13,320 research outputs found

    Interval Slopes as Numerical Abstract Domain for Floating-Point Variables

    Full text link
    The design of embedded control systems is mainly done with model-based tools such as Matlab/Simulink. Numerical simulation is the central technique of development and verification of such tools. Floating-point arithmetic, that is well-known to only provide approximated results, is omnipresent in this activity. In order to validate the behaviors of numerical simulations using abstract interpretation-based static analysis, we present, theoretically and with experiments, a new partially relational abstract domain dedicated to floating-point variables. It comes from interval expansion of non-linear functions using slopes and it is able to mimic all the behaviors of the floating-point arithmetic. Hence it is adapted to prove the absence of run-time errors or to analyze the numerical precision of embedded control systems

    Mira: A Framework for Static Performance Analysis

    Full text link
    The performance model of an application can pro- vide understanding about its runtime behavior on particular hardware. Such information can be analyzed by developers for performance tuning. However, model building and analyzing is frequently ignored during software development until perfor- mance problems arise because they require significant expertise and can involve many time-consuming application runs. In this paper, we propose a fast, accurate, flexible and user-friendly tool, Mira, for generating performance models by applying static program analysis, targeting scientific applications running on supercomputers. We parse both the source code and binary to estimate performance attributes with better accuracy than considering just source or just binary code. Because our analysis is static, the target program does not need to be executed on the target architecture, which enables users to perform analysis on available machines instead of conducting expensive exper- iments on potentially expensive resources. Moreover, statically generated models enable performance prediction on non-existent or unavailable architectures. In addition to flexibility, because model generation time is significantly reduced compared to dynamic analysis approaches, our method is suitable for rapid application performance analysis and improvement. We present several scientific application validation results to demonstrate the current capabilities of our approach on small benchmarks and a mini application

    Trusting Computations: a Mechanized Proof from Partial Differential Equations to Actual Program

    Get PDF
    Computer programs may go wrong due to exceptional behaviors, out-of-bound array accesses, or simply coding errors. Thus, they cannot be blindly trusted. Scientific computing programs make no exception in that respect, and even bring specific accuracy issues due to their massive use of floating-point computations. Yet, it is uncommon to guarantee their correctness. Indeed, we had to extend existing methods and tools for proving the correct behavior of programs to verify an existing numerical analysis program. This C program implements the second-order centered finite difference explicit scheme for solving the 1D wave equation. In fact, we have gone much further as we have mechanically verified the convergence of the numerical scheme in order to get a complete formal proof covering all aspects from partial differential equations to actual numerical results. To the best of our knowledge, this is the first time such a comprehensive proof is achieved.Comment: N° RR-8197 (2012). arXiv admin note: text overlap with arXiv:1112.179

    CFD investigation of a complete floating offshore wind turbine

    Get PDF
    This chapter presents numerical computations for floating offshore wind turbines for a machine of 10-MW rated power. The rotors were computed using the Helicopter Multi-Block flow solver of the University of Glasgow that solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. Hydrodynamic loads on the support platform were computed using the Smoothed Particle Hydrodynamics method. This method is mesh-free, and represents the fluid by a set of discrete particles. The motion of the floating offshore wind turbine is computed using a Multi-Body Dynamic Model of rigid bodies and frictionless joints. Mooring cables are modelled as a set of springs and dampers. All solvers were validated separately before coupling, and the loosely coupled algorithm used is described in detail alongside the obtained results

    A Static Analyzer for Large Safety-Critical Software

    Get PDF
    We show that abstract interpretation-based static program analysis can be made efficient and precise enough to formally verify a class of properties for a family of large programs with few or no false alarms. This is achieved by refinement of a general purpose static analyzer and later adaptation to particular programs of the family by the end-user through parametrization. This is applied to the proof of soundness of data manipulation operations at the machine level for periodic synchronous safety critical embedded software. The main novelties are the design principle of static analyzers by refinement and adaptation through parametrization, the symbolic manipulation of expressions to improve the precision of abstract transfer functions, the octagon, ellipsoid, and decision tree abstract domains, all with sound handling of rounding errors in floating point computations, widening strategies (with thresholds, delayed) and the automatic determination of the parameters (parametrized packing)

    Provably Correct Floating-Point Implementation of a Point-In-Polygon Algorithm

    Get PDF
    The problem of determining whether or not a point lies inside a given polygon occurs in many applications. In air traffic management concepts, a correct solution to the point-in-polygon problem is critical to geofencing systems for Unmanned Aerial Vehicles and in weather avoidance applications. Many mathematical methods can be used to solve the point-in-polygon problem. Unfortunately, a straightforward floating- point implementation of these methods can lead to incorrect results due to round-off errors. In particular, these errors may cause the control flow of the program to diverge with respect to the ideal real-number algorithm. This divergence potentially results in an incorrect point-in- polygon determination even when the point is far from the edges of the polygon. This paper presents a provably correct implementation of a point-in-polygon method that is based on the computation of the winding number. This implementation is mechanically generated from a source- to-source transformation of the ideal real-number specification of the algorithm. The correctness of this implementation is formally verified within the Frama-C analyzer, where the proof obligations are discharged using the Prototype Verification System (PVS)
    corecore