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Abstract

Digital controllers are traditionally implemented using periodic sampling,
computation, and actuation events. As more control systems are imple-
mented to share limited network and CPU bandwidth with other tasks, it
is becoming increasingly attractive to use some form of event-based control
instead, where precious events are used only when needed.
Forms of event-based control have been used in practice for a very long

time, but mostly in an ad-hoc way. Though optimal solutions to most event-
based control problems are unknown, it should still be viable to compare
performance between suggested approaches in a reasonable manner.
This thesis investigates an event-based variation on the stochastic

linear-quadratic (LQ) control problem, with a fixed cost per control event.
The sporadic constraint of an enforced minimum inter-event time is intro-
duced, yielding a mixed continuous-/discrete-time formulation. The quan-
titative trade-off between event rate and control performance is compared
between periodic and sporadic control. Example problems for first-order
plants are investigated, for a single control loop and for multiple loops
closed over a shared medium.
Path constraints are introduced to model and analyze higher-order

event-based control systems. This component-based approach to stochas-
tic hybrid systems allows to express continuous- and discrete-time dy-
namics, state and switching constraints, control laws, and stochastic dis-
turbances in the same model. Sum-of-squares techniques are then used to
find bounds on control objectives using convex semidefinite programming.
The thesis also considers state estimation for discrete-time linear sto-

chastic systems from measurements with convex set uncertainty. The
Bayesian observer is considered given log-concave process disturbances
and measurement likelihoods. Strong log-concavity is introduced, and it
is shown that the observer preserves log-concavity and propagates strong
log-concavity like inverse covariance in a Kalman filter. A recursive state
estimator is developed for systems with both stochastic and set-bounded
process and measurement noise terms. A time-varying linear filter gain
is optimized using convex semidefinite programming and ellipsoidal over-
approximation, given a relative weight on the two kinds of error.
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Preface

The field of event-based control is a rich subject area that spans many di-
verse and challenging control and estimation problems. Classical control
rests on the assumption that the controller is connected to sensors and
actuators through perfect, dedicated communication channels. This as-
sumption breaks down when one or more of the channels are constrained,
so that transmission events are costly or limited in number or timing. A
corresponding form of event-based control can then provide sizable per-
formance benefits compared to periodic control. These kinds of control
problems are becoming of increasing interest as more control systems are
implemented to share limited communication and computation resources
with other tasks.
While there has been a recent surge of interest in the field, the avail-

able theory is still limited, mainly because of the mathematical difficulties
involved. Event-based constraints can be seen as a form of nonlinearity
or hybrid element in the control loop, and they invariably seem to cause
classical closed-form solutions such as employed in linear-quadratic Gaus-
sian (LQG) control to break down. It is not surprising that these problems
have been approached from a number of different perspectives, including,
e.g., nonlinear, hybrid, and optimal control.
Since any definitive answer still seems to be well out of reach, there

remains a need to experiment with different approaches, and to develop
tools to compare the various approaches suggested in a quantitative man-
ner. The study of prototype problems is also important to gain insight into
the problem structure and the characteristics of event-based control.
The focus of this thesis is on event-based control in the face of stochas-

tic disturbances. This setting is particularly natural with communication
and sensing constraints, where it is the disturbances that create the need
for communication and sensing, respectively. Two kinds of problems are
studied: The first is an LQ-like control problem with added cost per com-
munication or actuation event, and the sporadic constraint of a minimum
inter-event time. The second kind of problem is state estimation from mea-
surements with set-bounded uncertainty, such as with coarsely quantized
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Preface

measurements. This case also occurs with intelligent sensor nodes or with
state estimators for event-based control, which only transmit a state es-
timate when it deviates by some tolerance from what the receiving node
can predict.

Sporadic Control

The event in event-based control can stand for many things, among them
the transmission of a message across a data network and the execution
of a controller update. In reality, two such events can almost never occur
arbitrarily close in time. A major objective of this thesis is to study event-
based control subject to this almost universal limitation, expressed by the
sporadic constraint of an enforced minimum inter-event time.
Most sporadic control problems in the thesis are posed in a continuous-

time setting, such that an event may occur at any time after the mini-
mum inter-event time has elapsed. To be able to guarantee a minimum
inter-event time, other authors have considered event-based control in a
discrete-time setting, or in continuous time where they derive a posteriori
bounds on the minimum inter-event time given some triggering law.
Motivations to study continuous-time sporadic control include a poten-

tial for better performance than a discrete-time formulation, and the pos-
sibility to make good use of the available resources by enforcing the inter-
event time explicitly so that the controller can adapt to it. A continuous-
time formulation also precludes the need for synchronized clocks (for, e.g.,
control over networks), and though it brings some technical complications,
it actually simplifies the control problems in some respects. To the best
of the author’s knowledge, this thesis contains the first investigation of
stochastic event-based control in a continuous-time sporadic setting.

Path Constraints

Though a good number of event-based controllers are described in the
literature, it is often difficult to evaluate and compare them. Many papers
focus on some particular mixture of architectural assumptions, analyzed
with some particular method. Few papers compare performance to other
methods; even a fair comparison to periodic control is often missing.
While it is probably too hard to find optimal event-based controllers in

most cases, quantitative evaluation of controllers for a given process need
not be. To this end, development of analysis methods on one hand, and
investigation of problem formulations and architectures for event-based
control on the other, must be separated.
A common framework that captures many event-based control prob-

lems is given by hybrid systems. Though extremely expressive, hybrid
modeling is in many frameworks not unlike filling out a form, and often
quite cumbersome. The framework of path constraints is an attempt at

14



Outline and Contributions of the Thesis

a minimal component-oriented framework for stochastic hybrid systems,
where the user needs only bring in exactly those kinds of components that
are needed in his or her model. Any such model is amenable to analysis
of upper and lower bounds on control objectives, a procedure which can
(and partly has) been automated (though numerical issues do create a
need for human intervention).

Outline and Contributions of the Thesis

The thesis is composed of six introductory chapters and seven papers.
Papers I–V are on the topic of event-based control, while Papers VI and VII
consider event-based state estimation. This section outlines the contents
of the introductory chapters and the contributions of each paper.

Chapter 1 – Introduction

Event-based control can mean many things. An attempt is made to de-
scribe what it is, or can be, by way of example.

Chapter 2 – Related Work

This chapter gives a general overview of the literature on event-based
control, with a focus on topics more closely related to the thesis.

Chapter 3 – Event-Based LQ Problems

An event-based linear-quadratic (LQ) control problem is formulated, which
roughly encompasses the problems studied in Papers I–V. The problem is
discussed, as well as how the papers relate to this formulation.

Chapter 4 – State-Space Methods for Stochastic Optimal Control

The primary tools employed in Papers I–V are various forms of state-space
methods. This chapter presents a brief overview of related methods and
concepts such as dynamic programming, stationary state distributions
and value functions, and outlines how the papers make use of different
parts of this toolbox.

Chapter 5 – Event-Based Estimation under Sensing Constraints

Papers VI and VII treat event-based estimation problems that arise with
sensing constraints that cause set membership uncertainty at the esti-
mator (in combination with stochastic uncertainty). A prototypical event-
based estimation problem is formulated and discussed, and the approaches
of the papers are outlined.

15



Preface

Chapter 6 – Outlook

This chapter outlines some interesting directions for future work.

Paper I

Henningsson, T. (2011): “Sporadic event-based control using path con-
straints and moments.” In Proceedings of the 50th IEEE Conference
on Decision and Control and European Control Conference. Orlando,
Florida, USA.

This paper treats an event-based variation on a general LQ control prob-
lem, in mixed continuous and discrete time with a fixed cost and minimum
waiting time after each actuation event. Path constraints are introduced
as a means to model this kind of stochastic hybrid systems in a component-
oriented manner. Constraints are provided to model continuous-time and
discrete-time dynamics, random and controlled mode switching, and sto-
chastic disturbances. Constraints on trajectories’ moments are extracted
from the path constraints and used to bound control objectives over an
infinite horizon, with the aid of sum-of-squares techniques and convex
semidefinite programming. Bounds that can be derived include lower
bounds on achievable cost for any controller, and upper bounds on cost
with a given controller. The bounds become monotonically tighter as the
order of trajectory moments is increased.

Paper II

Bernhardsson, B. and T. Henningsson (2012): “A Riccati-like equation for
finding optimal elliptical triggering rules.” Manuscript in preparation.

This paper builds on the methods developed in Paper I to derive explicit so-
lutions to the same control problem when the process is an n-dimensional
integrator, with arbitrary positive definite process noise covariance and
state penalty matrices. It turns out that in this case there exists an an-
alytic expression for the value function, whose parameters can be deter-
mined from a novel Riccati-like equation. The value function is used in two
cases to find the optimal threshold, which is ellipsoidal, and to express
the trade-off between state variance and event rate.
The Riccati-like equation for the optimal value function was suggested

by B. Bernhardsson and analyzed by both authors. T. Henningsson devel-
oped the value-function-based proof machinery. B. Bernhardsson investi-
gated the optimal state distributions and the scalar integrator plant with
minimum inter-event time constraint. Both authors worked on the general
formulation in Rn.
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Paper III

Henningsson, T., E. Johannesson, and A. Cervin (2008): “Sporadic event-
based control of first-order linear stochastic systems.” Automatica,
44:11, pp. 2890–2895.

This paper introduces the concept of sporadic control to model the prac-
tical constraint of a minimum time between any two control events, in
contrast to aperiodic control where events may occur arbitrarily close.
Two variants of sporadic controllers are proposed, using continuous-time
and discrete-time measurements. It is argued for first-order systems with
impulse control and white noise disturbances that the optimal sporadic
controller will use a threshold strategy, generating a control event when-
ever it is allowed and the state becomes big enough. Ways of computing
this optimal threshold and the associated performance in terms of regu-
lation and event rate are described. The best achievable trade-off between
regulation error and event rate is characterized for the sporadic, periodic
and aperiodic controllers, showing that many of the benefits of aperi-
odic control are retained even with the practical constraint of a minimum
inter-event time. It is also shown that sporadic control can not only greatly
reduce the required communication rate, but also reduce the regulation
error somewhat, compared to periodic control. Different possibilities for
the generalization of the control problem at hand to higher dimensional
systems are discussed.
T. Henningsson wrote about and did the simulations for the contin-

uous-time case, and rewrote the paper for Automatica. E. Johannesson
wrote about and did the simulations for the discrete-time case. A. Cervin
wrote the introduction and assisted in the structuring and editing of the
manuscript.
This paper is an extension of

Johannesson, E., T. Henningsson, and A. Cervin (2007): “Sporadic control
of first-order linear stochastic systems.” In Proceedings of the 10th In-
ternational Conference on Hybrid Systems: Computation and Control,
Pisa, Italy.
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Paper IV

Cervin, A. and T. Henningsson (2008): “Scheduling of event-triggered
controllers on a shared network.” In Proceedings of the 47th IEEE
Conference on Decision and Control. Cancún, Mexico.

This paper treats the control problem when several loops (for integrator
plants) of the same type as in Paper III are closed over a shared network.
Models for the medium access protocols TDMA, FDMA, and CSMA, the
latter with three different prioritization mechanisms, are stated. A suit-
able control setup is described for each case, and ways to evaluate the
expected regulation error and to choose optimal parameters for the con-
trollers are described, some based on Monte Carlo simulations. The perfor-
mance when controlling N integrator plants is compared for the protocols,
showing that CSMA quickly yields superior performance, asymptotically
requiring only a third of the bandwidth or giving a third of the error com-
pared to any of the other protocols. A case study for control of one stable,
one integrator, and one unstable plant is also presented, yielding similar
conclusions.
A. Cervin wrote most of the paper and performed most of the sim-

ulations. T. Henningsson derived the optimal control policy for the case
of two integrators and shared information between the controllers, using
dynamic programming for controlled Markov processes.

Paper V

Henningsson, T. and A. Cervin (2010): “A simple model for the interfer-
ence between event-based control loops using a shared medium.” In
Proceedings of the 49th IEEE Conference on Decision and Control.
Atlanta, GA.

This paper contains an approximate analytical analysis of the sporadic
control problem treated in Paper IV, with identical control loops for in-
tegrator plants closed over a shared medium. Each transmission takes a
fixed amount of time, during which no other loop may transmit. A sim-
ple approximate system model is formulated by partitioning the system
into one foreground loop and N − 1 background loops, and replacing the
fixed minimum inter-event time with an exponentially distributed one. A
Markov process model is formed with a discrete channel busy state, and
the continuous state of the foreground plant. An analytic expression for
the model’s stationary state distribution is derived from a boundary value
problem formulation, and used to investigate the approximate aggregate
behavior of the control loops. The results are compared to the Monte Carlo
simulations from Paper IV.
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T. Henningsson wrote most of the paper. A. Cervin assisted with re-
viewing and performed the Monte Carlo simulations.

Paper VI

Henningsson, T. and K. J. Åström (2006): “Log-concave observers.” In
Proceedings of the 17th International Symposium on Mathematical
Theory of Networks and Systems. Kyoto, Japan.

This paper investigates the problem of Bayesian state estimation with
log-concave measurement likelihoods and process noise — a considerable
generalization of the Kalman filter setting — and the properties of log-
concave functions that can be used to say something about the state es-
timation problem. The optimal Bayesian state estimator for discrete-time
linear systems is described, and split up into dynamics, process noise, and
measurement updates, each acting on the probability distribution of the
state conditioned on the measurements. It is shown that the conditional
state density will be log-concave. Using the concept of strongly log-concave
functions, theorems are derived that allow to upper bound the estimation
error covariance of the Bayesian estimator. The upper bound is compared
in simulations to a grid-based approximation of the Bayesian estimator
and a Kalman filter designed using insight gained on the estimation prob-
lem, for a double integrator with quantized measurements.
T. Henningsson wrote most of the paper. K. J. Åström did extensive

reviewing.

Paper VII

Henningsson, T. (2008): “Recursive state estimation for linear systems
with mixed stochastic and set-bounded disturbances.” In Proceedings
of the 47th IEEE Conference on Decision and Control. Cancún, Mexico.

This paper presents a recursive state estimator for linear systems that are
subject to both stochastic and uncertain (set-bounded) process and mea-
surement disturbances. The structure for a recursive state estimator is
proposed, allowing to model general state estimation problems with com-
bined stochastic and set-bounded measurement and process disturbances.
An optimization procedure for selecting the filter gain considering both
the resulting stochastic and set-bounded error is described. For the case
of ellipsoidal uncertainty sets, an LMI is formulated to optimize the feed-
back gain and fit the best one-step optimal ellipsoidal over-bound available
using the S-procedure onto the set-bounded uncertainty. The estimator is
compared in simulations to a grid filter and a time-varying Kalman Filter
for the case of a double integrator with quantized measurements, where
it comes quite close to the almost optimal grid filter.
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1

Introduction

This chapter attempts to describe what event-based control is, why we
might want to use it, and some of the general challenges involved. We
will not try to give a rigorous definition of the term, since it applies to
many problems that are very different to each other. Instead, we will try
to define it by example (and with periodic control as the counterexample).

1.1 What is Event-Based Control?

Control loops are usually implemented using periodic sensing, computa-
tion and actuation. When some of these events come with a cost or limi-
tation, however, it makes sense to use a control strategy that takes this
into account, e.g. by triggering events only when necessary. In event-based
control problems, such event limitations are incorporated in the formula-
tion.
This broad class of event-based control problems includes problems

with very different kinds of limitations, that arise in different scenarios,
and will typically need correspondingly different kinds of solutions (for
an overview of possible scenarios, see also [Åström, 2007]). Depending on
the limitation, it might e.g. be addressed with

• sensors and controllers connected over a data network, that only
transmit when the message differs from what the recipient expects.

• a control law that is only updated when measurements have changed
by a certain amount, to save processing power.

• a state estimator with updates triggered by changes in a quantized
measurement signal.

• a controller that plans the trajectory of an on/off actuator to optimize
the process response using few switches.
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Figure 1.1 Control loop with various constraints motivating event-based control.

Possible advantages with event-based control include

• better use of limited or costly resources for communication/actua-
tion/computation/measurement, etc.

• reduced need for centralized coordination and synchronized clocks.

• simplified control laws in some cases, due to the fact that they only
need to be evaluated under event trigger conditions.

• more natural treatment of components with discrete characteristics,
such as on/off actuators, sensors with quantized measurements, etc.

On the other hand, event-based control often implies

• harder analysis and design compared to periodic control, since the
sampling operator becomes nonlinear.

• less predictable event patterns, which may make it harder to sched-
ule the use of shared resources.

1.2 Scenarios for Event-Based Control

We will now describe some possible event-based limitations, and how they
can enter a control loop such as in Figure 1.1. This will give an important
way to classify event-based control problems. Practical problems will often
have multiple kinds of limitations.

Communication constraints. The smallest unit of communication in
a modern data network is a data packet. Transmission of a packet
takes some time, and often requires exclusive transmit access to the
link. In wireless networks it is harder to avoid packet losses, and
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1.2 Scenarios for Event-Based Control

battery-powered nodes must make do with limited power to spend
on sending and listening to the channel.

The overhead associated with each packet and the relatively low bit
count needed in most control problems means that it is usually the
timing of transmission events that is restrictive, rather than the bit
rate per se. While there is a trend of increasing bit rate in data
networks, this seems to be achieved at the expense of longer packets
and lower packet rate.

Actuation constraints. Some actuators can not respond to a continu-
ously varying control signal. Examples include on/off actuators such
as relays and some satellite thrusters [Dodds, 1981], and medical in-
jections that naturally take the form of impulses. Wear and tear can
sometimes be reduced by limiting the number of changes in con-
trol signals. Actuators driven by a piecewise constant control signal
(zero-order hold) or generalized hold (see e.g. [Åström, 2007]) also
give rise to actuation constraints.

Sensing constraints. Many common kinds of sensors produce measure-
ments at ahead of time unknown events. Examples include rotary
motion encoders that give pulses at fixed angular increments and
A/D-converters with coarse resolution, where each change in the
measured value can be seen as an event. Another example is the
send on delta protocol [Neugebauer and Kabitzsch, 2004], where a
sensor will only transmit measurements that differ by more than
some given tolerance from the last one transmitted. These scenar-
ios all have in common that both the occurrence of an event and its
absence carries some information.

Computation constraints. Almost all controllers deployed today are im-
plemented using computers. In cost-sensitive applications, it is often
desirable to keep down the amount of processing power available to
the control task, and to make it share these resources with other
tasks. Energy and hardware costs can be saved if the controller can
do fewer computations, only do them when necessary, and preferably
at any time that is opportune for the scheduler. Computation con-
straints can be present to a greater or lesser degree in each of the
sensor, controller, and actuator nodes to be designed in Figure 1.1.

There are some interrelations between the different kinds of constraints.
Examples:

• If the actuator node’s strategy in Figure 1.1 is known or fixed, a
communication constraint between controller and actuator will be a
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Chapter 1. Introduction

special case of actuation constraints, since the actuator node will act
like a generalized hold.

• If, on the other hand, the actuator node is to optimize its strategy
freely based on the information that it has, and the controller uses
a threshold to decide when to transmit, the actuator node will expe-
rience this threshold rule as a sensing constraint.

• Without computation constraints, it can be desirable for the sensor
node in Figure 1.1 to implement an observer and transmit filtered
state estimates, and for the actuator node to keep a running open-
loop prediction of the state between control updates to recalculate
its control signal. A fixed strategy in one of these nodes can be seen
as an extreme computation constraint, but also acts like a sensing
or actuation constraint, respectively.

As is often the case in optimization, adding constraints might make a
problem either easier or harder to solve. An example of the latter is that
the separation principle in [Molin and Hirche, 2009] ceases to hold when
the actuator node is forced to use a zero order hold to generate its output.

1.3 Event-Based Control over Data Networks

One important motivation for event-based control in general, and for many
of the papers in this thesis in particular, is control over data networks.
While the same network should probably be shared by many nodes in order
to gain practical benefits, it may be easier to first investigate a single
control loop in isolation to build up an understanding of the phenomena
involved.
Figure 1.2 illustrates one possible architecture for event-based control

over networks, seen from the perspective of a single control loop. An event
generator at the process receives the raw sensor signal, filters it, and
decides when to try inform the controller of what it knows. The message
is sent to the event-based observer at the controller, which updates its
state estimate, and then predicts the process state in open loop until
it receives new information. The control event generator uses the state
estimate to decide whether to send a new command to the control signal
generator at the process input, which acts as a generalized hold (see e.g.
[Åström, 2007]) that generates a control signal waveform based on its the
most recently received message.
The setup can be varied in many ways. The network could be shared

with other control loops and with other, non-control related tasks, usually
with longer deadlines. There could be many sensor and actuator nodes
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Figure 1.2 Event-based control over a shared network. Solid lines represent con-
tinuous signal transmission, while dashed lines represent event-based transmission.

attached to the process in different places, orchestrated by the controller.
Some of the signals transmitted across the network in Figure 1.2 may
instead use dedicated paths.
The kind of medium access scheme used for a network interacts strongly

with the choice of control strategy. In a time-division multiple access
(TDMA) scheme, medium access for different nodes is scheduled in ad-
vance, which is suitable for periodic control. For event-based control, it
is more natural to use a random access scheme instead, where multiple
nodes may attempt to transmit packets at the same time. When they do,
the packets are said to collide.
While TDMA can be virtually collision free, random access schemes are

more flexible when it comes to redistributing communication resources,
due to added/removed nodes or changing needs. Since there will usually
be collisions, event-based control over networks is more dependent on net-
work characteristics than periodic control.

Modeling of Data Networks for Event-Based Control

To formulate a control problem with a data network in the feedback loop,
a model of the corresponding communication constraints is needed. While
accurate modeling of data networks is an intricate task, simplified models
are usually sought for control design.
Various characteristics of a real network may be included in the model.

Slotted networks divide time into transmission slots, whereas packet ini-
tiation may take place at any time in an unslotted network. Networked
communications often suffer from packet dropouts and delay. In many net-
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work protocols, a node that receives a message will transmit an acknowl-
edgment message back to the sender, which will also be subject to loss and
delay; the sender will often attempt to retransmit if the acknowledgment
is not received.
Simple network constraints that have been considered in the literature

include

• to use a limited number of packets over a finite horizon,

• to use a limited average packet rate over an infinite horizon,

• to include a fixed cost per packet as a term in the control objective,

• to enforce a minimum inter-event time (sporadic control).

Looking closer, a major distinction in network characteristics is between
wired and wireless networks.

Wired networks. In wired networks, it is usually possible to arbitrate
access to the medium upon collisions so that all nodes except one will back
off, without disturbing the transmission. Simple models of arbitration in-
clude

Static priority with a fixed ranking between nodes.

Dynamic priority, where each node ranks the importance of its packets.

Random priority, where any node has equal probability to gain access.

The Controller Area Network (CAN) standard uses a shared bus in a wired
AND configuration and a priority field in the packet header to give access
to the highest priority packet; the priority may be chosen dynamically by
the sending node from a limited set of priorities.
Wired networks may consist of one shared link or many point-to-point

links connected in a network graph; collisions can be avoided in the latter
case, but packets may still have to compete for access to the same link.

Wireless networks. In wireless networks, the topology is dictated by
the radio fading conditions between different nodes. Over modest distances
and without obstructions it seems reasonable to assume that all nodes will
interfere with each other. Unlike wired networks, it is usually not possible
to guarantee mutual exclusive access to medium, and packets that overlap
in time will typically be lost. In the simple ALOHA protocol, senders make
no attempt to avoid collisions. In carrier-sense multiple access (CSMA) pro-
tocols, transmitters attempt to avoid collisions by listening to the channel
to see if it is free before sending.
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1.4 General Challenges

1.4 General Challenges

One fundamental difficulty with event-based control problems is that the
sampling operator becomes nonlinear. This typically means that the kind
of closed form solutions used in e.g. linear-quadratic (LQ) control break
down; most event-based control problems do not have a known closed-
form solution. Whereas e.g. the optimal LQ control law is independent of
the presence and intensity of stochastic disturbances, optimal event-based
controllers will typically not be.
Event-based control problems also often include elements of other prob-

lems that are known to be hard. Examples are:

Dual control. In dual control (see [Feldbaum, 1960 1961]), the controller
might use its control signal to influence the information gained from
measurements. Certainty equivalence controllers will generally not
be optimal since they lack any probing effect, and tractable optimal
design procedures are generally not known.

The most obvious case where dual control shows up is with con-
trol under sensing constraints, but these kind of issues also have to
be considered in cases with communication constraints and several
agents.

Distributed control with non-global knowledge. With control under
communication constraints, control signals will often be issued by
multiple agents that have different information. Such problems are
known to be hard even in an otherwise traditional setting with lin-
ear dynamics, quadratic costs, and Gaussian disturbances (see [Wit-
senhausen, 1968]), and the optimal controller will typically not be
linear.

The information pattern is partially nested if, for any decision that
affects another decision, the second decision maker knows all that
the first one did. In this case there is no incentive to use the control
signal for signaling (information transmission).

Optimization under complexity constraints. Optimization problems
where the complexity of program code is part of the objective are in
general extremely hard to solve exactly. This makes realistic compu-
tation constraints hard to quantify.

Approach to the Challenges

The papers in this thesis take a rather practical approach to circumvent
the challenges outlined above. The main focus lies on how to deal with
the nonlinear sampling operator. For the other challenges;

27



Chapter 1. Introduction

• Dual control is avoided by either having a single agent with complete
state information (control case) or not closing the loop (estimation
case).

• Distributed control problems with multiple loops closed over a shared
network are handled by restricting attention to a single-parameter
family of control laws, which are based on local information.

• Complexity constraints are avoided in the control case by not posing
any computation constraints a priori; the resulting control laws turn
out to have modest computation requirements anyway.

• The only direct measure to reduce online computation complexity is
the ellipsoidal over-approximation of uncertainty sets used in Paper
VII.
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2

Related Work

This chapter gives an overview of the literature on event-based control,
with a focus on topics more closely related to the contributions of the
thesis. For an overview of early work on event-based control, see [Åström,
2007] and [Heemels et al., 2012], and references therein.

2.1 Comparison between Event-Based and Periodic

Control

Stochastic Case

The trade-off between event rate and control performance for event-based
control as compared to periodic is investigated in [Åström and Bernhards-
son, 2002]. A continuous-time first-order plant with white noise input
disturbance is considered, with impulse control at events. It is shown that
event triggering using a simple threshold rule outperforms periodic con-
trol with a factor of three regarding either stationary state variance or
average event rate, when the other is fixed. Favorable trade-off between
state variance and number of events compared to periodic control is also
demonstrated in various settings for integrator plants in [Imer and Basar,
2006a], [Molin and Hirche, 2009], [Molin and Hirche, 2010c], [Molin and
Hirche, 2010a], for first-order plants in [Xu and Hespanha, 2004b], [Xu
and Hespanha, 2006], [Rabi et al., 2006], [Rabi and Baras, 2007], [Rabi
et al., 2012], [Cervin and Johannesson, 2008], and for a second-order plant
in [Li et al., 2010].
Performance compared to periodic control has also been investigated

for multiple control loops closed over a shared medium. [Molin and Hirche,
2011a] demonstrates favorable state variance compared to periodic control
for a number of integrator plants, closed over a shared medium with ran-
dom arbitration. [Blind and Allgöwer, 2011a], [Blind and Allgöwer, 2011b]
consider instead a wireless network using the simple ALOHA protocol,
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and compare state variance between periodic control and a heuristic event-
based strategy proposed in [Rabi and Johansson, 2009b]. They find that
periodic control performs better in this case. [Rabi and Johansson, 2009b]
come to the opposite conclusion; partly due to different assumptions and
partly because they care about reducing network traffic as well as state
variance.
Lower state variance with event-based control compared to state inde-

pendent scheduling is also demonstrated in [Rabi and Johansson, 2009a],
[Rabi et al., 2006], [Imer and Basar, 2006b], [Ramesh et al., 2009], and for
transmission of independent identically distributed (IID) measurements
in [Imer and Basar, 2005] and [Imer and Basar, 2010].

Non-Stochastic Case

[Wan and Lemmon, 2009] demonstrates favorable convergence for dis-
tributed optimization as a function of the number of messages transmitted
for an event-triggered strategy compared to periodic transmissions. [Wang
and Lemmon, 2008] demonstrates favorable average period to stabilize an
inverted pendulum for event-based control compared to self-triggered con-
trol and periodic control with a guaranteed stabilizing period. The case
study [Sandee et al., 2007a] investigates event-based control applied to
velocity control of the paper feed in a printer, and demonstrates that it
allows to use a cheaper encoder with coarser quantization, reduced pro-
cessor load, and fewer controller tuning parameters.

2.2 Stochastic Event-Based Control

[Xu and Hespanha, 2004a] introduces an event-based remote estimation
problem, with an intelligent sensor that decides when to transmit its in-
formation to a remote observer, to achieve a good remote state estimate
using few transmission events. A continuous-time setting with a linear
plant and Gaussian noise is considered, with an open-loop predictor at
the receiver. Stochastic triggering rules are proposed with an estimation
error dependent Poisson intensity of the form λ = (eTPe)k, and are shown
to give moment bounded estimation error with for any positive definite P.
Conditions for moment stability with constant Poisson triggering inten-
sity λmax are also given; [Xu and Hespanha, 2005] shows that these kind of
conditions hold equally well with a saturated error-dependent triggering
intensity λ = min(λmax, (eTPe)k).
[Ramesh et al., 2009] compares a number of medium access schemes

for a single control loop closed over a wireless network. Control of mul-
tiple loops for integrator plants over a wireless network is considered in
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[Rabi and Johansson, 2009b], [Blind and Allgöwer, 2011a], and [Blind and
Allgöwer, 2011b]. A Markov chain model for the medium access protocol
in wireless networks is proposed in [Ramesh et al., 2011b] and [Ramesh
et al., 2012], and used to analyze control of multiple loops over a wireless
network. [Weimer et al., 2012] considers a centralized state estimation
problem with multiple sensors that communicate over a wireless network,
with energy cost for both sending and listening.

Stochastic Optimal Control

In optimal control, assumptions are essential. A control policy that is op-
timal under one set of assumptions may be suboptimal under slightly
different ones.
Most results on event-based stochastic optimal control in the literature

seem to be derived for single loop control problems. Most are also derived
under communication constraints, where each event is a transmission of
the state (estimate) from sensor to controller, and under a nested informa-
tion pattern, where the sensor knows everything that the controller does.
A few optimality results are derived under actuation constraints, where
each event effects a change in a piecewise constant control signal.

Analytic solutions. Analytic solutions to event-based optimal control
problems in the literature seem to be limited to first-order plants with
white noise input. In [Rabi, 2006] and [Rabi et al., 2012], continuous-time
optimal remote estimation problems are solved on a finite horizon given
a limited number of samples. [Rabi, 2006] also solves a corresponding
infinite horizon problem given a limit on the average sample rate. [Rabi
et al., 2008] solves a single sample optimal control problem with a zero-
order hold actuator.

Structural results. [Xu and Hespanha, 2004a] considers a single-loop
discrete-time remote state estimation problem. It is shown how to formu-
late the problem using dynamic programming, and that value iteration
converges to the optimal solution under mild technical assumptions. The
problem is posed for a general linear plant with Gaussian process noise,
with objective to minimize the infinite horizon mean square estimation
error plus a linear penalty on event rate.
[Molin and Hirche, 2009] derives a separation principle for single-loop

event-based control with communication constraints and a nested infor-
mation pattern. (For a more accessible account, see [Molin and Hirche,
2012b].) The problem is a finite horizon discrete-time optimal control prob-
lem with general linear plant and Gaussian process noise. There are two
players: the controller, which decides the control signal at each time step,
and the sensor, which observes the state of the process and decides when
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to transmit a message to the controller. The objective is to minimize the
sum of an LQ cost and a fixed cost per event.
Under these assumptions, it is shown that the optimal controller uses

standard LQ feedback from its mean square plant state estimate, which
it under symmetry assumptions can be form using a linear state predictor
that runs in open loop between events. At events, it is sufficient for the
sensor to transmit the current state. The optimal trigger problem at the
sensor is reduced to a remote estimation problem, with quadratic weight-
ing on the estimation error derived from the LQ control solution.
[Molin and Hirche, 2010a] derives corresponding results in continuous

time, while [Molin and Hirche, 2010b] extends the results to noisy mea-
surements at the sensor, which then needs to run a stationary Kalman
filter. [Lipsa and Martins, 2009] and [Lipsa and Martins, 2011] prove sim-
ilar separation results for the special case of a first-order plant. Similar
problems are also considered for first-order systems in the context of es-
timation in [Imer and Basar, 2005] and [Imer and Basar, 2010], control in
[Imer and Basar, 2006a] and [Bommannavar and Basar, 2008], and a case
where the controller is to decide at each sample whether to measure or
control in [Imer and Basar, 2006b]. For an argument that this is a hard
problem, see [Ramesh et al., 2011a].

Suboptimal Control

[Cogill et al., 2007] proposes an easily computable ellipsoidal threshold for
a remote estimation problem with stochastic disturbances in discrete time
over an infinite horizon, and shows that it realizes a cost within a factor
six of the optimal. [Li and Lemmon, 2011] proposes a similar threshold
policy that works for unstable systems and analog transmission noise, but
appears to give slightly worse performance. [Li et al., 2010] considers a
similar remote estimation problem, but with limited event budget over
a finite horizon. The value function is overestimated as a minimum of
quadratic functions given the number of samples and transmissions left,
and used to approximate the optimal triggering rule.
[Cogill, 2009] applies similar techniques as in [Cogill et al., 2007] to an

actuation constrained single-loop discrete-time impulse control problem,
to find jointly an ellipsoidal triggering rule and a linear control law that
minimizes an upper bound on the cost. The procedure is based on opti-
mization over quadratic approximate value functions using modest size
linear matrix inequalities (LMI:s).
[Molin and Hirche, 2011a] considers multiple loops closed over a shared

medium with random arbitration. A two level design procedure is pro-
posed, with a convex packet rate allocation problem based on the con-
trollers designed in isolation. The design is shown to be asymptotically
optimal as the number of control loops grows, under assumptions of un-
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correlated disturbances between the loops. Sufficient conditions are given
for stability with a finite number of loops.
The separation principle in [Molin and Hirche, 2009] relies on a nested

information pattern; in particular that the sensor knows immediately
whether a packet was delivered successfully to the controller. [Molin and
Hirche, 2010c] considers the case when nestedness breaks down due to a
fixed acknowledgment delay from controller to sensor. A heuristic strategy
is proposed where the sensor estimates delivery success from measure-
ments, while waiting for acknowledgments.
[Molin and Hirche, 2011b] exploits the same separation results to pro-

pose an order reduction heuristic for event triggering rule design, based on
projection of the process dynamics onto the subspace that determines the
current LQ control signal, and shows that it preserves stability. [Molin
and Hirche, 2012a] builds on the same results to illustrate that a non-
symmetric state predictor at the controller can beat a symmetric one, for
a symmetric problem with multimodal process noise.
[Ramesh et al., 2011a] restricts admissible control laws to a subset, in

order to derive a separation principle similar to [Molin and Hirche, 2009].
[Antunes et al., 2012b] considers a plant with a single controller that
schedules access to a shared medium for a number of sensor and actuator
nodes, in discrete time with linear dynamics and Gaussian noise. The
controller tries to optimize the schedule online to minimize a quadratic
cost given a prescribed control law, and is able to trigger actuation events
in an event-based fashion.

2.3 Event-Based Control under Bounded Disturbances

[Heemels and Sandee, 2006] and [Heemels et al., 2008] consider event-
based control of a linear system with bounded disturbance, where the
control signal is held constant between events. Two sampling mecha-
nisms are considered: uniform (later called periodic event-triggered con-
trol (PETC)), where the controller decides at periodic instants whether
to trigger an event, and non-uniform (or sporadic) with a minimum inter-
event time constraint. It is shown how properties of ultimate boundedness
for the event-triggered system can be shown from ultimate boundedness
of discrete-time piecewise linear (uniform case) or linear system (non-
uniform case). [Heemels et al., 2011] considers analysis methods for PETC
based on LMI:s, and shows how to bound exponential convergence rate,
disturbance gain, and minimum inter-event time for a given linear system,
control law, and quadratic trigger threshold.
[Lunze and Lehmann, 2010] considers continuous-time event-based

control with a network link between the sensor, which has full state infor-
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mation, and the controller, with a state predictor. Bounds are shown on
disturbance gain and minimum inter-event time. The analysis is extended
to output feedback with an observer at the sensor in [Lehmann and Lunze,
2011a], to short communication delays and packet losses in [Lehmann and
Lunze, 2012], with an integral part in [Lehmann and Lunze, 2011b], and
adapted to input-output linearizable nonlinear plants in [Stoecker and
Lunze, 2011]. The setup is compared to to periodic control, and event-
based control with a zero-order hold at the actuator in [Lehmann et al.,
2012], which finds better bounds on event rate given the same perfor-
mance with a predictor at the actuator as opposed to zero-order hold. A
discrete-time formulation is given in [Grüne et al., 2010], together with a
global control approach for nonlinear systems based on coarsely quantized
state information and dynamic programming. A continuous-time version
with zero-order hold at the actuator is analyzed in [Wang and Lemmon,
2011a].
[Donkers and Heemels, 2012] considers a similar case, where both con-

trol and sensor signals are transmitted over a collision free network, and
held constant between their respective transmission events. Asymptotic
stability and disturbance gain are analyzed using LMI:s. [Donkers and
Heemels, 2013] derives similar results (but in discrete time) with predic-
tors for control and sensor signals between events, and demonstrates re-
duced communication frequency with maintained performance compared
to zero order hold in examples. [Wang and Hovakimyan, 2010] uses L1-
adaptive control to bound the difference between actual and ideal state
trajectories in a continuous-time setting where nodes sample their own
state continuously, and use events to broadcast it.

2.4 Event-Based Control for Deterministic Systems

Single Control Loop

Control of nonlinear continuous-time systems with zero-order hold is con-
sidered in an input-to-state stability (ISS) framework in [Tabuada, 2007b],
[Wang and Lemmon, 2008], and [Wang and Lemmon, 2011c], where the
latter two prescribe an exponentially decaying reference value that the
Lyapunov function must stay below. [Durand et al., 2011] investigates a
similar problem for linear systems. [Yu and Antsaklis, 2011] presents a
simple event-triggered static output feedback strategy for passive non-
linear systems. Patterns of sampling interval sequences for control of
continuous-time linear systems using zero-order hold are investigated in
[Velasco et al., 2009], where it is shown that the sequences can become
chaotic. Event-based control is applied to consensus-like problems in e.g.
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[Speranzon et al., 2007], [Seyboth et al., 2011].
A related approach to deterministic event-based control is self-triggered

control (see e.g. [Lemmon et al., 2007], [Anta and Tabuada, 2010]), where
the controller calculates both a control signal and a suitable deadline for
its next activation; essentially adapting the sampling period depending
on the process state. While self-triggered control is often based on a pre-
designed continuous-time control law, [Donkers et al., 2011] formulates an
online strategy to jointly optimize control signal and deadline using linear
programming.

Control over Networks

Control of a number of systems closed over a shared network is considered
in [Wang and Lemmon, 2010], [Wang and Lemmon, 2011b], [Mazo and
Tabuada, 2011], and [Guinaldo et al., 2012], with continuous-time linear
dynamics and zero-order hold. [Antunes et al., 2012a] considers a plant
with a single controller that schedules access to a shared medium for
sensor and actuators, in discrete time with linear dynamics. The controller
tries to optimize the schedule online to minimize a quadratic cost given
a prescribed control law. [Wan and Lemmon, 2009] considers distributed
optimization with event-based updates.

2.5 Estimation and Control under Sensing Constraints

[Heemels et al., 1999] and [Sandee et al., 2007a] consider velocity con-
trol problems for rotating servos with coarsely quantized angle measure-
ments. The control problems are parametrized in distance instead of time,
yielding a discrete-time nonlinear plant, which is controlled using gain
scheduling. [Marchand, 2008] proposes a static output feedback law based
on quantized state measurements to stabilize a chain of integrators with
input saturation. [Rabi and Baras, 2007] investigates feedback from quan-
tized measurements for a first-order system with white noise disturbance.
[Sijs and Lazar, 2009] considers a state estimator for linear systems with
Gaussian noise, where measurements are triggered when the state reaches
the boundary of a space-time tube. The likelihood of the state given that
no event has been triggered is applied periodically to update the esti-
mate, using a sum-of-Gaussians approximation of the indicator function.
[Sijs et al., 2010] uses the estimator in a model predictive control (MPC)
formulation.
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Event-Based LQ Problems

Linear-quadratic control is a central part of classic linear control theory,
and a popular starting point to formulate event-based control problems.
Most of the literature on stochastic optimal and suboptimal event-based
control cited in Section 2.2 is based on LQ formulations, in either contin-
uous or discrete time.
In contrast, the focus of the current chapter and of this thesis is on

mixed time formulations that arise from continuous-time sporadic con-
trol, where the system evolves in continuous time waiting for the next
event, and takes a discrete-time step over the minimum inter-event time
after each event. This chapter formulates an event-based LQ control prob-
lem that roughly encompasses the problems studied in Papers I–V, and
describes how it relates to these problems.
The treatment is restricted to stationary control problems, where the

optimal control law is time independent, and in particular to average cost
objectives. This setup is commonly used in practice, and is in some senses
less complex than time-varying formulations, although the average cost
formulation does necessitate some extra technicalities.

3.1 Linear-Quadratic Control

The classic LQ control problem considers a linear plant and quadratic cost
on the plant state x and control signal u. A stationary LQ control problem
to search for a state feedback control law f that minimizes the average
cost J can be formulated in continuous time as

min
f
J = lim sup

T→∞
E
1
T

∫ T

0

(
xTQxx + uTQuu

)
dt

s.t. dx = Axdt+ Budt + dw, E(dwdwT ) = Rdt,
u = f (x)

(3.1)
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3.2 A Sporadic Linear-Quadratic Control Problem

PSfrag

Control
Signal
Generator

Process

Controller

Disturbance

x

Figure 3.1 Event-based state feedback.

where E denotes expectation, x,u, and the disturbance w are functions
of time, w is a Wiener process with incremental covariance R 4 0, Q 4
0 specifies the cost function, A, B are model matrices, and 4 0 means
positive semidefinite. A similar LQ problem can be formulated in discrete
time as

min
f
J = lim sup

N→∞
E
1
N

N∑

k=0
xTk Qxxk + uTk Quuk

s.t. xk+1 = Φxk + Γuk +wk, E(wkwTk ) = P,
uk = f (xk)

(3.2)

where x,u, and w are now functions of the discrete time k, wk are indepen-
dent zero mean Gaussian random variables, and Φ and Γ are discrete-time
model matrices.
The solutions to both (3.1) and (3.2) are well known, see e.g. [Åström,

2006]. The optimal objective value J∗ is finite under suitable assumptions,
such as stabilizability. A quadratic value function can then be found for
the system with optimal controller, by solving a continuous or discrete-
time algebraic Riccati equation. The optimal value function in turn gives
an optimal linear state feedback controller f that realizes the minimum
J = J∗.

3.2 A Sporadic Linear-Quadratic Control Problem

We will now modify the LQ control problem to a form that might be suit-
able for the control loop in Figure 3.1, where

• there is a network link between the controller and control signal
generator, with minimum inter-event time ∆T > 0.
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Chapter 3. Event-Based LQ Problems

• the control signal generator is a fixed linear dynamic system, per-
haps a zero-order hold, or a state predictor with an LQ feedback law
at the output.

• each event results in a Dirac impulse at the input of the control
signal generator.

• the controller causally decides the value and timing of events, given
continuous measurements of the state x.

Since the formulation is in continuous time, we will take problem (3.1) as
our starting point.
The plant dynamics

dx = Axdt+ Budt + dw, E(dwdwT ) = Rdt,

take the same form as in (3.1), but now represent the interconnection of
the control signal generator and process in Figure 3.1. The control signal

u =
∑

k

ukδ (t− tk), tk+1 − tk ≥ ∆T, ∀k, (3.3)

represents the stream of events from controller to control signal generator
in Figure 3.1, where {tk}k are the event times and we have added the
sporadic constraint of minimum inter-event time ∆T > 0. In most realistic
examples, the Dirac impulses will act directly only on the states of the
control signal generator, which will in turn affect the process through the
control signal.
We seek an admissible control law, i.e. one that causally decides

• the event times tk, and

• the control signals uk at events.

To capture both classic control performance and communication cost, we
consider two objectives: the quadratic cost Jx and the event rate fu,

Jx = lim sup
T→∞

E
1
T




∫ T

0
xTQxx dt +

∑

{k;tk≤T}
uTk Quuk



 ,

fu = lim sup
T→∞

E
1
T

∑

{k;tk≤T}
1.

(3.4)

Note that the state cost xTQxx is integrated in continuous time as in (3.1),
while the control signal cost uTk Quuk is summed over discrete events, as in
(3.1). Since the control signal generator in Figure 3.1 will be part of the
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3.3 Control Problems in Papers I–V

plant model in this formulation, a cost on the control signal that enters
the process can be modeled as a term in Qx.
The sporadic LQ control problem can now be formulated: find all ad-

missible Pareto optimal state feedback controllers that realize a minimal
pair ( fu, Jx). Another formulation is to minimize J = Jx + ρ fu for some
event cost ρ.

3.3 Control Problems in Papers I–V

The sporadic constraint in (3.3) is accommodated in the papers by sam-
pling the system for a time step ∆T , which is applied after each event.
The more realistic case that the control impulse arrives at the plant with
a delay equal to the minimum inter-event time can be incorporated into
the discrete-time step without changing the model order.

Paper I considers a single control loop that takes a discrete-time jump
akin to the discrete-time dynamics in (3.2) at each event, and evolves
in continuous time in between, with arbitrary model matrices A, B,R,
Φ,Γ, P,Qflow,Qjump. Upper and lower bounds on the cost J = Jx+ρ fu
are derived. This formulation is a generalization of the sporadic LQ
problem outlined above.

Paper II derives explicit solutions to the event-based LQ problem when
A ∈ Rn = 0, in the two cases when either the minimum inter-event
time ∆T = 0, or when the state dimension n = 1, respectively.

Paper III investigates the trade-off curve ( fu, Jx) for a single control loop
for a first-order plant (scalar x). Beside the continuous-time formu-
lation, sporadic control is also considered in discrete time, where
the controller samples the state with period ∆T and decides at each
sample whether to trigger an event.

Papers IV and V treat the case with a number of identical integrator
plants closed over a shared medium; the former using Monte Carlo
simulations and the latter using analytical solutions for an approx-
imate model. Paper IV also investigates a case with one stable, one
marginally stable, and one unstable first-order plant closed over a
shared medium.
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4

State-Space Methods for

Stochastic Optimal Control

Linear-quadratic (LQ) control problems, as e.g. described in the previous
chapter, are usually solved using state-space methods. The most common
approach is based on value functions, though a dual formulation using
state covariance is also possible, as in e.g. [Rantzer, 2006].
Papers I–V also predominantly make use of state-space methods in var-

ious forms to treat event-based LQ problems. This chapter gives a brief
and informal overview of related methods and concepts used, such as dy-
namic programming, stationary state distributions, and value functions,
and outlines how the papers employ different parts of this toolbox.

Notation and Scope

We will limit the discussion in this chapter to (controlled) Markov pro-
cesses with a finite state space X , composed of N states. Let the probabil-
ity distribution over the state at some given time be described by p ∈ RX ,
such that 1T p = 1, p ≥ 0, where 1 is a vector of all ones, and ≥ is taken
elementwise. We will take V (x) to denote the element of the vector V at
index x, to emphasize the similarity to the case when V is a function.
Subscripts will be reserved to distinguish between e.g. vectors Vk.
The finite state formulation is directly applicable to control problems

with a discretized state space. The same ideas as presented in this chapter
can also be applied with an uncountable state space X under various
technical assumptions, as is done in several of the papers. The reader may
imagine the material in this chapter with probability vectors replaced by
measures, cost vectors by functions, matrices by linear operators, etc.
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4.1 Modeling

We first consider an uncontrolled Markov process; this includes the case
of a controlled Markov process with a fixed (Markovian) controller.
The dynamics of the probability vector p can be modeled in either

continuous or discrete time as

ṗ = A p+ κ , (4.1)
p+ = H p+ ∆Tκ , (4.2)

respectively, where p+ is the probability vector p at the next time step
for the discrete-time dynamics (4.2), with step length ∆T. The source
density per unit time κ can be used to model initiation and termination
of trajectories. The dynamics matrices A ,H ∈ RX$X must be such that

1TA = 0, p(x) = 0, p ≥ 0 =[ (A p)(x) ≥ 0,
1TH = 1T , p ≥ 0 =[ H p ≥ 0,

(4.3)

where p(x) denotes the probability to be in state x.
Any control objective J that can be expressed as an expectation over

the state x will be linear in p, e.g.

J = E(c(x)) = cT p, (4.4)

for some suitable state dependent cost c ∈ RX . We will mostly be con-
cerned with the case when J is an average cost over an infinite time
horizon. This is achieved when (4.4) is evaluated with p as a stationary
probability.

4.2 Stationary Distributions

Stationary distributions are stationary solutions to the dynamics (4.1) or
(4.2), and so must satisfy

A p+κ = 0, (4.5)
(H − I)p+ ∆Tκ = 0, (4.6)

respectively, with p ≥ 0,1T p = 1 and 1Tκ = 0.
The similarity between the stationarity conditions (4.5) and (4.6) can

be exploited to translate a model between continuous and discrete time,
as long as we are interested only in the stationary distribution. Using
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Chapter 4. State-Space Methods for Stochastic Optimal Control

these conditions, we see that the dynamics (4.1) and (4.2) will have the
same stationary distributions as

p+ = (I + ∆TA )p+ ∆Tκ , (4.7)

ṗ = 1
∆T

(H − I)p+ κ , (4.8)

respectively. With (4.7), we must make sure to pick ∆T small enough that
I+∆TA is nonnegative, which is not always possible when the state space
X is infinite.

4.3 Dynamic Programming

Dynamic programming as such is not used much in the thesis, but it is
instructive to see how it relates to the techniques that are used. For ease
of exposition, we consider dynamic programming in discrete time.
Consider a discrete-time controlled Markov process. Instead of a single

set of dynamics and cost (H , c), we have a set indexed by the control vari-
able a belonging to some finite action set U, such that (H , c) = (H a, ca).
With a state dependent control a = u(x),u ∈UX , we can define H u and
cu according to

H up =
∑

x∈X
H u(x)p(x),

cTu p =
∑

x∈X
cu(x)(x)p(x).

Consider the optimal expected cost

VTn pn = min
U

n f∑

k=n
cTukpk

s.t. pk+1 = H ukpk

over the time sequence of control laws U = {uk}n fn . We see that

VTn pn = min
u
cTu pn + VTn+1pn+1 = min

u
cTu pn + VTn+1H upn,

so that Vn satisfies the recurrence

Vn(x) = min
u
cu(x) + (H Tu Vn+1)(x), (4.9)

which is Bellman’s equation for a discrete-time Markov process. If we
can keep track of the value function Vn and carry out the minimization
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4.4 Cost Bounding Using Value Functions

(4.9), we can solve finite horizon optimal control state feedback problems
for our Markov process. Under ergodicity assumptions, the iteration (4.9)
converges except for the average value of V . Such a fixed point will satisfy

V (x) + J = min
u
cu(x) +

(
H Tu V

)
(x). (4.10)

4.4 Cost Bounding Using Value Functions

Dynamic programming allows to compute optimal costs and controllers for
state feedback, but it quickly becomes intractable with increasing problem
complexity. One difficulty with dynamic programming is that it is hard
to approximate the minimization and the value function, and still have
some kind of convergence to a reasonable solution. We will now consider
related methods where approximations enter more naturally.
Consider the discrete-time dynamics (4.2). We want to evaluate and

minimize the cost (4.4) in stationarity (4.6). Using the equality (4.6), we
see that for any V ∈ RX , the cost J satisfies

J = cTp = cT p+ VT
(
(H − I)p+ ∆Tκ

)

= (c+ (H − I)TV )T p+ ∆TVTκ .

Here, V can be interpreted as a value function.
Exploiting the fact that p ≥ 0,1T p = 1, we see that

min(c+ (H − I)TV ) ≤ J − ∆TVTκ ≤ max(c+ (H − I)TV ). (4.11)

The minimum and maximum above will coincide if we find a V = V ∗ such
that c+ (H − I)TV is constant across the states, which corresponds to a
stationary solution (4.10), and will give an exact value for J:

c+ (H − I)TV = Ĵ1 =[ J = Ĵ + ∆TVTκ . (4.12)

The usefulness of the current formulation is that we can get bounds
on the objective J even without such an optimal value function V ∗, but
which will generally be tighter the closer we come to V ∗. We also note
that it is a convex problem to find the tightest upper or lower bound on J
over a convex set of value functions V , e.g.

max
V∈V

J

s.t. c+ (H − I)TV ≥ (J − ∆TVTκ )1.
On the other hand, it is a non-convex problem to jointly optimize the
control law and upper bound (not shown here). Dynamic programming
has an advantage in this respect, when it can be applied.

43
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4.5 State-Space Methods in Papers I–V

Paper I uses a continuous-time operator formulation akin to (4.1), where
the source term κ represents switching between different modes. Fi-
nite duration jumps are incorporated using the reformulation (4.8).
Control signals u ∈ Rn are represented as additional states with
unspecified dynamics. To evaluate a given controller, a control law
is added as an algebraic constraint u = Kx. Inequalities akin to
(4.11) are used to find upper and lower bounds on the control objec-
tive. Search for the tightest bounds is a convex problem in the value
function V . A sum-of-squares restriction is used to parametrize V
as a polynomial of specified degree, and yields a finite dimensional
convex semidefinite program to optimize the bounds.

Paper II uses the exact value function condition (4.12) to to solve for
the value function V when the dynamics matrix A ∈ Rn = 0, and
proceeds to characterize the full solution in two cases. It also uses
a formulation based on the stationarity condition (4.5) to derive the
optimal stationary state density in some cases.

Paper III uses a recurrent state formulation where the discrete-time evo-
lution after an event serves as boundary conditions for the entry into
and exit from continuous-time evolution; effectively coupling them by
making the κ variables in (4.1) and (4.2) sum up to zero. Analytical
expressions for the stationary distribution (by (4.5)) and value func-
tion (by (4.12)) are derived in the form of double integrals, and it is
shown how control cost and event rate can be derived from either.
For the discrete-time case, the stationary distribution is computed
by gridding the state space and using the discrete-time dynamics
(4.2) as a fixed point iteration.

Paper IV relies mainly on Monte Carlo simulation to evaluate event-
based control. There is, however, one example that is solved using
dynamic programming as in (4.9), after gridding the state space.

Paper V formulates an approximate system model as a Markov pro-
cess with one discrete available/busy state for the channel, and one
continuous state for one of the plants. In this particular case, the
continuous-time stationarity condition (4.5) reduces to a linear space
invariant ODE boundary value problem, from which an analytical
expression for the stationary state distribution is derived.

44



5

Event-Based Estimation

under Sensing Constraints

This chapter discusses event-based state estimation constrained by sen-
sors that only deliver measurements at certain events, such as with coarse
quantization. Optimal solutions to such problems usually require much
heavier online computations than in the case of communication constrains
discussed previously, which might be explained by the need to keep track
of e.g. the whole conditional state distribution, instead of just evaluating
the control strategy for a given state. This chapter is based on Chapter 3
in [Henningsson, 2008a].
The practical difficulty to obtain a good state estimate under sensing

constraints varies greatly with the regularity of events. If long event-free
periods are never expected to occur, a time-varying Kalman filter that
uses only the information at events will be able to extract most of the
state information from the measurements. The main challenge lies in how
to exploit the information contained in the absence of events, when this
is needed.
Optimal control problems with sensing constraints in the loop gener-

ally contain an element of dual control [Feldbaum, 1960 1961], where the
controller may choose to excite the process to extract more information.
Since optimal dual control is known to be very hard, we will restrict our
discussion in this chapter to the state estimation problem, as depicted in
Figure 5.1.

5.1 Problem Formulation

Let us consider a process with linear dynamics and a white noise distur-
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bance,
dx = Axdt+ dw, (5.1)

where x is the state, w is a Wiener process with incremental variance
E(dwdwT) = Rdt, and A is the dynamics matrix. (We have left out any
exogenous inputs for ease of exposition.) Measurements provide set mem-
bership information

x(t) ∈ X (t), ∀t. (5.2)
Given the dynamics (5.1) and the stream of measurements (5.2), we want
to create an online estimator for the state x.
Events enter the problem if we take the measurement X (t) to be a

piecewise continuous function of time (in e.g. the Hausdorff metric), with
jumps at events t = tk. Assuming that the state x(t) itself is continuous,
we can take X at an event tk as

X (tk) = X −(tk) ∩ X +(tk),

where X − and X + are left and right limits, respectively. Given that (5.2)
holds at all times, the intersection X (tk) must be nonempty.
We are interested in estimation problems where the measurements

x(t) ∈ X (t) contain significantly more information at events tk than
otherwise. For instance, with quantized measurements or send-on-delta
transmission, X (t) will at most times describe an interval on some state
variable, but at events, the value will be given exactly. We note that all
X are convex in these examples.
It is not always realistic to monitor the measurement X (t) in con-

tinuous time. Another option is to sample X (t) periodically, and use an
assumption of small state change between two samples when X (t) changes
abruptly.

Process
Sensor
Event
Generator

Event-
Based
Observer

Disturbance

x̂

Figure 5.1 State estimation with event-based measurements.
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5.2 Optimal Estimation

5.2 Optimal Estimation

The optimal solution to the state estimation problem is given by the
Bayesian state estimator, described for the case of quantized measure-
ments in [Curry, 1970], and in Paper VI. The state of the estimator is
the conditional probability density fX pY of the plant state x conditioned
on the available measurements y, and is generally infinite-dimensional.
The estimator’s updates are described by partial differential equations
in continuous time, or convolutions, affine transformations and pointwise
multiplications in discrete time (see Paper VI).
The Kalman filter [Kalman, 1960; Kalman and Bucy, 1961] can be de-

rived as a special case of the Bayesian estimator, where the conditional
state density fX pY is known to be Gaussian, and can thus be summarized
by its mean and covariance. Very few other state estimation problems
seem to admit such a finite state representation, making an exact imple-
mentation untractable.

5.3 Approximate Estimation

A number of different approaches are possible in order to find an approxi-
mate solution to sensing constrained state estimation problems, including:

Linear time-invariant estimation. It is often possible to express or re-
lax the measurement condition (5.2) as ppCx− ypp ≤ a, for some C, a,
and y. If a relaxation can be found using constant C and a, then
x can be estimated from y using linear time-invariant (LTI) filter-
ing, by trying to keep down the gain from measurement disturbance
ỹ = Cx−y to state estimate x̂. Though simple, this approach can lead
to very conservative results, since it cannot exploit the time-varying
nature of the problem.

Worst-case measurement disturbances. The measurement condition
ppCx − ypp ≤ a can also be used in a time varying worst-case anal-
ysis, or a mixed worst-case/stochastic analysis if stochastic distur-
bances are kept in the model. Estimation with worst-case process
and measurement disturbances is treated in [Bertsekas and Rhodes,
1971; Durieu et al., 2001]. Mixed estimation is explored in [Hanebeck
and Horn, 2001]. [Morrell and Stirling, 1988] treats the mixed case
when only the initial conditions have a worst-case component.

Use the information in events only. Given that events provide linear
measurements, ignoring the absence of an event makes the condi-
tional state distribution become Gaussian. The estimator then re-
duces to a time varying Kalman filter, see [Kalman, 1960; Kalman
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and Bucy, 1961]. This approach is also taken in [Sandee et al., 2007],
where the control law is sampled as a function of distance rather
than time.

Grid filtering. The state x can be discretized onto a finite grid, turn-
ing the stochastic state process into a Markov chain, another case
where the state of the Bayesian estimator is finite dimensional. The
estimator’s state dimension grows exponentially with that of the pro-
cess, however, making this approach infeasible except for low-order
systems.

Particle filtering. In a particle filter, the conditional state density is
approximated by a cloud of point densities, see [Arulampalam et al.,
2002]. This approach is perhaps even more generally applicable than
grid filtering, and more efficient for higher order system.

JMAP estimation. Instead of trying to keep track of the conditional den-
sity fX pY , a simpler estimation problem is to find the most likely state
trajectory given the measurements, and use the end point as a state
estimate. This is the joint maximum a posteriori (JMAP) formula-
tion, see [Cox, 1964]. With log-concave noise densities, the estimation
problem becomes a convex optimization problem, see [Schön et al.,
2003]. With Gaussian disturbances and quantized measurements,
the estimation problem becomes a quadratic program, suitable to use
with e.g. moving horizon estimation [Rawlings and Bakshi, 2006].

5.4 Estimation Problems in Papers VI and VII

Paper VI studies the Bayesian estimator for discrete-time linear systems
with Gaussian process noise and log-concave measurement likeli-
hoods, a generalization of (5.2) when X is convex, that can include
stochastic measurement uncertainty. A number of properties are
shown for the Bayesian estimator in this case e.g. that it preserves
log-concavity of the conditional density fX pY , which implies among
other things that the density is unimodal. A heuristically designed
Kalman filter is shown to work well in the example.

Paper VII considers an estimation problem with mixed stochastic and
convex set-bounded process and measurement noise. An estimator is
proposed with state dimension roughly double that of a time-varying
Kalman filter, employing ellipsoidal over-bounding and online con-
vex optimization. The estimator is shown to come quite close to the
performance of a grid filter approximation to the Bayesian estimator
in a double integrator simulation example.
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6

Outlook

Though event-based control has received increasing attention over the last
decade, the field is still very far from maturity. This chapter outlines some
interesting directions for future work, both in general, and related to the
contributions of the thesis.
Some broad topics that deserve further investigation are:

Fundamentals. There remains a need to seek simplicity in order to han-
dle the complexities of event-based control, to understand which as-
pects of a control problem actually do require to develop new event-
based approaches, and to separate the investigation of analysis tech-
niques from architectures for event-based control.

• Which kinds of tools and properties do easily carry over from
linear control? Which questions do these tools already answer?

• Which aspects of a problem are intrinsically event-based?

• Is there a core set of concepts to describe such event-based as-
pects of a given problem?

• How can specific model assumptions be separated from model-
ing, analysis, and design techniques, in ways that simplify the
treatment instead of complicating it?

Finding new problem formulations. The success of classic linear con-
trol relies on asking questions that are both relevant and tractable.
The best questions in event-based control may not yet have been
found.

• What are the control problems where event-based control has
the most impact?

• What are the practical problems encountered when trying to
use event-based control?

• What relevant problem formulations are easiest to solve? Are
there formulations that are simplified by introducing events?
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Chapter 6. Outlook

Quantitative comparison. Heuristic elements are probably necessary
to address most event-based control design problems. Quantitative
comparison between proposed approaches is needed, as well as tools
to facilitate the comparison.

Some important aspects that deserve more attention are:

Robust event-based control. In many cases of event-based control, ro-
bust stability can likely be resolved using classic linear methods.
Still, some interesting questions remain:

• Can event-based control be more robust than periodic control?

• Can a robust event-based controller guarantee a lowered event
rate, given that the controlled system is close to the nominal
one?

Robustness to mismodeled disturbance intensity. Unlike in linear
control, some methods for event-based control depend on the scale
of disturbances specified in the model.

• How do event-based controllers compare when the disturbance
intensity is not nominal?

• How can a controller be made to adapt to changing ins-tensity?

Control over networks. Some interesting topics that seem to have re-
ceived little attention are

• event-based control to obviate the need for synchronized clocks.

• bandwidth allocation between event-based control nodes as a
resource control problem. Wireless networks are particularly
challenging, since throughput decreases with over-utilization.

• event-based control in the face of unacknowledged packet losses.

A promising case to find well-performing and robust event-based
controllers is for multiple control loops closed over a shared medium,
with discrete-time slots afforded to the sender that asserts the high-
est priority, such as is possible with the CAN bus.

Path constraints are introduced in Paper I. Some extensions that should
be rather straightforward are:

• Making the framework applicable to general polynomial stochastic
hybrid systems [Hespanha, 2005].

• Using path constraints to find bounds on induced L2 gain from dis-
turbance inputs to performance outputs.
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Other interesting directions for path constraints include

• to deepen the theoretical foundations.

• to improve the numerics. Monomials are a notoriously ill-conditioned
basis. Proper variable scaling is necessary with any basis, either for
conditioning or to be able derive useful bounds. Ideas include

– Progressive variable scaling: Solve a problem with low polyno-
mial order, extract scales of the variables, and use when solving
the same problem using a higher polynomial order.

– Orthogonal polynomials as basis functions, perhaps Hermite
polynomials.

– Other basis functions with better conditioning. They must still
be compatible with the operators used in a model.

• to use a basis for the value function that goes to zero for large state
norm ppxpp. With a constant value function term given by e.g. a peri-
odic LQ solution, this should allow the value function derived from
lower bounding the control objective to be used for controller design.

• to implement local optimization to improve an initial controller with
respect to upper bound on cost.

Some ideas for applications to investigate with path constraints include

• multiple identical loops closed over a shared network. Symmetries
with respect to the state should allow to use a finite number of
basis functions independent of the number of loops, but growing
with polynomial order.

• systems that contain inherently event-based dynamics. An example
is server systems, with queuing dynamics, actuation to turn on or
off machines, etc.

Possible directions to investigate for the sensing constrained problems
such as in Papers VI and VII include

• Implement an event-based observer using joint maximum a poste-
riori (JMAP) estimation and a fast gradient optimization method
[Nesterov, 2003].

• Find a simple event-based state estimator and show that it works
well to close the loop.
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Paper I

Sporadic Event-Based Control Using
Path Constraints and Moments

Toivo Henningsson

Abstract

Control is traditionally applied using periodic sensing and actuation.
In some applications, it is beneficial to use instead event based con-
trol, to communicate or make a change only when necessary. There
are no known general closed form solutions to such event based con-
trol problems. We consider stationary event-based control problems
with mixed continuous/discrete time dynamics and stochastic distur-
bances. The system is modelled by a set of path constraints, which
are converted into constraints on trajectories’ moments up to some
order N ; upper and lower bounds on the control objective for any
system that meets the constraints are derived using sum-of-squares
techniques and convex semidefinite programming. Joint optimization
of upper bound and controller parameters is non-convex in general;
approaches to such controller optimization are investigated, including
local optimization using bilinear matrix inequalities. Examples show
that the bounds are significantly tighter than earlier results obtained
using quadratic value functions.

cF2011 IEEE. Reprinted, with permission, from Proceedings of the 50th IEEE Conference on
Decision and Control and European Control Conference, Orlando, Florida, December 2011.
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1. Introduction

Digital control is traditionally carried out using periodic sampling and
actuation. Sometimes, however, there is a bottleneck in the control loop.
There may be a fixed cost or a minimum time between events such as to
transmit a state estimate or change a control signal. In event-based con-
trol, the decision when to generate an event is taken dynamically, rather
than to pick a fixed sample rate a priori.
Event-based control can mean many different things. It can be phrased

in a stochastic, deterministic, or worst-case setting, with linear or non-
linear dynamics, in continuous or discrete time, with the aim to reduce
computation, communication or actuation. In a non-stochastic setting,
some authors predict the next event time in advance, see, e.g. [Tabuada,
2007; Wang and Lemmon, 2009].
This paper considers systems with linear dynamics and stochastic dis-

turbances, and the objective to reduce communication or actuation. Both
continuous time (CT) and discrete time (DT) settings will be considered;
in fact, trajectories may switch back and forth between flow (CT) and
jump (DT), see Figure 1.
One way to approach the class of problems considered in this paper is

to discretize the system into a Markov chain, and then solve the optimal
control problem using dynamic programming [Arapostathis et al., 1993];
this is applied to single state plants in [Henningsson et al., 2008]. This
method has exponential complexity in the number of state variables. To
deal with more than a few states, we will consider instead value functions
up to some fixed polynomial degree N, which gives polynomial complexity.
In [Åström and Bernhardsson, 1999], impulse control of a continuous

time (CT) integrator plant with a white noise disturbance was consid-
ered. It was shown that the mean event frequency can be reduced to a

x

t

∆T ∆T

∆T

Figure 1. Example of a mixed flow/jump trajectory. When entering a jump (dots),
the system jumps to a new state x+ and time t+ = t+ ∆T (squares).
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third by using a threshold based event triggering strategy instead of peri-
odic events, for the same state variance. However, such a control policy is
aperiodic; the time between two events may be arbitrarily short, making
it hard to implement in practice. Several other authors have also investi-
gated aperiodic CT problems, e.g. [Rabi, 2006], [Rabi et al., 2008], [Hristu-
Varsakelis and Kumar, 2002]. To get an implementable control law, some
authors, e.g. [Cogill et al., 2007], [Cogill, 2009], [Imer and Basar, 2010],
[Sandee et al., 2007] have considered event-based control in discrete time
(DT), with a cost term for each sample with an event.
We are interested in the slightly broader class of sporadic controllers

[Henningsson et al., 2008], with a guaranteed waiting time between any
two events. After this period of inactive state, the controller may begin
to monitor the plant state continuously, or at some sample rate. CT and
DT sporadic control is also considered in [Heemels et al., 2008], (where
sporadic CT is called non-uniform control) under the objective of ultimate
boundedness.
In the last decade, moment relaxations (see, e.g. [Savorgnan et al.,

2009]), and their dual, sum-of-squares (SOS) restrictions (see, e.g. [Pra-
jna et al., 2004], [Prajna et al., 2005]), have gained popularity to approx-
imate nonlinear optimal control problems without closed form solutions.
Typically, lower bounds on achievable cost are found, which improve as
the problem size grows with relaxation order. This paper is an adaptation
of such techniques to event-based optimal control problems. By including
the controller in the model, we can also find and optimize upper bounds
on cost.
One motivating example that can be (approximately) solved with the

methods in this paper is the following sporadic control problem: a classic
linear quadratic (LQ) problem with the added constraints that 1) the
control signal is zero except for control events, when it may be a (vector)
Dirac impulse, 2) there is a minimum time ∆T between control events. A
fixed cost per control event may be added, and a filter on the plant input to
shape the control waveform. A jump transition is created by sampling the
system for a time ∆T after each control event (see Figure 1), which recasts
the sporadic control problem into a mode switching control problem (see
Figure 2). The mode without control may be CT or DT (possibly with a
time step ,= ∆T).
The paper is outlined as follows: After preliminaries in Section 2, the

event-based control problem is formulated in Section 3. Path constraints
to model the system are described in Section 4, and combined in Section 5
using convex optimization to show bounds on cost for any system that
meets them; these problems are cast as semidefinite programs (SDP:s) in
Section 6 to facilitate efficient solution.
For lower bound problems, the degrees of freedom of the controller can
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ϕ initial ϕ final

Mode 1

Mode 2

ϕ 1out

ϕ 2out

ϕ 1in

ϕ 2in

Figure 2. General mode switching model: Each time the trajectory leaves a mode,
the controller decides to enter either Mode 1, Mode 2, or terminate.

be left unconstrained; the bound will hold for any controller, including
the optimal. For upper bound problems, the controller must be included
as a constraint. Section 7 considers approaches to joint optimization of
controller parameters and upper bounds, which is in general non-convex.
Results are presented in Section 8 and conclusions are given in Section 9.
The source code for the toolbox used to produce the numerical results

in this paper is available online [Henningsson, 2011].

2. Preliminaries

For matrices A, B, let A 4 B denote that A− B is positive semidefinite.
Given that X = Rn: Let V (X ) be a space of test functions (typically
polynomials) V : X ]→ R. For f ,� ∈ V (X ), let f ≥ � denote pointwise
inequality: f (x) − �(x) ≥ 0,∀x ∈ X . Let V+(X ) ⊂ V (X ) be the convex
cone of (pointwise) positive functions V ≥ 0,V ∈V (X ).
LetVN(X ) be the space of (multivariate) polynomials over X of degree

≤ N. Let ΣN(X ) ⊂ VN(X ) be the convex cone of sum-of-squares polyno-
mials of degree ≤ N, i.e. the convex closure of VN/2(X ) ⋅VN/2(X ). Given a
basis ψ (x) for VN/2(X ), it is well known that λ ∈VN(X ) is also ∈ ΣN(X )
iff there is a matrix Λ 4 0 such that λ(x) =ψ (x)TΛψ (x).

3. Problem Formulation

Consider a system that can switch between two modes m ∈M = {flow,
jump}, with different dynamics for the state x ∈ X = Rnx . A trajectory (or
path) consists of parts k ∈K = {1, 2, 3, . . .}, each within one mode mk ∈
M . The controller may switch modes freely between parts, see Figure 2.
The trajectory begins at time k = 0, t = tink = tinitial and state x = xink =
xinitial.
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Flow

Jump

ϕ initial

ϕ finalϕ flowout

ϕ jumpout

ϕ flowin

ϕ jumpin

ϕ jj

Figure 3. Flow–jump mode switching model: When the controller decides to exit
flow, it must take a jump. After a jump, it may decide either way.

Entering the flow mode at time t = tink and state xk(tink ) = xink , the
state x evolves until t = toutk , xk(toutk ) = xoutk , by the (stochastic differential
equation) dynamics

dxk = Axkdt+ Buflowk dt+ dw, E(dwdwT ) = Rdt, (1)

where uflowk (t) ∈Uflow = R
nuflow is the control signal, w is a Wiener Process,

(independent of the past trajectory), and R 4 0, A, B are model matrices
of appropriate dimensions. The controller may decide to exit the flow mode
at any time.
Entering the jump mode at t = tink causes a jump that ends at t =

toutk = tink + ∆T ,∆T ≥ 0 and state

xoutk = Φxink + Γujumpk +wk, wk ∈N (0, Pjump), (2)

where ujump
k

∈ U jump = R
nujump is the control signal, the Gaussian distur-

bance wk is independent of the past trajectory, and Pjump 4 0,Φ,Γ are
model matrices of appropriate dimensions. The jump time ∆T is also a
model parameter.

REMARK 1
For brevity, we describe only the case with one flow and one jump mode.
The switching model of Figure 3 is appropriate in this case, since it dis-
allows consecutive flow parts; we will still use Figure 2 in calculations
for brevity. The methods in this paper apply also in the case of two jump
modes, possibly with different time steps ∆T i.

The expected cost over trajectories jacc is a sum of integrals over each flow
interval and a term for each jump:

jacc = E



∑

k∈K flow

∫

Tk

cflow
(
zk(t)

)
dt+

∑

k∈K jump

cjump(zk)


 , (3)
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where the index sets Km and part intervals Tk are given by

Km = {k ∈K ;mk = m}, Tk = [tink , toutk ],

the extended state z in flow and jump respectively by

zk(t) =
(
xk(t)
uflowk (t)

)
∈ Z flow, zk =

(
xink

u
jump
k

)
∈ Z jump,

Zm = X $Um, and the cost functions cm ∈V+(Zm).

REMARK 2
The function cflow(z) is the cost per time unit in flow mode, while cjump(z)
is the cost per jump.

The controller consists of two parts:

• A switching law θ(x) to choose mode m = flow when θ(x) ≥ 0, and
mode m = jump otherwise.

• Modal control laws um = fm(x),m ∈M .

The control objective is to minimize the average cost

J = R̄( jacc) = lim sup
tspent→∞

1
tspent

jacc, (4)

where the trajectory duration tspent is given by

tspent = tfinal − tinitial =
∑

k∈K
toutk − tink . (5)

4. Path Constraints

We will now list a number of path constraints to model the considered
system. In order to show bounds on path integrals such as the cost (3)
in the next section, nonnegative path integrals are derived from the con-
straints. We first introduce a compact notation for path integrals using
measures.
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4. Path Constraints

4.1 Path Measures

Define the occupation measure µ and jump event measure ϕ , with argu-
ments f ∈V (Zflow), f ∈V (Z jump) respectively:

µ( f ) = E
∑

k∈K flow

∫

Tk

f
(
zk(t)

)
dt, ϕ( f ) = E

∑

k∈K jump

f (zk).

Given a function f (z) of the extended state z = (x,um), µ( f ) can be
thought of as an accumulator that integrates f (z)dt along the parts of
the trajectory in flow, and ϕ( f ) as one that adds up f (z) for each jump.
Using µ and ϕ , the accumulated cost (3) and trajectory duration (5)

can be expressed more compactly as

jacc = µ(cflow) +ϕ(cjump), (6)

tspent =
∑

k∈K flow

∫

Tk

dt+
∑

k∈K jump

∆T = µ(1) +ϕ(∆T), (7)

where 1 in µ(1) means the constant function f (z) = 1, and in the same
way for ϕ(∆T).
To describe mode switching such as in Figs. 2 and 3, we define, for the

initiation and termination events, measures

ϕ initial( f ) = E f (xinitial), ϕ final( f ) = E f (xfinal),

and, accumulating mode entry and exit events, measures

ϕmdir( f ) = E
∑

k∈Km

f (xdirk ), m ∈M , dir ∈ {in, out}.

Note that the jump event measure ϕ and jump entry measure ϕ jumpin are
not the same, since ϕ is defined over the extended state zjump, and ϕ jumpin
over the state x only. However, they coincide for ujump-independent test
functions:

ϕ(V ) = ϕ jumpin (V ), ∀V ∈V (X ). (8)
Having defined the path measures, we will now use them to formulate
path constraints and nonnegative path integrals.

4.2 Pointwise Path Constraints

The simplest form of path constraints express feasible regions of the (ex-
tended) state space. (Such algebraic equations can be used for differential-
algebraic equation (DAE) systems modelling.) Consider the constraint
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that f (zflow) = 0 when the trajectory is in flow mode, for some given func-
tion f (z). Then also f (zflow)V (zflow) = 0 for any function V ∈ V (Z flow),
as is the path integral

µ( f V ) = 0, ∀V ∈V (Z flow).

The same can be done for event measures, e.g. ϕ( f V ) = 0,∀V ∈V (Z jump)
if f (zjump) = 0 for all jumps.
Now consider the inequality constraint that f (zflow) ≥ 0 when in flow

mode. Then also f (zflow)λ(zflow) ≥ 0 for any nonnegative function λ , as is
the path integral

µ( fλ) ≥ 0, ∀λ ∈V+(Z flow).

The constraint f (z) = 1 ≥ 0 apparently holds in any mode, and will be
used since it establishes positivity of the path measures.

4.3 Control Laws

Control laws can be expressed as path constraints; deterministic ones
usually as pointwise ones. Examples:

• A switching law such that θ(x) ≥ 0 in flow and θ(x) ≤ 0 in jump.
• A control law ujump = fjump(x) is equivalent to the constraint that
�(zjump) = ujump − fjump(x) = 0 in jumps.

• A random switching law, causing Poisson jumps in flow with a state-
dependent intensity such that njump(x) jumps are expected per tflow(x)
time in flow, where njump, tflow ∈V+(X ). Then

µ(θnjump) −ϕ(θ tflow) = 0, ∀θ ∈V (X ). (9)

This is not a pointwise constraint since the control law is random,
but it holds in expectation, which is what we need.

4.4 Dynamics Constraints

Dynamics constraints express how the trajectory may evolve from one
instant to another.

Mode switching. The mode switching dynamics of the model in Fig-
ure 2 are contained in the center point. Since each trajectory initiation
and mode exit event is paired with exactly one termination or mode en-
try event, with the state x preserved across transitions, the switching
constraint

ϕ initial +ϕ flowout +ϕ jumpout − (ϕ final +ϕ flowin +ϕ jumpin ) = 0 (10)
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4. Path Constraints

holds, where the argument V ∈ V (X ) to each measure has been sup-
pressed for brevity. For the mode switching dynamics of Figure 3 we have
two switching points; they are modelled in the same way by pairing inflow
and outflow,

ϕ initial +ϕ jumpout − (ϕ flowin +ϕ jj) = 0,
ϕ flowout +ϕ jj − (ϕ jumpin +ϕ final) = 0,

(11)

again with the common argument V ∈ V (X ) in either equation sup-
pressed. We see that the sum of these two equations is (10), thus (11) is
a stronger constraint than (10).

Flow dynamics. Consider the flow dynamics (1). Given a (twice dif-
ferentiable) function V ∈ V (X ), the expected change in V (x) by the
dynamics, conditioned on the extended state z, is (using Itō’s Lemma)

E(dV pz) = E(dxT )∇V (x) + 1
2
tr
(
E(dxdxT )∇2V (x)

)

=
(
(Ax + Bu)T∇V (x) + 1

2
tr
(
R∇2V (x)

))
dt

= (A ∗
flowV )(z)dt;

this defines the backwards flow dynamics operator A ∗
flow, a Kolmogorov

backwards operator. Equating the expectations of the left and right hand
sides over the time spent in flow gives the flow dynamics constraint

0 = E
∑

k∈K flow

∫

Tk

(
(A ∗V )(z)dt − dV

)
= µ(A ∗

flowV ) −
[
V
]xout
k

xin
k

= µ(A ∗
flowV ) +ϕ flowin (V ) −ϕ flowout (V ), ∀V ∈V (X ).

(12)

Jump dynamics. Consider the jump dynamics (2). Given a function
V ∈ V (X ), the expected value of V (xout) after a jump, conditioned on
z = (x,u) before the jump, is

E
(
V (xout)

∣∣∣z
)
= E

(
V (Φx + Γu +w)

∣∣∣z
)

= (φ ∗ V )(Φx + Γu),
= (H ∗V )(z),

where the probability density φ is Gaussian ∼ N (0, Pjump); this defines
the backwards single jump operator H ∗. Summing over all events gives
the jump dynamics constraint

E
∑

k∈K jump

V (xoutk ) = E
∑

k∈K jump

(H ∗V )(zk)

=[ ϕ jumpout (V ) = ϕ(H ∗V ), ∀V ∈V (X ).
(13)
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5. Bounds on Cost by Convex Optimization

To show bounds J ≤ J ≤ J̄ on the average cost (4) of a system, we
will show positivity of path integrals such as l = jacc − Jtspent and l =
J̄tspent − jacc, by expressing them as a sum of nonnegative path integrals.
In practice, it is sufficient to show that

l +ϕ initial(V ) −ϕ final(V ) ≥ 0, (14)

for some value function V ∈V (X ) such thatϕ final(V ) is uniformly bounded
from below as tspent → ∞. This boundedness can be established in many
ways:

• For a lower bound, it may be sufficient that the bound holds for solu-
tions with bounded moments of xfinal; then ϕ final(V ) will be bounded
as well, for polynomial V .

• xfinal will have bounded moments if the flow region {x ∈ X ;θ(x) ≥ 0}
is bounded and the jump dynamics (2) are exponentially stable.

• ϕ final(V ) is uniformly bounded from below if V is.

5.1 Lower Bound

To show the lower bound J ≤ J, we want to show that

jacc +ϕ final(V ) −ϕ initial(V ) ≥ Jtspent. (15)

Note that the sign of V has been chosen opposite from (14). Using first
(10), and then (8), (12) and (13), we see that

ϕ final(V ) −ϕ initial(V )
=ϕ flowout (V ) −ϕ flowin (V ) +ϕ jumpout (V ) −ϕ jumpin (V )
=µ(A ∗

flowV ) +ϕ(H ∗V ) −ϕ(V )
(16)

The inequality (15) is then implied by

jacc + µ(A ∗
flowV ) +ϕ(H ∗V ) −ϕ(V )

=Jtspent + µ(λ flow) +ϕ(λ jump) ≥ Jtspent, λm ∈V+(Zm),

where we have used (16) and µ,ϕ ≥ 0. Collecting terms inside µ and ϕ ,
this condition is in turn implied by

cflow +A ∗
flowV = J + λ flow,

cjump +H ∗V − V = J∆T + λ jump,
(17)

for some λ flow ∈V+(Z flow),λ jump ∈V+(Z jump).
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5.2 Lower Bound with Controller

To add a switching law such that θ(x) ≥ 0 in flow, and −θ(x) ≥ 0 in jump,
we use

µ(θν flow) −ϕ(θν jump) ≥ 0, ∀νm ∈V+(Zm). (18)
The control law ujump = fjump(x) is incorporated by adding

ϕ(�W) = 0, ∀W ∈V (Z jump),

to the left hand side of (15), where �(zjump) = ujump − fjump(x). With these
control laws, (17) is strengthened into

cflow +A ∗
flowV = J + λ flow + θν flow,

cjump +H ∗V − V + �W = J∆T + λ jump − θν jump.
(19)

5.3 Upper Bound with Controller

To show the upper bound J ≤ J̄, we want to show that

jacc +ϕ final(V ) −ϕ initial(V ) ≤ J̄tspent.

We proceed as before, but now all inequality terms have to be introduced
with opposite sign. With controller constraints, the conditions (19) are
turned into

cflow +A ∗
flowV = J̄ − λ flow − θν flow,

cjump +H ∗V − V + �W = J̄∆T − λ jump + θν jump.
(20)

We see that the bound conditions above are convex, since they are
linear with convex constraints on {λm}, {νm}. Thus maximization of J
subject to (17) or (19) is a convex problem, as is minimization of J̄ subject
to (20).

6. Practical Optimization

To get problems that can be solved by a convex programming solver, we
must choose some finite basis for the test functions V , {λm}, {νm} and W .
We will use polynomials up to some degree N of trajectory moments. A
sum-of squares restriction yields semidefinite programs (SDP:s).
We let the terms in (17), (19), and (20) be polynomials of degree ≤ N.

Since it is in general hard to determine the global positivity of a polyno-
mial, we use ΣN ⊂ VN,+ to assure positivity; this can be expressed as a
linear matrix inequality (LMI). The optimal bound can only improve with
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increasing N, as a solution to the bounds with lower N is still valid with
higher N.
Making sure that no term in (17), (19), and (20) has higher degree

than N, we can optimize over J ∈ R or J̄ ∈ R, and

V ∈VN(X ), λm ∈ ΣN(Zm),
νm ∈ ΣN−degθ (Zm), W ∈VN−deg �(Zjump).

The conditions (20) still give an SDP if we fix νm and W , and include
instead as optimization variables

θ ∈VN−maxm∈M degνm(X ), � ∈ G ⊆VN−degW(Z),

where the space G is chosen to give a desirable form for the ujump con-
troller, e.g. linear feedback.

7. Controller Optimization

Now that we can model a system and derive upper and lower bounds J ≤
J ≤ J̄ on the average cost J, how can we optimize for good controllers? We
would like to prescribe a form for the switching law and modal controllers
such as θ ∈ VNθ

(X ), { fm ∈ Vn f (Zm)}m∈M , and then find the controller
parameters that give the lowest cost.
Since the actual cost J is unknown, we have to content with mini-

mizing an upper bound J̄ instead. Unfortunately, joint optimization of
upper bound and controller is generally non-convex because of the prod-
uct terms between controller parameters and dual variables that appear
in controller constraints, such as θν flow in (20).
These product terms make the controller optimization into a bilinear

matrix inequality (BMI) problem; we can still optimize locally given an
initial guess. The formulation also allows various structural constraints
on the controller such as limited polynomial degrees of θ and { fm}, or
sparsity constraints, e.g. limiting the set of states that a control signal
may depend on.
The controller optimization problem becomes convex if we fix enough

decision variables so that no product terms with free variables remain.
It is then possible to do global optimization by gridding over remaining
variables. By making the problem simple, with low relaxation order N
and few constraints, few parameters have to be scanned.
We next give some results relating tightness of the upper bound J̄

and problem complexity, and consider especially the case when global op-
timization can be done by scanning over a single real parameter.
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7. Controller Optimization

7.1 Mixing Controllers

Consider a deterministic switching controller modelled by

θ(x) ≥ 0, in flow, −θ(x) ≥ 0, in jump, (21)

and a controller stochastically mixing time in flow : jump as tflow(x) :
njump(x). By section 4.3, the positive path integral given by the former
is

µ(θν flow) −ϕ(θν jump) ≥ 0, ∀{νm ∈V+(Zm)}m∈M .
This is exactly the same term as (9), if we identify njump = ν flow, tflow =
ν jump. The bound derived from the deterministic switching constraint (21)
can thus be achieved by a stochastically mixing controller with njump =
ν flow, tflow = ν jump! Since we expect the optimal switching law to be deter-
ministic, this gives a hint of how tight the upper bound can be as function
of the polynomial order degνm ≤ N − degθ .
The result does not hold in general if we introduce more constraints

for the deterministic switching law, such as

θϕ flowout = 0, θϕ flowin ≥ 0, θϕ jj ≤ 0,

where θϕ flowout = 0 holds only in the mixed flow/jump setting. These tighter
constraints have been used to produce the upper bounds in the results,
except for when the equivalence to random switching has been exploited.

7.2 Single Parameter Sweep: Poisson Controller

We will now describe a case when global optimization can be performed by
scanning over a single real variable. Consider the upper bound problem
with constraints (20), no modal control law um (i.e. �W = 0), N = 2 and
quadratic threshold θ ∈V2(X ) to be optimized. Since degνm ≤ N−degθ =
0, the polynomials νm are constants, e.g. νm ∈ R. The problem can thus be
solved globally by sweeping the ratio ν flow : ν jump (a common scaling can
be accommodated in θ). This is the procedure outlined in [Cogill, 2009]
for the case of two jump modes with the same ∆T.
Since degνm = 0, the upper bound J̄ optimized in this formulation

can be achieved by a Poisson controller; a random switching controller
with state independent switching ratio! Still, the derived threshold θ may
realize a better cost than the Poisson controller, and can be used as an
initial guess for local optimization.
[Cogill, 2009] considers also the case with modal control law ujump =

−Kx. This can be accommodated in our formulation by solving the lower
bound problem with Poisson switching constraint, since the solution turns
out to be exact for N = 2 in this case.
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8. Results

Consider an integrator process (with state x ∈ X = R)

dx = udt + dw, E(dw2) = dt, (22)

where w is a Wiener Process. The control input u is a train of Dirac pulses
with minimum time between them ∆T = 1,

u(t) =
nevents∑

i=1
uiδ (t− ti), ti+1 − ti ≥ ∆T .

We let ui = −x(ti − 0) to immediately reset the state at any control event
ti. The cost function is

jacc =
∫

T

x(t)2dt+ ρnevents,

where T is the interval of time spent in the system. We want to find an
event triggering strategy to minimize J = R̄( jacc), the average cost as
tspent = pT p → ∞.
To achieve the minimum inter-event time ∆T, the jump mode is con-

structed as an immediate reset to x = 0, followed by the dynamics (22)
sampled for time ∆T. The flow mode is just (22) with control input u = 0.
Figure 4 shows the optimal average cost J as a function of event cost

ρ (calculated in [Henningsson et al., 2008] for this problem), the cost of
periodic control with optimal period h ≥ ∆T, and lower and upper bounds,
which fit quite tightly around the optimum. The upper bound J̄N=4 was
found by BMI optimization using the solver PENBMI [Kočvara and Stingl,
2006]. The curve J̄N=6,θBMI4 , calculated with the same thresholds, show
that they are in fact almost optimal. The cost of optimal Poisson Sampling
lies far above the other bounds, almost coinciding with the cost of periodic
control. (In fact, they both choose periodic sampling with h = ∆T when
ρ ≤ 0.5) The upper bound J̄N=6,θPoisson shows that the thresholds from
Poisson control are considerably better than the bound.
Now consider a double integrator process (with state x ∈ X = R2)

dx1 = x2dt, dx2 = udt + dw, E(dw2) = dt,

with immediate reset to x = 0 at events, minimum time between them
∆T , and the cost function

jacc =
∫

T

x1(t)2dt+ ρnevents.
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Figure 4. Cost J as a function of event cost ρ for the integrator with ∆T = 1.

Figure 5 shows upper and lower bounds for the cost J as a function of
event cost ρ. All upper bounds were found using thresholds from Poisson
control. We see that Poisson control and periodic control are comparable,
but that the Poisson thresholds perform distinctly better. Still, the gap
between upper and lower bounds suggests that there is room to realize a
lower cost with better thresholds.

9. Conclusions and Future Work

We have modelled a broad class of event based optimal control problems
using path constraints, and shown how to derive interval bounds on the
control objective from these using convex semidefinite programming. Joint
optimization of upper bound and controller parameters is non-convex in
general; approaches to it using global and local optimization have been
investigated. The examples show that the bounds are significantly tighter
than previous results using quadratic value functions; they also clearly
demonstrate that event-based control is superior to periodic control in the
examples.
Interesting directions for future work include further case studies and

extension to other kinds of stochastic hybrid control problems, improved
controller optimization and numerical conditioning.
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Figure 5. Cost J as a function of event cost ρ for the double integrator with
∆T = 1. Thresholds for upper bounds are from Poisson control.
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Paper II

A Riccati-like Equation for Finding
Optimal Elliptical Triggering Rules

Bo Bernhardsson Toivo Henningsson

Abstract

The paper gives explicit solutions to two event-based optimal control
problems. Though being “toy examples” we believe they are interesting
and can serve as helpful test examples, e.g. for fine tuning numeri-
cal optimization based approaches. The setup is a traditional linear
quadratic control problem with white Gaussian noise (LQG) where
there is an added extra penalty on actuation events. We use the re-
sults in [Henningsson, 2011] where the optimal state distribution is
determined by a convex primal optimization problem and the optimal
value function from a dual problem. We thereby derive optimal con-
trol laws for two problem setups: One problem is a multi-dimensional
integrator system with non-diagonal matrices Q and R describing the
state cost and noise covariance respectively. It is shown that the op-
timal threshold is described by an ellipsoid xTPx ≤ 2√ρ in the state
space, where ρ is the cost per control event, and the matrix P can be
determined from a novel Riccati-like equation PRP+ 1

2 tr(RP)P = Q.
We show that this equation has a unique non-negative definite solu-
tion P when R > 0 and Q ≥ 0. The other problem includes a first-order
system with a non-zero inter-event time ∆T > 0, describing, e.g., a
minimum time between control events. This problem has previously
been studied by simulations, and by a numerical convex optimization
approach. We show that the optimal controller is threshold based, and
obtain analytical expressions for the threshold.

Manuscript in preparation.
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1. Introduction

Instead of sampling signals equidistantly in time it is well known that
more efficient control might in some situations be achieved by event-based
sampling, see, e.g. [Åström and Bernhardsson, 1999]. The main drawback
with the approach is that the analysis and controller design becomes much
more cumbersome, since no general solutions are known. Only a very
limited number of problems have hitherto allowed for analytic expressions
of the optimal event-mechanism.
This paper considers a standard LQG setup with linear dynamics and

stochastic disturbances, with the additional objective of reducing the in-
stances of controller action events. The notation and analysis method is
taken from [Henningsson, 2011], to which we refer the reader for more
background to the theory. To describe the system and controller dynamics
a mixture of continuous (CT or “flow”) and discrete time (DT, or “jump”)
is considered.
In [Åström and Bernhardsson, 1999], it was shown that the average

event frequency fu can be cut to a third compared to periodic control for the
same state variance, for an integrator plant disturbed by white noise using
impulse control. The event-based policy was aperiodic: events may occur
arbitrarily close in time. Other authors have also investigated related
aperiodic setups, e.g. [Rabi, 2006], [Rabi et al., 2008], [Hristu-Varsakelis
and Kumar, 2002]. To get an implementable control law, some authors
have investigated periodic discrete time formulations, with a penalty for
each sample with an event, e.g. [Cogill et al., 2007], [Cogill, 2009], [Imer
and Basar, 2010], [Sandee et al., 2007], [Heemels et al., 2011].
In [Henningsson et al., 2008], sporadic control policies are investigated,

where events may occur at any time as long as there is a minimum time
∆T between any two events. The paper contains numerical results and a
sketch of analytical results; the latter are extended this paper. In [Hen-
ningsson, 2011], methods to derive bounds on costs in event-based control
problems is presented. The current work is based on these methods, illus-
trating them by providing explicit solutions in the case of (multidimen-
sional) integrator plants.
In Section 2 we describe the problem setup and how to find the optimal

state distribution (primal problem) and the optimal value function (dual
problem) using the results from [Henningsson, 2011]. Sections 3 and 4
then describe explicit solutions to two illustrative examples. The first is
a multidimensional integrator system with quadratic cost matrix Q and
noise covariance matrix R. Similar setups have been studied previously in
[Cogill et al., 2007; Cogill, 2009]. It turns out that the optimal controller is
an event-based controller which actuates when the state leaves an ellip-
soidal domain {x p xTPx ≤ 2√ρ} where P is determined by a Riccati-like
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equation from system data, and where ρ is the cost of nonzero controller
actuation. The second example is a first-order system with a nonzero inter-
event time ∆T .

2. The Event-Based Control Problem

2.1 Dynamics

Consider a system with state x ∈ Rn. The state normally evolves in the
flow mode, with dynamics here assumed given by a multidimensional
integrator system driven by white noise,

dx = dw, E(dwdwT ) = Rdt,

where w is a Wiener Process in Rn and R ∈ Rn$n > 0. At any time, the
controller may initiate a jump transition

x+ = x + u+wjump, wjump ∼N (0, Pjump),
t+ = t+ ∆T ,

where Pjump ∈ Rn$n ≥ 0 is the covariance of the Gaussian noise wjump.
The disturbances dw and wjump are white and independent of the future
trajectory. We will in this article assume that the control actions reset the
state using u = −x and that further control actions are prohibited for a
period ∆T of time. This corresponds to u = −x, Pjump = R∆T .

2.2 The Optimal Control Problem

Let the system trajectory go from initial time t = 0 and state x = xi to
final time t = t f and state x f (xi, x f and t f may be random variables).
Define the finite time path measures

〈µft, f 〉 = E
∫

t∈Tflow
f (x)dx,

〈ϕ ft, f 〉 = E
∑

k∈K jump

f (xk),
(1)

where Tflow is the time spent in flow, K jump indexes the jumps, and xk is
the state upon entry of jump k. Let the control objective be

Javg = lim sup
tspent→∞

j

tspent
, j = 〈µft, cflow〉 + 〈ϕ ft, cjump〉,
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where cflow(x) = xTQx and cjump(x) = ρ + tr(QR∆T). Here ρ is the cost
of each control event, and the second term is the expected cost during the
successive period ∆T of open loop operation. We want to find a controller
to minimize J, by choosing when to jump (=actuate) assuming noise-free
knowledge of x.
The search for the resulting optimal state distributions can be written

as the following convex optimization problem: Find µ(x) and ϕ(x) such
that

Primal: inf J = 〈µ, cflow〉 + 〈ϕ , cjump〉
s.t. Aflowµ +A jumpϕ = 0

〈µ, 1〉 + 〈ϕ ,∆T〉 = 1
µ ≥ 0, ϕ ≥ 0

where

(Aflowµ)(x) = 1
2
tr(R∇2µ),

(A jumpϕ)(x) = φR∆T (x)
∫

ϕdx −ϕ(x),

are the Kolmogorov forward operators for the flow and jump modes of the
system. Here φΣ = det(2π Σ) exp (− 12 xTΣ−1x) if ∆T > 0 and φ0 = δ (x).
For details see [Henningsson, 2011]. The last operator A jump describes the
effect of the system operating in open loop for time ∆T after a control
event. The dual Kolmogorov backward operators give the expected change
of a C2 function V (x) given the flow and jump dynamics respectively:

E(dV px) = A ∗
flowV =

1
2
tr(R∇2V ),

E
(
V (x+) − V (x)px

)
= A ∗

jumpV = [φR∆T ⋆ V ](0) − V (x).

The calculation of optimal controllers can be based on the following
result based on [Henningsson, 2011].

THEOREM 1
Suppose a bounded function V (x) and constant J are found satisfying

cflow(x) + (A ∗
flowV )(x) ≥ J, ∀x ∈ R

n, (2)
cjump(x) + (A ∗

jumpV )(x) ≥ J∆T , ∀x ∈ R
n, (3)

where for each x equality is achieved in either (2) or (3). Then the op-
timal cost is J and it is optimal to actuate when equality is achieved in
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(3). Furthermore, for finite time path distributions, the accumulated cost
satisfies

1
T
j + E(V (x f ) − V (xi)) ≥ J, (4)

where equality is achieved by the optimal controller given above.

Proof: See Appendix A.

3. Example: The Elliptic Integrator Case

3.1 The System

We will consider an n-dimensional integrator system of the form above
with ∆T = 0. The control signal may hence at any time reset the state x
to the origin, incurring a cost

cjump = ρ

per such event. We are interested in keeping the mean event rate fu of
control actions rare while minimizing an average state cost cflow(x) =
xTQx, i.e. minimizing

Jx + ρ fu = lim sup
T→∞

1
T

(∫ T

0
xTQx dt+ ρ {# events up to T}

)
(5)

Note that when ∆T = 0, the backward operators are

A ∗
flowV =

1
2
tr(R∇2V ),

A ∗
jumpV = V (0) − V (x).

3.2 Optimal Sporadic Controller

THEOREM 2
The controller minimizing the expected average cost J := Jx + ρ fu uses
an ellipsoidal threshold and resets the state when �(x) ≤ 0 where

�(x) = �0 − xTPx, (6)

with �0 = 2
√

ρ and where P is determined by the Riccati-like design
equation

PRP + 1
2
tr(RP)P = Q. (7)
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This equation has a unique solution P ≥ 0 for any R > 0 and Q ≥ 0. The
optimal cost is

J = √ρ tr(RP),
the average state cost is Jx = 1

2
√

ρ tr(RP) and the mean event rate is
fu = 1

2
√

ρ tr(RP).

Proof: We will show that with � given by (6) and P given by (7) the
function 1

V (x) =





−1
4
�(x)2, �(x) ≥ 0,

0 otherwise,

is a value function for the dynamics satisfying the conditions in Theorem 1
(with ∆T = 0).
The jump dynamics constraint (3) for the value function is satisfied

since resets are instant and go from �(x) ≤ 0 to x = 0 and the reset cost
satisfies

A ∗
jumpV + cjump = V (0) − V (x) + cjump = −

1
4
�20 + ρ = 0

Looking at the interior (� > 0) we have that

∇� = −2Px, ∇2� = −2P,

∇V = −1
2
�∇� = �Px, ∇2V = �P− 2PxxTP.

The expected change in V per time unit is

A ∗
flowV =

1
2
�(x) tr(RP) − xTPRPx.

We hence have

cflow +A ∗
flowV =

= xT
(
Q − 1

2
tr(RP)P − PRP

)
x + 1
2
�0tr(RP).

This becomes constant equal to J precisely when (7) is satisfied.
We now show that there is exactly one symmetric P ≥ 0 that satisfies

(7). To construct such P, consider the equations

PRP + tP = Q.
1V is not C 2 at the trigger threshold, but this is easy to handle.
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for a, yet to be determined, scalar t ≥ 0. We can after an invertible co-
ordinate transformation assume that R = I and Q is diagonal, i.e. the
equation becomes P2+ tP = Q. Since P and P2 commute, they must com-
mute also with Q = P2 + tP. Thus there must exist a basis of common
eigenvectors for P and Q, in which both will be diagonal. Assuming such
an eigenvalue decomposition Q = UΛQU

T we see that P = UΛPU
T solves

the equation iff
λ2p + tλ p = λq.

This equation has a unique nonnegative solution λ p for any t ≥ 0 and
λq ≥ 0. The solution λ p(t) is strictly decreasing in t (unless λq = 0 when
the nonnegative solution is λ p(t) = 0 for any t). When t = 0, the solution
is P = Q 1

2 . When t→ ∞, the solution goes to P = 0. Thus, unless Q = 0
there must be a unique value t∗ ∈ (0,∞) such that t∗ = 1

2 tr(RP(t∗)). The
unique solution to (7) is then P = P(t∗).
To calculate the mean event rate we note that the expected time to next

actuation event, is easily determined by the fact that A ∗
flow� = −tr(RP) is

constant. The mean exit time starting at state x is hence

θ(x) = 1
tr(RP)�(x),

which gives the mean inter-event time

Tinter-event = θ(0) = �0
tr(RP) ,

and thus the mean event rate

fu =
1

Tinter-event
= 1�0

tr(RP) = 1
2
√

ρ
tr(RP).

The average state cost becomes

Jx = E cflow(x) = J − ρ fu =
1
2
√

ρ tr(RP) = 1
2
J.

3.3 Optimal State Distribution in R2

In the elliptic case (R and Q not proportional), we have only been able to
calculate explicit expressions for the resulting optimal state distribution
for n = 2. It is given by fundamental solutions to the Laplace operator
∆ f = δ (x) satisfying f = 0 on the boundary of the elliptic domain obtained
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above. To describe it we use complex parametrization w = x1 + ix2. The
following function satisfies ∆ f (w) = δ (w) and f (w) = 0 on the ellipse
(x1/ cosh(ξ ))2 + (x2/ sinh(ξ ))2 = 1.

f (w) = − 1
2π
log

∣∣∣∣
√
k sn

(
2K (k)

π
arcsin(w), k

)∣∣∣∣ ,

where “sn(z,k)” denotes the Jacobi elliptic function and where K (k) is
given by the elliptic complete integral of the first kind,

K (k) =
∫ π /2

0

dθ√
1− k2 sin2 θ

.

The value 0 < k < 1 is related to the shape of the ellipse and is determined
implicitly by

ξ = π

4
K (
√
1− k2)
K (k) .

3.4 Optimal State Distribution in Rn—the Spherical Case

For the case with spherical symmetry, where Q = qI and R = rI, explicit
expressions for the optimal state distributions can be given as fundamen-
tal solutions to the Laplace operator in a sphere. The optimal state dis-
tribution is the minimum for the following convex optimization problem
in Rn, a variant of the primal problem:

inf
∫
p∆ f p dx

f ≥ 0,
∫
f dx = 1,

∫
pxp2 f (x) dx = σ 2.

The minimum equals 2n2
(n+2)σ

−2 and is attained for2

f (x) = 1
6σ 2

(R − pxp)+, n = 1

f (x) = 1
2πσ 2

log+

(
R

pxp

)
, n = 2

f (x) = n

cn(n2 − 4)σ 2
(pxp2−n −R

2−n)+, n ≥ 3

where R = (2(n+ 2)/n)1/2σ and where cn = π n/2/Γ( n2 + 1) denotes the
volume of the unit ball in Rn.
2the notation f+ := max( f ,0) is used
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To see this, we first notice that the minimization can be reduced to
rotationally symmetric functions: Given a function f (x) define the rota-
tional symmetrization as the following Haar integral

f̃ (pxp) =
∫

U∈SO(n)
f (Ux) dU =

∫

pω p=1
f (ω pxp) dω

/∫

pω p=1
dω ,

where the integral is with respect to the unit measure in SO(n). It is clear
that f (Ux), and hence f̃ , satisfies the same linear conditions as f . From
Jensen’s inequality it follows that the convex and rotationally invariant
map f →

∫
p∆ f p =: T( f ) is smaller for f̃ than for f :

T( f̃ ) = T
(∫

SO(n)
f (Ux) dU

)
≤
∫

SO(n)
T( f (Ux)) dU = T( f ).

Now using the following facts it is easy to calculate the costs, resulting in
the same result as in the previous section,

∆(x2−n) = −n(n− 2)cnδ (x), n ≥ 3,
∆(log(x)) = −2πδ (x), n = 2,

sn−1 = ncn, area of unit sphere in R
n,

∆( f ) = �2 f
�r2 +

N − 1
r

� f
�r +

1
r2

∆SN−1 f ,

where the Laplace-Beltrami operator ∆SN−1 disappears for rotationally
symmetric functions.

4. Example: First-Order System with ∆T > 0

As a second example we will give analytic formulas for the optimal spo-
radic controller for a first-order integrator example with minimum inter-
event time of ∆T > 0. Each control action moves the state to the origin,
but there is then a period of time ∆T where no new control action is pos-
sible, and where the system state will hence evolve as Brownian motion.
We will first solve the dual problem and then the primal problem.
To aid the presentation, we introduce some notation. Hence, let φ(x) =

1√
2π
e−x

2/2 and Φ(x) =
∫ x
−∞ φ(t)dt; note that φ ′(x) = −xφ(x), Φ(−∞) =

0, Φ(0) = 1/2, and Φ(∞) = 1. Also note that the normal distribution
N(0,σ 2) is given by 1σ φ(x/σ ). To compactify notation put Φ̃(x) = Φ(x) −
Φ(0). Introduce also the even function

Ψ(x) :=
∫ x

0
Φ̃(x)dt = xΦ̃(x) + φ(x) − φ(0).
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It is easy to see that Ψ′′(x) = Φ̃′(x) = φ(x) and that hence

1
2
f ′′(x) = k 1

σ
φ(x/σ ) \ f (x) = 2kΨ(x/σ ) + x f ′(0) + f (0).

The operators are now

A ∗
flowV =

1
2
V ′′xx,

A ∗
jumpV = [φσ ⋆ V ](0) − V (x).

4.1 Dual: Value Function When ∆T > 0
We will show that a value function of the form

V (x) =
{
x2(J − x2/6), pxp ≤ d,
V (d) otherwise.

satisfies the condition in Theorem 1, for suitable values of J and d and
that (2) is satisfied with equality in the flow region pxp ≤ d and (3) in the
jump region pxp ≥ d.
Direct verification shows that this V satisfies (2) with equality when

pxp < d. Some thoughts reveal that to satisfy the conditions in Theorem 1,
we must have V ′x(d) = 0, which is equivalent to

d2/3 = J.

A smaller value of d would give V ′x(d−) > 0 and V ′x(d+) = 0 giving
a negative Dirac distribution in V ′′xx violating (2) at pxp = d and a larger
value of d would give a decreasing function V in the region

√
3J ≤ pxp ≤ d

violating (3) in either pxp =
√
3J or pxp ≥ d.

To have equality in (3) we should have

Jσ 2 = ρ + σ 4

2
− V (d) + [φσ ⋆ V ](0), (8)

where we have used the notation σ 2 = ∆T . This gives an implicit equation
for d as a function of ∆T and ρ which we now show how to simplify.
To calculate the convolution of V with the normal distribution N(0,σ )

we need the following integrals:

Ik(d) =
∫ d

0
xkφ(x)dx
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Since φ ′(x) = −xφ(x) partial integration shows

Ik+2(d) = −dk+1φ(d) + (k+ 1)Ik(d),
I0(d) = Φ̃(d),
I1(d) = φ(0) − φ(d).

This gives

∫ d

0
V (x)φσ (x)dx =

∫ d

0
(Jx2 − x4/6)φσ (x)dx =

= Jσ 2 I2(d/σ ) −
σ 4

6
I4(d/σ ) =

= Jσ 2
(
−Dφ(D) + Φ̃(D)

)
−

σ 4

6

(
−D3φ(D) − 3Dφ(D) + 3Φ̃(D)

)
.

We also have

∫ ∞

d

V (x)φσ (x)dx = V (d)
(
1
2
− Φ̃(D)

)
,

where we have introduced the notation D := d/σ . This gives

Jσ 2 = ρ + σ 4

2
− V (d) + 2Jσ 2

(
−Dφ(D) + Φ̃(D)

)
−

σ 4

3

(
−D3φ(D) − 3Dφ(D) + 3Φ̃(D)

)
+ V (d)(1 − 2Φ̃(D))

Using J = d2/3 and V (d) = d4/6 we get the equation

ρ = σ 4
(
−1
2
+ D

2

3

(
1+ Dφ(D) − 2Φ̃(D) + D2Φ̃(D)

)
− Dφ(D) + Φ̃(D)

)

(9)

The right hand side can with some work be shown to be a monotonously
increasing function in D, this means that there is a unique D for any
choice of ρ and ∆T = σ 2.
Figure 1 shows the value function V (x) for some different values of

∆T = 0, 0.2, 1 and ρ = 1/6, note that the threshold increases when ∆T
increases.
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Figure 1. Value function for ∆T = 0, 0.2, 1, with ρ = 1/6. The curves for ∆T = 0
and 0.2 almost overlap. The thresholds are d = 1, 1.01 and 1.22 respectively. The
value function is constant equal to V(d) for x > d

.

4.2 Primal: Optimal State Distribution When ∆T > 0
We will now show that for each threshold d and for suitable constants ki
we have

µ(x) = 2k1σ (Ψ(d/σ ) − Ψ(x/σ ))1pxp≤d,

ϕ(x) = k2
σ

φ(x/σ )1d≤pxp + k3(δ (x + d) + δ (x − d)),

where we still use the notation σ =
√

∆T.
Using the equations for stationary dynamics

Aflowµ +A jumpϕ = 0

in the regions pxp < d and pxp > d respectively, and since we have Aflowµ =
1
2µ ′′ and A jumpϕ = 1

σ φ(x/σ )〈ϕ , 1〉 − ϕ . and the we see that the constants
k1, k2, k3 satisfy

〈ϕ , 1〉 = k1 = k2, (10)

whereas the unit mass condition is

〈µ, 1〉 + ∆T 〈ϕ , 1〉 = 1 (11)
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Equation (10) gives

2k2(1− Φ(d/σ )) + 2k3 = k2 (12)

and we can obtain k1 from (11)

1 = k1 ⋅

(
4σ
∫ d

0
(Ψ(d/σ ) − Ψ(x/σ ))dx +σ 2

)

= k1 ⋅

(
4σ

(
dΨ(d/σ ) −σ

∫ d/σ

0
Ψ(x)dx

)
+σ 2

)

The integral can be evaluated using partial integration

∫ x

0
Ψ(y)dy =

∫ x

0
[yΦ̃(y) + φ(y) − φ(0)] dy

= x
2

2
Φ̃(x) −

∫ x

0

y2

2
φ(y)dy+ Φ(x) − Φ(0) − xφ(0)

= x
2 + 1
2

Φ̃(x) + x
2

φ(x) − xφ(0),

where we have used
∫ x

0
y2φ(y)dy = −xφ(x) + Φ̃(x).

We hence get

1
k1
= σ 2

(
1+ 2(D2 − 1)Φ̃(D) + 2Dφ(D)

)
,

where D = d/σ . From (10) and (12) we then get k2 and k3.
For a given ∆T > 0 we can now evaluate the stationary cost as a

function of the control event cost ρ:

J(ρ) =
∫ d

−d
x2µ(x)dx +

(
ρ + (∆T)

2

2

)
k1.

Here again the integral can be evaluated using repeated partial integra-
tions. We have

∫ d

−d
x2µ(x)dx = σ 4k1

3

(
(D4 − 3)Φ̃(D) + (D3 + 3D)φ(D)

)
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Figure 2. Optimal threshold as a function of control event cost ρ.

which means that the cost equals

J(ρ) =
σ 4

3

(
(D4 − 3)Φ̃(D) + (D3 + 3D)φ(D)

)
+
(

ρ + σ 4

2

)

σ 2
(
1+ 2(D2 − 1)Φ̃(D) + 2Dφ(D)

) ,

with σ 2 = ∆T and D = d/σ . We now obtain the optimal threshold D either
from (9) or by directly optimizing over the threshold d. See Figures 2
and 3. (It is comforting to notice that numerical calculations verify that
both methods give the same result.) Numerical experiments also verify
that this D gives J = d2/3 as before.
When σ → 0 it is easy to see that we get

J(ρ,d) = d
2

6
+ ρ

d2

dopt = (6ρ)1/4

Jopt = 2
(ρ

6

)1/2

(k1, k2, k3) →
(
1
d2
,
1
d2
,
1
2d2

)
,

so we recover the familiar triangular distribution for the case ∆T = 0 in
[Åström and Bernhardsson, 1999].
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Figure 3. Optimal cost as a function of control event cost ρ.

5. Summary

We have managed to obtain more or less explicit solutions to the sporadic
optimal control problems in the case with quadratic cost Q and general
covariance matrix R for the multi-dimensional integrator case. We have
not been able to obtain similar nice explicit results to the general case
ẋ = Ax+ Bu. Numerical optimization indicates that the “flow” domain is
still a connected region containing the origin, but it no longer seems to be
ellipsoidal.
Similar analysis as in Section 4 shows that the formula (4) also holds

when ∆T > 0, but with another, larger, constant �0. Formulas for this
constant can be obtained with similar techniques as in Section 5.
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A. Proof of Theorem 1

LEMMA 1
Consider a distribution of finite time system trajectories. Let V : Rn ]→ R

be a C 2 function. Then the expected change in V (x) from entry to exit is
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given by

E(∆V ) = E(V (x f ) − V (xi)) = 〈µft,A ∗
flowV 〉 +

〈
ϕ ft,A ∗

jumpV
〉
.

Proof: Splitting the difference into accumulated differences and using the
definitions of Aflow,A jump, we get

E(∆V ) = E
∫

Tflow

dV + E
∑

k∈K jump

V (x+k ) − V (xk)

= E
∫

t∈Tflow
(A ∗
flowV )(x)dt + E

∑

k∈K jump

(A ∗
jumpV )(xk)

= 〈µft,A ∗
flowV 〉 +

〈
ϕ ft,A ∗

jumpV
〉
.

�

LEMMA 2
Suppose there exist a C 2 function V : Rn ]→ R and J ∈ R such that

cflow(x) + (A ∗
flowV )(x) ≥ J, ∀x ∈ X flow,

cjump(x) + (A ∗
jumpV )(x) ≥ J∆T , ∀x ∈ X jump.

Then for any distribution of finite time paths consistent with the sys-
tem dynamics, such that x ∈ X flow when flowing, and x ∈ X jump at the
beginning of each jump, the accumulated cost is lower bounded by

j = 〈µft, cflow〉 + 〈ϕ ft, cjump〉 ≥ JT − E(∆V ).

Upper bound: Reversing the inequalities in the assumptions above gives
the converse inequality in the conclusion.

Proof: Using Lemma 1, we see that

j + E(∆V ) = 〈µft, cflow +A ∗
flowV 〉 +

〈
ϕ ft, cjump +A ∗

jumpV
〉

≥ 〈µft, J〉 + 〈ϕ ft, J∆T〉 = JT ,

where the inequality follows since 〈µft, f 〉 and 〈ϕ ft, f 〉 are increasing in f
(see (1)), and independent of the values of f (x) that the trajectories do
not visit, and the last equality follows from

T = E(t f ) = E
∫

Tflow

dt+ E
∑

K jump

∆T = µft(1) +ϕ ft(∆T).

�
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Proof of Theorem 1

The inequality (4) follows directly from Lemma 2 with J = J. We can
let X flow and X jump be the sets where equality is achieved in (2) and (3)
respectively; from the preconditions we have X flow ∪ X jump = Rn. Using
these sets with Lemma 2, this time using cflow(x) + (A ∗

flowV )(x) ≤ J̄,
cjump(x)+(A ∗

jumpV )(x) ≤ J̄∆T, letting J̄ = J, we see that j+E(∆V ) ≤ JT
with the switching sets (X flow, Xjump).
Since V is bounded, (4) gives that

Javg = lim
T→∞

j

T
≥ lim
T→∞

JT − E(∆V )
T

= J,

with equality using the prescribed controller. �

96



Paper III

Sporadic Event-Based Control
of First-Order Linear
Stochastic Systems

Toivo Henningsson Erik Johannesson
Anton Cervin

Abstract

The standard approach in computer-controlled systems is to sample
and control periodically. In certain applications, such as networked
control systems or energy-constrained systems, it could be advanta-
geous to instead use event-based control schemes. Aperiodic event-
based control of first-order stochastic systems has been investigated
in previous work. In any real implementation, however, it is neces-
sary to have a well-defined minimum inter-event time. In this paper,
we explore two such sporadic control schemes for first-order linear
stochastic systems and compare the achievable performance to both
periodic and aperiodic control. The results show that sporadic control
can give better performance than periodic control in terms of both
reduced process state variance and reduced control action frequency.

cF2008 Elsevier Ltd. Reprinted, with permission, from Automatica, 44:11, pp. 2890–2895.
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1. Introduction

Digital feedback controllers are most often implemented using periodic
sampling, computation, and actuation. This approach enables the control
designer to utilize standard sampled-data system theory or to discretize a
continuous-time controller assuming a fixed sampling rate and constant
hold intervals [Åström and Wittenmark, 1997].
For some applications, however, event-based control schemes may have

an advantage over periodic schemes. In networked control applications, it
could make sense to only transmit information when something significant
has occurred in the system, in order to save bandwidth. In embedded
applications, it may be essential to minimize the number of control actions
in order to save energy. In the application of inventory control it seems
rational to replenish stock only when it is low rather than on a periodic
basis, if there is a fixed transportation cost. Some sensors such as rotary
motion encoders only give new measurements at ahead-of-time unknown
events.
Event-based control as a technology is of course not new. Mostly, how-

ever, it has been applied in an ad-hoc way. This can be attributed to the
lack of a comprehensive theory, which in turn can be explained by the
mathematical difficulties involved. A discrete-time formulation can some-
times make it slightly easier to obtain a solution. Some recent papers have
thus solved optimal discrete-time estimation problems, with limited [Imer
and Basar, 2005] or event-triggered [Cogill et al., 2006] measurements.
From a control-theoretic point of view, event-based control systems can

be viewed as hybrid systems. In this paper, we consider first-order linear
stochastic systems, where an exogenous random disturbance (modelled as
white noise) causes the process state to drift. The control law generates
discrete events when the state crosses certain boundaries. Hence, our
system falls into the category of stochastic hybrid systems as defined in
[Hu et al., 2000].
Event-based control of first-order linear stochastic systems was stud-

ied in [Åström and Bernhardsson, 1999]. It was shown that, compared
to periodic control, the output variance could be significantly reduced as-
suming the same mean time between events. The control was realized by
applying an impulse action whenever the magnitude of the system state
exceeded a certain threshold. This work was elaborated in [Rabi, 2006],
which explores, among other things, event-based control with piecewise
constant control signals and level-triggered sampling.
From a real-time systems point of view, however, tasks triggered by

asynchronously generated events cannot be guaranteed service unless
there is a well-defined minimum inter-arrival time. For the controller
presented in [Åström and Bernhardsson, 1999] there was no such mini-
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Active Inactive

Control
event

Time T
elapsed

Figure 1. Controller state transitions. Control events may only be generated in
the active state.

mum inter-arrival time. In accordance with real-time systems terminology
[Buttazzo, 1997], we will refer to such a control policy as aperiodic.
In this paper, we explore the class of sporadic event-based controllers

for first-order linear stochastic systems. With a minimum inter-arrival
time T between events, such a controller can be guaranteed not to con-
sume more than a certain network bandwidth or CPU utilization. Two
sporadic controllers will be studied. The first controller measures the pro-
cess state continuously and can take control actions at any time, but no
more often than every T seconds. The second controller measures the pro-
cess state every Ts seconds until a control action is applied, and resumes
measurements T seconds after the last control action.

2. Problem Formulation

The process to be controlled is given by the linear stochastic differential
equation

dx = axdt + udt +σdw, x(0) = 0, (1)
where x is the state, u the control signal, w is a Wiener process with
unit incremental variance, a is the pole of the process, and σ > 0 is the
intensity of the process noise. The control signal is zero except at events
tk, when it is allowed to be a Dirac pulse of magnitude uk:

u(t) =
∞∑

k=0
δ (t− tk)uk. (2)

The controller chooses when to generate an event based on the state of
the system. After each event there is a period of inactive state of duration
T , when no new events can be generated, see Figure 1.
The performance is measured by the stationary state cost,

Jx = lim sup
t→∞

E
1
t

∫ t

0
x2ds,
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and by the average control rate (or control cost),

Ju = lim sup
t→∞

E
1
t
Nu(0, t),

where Nu(t1, t2) is the number of control actions in the interval (t1, t2).
The total cost to be minimized is

J = Jx + ρJu, (3)

where ρ ≥ 0 is the relative cost of control actions.

Normalized Formulation

To reduce the number of free parameters we can use coordinate scaling
to fix σ = T = 1. The parameters that remain, a and ρ, suffice to specify
the problem up to coordinate scaling, and the original variables can be
retrieved from inverse scaling. The parameters σ and T will be kept in
the presentation when they add insight.
Let the transformed variables be described by

dt = Tdτ , dw =
√
Tdv, x = σ

√
Tx′

The dynamics become

dx′ = a′x′dτ + u′dτ + dv,

where u′ =
√
Tσ−1u, and a′ = aT is the relevant measure of process

speed. The original costs are retrieved as

Jx = σ 2TJ′x, Ju = T−1J′u,

so ρ′ = ρ
σ 2T2

is the proper weighting after normalization. The normalized
problem is described by the parameters

a′ = aT , ρ′ = ρ

σ 2T2
.

3. Sporadic Control

3.1 General Observations

A sporadic controller is defined by two properties: when it generates an
event and what control signal is used at the event. It is easy to see that
an optimal controller for the problem above must satisfy the following:
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• At any event tk, the control signal uk is chosen to bring x to the
origin, i.e. uk = −x(tk − 0).

• When an event is permitted, the decision of whether to generate one
is a function only of the state x, and due to symmetry only of the
absolute value pxp.

• If an event should be generated when pxp = r, one should also be
generated whenever pxp ≥ r.

Thus, the optimal control policy is a threshold policy where an event is
triggered to bring x to zero whenever permitted and pxp ≥ r.
To find the optimal threshold r, we evaluate J as a function of r in

the closed loop system. To facilitate this, we first consider what happens
between events.

3.2 Evolution Between Events

Between events the control signal is known, and the system evolves as a
linear stochastic process. Assume that an event occurs at time tk = 0, and
that we want to predict the evolution from that time, from the state prior
to the event x0 = x(0−). Let

m(t) = E
(
x(t)

)
, P(t) = E

(
x(t)2

)
−m(t)2

be the expected state trajectory and the expected state variance due to
process noise entering after the event respectively, with initial conditions

m(0) = x0 + uk, P(0) = 0.

The distribution of x(t) will be Gaussian with mean m(t) and variance
P(t).
The expected state cost during the interval (0, t) can be expressed as

the sum of one contribution VP(t) from P and one Vm(t) from m according
to ∫ t

0
E
(
x(s)2

)
ds =

∫ t

0

(
P(τ ) +m(τ )2

)
dτ = VP(t) + Vm(t).

Since there is no feedback between events, u will enter the evolution only
through m(t). We find that

E(dP) = E(2xdx + dx2) − 2mE(dm)
= E(2x(axdt + udt) +σ 2dw2) − 2m(am + u)
= (2aP +σ 2)dt.
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Starting from P(0) = 0, the solution is

P(t) =




(1− e2at) σ 2

−2a , a ,= 0,

σ 2t, a = 0.
(4)

Integrating, the process noise contribution to the state cost during the
interval (0, t) is

VP(t) =





σ 2

−2a

(
t− e

2at − 1
2a

)
, a ,= 0,

1
2

σ 2t2, a = 0.
(5)

The expected trajectory evolves according to E(dm) = E(dx) = (am +
u)dt, giving the prediction

m(t) = eatm(0) +
∫ t

0+
ea(t−τ )u(τ )dτ .

With no control during the interval (0, t), the cost is

Vm(t) =
∫ t

0
m(s)2ds = Q(t)m(0)2,

Q(t) =






e2at − 1
2a

, a ,= 0,

t, a = 0.
(6)

3.3 Sporadic Control with Continuous Measurements

We assume that the process state is measured continuously in the active
state. As soon as the state leaves the region pxp < r, an event is generated
and the controller is put in the inactive state for an interval of length T .
Since the system is reset to the same state at each event, the expected

cost and time from one event to the next are enough to find the stationary
costs, as

Jx =
Vactive + Vinactive
Tactive + T

, Ju =
1

Tactive + T
,

where Vactive and Tactive are the expected state costs and dwell times during
one period of active state, and Vinactive = VP(T). We will characterize the
behavior between two events by modifying the system so that it starts at
one event and is stopped at the next.
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The expected cost and dwell time during one period of active state can
be found as

Vactive =
∫
x2F(x)dx, Tactive =

∫
F(x)dx, (7)

where F(x) =
∫∞
0 f (x, t)dt is the accumulated state density of the density

f (x, t) in the active state.
The system enters the active state as

f (x, t = 0) =
{

ϕ(x), pxp < r
0, pxp ≥ r

where ϕ(x) is Gaussian with zero mean and variance P(T). The time
evolution is given by the Fokker-Planck equation (see, e.g. [Åström, 1970],
[Feller, 1971]) (with σ = 1):

� f
�t =

1
2
�2
�x2 ( fσ

2) − �
�x ( f ax) =

1
2
�2 f
�x2 − ax

� f
�x − a f ,

with absorbing boundary conditions f (±r, t) = 0. Since f (x, t) → 0 as
t→∞ we can integrate over t ∈ [0,∞) to find a differential equation for
F(x):

−ϕ(x) =
∫ ∞

0

� f
�t dt =

1
2
F′′(x) − axF′(x) − aF(x),

with boundary conditions F(±r) = 0. The solution exists as long as ϕ(x)
does, and can be found numerically with a linear ODE Boundary Value
Problem (BVP) solver or analytically as

F(x) = 2
∫ x

y=−r
ea(x

2−y2)
∫ 0

z=y
ϕ(z)dzdy, pxp ≤ r. (8)

Figure 2 shows the costs as a function of r for the case T = σ = 1
and a ∈ {−0.5, 0, 0.5}. Other cases can be reconstructed by scaling as
explained in Section 2. We see an initial decrease in the state cost as the
threshold is increased, so the optimal threshold is non-zero even when
ρ = 0. We also see that both costs decrease as a decreases, since the
system becomes easier to control.
The cost functions can alternatively be found from

Vactive =
∫

ϕ(x)Vx(x)dx, Tactive =
∫

ϕ(x)θ(x)dx, (9)

103



Paper III. Sporadic Event-Based Control of First-Order Linear . . .

0 1 2 3 4 5
0

1

2

3

4

5

a = −0.5
a = 0
a = 0.5

Threshold, r

S
ta
te
co
st
,
J
x

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

a = −0.5
a = 0
a = 0.5

Threshold, r

C
on
tr
ol
co
st
,
J
u

Figure 2. Cost functions for sporadic control with continuous-time measurements
assuming σ = T = 1. Top: State cost Jx as a function of threshold r. Bottom: Control
cost Ju as a function of threshold r. Both functions are plotted for systems with
a = −0.5, a = 0 and a = 0.5 respectively.

where Vx(x) is the expected state cost until the next event starting in
the active state at x, and θ(x) is the corresponding expected dwell time
(or first passage time, (see [Feller, 1971]). The value function V (x) =
Vx(x) − Jθ(x) can be used for dynamic programming.
When x = ±r, Vx(x) = θ(x) = 0, and when pxp < r,

E
(
dVx(x)

)
= −x2dt, E

(
dθ(x)

)
= −1dt

which together with the dynamics (1) gives

−x2dt = E
(
V ′xdx+

1
2
V ′′x dx

2
)
=
(
axV ′x +

1
2
V ′′
)
dt,

for Vx(x), and similarly for θ(x). The solutions can be found numerically
with an ODE BVP solver, or as

(
Vx(x)
θ(x)

)
= 2

∫ r

y=x

∫ y

z=0
ea(z

2−y2)
(
z2

1

)
dzdy. (10)

We note that problem can be extended in a few ways that fit well
with our solution methods. Behavior in the inactive state only affects the
solution through Tinactive, Vinactive, and the state density when entering the
active state ϕ(x). Possible extensions include a delay τ ≤ T from the issue
of an event to the actuation of the control impulse, and a stochastically
varying inactive time T .
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Figure 3. Cost functions for sporadic control with discrete-time measurements
assuming σ = T = Ts = 1. Top: State cost Jx as a function of threshold r. Bottom:
Control cost Ju as a function of threshold r. Both functions are plotted for systems
with a = −0.5, a = 0 and a = 0.5 respectively.

3.4 Sporadic Control with Discrete Measurements

We now assume that the process is sampled with the interval Ts ≤ T in
the active state. Any deviations of the state outside the threshold between
samples will go unnoticed. As before, when a deviation is detected at time
tk, the controller issues a control event and enters the inactive state, where
it stays for T seconds. We now let {tk} denote all sampling instants, which
progress as

tk+1 =
{
tk + Ts, pxkp < r,
tk + T , pxkp ≥ r.

To find the optimal threshold r, the cost is characterized as a function
of r. To this end, we compute the stationary state distribution (see [Feller,
1971]) at the sampling instants. Between sampling instants, the state
evolves as

xk+1 =
{
eaTsxk +wk(Ts), pxkp < r,
wk(T), pxkp ≥ r,

(11)

where wk(t) is a Gaussian random variable with zero mean and variance
P(t). The stationary density always exists since there is a positive proba-
bility to go from any state x to any state interval (x1, x2) in one step, and
for pxp ≥ r the density after any time step falls off as a Gaussian with
variance P(T). The accumulated state cost from time tk to time tk+1 is
given by

Vstay = Q(Ts) E
{
x2k

∣∣∣ pxkp < r
}
+ VP(Ts) (12)
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if the controller stays in the active state and by

Vexit = VP(T) (13)

if the controller enters the inactive state.
Finally, assuming stationarity, the costs become

Jx =
pstayVstay + pexitVexit
pstayTs + pexitT

, Ju =
pexit

pstayTs + pexitT

where
pstay = Prob {pxkp < r} = 1− pexit.

The stationary distribution of xk can be found numerically by discretizing
the state space and then iterating the distribution according to (11) until
convergence.
Figure 3 shows the costs as a function of r for the case T = Ts = σ = 1

and a ∈ {−0.5, 0, 0.5}. Here, the state cost increases monotonically with r.
With Ts < T we would have an initial decrease, approaching the behavior
for continous measurements as Ts/T → 0. The control action frequency
Ju falls off faster with increasing threshold than for the continous mea-
surement case, since x is checked against the threshold less often with
discrete measurements. As expected, both costs decrease with a.
Alternatively, the expected state cost Vx(x) and dwell time θ(x) until

the next event starting from state x can be iterated until convergence.
As in the continuous case, we could extend the problem formulation with
actuation delay and stochastically varying inactive time.

4. Comparison of Control Schemes

Sporadic control with continuous and discrete measurements (with Ts =
T) will now be compared to periodic and aperiodic control. We first discuss
how to make the comparison.

4.1 Periodic and Aperiodic Control

An aperiodic controller sets the process state x to zero whenever pxp ≥ r
using an impulse control action [Åström and Bernhardsson, 1999]. The
cost functions can be found by letting ϕ(x) approach a unity Dirac pulse
in (8) or (9), yielding

Jx = Vactive/Tactive, Ju = T−1active.
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We assume that periodic control is also implemented with impulse control
action, such that x is periodically reset to zero. The sampling interval is
restricted to be no shorter than for the sporadic schemes. The costs become

Jx = VP(T)/T , Ju = T−1. (14)

4.2 Preliminaries

For the sporadic controllers, minimization of the loss function J for a
given ρ determines an optimal threshold r, which maps to an optimal
average event rate Ju. The same holds for aperiodic control. In periodic
control, however, there is no threshold. Instead, ρ determines the optimal
sampling interval. Hence, we can parametrize controllers from all four
classes by average event rate.
The four controllers differ by the constraints on when they can gen-

erate control events. A scheme with fewer restrictions will be harder to
implement but give a lower cost J. As pinactive = JuT → 0 and events
become rare, sporadic control should approach aperiodic since T becomes
negligible. When ρ → 0, sporadic control with discrete measurements and
Ts = T will approach periodic since there remains no incentive to omit an
event.
When a < 0, Jx and therefore J is bounded by the variance achieved

in open loop. As ρ increases, all controllers will generate fewer events so
that Ju → 0, and ultimately Jx will approach a maximum. The limit can
be found from (14), where Jx → −1/2a as T →∞.

4.3 Comparison

The trade-off between state variance and average event frequency is made
explicit in Figure 4, where Jx is plotted against Ju for the four controllers.
The results for σ ,= 1 are found by scaling Jx by σ 2. It is seen that the
controllers are strictly ranked in performance by how much freedom they
have to generate events, and that the sporadic controller with discrete
measurements always outperforms the periodic one.
Figure 4 also shows what we consider the main advantage of event-

based control: fewer events are needed for the same state cost. With pe-
riodic control, the variance increases quite rapidly with lower sampling
rate. However, with sporadic control the average control rate can be re-
duced much further without the same penalty. For example, when a = 0.5
the average control rate may be decreased by about 40 % for only slightly
more variance, using sporadic control with discrete measurements.
A notable result is that for sporadic control with continuous measure-

ments, Jx can be made somewhat smaller with fewer events. This is also
seen in the upper plot of Figure 2, where Jx attains a minimum for r > 0.
Apparently, there is a hidden cost in issuing a control event, due to the
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Figure 4. Trade-off between state cost Jx and control cost Ju for the four classes
of controllers. Note the different vertical scales.

risk that large state errors will arise while in the inactive state. This phe-
nomenon is absent for discrete measurements and Ts = T since in this
case events are generated independent of past actions.
Figure 5 shows the optimal achievable cost J∗ for the four controllers.

It is notable that for the stable system a = −0.5 the optimal periodic
controller chooses to never sample when ρ ≥ 1, while the sporadic con-
trollers just raise their thresholds and remain ready to deal with large
disturbances.

5. Higher-Order Systems

So far, we have only considered first-order systems. When raising the
state dimension, there are many different generalizations worthy of study,
depending on which is the constraining resource that motivates using
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Figure 5. Optimal achievable cost J∗ for the four classes of controllers. Note the
different vertical scales.

event based control. We will briefly discuss some possibilities.

5.1 Formulations

The dynamics and cost Jx are naturally extended to

dx = Axdt+ Budt + dw,

Jx = lim sup
t→∞

E
1
t

∫ t

0
xTQxds.

where now x,w and possibly u are vectors. One natural generalization of
the measurement equation is

dy = Cxdt + dwm,

where dwm is measurement noise.
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The possible forms of the controller, actuators, and sensors are more
varied. Some scenarios are:

Communication constraints. Events are packets sent over a communi-
cation channel, from an observer at the sensor to a controller at the
actuator. The observer decides when to send a state estimate to the
controller, which predicts the plant state in open loop in between.
Each event resets the prediction error.

Actuator constraints. The actuator only generates pulses of certain
shapes, with some cost per pulse. The controller plans for an optimal
and possibly long sequence of pulses, which is sensitive to timing.

Sensor constraints. The sensor only gives measurements under some
conditions, e.g. at or beyond some thresholds. The control problem
becomes a state estimation problem with nonstandard measurement
information, for which the Kalman Filter is not optimal.

Processing power constraints. A simple control law is needed. The
best bet is probably to postulate one and optimize over a few pa-
rameters.

We can consider a single control loop, or multiple loops sharing the same
limited resource. The loops can be independent, or cooperate to control a
single plant. It seems unreasonable that the controllers should know each
others’ state, especially with communication constraints.

5.2 Methods

The discretizations applied in this paper can be generalized to higher state
dimensions, but become impractical beyond a few states due to the curse of
dimensionality. Sometimes the dimension can be reduced somewhat; e.g. if
the state is estimated with a stationary Kalman Filter, the distribution of
the actual state is known conditioned on the estimate. Otherwise, nonlin-
ear process dynamics come at a modest additional cost. Optimal stochastic
control is in principle applicable to both the communication and actuation
constrained scenarios.
Beyond a few states, simpler formulations are necessary for a solvable

problem. This may include reducing the amount of uncertainty in the
problem. A communication constrained problem easily becomes pointless
with too little uncertainty, while an actuator constrained problem may
still preserve its major features.

110



6. Conclusions

6. Conclusions

In some applications there is a cost related to the execution of a control
signal, regardless of the magnitude of that signal. If that cost is included
in the performance objective of the controller, it will be meaningful to
reduce the frequency of control actions. This may be accomplished with
a periodic controller by lengthening the sampling interval. However, the
penalty in terms of increased process state variance is significant. Trying
to improve the tradeoff by not acting on small state errors naturally leads
to the notion of event-based control.
In this paper, we have shown that sporadic control can provide a better

tradeoff between control objectives as well as better overall control perfor-
mance than periodic control, when there is a fixed cost of control actions.
It is noted that the average frequency of control events can be reduced
with only a small increase in state variance. Moreover, we show that spo-
radic control can actually reduce both the average frequency of control
events and the state variance simultaneously. When the objective is to
reduce the frequency of events as well as the state variance, the sporadic
control schemes presented here even perform almost as well as aperiodic
control, while respecting a prespecified shortest inter-event time.
Event-based control has an additional threshold parameter that should

scale with the size of disturbances. If they are bigger than expected, the
control approaches periodic control. If they are smaller, the theshold will
act as a tolerable margin of error. Both responses are reasonable in the
face of a mismatched disturbance intensity.
Obviously, to implement sporadic control where periodic control is cur-

rently used requires some changes. Unless the hardware supports con-
tinuous measurements, discrete measurements are an easier option and
approach the continuous performance quite fast if one can measure more
often than control. The change from periodic to sporadic control with the
same measurement and control interval should require minimal modifi-
cations.
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Paper IV

Scheduling of Event-Triggered
Controllers on a Shared Network

Anton Cervin Toivo Henningsson

Abstract

We consider a system where a number of independent, time-triggered
or event-triggered control loops are closed over a shared communica-
tion network. Each plant is described by a first-order linear stochastic
system. In the event-triggered case, a sensor at each plant frequently
samples the output but attempts to communicate only when the mag-
nitude of the output is above a threshold. Once access to the network
has been gained, the network is busy for T seconds (corresponding
to the communication delay from sensor to actuator), after which the
control action is applied to the plant. Using numerical methods, we
compute the minimum-variance control performance under various
common MAC-protocols, including TDMA, FDMA, and CSMA (with
random, dynamic-priority, or static-priority access). The results show
that event-triggered control under CSMA gives the best performance
throughout.

cF2008 IEEE. Reprinted, with permission, from Proceedings of the 47th IEEE Conference on
Decision and Control, Cancún, Mexico, December 2008.
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1. Introduction

Networked feedback control systems are normally implemented using
periodic sampling at the sensor nodes, combined with either time-
triggered or event-triggered communication between the sensor, controller,
and actuator nodes. Periodic sampling allows for standard sampled-data
control theory (e.g. [Åström and Wittenmark, 1997]) to be used, although
network-induced delay and jitter may limit the performance [Cervin et al.,
2003].
In recent work [Åström and Bernhardsson, 1999; Hristu-Varsakelis

and Kumar, 2002; Rabi, 2006; Johannesson et al., 2007], event-triggered
sampling has been proposed as a means for more efficient resource us-
age in networked control. The basic idea is to sample, communicate, and
control only when something significant has occurred in the system. For
first-order stochastic systems, it has been shown that event-based sam-
pling can significantly reduce the output variance and/or the average con-
trol rate compared to periodic sampling [Åström and Bernhardsson, 1999].
A similar idea is to introduce a deadband in the sensor. The trade-off be-
tween network traffic and control performance for higher-order control
loops with deadband sampling was studied in [Otanez et al., 2002].
When multiple control loops are closed over a shared medium (like

a communication bus or a wireless local-area network), a multiple ac-
cess method such as TDMA (time division multiple access), FDMA (fre-
quency division multiple access), or CSMA (carrier sense multiple access)
is needed to multiplex the data streams. It is clear that the choice of ac-
cess method can have a great impact on the control performance. Intu-
itively, TDMA should be suitable for time-triggered control loops, while
CSMA, being a random-access method, would seem to be well suited for
event-based control. FDMA provides a way to share the bandwidth with-
out regard to synchronization among the loops, which could potentially
be beneficial for both time-triggered and event-triggered control. At the
same time, less bandwidth per control loop means longer transmission
times and hence longer feedback delays.
Multi-loop networked control systems—taking into account issues such

as clock synchronization, medium access, communication protocols, imper-
fect transmissions, delay and jitter, and event-triggered sampling, as well
as the control algorithms themselves—are very complex systems. To fa-
cilitate analysis, great simplifications are needed. In this paper, we study
a scenario where a number of independent control loops are closed over
a shared network (see Fig. 1). Using very simple models for the plants,
controllers, and network arbitration, we are able to numerically compute
and compare the minimum-variance control performance under the var-
ious medium access protocols. In particular, we apply recent results in
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replacements

S1 S2

S3

A1 A2

A3

Plant 1 Plant 2

Plant 3

Figure 1. Multiple control loops are closed over a shared communication medium.
The controller in each loop may be co-located with either the sensor (S) or the
actuator (A).

sporadic event-based control of first-order systems [Johannesson et al.,
2007; Cervin and Johannesson, 2008] to model and analyze the inter-
action between control loops and medium-access schemes. Although far
from an exhaustive study, the results offer some interesting insight into
the suitability of the studied MAC-protocols for networked control.
The remainder of this paper is outlined as follows. In Section II, the

system description is given. Section III reviews how to calculate the sta-
tionary variance under time-triggered and event-triggered sampling. In
Section IV, we model the medium access schemes and describe the co-
design problem associated with each scheme. Section V reports numerical
results for symmetrical integrator plants. In Section VI, we digress and
compare the achievable performance under global vs local scheduling de-
cisions. Section VII contains a case study with three asymmetric plants.
Finally, the conclusions are given in Section VIII.

2. System Description

We consider a system where N control loops are closed over a shared
network. Each plant i ∈ 1 . . .N is described by a first-order stochastic
differential equation

dxi(t) = aixi(t)dt+ ui(t)dt+σ idwi(t), xi(0) = 0, (1)

where xi is the state, ai is the process pole, ui is the control signal, wi
is a Wiener process with unit incremental variance, and σ i > 0 is the
intensity of the noise. All noise processes are assumed independent.
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Idle Busy

Control
event

Time T
elapsed

Figure 2. Network state transitions. Control events may only be generated in the
idle state.

A sensor located at each plant i takes samples of the plant state at
certain discrete time instants {ti,k}∞k=0:

xi,k = xi(ti,k). (2)

The sampling can be either time-triggered or event-triggered, depending
on the medium access scheme. After obtaining a sample, the sensor tries
to initiate a control event by transmitting the value to the actuator. The
network is however a shared resource that only one control loop may ac-
cess at a time3. If two or more sensors attempt to transmit at the exact
same time, a resolution mechanism determines who will gain access to the
network. (The other nodes will simply discard their samples.) Once access
has been gained, the network stays occupied for T seconds, corresponding
to the transmission delay from sensor to actuator. During this interval,
no new control events may be generated (see Fig. 2).
The controller in each loop may be co-located with either the sensor

or the actuator; the network delay is assumed constant and known, so it
does not matter which. The overall goal is to minimize the total cost

J =
N∑

i=1
Ji, (3)

where the performance of loop i is measured by the stationary state vari-
ance

Ji = lim
t→∞
1
t
E
∫ t

0
(xi(s))2ds. (4)

In response to a sample taken at time ti,k, the actuator is allowed to
emit a Dirac pulse of size ui,k. It is clear (see [Cervin and Johannesson,
2008]) that minimum variance is achieved by driving the expected value
of the state at time ti,k + T to zero, implying the deadbeat control law

ui,k = −eaiT xi,k. (5)
3This is not true under FDMA. Under FDMA, we rather assume that each control loop

has access to its own private network with lower bandwidth.
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The control signal generated by actuator i is hence given by the pulse
train

ui(t) =
∞∑

k=0
δ
(
t− ti,k − T

)
ui,k. (6)

While it may seem unrealistic to allow Dirac controls, it allows for a
fair and straightforward comparison between time-triggered and event-
triggered control. The Dirac pulse may be replaced by an arbitrary pulse
shape of length no longer than T at the expense of slightly more compli-
cated cost calculations.

3. Evaluation of Cost

We here briefly review how to compute the cost (4) under time-trig-
gered and event-triggered sampling with a delay and minimum inter-
event interval T . For more details, see [Åström, 1970; Johannesson et al.,
2007; Cervin and Johannesson, 2008]. For clarity, we here drop the plant
index i.

3.1 Time-Triggered Sampling

Under time-triggered sampling, the stationary variance (4) can be calcu-
lated analytically. The sampling instants tk are known a-priori and do not
depend on the plant state, which will be normal distributed at all times.
The (possibly irregularly) sampled closed-loop system becomes

xk+1 = wk, (7)

where {wk}∞k=0 are independent, zero-mean Gaussian variables with vari-
ance P(tk+1 − tk), where

P(t) =





σ 2
e2at − 1
2a

, a ,= 0,

σ 2t, a = 0.
(8)

(Note that the delay does not affect the state distribution at the sampling
instants.) Sampling the cost function gives

E
∫ tk+1

tk

x2ds = Q(T)E(xk)2 + Jv(tk+1 − tk), (9)

where

Q(T) =
{
e2aT−1
2a , a ,= 0,
T , a = 0

(10)
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is the state weight due to delay, while

Jv(t) =
{
e2at−2at−1
4a2 , a ,= 0,

t2

2 , a = 0
(11)

accounts for the inter-sample noise (see, e.g. [Åström, 1970]). Finally,
we know that E x2(tk) = P(tk − tk−1). Using the expressions above, it
is straightforward to evaluate the cost under any static cyclic schedule.

3.2 Event-Triggered Sampling

Under event-triggered sampling, control events may only be generated
when the network is idle and px(t)p ≥ r, where r is the event detection
threshold. The state will no longer be Gaussian, which complicates the
calculation of E x2(tk). A useful and realistic approximation is to assume
that the sensor does not measure x continuously, but rather uses fast
sampling with the interval Ts ≪ T . The (irregularly) sampled closed-loop
system then becomes

xk+1 =






eaTsxk +wk(Ts), pxkp < r
wk(T), pxkp ≥ r & won
eaT xk +wk(T), pxkp ≥ r & lost

(12)

where {wk(t)}∞k=0 is a sequence of independent, zero-mean Gaussian vari-
ables with variance P(t); “won” means that the sensor node won the net-
work arbitration, while “lost” means the opposite. Letting the system run
in open loop between the fast samples, the expressions (8)–(11) for the
sampled cost are still valid.
The update equation (12) is useful both for calculation of the state dis-

tribution and for Monte Carlo simulations. Because of the shared medium,
the stationary probability distributions of x1, . . . , xN are not independent.
To evaluate the cost using the first approach, it is hence necessary to find
the multi-dimensional probability distribution f (x1, . . . , xN). This can in
theory be done by gridding the state space and then iterating the distri-
bution according to (12) until convergence. In practice, this can be done
for a few dimensions, forcing us to rely on Monte Carlo simulations for
N ≥ 3 in this paper.

4. Medium Access Schemes and Control Policies

In this section, we present simple scheduling and control models for three
medium access schemes and discuss how to derive optimal schedules and
control policies.
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1 12 3 1 2 3 2 3

Figure 3. Time division multiple access (TDMA). A static cyclic schedule deter-
mines which sensor node samples and transmits in which time slot.

4.1 TDMA (Time Division Multiple Access)

In TDMA (see Fig. 3), a cyclic access schedule is determined off-line. In
each slot in the schedule, one control loop has access to the network for
T seconds. Since there is no cost associated with using the network in
our problem formulation, it is obvious that no slot should be left empty,
and that the sensor should always sample and transmit in its slot. Hence,
the optimal control scheme associated with TDMA will be a pure time-
triggered scheme.
For symmetric plants (with ai = a, σ i = σ , ∀i), a simple round-robin

schedule is optimal. For asymmetric plants, an optimal schedule of length
n can be found by evaluating the resulting cost for each possible schedule.
(The search for an optimal schedule can be done more efficiently. The LQ-
optimal cyclic scheduling and control problem for multiple higher-order
plants is treated in [Rehbinder and Sanfridson, 2004].)

4.2 FDMA (Frequency Division Multiple Access)

In FDMA (see Fig. 4), the communication bandwidth is divided between
the nodes, such that each loop receives a fixed fraction Ui of the total
capacity

∑N
i=1 Ui = 1. Accounting for the lower transmission rate, the

delay from sensor i to actuator i is now T/Ui.
It is previously known [Johannesson et al., 2007] that event-triggered

sampling with a minimum inter-event interval T is superior to time-
triggered sampling with the interval T , also when there is delay in the
system. Hence, event-triggered control is the better choice for FDMA. The
optimal event detection threshold and the associated optimal cost can be

11

2 2

3 3 3

Figure 4. Frequency division multiple access (FDMA). The bandwidth is divided
into fixed shares, giving each loop a dedicated channel. Within each share, an event-
triggered control loop is implemented.
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2 1 2 3 1 1 2 3

Figure 5. Carrier sense multiple access (CSMA). Each loop is event-triggered. A
static, dynamic, or random priority function determines who will transmit if many
nodes try to access the network at the same time.

found numerically by sweeping r and computing the cost for each value.
For symmetric plants, an even division of the bandwidth is optimal.

For asymmetric plants, the shares Ui can be found using optimization.
Since the cost functions Ji(Ui) are smooth and strictly decreasing, it is
feasible to use standard nonlinear optimization tools to find the shares.

4.3 CSMA (Carrier Sense Multiple Access)

In CSMA (see Fig. 5), any node may try to access the network as soon
as it becomes idle, making it suitable for event-triggered control loops. If
many nodes want to transmit at the same time, some resolution mecha-
nism must be used. In shared-medium Ethernet for instance, the collision
detection and random back-off strategy will grant a random node access
to the network (after some delay). In the Controller Area Network (CAN)
on the other hand, access can be resolved based on either fixed (node)
priorities or dynamic (message) priorities.
We will consider three different resolution mechanisms:

Random (CSMA-rand). As in Ethernet or WLAN, a random node will
eventually win the contention. For simplicity, it is assumed that the reso-
lution time is very small compared to the transmission time so that it can
be neglected. The overall performance is optimized by selecting suitable
event detection thresholds for the control loops. This is done by sweeping
ri and computing the cost for each value.

Static priority (CSMA-statprio). Each sensor node is assigned a static
priority, which determines who will win the arbitration. Such a scheme
can be useful for asymmetric plants where it is known that some plants
are more sensitive to long access delays than others.

Dynamic priority (CSMA-dynprio). For symmetric first-order plants,
it can make sense to use the control error as a dynamic priority. (This idea
was put forth in [Walsh et al., 1999], where it was called the Maximum-
Error-First (MEF) scheduling technique.) It is assumed that the network
interface provides a mechanism (such as message priorities in CAN) so
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that priority access can be given to the node with the largest control error.
It is obvious that this scheme will be better than random priorities. Again,
the overall performance is optimized by selecting event thresholds for the
loops.

5. Results for Symmetric Integrator Plants

We here present numerical results for N symmetric integrator plants
with ai = 0 and σ i = 1. We assume that the network bandwidth scales in
proportion to the number of plants, such that the transmission delay from
sensor to actuator is T = 1/N when the full bandwidth is utilized. For
the numerical computations, we assume fast sampling with Ts = T/100.
Under TDMA, the optimal cyclic transmission schedule is {1, 2, . . . ,N}.

The sampling period of each loop is 1 and the delay is T = 1/N, giving
the following exact value for the cost per loop:

Ji =
(
Jv(T) + Q(T)E x2(tk)

)
/T = 1

2
+ 1
N
. (13)

Under FDMA, each loop receives a share Ui = 1/N of the bandwidth,
implying the same performance regardless of the number of nodes. Com-
puting the stationary state distribution under event-triggered sampling
for different values of r, we find the optimal threshold r = 1.06, yielding
the cost

Ji = 1.40. (14)
For the CSMA case, we use Monte Carlo simulations to find the sta-

tionary variance of the plants under random or dynamic priority access.
For each N, we sweep r to find the optimal threshold and the correspond-
ing optimal cost. Each configuration was simulated for 108 time steps,
corresponding to in the order of 106 simulated seconds. (The simulation
time was around 15n seconds for each configuration on an Intel Core 2
CPU @1.83 GHz.)
The optimal costs under the various policies described above for N =

1 . . . 10 nodes are reported in Fig. 6, and the optimal thresholds under
CSMA are shown in Figs. 7. It is seen that TDMA outperforms FDMA,
except for N = 1 where sporadic event-based control has the edge over pe-
riodic control. In turn, both variants of CSMA outperform TDMA, CSMA
with dynamic priorities performing slightly better than CSMA with ran-
dom access. The results are not surprising, since CSMA with event-trig-
gered sampling dynamically allocates the bandwidth to the loop(s) most in
need. A higher event threshold is needed for the random priority scheme
in order to be more selective about which plant to control.
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Figure 6. Optimal cost per node vs number of nodes when controlling symmetric
integrator plants.

It is possible to reason about what happens when N → ∞ under
the various access schemes. Under TDMA, the performance approaches
Ji = 1/2, while under FDMA, the performance is unaffected by N and
is constant Ji = 1.40. CSMA approaches aperiodic event-based control
[Åström and Bernhardsson, 1999] when N → ∞, regardless of the pri-
ority scheme used. For integrator plants, the optimal cost per plant ap-
proaches Ji = 1/6. Hence, CSMA asymptotically gives 67% lower cost
than TDMA and 88% lower cost than FDMA when the number of control
loops increases. Equivalently, one can reason about the network capacity
needed to maintain the same performance as the number of integrator
plants grows. Here, again, CSMA will asymptotically require 67% less
bandwidth than TDMA and 88% less bandwidth than FDMA to achieve
the same cost per loop.

6. Local vs Global Knowledge

One important assumption in our model is that the decisions as to whether
to transmit or not are taken locally at each sensor node. It was seen above
that event-triggered control under CSMA with dynamic priority access
gave the lowest cost among all the considered schemes. It is interesting
to compare the performance to a controller with global knowledge of the
plant states. Such a controller would of course not be implementable in a

122



7. Results for Three Asymmetric Plants

1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
CSMA−rand
CSMA−dynprio

Number of nodes, N

O
pt
im
al
th
re
sh
ol
d,
r

Figure 7. Optimal threshold vs number of nodes for CSMA with random or dy-
namic priority access when controlling symmetric integrator plants.

networked setting but can provide a lower bound on the achievable cost.
We consider the special case of N = 2 symmetric integrator plants

with the minimum inter-control interval and delay T = 1/2. The optimal
local scheme under CSMA with dynamic priorities was computed above,
giving the optimal cost Ji = 0.834 for the threshold r = 0.85. For the
global scheme, we gridded the plant state space in the two dimensions
and applied dynamic programming to derive the optimal control policy.
For each state (x1, x2), the controller has the choice to control to the first
plant, the second plant, or to idle. The resulting optimal global control
policy is shown in Fig. 8, together with the local CSMA policy with dy-
namic priorities. It is seen that the control policies are quite similar. One
difference is that the global controller will idle if both plants have about
the same error magnitude, waiting to see where the processes will go next.
The resulting cost under the global policy is found to be Ji = 0.828, which
is only one percent lower than the cost for the optimal local scheme.

7. Results for Three Asymmetric Plants

As a final numerical example, we consider a case where three asymmetric
first-order systems should be controlled: one asymptotically stable plant,
one integrator, and one unstable plant. The plant parameters are σ i = 1
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Figure 8. Event-triggered control of two integrators: optimal global and local
policies.

and
a1 = −0.5, a2 = 0, a3 = 0.5.

Further, we let T = 1/3. Here, intuition tells us that more resources
should be allocated to the unstable plant (Plant 3) while the stable plant
(Plant 1) can manage with less resources.
For TDMA, the total cost is computed for all possible cyclic schedules of

length n = 2, . . . , 12. Since the unstable plant must be controlled at least
once per cycle, we fix the first entry in the schedule to 3, leaving about
3n−1 schedules to test per value of n (including “necklace duplicates”).
The optimal schedule for each value of n is reported in Table 1. It is seen
that the best schedule is of length 6: {3, 2, 3, 2, 3, 1}, giving a total cost of
J = 2.56. In the optimal schedule, the stable plant is controlled once per
cycle, the integrator twice, and the unstable plant three times per cycle.
For FDMA, we optimize over the bandwidths U1, U2, U3 to find the low-

est total cost. For each plant, we first approximate the cost function Ji(U )
by sweeping r for each value of U . We then apply nonlinear optimization
to find the optimal shares, yielding U1 = 0, U2 = 0.397, U3 = 0.603 and
the total cost J = 3.49. It is interesting to note that the long delay as-
sociated with FDMA apparently makes it pointless to control the stable
plant.
For CSMA, we consider two arbitration mechanisms: random access

and static priorities. For the random access scheme, we sweep the three
thresholds to find the minimum cost, giving r1 = 1.12, r2 = 0.92, r3 = 0.77,
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Table 1. Optimal cyclic schedules for the three asymmetric plants.

Length n Cyclic schedule Total cost J

2 {3, 2} 2.651

3 {3, 3, 2} 2.708

4 {3, 2, 3,1} 2.588

5 {3, 2, 3,2, 1} 2.650

6 {3, 2, 3,2, 3, 1} 2.563

7 {3, 2, 3,3, 2, 3,1} 2.589

8 {3, 2, 3,2, 3, 2,3, 1} 2.567

9 {3, 2, 3,3, 2, 3,2, 3, 1} 2.591

10 {3, 2, 3,2, 3, 1,3, 2, 3,1} 2.573

11 {3, 2, 3,3, 2, 3,1, 3, 2,3, 1} 2.588

12 {3, 2, 3,2, 3, 1,3, 2, 3,2, 3,1} 2.563

Table 2. Optimal costs for the three asymmetric plants under the various medium
access schemes.

Scheme J1 J2 J3 J =
∑
Ji

TDMA 0.690 0.889 0.984 2.56

FDMA 1.000 1.177 1.319 3.49

CSMA-rand 0.554 0.618 0.772 1.94

CSMA-statprio 0.562 0.641 0.723 1.92

and the total cost J = 1.96. The three loops occupy the network on average
14%, 22%, and 38% of the time, while it is idle 26% of the time. The relative
shares for the loops are not that different from the ones generated by the
optimal cyclic schedule.
For the static priority CSMA case, we assume that the unstable plant

has the highest priority, the integrator has medium priority, while the
stable plant has the lowest priority. Again sweeping the three thresholds
and evaluating the costs gives the optimal thresholds r1 = 0.95, r2 = 0.87,
r3 = 0.77, and the total cost J = 1.94. The priorities allow for tighter
thresholds to be utilized. The three loops occupy the network on average
15%, 25%, and 38% of the time, while it is now idle 22% of the time.
The results under the various access schemes are summarized in Ta-

ble 2. We can again conclude that CSMA can provide better control per-
formance than both TDMA and FDMA. For this example, CSMA gives
23% percent lower total cost than TDMA and 44% lower cost than FDMA.
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We further note that there is only a very modest improvement by using
priorities, which is good news for wireless systems where random access
schemes may be the only realistic choice for the implementation.

8. Discussion and Conclusion

This paper has studied a prototypical networked control co-design prob-
lem, where both the control policy and network scheduling policy have
been taken into account. Although very simple mathematical models were
used, some interesting conclusions regarding the various medium access
schemes could be drawn. CSMA with event-triggered sampling was the su-
perior scheme in all presented examples, while FDMA performed poorly
due to the long transmission delay.
The simulation-based design approach adopted in this paper is con-

ceptually easy to extend to higher-order plants and controllers. We have
noted that the simulation time required to evaluate the cost with a given
accuracy grows slower than the number of states in the system. Rather,
the main problem with more realistic systems is the number of controller
parameters that need to be optimized. For higher-order systems, it is prob-
ably necessary to impose restrictions on the controller structure and only
optimize over a small subset of the parameters.
Another interesting approach would be to develop a way to characterize

the performance of an event-triggered control loop as a function of its net-
work resource usage pattern. Integrating several control loops, it should
be possible to provide guarantees on the worst-case performance of each
controller. Apart from higher-order plants and controllers, several other
extensions to the work in this paper are possible to imagine, including

• having the controller located in a separate node, meaning that both
the transmission from sensor to controller and from controller to
actuator need to be scheduled.

• having more detailed models of real network protocols, including,
e.g., the random back-offs in CSMA/CD.

• allowing MIMO systems, where each sensor and actuator may reside
on a different node in the network.

• modeling measurement noise, variable transmission times, and lost
packets.
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Paper V

A Simple Model for the Interference
Between Event-Based Control Loops

Using a Shared Medium

Toivo Henningsson Anton Cervin

Abstract

Traditionally, control loops are closed using periodic sensing and actu-
ation. When communication resources are scarce, much may be gained
by instead transmitting only when something important has happened
in the loop. However, there are no known closed form solutions to
this kind of control problem. This paper presents a simple model of
the interference between event-based control loops caused by shar-
ing a common medium, based on approximating the behavior of all
loops except one foreground loop. The stationary state distribution can
be computed at low computational cost using mostly standard linear
time-invariant system theory (applied in the spatial dimension). Con-
trol laws are optimized to minimize state variance using the limited
communication resources. Comparison to Monte Carlo simulations of
a full model shows the simple model to be remarkably accurate. The
model is applied to investigate how the performance of N control loops
sharing a common Carrier Sense Multiple Access channel approaches
the ideal case of aperiodic control as the number of loops grows.

cF2010 IEEE. Reprinted, with permission, from Proceedings of the 49th IEEE Conference on
Decision and Control, Atlanta, Georgia, December 2010.
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1. Introduction

Event-based control holds the promise of better control performance and
lower resource consumption compared to standard sampled-data control.
In their seminal paper on event-based control, Åström and Bernhardsson
(Å&B) [Åström and Bernhardsson, 1999] showed that, for an integrator
process driven by white noise, event-triggered control requires only one
third of the number of samples to achieve the same output variance as
periodic, time-triggered control. However, the reduction comes at the cost
of more irregular events. In fact, Å&B’s aperiodic controller would require
infinite bandwidth to be implemented in a networked control setting.
Aiming for implementable controllers, we have previously proposed the

concept of sporadic control [Henningsson et al., 2008], where a minimum
inter-event time T is enforced. The parameter T can be used to model
that the communication channel stays busy for some time when a packet
is transmitted.
This paper explores how the ideal performance of Å&B can be ap-

proached by letting N sporadic control loops share a communication medi-
um with limited bandwidth. As the number of loops grows, it is expected
that the medium can be used more and more efficiently, essentially trans-
forming the sporadic constraint into a constraint on the average commu-
nication rate.
A major theoretical challenge in event-based control of stochastic sys-

tems is to find the stationary probability distribution of the state. For low-
order systems, gridding of the state-space may be used, but this quickly
becomes infeasible for higher-order systems. In a previous study [Cervin
and Henningsson, 2008], we used Monte Carlo simulations to numerically
evaluate the performance for a modest number of sporadic controllers us-
ing a shared medium.
By contrast, in the current paper we derive a simple model that allows

rapid evaluation of the performance, even as the number of loops becomes
large. The control loops are partitioned into one foreground loop, and N−1
background loops. Only the state probability distribution of the foreground
loop and the discrete state of the medium are modelled in detail. When the
resulting problem has been solved, key model parameters are matched to
make the behavior of the foreground and background loops appear equal.
Comparing with results from Monte Carlo simulations of the full sys-

tem model, it is seen that the simple model is remarkably accurate in
predicting the behavior of the full system, given its simplicity. The agree-
ment becomes better as N grows, and, as N becomes very large, the ideal
performance of Å&B is approached.
The medium access policy assumed in the paper is Carrier Sense Mul-

tiple Access (CSMA) with random, delay-free arbitration if several nodes
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2. Problem Formulation

attempt to transmit at the same time. The network is hence collision
free—this is a key assumption for our results to hold. It is well known
that the performance of ALOHA/CSMA with collisions and retransmis-
sions breaks down when utilization approaches 1, e.g., [Tobagi and Hunt,
1980; Jelenković and Tan, 2007]. Collisions are highly relevant for wireless
sensor/actuator networks and will be studied in future papers.

Related Work

Rabi and Johansson [Rabi and Johansson, 2009] analyzed how packet loss
impacts the performance of event-triggered control loops. The analysis
was done for a single networked loop, assuming that the loss rate was
independent of the event-triggering threshold of the controller.
Event-triggered state estimation or control of higher-order systems has

been studied by Cogill [Cogill et al., 2006; Cogill, 2009], however not in
the context of several competing control loops.
In all the works mentioned so far, the events are triggered by fixed

thresholds in the state space. Alternative ways to trigger event-based con-
trollers are proposed in [Tabuada, 2007; Wang and Lemmon, 2009].

Outline

The rest of the paper is laid out as follows: Section 2 presents the system
model and the optimal control problem. The equations for the station-
ary state distribution are derived in Section 3 and solved in Section 4,
by reducing the linear problem from infinite dimension to a small finite
dimension that can be solved efficiently. Model parameters are adjusted
in Section 5 to match key parameters between the foreground loop and
the background loops. The influence of the packet length distribution is
investigated in Section 6. Results and comparison to other models are pre-
sented in Section 7 and possible directions for future work are discussed
in Section 8. Conclusions are given in Section 9.

2. Problem Formulation

This section presents the system model, which includes the foreground
loop and medium state, the conditions to match the foreground and back-
ground loops, and the optimal control problem that we want to solve.

2.1 System Model

The process controlled in the foreground loop is modelled as an integrator
disturbed by white noise according to

dy = udt+σ dw, (1)
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Available

Busy

pyp ≥ r

λb

λa + λprio (pyp ≥ r)

reset
λa

(pyp < r)

Figure 1. Continuous-time Markov chain model of the channel state dynamics
under CSMA. The dynamics depends on the integrator state y: the reset transitions
are triggered only when pyp ≥ r; when pyp < r there is instead a transition to the
Available state.

where w is a Wiener process with unit incremental variance. The control
signal u will be zero except when the foreground loop is able to generate
a control event, at which time it will contain a Dirac impulse.
The control law is simple: whenever pyp ≥ r for some threshold r, the

controller tries to take the channel and transmit a new packet. If it suc-
ceeds, the state y is reset to zero immediately4 .
The CSMA channel model is summarized in Figure 1:

• Whenever the channel is Available, anyone may transmit, causing a
transition into the Busy state. The foreground loop will do so when
the integrator state reaches the threshold pyp ≥ r; the background
loops will do so at an expected rate λb.

• The transmission of a packet takes an expected time T = λ−1p . A
new packet may then be initiated immediately, or the channel will
become available, which will happen at a rate λa ≤ λ p when pyp < r.

• If several transmitters are contending for the channel when it is
released, one is picked at random. The foreground loop will be able
to gain the channel in the Busy state at a rate λprio ≤ λ p− λa when
it wants to (i.e., when pyp ≥ r).

The state of the system is thus (y, k) ∈ R $ Zn (n = 2 in this case),
where k is the state of the channel, so the stationary probability density
function (pdf) f (y) and probability flow in the y direction ϕ(y) are

f (y) =
(
fa(y)
fb(y)

)
, ϕ(y) =

(
ϕa(y)
ϕb(y)

)
.

4It is trivial to account for a fixed delay in the control action, see [Cervin and Johannesson,
2008].
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2. Problem Formulation

The control law imposes the linear constraints

fa(y) = 0 ∀ pyp ≥ r, ϕ(0) =
(
0

ϕ fg

)
,

where ϕ fg is the rate of reset, since the channel never stays available when
pyp ≥ r, and all resets cause inflow into the Busy state at y= 0.
When pyp < r, the channel state will evolve according to

(
ṗa

ṗb

)
=
(−λb λa

λb −λa

)(
pa

pb

)
,

where pa and pb are the probabilities to be in the Available and Busy
states respectively. When pyp ≥ r, the channel state will evolve according
to

ṗb = −(λa + λprio)pb;
the leakage corresponds to the rate of reset triggered from the Busy state.

2.2 Matching Conditions

We must require the foreground packet rate ϕ fg to be a proportional share
of the total packet rate N fu = λ ppb, i.e.

λ ppb = Nϕ fg. (2)

To model equal prioritization of all loops, we demand that in the Busy
state with pyp ≥ r, the intensity to gain the channel is the total packet rate
λ p divided by the expected number of loops waiting to gain the channel,
i.e.

λoutside = λa + λprio =
λ p

1+ (N − 1)poutsidepb
. (3)

Finally, we choose the clearing rate λa according to

λa = λ p − λb, (4)

meaning that the average rate of background packets is λb in the Busy
state as well as in the Available state.

2.3 Optimal Control

The design objective is to choose an optimal threshold r = r∗ to minimize
the state variance

Jy = E(y2)
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for each loop. We may also want to trade some increase in Jy to decrease
the average event rate fu of each loop. In the Å&B case, the tradeoff is
given by (see [Åström and Bernhardsson, 1999])

Jy =
1
6

σ 2 f−1u = 1
6
r2. (5)

3. The Stationary Distribution Problem

We consider now the general case of simultaneous evolution of an inte-
grator state according to (1) (with u = 0) and a continuous time Markov
chain. The state of the system is (y, k) ∈ R $ Zn, where k is the state of
the Markov chain. The pdf over the state is f : R ]→ Rn.

3.1 The Spatial Dynamics

The Fokker-Planck equation for the pdf f under the Brownian motion (1)
with u = 0 is

ḟ (y) = 1
2

σ 2 f ′′(y) = −ϕ ′(y),

where ḟ and f ′ are the derivatives with respect to time and integrator
state y respectively, and ϕ(y) is the flow of probability in the y direc-
tion. We may thus take ϕ(y) to be ϕ(y) = − 12σ 2 f ′(y). Simultaneously, the
Markov chain state k evolves by the transition intensity matrix Am as

ḟ = Am f .

Summing the probability flows from the integrator drift and the Markov
chain gives the combined dynamics

ḟ (y) = 1
2

σ 2 f ′′(y) + Am f .

Assuming stationarity, ḟ = 0 now gives the spatial dynamics

f ′′(y) + 2
σ 2
Am f =D f = 0, (6)

which can also be expressed in state space form as

x′(y) =
(
0 − 2

σ 2
Am

I 0

)
x(y), x(y) =

(
f ′(y)
f (y)

)
.
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3. The Stationary Distribution Problem

3.2 Moments

Aside from the actual stationary pdf f (y), we will also need moments
such as marginal probability over the Markov chain states F(0) and state
variance V , according to

F(0) =
∫ ∞

0
f (y)dy, V =

∫ ∞

0
y21T f (y)dy.

Since the model is symmetric with respect to the origin, we consider f
to be defined only over y ≥ 0; the extension to the non-symmetric case is
straightforward. The easiest way to find these moments is to work them
into the spatial dynamics.
The moments can be computed from



F(y)
F1(y)
F2(y)


 =

∫ ∞

y



f (y)
1T F(y)
F1(y)


 dy, (7)

where we collect individual integrals for the zeroth moment, but sum over
the Markov chain states for higher moments to reduce the computational
complexity. The variance is found as V = 2F2(0) by partial integration
twice to eliminate the factor y2 in the integrand.
Combining (6) and (7) gives the extended dynamics

x′e(y) =




0 − 2
σ 2
Am

I 0

−I 0

−1T 0

−1 0




︸ ︷︷ ︸
Afull




f ′(y)
f (y)
F(y)
F1(y)
F2(y)



,

︸ ︷︷ ︸
xe(y)

(8)

with boundary conditions x → 0 as pyp → ∞. We see that (8) has a tri-
angular structure such that the the integrated densities Fi depend on f
and f ′ but not vice versa.

3.3 Causal/Anticausal Decomposition

The operator D of (6) can be factored into a causal part D− and an anti-
causal part D+ according to

D = d2

dy2
+ 2

σ 2
Am f =D+D− =D−D+,

D+ =
d

dy
− A+, D− =

d

dy
+ A+, A+ =

√
− 2

σ 2
Am.
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The square root exists since Am must have a full zero eigenspace, or the
temporal dynamics ṗ = Amp would have an unbounded solution. Since
Am has all eigenvalues in the left half plane, A+ will have eigenvalues λ
in the sector ℜ(λ) ≥ pℑ(λ)p. The poles of the spatial dynamics (6) will be
the eigenvalues of ±A+, thus satisfying pℜ(λ)p ≥ pℑ(λ)p.

4. Solving the Spatial Dynamics

The stationary density f (y) is the solution to a set of linear equations
composed of the spatial dynamics (8) which is piecewise constant in y,
additional linear conditions specified in the model, and the normalization
condition

∫
f (y)dy = 1. By solving (8) over an interval, we can eliminate

the interior values of xe(y), leaving a low-dimensional set of linear equa-
tions to solve for f (y). The moments and interior values of f (y) can then
be reconstructed.
The extended dynamics (8) can be solved using standard linear time

invariant system theory. We must be careful since the dynamics is re-
versible, consisting of matching stable and antistable, or rather causal
and anticausal parts.

4.1 Bounded Intervals

We want to solve (8) over an interval [y0, y1]. LTI system theory gives that
this relation can be expressed as

xe(y1) = eAfull∆yxe(y0), ∆y= y1 − y0. (9)

This formulation may, however, be very ill conditioned.
Premultiplying (9) by the scaling matrix (eAfull∆y+ I)−1 gives the equiv-

alent relation

h
(
−1
2
Afull∆y

)
xe(y1) = h

(1
2
Afull∆y

)
xe(y0), (10)

where the analytical function h is given by

h(At) =
(
eAt + e−At

)−1
eAt = 1

2

(
I + tanh(At)

)
.

This formulation will in general be much better conditioned than (9). 5

5Half of the eigenvalues of h(At) will satisfy pλ+p ∈ [0.5,1.07], each corresponding to an
eigenvalue pλ−p ∈ [0, 0.5] of h(−At) with the same eigenspace, and vice versa for the other
half of the eigenvalues. (This can be seen by looking at the behavior of log(ph(at)p) along the
boundary line at = (1± i)t); log(ph(at)p) is a harmonic function on pℜ(at)p ≥ pℑ(at)p).
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The function h(±At) can be evaluated efficiently through the doubling
recursion

h(2At) =
(
h(At)2 + h(−At)2

)−1
h(At)2;

h(±2−nAt) is first evaluated for some suitable n such that e±2−nAt is rea-
sonably conditioned, h(±At) is then found in a modest number of steps.
If A is first put on Schur form h(At) will be triangular, and all necessary
matrix inversions can be done efficiently through back substitution.

4.2 Semiinfinite Intervals

When solving (6) over a semiinfinite interval [y0,∞) we must insist that
Am has some leakage (thus having eigenvalues strictly in the left half
plane) to be able to satisfy the boundary conditions that f → 0 as y→∞.
The solution of (6) is then

f (y) = e−A+(y−y0) f (y0), (11)

implying the equivalent boundary conditions at y = y0

f ′(y0) + A+ f (y0) = 0.

The integrals Fi can be found by direct integration of (11).

4.3 Interpolating the Probability Density Function

Given the boundary conditions x(y0), x(y1), the pdf f (y) can be interpo-
lated according to

D−D+ f =D−� = 0, D+ f = �.

First, � is solved for in the causal direction, with initial conditions given
by

�(y0) = (D+ f )(y0) = f ′(y0) − A f (y0).
Then, f is solved for in the anticausal direction, with initial conditions
f (y1) and input �(y). With semiinfinite intervals, it is enough to solve
outwards from the finite endpoint.

5. Matching the Loops

Now that we can solve a problem instance given specific model parameters,
we want to adjust the model parameters λa, λb and λprio so that all N
loops behave the same, i.e. the matching conditions (2), (3) and (4) are
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fulfilled. The condition (4) is simply realized by parametrizing λa in λb,
which implies the restriction λb ∈ [0,λ p].
Suppose that we know λb,λa and want to find λprio to satisfy (2). The

spatial dynamics inside the threshold is then known, and the correspond-
ing linear relations can be used. The spatial dynamics for the outside gives
that

pb,outside =
fb(r)2
− f ′b(r)

,

since fb(y) is a decaying exponential function for y ≥ r. Inserting this
expression into (2) gives the relation

fb(r)2
− f ′b(r)

+ pb,inside −
N

λ p
ϕ fg

︸ ︷︷ ︸
linear in ( fb(r), f ′b(r))

= 0.

Fixing e.g. f ′b(r) we get a quadratic equation in fb(r), with one positive
solution. We can now solve for λoutside from

f ′b(r) = −
√
2

σ 2
λoutside fb(r).

When all parameters are known, the solution is finally normalized to unit
total probability. We can normalize afterwards, since all other conditions
on f (y) are purely linear.
To match also the priority according to (3), we can use i.e. secant

search over λb. We know that λoutside ∈ [λa,λ p]; a secant search over λb
to satisfy (2) for each of these fixed endpoints gives a suitable starting
interval for the priority matching. Sometimes there is no λb ∈ [0,λ p] that
satisfies (2) with λoutside = λ p; we then use λb = λ p as the right endpoint
of the search instead.

6. Correction for the Waiting Time Distribution

So far, we have assumed that each packet occupies the medium for an ex-
ponentially distributed waiting time, which allows to use a simple Markov
chain model for the channel state. We will now investigate the influence
of the waiting time distribution on the state variance Vy(t) = E(y(t)2) to
derive a first order correction to the state cost Jy.
By the dynamics (1), Vy(t) evolves between events as

Vy(t) = σ 2t+ Vy(0);
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during a waiting time τ this gives the accumulated variance

Vacc(τ ) =
∫ τ

0
Vy(t)dt =

1
2

σ 2τ 2 + τVy(0).

The waiting time of one packet is τ , E(τ ) = T , which gives the expected
final and accumulated variances

E
(
Vy(τ )

)
= σ 2T + Vy(0),

E
(
Vacc(τ )

)
= 1
2

σ 2
(
T2 + V(τ )

)
+ TVy(0).

Keeping T fixed, the final state variance when the packet is completed
stays fixed as well. The accumulated variance, however, depends also on
the variance V(τ ). Compared to a fixed waiting time, an exponential wait-
ing time will make Vacc bigger by the term

∆Vacc =
1
2

σ 2 V(τ ) = 1
2

σ 2T2.

Since the total packet rate is N fu = λ ppb,λ p = T−1, the state cost Jy with
exponential waiting times is bigger by

∆Jy = N fu∆Vacc =
1
2

σ 2pbλ
−1
p . (12)

7. Results

All results are derived with the parameters σ = 1 and λ p = N. The latter
means that the network bandwidth scales in proportion to the number of
loops. This scaling is convenient since it makes the Å&B performance in-
dependent of N. The relative state variance and packet rate of the control
schemes are unaffected by the choice of σ and λ p since the integrator has
no time constant.
We will compare the following models:

• Å&B’s ideal, aperiodic controller, with r = fu = 1 and Jy = 1
6

[Åström and Bernhardsson, 1999]. This is a lower bound on the
achievable performance.

• A Monte Carlo simulation model with N sporadic control loops com-
peting for the network under CSMA with random arbitration [Cervin
and Henningsson, 2008]. The transmission time of each packet is as-
sumed fixed and equal to T = N−1. Via bisection search over r, the
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Figure 2. The stationary pdf f (y) according to the simple model with N = 10
loops and optimal threshold r = 0.96. The Å&B pdf is shown for comparison.

optimal performance has been found for N ∈ {1, 2, 3, 5, 10, 20, 45, 100,
200}. The time granularity of the model was N−110−3 and each sim-
ulation ran for 108 time steps.

• The simple model proposed in this paper. In the model, the transmis-
sion times are exponentially distributed with mean T = N−1 = λ−1p ;
the cost correction (12) has been subtracted from Jy to predict the
state variance with fixed rather than exponential packet times.

7.1 Probability Densities

Figure 2 shows the stationary pdf f (y) obtained by the simple model with
N = 10 loops. The optimal threshold r = r∗ is chosen to minimize state
variance Jy. The pdf of Å&B is shown for reference.
We see that, just as in the Å&B case, the pdf of the integrator state y

varies linearly inside the threshold, with a break in the origin because of
inflow from reset. In the simple model however, the inflow goes into the
Busy state, while the outflow from reset is divided between the Available
state at the threshold and the Busy state outside the threshold.
The resulting difference between the pdf:s of the Å&B case and the

simple model is that the latter includes an exponential tail outside the
threshold r, while the loop is waiting to gain access to the channel.
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Figure 3. State cost Jy as a function of threshold r according to the simple model
for different number of loops N, along with the Å&B case and Monte Carlo results
for the full model. The Å&B case serves as a lower bound for both N = 10 and
N = 105, with the two essentially coinciding in the latter case beyond the optimum
r = r∗.

7.2 Threshold Dependence

Figures 3 and 4 show the dependence of state cost Jy and packet rate fu
on threshold r, with N = 10 and N = 105 loops. Monte Carlo (MC) results
with N = 10 loops and Å&B results are shown for comparison.
We see that the state cost Jy has a minimum around r = 1, while fu

drops monotonically with the threshold. By using a threshold r > r∗, it
is possible to trade a decreased packet rate fu for an increased state cost
Jy; nothing is gained by using r < r∗. The simple model is remarkably
accurate in predicting the Monte Carlo results for the full model, given
the radically lower computation complexity.
As the threshold r grows, all curves tend to the Å&B case, which serves

as a lower bound on Jy and an upper bound on fu. For N = 10 loops, the
convergence is gradual. For N = 105, we can distinguish two domains:
when r ≥ r∗, Jy and fu essentially coincide with Å&B; when r ≤ r∗, fu
lies at the channel capacity while the state cost Jy deteriorates as the
threshold r decreases.
It thus seems that for large N, performance follows the Å&B case as

soon as the necessary average packet rate fu lies within the peak packet
rate of the channel; the minimal state cost J∗

y is achieved at this break
point.
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Figure 4. Packet rate fu as a function of threshold r according to the simple model
for different number of loops N, along with the Å&B case and Monte Carlo results
for the full model. The Å&B case serves as an upper bound for both N = 10 and
N = 105, with the two essentially coinciding in the latter case beyond the optimum
r = r∗.

7.3 Dependence on the Number of Loops

The threshold r was optimized using golden section search to minimize
state cost Jy as a function of N. Figure 5 shows optimal state cost Jy,
packet rate fu and threshold r as N varies from 1 to 105 for the simple
model, along with full model Monte Carlo and Å&B results for comparison.
We see that as N increases, Jy drops from about 0.4 towards the Å&B

case of Jy = 1
6 . The simple model is slightly optimistic about Jy for N = 1,

and slightly pessimistic for N ≥ 2. Convergence to the Å&B case is very
close at N = 103.
The rise in packet rate fu with N shows a similar pattern to the drop

in Jy; this rise is in fact necessary to bring Jy down since the Å&B per-
formance (5) lower bounds Jy( fu). In accordance, the slightly lower state
cost Jy of the full model Monte Carlo results is accompanied by a higher
packet rate fu, realized by a quicker drop in threshold r.

8. Future Work

A main direction for continued research is to apply the same kind of mod-
elling developed in this paper to other channel models, such as with partial
and full collisions. It is then probably better to trigger control events at
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Figure 5. Optimal state cost Jy, packet rate fu, and threshold r as a function of
number of loops N. Results are shown for the simple model, full model Monte Carlo
simulations, and the aperiodic Å&B case (for which Jy = 1

6 , fu = r = 1).

a bounded intensity once the threshold is crossed. Points that deserve
further study include

• How should the shared medium best be utilized when collisions lead
to packet drop?

• How does a partial collisions model transition from CSMA behavior
to full collision behavior as time to detect that the channel is busy
changes?

• Can the model be extended to general first order process dynamics,
or to processes with higher state dimension?

9. Conclusion

Event based control offers the promise to better utilize limited commu-
nication resources than traditional periodic control. The potential benefit
increases with the number of control loops sharing the same medium, as
they may be able to trade use of the communication channel between each
other to be able to gain access when it is most needed. The potential for
interference, however, also increases; the question is which of the effects
dominates.

143



Paper V. A Simple Model for the Interference Between Event-Based . . .

This paper presents a simple model for the interaction between N event
based control loops sharing a common medium in the form of a CSMA
channel. The model includes the medium and a single foreground loop,
approximating the behavior of the other (background) loops. The resulting
model can be evaluated with little computational resources, independent
of N.
Comparison to Monte Carlo simulations of the simultaneous evolution

of all loops shows that the simple model predicts the behavior of the full
model with remarkable accuracy, given its simplicity. As the number of
loops increases, they are able to share the medium more and more effi-
ciently, making the sporadic channel constraint appear more and more
like an average capacity constraint, resulting in significantly improved
performance .
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Paper VI

Log-concave Observers

Toivo Henningsson Karl Johan Åström

Abstract

The Kalman filter is the optimal state observer in the case of linear
dynamics and Gaussian noise. In this paper, the observer problem is
studied when process noise and measurements are generalized from
Gaussian to log-concave. This generalization is of interest for example
in the case where observations only give information that the signal
is in a given range. It turns out that the optimal observer preserves
log-concavity. The concept of strong log-concavity is introduced and
two new theorems are derived to compute upper bounds on optimal
observer covariance in the log-concave case. The theory is applied to
a system with threshold based measurements, which are log-concave
but far from Gaussian.

Reprinted from Proceedings of the 17th International Symposium on Mathematical Theory

of Networks and Systems. Kyoto, Japan, 2006.
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1. Introduction

The Kalman filter (see [Kalman, 1960], [Kalman and Bucy, 1961]) is one
of the most widely used schemes for state estimation from noisy measure-
ments. It is optimal for linear measurements and Gaussian noise, but it is
often applied in a more general setting. Although the Extended Kalman
filter (see [Gelb and Corporation., 1974]) often works well in practice,
sometimes it does not, and it is in general not easy to see how altered
conditions change the observer problem.
In this paper, a particular generalization is investigated where mea-

surements and noise are allowed to be log-concave (see [Prékopa, 1971],
[Prékopa, 1973], [Bagnoli and Bergstrom, 1989], [An, 1996]). The model
of log-concave measurements is applicable in many instances where the
assumption of independent additive measurement noise is too limited,
for instance with heavy quantization, or with the problem of event based
sampling discussed in [Åström and Bernhardsson, 2002].
Within this framework, the problem of moving horizon ML/MAP esti-

mation becomes a convex optimization problem, see [Schön et al., 2003].
This paper will however focus on the covariance of the Bayesian Observer,
which is investigated and compared with the Kalman filter.
Strongly log-concave functions are introduced as a means to quantify

observer properties. Two new theorems are applied to derive upper bounds
on optimal observer covariance.
It turns out that the observer problem is still quite well behaved so

that, especially with some insight gained in the analysis, a Kalman filter
might often be usable for this more general measurement setting. For a
more thorough treatment, see [Henningsson, 2005].
The paper is organized as follows. A motivating example is presented

in Section 2. The notion of log-concavity is introduced in Section 3, where
we state the main results as Theorems 1 and 2. In Section 4 we treat
the observer problem. The results in section 3 are used to investigate the
observer properties. Finally in Section 5 the results are applied to the
example.

2. Example: A MEMS Accelerometer

Consider an accelerometer based on the following design. A test mass is
suspended to move freely in one dimension and is affected by an exter-
nal acceleration. Sensors detect deviations from the origin exceeding a
detection threshold and report the sign of the deviation. An input sig-
nal is available to accelerate the test mass so as to keep it close to the
origin. The aim of the design is to estimate the external acceleration as
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accurately as possible.
The discrete time dynamics are given by

x(k) =
(
1 h

0 1

)
x(k− 1) +

(
1
2h
2

h

)
u(k− 1) + v(k− 1),

where x is the state, u the input signal, v the external acceleration and h
the sampling period. The state consists of position x1 and velocity x2. With
the external acceleration as a white noise disturbance, sampling yields v
to be Gaussian white noise with covariance

PN = σ 2

( 1
3h
3 1

2h
2

1
2h
2 h

)
,

where σ 2 is the process noise intensity.
The measurements are given by

y(k) =
{
sign

(
x1(k)

)
, px1(k)p ≥ 1

0, otherwise,

which is the only non-classical assumption used in the model. The output
y(k) is not readily described as a linear combination of state and un-
correlated measurement noise, making a straightforward application of
Kalman filter theory difficult.
In fact, it is not at all obvious what properties to expect for this observer

problem; will the observer error remain bounded, how large will it be,
how does it depend on the measurement sequence, how complex observer
is necessary, and so on. To answer questions about the observer problem,
the Bayesian observer for the system will be analyzed. Other examples
where similar measurement conditions apply are when measurements are
coarsely quantized or come in the form of level triggered events.

3. Log-concavity

Many results are available on general log-concavity, see, e.g. [Prékopa,
1971], [Prékopa, 1973], [Bagnoli and Bergstrom, 1989], and [An, 1996]. The
book [Boyd and Vandenberghe, 2004] contains much material on convex
functions that can easily be transfered to the log-concave case. Here, only
the properties that are most relevant in the context of this paper will be
stated.
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Figure 1. Some examples of log-concave functions in one variable; the function is
plotted above and its logarithm below. The dotted line is f = 0, and ln(0) is taken to
be −∞. f1: Truncated exponential function, f2: Gaussian function, f3: rectangular
window.

A log-concave function is a function with concave logarithm. Log-con-
cave functions are well suited for applying convexity theory to probability
densities; many common densities are log-concave and several useful oper-
ations preserve log-concavity. In contrast, no probability density on Rn is
either convex or concave since probability densities have a finite integral
while convex and concave functions on Rn do not.

DEFINITION 1—LOG-CONCAVE FUNCTION
A function f : Rn −→ R is logarithmic concave or log-concave, iff f (x) ≥ 0,
f has convex support and ln

(
f (x)

)
is concave on this support.

For some simple examples of log-concave functions see Figure 1, and for
some counterexamples Figure 2. Among common log-concave densities are
Gaussian and exponential densities.
Log-concave functions are unimodal, meaning that the superlevel sets

{x; f (x) ≥ a}, a ∈ R are convex. Many attractive properties of log-concave
functions are analogous to those for concave functions. A useful fact is
that multiplication takes the place of addition so that the product of two
log-concave functions is log-concave. Another very useful result derived by
Prékopa is

PROPOSITION 1—PRÉKOPA
Let f (x, y) be jointly log-concave in x ∈ Rm, y∈ Rn. Then the integral

�(x) =
∫
f (x, y)dy
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Figure 2. Some examples of functions in one variable that are not log-concave;
the function is plotted above and its logarithm below. f4: Not unimodal, f5: Discon-
tinuous on interior of support, f6(x) = 1

1+x2 : sub-exponential decay.

is a log-concave function of x.

Proof: See [Prékopa, 1971] and [Prékopa, 1973].
This theorem implies for instance that the marginal densities of log-
concave densities are log-concave, and that the convolutions of log-concave
functions are log-concave. It will be central in the proof of Theorems 1
and 2.

3.1 Strong Log-concavity

Log-concavity is in its nature only a qualitative property. To allow for
quantitative statements, the following class of functions is introduced.

DEFINITION 2—STRONGLY LOG-CONCAVE FUNCTION
Let P ∈ Rn$n be positive definite and define the set

LC (P−1) =
{
f ; f0(x) =

f (x)
e−

1
2 x
TP−1x

log-concave
}
.

The function f is strongly log-concave of strength P−1 iff f ∈ LC (P−1).
All strongly log-concave functions are log-concave, bounded and go to zero
as pxp → ∞ at least as fast as a Gaussian function.
Membership in LC (P−1) can be seen as an inequality, in the sense that

f ∈ LC (P−1), P ≤ R
=[ f ∈ LC (R−1).
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The inclusion f ∈ LC (P−1) is tight iff LC (P−1) is a subset of all LC (R−1)
that contain f .
A Gaussian density with covariance P is tightly in LC (P−1), and can

be seen as the corresponding Gaussian to this class. The definition states
that any strongly log-concave function can be written as the product of
a log-concave function and a corresponding Gaussian. Also, the following
properties hold:

THEOREM 1—ENCAPSULATION PROPERTY
If f ∈ LC (F−1) and � ∈ LC (G−1) then

f (Ax + b) ∈ LC (ATF−1A)
( f ∗ �)(x) ∈ LC

(
(F + G)−1

)

f (x) ⋅ �(x) ∈ LC (F−1 + G−1),

where x, b ∈ Rn, A ∈ Rn$n and f ∗ � is the convolution of f and �.
Proof: See Appendix A.

The inclusions are as narrow as the premises allow, being tight when f
and � are the corresponding Gaussians.

THEOREM 2—COVARIANCE BOUND
If f ∈ LC (P−1) is a probability density then

V =
∫
(x −mx)(x −mx)T f (x)dx ≤ P,

wheremx =
∫
x f (x)dx. The bound is tight for the corresponding Gaussian.

Proof: See Appendix B.

The matrix expressions for strength of log-concavity correspond exactly to
the way that the operations propagate inverse covariances for Gaussian
functions. By the latter theorem, the inverse strength of log-concavity is
an upper bound on the covariance.
The theorems form a chain of inequalities that can be used to propagate

upper bounds on covariance under the operations of affine transformation,
convolution and multiplication. For more properties of strongly log-concave
functions, see [Henningsson, 2005].

4. Log-concave Observers

The observer problem that will be considered is for processes with linear
dynamics and log-concave noise and measurements, as defined below.
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The dynamics are given by

x(k) = Ax(k− 1) + Bu(k− 1) + v(k− 1),
where x is the state, u the input and v the process noise. The noise has
log-concave probability density fN . The matrices A and B, as well as fN
may be time-varying.
The measurements are described by the stochastic variables Y(k),

fY(k)pX (k)
(
ypx(k)

)
= fM

(
y, x(k)

)
,

where the measurement function fM is log-concave in x for each y and
may be time-varying.

4.1 The Bayesian Observer

As a basis for the analysis, the online Bayesian observer for estimation
of x(k) from the history of y and u will be considered. The state of the
observer at any time is fully described by the function

fk(x) = fXkpy1:k, fX0 (x),
where y1:k is the measurement history and fX0 is the assumed initial
density.
The observer update from fk−1 to fk is best described in three steps

taking into account dynamics, process noise, and measurements:

f dk (x) ∝ fk−1
(
A−1x − A−1Bu(k− 1)

)
, (1)

f dnk (x) = ( fN ∗ f dk )(x), (2)
fk(x) ∝ fM (y(k), x) ⋅ f dnk (x), (3)

where ∝ denotes proportionality and A is assumed to be invertible. For the
derivation, see [Henningsson, 2005]. The dynamics update corresponds
to an affine transformation, the noise update to a convolution with fN ,
and the measurement update to a multiplication with fM (y(k), ⋅). For an
illustration, see Figures 3, 4 and 5. If fX0 , fN and fM (y, ⋅) are Gaussian,
the observer updates (1)-(3) reduce to a Kalman filter.

4.2 Properties

Since log-concavity is preserved under affine parameter transformation,
convolution, and multiplication, all fk are log-concave if fX0 is log-concave.
Theorem 1 can be used to propagate upper bounds on observer covari-

ance. This approach can be used to asses the merits of a particular sensor
setup, or together with some information about the localization of fk to
give state estimates with error bounds. The computations of covariance
propagation have the structure of a Kalman filter applied to correspond-
ing Gaussians.
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Figure 3. Illustration of the dynamics update for the MEMS accelerometer ob-
server. The transformation amounts to a shear in this case.
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Figure 4. Illustration of the process noise update for the MEMS accelerometer
observer. The Gaussian noise enters almost exclusively in the x2 direction.

5. An Application

The MEMS accelerometer will now be used to illustrate how the theory
can be applied in the analysis of a concrete observer problem.

5.1 Analytical Covariance Bounds

The accelerometer has linear dynamics and log-concave noise and mea-
surements. The process noise density fN is Gaussian with covariance PN ,
so that fN ∈ LC (P−1N ). The measurement function fM (y, x) is log-concave
in x for all y, see Figure 6.
Applying Theorem 1 directly leads in this case to a highly conservative
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Figure 5. Illustration of the measurement update for the MEMS accelerometer
observer. The measurement is y = 0.

covariance bound, achieved when completely ignoring the measurements.
The bound grows cubically with time. Grid based finite difference simu-
lations of the Bayesian observer do however indicate that the covariance
is bounded, and if the output changes frequently, small.
The reason why the bound is so conservative is that fM is not strongly

log-concave for any y; strength of log-concavity being the only measure of
information that the theorem considers. In lack of stronger proven results,
a slight approximation will allow to account for the major source of state
information.
The most important source of state information under normal condi-

tions is the events when y goes from being 0 to ±1, at which time x1 is
known to be almost exactly equal to y. This can be modeled as a Gaussian
measurement of x1 with expectation y and variance σ 2M .
The variance σ 2M will depend on the process noise and uncertainty in

velocity, but will be small when h is small. The modified measurement
function f̂M can be seen in Figure 7. For events, f̂M (±1, ⋅) ∈ LC (QM )
where

QM =
(

σ−2
M 0

0 0

)
,

and otherwise f̂M (0, ⋅) ∈ LC (0).
Under this approximation, the variance of the optimal estimate x̂2 of
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Figure 6. The measurement function fM (y, x) for the MEMS accelerometer de-
scribing the relative probability of state x when y = −1,0,−1. The function is
independent of x2.

x2 right after an event can be shown to satisfy

V (x̂2) ≤
1
3

σ 2t+ 2σ 2M t−2,

where t is the time since the last event. For the derivation, see [Hennings-
son, 2005].
The bound illustrates that the accuracy of the accelerometer depends

strongly on the rate of events. If the objective of control is good mea-
surements, the controller should keep the rate above a certain level, for
instance sending the test mass bouncing in a ping pong fashion between
the detection boundaries.

5.2 Kalman Filter Approximation

A Kalman filter was tuned to give a reasonable approximation of the
Bayesian observer. The crucial issue was to assign the covariance of the
measurement y = 0. While a single measurement y = 0 predicts x1 to
have expectation zero with variance σ 2 = 1

3 , there is much less additional
information in the measurement y = 0 at the next time step.
In this case it is reasonable to design the Kalman filter by choosing the

stationary variance pstat11 of x1 when y = 0. The variance would typically
be pstat11 = 1√

3
(rectangular distribution) or a little less. From solving the
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Figure 7. The modified measurement function f̂M (y, x) for the MEMS accelerom-
eter when y = −1,0,−1. For y = ±1, the function has been changed to a narrow
Gaussian centered on the detection threshold.

Riccati equation, it is found that the measurement variance σ 2oh
−1 for

y = 0 must be chosen according to

σ o = 2−1/3(pstat11 )2/3σ−1/3,

where σ 2 is the process noise intensity.

5.3 Simulation

Figure 8 shows a comparison of actual and predicted variances for a sim-
ulation of the Bayesian observer. The variance σ 2M was chosen so that
the approximate upper bound would always be conservative. The upper
bound is quite tight some time after each event, but then diverges. The
variance of the tuned Kalman filter appears to be an only mildly conser-
vative approximation of the actual variance. As long as the rate of events
is reasonably high, the approximate upper bound is very tight.
A simple control law was devised to control the rate of events, and

simulations were run for different rates to compare observer performance
for the grid filter and the tuned Kalman filter. Figure 9 shows the observer
error as a function of mean time between events tmean. The grid filter is
slightly better than the tuned Kalman filter and considerably better than
the approximate covariance bound down to values of tmean around 0.4.
For lower tmean it seems that the grid filter scheme encounters dis-

cretization issues. At the same time, the tuned Kalman filter comes very
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Figure 8. Observer covariances during a simulation for the MEMS accelerometer:
grid filter, approximate upper bound and tuned Kalman filter.

close to the approximate upper bound which appears to be very tight in
this region, indicating that the observer problem is very similar to the
Kalman filter case for high rates. This similarity is not surprising since
when the covariance is small, the bulk of probability mass is concentrated
in a small region which is only seldom affected by the non Gaussian mea-
surements.
Thus it is seen that the upper bound derived from the theory is quite

tight when the rate of events is high and that if the inherent correlation
in the non Gaussian measurements is considered, a Kalman filter can be
applied as a close to optimal observer.

EXAMPLE 1—QUANTIZED MEASUREMENTS
In the previous example it was necessary to rely on approximations be-
cause the measurement functions were not strongly log-concave. If the
measurement function can be chosen freely, much stronger results are
possible.
Consider the general problem of estimating a scalar variable from

a series of independent identically distributed quantized measurements.
The objective is to find a conditional measurement distribution, or mea-
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Figure 9. RMS x2 estimation error as a function of mean time between events:
grid filter estimation error, tuned Kalman filter estimation error, and approximate
upper bound. For too high event rates, the grid filter suffers from discretization
problems.

surement function, that is in some sense optimal. Using strength of log-
concavity as an optimality criterion one can formulate the following prob-
lem:
Let the independent measurements y be distributed according to

fYpx(ypx) = f (x − y), y ∈Z ,

where x is the variable to be estimated. Find a function f ∈ LC (p−1),
where p > 0 is as small as possible, such that

f (x) ≥ 0,
f (−x) = f (x),
∞∑

k=−∞
f (x − k) = 1.

The solution is given by the function

f (x) =





2−4pxp
2
, pxp ≤ 1

2
,

1− 2−4(1−pxp)2 , 1
2
< pxp ≤ 1,

0, otherwise,

satisfying f (x) ∈ LC
(
8 ln(2)

)
. The function is plotted in Figure 10, and in

log-scale in Figure 11. A series of nmeasurements with f as measurement
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Figure 10. The measurement function in Example 1. The function is Gaussian
when pxp ≤ 1

2 and zero when pxp ≥ 1.
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Figure 11. The measurement function in Example 1 in log-scale. The logarithm
is clearly concave, being quadratic when pxp ≤ 1

2 .

function is guaranteed to yield a probability density in LC
(
n ⋅ 8 ln(2)

)
and

therefore a variance satisfying σ 2 ≤ 1
n⋅8 ln(2) .

6. Conclusion

Log-concavity is a powerful tool when dealing with probability densities.
The generalization to allow log-concave densities in the observer widens
the range of application considerably compared to the Kalman filter. Al-
though no closed form solution exists in the general case, the observer
problem is still very accessible to mathematical treatment.
Regarding observability and observer performance, strongly log-concave

functions together with Theorems 1 and 2 can be applied to derive simple
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bounds on achievable observer covariance.
An in-depth treatment of the log-concave case gives a greater under-

standing of the performance of an Extended Kalman filter. In design of
instrumentation, striving for log-concave measurement functions can fa-
cilitate the observer problem.
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A. Proof of Theorem 1

The proofs are based on the fact that a function f is in LC (F−1) iff it can
be factored as

f (x) = e− 12 xT F−1x f0(x), (4)

where f0(x) is log-concave. This follows from the definition.
The proofs for affine transformation and multiplication are straight-

forward, while the proof for convolution is a little more involved.

A.1 Affine Transformation

Let f ∈ LC (F−1), A ∈ R
n$n, b ∈ R

n and y = Ax + b. Then

�(x) = f (Ax + b)
= e− 12 (Ax+b)T F−1(Ax+b) ⋅ f0(y)
= e− 12 (xT AT F−1Ax+2bT F−1Ax+bT F−1b) ⋅ f0(y)

= e− 12 xT (AT F−1A)x ⋅
(
e−

1
2 b
T F−1be−(A

T F−1b)T x f0(y)
)

︸ ︷︷ ︸
�0(x)

.

We see that �0 is the product of a constant, an exponential function and a
log-concave function, since log-concavity is preserved under affine param-
eter transformation. Then �0 is log-concave because each of the factors is
log-concave. Thus � ∈ LC (ATF−1A).

A.2 Convolution

For the proof we need the following matrix identity. Let A, B and C be
positive definite matrices such that C−1 = A−1+B−1, or C = A(A+B)−1B.
Let x, y and z = y− (A+ B)−1Bx be vectors. Then

zT (A+ B)z = yT(A+ B)y− 2xTBy+ xTB(A+ B)−1Bx
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and

xTCx + zT(A+ B)z = xT A(A+ B)−1Bx + zT(A+ B)z
= xTBx + yT(A+ B)y− 2xTBy
= yTAy+ (x − y)TB(x − y),

that is,
yTAy+ (x − y)TB(x − y) = xTCx + zT(A+ B)z, (5)

which can be seen as completion of squares in x.
Let f ∈ LC (F−1) and � ∈ LC (G−1). Then

h(x) = ( f ∗ �)(x)

=
∫
f (y)�(x − y)dy

=
∫
e−

1
2 y
T F−1ye−

1
2 (x−y)TG−1(x−y) ⋅ f0(y)�0(x − y)dy

=
∫
e
− 12

(
yT F−1y+(x−y)TG−1(x−y)

)

⋅ f0(y)�0(x − y)dy.

Applying (5) with A = F−1, B = G−1 and C = H−1 yields H−1 = (F+G)−1
and

h(x) =
∫
e
− 12

(
xTH−1x+zT (F−1+G−1)z

)

⋅ f0(y)�0(x − y)dy

= e− 12 xTH−1x
∫
e−

1
2 z
T (F−1+G−1)z ⋅ f0(y)�0(x − y)dy

︸ ︷︷ ︸
h0(x)

.

The integrand is log-concave since it is the product of a Gaussian function
and two log-concave functions, and thus h0 is log-concave according to
Theorem 1. This proves that h ∈ LC (H−1) = LC

(
(F + G)−1

)
.

A.3 Multiplication

Let f ∈ LC (F−1) and � ∈ LC (G−1). Then

h(x) = f (x)�(x)
= e− 12 xT F−1xe− 12 xTG−1 x ⋅ f0(x)�0(x)
= e− 12 xT (F−1+G−1)x ⋅ h0(x),

where f0 and �0 are log-concave and h0(x) = f0(x)�0(x). Thus h0 is log-
concave and so h ∈ LC (F−1 + G−1).
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B. Proof of Theorem 2

The factorization (4) will be central also in this proof. Consider first the
theorem in one dimension. Let f ∈ LC (p−1), p > 0 be a nonincreasing
probability density defined for x ≥ 0. Then f can be factored as

f (x) = e− 12 p−1x2 f0(x),

where f0(x), x ≥ 0 is log-concave. The right derivative f ′(0) exists since
any convex function is almost everywhere differentiable which transfers
trivially to log-concave functions. Furthermore f ′0(0) = f ′(0) ≤ 0, and
since f0 is log-concave it is nonincreasing for all x ≥ 0.
Let C > 0 be defined such that

∫ ∞

0
Ce−

1
2 p

−1x2dx =
∫ ∞

0
e−

1
2 p

−1x2 f0(x)︸ ︷︷ ︸
f (x)

dx = 1.

Then, since f0(x) is nonincreasing, there must exist some x0 > 0 such
that

f0(x) ≥ C, x < x0
f0(x) ≤ C, x > x0.

The second moment of f is

∫ ∞

0
x2 f (x)dx =

∫ ∞

0
x2Ce−

1
2 p

−1x2dx +
∫ ∞

0
x2
(
f (x) − Ce− 12 p−1x2

)
dx

= p+
∫ ∞

0
x2e−

1
2 p

−1x2
(
f0(x) − C

)
dx

= p+
∫ ∞

0
e−

1
2 p

−1x2
(
x20 + (x2 − x20)

)(
f0(x) − C

)
dx

≤ p+ x20
∫ ∞

0
e−

1
2 p

−1x2
(
f0(x) − C

)
dx

= p,

where we have used that (x2−x20)
(
f0(x)−C

)
≤ 0. Thus the second moment

of f around x = 0 is ≤ p.
Now assume that f (x) ∈ LC (p−1) is an arbitrary strongly log-concave

function in one dimension that assumes its maximum value at x = Mx.
All strongly log-concave functions are bounded and go to zero as pxp → ∞,
so if f does not assume its maximum it can be made to do so by changing
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the value in one point, which does not affect integrals of f and preserves
strong log-concavity. Then �(x) = f (x − Mx) can be written as a convex
combination of two probability densities in LC (p−1) such that one has
support on x < 0 and is nondecreasing and one has support on x ≥ 0 and is
nonincreasing. The second moment of � around 0 is a convex combination
of the moments of the two densities, and so

∫
(x − Mx)2 f (x)dx ≤ p.

Since the covariance of the density f is the minimum of the second mo-
ment around any point,

∫
(x −mx)2 f (x)dx = min

y

∫
(x − y)2 f (x)dx ≤ p,

where mx is expectation of the density. This proves the theorem in one
dimension.
For the proof in Rn we shall need another matrix inequality. In the

Cauchy-Schwartz inequality (uTv)2 ≤ (uTu)(vTv), let u = P− 12 x and v =
P
1
2 ez, where P > 0, ppezpp = 1. This yields

(xT ez)2 ≤ (xTP−1x)(eTz Pez)
=[ xT ez(eTz Pez)−1eTz x ≤ xTP−1x

=[ Qr = ez(eTz Pez)−1eTz ≤ P−1. (6)

Now consider a density f ∈ LC (P−1), P > 0. Without loss of generality,
assume the expectation to be zero. The covariance is then

V =
∫
xxT f (x)dx,

and for a given unit vector ez,

eTz Vez =
∫
(eTz x)2 f (x)dx =

∫

t∈R

t2
∫

y⊥ez
f (tez + y)dy

︸ ︷︷ ︸
�(t)

dt,

where x = tez+ y and �(t) is the marginal density of f in the ez direction,
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having zero expectation. We see that

�(t) =
∫

y⊥ez
e−

1
2 x
TP−1x f0(x)dy

=
∫

y⊥ez
e−

1
2 x
TQr xe−

1
2 x
T (P−1−Qr )x f0(x)dy

= e− 12 (eTz Pez)−1t2
∫

y⊥ez
e−

1
2 x
T (P−1−Qr )x f0(x)dy

︸ ︷︷ ︸
�0(t)

,

since yT ez = 0 so that xTQrx = teTz Qr ezt = (eTz Pez)−1t2. From (6) P−1 −
Qr ≥ 0 so that �0 is log-concave. Thus � ∈ LC

(
(eTz Pez)−1

)
so that

eTz Vez ≤ eTz Pez =[ V ≤ P,

which proves the theorem. The bound is tight for the corresponding Gaus-
sian by definition.
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Paper VII

Recursive State Estimation
for Linear Systems with
Mixed Stochastic and

Set-Bounded Disturbances

Toivo Henningsson

Abstract

Recursive state estimation is considered for discrete time linear sys-
tems with mixed process and measurement disturbances that have
stochastic and (convex) set-bounded terms. The state estimate is form-
ed as a linear combination of initial guess and measurements, giv-
ing an estimation error of the same mixed type (and causing mini-
mal interference between the two kinds of error). An ellipsoidal over-
approximation to the set-bounded estimation error term allows to for-
mulate a linear matrix inequality (LMI) for optimization of the filter
gain, considering both parts of the estimation error in the objective.
With purely stochastic disturbances, the standard Kalman Filter is
recovered. The state estimator is shown to work well for an event
based estimation example, where measurements are very coarsely
quantized.

cF2008 IEEE. Reprinted, with permission, from Proceedings of the 47th IEEE Conference on
Decision and Control, Cancún, Mexico, December 2008.
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1. Introduction

In many control systems, there exist some disturbances that are best mod-
elled as stochastic, and other disturbances that are better modelled as
set-bounded uncertainties. The classical approach to state estimation in
such cases is to approximate the set-bounded uncertainties by stochastic
ones, allowing to use a standard Kalman Filter. Another approach is to
approximate the stochastic disturbances by set-bounded ones, and use a
state estimator for set-bounded uncertainty.
It is, however, not straightforward to translate between stochastic and

set-bounded disturbances, since they do not combine in the same way.
Two measurements of the same variable with independent identically dis-
tributed (I.I.D.) stochastic noise combine to form an estimate with only
half the error variance. Two measurements with set-bounded uncertainty
yi = x + zi, pzip ≤ 1 may on the other hand be little better than just one if
y1 ( y2, not uncommon of situations where this kind of disturbance model
is applied.
Thus, it is useful to be able to deal with both kinds of disturbances

at the same time. The contribution of this paper is the formulation of an
estimator that can deal with general state estimation problems with mixed
disturbances. The optimization of the filter gain required in each step is
expressed as an LMI. Since the basic structure is that of a Kalman Filter,
the estimator reduces to a Kalman Filter in the case of purely stochastic
disturbances.
There is much previous work for the cases of only stochastic or only set-

bounded disturbances, and also some variations on mixing the two. With
only stochastic disturbances, the optimal solution is the classical Kalman
Filter (see [Kalman, 1960], [Kalman and Bucy, 1961]). State estimation
with set bounded disturbances is considered in [Bertsekas and Rhodes,
1971] and [Durieu et al., 2001]. Kalman Filtering with a set-bounded ini-
tial expectation in the prior is treated in [Morrell and Stirling, 1988]. For
a different approach to mixed disturbance estimation, see [Hanebeck and
Horn, 2001] and references therein.
When dealing with set-bounded disturbances, there is the issue of how

to represent the uncertainty sets that arise as data is combined. Unlike
Gaussian noise, there is no general exact closed form representation of
limited complexity. We first present the general equations, which can be
used with polytopic uncertainty sets. These will however grow quickly in
complexity. We will thus focus on the ellipsoidal approximation of uncer-
tainty sets; together with a recursive formulation of the estimator this
gives a fixed complexity for the estimator operations.
The rest of the paper is laid out as follows. The mixed state estimation

problem to be solved is stated in section 2, including the basic estimator
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2. Problem Formulation

structure. Section 3 covers some preliminaries used in the solution. The
first step of the solution is taken in section 4, which shows how to de-
compose the problem into the stochastic part, treated in section 5, and
the set-bounded part, treated in section 6. The latter section contains the
central theorem to express the set-bounded part of the filter’s optimiza-
tion criterion for a combination of polytopic and ellipsoidal uncertainties,
which is proved in the appendix. Section 7 compares the proposed esti-
mator with a grid based Bayesian estimator and a Kalman Filter for an
example problem. Conclusions are given in section 8.

2. Problem Formulation

The objective is to perform recursive state estimation for discrete time
dynamic systems modelled by

xk = Axk−1 + uk−1 + eproc.k−1 (1)
yk = Cxk + emeas.k (2)

where A and C are the dynamics and measurements matrices, and the
state xk, the known control input uk, the measurements yk, the process
disturbance eproc.

k
, and the measurement disturbance emeas.k are vectors.

Also A and C may be time dependent.
All error terms ei are the sum of a stochastic term wi and a set-bounded

term δ i,

ei = wi + δ i

E(wi) = 0, E(wi(wi)T) = Ri

δ i ∈ ∆i

for some positive semidefinite covariance matrix Ri and convex uncer-
tainty set ∆i. The stochastic terms of the process and measurement dis-
turbance wproc.k andwmeas.k for all times are assumed mutually uncorrelated.
Given the system above and an initial state estimate x̂0 with mixed

error
e0 = x0 − x̂0

we want to form a running state estimate as a linear combination of the
initial state and the measurements. The dynamics (1) are used to form
the predicted estimate x̂kpk−1 from the previous filtered estimate x̂k−1pk−1:

x̂kpk−1 = Ax̂k−1pk−1 + uk−1. (3)
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The measurement yk is then used to form the current filtered estimate

x̂kpk = x̂kpk−1 + Lk
(
yk − Cx̂kpk−1

)

= ( I − LkC Lk )︸ ︷︷ ︸
Xk

(
x̂kpk−1

yk

) (4)

using some suitable filter gain Lk. We wish to choose Lk to minimize the
estimation error in some appropriate sense. The matrix Xk specifies how
to weigh together the predicted state estimate and the current measure-
ment, and represents the action of the filtering step.

3. Notation and Preliminaries

The Minkowski sum of two sets Xk and Y is defined as

X + Y = {x + y; x ∈ X , y∈ Y} .

Similarly, we will let the sum X + y of a set X and a vector y be the trans-
lation X +{y}. The product of a set X and a matrix A will be interpreted
as the element-wise product

AX = {Ax; x ∈ X } .

We will also use the product of two sets X ,Y as the stacked Cartesian
product

X $ Y =
{(
x

y

)
; x ∈ X , y∈ Y

}
.

For a matrix A, we denote by A > 0 (A ≥ 0) that A is positive (semi-
)definite. For a block matrix

M =
(
A B

BT D

)

with D > 0, the conditions that M ≥ 0 and that the Schur Complement
(see [Boyd et al., 1994, ch. 2.1, pp. 7-8]) of D in M

∆ = A− BD−1BT

is positive semidefinite, ∆ ≥ 0, are equivalent.
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4. Problem Decomposition

4. Problem Decomposition

We begin by decomposing the problem into a stochastic and a set-bounded
part. The dynamics (1) combined with the prediction (3) gives the next
prediction error

ekpk−1 = Aek−1pk−1 + eproc.k−1 (5)
while the measurement equation (2) combined with the filtering step (4)
gives the next filtered error

ekpk = Xk
(
ekpk−1

emeas.k

)
. (6)

The minimization of the expected/worst-case estimation error will guide
the selection of the filter gain Lk, which will then be used to update the
point estimate according to (4). Lk can be optimized online, or, since it
is independent of the point estimate, it can be calculated ahead of time
if the disturbance characteristics are known, e.g. if they are periodic or
stationary.
The estimation errors ekpk−1 and ekpk are composed of a stochastic and

a set-bounded part, and are formed by forming each part separately. The
two parts will be coupled only in the search for the optimal filter gain Lk
in the filtering step, which we find by minimizing the cost function

V (L) = tr W
(
Rkpk(L) +α r(L)2P(L)

)
(7)

where W > 0 is a weight on the estimation error for different states,
α > 0 is the relative penalty on set-bounded error, Rkpk(L) is the filtered
error covariance, and Pk(L) and r(L) bound the set-bounded error after
filtering δ kpk ∈ ∆kpk(L) inside an ellipsoid:

δ TkpkP(L)−1δ kpk ≤ r(L)2 ∀δ kpk ∈ ∆kpk(L). (8)

Either P or r can be fixed for the optimization step, depending on whether
we want to prespecify the shape of the ellipsoid circumscribed around
∆kpk(L).
To carry out the minimization, we take the following steps:

• Form LMI conditions linear in L for

– the stochastic part: R ≥ Rkpk(L)
– the set-bounded part: (P, r) satisfying (8)

• Minimize
V̄ = tr W(R +α r2P)

under these LMI conditions.
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When we introduce ellipsoidal approximation of the set-bounded error
∆kpk, we will merge the prediction and filtering steps for this part to reduce
conservatism.

5. Stochastic Part

We consider the update and optimization of the stochastic estimation error
terms. The prediction and filtering steps (5) and (6) give the stochastic
error covariances

Rkpk−1 = ARk−1pk−1AT + Rproc.k−1 (9)

Rkpk = Xk
(
Rkpk−1 0

0 Rmeas.k

)

︸ ︷︷ ︸
R
pm
k

X Tk (10)

for wkpk−1 and wkpk respectively, since if E(wwT) = R,

E
(
(Aw)(Aw)T

)
= AE(wwT)AT = ARAT .

The prediction step (9) is straightforward. To form an LMI for the
filtering step (10), we first factor Rpmk as

R
pm
k = SRpm0ST , Rpm0 > 0.

By the Schur Complement, the condition R ≥ Rkpk or

R − XkSRpm0ST X Tk ≥ 0

is then equivalent (since Rpm0 > 0) to the LMI
(

R XkS

ST X Tk (Rpm0)−1
)
≥ 0,

which is linear in L and R.

6. Set-Bounded Part

We now consider the update and optimization of the set-bounded estima-
tion error terms. The operations are first formulated for general uncer-
tainty sets, and then the case of ellipsoidal over-approximation is treated.
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6.1 General Uncertainty Sets

From the prediction step (5), we must have δ kpk−1 ∈ ∆kpk−1,

∆kpk−1 = A∆k−1pk−1+ ∆proc.k−1 .

If ∆k−1pk−1 and ∆proc.k−1 are polytopes, so is ∆kpk−1.
For the filtering step, we have

δ kpk = Xk
(

δ kpk−1

δmeas.k

)

︸ ︷︷ ︸
δ pm
k

.

The constraint (8) can be expressed for any δ pmk ∈ ∆pmk = ∆kpk−1 $ ∆meas.k

as a second order cone constraint when P is fixed:

r ≥ ppP− 12δ kpkpp = ppP−
1
2 Xkδ

pm
k pp

or in general by the Schur Complement (since P > 0) as an LMI

r2 − (δ pmk )T X Tk P−1Xkδ
pm
k ≥ 0

Z[
(

P Xkδ
pm
k

(δ pmk )T X Tk r2

)
≥ 0.

If ∆pmk is a polytope, it is enough to consider the constraint at the vertices,
since an ellipsoid contains a set of vertices iff it contains the convex hull
of those vertices (the polytope).

6.2 Ellipsoidal Uncertainty Sets

Now suppose that the filtered set-bounded error from the previous step
∆k−1pk−1, and possibly the process or measurement disturbance parts ∆proc.k−1
and ∆meas.k , are described by ellipsoids. In this case we can use the ellipsoid
(8) to find an ellipsoidal over-approximation for ∆kpk to use in the next step.
To formulate (8) as an LMI in this case, we need the following theorem.

THEOREM 1—ELLIPSOID BOUNDING WEIGHTED ELLIPSOID SUM
Given a number of ellipsoids E i, i = 1 . . .n:

zi ∈E i Z[
{
zi = Gixi + bi
xTi Qixi ≤ r2i

the weighted Minkowski sum

A = X
∑

i

E i =
{
x = X z; z=

∑

i

zi, zi ∈E i ∀i
}
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can be proved by the S-procedure (see [Boyd et al., 1994, ch. 2.6.3, pp.
23-24]) to be contained in the centered target ellipsoid E,

x ∈E Z[ xTP−1x ≤ r2 (11)

iff the LMI condition



P X G X b

GT X T Qτ

bT X T r2 −∑i τ ir
2
i


 ≥ 0 (12)

is satisfied for some scalars τ i ≥ 0, where b =
∑
i bi, and

G = (G1 G2 . . . Gn ) , Qτ = diag
(
{τ iQi}i

)
.

If n = 1 and r1 > 0, the condition (12) is also necessary for A ⊆E.
Proof: See the appendix.

Using the theorem. We let P = P and z = δ pmk , where ∆pmk is a sum
of ellipsoids. With one centered ellipsoid (bi = 0) containing each of the
previous filtered error, the process and measurement disturbances:

∆k−1pk−1 ⊆E1, ∆proc.k−1 ⊆ E2, ∆meas.k ⊆ E3

the set-bounded part gets the prediction step ∆kpk−1 ⊆ AE1 +E2 and the
filtering step

∆kpk ⊆ Xk(∆kpk−1 $E3) ⊆ Xk
(
(AE1 +E2) $E3

)
.

The ellipsoid sum for ∆kpk can thus be expressed with the theorem, plug-
ging in the ellipsoids E1,E2,E3, and

G1 =
(
A

0

)
, G2 =

(
I

0

)
, G3 =

(
0

I

)
.

Thus we can use the LMI condition (12) to circumscribe an ellipsoid
around ∆kpk.

Variations. We can use more or fewer ellipsoidal terms for the uncer-
tainty sets ∆i, and also polytopic terms. For polytopic terms, the sum P
of all such terms is first formed. As in the case with only polytopic terms,
the LMI must be written once for each vertex of P . If P is symmetric, we
need only write half as many LMIs since the centered target ellipsoid E
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7. Simulations

sees no difference between the vertices v and −v. A polytope vertex can
be represented by a zero-dimensional ellipsoid with bi ,= 0.
A polytope that is the sum of one-dimensional polytopes (line seg-

ments) may expressed more economically as a sum of one-dimensional
ellipsoids. However, the result may be more conservative since forming
the sum of ellipsoids relies on the S-procedure.
The use of both P and r as variables in the condition (11) for the target

ellipsoid may seem redundant, but it allows to state a possibly simpler
optimization problem if the shape of the target ellipsoid is fixed. (I.e. to
some shape desired in a stationary situation.) It is of course possible to
constrain P to other spaces than to be fully free or with a prespecified
shape. Another use for r could be to improve the numerical conditioning
of the optimization problem by guessing the size of the resulting ellipsoid
before optimizing for P.

7. Simulations

7.1 Example System

Consider a double integrator process with dynamics

xk+1 =
(
1 h

0 1

)

︸ ︷︷ ︸
A

xk +
( 1
2h
2

h

)

︸ ︷︷ ︸
B

uk +wproc.k

E
(
w
proc.
k

)
= 0, E

(
(wproc.k w

proc.
k )T

)
= 1
4

( 1
3h
3 1

2h
2

1
2h
2 h

)

︸ ︷︷ ︸
R
proc.
k

where h = 0.1 is the sample time, (xk)1 is the position and (xk)2 the
velocity. White process noise enters along with the control acceleration
uk.
The measurements are coarsely quantized:

yk = round
(
Cxk

)
, C = ( 1 0 ) ,

where round(x) rounds x to the nearest integer. Using the current frame-
work, we can model the measurement by

yk = Cxk + δmeas.k , δmeas.k ∈ ∆meas.k = [− 12 , 12 ].
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With the sampling time h small enough, we may consider (xk)1 to be
almost completely known at all events, when yk changes value. This mea-
surement may be modelled as

1
2

(
yk + yk−1

)
= Cxk +wmeas.k ,

E
(
wmeas.k

)
= 0, E

(
(wmeas.k wmeas.k )T

)
= Rmeas.k ,

(13)

where Rmeas.k gives a suitable approximation of the error in the guess
Cxk ( 1

2

(
yk + yk−1

)
. We take Rmeas.k = (Rproc.

k
)11.

Since the system is unstable, we stabilize it with the control law

uk = −( 1 2 ) x̂k,

which places the poles in approximately z = e−h. The state estimate x̂k is
taken from a simple heuristic state estimator that:

• runs in open loop between events

• updates at events:

(x̂k)1 =
1
2

(
yk + yk−1

)

(x̂k)2 =
(x̂k)1 − (x̂klast)1
h(k− klast)

where klast is the time index of the last event or known initial state.

The process was simulated with the heuristic controller to produce the
test sequence uk, yk in Fig. 1. The corresponding state sequence xk can
seen in Fig. 2 (together with state estimates from different estimators).

7.2 Estimator Implementation For The Example

In this example, the process noise is purely stochastic, and the set-bounded
measurement error ∆meas.k can be represented as an interval symmetric
around the origin, so the target ellipsoid E ⊇ ∆kpk should enclose the sum
of an ellipsoid for ∆kpk−1 and the polytope for ∆meas.k . Since we have only one
ellipsoid in the sum, (12) is both necessary and sufficient for the target
ellipsoid E to enclose it. Since the polytope ∆meas.k is symmetric with two
vertices, we need only one instance of the LMI condition (12).

7.3 Performance Comparison

Three filters were compared on the test sequence:
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7. Simulations
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Figure 1. Test sequence for the observers

Table 1. Mean quadratic errors over a 105 time step test sequence.

EMixed EGrid EKalman
�

0.054 0.063

0.063 0.180

� �

0.045 0.053

0.053 0.157

� �

0.444 0.223

0.223 0.285

�

• The Mixed Estimator proposed in this paper using ellipsoidal over-
bounding of ∆kpk in each step, with

α = 1, W =
(
1 −0.3

−0.3 0.4

)
.

The weight matrix W was chosen by letting W−1 be roughly propor-
tional to the error covariance of the Grid Filter (see below) a long
time after an event.

• A Grid Filter; a discretization of the Bayesian Estimator for the
system (with approximately 32 000 states). See [Henningsson and
Åström, 2006] for more about the Bayesian Estimator for this system.

• A Kalman Filter that uses only the measurements (13) at events,
and runs in open loop in between.
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Figure 2. Actual states and state estimates generated by the observers. Actual
states (solid), Mixed Estimator (dashed), Grid Filter (dotted), Kalman Filter (dash-
dotted). Events are marked with a + sign.

Table 1 shows the average estimation error of the filters over a test
sequence of 105 time steps, evaluated as

E = 1
N

N∑

k=1
(xk − x̂k)(xk − x̂k)T .

The Mixed Estimator is seen to come quite close to the Grid Filter per-
formance, but the Kalman Filter is far behind. Fig. 2 shows actual state
trajectories together with the estimates. Events are marked with + signs.
When events are frequent, all estimators seem to follow the state trajec-
tories reasonably well, especially for the position x1. When there is longer
time between events, the Kalman Filter seems to lose track. The Mixed
Filter is much better at following the Bayesian estimate. The strategy it
uses seems to be something like:

• At an event, update the state estimate.

• Continue by open loop predictions some time after each event, while
the prediction error is small.
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Figure 3. Actual states and state estimates, with α = 10 for the Mixed Estimator,
which makes it follow the Kalman Filter for too long.

• When the prediction error becomes too large, start to incorporate
the imprecise measurements available.

Fig. 3 shows the same simulation with α = 10 for the Mixed Estimator.
The weight α adjusts the tradeoff between stochastic and set-bounded
estimation error. With higher α it is seen that the Mixed Filter waits
longer to incorporate the uncertain measurements after each events. The
value α = 1 used in Fig. 2 seems to give a more reasonable tradeoff.
The uncertainty set ∆kpk (a polytope in this example) and the recursive

ellipsoidal over-approximation ∆̂kpk used by the mixed filter can be seen in
Fig. 4, just prior to the event at t = 13. The actual set takes up perhaps 23
of the ellipsoid’s volume, and that they more or less touch at the sharpest
corners of the polytope.

8. Conclusion

This paper describes the design of a state estimator for linear systems
with process and measurement disturbances containing both stochastic
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Figure 4. Actual set bounded error and ellipsoidal approximation used by the
Mixed Filter at t = 12.9, just before an event.

and set bounded terms. The estimator structure that is borrowed from
the Kalman Filter is optimal for purely stochastic disturbances, and allows
the two parts of the estimation error to be treated efficiently and almost
independently. The filter gain is optimized by solving a Linear Matrix
Inequality (LMI) problem.
The estimator can value the usefulness of measurements corrupted

by different amounts of stochastic and set bounded disturbances, with a
parameter α that can be used to tune the tradeoff between the two kinds
of error. An example shows that the estimator performs quite close to an
optimal Bayesian Estimator, and that α can be used to adjust how long to
wait after receiving a good measurement before incorporating measure-
ments with interval uncertainty.
The estimator reproduces the behavior of the Kalman Filter with set-

bounded initial expectation in [Morrell and Stirling, 1988] under the cir-
cumstances assumed in that work, when the weight α goes to zero. When
α is nonzero, the estimator applies a higher filter gain to eliminate the
set-bounded uncertainty faster.
An open issue is how to choose the state weighting matrix W in a

systematic fashion.
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A. Proof of Theorem 1

This development is based on [Boyd et al., 1994, ch. 3.7.4, pp. 46-47]. The
construction is extended to be linear in the transformation X , to handle
ellipsoids that are flat in some dimensions, and to specify the centers bi
separately, but is reduced in that we are only interested in centered target
ellipsoids E.
To handle the Minkowski sum of ellipsoids, we need a condition for

when one ellipsoid contains the intersection of a number of ellipsoids.
Given a set of quadratic functions { fi(x)}i, i = 1 . . .n, one sufficient con-
dition to verify that a quadratic function f (x) ≥ 0 whenever all fi(x) ≥ 0
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is given by the S-procedure:

∃τ i ≥ 0, i = 1 . . .n : f (x) ≥
∑

i

τ i fi(x) ∀x.

The condition is also necessary, e.g., when n = 1 and f1(x) > 0 for some
x, see [Boyd et al., 1994, ch. 2.6.3, pp. 23-24].
The condition (12) which we seek to derive is formed by first con-

structing an extended space where each term of the ellipsoid sum has
its own coordinates, and forming the set where all coordinates are within
their respective ellipsoids, which is the intersection of ellipsoidal cylin-
ders. We then used the S-procedure to circumscribe an ellipsoidal cylinder
parametrized in the sum coordinates.
Let

xT = ( xT1 xT2 . . . xTn ) , z =
∑

i

zi.

Then, according to the definitions in the theorem,

z = Gx + b = (G b )︸ ︷︷ ︸
Ge

(
x

1

)

︸ ︷︷ ︸
xe

= Gexe.

We take the first step of the S-procedure (using τ i ≥ 0∀i) by forming the
condition

∑

i

τ i(r2i − xTi Qixi) =
(
∑

i

τ ir
2
i

)
− xTQτ x ≥ 0 (14)

which will always be fulfilled when zi ∈E i ∀i.
The condition for the target ellipsoid, x ∈ E, x = X z = X Gexe is

equivalent to
r2 − xTe GTe X TP−1X Gxe ≥ 0. (15)

Subtracting (14) from (15), we form our S-procedure condition, which can
clearly only be fulfilled for all x if (15) is fulfilled whenever (14) is:

xTe




(
Qτ

r2 −∑i τ ir
2
i

)

︸ ︷︷ ︸
Qe

−GTe X TP−1X Ge


 xe ≥ 0.

As we assume x to be arbitrary, we might as well assume xe to be ar-
bitrary since scaling of xe with a nonzero constant does not affect whether
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the condition holds. The case when the last entry of xe is zero is ap-
proached when ppxpp → ∞. Thus we can equivalently consider positive
semidefiniteness of the matrix that stands between xTe and xe above.
By the Schur Complement, since P−1 > 0, this condition is equivalent

to (
P X Ge

GTe X
T Qe

)
≥ 0,

which is exactly (12).
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