669 research outputs found

    Asynchronous switching control for fuzzy Markov jump systems with periodically varying delay and its application to electronic circuits

    Get PDF
    This article focuses on addressing the issue of asynchronous H∞ control for Takagi-Sugeno (T-S) fuzzy Markov jump systems with generally incomplete transition probabilities (TPs). The delay is assumed to vary periodically, resulting in one monotonically increasing interval and one monotonically decreasing interval during each period. Meanwhile, a new Lyapunov-Krasovskii functional (LKF) is devised, which depends on membership functions (MFs) and two looped functions formulated for the monotonic intervals. Since the modes and TPs of the original system are assumed to be unavailable, an asynchronous switching fuzzy controller on the basis of hidden Markov model is proposed to stabilize the fuzzy Markov jump systems (FMJSs) with generally incomplete TPs. Consequently, a stability criterion with improved practicality and reduced conservatism is derived, ensuring the stochastic stability and H∞ performance of the closed-loop system. Finally, this technique is employed to the tunnel diode circuit system, and a comparison example is given, which verifies the practicality and superiority of the method

    Stochastic Event-Based Control and Estimation

    Get PDF
    Digital controllers are traditionally implemented using periodic sampling, computation, and actuation events. As more control systems are implemented to share limited network and CPU bandwidth with other tasks, it is becoming increasingly attractive to use some form of event-based control instead, where precious events are used only when needed. Forms of event-based control have been used in practice for a very long time, but mostly in an ad-hoc way. Though optimal solutions to most event-based control problems are unknown, it should still be viable to compare performance between suggested approaches in a reasonable manner. This thesis investigates an event-based variation on the stochastic linear-quadratic (LQ) control problem, with a fixed cost per control event. The sporadic constraint of an enforced minimum inter-event time is introduced, yielding a mixed continuous-/discrete-time formulation. The quantitative trade-off between event rate and control performance is compared between periodic and sporadic control. Example problems for first-order plants are investigated, for a single control loop and for multiple loops closed over a shared medium. Path constraints are introduced to model and analyze higher-order event-based control systems. This component-based approach to stochastic hybrid systems allows to express continuous- and discrete-time dynamics, state and switching constraints, control laws, and stochastic disturbances in the same model. Sum-of-squares techniques are then used to find bounds on control objectives using convex semidefinite programming. The thesis also considers state estimation for discrete time linear stochastic systems from measurements with convex set uncertainty. The Bayesian observer is considered given log-concave process disturbances and measurement likelihoods. Strong log-concavity is introduced, and it is shown that the observer preserves log-concavity, and propagates strong log-concavity like inverse covariance in a Kalman filter. A recursive state estimator is developed for systems with both stochastic and set-bounded process and measurement noise terms. A time-varying linear filter gain is optimized using convex semidefinite programming and ellipsoidal over-approximation, given a relative weight on the two kinds of error

    Modelo de apoio à decisão para a manutenção condicionada de equipamentos produtivos

    Get PDF
    Doctoral Thesis for PhD degree in Industrial and Systems EngineeringIntroduction: This thesis describes a methodology to combine Bayesian control chart and CBM (Condition-Based Maintenance) for developing a new integrated model. In maintenance management, it is a challenging task for decision-maker to conduct an appropriate and accurate decision. Proper and well-performed CBM models are beneficial for maintenance decision making. The integration of Bayesian control chart and CBM is considered as an intelligent model and a suitable strategy for forecasting items failures as well as allow providing an effectiveness maintenance cost. CBM models provides lower inventory costs for spare parts, reduces unplanned outage, and minimize the risk of catastrophic failure, avoiding high penalties associated with losses of production or delays, increasing availability. However, CBM models need new aspects and the integration of new type of information in maintenance modeling that can improve the results. Objective: The thesis aims to develop a new methodology based on Bayesian control chart for predicting failures of item incorporating simultaneously two types of data: key quality control measurement and equipment condition parameters. In other words, the project research questions are directed to give the lower maintenance costs for real process control. Method: The mathematical approach carried out in this study for developing an optimal Condition Based Maintenance policy included the Weibull analysis for verifying the Markov property, Delay time concept used for deterioration modeling and PSO and Monte Carlo simulation. These models are used for finding the upper control limit and the interval monitoring that minimizes the (maintenance) cost function. Result: The main contribution of this thesis is that the proposed model performs better than previous models in which the hypothesis of using simultaneously data about condition equipment parameters and quality control measurements improve the effectiveness of integrated model Bayesian control chart for Condition Based Maintenance.Introdução: Esta tese descreve uma metodologia para combinar Bayesian control chart e CBM (Condition- Based Maintenance) para desenvolver um novo modelo integrado. Na gestão da manutenção, é importante que o decisor possa tomar decisões apropriadas e corretas. Modelos CBM bem concebidos serão muito benéficos nas tomadas de decisão sobre manutenção. A integração dos gráficos de controlo Bayesian e CBM é considerada um modelo inteligente e uma estratégica adequada para prever as falhas de componentes bem como produzir um controlo de custos de manutenção. Os modelos CBM conseguem definir custos de inventário mais baixos para as partes de substituição, reduzem interrupções não planeadas e minimizam o risco de falhas catastróficas, evitando elevadas penalizações associadas a perdas de produção ou atrasos, aumentando a disponibilidade. Contudo, os modelos CBM precisam de alterações e a integração de novos tipos de informação na modelação de manutenção que permitam melhorar os resultados.Objetivos: Esta tese pretende desenvolver uma nova metodologia baseada Bayesian control chart para prever as falhas de partes, incorporando dois tipos de dados: medições-chave de controlo de qualidade e parâmetros de condição do equipamento. Por outras palavras, as questões de investigação são direcionadas para diminuir custos de manutenção no processo de controlo.Métodos: Os modelos matemáticos implementados neste estudo para desenvolver uma política ótima de CBM incluíram a análise de Weibull para verificação da propriedade de Markov, conceito de atraso de tempo para a modelação da deterioração, PSO e simulação de Monte Carlo. Estes modelos são usados para encontrar o limite superior de controlo e o intervalo de monotorização para minimizar a função de custos de manutenção.Resultados: A principal contribuição desta tese é que o modelo proposto melhora os resultados dos modelos anteriores, baseando-se na hipótese de que, usando simultaneamente dados dos parâmetros dos equipamentos e medições de controlo de qualidade. Assim obtém-se uma melhoria a eficácia do modelo integrado de Bayesian control chart para a manutenção condicionada

    Supporting group maintenance through prognostics-enhanced dynamic dependability prediction

    Get PDF
    Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail in different ways, with various effects, and typically governed by dynamics which include time-dependent and conditional events. In this context, system reliability prediction is complex and effective maintenance planning is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. Addressing these issues, this paper presents an online system maintenance method that takes into account the system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case study from the power industry

    Data Informed Health Simulation Modeling

    Get PDF
    Combining reliable data with dynamic models can enhance the understanding of health-related phenomena. Smartphone sensor data characterizing discrete states is often suitable for analysis with machine learning classifiers. For dynamic models with continuous states, high-velocity data also serves an important role in model parameterization and calibration. Particle filtering (PF), combined with dynamic models, can support accurate recurrent estimation of continuous system state. This thesis explored these and related ideas with several case studies. The first employed multivariate Hidden Markov models (HMMs) to identify smoking intervals, using time-series of smartphone-based sensor data. Findings demonstrated that multivariate HMMs can achieve notable accuracy in classifying smoking state, with performance being strongly elevated by appropriate data conditioning. Reflecting the advantages of dynamic simulation models, this thesis has contributed two applications of articulated dynamic models: An agent-based model (ABM) of smoking and E-Cigarette use and a hybrid multi-scale model of diabetes in pregnancy (DIP). The ABM of smoking and E-Cigarette use, informed by cross-sectional data, supports investigations of smoking behavior change in light of the influence of social networks and E-Cigarette use. The DIP model was evidenced by both longitudinal and cross-sectional data, and is notable for its use of interwoven ABM, system dynamics (SD), and discrete event simulation elements to explore the interaction of risk factors, coupled dynamics of glycemia regulation, and intervention tradeoffs to address the growing incidence of DIP in the Australia Capital Territory. The final study applied PF with an SD model of mosquito development to estimate the underlying Culex mosquito population using various direct observations, including time series of weather-related factors and mosquito trap counts. The results demonstrate the effectiveness of PF in regrounding the states and evolving model parameters based on incoming observations. Using PF in the context of automated model calibration allows optimization of the values of parameters to markedly reduce model discrepancy. Collectively, the thesis demonstrates how characteristics and availability of data can influence model structure and scope, how dynamic model structure directly affects the ways that data can be used, and how advanced analysis methods for calibration and filtering can enhance model accuracy and versatility

    Learning object behaviour models

    Get PDF
    The human visual system is capable of interpreting a remarkable variety of often subtle, learnt, characteristic behaviours. For instance we can determine the gender of a distant walking figure from their gait, interpret a facial expression as that of surprise, or identify suspicious behaviour in the movements of an individual within a car-park. Machine vision systems wishing to exploit such behavioural knowledge have been limited by the inaccuracies inherent in hand-crafted models and the absence of a unified framework for the perception of powerful behaviour models. The research described in this thesis attempts to address these limitations, using a statistical modelling approach to provide a framework in which detailed behavioural knowledge is acquired from the observation of long image sequences. The core of the behaviour modelling framework is an optimised sample-set representation of the probability density in a behaviour space defined by a novel temporal pattern formation strategy. This representation of behaviour is both concise and accurate and facilitates the recognition of actions or events and the assessment of behaviour typicality. The inclusion of generative capabilities is achieved via the addition of a learnt stochastic process model, thus facilitating the generation of predictions and realistic sample behaviours. Experimental results demonstrate the acquisition of behaviour models and suggest a variety of possible applications, including automated visual surveillance, object tracking, gesture recognition, and the generation of realistic object behaviours within animations, virtual worlds, and computer generated film sequences. The utility of the behaviour modelling framework is further extended through the modelling of object interaction. Two separate approaches are presented, and a technique is developed which, using learnt models of joint behaviour together with a stochastic tracking algorithm, can be used to equip a virtual object with the ability to interact in a natural way. Experimental results demonstrate the simulation of a plausible virtual partner during interaction between a user and the machine

    Anomaly Detection, Rule Adaptation and Rule Induction Methodologies in the Context of Automated Sports Video Annotation.

    Get PDF
    Automated video annotation is a topic of considerable interest in computer vision due to its applications in video search, object based video encoding and enhanced broadcast content. The domain of sport broadcasting is, in particular, the subject of current research attention due to its fixed, rule governed, content. This research work aims to develop, analyze and demonstrate novel methodologies that can be useful in the context of adaptive and automated video annotation systems. In this thesis, we present methodologies for addressing the problems of anomaly detection, rule adaptation and rule induction for court based sports such as tennis and badminton. We first introduce an HMM induction strategy for a court-model based method that uses the court structure in the form of a lattice for two related modalities of singles and doubles tennis to tackle the problems of anomaly detection and rectification. We also introduce another anomaly detection methodology that is based on the disparity between the low-level vision based classifiers and the high-level contextual classifier. Another approach to address the problem of rule adaptation is also proposed that employs Convex hulling of the anomalous states. We also investigate a number of novel hierarchical HMM generating methods for stochastic induction of game rules. These methodologies include, Cartesian product Label-based Hierarchical Bottom-up Clustering (CLHBC) that employs prior information within the label structures. A new constrained variant of the classical Chinese Restaurant Process (CRP) is also introduced that is relevant to sports games. We also propose two hybrid methodologies in this context and a comparative analysis is made against the flat Markov model. We also show that these methods are also generalizable to other rule based environments

    Quantum feedback for quantum technology

    Get PDF
    It is widely believed that quantum physics is a fundamental theory describing the Universe. As such, one would expect to be able to see how classical physics that is observed in the macroscopic world emerges from quantum theory. This has so far largely eluded physicists, due to the inherent linear nature of quantum physics and the non-linear behaviour of classical physics. One of the principle differences between classical and quantum physics is the statistical, probabilistic nature of quantum theory. It is from this property that non-classical states can arise, such as entangled states. These states possess maximal correlations. However, they are not the only way in which correlations are created in quantum systems. This thesis aims to show how open quantum systems naturally contain correlations from their quantum nature. Moreover, even seemingly simple open quantum systems can behave far more complexly than expected upon the introduction of quantum feedback. Using this effect, the dynamics may become non-linear and as such behave non-trivially. Furthermore, it is shown how these effects may be exploited for a variety of tasks, including a computational application in hidden quantum Markov models and a quantum metrology scheme that does not require the use of exotic quantum states. This results in the design of systems that benefit from the use of quantum mechanics, but are not constrained by the use of experimentally difficulties such as entanglement
    corecore