely located the primary motor cortex to the precentral gyrus, with the same high spatial resolution. Finally, functional connectivity between left and right motor cortices as well as supplemental motor area were demonstrated using resting state perfusion images. Turbo-FLASH based ASL is a promising approach for perfusion imaging at 7T, which could provide novel approaches to high spatiotemporal resolution fMRI and to investigate the functional connectivity of brain networks at ultrahigh field

    Resting State Functional Connectivity in Perfusion Imaging: Correlation Maps with BOLD Connectivity and Resting State Perfusion

    Get PDF
    Functional connectivity is a property of the resting state that may provide biomarkers of brain function and individual differences. Classically, connectivity is estimated as the temporal correlation of spontaneous fluctuations of BOLD signal. We investigated differences in connectivity estimated from the BOLD and CBF signal present in volumes acquired with arterial spin labeling technique in a large sample (N = 265) of healthy individuals. Positive connectivity was observable in both BOLD and CBF signal, and was present in the CBF signal also at frequencies lower than 0.009 Hz, here investigated for the first time. Negative connectivity was more variable. The validity of positive connectivity was confirmed by the existence of correlation across individuals in its intensity estimated from the BOLD and CBF signal. In contrast, there was little or no correlation across individuals between intensity of connectivity and mean perfusion levels, suggesting that these two biomarkers correspond to distinct sources of individual differences

    Involvement of vascular endothelial growth factor in schizophrenia

    Get PDF
    Vascular endothelial growth factor (VEGF), which acts as an angiogenic and neurotrophic factor, is involved the regulation of cerebral blood volume and flow in Schizophrenia (SCZ). Several evidence indicates that modification of brain blood circulation due to alterations in the VEGF system affects cognitive performance and brain function in patients with SCZ. The aim of this study is: 1) To analyze the literature data concerning the role of VEGF in modulating the angiogenic response in SCZ. These data are controversial because some studies found elevated VEGF serum levels of VEGF in patients with SCZ, whereas others demonstrated no significant differences between SCZ patients and controls. 2)To analyze the role of VEGF as a predictive factor on the effects of antipsychotics agents used in the treatment of SCZ. In this context, high VEGF levels, associated to better responses to antipsychotics, might be predictive of the use of first generation antipsycotic drugs, whereas low VEGF levels, expression of resistance to therapy, might be predictive for the use of second generation antipsycotic drugs

    Decreased Triple Network Connectivity in Patients with Recent Onset Post-Traumatic Stress Disorder after a Single Prolonged Trauma Exposure

    Full text link
    The triple network model provides a common framework for understanding affective and neurocognitive dysfunctions across multiple disorders, including central executive network (CEN), default mode network (DMN), and salience network (SN). Considering the effect of traumatic experience on post-traumatic stress disorder (PTSD), this study aims to explore the alteration of triple network connectivity in a specific PTSD induced by a single prolonged trauma exposure. With an arterial spin labeling sequence, three networks were first identified using independent component analysis among 10 PTSD patients and 10 healthy survivors, who experienced the same coal mining flood disaster. Then, the triple network connectivity was analyzed and compared between PTSD and non-PTSD groups. In PTSD patients, decreased connectivity was identified in left middle frontal gyrus of CEN, left precuneus and bilateral superior frontal gyrus of DMN, and right anterior insula of SN. The decreased connectivity in left middle frontal gyrus of CEN was associated with clinical severity. Furthermore, no significant connection of SN with CEN and DMN was found in PTSD patients. The decreased triple network connectivity was found in this study, which not only supports the triple network model, but also suggests a possible neurobiological mechanism for cognitive dysfunction of this type of PTSD

    A novel method of combining blood oxygenation and blood flow sensitive magnetic resonance imaging techniques to measure the cerebral blood flow and oxygen metabolism responses to an unknown neural stimulus.

    Get PDF
    Simultaneous implementation of magnetic resonance imaging methods for Arterial Spin Labeling (ASL) and Blood Oxygenation Level Dependent (BOLD) imaging makes it possible to quantitatively measure the changes in cerebral blood flow (CBF) and cerebral oxygen metabolism (CMRO(2)) that occur in response to neural stimuli. To date, however, the range of neural stimuli amenable to quantitative analysis is limited to those that may be presented in a simple block or event related design such that measurements may be repeated and averaged to improve precision. Here we examined the feasibility of using the relationship between cerebral blood flow and the BOLD signal to improve dynamic estimates of blood flow fluctuations as well as to estimate metabolic-hemodynamic coupling under conditions where a stimulus pattern is unknown. We found that by combining the information contained in simultaneously acquired BOLD and ASL signals through a method we term BOLD Constrained Perfusion (BCP) estimation, we could significantly improve the precision of our estimates of the hemodynamic response to a visual stimulus and, under the conditions of a calibrated BOLD experiment, accurately determine the ratio of the oxygen metabolic response to the hemodynamic response. Importantly we were able to accomplish this without utilizing a priori knowledge of the temporal nature of the neural stimulus, suggesting that BOLD Constrained Perfusion estimation may make it feasible to quantitatively study the cerebral metabolic and hemodynamic responses to more natural stimuli that cannot be easily repeated or averaged

    REST: A Toolkit for Resting-State Functional Magnetic Resonance Imaging Data Processing

    Get PDF
    Resting-state fMRI (RS-fMRI) has been drawing more and more attention in recent years. However, a publicly available, systematically integrated and easy-to-use tool for RS-fMRI data processing is still lacking. We developed a toolkit for the analysis of RS-fMRI data, namely the RESting-state fMRI data analysis Toolkit (REST). REST was developed in MATLAB with graphical user interface (GUI). After data preprocessing with SPM or AFNI, a few analytic methods can be performed in REST, including functional connectivity analysis based on linear correlation, regional homogeneity, amplitude of low frequency fluctuation (ALFF), and fractional ALFF. A few additional functions were implemented in REST, including a DICOM sorter, linear trend removal, bandpass filtering, time course extraction, regression of covariates, image calculator, statistical analysis, and slice viewer (for result visualization, multiple comparison correction, etc.). REST is an open-source package and is freely available at http://www.restfmri.net

    Age-Related Differences in Functional Nodes of the Brain Cortex – A High Model Order Group ICA Study

    Get PDF
    Functional MRI measured with blood oxygen dependent (BOLD) contrast in the absence of intermittent tasks reflects spontaneous activity of so-called resting state networks (RSN) of the brain. Group level independent component analysis (ICA) of BOLD data can separate the human brain cortex into 42 independent RSNs. In this study we evaluated age-related effects from primary motor and sensory, and, higher level control RSNs. One hundred sixty-eight healthy subjects were scanned and divided into three groups: 55 adolescents (ADO, 13.2 ± 2.4 years), 59 young adults (YA, 22.2 ± 0.6 years), and 54 older adults (OA, 42.7 ± 0.5 years), all with normal IQ. High model order group probabilistic ICA components (70) were calculated and dual-regression analysis was used to compare 21 RSN's spatial differences between groups. The power spectra were derived from individual ICA mixing matrix time series of the group analyses for frequency domain analysis. We show that primary sensory and motor networks tend to alter more in younger age groups, whereas associative and higher level cognitive networks consolidate and re-arrange until older adulthood. The change has a common trend: both spatial extent and the low frequency power of the RSN's reduce with increasing age. We interpret these result as a sign of normal pruning via focusing of activity to less distributed local hubs
    corecore