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Summary

Automated video annotation is a topic of considerable interest in computer vision due to 
its applications in video search, object based video encoding and enhanced broadcast 
content. The domain of sport broadcasting is, in particular, the subject of current 
research attention due to its fixed, rule governed, content. This research work aims 
to develop, analyze and demonstrate novel methodologies that can be useful in the 
context of adaptive and automated video annotation systems. In this thesis, we present 
methodologies for addressing the problems of anomaly detection, rule adaptation and 
rule induction for court based sports such as tennis and badminton.

We first introduce an HMM induction strategy for a court-model based method that 
uses the court structure in the form of a lattice for two related modalities of singles 
and doubles tennis to tackle the problems of anomaly detection and rectification. We 
also introduce another anomaly detection methodology that is based on the disparity 
between the low-level vision based classifiers and the high-level contextual classifier. 
Another approach to address the problem of rule adaptation is also proposed that 
employs Convex hulling of the anomalous states.

We also investigate a number of novel hierarchical HMM generating methods for stochas­
tic induction of game rules. These methodologies include, Cartesian product Label- 
based Hierarchical Bottom-up Clustering (CLHBC) that employs prior information 
within the label structures. A new constrained variant of the classical Chinese Restau­
rant Process (CRP) is also introduced that is relevant to sports games. We also propose 
two hybrid methodologies in this context and a comparative analysis is made against 
the fiat Markov model. We also show that these methods are also generalizable to other 
rule based environments.

K ey words: Anomaly Detection, Anomaly Rectification, Domain classification. Rule 
Induction, Chinese Restaurant Process (CRP), Hierarchical Hidden Markov Model 
(hHMM), Transfer learning
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Chapter 1
Introduction

1.1 M otivation

There has been a significant growth in multimedia data production over the past decade. 

This data exists in various forms such as broadcast content (including television news 

and sports), personal content (e.g. uploaded mobile phone footage and social media 

videos), recorded interviews or meetings and footage from surveillance cameras etc. 

Due to easy availability of high quality digital hand-held devices such as cameras, 

mobile phones and camcorders, there has been a significant expansion in digital video 

production at a domestic consumer and industrial level.

Most of this data is intended for general viewing and hence basic labelling (Date, Time 

and Title etc.) is attached to it. However in many cases it would be useful to attach 

additional labels to retrieve information in a more fiexible and systematic fashion (e.g. 

a tennis sports video can potentially be labelled with match-events description). Such 

meta-data will assist in finding material within the multimedia footage via browsing, 

querying or searching.

For easy retrieval of information from a very large quantity of archived footage, it would 

be very useful to have them annotated automatically i.e. to create a system that could 

understand the content of the video (manual annotation being too unwieldy). Sports 

videos have a high demand for automatic annotation as there is considerable interest
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in browsing key events (such as goals in football etc.). These annotations may also be 

used to extract match statistics and performance analysis of teams.

Recent advances in computer vision and machine learning as well as the exponential 

growth in the processing capacity and memory of computer technology have created the 

conditions where it becomes pertinent to investigate the possibility of designing such 

systems. Sports footage provides a useful test-ground given its fixed, rule-governed 

content.

Sports videos also consist of rich multimedia content, as well as contextual details. Key 

temporal event information is critical in understanding sports videos. Furthermore, 

such an intelligent system can be made generic by extracting rule structures associated 

with the input footage. This involves dealing with the problems of anomaly detection 

and rectification i.e. when the input domain changes and the existing knowledge base 

becomes redundant for the new scenario e.g. in the context of domain classification 

when switching from a “Tennis environment” to “Badminton environment”. Addition­

ally the system must also be capable of inferring high-level arbitrary rule structures for 

eventual meaningful annotations using rule induction methodologies.

Anomaly detection has received a large commercial interest due to its generic applica­

bility in a vast range of sectors such as in surveillance where anomalies are referred to 

as a behaviour deviating from normality. Anomaly detection systems are also of high 

interest in various other applications such as fault detection in engineering systems. A 

broad overview of anomaly detection in the literature is presented in Chapter 2.

Rule induction, being a major sub category of machine learning, also has received sub­

stantial interest due to its generic nature. Rule induction methodologies allow systems 

to extract formal rules using the input data with applications such as in making credit 

decisions for loan companies and in automatic classification of celestial objects. In the 

context of an expert system capable of decision making, rule induction techniques have 

helped in preventing breakdowns in electrical transformers via inferring faults from 

symptoms and suggesting corrective actions.

Automated video annotation also has various other relevant applications, apart from its 

usage in video search engines. It can significantly improve the performance of object-
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based video encoding, enhance broadcast video streaming, assist analysis of player 

tactics in a sports video and serve as a basis for computer aided coaching.

1.2 Description of Problem

Autonomous sports video annotation systems have been recently developed which are 

generally domain specific (e.g. [35, 130, 196] for Soccer, formula 1 and snooker respec­

tively). There is a real need for making such systems adaptive so that these systems 

can annotate contextually similar but visually different games. This entails significantly 

difficult problems such as either incorporating prior domain knowledge or knowing what 

parts of the knowledge base may be shared among different domains.

The first problem to be addressed in the realization of such an adaptive system with 

knowledge transfer capabilities is the notion of Anomaly detection i.e. detecting incon­

gruence when a new domain is introduced to the existing knowledge base. Anomalies 

can be defined as those descriptive annotations which are incongruent according to 

the knowledge base but which are different from mere errors or outliers [101, 102] (see 

Figure 1.1).

non-contextual 
event detection 
methods

context
classifier

contextual 
high level 
inference

multimodal 
sequences o f 
events

reasoning
(output)

confidence
measures

confidence 
measure

knowledge 
base

rule base 
adaptation

mcongruenc
detected accumulate 

incongruent 
events

Figure 1.1: Example of an Anomaly Detection and Rectification system
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Anomaly rectification is a related problem of dealing with the detected anomalies i.e., 

either incorporating them as additional rules in the knowledge base or discarding them. 

New methodologies are required in the context of an adaptive system able to switch 

the knowledge base according to the new learning environment.

Another problem addressed in this thesis is of modelling the observed video sequence in 

terms of a rule structure i.e. the problem of rule induction. In an adaptive annotation 

system, it is crucial to have such a contextual level that captures observations in the 

form of concrete rules. Once there is such a model, the problems of anomaly detection 

and rectification can be more robustly tackled i.e. the system will be able to switch 

the rule base according to the observations. Such a system will also be able to transfer 

learning from one domain to another reducing the need for re-training.

1.3 M ethodological Approach

An automated video annotation system must be able to determine at what point the 

existing learned model ceases to apply, and secondly, what aspects of the existing model 

can be brought to bear on the newly-defined learning domain. Anomalies must thus 

be distinguished from mere outliers, i.e. cases in which the learned model has failed 

to produce a clear response; it is also necessary to distinguish novel (but meaning­

ful) input from misclassification error within the existing models. We thus propose 

methodologies to tackle the related problems of anomaly detection, knowledge transfer 

and rule induction for changing domains primarily in the context of automated sports 

video annotation.

Firstly, we introduce in Chapter 4, a Lattice-based method to solve the problem of 

anomaly detection and rectification that exploits the implicit court structure of sports 

games like tennis. This is achieved via a novel lattice-based Hidden Markov Model 

induction strategy for arbitrary court-game environments. We test the ability of the 

method to adapt to a change of rule structures going from tennis singles to tennis 

doubles (using real and simulated data).

We also introduce a methodology for anomaly detection based on the disparity between
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the low-level vision based classifiers and the high-level contextual classifiers ([101, 102, 

184]) to deal with the problem of detecting rule-incongruence involved in the transition 

from singles to doubles tennis videos. We then demonstrate how the detected anomalies 

can be used to transfer learning from one (initially known) rule-governed structure to 

another employing a convex hull of anomaly states for anomaly-adaptation/ rule-update.

We also investigate a number of novel hierarchical HMM [47] generating methods for 

rule induction in the context of automated sports video annotation including a novel 

Cartesian Product Label-based Hierarchical Bottom-up Clustering (CLHBC) method 

that employs prior information contained within label structures. We also propose a 

new variant called, the Multi-Level Chinese Takeaway Process (MLCTP), based on the 

classical Chinese Restaurant Process [4] and Stick-Breaking construction [153] for rule 

induction. We also present two hybrid methodologies that uses MLCTP and the label 

structures in two different settings. We compare all of these methodologies against the 

flat Markov model to show that the methods proposed are generalizable to other rule 

based environments.

1.4 Aims

The research carried out in this thesis focuses on developing a framework for adaptive 

and automated sports video annotation via addressing the problems of anomaly detec­

tion and rectification, and rule induction. The first proposed methodology is a tennis 

court lattice-based method that discovers anomalies when introducing contextually dis­

similar video to the system. This is demonstrated by starting with a system trained 

on ‘singles’ tennis matches, and then changing to a new input material in the form of 

a doubles tennis match i.e. one in which only the rule structures differ. We also show 

another anomaly detection mechanism via quantifying the disparity between different 

classifiers. A framework for the related problem of rule adaptation is also introduced to 

update the rule base for incorporating detected anomalies which is crucial for a generic 

and automated video annotation system.

Anomaly rectification for the lattice-based method, in the case of a tennis match, is 

achieved by redefining the play area. We show results for real and simulated tennis
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singles and doubles games. We also present a related methodology for the anomaly 

adaptation problem using a convex hull of anomaly states usable in the context of 

tennis matches.

Sports games are inherently hierarchical in nature thus we also investigate methodolo­

gies for creating hierarchical HMMs [47] for rule induction. This is achieved initially 

via a method based on useful information contained within label structures. We also 

present novel stochastic rule induction methodology based on the classical Chinese 

restaurant process. A comprehensive evaluation is carried out for each of the proposed 

rule induction methodologies against a baseline method in the context of sports and 

various other domains.

These rule induction methodologies are predictively evaluated but they can also be 

predictively and retrospectively employed to detect any missing events in the context 

of an automated annotation system. Furthermore, this potentially enables the system 

to detect rule-based anomalies and make autonomous decisions on switching the rule 

base. Rule induction methodologies can also be used in the context of knowledge 

transfer, determining the amount of knowledge shared between various domains.

The aim of this thesis is thus to provide enabling technologies for use in automated, 

adaptive sports annotation systems.

1.5 Research Contributions

The novel contributions of this thesis in the area of automated sports video annotation 

and machine learning more generally are summarized as follows:

1.5.1 A n om aly  d etec tio n  and rectification  m eth od olog ies

We present two new anomaly detection and anomaly rectification methodologies for 

automated sports video annotation in this thesis. These methodologies are briefly 

introduced as follows:
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Lattice-based Anomaly D etection &: Rectification

Anomaly detection for changing domains is initially addressed in the context of the 

automated annotation of tennis singles and doubles games. Anomaly detection is em­

ployed as a means of determining, in an unsupervised manner, whether the rule base 

has changed in a fundamental way as differentiated from e.g. visual changes due to 

different international venues. This may require continuous adaptive learning to be 

abandoned and a new learning process initiated in the new domain. We also address 

a related problem of anomaly rectification i.e. the adaptation of the existing learn­

ing mechanism to the change of domain. As a concrete instantiation of this notion, a 

novel lattice-based HMM induction strategy for arbitrary court-game environments is 

proposed.

Classifier Disparity based Anomaly D etection and Convex Hulling o f Anomaly  

States for Anomaly Rectification

We apply another methodology for anomaly detection that is based on comparing 

the outputs of strong and weak classifiers [101, 102, 184] to address the problem of 

detecting the rule-incongruence involved in the transition from one domain to another. 

The strategy for anomaly rectification employs a convex hull of the detected anomalies 

which are then incorporated in the rule base appropriately.

1.5.2 R u le-In d u ction  M etb od olog ies

We also present four novel rule-induction methodologies in this thesis that are primarily 

developed in the context of automated sports video annotation. These methods are 

briefly introduced as follows:

Cartesian-Product Label-Based Hierarchical Bottom -U p  

Clustering (CLHBC)

Sports games have a specific structure built around temporal events that are based on 

transitions between labelled states according to structured game rules. By taking the
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whole sequence of event labels into account, we thus represent rule-related information 

by using the Cartesian combinations of these sub-labels where they collectively consti­

tute a lattice subset in which coarse-grained event labels are clustered bottom-up to 

form a hierarchical topology that can potentially represent abstract rule structures.

M ulti-Level Chinese Takeaway P rocess (M L C TP)

Court-games are inherently hierarchical in nature and we attempt to create stochastic 

approximations of the game rules using hierarchical Hidden Markov Models (hHMMs) 

for contextual game description covering various levels of abstractions, ultimately, giv­

ing rise to meaningful annotations. We propose a constrained variant of the widely 

used Chinese Restaurant Process (CRP) first introduced in [4] in conjunction with a 

Stick-Breaking construction [153] that allows us to establish rule structures that are 

capable of describing the sports game in a compact and efficient fashion. We refer to 

it as the Multi-Level Chinese Takeaway Process (MLCTP).

H ybrid  M ethods

MLCTP does not intrinsically exploit labeled states and we speculate that the high­

est likelihood inferred rule structure given a set of hyper-parameters representing the 

MLCTP model can be further improved via employing the label structures. Thus, we 

also propose two hybrid methods that combine the unlabeled MLCTP with the labelled 

structure using Baum-Welch [134] hidden state transition estimation and CLHBC’s 

label structure computation. These models effectively use the stochasticity of MLCTP 

whereby various hierarchical structures are produced, in conjunction with the labels 

containing important sequential information.

1.6 Thesis Structure

This thesis is structured as follows:

• L ite ra tu re  Review: Chapter 2 introduces a number of key concepts related 

to our research work, i.e., automated vision-based annotation systems, anomaly
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detection strategies and anomaly rectification mechanisms reported in the litera­

ture. We also present various types of rule induction methodologies employed in 

machine learning applications.

• V ideo A nn o ta tio n  System s: Chapter 3 briefly introduces all of the various 

datasets that we use for our experiments. These datasets include an automated 

computer vision-based annotation system of [89] (introduced in this chapter) and 

for which most of our novel algorithms are primarily designed. In addition to 

this system, we also introduce a purpose-built ground truth annotation system 

for labeling key events in Tennis and Badminton with information like Serve and 

Hit etc. Similarly, we also introduce another manual annotation system capable 

of labeling human driving for a car driven across a city with labels such as turn 

left and signal right etc.

• A nom aly D etection  and  R ectification: In chapter 4, we propose methodolo­

gies dealing with the problem of anomaly detection for triggering domain change 

when a new domain is presented to the system i.e., knowing when to switch the 

adaptive system to be able to annotate a different game. We attempt to do this 

in a sports environment in particular court games where players follow certain 

rules of the game with respect to a fixed court reference.

• R ule  Induction : In Chapter 5 we investigate a number of novel hierarchical 

HMM generating methods for rule induction in the context of automated sports 

video annotation including the Multi-Level Chinese Takeaway Process (MLCTP) 

based on the Chinese Restaurant Process and a novel Cartesian Product Label- 

based Hierarchical Bottom-up Clustering method that employs prior information 

contained within label structures. We also present two hybrid methodologies in 

this chapter and make comparisons against the fiat Markov model. We also show 

that the methods proposed are generalizable to other rule based environments.

• Sum m ary  and  F u tu re  W ork: Chapter 6 presents conclusions drawn from our 

research results, along with potential directions for future research in this area.
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1.7 Summary

This chapter presented a brief introduction into the problems of anomaly detection, 

rule adaptation and rule induction methodologies and the ever growing need of adap­

tive systems. The problem of anomaly detection has motivated research in various 

fields such as surveillance and fault detection in systems etc. Similarly, the problem of 

rule induction has also received substantial interest because of its generic nature. Due 

to an immense growth in multimedia data production, it would be useful in many cases 

to attach meaningful descriptions autonomously. This thesis, addresses the aforemen­

tioned problems in the context of an adaptive and automated sports video annotation 

systems. Several contributions and publications resulted from this work, including: i) a 

new tennis court-lattice based anomaly detection and rectification method, ii) classifier 

disparity based anomaly detection and related anomaly rectification methodology us­

ing convex hulling of anomalous states, and iiij four new rule induction methodologies 

including the Cartesian product label-based hierarchical bottom-up clustering method 

and a constrained variant of the classical Chinese restaurant process that allows us to 

establish rule structures capable of describing sports games like Tennis and Badminton 

etc.



Chapter 2

Literature Review

The following chapter reviews the state-of-the-art in autonomous vision-based anno­

tation systems, and the key concepts and techniques utilized by this thesis, including 

other methodologies employed primarily for anomaly detection and knowledge transfer. 

Rule induction methodologies are also reviewed in this chapter.

2.1 Autonom ous Vision-based Annotation System s

Automated vision-based annotation systems have received much attention within the 

literature and has often been referred to as “video concept detection” [119], “high-level 

feature extraction” [155], or “video semantic analysis” [158]. The main goal of such a 

system is to assign related concepts in the form of meta-labels to video clips or video 

frames. Machine learning techniques are typically employed in this context as follows:

1 Pre-processing is performed for data preparation

2 Videos are segmented into short units referred to as shots

3 Low-level features are extracted for every relevant shot using object/agent detec­

tion and tracking techniques

4 Domain rules are used as priors to learn relationships between the detected low- 

level features and related concepts

11
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Note, most video annotation systems use only a subset of these, typically the first three 

only.

In the context of an automated video annotation system, event detection and action 

recognition are considered most frequently [51, 113, 131, 177]. A wide variety of 

methods have been proposed in this context such as person detection and tracking 

[84, 169], articulated body tracking [67] that can be crucial for classifying actions in a 

static images environment [33, 43, 193].

Bag of Words (BoW) based approaches are some of the most commonly used techniques 

employed in this context such as in [182], a BoW-based approach is proposed that builds 

a global vectorial representation of a whole video sequence implicitly employing visual 

context.

In terms of application domains, surveillance [46], entertainment movies [104] and TV 

shows [128] have all been explored. Additionally, sign language recognition has also 

been tackled in [27, 145, 161, 186].

In the following sub-sections, we review some of the concepts related to automated 

sports video annotation systems by exploring techniques related to low-level visual 

feature extraction, and game evolution tracking and annotation.

2.1.1 Sp orts V id eo  A n n ota tion

Sports videos have received much attention within the video annotation literature 

[37, 190] and various sports have been explored. Soccer is probably the most exten­

sively researched sporting domain because it offers a wide range of challenging research 

problems such as tracking multiple players with high levels of occlusion [37, 40, 55, 57, 

107, 138, 139, 176, 183, 188]. Cricket [24, 69] and snooker [34, 136] have also attracted 

significant attention for research problems involving gesture recognition of the umpires 

and video summarization.

Tennis games have also been processed for shot classification [37, 78, 79], within-shot 

event detection [31, 137], players’ stroke type classification [122, 129], analysis of player 

tactics [199] and scene retrieval [30, 112, 171].
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V isual F ea tu re  E x trac tio n  for S ports  V ideo A n no ta tion

O bject D etec tion  and  Tracking: Various sports have different objects of attention,

such as the cricket ball in cricket, the tennis ball in tennis and the shuttlecock in 

badminton etc. To design an artificial system capable of modeling these games, it is 

necessary to track them with respect to specific reference points to obtain those key 

events which relate to the rule structures of the game. For example, in a game of tennis, 

it is necessary to know where the ball bounces within the court area to establish the 

notion of in and out in order to annotate the play shot with the information about the 

point structure of the game.

Tracking objects involves two main tasks; finding and then following the object of inter­

est in a video sequence. For this purpose, object appearance and dynamics are generally 

considered in designing an object tracking technique. Track After Detection (TAD) and 

Track Before Detection (TBD) are the two main sub-categories related to object track­

ing approaches. In the first approach, object candidates are initially extracted which 

are then used for tracking via data association (for measuring origin uncertainty) and 

estimation (for dealing with measurement inaccuracy). TAD approaches are suitable 

for small and fast moving objects like tennis balls [38]. Other examples can be found in 

the defense sector where a point in a radar signal is tracked [10, 156]. TBD approach is 

suitable for tracking large and slow moving objects such as people tracking [68]. This 

is achieved by making an initial object position hypotheses which are then evaluated 

using the image unlike a typical TAD approach where images are discarded after object 

candidates are extracted.

Object tracking, thus, has been and remains a key area of research for automated sports 

video annotation systems achieved via employing a number of different techniques. For 

example, Pingali et al. [1] focus on real time tracking of a tennis ball using multiple 

cameras. Techniques similar to stereo matching are then performed to produce a three 

dimensional virtual view. In [58], an object tracking algorithm is proposed which is 

based on object contour prediction. As the object continues its motion in subsequent 

frames, an update to contour prediction is made in case of occlusion/dis-occlusion. 

This method is computationally less expensive compared to other region-based methods
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where, generally, the video object is initially defined by the user and video segmentation 

is then performed with tools like the watershed transformation [13,152,180] to establish 

temporal correspondence between the extracted regions. This enables object tracking 

in subsequent frames [15, 52, 148].

Similarly, several tennis ball tracking algorithms are reported in the literature such as 

in the hawk-eye system [117], where the authors adopt a Track after Detection (TAD) 

approach. Model based tracking is performed by detecting court lines and using camera 

calibration, a 3D ball position is determined. Ball flight is then predicted for making 

match-related decisions assisting match referees.

A gent Tracking and  D escrip tion  In a sports environment, agent tracking is one 

of the most important problems reported in the literature. For example, in terms of 

court-based sports, agents are those entities which may be considered independently 

active within the play area, and which act upon objects to cause them move about 

the court area. Agents tend not to follow strict motion trajectories and hence tracking 

them in terms of extrapolated motion vectors may be sub-optimal. (Agents will, in 

fact, tend to act in terms of the game rules, rather than simplified physical rules).

Marszalek et. al. in [105] proposed an action recognition system using an SVM (Sup­

port Vector Machine) [178] based classifier where a bag-of-features (BoF) framework 

is implemented to perform the action and scene recognition tasks in the context of 

natural video. A BoF approach represents images as orderless collections of local fea­

tures [123], originated from the BoW representation of words for textual information 

retrieval. There are generally three main tasks in such an approach; (i) Building vo­

cabulary of visual features (words), (ii) Assigning extracted features to terms in the 

vocabulary using nearest neighbor [111] or related methods, and (iii) Generating term 

vectors via recording counts of each term and creating a normalized histogram.

R eference A rea  Almost all sports played have a definite area of play which may be 

partitioned into different squares, circles and rectangles. For example, in the game of 

tennis, the court structure with different lines and boxes can be considered as the key 

court reference points. As rules of the game are highly dependent on these low-level
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structures of the game-play area it is important to have an accurate model available. 

These low-level visual features can be detected by e.g., Hough transform [38], corner 

detectors [59, 157] and edge detectors [22] etc. For example, in [90], corner points are 

initially detected in a tennis court using the SUSAN corner detector [157] which are 

used to match features between successive frames to calculate projective transformation 

parameters (i.e. homography). After the most likely correspondences between corner 

pixels in successive frames is established, the RANSAC algorithm [50] is applied to yield 

an accurate inter-field homography. Using extracted homography matrices, images are 

warped back to the reference coordinate frame. This is important in a court-game 

environment to establish a reference court area which is crucial for allocating correct 

match points.

Game Evolution Tracking and Annotation

Automated sports video annotation requires not only a low-level feature extraction 

framework but also a high-level contextual annotation system. For this purpose, a 

system with multiple levels of abstraction is required e.g. [89], where this is referred to 

as game evolution tracking.

Various techniques have been developed for the purpose of creating a decision-making 

system based on graphical models; one of the most important model widely used is the 

Hidden Markov Model (HMM) [133]. HMMs belong to a subset of the much broader 

set of frameworks collectively known as Bayesian Networks (BNs) [99]. They can be 

defined as doubly stochastic processes where only one of the processes is observable; the 

underlying process, of the system states, cannot be observed but only inferred through 

existing observations. Hidden Markov Models can effectively model temporal sequences 

of data (e.g. stock market [61], audio/video signals [96], and patient’s Electrocardio­

graphy (ECO) [91] etc.). Many variants of the classical HMM have been proposed 

(see e.g. [17, 18, 48, 53, 97, 150]). HMMs can provide a useful link between stochastic 

models and their graphical semantics [116].

In a sports related setting, various kinds of human reasoning processes can be applied 

to understand the dynamics of sports environment. This involves decision making in
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terms of classifying between competing scenarios, important in the case of missing or 

erroneous data.

A machine vision-based system for Formula 1 racing sport videos has been proposed in 

[110] though the annotation performed in this sport is only at the camera shots level. 

Similarly, soccer has also been explored where HMM-based methods are employed 

[181, 188, 191]. Video sequences are segmented into various types of shots, e.g. in 

[188], authors have defined various types of shots (such as play, break, close-up, global 

views and zoom-in etc) for segmentation using dominant color ratio (e.g. grass pixels 

vs. non-grass pixels) and motion intensity (i.e. average magnitude of the effective 

motion vectors in a frame) as features.

In a similar context, Assfalg et. al. [8] have explored videos of sport related news; 

where shots of contrasting nature are present e.g. a sequence of anchor-persons and 

players playing a particular sport. Match highlight detection has also been addressed 

[9].

Tennis video annotation has also been performed by summarizing video contents using 

multiple cues [172]. This is different to the tennis video annotation system of [89] (in­

troduced in Chapter 3), where videos are annotated with contextual meta-labels using 

low-level visual observations (e.g. players) and cues from different types of features 

(e.g. tennis ball trajectory).

In this thesis, we aim at providing enabling technologies for building an adaptive and 

autonomous multimedia annotation system capable of detecting domain change and 

rule learning.

2.2 Anom aly D etection

Anomaly detection refers to the problem of discovering samples with unexpected be­

havior in the data [25]. These samples are often referred to via different terms including 

anomalies, outliers, discordant observations, exceptions, aberrations, surprises, pecu­

liarities or contaminants etc. depending upon the application domains. However,
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anomalies and outliers are the most commonly used terms in the context of anomaly 

detection.

Anomaly detection has received considerable interest in the literature due to its wide 

range of potential applications. These applications are spread across a broad range 

of domains, spanning from medical applications to fault detection systems including 

financial services, medical diagnostics, behavior analysis, surveillance, and defense etc.

Due to the high relevance of anomaly detection technology in various application sec­

tors, a large number of anomaly detection methods have been developed some of which 

are reviewed in this section. This has also resulted in a number of survey papers 

([3, 65, 101,102] etc.) in the literature that attempt to classify various types of anomaly 

detection methods.

Edgeworth in [39], presents discordant (i.e. incongruous) observations as those which 

present the appearance of differing in respect of their law of frequency relative to 

other combined observations. This led to the theory of robust estimation [66] via 

identifying outliers. Robust estimation generally refers to an estimation technique 

which is insensitive to small departures from the idealized assumptions which have 

been used to optimize the estimator [132] e.g. median is a more robust estimator of 

central value than the mean. Related to the problem of robust estimation methodology 

is the identification of outliers employed for anomaly detection in [11, 147].

An anomaly is classically defined as an outlier (representing abnormal behavior) with 

respect to some known normal distribution. Such anomalies are classified in various 

surveys of [3, 65, 101, 102] in the following fashion:

• Statistical [11, 64, 106, 142]

• Nearest neighbor [85]

• Classification [28, 29, 70, 71, 118, 143, 162, 179]

• Clustering [62, 63]

A more comprehensive and recent survey of Chandola et. al. in [25] has enhanced the 

aforementioned categorization by the following two additional classes of methodologies:



Chapter 2. Literature Review

• Information theoretic [6]

• Spectral [197]

These approaches use different criteria to define incongruence (e.g. [6] considers it as 

minority detection by measuring a cost function that expresses atypicalness of clusters 

against the simplicity of the clustering) however, they essentially relate to the same 

notion of anomaly detection as defined above.

While defining various criteria for delineating anomalous data from the normal data, 

it is crucial to first define normality. The process of learning normality is driven by 

the available training data by initially representing just the normal data or both the 

normal and samples of anomalous data. Distribution functions are modeled by statis­

tical approaches and a boundary of normal behavior is delineated by the classification 

methodologies. Learning normality can be achieved using a normal dataset with pos­

itive training data [135, 151, 165, 166, 167] or with negative training data i.e. the 

anomalous dataset [146, 163].

In practical scenarios, a normal training data contains samples of error that can be 

mistaken for anomalies. In [41], a learning method is proposed for detecting anomalies 

within a dataset that contains a large number of normal elements and relatively few 

anomalies. This is achieved using maximum entropy to estimate a probability distri­

bution over the data and thereafter a statistical test is applied to detect anomalies. In 

[42], a comparative analysis has been made which favors learning a positive instances 

detector rather than learning a negative instances detector.

Xiang et. al. in [187], proposed an approach for online normal behavior recognition 

and anomaly detection in the context of surveillance videos. This is achieved by using 

a runtime accumulative anomaly measure to detect abnormal behavior based on an 

online Likelihood Ratio Test (LRT).

Furthermore, adding to the types of anomalies, normal data can also contain contextual 

anomalies defined as anomalies that are consistent within a specific context but oth­

erwise fall into the category of abnormality (also referred to as conditional anomalies 

[159]).
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Each data instance, in dealing with contextual anomalies, is defined using two sets of 

attributes [25, 149]: (i) Contextual attributes (i.e. determining the context for that 

data instance) and (ii) Behavioral attributes (i.e. defining the non-contextual features 

of a data point).

For example, in the context of a credit card fraud detection domain, time of purchase 

can be a contextual attribute while a weekly shopping bill of a person can be a behavioral 

attribute. Anomalies can be triggered when the shopping bill exceeds a certain amount 

(behavior) during a particular time (context).

Another example of contextual anomaly could be that of an ordered sequence of ob­

servations, where any single observation in the sequence may appear normal, but as a 

group, or jointly with its neighbors, the observation is an outlier [12, 74, 75, 92, 159]. 

Anomalies in sequences of symbolic data have been studied in [32] and spatial outliers 

in [164]. A Markov chain model has been applied to the problem of contextual anomaly 

detection in [194].

Anomaly detection in a multi-sensor system is a more complicated situation where 

anomalies can exist due to corrupted data, faulty sensors and interesting events such 

as intrusion [26, 36, 44, 160, 198]. For this purpose, a more sophisticated reasoning 

framework is required [127]; as such, these complicated anomalous situations cannot be 

dealt with by simple point anomaly detection.

2.2.1 A n om aly  D etec tio n  in  a M ulti-L evel K now ledge R ep resen ta tio n  

Fram ework

None of the literature cited above addresses the problem of anomaly detection in a com­

plex multilevel knowledge representation system such as a machine perception frame­

work. In a single level system, the idea of anomaly is relatively straightforward where 

comparative analysis is required between the data against the reference normal data. In 

a system with a multilevel representation of knowledge (such as e.g. [14, 89]), each phe­

nomenon will have more than one reference (normal model) depending on the number 

of levels of knowledge representation. Anomalies associated with disagreement among 

level-based interpretations of observations results in a completely new type of anomaly.
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described as a compound anomaly in [80]. This disparity between various levels of 

knowledge representation is referred to as incongruence. There has been a very limited 

amount of work carried out in this context, with the exception of speech recognition as 

mentioned in [184].

The European Union project, DIRAC, was concerned with the detection of rare events 

in multi-level systems i.e. incongruence detection. In [184], Weinshall e t al. compare 

the outputs of non-contextual (i.e. “specific-level”) and contextual (i.e. “interpretation 

level”) classifiers. An incongruence (i.e. anomaly) flag is triggered by the disparity be­

tween the output of these classifiers. The approach follows efforts in out-of-vocabulary 

word detection [19]. When the weak classifier (in this case, the phoneme detector) 

delivers a phoneme hypotheses with confidence, and when the strong classifier (i.e. 

contextual classifier) rejects the sequence of detected phonemes due to the absence of 

the word they correspond to in the system vocabulary, a disagreement occurs between 

the two classifiers suggesting that an out-of-vocabulary word has been encountered 

instead of a noisy speech segment (which would have produced a low weak classifier 

output i.e. low confidence phoneme hypothesis).

The disparity between a contextual classifier with a low confidence output and a non- 

contextual classifier with high confidence output is measured to detect new subcate­

gories of objects in [124, 184, 202]. One of the anomaly detection mechanisms presented 

in Chapter 4 is based on this type of anomalies.

A nom aly detec tion  in a  m ulti-m odal system  Anomaly detection in a multi­

modal system is performed by measuring inconsistency between the outputs of various 

data channels. In [7], incongruence is detected in multi-modal information arising from 

a wearable audio-visual device when, for example, audio detection of a voice occurs in 

spite of the person in the field of view not moving their lips.

It also deals with inconsistent gender classification results when a male person speaks 

with a high-pitched voice leading to contradictions in the different modalities. This is 

achieved by using a similar notion of incongruence detection as above. Authors in [7] 

have also constructed a new hardware platform (containing a stereo panoramic vision
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sensors and hearing aids) with the goal of assisting people with disabilities or a high 

cognitive load to deal with novel events.

The strong classifier, in this scenario, was trained for classifying sequences of phonemes 

and the weak classifier was trained to classify a particular set of words from the obser­

vation data. The posterior probabilities arising from these two classifiers (two domains) 

are then compared using techniques based on Kullback-Leiber (KL) divergence [121] 

highlighting discrepancy (i.e. incongruence) in the classifier outputs.

2.2 .2  R u le  A daptation : D ea lin g  w ith  M eaningfu l N ovel E ven ts

Often, anomaly detection is motivated by the need for a system capable of adapting to 

new environments. In such a setting, anomaly may be manifest due to environmental 

changes causing data drift. Such discordant change can, when detected, be accommo­

dated by habituation processes such as those exercised by humans [170], as discussed 

by Crook et. al. in [29].

Model updating and acquisition in the context of tracking in computer vision [200] ex­

ploits similar ideas of adapting to changing situations as in [201]. More recently though, 

in the context of dealing with anomalous events, [125] presents an approach for learning 

from incongruence where incongruence is used to indicate where to improve the model 

of the universe by incorporating the detected novel concepts. This is demonstrated in 

an experiment with human audio-visual detection by combining the incongruent data 

model with existing models to remove the incongruence.

Also, in [175], a transfer learning algorithm is employed to learn the parameters of the 

new incongruent event from very few labeled samples. The degree of incongruence of the 

new event is also evaluated. This is achieved by using a recently introduced Multi-model 

Knowledge Transfer algorithm (Multi-KT) employing an SVM-based model adaptation 

setting [174] that is able to select and weight appropriately prior knowledge coming from 

different categories resulting in regulation of transfer learning for evaluating the degree 

of incongruence of the new event.

In this thesis, anomaly detection and rule adaptation mechanisms are employed in the 

context of sports video annotation. This results in the realization of constructing an
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adaptive and autonomous annotation framework capable of detecting the input domain 

and consequently using the right knowledge base for annotation. In Chapter 4, new 

methodologies are proposed for anomaly detection and rectification for court games like 

tennis.

2.3 Rule Induction

2.3.1 F irst-O rder R u le Indu ction

Sport rules can be modelled in the form of first order logic. This can be achieved using 

inductive logic programming (ILP), which is a hybrid of machine learning and logic 

programming [114]. PROGOL is a popular ILP system explained in [115], where rule 

learning can be performed using a sequential covering algorithm. Inference, using the 

PROGOL ILP system, of temporal rules related to agent and object interactions using 

a sensor input is discussed in [100, 120].

Rule induction is a “bottom-up” process that refers to the inference of a set of formal 

rules from a training set containing examples of specific facts [114]. Inductive inference 

can be considered as the inverse of deduction which refers to the process in which a 

logically certain conclusion is drawn from one or more general statements in relation 

to the facts [115].

Rule induction has received considerable interest in the literature with decision trees 

perhaps the most common approach. For example. Leech in [94], proposed a rule- 

based process control method using decision-tree induction. Samples of pellet batches 

(Uranium dioxide powder) are collected to determine high and low quality batches 

based on their generation parameters. A decision-tree algorithm is used to construct 

rules that are able to predict pellet quality. This resulted in the eventual increased 

throughput and high pellet yield as reported in [93].

Similarly, rule induction has been used in the context of making credit related decisions 

for loan companies. Michie [109] used inductive decision tree to predict loan decisions 

related to the borderline applicants. Using rule induction, the prediction accuracy 

increased from 50% (achieved by loan officers’ decision) to 70%.
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In addition to the applications above, rule induction mechanisms are also employed 

for diagnosis of mechanical devices in [54], where it was established that a learned 

knowledge base was more accurate than the hand-crafted one. Automatic classification 

of celestial objects [45], preventing breakdowns in electrical transformers [140], quality 

monitoring of rolling emulsions [73], and improving separation of gas from oil [56] are 

some of the other applications of rule induction reported in the survey of Langley et. 

al. [93].

2.3 .2  S toch astic  R u le Ind u ction

Hidden Markov Models [134], as introduced earlier, are often used to represent stochas­

tic processes and are capable of modeling temporal sequences of data. However, some 

domains including sports games in general are inherently hierarchical in nature, contain­

ing low-level audio-visual representations with progressively higher levels of contextual 

interpretations e.g., a top-down view of tennis rules may look like:

{seti,set2 ,s e ts ,..) > {gamei, game2 , gam es,...) > {serve, hit, bounce,...) etc.

If such hierarchical data is to be modeled stochastically, a hierarchical framework like 

hierarchical Hidden Markov Models (hHMMs) [49] is required to model game transi­

tions.

In order to design an autonomous rule induction system, the classical HMM framework 

is not directly applicable as such it generally requires the number of states to be fixed 

a priori. For this purpose, a hierarchical Dirichlet Process (HDP) may be employed to 

provide a prior distribution over countably infinite state spaces for HMM generaliza­

tion (introduced by Teh et. al. in [168]). This results in a non-parametric Bayesian 

implementation of the HMM with applications in e.g. visual scene recognition [82], and 

the modeling of genetic recombination [189] etc.

However, in the context of this thesis, a constrained variant based on the classical Chi­

nese restaurant process (CRP) [4] and Stick-Breaking construction [153] is proposed 

for stochastic induction of game rules for various environments like sports with limited 

rule depth (i.e. tennis and badminton etc.). This is achieved by systematically param­



24 Chapter 2. Literature Review

eterizing hierarchical HMMs to build a rule model that describes the observed game. 

Following are the analogical definitions of the two aforementioned mechanisms:

C hinese R es tau ran t Process: CRP was first introduced in 1985 by Aidons [4]. In

this process, customers, 1,2,..., enter an empty restaurant with an unlimited number 

of tables with unlimited capacity. The first customer sits at the first available table. A 

new customer is then seated either with the previous customer or is seated at the new, 

unoccupied table. The concentration parameter determines how likely a customer is to 

sit at a new unoccupied table. A variant of CRP is employed in [16] that describes a 

distribution on hierarchical partitions and is applied to the problem of learning topic 

hierarchies.

Stick-B reaking C onstruction : SB construction was introduced by Sethuraman

[153]. In this a stick of a unit length is considered. It is then broken at a certain 

point and a value, say tti, is assigned to the stick that is just broken off. The process 

of breaking the stick is continued unlimited number of times to obtain tti, 7T2 , tts, ... etc. 

A tree-structured stick-breaking process is presented in [2] where, in addition to topic 

modeling of text data, hierarchical clustering of images is also performed.

CRP and SB-construction are both formally defined in Chapter 5, where both of these 

methodologies are employed to form a new constrained variant called the Multi-Level 

Chinese Takeaway Process (MLCTP) [77] that is suited to an environment where rules 

can be established in a finite fashion.

2.4 Conclusions

In this chapter a literature survey of some of the key concepts and techniques related to 

this thesis are reviewed. We highlighted some of the annotation systems present in the 

literature. We also introduced concepts related to anomaly detection using various sub­

categories to convey a clear and concise understanding. Anomaly detection in a multi­

level knowledge representation framework was also reviewed while one such system in 

the context of this thesis is also introduced in Chapter 3. We also presented an overview
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of anomaly adaptation methodologies (domain specific anomaly adaptation techniques 

are proposed in Chapter 4 of this thesis). We also reviewed one of the most important 

learning paradigms of machine learning i.e. rule induction and its two sub-categories, 

logical rule induction and stochastic rule induction. Four generic and stochastic rule 

induction methodologies are proposed in Chapter 5 of this thesis.



Chapter 3
Computer Vision Systems for Deriving 

Experimental Datasets

3.1 Introduction

In this chapter, we briefly introduce all the sources of datasets that we use for our 

experiments related to anomaly detection, rule adaptation and rule induction. These 

datasets are extracted from either computer vision-based systems or other similar do­

mains. We start with the tennis video annotation system of [89], for which most of our 

novel algorithms are primarily designed. In order to benchmark the novel methodolo­

gies presented in this thesis, we also introduce a purpose-built ground truth annotation 

system capable of annotating sports videos like tennis and badminton via labeling 

key events with information like Serve and Hit etc. Similarly, we also introduce an­

other manual annotation system capable of labeling human driving intentions using a 

camera-equipped car driven across a city. Additionally, we also introduce two datasets 

from the UCI repository including website browsing behavior data and human activity 

localization data.

27
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3.2 The Tennis Video Annotation System

Figure 3.1 shows a detailed block diagram for the Tennis video annotation system of 

[89]. A simplified version of the system diagram is shown in Figure 3.2. Each block in it 

consists of several “modules” of the system providing specific functionality (which can 

can be found in Figure 3.1, where each rectangular block represents one module of the 

system). It should also be noted that the novel contribution of this thesis to the system 

can be summarised in the “anomalyDetection”, “anomalyAnalysis” and “highLevel” 

blocks of Figure 3.2 for which we introduce novel methods to make the system capable 

of annotating other similar sports as well. The development and implementation of the 

algorithms in other blocks, as well as a memory architecture that enables the modules 

to communicate with each other, and a graphical interface for the system, are parts 

of a pre-existing work carried out in this context (see [83, 89, 122, 144, 192] for more 

details).

P re-P rocessing  Tennis videos from various sources used in our experiments are gen­

erally recorded with interlaced cameras, thus in the “pre-processing” block of Figure 

3.2, image frames are first de-interlaced into fields. Fields are used, rather than frames, 

in order to alleviate the effects of temporal aliasing. This is particularly important for 

the ball tracker. When the tennis ball is moving fast, the ball is alternately present 

and absent on successive frame lines, hence the need to operate on fields rather than 

frames. For simplicity, we will use, the word “frame” to refer to “field” in the rest of 

this thesis.

After de-interlacing, the geometric distortion of camera lens is corrected. The camera 

position on the court is assumed to be fixed, and the global transformation between 

frames is assumed to be a homography [60]. As discussed in Chapter 2, the homography 

is found by: tracking corners through the sequence; applying RANSAC to the corners to 

find a robust estimate of the homography, and finally applying a Levenberg-Marquardt 

optimiser [103] to improve the homography.
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Figure 3.2: A simplified diagram of the tennis video analysis system.

Crowd Close-up Play Close-up Play Crowd

Figure 3.3: An illustrative example of the composition of a tennis video. The length of each 

shot is proportional to the width of the corresponding block in the figure.

Shot A nalysis A broadcast tennis video is composed of shots, such as play, close- 

up, crowd, commercial. An illustrative example of the composition of a tennis video 

is shown in Figure 3.3. Example frames from different types of shots can be found in 

Figure 3.4. In the “shot analysis” block of Figure 3.2, shot boundaries are detected 

using colour histogram intersection between adjacent frames; shots are then classified 

into appropriate types using a combination of color histogram mode and corner point 

continuity. For our purposes, some shots are incorrectly classified as “play” . This 

situation arises when “replays” are encountered. However, these detected false positives 

are eventually eliminated later on by the “projection” module (see Figure 3.1), which 

rejects the shot if it is unable to find the correct tennis court.

C ourt D etection , Ball Tracking, and  P layer Tracking For a play shot, the 

tennis court is detected through a combination of an edge detector and Hough transform 

(as explained in Chapter 2). The players are tracked using a particle filter, and player 

actions are detected (see [122, 144] for details). A more complete description of ball 

tracking [192] and player tracking (including player action recognition [83]) techniques 

involved in this system is presented in Section 4.3.2 where the output of these modules 

are used for anomaly detection and rule adaptation.
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Figure 3.4: Shot types, (a) crowd, (b) close-up. (c) play, (d) commercial.

Event D etection  By examining the tennis ball trajectories, motion discontinuity 

points are detected. These points are combined with player positions, player actions 

and court lines in the “event detection” module, to generate key events such as hit, 

bounce and net.

High-Level R easoning w ith  H M M  Finally, the generated key events are sent to 

a high level module, where the tennis rules are incorporated into a Hidden Markov 

Model (HMM). The HMM is used as a reasoning tool to generate the annotation, i.e. 

outcome of play, point awarded, etc. (see [89] for details). HMMs are also employed 

for providing contextual prior for event detection.

It is this module that we propose to replace with a generic model able to -  ultimately 

-  learn rules of any input game. Figure 3.6 shows the non-hierarchical tennis rule 

model used by Kolonias et. al. in [86, 88] to determine game scores. Our aim is to 

autonomously learn (instead of pre-defining) such rule models in a hierarchical fashion 

that is also applicable to other domains in addition to tennis.

As can be seen in the detailed system diagram of Figure 3.1, the system is composed of 

23 modules. A memory architecture is implemented to enable the modules to commu­

nicate with each other [89]. This system can carry out contextual reasoning at various
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Figure 3.5: The GUI of the tennis video annotation system.
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Figure 3.6: True tennis rule model as defined in [86, 88].

levels of interpretation for court games like Tennis w ith a unified apparatus w ith the  

raw video data at the lowest level and its sem antic annotation of increasing abstraction  

at higher levels.

A graphical interface is also implemented for this system  (see Figure 3.5) that shows 

the output of various modules in this system  providing match related information such 

as high-level annotation e.g. game scores (displayed in the left panel), player positions, 

ball trajectories, and shot related information (such as showing whether the visible shot 

is a close-up, advert or play) etc. Also, temporally, as the game progresses, detected  

low-level features and the related key events are also displayed in the main window.

Table 3.1 shows all of the output labels from this system .

Moreover, an additional motivation of the work presented in this thesis is to provide 

a generalized  high-level module for this system . The aim of this module is to enable 

the autom ated sports video annotation system  to accom m odate novel sports w ith rule 

adaptation and rule learning capabilities via anomaly detection.
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Table 3.1; Summary of tennis events from [89]

Event Description

SFR Serve by Far player. Right side

SFL Serve by Far player. Left side

SNR Serve by Near player. Right side

SNL Serve by Near player. Left side

BIF Bounce Inside Far player’s half court

BOF Bounce Outside Far player’s half court

BIN Bounce Inside Near player’s half court

BON Bounce Outside Near player’s half court

HF Hit by Far player

HN Hit by Near player

BIFSR Bounce Inside Far player’s Serve area on the Right

BIFSL Bounce Inside Far player’s Serve area on the Left

BOFS Bounce Out of Far player’s Serve area

BINSR Bounce Inside Near player’s Serve area on the Right

BINSL Bounce Inside Near player’s Serve area on the Left

BONS Bounce Out of Near player’s Serve area

NET Bounce on NET

3.3 Tennis and Badm inton Ground Truth Annotation Sys­

tem

In order to set a baseline standard for the annotation system of Section 3.2 and to 

measure the accuracy levels of the novel methodologies presented in this thesis, it is 

important to have a tool that can be employed to generate error-free labellings (i.e. 

ground truth annotations). For this purpose, we build a system, capable of frame-wise 

and/or event-wise (i.e. every few frames when a “key event” takes place) annotating 

video frames with spatial information.

With this tool, a particular frame can be annotated with the following meta-data;
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Figure 3.7: Tennis and Badminton Annotation Toolbox

Ball and players locations in the image plane i.e. the input image co-ordinates.

Ball and players locations in the court co-ordinates i.e. the top view of the tennis 

or badm inton court.

Event descriptors such as Serve, Hit, Bounce  and Net.

Using all of the above information, a high-level symbol is generated identifying  

the type and location of an event (see Tables 3.1 and 3.2)

In addition to  the above features, this annotation tool is also capable of reading the  

output of the system  introduced in Section 3.2. Thus, instead of newly annotating every 

single frame for player and ball locations, we can sim ply adjust any errors made by the  

system  (or newly annotate only the missed frames), resulting in a speedy groudtruthing  

process.

We use this tool to annotate, not only tennis videos but also badm inton videos where 

the play structure is similar. Note, these annotations are only event descriptors and do 

not contain information related to point allocations.
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Table 3.2: Summary of Badminton events

Event Description

SF Serve by Far player

SN Serve by Near player

BIF Bounce Inside Far player’s half court

BOF Bounce Outside Far player’s half court

BIN Bounce Inside Near player’s half court

BON Bounce Outside Near player’s half court

HF Hit by Far player

HN Hit by Near player

3.4 Driving Intention Manual Annotation System

In this section we present a similar system to the Tennis and Badminton Ground 

Truth Annotation System of Section 3.3 where human driving intentions are manually 

identified and are then labeled with spatial descriptors (i.e. annotations). We use the 

EU Project DIPLECS’ dataset (also mentioned in [154]), where a camera-equipped car 

is driven across the city, to annotate driving events such as Start, Turn, Signal etc. We 

use this dataset as an additional domain in which we test the generality of the novel 

rule induction methodologies presented in Chapter 5.

A complete list of annotation labels (i.e. event descriptors) using this system is shown 

in Table 3.3.

3.5 Other D atasets

In addition to the data generated by the aforementioned annotation systems, we also 

employ two more datasets from the UCI repository, namely the website (MSNbc.com) 

dataset ([21]) and the human activity localization dataset ([72]). Both of these datasets 

are sequential with various labelings attached that describe page visits related to 

MSNbc.com such as news, sports and weather etc. for the website dataset and hu-
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Table 3.3: Summary of Driving Events used in [154]

Event Description

LA LIGHTS Amber

LC LIGHTS Green

LR LIGHTS Red

S Start

SILL Signal Left

SiRR Signal Right

Sp Stop

TLe Turn Left

TRi Turn Right

TSt Turn Straight

4

27476

-S lid e r  C on tro l-------------

(Î  Norm al Mode 

J) Traffic Light Mode

J  S tart 

% JTum  Right 

J  Lights Green

_JTum Straight 

_ j Lights Red 

.JS ig n a t Left 

J S t o p
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A nnotate  Fram e Clear A nnotation

Figure 3.8: Driver’s Annotation System

man actions such as walking, falling and sitting  etc. for the human activity localization  

dataset. These datasets are employed to test the generic nature of the novel rule in­

duction methodologies presented in Chapter 5.

Lists of labels for both of these two datasets are shown in Tables 3.4 and 3.5.
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Table 3.4: Summary of Website Events used in [21]

Event Description

MH MSN-Home

MNA MSN-News-ALL

MNL MSN-News-Local

MNW MSN-News-Weather

MNB MSN-News-Business

MNS MSN-News-Sports

MIH MSN-Interests-Health

MIL MSN-Interests-Living

MIT MSN-Interests-Tech

MITr MSN-Interests-Travel

MO MSN-Others

Table 3.5: Summary of Website Events used in [72]

Event Description

F Falling

L Lying

LD Lying Down

OF On all Fours

S Sitting

SD Sitting Down

SG Sitting on the Ground

StL Standing up from Lying

StS Standing up from Sitting

StSG Standing up from Sitting on the Ground

W Walking
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3.6 Summary

In this chapter, we very briefly introduced the automated tennis video annotation 

system of [89] which outputs a set of tennis event labels. We also introduced a purpose- 

built tennis and badminton groundtruthing annotation system that exports similar set 

of event labels describing the sport game. In addition to this, we also introduce a 

manual human driving intention annotation system that outputs a set of driving events 

for a camera-equipped car driven across a city.

Furthermore, we finally introduced two other datasets from the UCI repository, that we 

employ for our experiments, describing human website browsing behavior and human 

action localization.

We employ these datasets for our experimental work to demonstrate the performance 

of the newly developed methodologies presented in Chapters 4 (Anomaly Detection and 

Rectification) and 5 (Rule Induction).



Chapter 4
Anomaly Detection and Rectification 

Methodologies for Knowledge Transfer in 

the Context of Automated Sports Video 

Annotation

4.1 Introduction

Adaptive and autonomous sports video annotation systems require the ability to switch 

between relevant knowledge bases depending on the input domain. When a new, but 

related, domain is introduced to the system, various changes are detected that are 

generally inexplicable in terms of the existing rule-base. We call these anomalies as 

defined in Chapter 2 , where it is established that it is crucial to distinguish anomalies 

from mere errors in the input signal.

In this chapter, we present a series of methodologies to tackle the problem of anomaly 

detection in a sports environment i.e. detecting anomalous situations in the context 

of an adaptive system so as to be able to annotate different games. We specifically 

attempt to do this in a court-game environment (i.e. Tennis singles and doubles). In 

this category of sports, players follow certain rules of the game in a specified court

41
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location providing not only feature level information but also contextual information. 

These aspects make a tennis game an important test bed for these methodologies.

Additionally, the associated problem of anomaly rectification is also addressed in this 

chapter. This involves re-structuring of the rule-base in such a way so as to accom­

modate the detected anomalies effectively, enabling recognition of the new domain 

(as discussed in Section 2 .2 . 2  where we presented various approaches to dealing with 

meaningful novel events) and eventually autonomous annotation. Solutions to these 

problems are not only crucial in developing an autonomous video annotator but also 

for knowledge transfer i.e. the capability of knowing the amount of information to be 

shared between two different domains.

For this purpose, we first introduce a lattice-based method to address the problem of 

anomaly detection and rectification that exploits the implicit court structure of sports 

games like tennis. This is achieved via measuring court box activities for two different 

but related modalities (singles and doubles tennis).

The related problem of anomaly rectification is also tackled using this methodology 

(enabling adaptation of the existing learning mechanism to the change of domain). 

Thus, as a concrete instantiation of this notion, we investigate a novel court structure- 

based HMM (Hidden Markov Model) induction strategy for arbitrary court-game like 

environments. We show test results in real and simulated domains to demonstrate the 

ability of the method to identify a change in the rule base going from tennis singles to 

tennis doubles.

We also present another methodology for anomaly detection that is based on the dispar­

ity between the low-level vision based classifiers and the high-level contextual classifiers 

[184]. We then propose another approach to address the problem of anomaly rectifi­

cation via the Convex hulling of localized anomalous states. We show experimental 

results using datasets extracted from the vision based annotation system and ground- 

truth tennis annotator introduced in Chapter 3.

In the next section, we thus introduce the methodological details of the lattice-based 

anomaly detection and rectification method and demonstrate relevant experimental 

results. We then outline the classifier disparity based anomaly detection method as
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well as the convex hulling of detected anomalies approach for anomaly rectification in 

Section 4.3. A discussion and summary of this chapter is presented in Section 4.4.

4.2 Lattice Based Anom aly D etection  and Rectification

Anomaly detection has received considerable interest in the literature (Chapter 2 ) as 

a means of determining whether a learning domain has changed in a fundamental 

way. Furthermore, this also may require continuous adaptive learning to be abandoned 

and a new learning process initiated in the new domain i.e. switching the knowledge 

base. Thus, in this section, we introduce a lattice-based method for anomaly detection 

specifically in the context of court game environments such as Tennis. We also address 

the related problem of anomaly rectification using this methodology; the adaptation of 

the existing learning mechanism to the change of domain. As a concrete instantiation of 

this notion, an HMM (Hidden Markov Model) based induction strategy is investigated 

in this context. We test (in real and simulated domains) the ability of the method to 

adapt to a change of rule structures going from tennis singles to tennis doubles. In the 

following section, we introduce the method following its methodological formulation 

and experimental results.

4 .2 .1  In trod u ction

There is a well-established requirement for detecting and treating anomalies in machine 

learning for creating an adaptive system. Artificial cognitive systems, in particular, 

should be able to autonomously extend capabilities to accommodate anomalous input 

as a matter of course (humans are known to be able to establish novel categories from 

single instances [173]). Typically, the anomaly detection problem is one of distinguish­

ing novel (but meaningful) input from misclassification error within existing models i.e. 

by defining a new learning domain. By extension, the treatment of anomalies so deter­

mined typically involves the attribution of suitable class designators to the novel input, 

along with an appropriate method for extending (i.e. generalizing) this categoriza­

tion. The composite system should thus be capable of inferring novel representations
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— ‘bootstrapping’ — via the interaction between the bottom-up processes of anomaly 

detection and the top-down processes of novel object categorization. Such composite 

techniques have been applied, for example, to the problem of segmentation [95]. Often, 

bottom-up description will also explicitly consider context, rather than specific objects 

of classification interest as means of generating high-level domain description [98, 126].

For evaluation and the proof of concept, we consider anomaly rectification in the con­

text of sporting events, focusing on Markovian modeling of anomalous high-level (i.e. 

abstract, rule-like) state transitions such that the inference system must detect how 

the rules of game-play should change. As a test-bed for this idea, we start with a 

system trained on ‘singles’ tennis matches, and then change the input material for dou­

bles tennis matches. On the assumption that a suitable detection system has already 

flagged the game-play anomaly and collected suitable quantities of data in the newly 

defined domain, the problem then is to adapt the existing rule structure accordingly. 

We define our approach in terms of observed state transition probabilities defined in the 

two different rule domains, initially testing the method on simulated state transition 

data and later on testing on real data derived from an existing system that employs 

court line detection, homography, player/serve detection, and ball detection via tracklet 

propagation for singles tennis annotation [81, 192].

In the following section we present the problem formulation, with the methodology 

described in Section 4.2.3. The implementation protocol and experimental validation 

on real and simulated data are discussed in Section 4.2.4 with methodological conclusion 

offered in Section 4.2.5.

4.2 .2  A n om aly  D etec tio n  and R ectifica tion  in  C ourt G am e E nviron­

m en ts

The tennis annotation system described in [81, 192] and Section 3.2 does not identify 

individual players, so that scoring is primarily determined via ball movements with 

respect to designated play areas. We employ a simplified version of Table 3.1 introduced 

in Chapter 3 as follows:

• Play Area (PA),
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Near Play Area (NPA),

Far Play Area (FPA),

Near Serve Area (NSA),

Far Serve area (FSA),

Ball Out Area on Far side of the court (BO F), and 

Ball Out Area on Near side of the court (BO N).

Figure 4.1 highlights the singles tennis’ playing area and also the tram lines (included  

in the playing area for doubles tennis).

:■

■If '

' :

S '

t a

V

r a p
f e - '  ■

SINGLES PLAY AREA

TRAMLINES

SERVE AREAS

Figure 4.1: Highlighted playing areas for singles and doubles tennis including the out areas
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Each of these areas is associated with a 4-tuple box designation, 6 , given in terms of 

the ordered set of horizontal,

iJ  =  {(hi,/i2 , . •. (4.1)

and vertical screen lines,

V  = {^{yi,V2,.. (4.2)

Thus,

h e {{hoc,v^,h^,Vuf)} (4.3)

with ha,h(^ e  H  and, v^,Voj 6  V.

Applying the constraints,

v/3 < Voj and (4.4)

each box has a unique b designated in terms of its bottom left and top right corner 

coordinates; i.e.

{ha,vg) and {h^,Voj) (4.5)

The complete set of boxes {6 } forms a lattice (see Figure 4.2), having joins (also known 

as least upper bounds or suprema) and meets (also known as greatest lower bounds or 

infima) analogous to intersection, union and complementation etc in set theory^. This 

allows for complex relationships between designated play areas, e.g. overlaps and subset 

relations (such as PA/FPA=NPA i.e. near play area is the difference between the total 

play area and the far play area). This notion of a lattice clearly generalizes to any

 ̂A set equipped with a partial order relation for all elements is automatically a lattice if this relation 

is reflexive, antisymmetric and transitive.
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other rectilinear court structures such as those of badminton (and indeed our method  

as a whole is intended to generalize to any such domain, so that learning-transfer is 

possible between superficially different game types).

m

Figure 4.2: Tennis court lattice with a Tennis court mosaic and projection images on the left 

and two views (2-D and 3-D) of the constructed court lattice showing various levels of court 

box sizes.

From this perspective, the distinction between singles and doubles tennis is character­

ized by a change in definition of the play area (PA);

(P A  -4- bo) —> (P A  b n ) (4.6)

with E {(ha,^;9 ,h(,Uw)}.

As a step towards a fully general sport-rule annotation induction system  capable of 

transferring learning from one domain to another, our aim is to detect this transition  

and thereby identify both the old and new play area definitions i.e. bo and bn-
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This situation is made inherently complex by the fact that ball state transitions in

terms of which the high-level game description is given e.g. for a typical serve ,

N S A  P A  ^  BO  (4.7)

are not directly observed. Instead, we see only transitions in the occupancies of the 

various boxes within the lattice, which looks like,

hi — > -6 2  —̂ (4.8)

and to which these high-level (contextual) game descriptions correspond, such that the 

high-level state space can be regarded as the hidden states of a Hidden Markov Model 

(HMM). Moreover (making this analogy exact), we find that the transition structure is 

inherently ambiguous within the observable state space because of the possibilities of 

inclusion and intersection within the lattice. We will thus in general have a large set of 

box transitions within the lattice,

{ ( 6 1  -4  6 2  ^  5g), ( 6 5  -4   ̂ bs),...}  (4.9)

which are consistent with any given sequence of key play areas. The task of determining 

which high-level play area has undergone redefinition in the transition from singles to 

doubles game-play requires that we obtain a method for treating this ambiguity. We do 

this via a Minimum Description Length (MDL)-like [141] approach in which we favor 

the smallest parametric change, required to bring-about the appropriate high-level re­

description of the game mechanics (key areas being the main rule-designated areas of 

play). A single key area transformation is represented by,

{key.area -4  6 ^) -4  {key.area -4  6 ^) (4.10)

Note that key area transitions in an arbitrary court game can be between any boxes 

of any size, for instance a transition that goes from the serve area (SA) to the far play 

area (FPA) is generally a transition from an area of 1 ‘court unit’ to an area of several
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court units in size (if a court unit is the smallest delineatable region defined by the 

court lines).

Consistent with a fully-unsupervised approach, we will initially assume no prior knowl­

edge of the injective mapping,

V  -4 {b} (4.11)

where V  is the set of play areas,

V  = {PA, N PA , FPA, N SA , FSA , BOF, B O N }  (4.12)

and b e {{ha, vp, ĥ , v^)}

(i.e. we will not assume knowledge of even the initial single play areas). However, for 

the purposes of experimental application, we will later relax this assumption in order 

to recast the approach as one of learning transfer (which can be treated as a subset of 

the above problem).

4.2 .3  M eth od o logy

We assume that game play can be modeled via an HMM in which the hidden states 

are the rule-designated play areas P  and the emission states are the least elements of 

the lattice V  (i.e. the ‘smallest’ indivisible boxes of the court) such that,

b e  {{ha, v p ,  ha+i, V j 3 + i ) }  (4.13)

The game play is thus described by key points of the ball’s trajectory (serves, hits

and bounces) which are described by the system of Section 3.2 as having occurred at a

particular time within one of these ‘small’ (i.e. indivisible) court units. An HMM-based 

game-play description of this kind is sufficient to enable the existing hardwired tennis 

annotation system of Section 3.2 to provide accurate score annotation of singles games.
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Within such a Markovian framework we consequently assume that there exists a transi­

tion probability matrix Mp{Vin,Vout) describing the probability of transition between 

key play areas. In particular, this matrix is sufficient to capture the notion that a 

certain fraction of the serves will be returned, with the remainder resulting in either a 

point award (i.e. F P A  -> BO) or an ‘out ball’ (i.e. SA  -> BO). The returned balls 

will either go out, be awarded a point or enter into a further rally recursion, with some 

particular probability captured by the matrix Mp.

In addition to this matrix, game-play characterization also requires the injective map­

ping,

f{V)  ^  {6 } (4.14)

that gives the actual definitions of the play areas ( /  is thus the mapping between 

the key-area labels and the corresponding boxes within the lattice). Consequently, 

the transition from singles to doubles tennis game-play may be characterized by a 

transition from this mapping to some other specific mapping i.e. /  -4 / '  (i.e we assume 

that the basic game-play structure remains the same in terms of the key-area transition 

probabilities, with only the mapping into the lattice undergoing change) . In our later 

simulation of the single to doubles transition, only a single element of this mapping 

(relating to the play area) will undergo change: i.e.

(P A  -4  bo) -4  (P A  -4  bfi) (4.15)

where bo is the old play area and bn is the new play area, with

bo, bn e {{ha, Vp, Vuj)} (4.16)

However, the only evidence for this transition in the definition of play area (PA) that we 

are presented with is in terms of the observed matrix of box transitions defined over the 

entire lattice M{bi € {b}, 6 2  G {b}) (note that M  is the histogram of lattice transitions 

for a given set of play sequences, rather than a true row-normalized transition matrix
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Tennis Singles Tennis Doubles

Shot 1

too 209 300 400

Shot 2

too 200 3C0 400

Shota

Shot 4

too 200 309 400

Figure 4.3: Singles and Doubles Tennis court box transition at the smallest (i.e. indivisible) 

units
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like Mp). An example illustration of this is shown in Figure 4.3 where court box 

transitions are shown only at the lowest level of the court lattice.

A change to the transition matrix Mp  can thus only be detected by compiling multiple 

observations in the differing domains (resulting in e.g. a singles transition matrix, 

M®, and a doubles transition matrix, M^). However, even with sufficient sampling of 

M®, we do not directly know which play-area box-mapping has undergone transition, 

since in general a large fraction of other boxes in the lattice will experience correlated 

activity as a result of the transition. In order to determine precisely which key area 

redefinition has taken place our first goal is thus to determine the matrix transform, 

T, parameterized by the key play-area transform, {bo bn), that brings about M^  i.e. 

we require a T  such that.

T{M\bo,b„) = M “ (4.17)

Without further analysis, it is not clear a priori that this is a well-posed problem, in 

the sense that the transform may be non invertible if the resultant matrix.

M'^ = T{M%bo,bn) (4.18)

loses information about the individual lattice components bo, bn- In addition to this 

difficulty, we also have the potentially inadequate sampling of the probabilities in the 

underlying Markovian play-area transitions of Mp manifested in M^ and M^. We there­

fore seek instead to minimize the residual of the parameterized transform T(M^, bA, bp) 

with respect to M^, rather than directly inverting it:

{by, b y )  = argmin D (T(M ^ 6 .4 , be), M^) (4.19)
(bA,bB)

where D is an appropriate distance measure (see below); the superscript est denotes 

the estimated lattice value. The transform T, itself, is derived as follows:

The aggregate ‘ball-event activity’ associated with any given box b in the lattice can be 

separated into ‘into’, M(., 6 ), and ‘out-of’, M{b,.) transition components. We can also
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define a coarse aggregate activity measure A{x) by summing over all of the observed 

transitions into and out of the box x  for every single box within the lattice,

A{x) =  (M {x, m) M (m, rc)) (4.20)

where,

^  _  b̂ UhÔ nh +  f)  '^nvi'^ny +  1) gl)

The rationale for doing so is we can thereby obtain an approximate means for estim ating  

the effect o f redefining a key area (e.g. {PA -4  ho) -4  {PA -4  6„)) by translating the  

activity associated w ith a box bo to  bn', i.e. such that,

A""'^(6») =  A(6^) (4:22)

However, it is not sim ply the case that we can transfer activity in this way w ithout also 

explicitly considering interactions within the lattice structure.

A measure of this lattice interaction can be defined in terms o f the proportional overlap 

of one box w ith respect to  another. The expectation of the coarse activity measure A  

in box bi due to  activity in box 62 for uniformly distributed ball events is thus:

E[A{bi\b2)] = j^^i^^j^.A(52), \b\ = {ha -  h^){vg -  Vof) (4.23)

This is also true for both the ’into’ and ’out o f’ of activity com ponents. Thus, for 

example, given an isolated ’into’ com ponent M{.,b), we expect a second, potentially  

overlapping, box b' to  have an ’into’ com ponent

|6' n  6 |

IN
(4.24)

Consequently, to  a first order o f approximation, the play area redefinition {PA -4  

bo) -4  {PA -4  bn) has the effect on the m atrix M  of subtracting a lattice interaction’
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matrix, Mgub, that removes activity attributable to box bo, while adding another lattice 

interaction matrix, Madd  ̂ that displaces this activity to box Hence:

K m ’ y) =  M(x, ho)E[A{v\hn)\ +  M{ho, v)E[A{x\br,)] (4.25)

and

Mj%)(æ,ÿ) =  M{xX)E[A(y\bo)] + M{bo,y)E\A{x\bo)] (4.26)

That is, we obtain Madd and Msuh by multiplying all ‘into’ and ‘out of’ transitions of 

the box in question by the expected overlap of activity. To the first order, the transform 

T can, thus, be approximated by:

T(M, bo, bn) = M {„.) +  M W ( . , .) -  .) (4.27)

However, this does not take into account the fact that activity in bo and bn have a 

certain likelihood of influencing each other at the outset; i.e. we cannot say that all of 

the activity in M attributable to bo should be transferred to Moreover, we cannot 

say that all activity in bo is attributable specifically to bo', it could equally apply to an 

intersecting box. We therefore introduce a free parameter representing the appropriate 

proportion of activity to transfer for inclusion within the optimization i.e. we specify:

T{M, bA, bB,l) = M{„ .) +  .) -  .)) (4.28)

such that the optimization function becomes:

{ b f \  5n *) =  argmin 
bA,bB

argmin D {T {M \ bA,bB,l), M^))
7

(4.29)

The ready optimisability of the above equation lies in the fact that the matrices 

and are essentially sparse when the effects of lattice interaction are removed from 

consideration, with occupancy dictated by the size of the game-play transition matrix, 

M p{V,V)  (i.e. V X V  ), rather than the size of the lattice transition matrix, |6 | x
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|6 |. We can thus regard M  as a convolution of the individual components {gx,gy) 

of Mp{f{V), f{fP))  with an activity ‘point-spread function’, E[A{x\g]f)].ô{y -  py) +

-  g i)‘

The full optimization function for the transform, using an activity-normalized RMS 

(root mean square) residual difference measure, is thus:

(% , % ) =  argmin 
bA^B

argmin RM S{{M ^—
1

{M“ + -  M j y ') ) )  o M„„nn)l (4.30)

where the normalization matrix is defined by.

- 1

(o is the Hadamard product).

The above optimization is still based on finding a single, optimal substitution bp -4 bn', 

however, denoting this optimization 0 (p§^,p^*), it can be seen that a fully general 

optimization function for arbitrary matrix transforms, Ogen, can be obtained by con­

catenating sequences of individual box redefinitions:

Ogg;,(Mi, Mg) =  (4.32)

However, in this case it is necessary to balance the allocation of parametric freedom 

(essentially governed by |m|) with the cumulative RMS residuals. This requires an 

empirical cross-validation or a priori MDL-like criterion to accomplish. Such a gen­

eralization of the current approach could potentially transfer learning from tennis to 

badminton, since much of the serve/return game-play structure is consistent between 

the two, with only the court area definitions differing between them.
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4 .2 .4  Im p lem en tation  P ro toco l and E xperim en ta l resu lts

We employ simulated tennis singles and doubles games for evaluation using 100 playing 

shots starting with serve and ending with a BO. We also test on real data deiived fiom 

the Toray Pan Pacific Open 2009 womens singles match between M. Rybarikova and 

A. Radwanska with a total of 58 play-shots with 58 Serves, giving 343 events in total 

(excluding hits) and 285 Bounces. The doubles game is simulated using the real data 

by expanding the playing area via multiplying all the points with the factor ^  =  1.33 

(see Figure 4.4).

c2
cl

Figure 4.4: Singles to Doubles Tennis extension factor

Comparative lattice box activities in the smallest (i.e. indivisible) units can be seen 

in Figure 4.5 for the original singles tennis and derived doubles tennis. Note, the box 

activités shown only represent the bounce type of events.

To start the experiments, we first simulate a simplified tennis game by choosing M p{V , V ) 

with the following transition probabilities (we omit NPA and FPA transitions to give 

a single-box lattice-transformation problem):
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m
i

1

I

m

(a) Tennis singles (b) Tennis doubles

Figure 4.5: Comparative lattice box activités for singles tennis (left) and derived doubles 
tennis (right) using the expansion factor shown in Figure 4.4

p(A5'A PA) =  0.9, (4.33)

p(A6'A ^  BOP) =  0.1, (4.34)

p(PA  -7 PA) = 0.2 (4.35)

p{PA -> BOF) = 0.7, (4.36)

p{PA —> BON) = 0.1, (4.37)
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p[others) = 0 (4.38)

i.e. we capture the possibility that a serve may or may not be returned; a low rally 

probability is also included. We also have the following ordered 4-tuple play area 

definitions for simulated ‘doubles’ play (omitting center lines for simplicity):

N S A —4- (1,1,3,2), (4.39)

P A -4̂  (2,2,5,5) (4.40)

B O P -4  (1 ,5 ,6 , 6 ) (4.41)

B O A ->.(1 , 1 , 6 , 2 ) (4.42)

For 100 simulated serves this generates the lattice transition matrix depicted in Figure 

4.6 .

Singles play is simulated (in this simplified scenario) by changing the PA key area 

description to (PA =  (3,2 ,4,5)) and keeping all the remaining values. This represents 

the fact that the ‘tram-lines’ are no longer part of the legitimate play area, so that

any ball bouncing in this area is not automatically out. The resulting lattice transition

matrix depicted for observations of 100 simulated serves is depicted in Figure 4.7.

Carrying out the optimization in Equation 4.30 by considering all possible transitions,

{PA -4- *) -4  {PA  - 4  b‘f )  (4.43)

and iterating over 7 , we obtain an estimate of this game-play area redefinition. (Note 

that for the transfer learning problem, we need only consider the redefinitions of known 

play areas such that the search space is of size |P | rather than |6 |, i.e. b e  /(P )  ).
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Figure 4.6: Gray-scale histogram of Singles (M^) transition counts over the lattice (ordered 

by box size and count-number, respectively)

A general performance metric for proposed play-area redefinitions of this type can be 

obtained by taking the total ordinal difference between proposed and actual transitions. 

Thus, for a ‘ground-truth’ box redefinition;

P A {h l  v l  h i  v^) - 4  P A {h l  v l  h i  < )

and a proposed box redefinition supplied by the optimization method;

(4.44)

P A {h l  v l  h i  v l  -4 PA{hl, v l  h i  nj) (4.45)

We have;

Error —
max(Error) 4=1LI"'æI-. — (4.46)
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Figure 4.7: Gray-scale histogram of Doubles (M^) transition counts over the lattice (ordered 

by box size and count-number, respectively)

Figure 4.8 thus gives the resulting average prediction error for a given number, x, of 

complete Markov chains obtained by Gibbs sampling [23] of the indicated singles and 

doubles play area transition matrices (with error bars given by the standard error of 

mean determined from 20 samples). It may be observed that x 1 0  complete game- 

play sequences is sufficient to identify the play area redefinition involved in transiting 

from singles to doubles for the specified game parameters.

For the real data. Doubles play is simulated using the real data by multiplying the 

baseline (x-axis) by 1.33 (centralized at the court center) so as to extend the legal play 

into the tram-lines. We fold the court along its symmetric x and y axes around the 

court center to provide better statistical sampling (generating a lattice of 36 elements) 

and also introduce a weighting proportional to the physical size of court box to ensure 

the validity of the ‘within box’ uniform distribution assumption as far as possible. For 

this, we use the following horizontal and vertical ordinate values:
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Figure 4.8: Mean prediction error of simulated game area transformation for a given number 

of complete singles/doubles serve sequences (x-axis)

horzontalLineSet = [40,100,127, 208, 289,316,376]; (4.47)

verticalLineSet =  [—10, 50,158,284,410,518,578]; (4.48)

In the above experiment the method returns the estimated transform (in the folded 

coordinate system):

(PA ^  (2,3,4,4)) (PA (2,2,4,4)) (4.49)

That is, the system has correctly identified the original play area and made a correct 

identification of its redefinition (differing in no ordinate values); a residual graph is
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Figure 4.9: RMS residual over for 6^ =play area.

given in Figure 4.9. The method is hence sufficiently robust to accommodate any 

systematic deviations from uniformity in the play sequence distribution.

4.2 .5  C onclusion

In this section, we set out, within the context of sport video annotation, to address 

the problem of anomaly rectification-, the adaptation of an existing learning mechanism 

to a change of domain. Consequently, we proposed a novel HMM induction strategy 

tuned for court-game environments that maps ‘hidden’ game-play states into a court 

lattice using a deconvolution-like strategy. The system was able to correctly determine 

transitions in the definition of a play area on both real and simulated data of tennis 

singles and doubles.

In the next section, we introduce another approach to address the problem of anomaly 

detection with a relevant rule adaptation mechanism.
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4.3 Classifier D isparity based Anom aly D etection  and Con­

vex Hulling of Anom aly States for Anom aly Rectifi­

cation

As discussed earlier in Chapter 2  and in Section 4.2, a key concept in machine percep­

tion is how to adaptively build upon existing capabilities so as to permit novel func­

tionalities. Implicit in this are the notions of anomaly detection and learning transfer. 

A perceptual system must firstly determine at what point the existing learned model 

ceases to apply, and secondly, what aspects of the existing model can be brought to 

bear on the newly-defined learning domain. Anomalies must thus be distinguished 

from mere outliers, i.e. cases in which the learned model has failed to produce a clear 

response; it is also necessary to distinguish novel (but meaningful) input from misclas- 

sification error within the existing models. We thus apply a methodology of anomaly 

detection based on comparing the outputs of strong and weak classifiers [184, 202] to 

the problem of detecting the rule-incongruence involved in the transition from singles 

to doubles tennis videos. We then demonstrate how the detected anomalies can be used 

to transfer learning from one (initially known) rule-governed structure to another. We 

use a convex-hulling approach to address the notion of rule adaptation i.e. rule updat­

ing (an application of anomaly rectification). Framework for carrying out this method 

is introduced in the next section following its methodological details and experimental 

results.

4.3 .1  In trod u ction

As discussed in Section 4.2, autonomous systems should be able to accommodate novel 

inputs as a matter of course like humans (as in [173]). The anomaly detection problem, 

as defined in Chapter 2 , is typically one of distinguishing novel (but meaningful) input 

from misclassification error within existing models. By extension, the treatment of 

anomalies so determined involves adapting the existing domain model to accommodate 

the anomalies in a robust manner, maximizing the transfer of learning from the original 

domain so as to avoid over-adaptation to outliers (as opposed to merely incongruent
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events). That is, we seek to make conservative assumptions when adapting the system.

The composite system for detecting and treating anomaly should thus be capable of 

bootstrapping novel representations via the interaction between the two processes. In 

this section, we aim to demonstrate this principle with respect to the redefinition of key 

entities designated by the domain rules, such that the redefinition renders the existing 

rule base non-anomalous. We thus implicitly designate a new domain (or context) by 

the application of anomaly detection.

Our chosen framework for anomaly detection is that advocated in [184, 2 0 2 ] which 

distinguishes outliers from anomalies via the disparity between a generalized context 

classifier (when giving a low confidence output) and a combination of ‘specific-level’ 

classifiers (generating a high confidence output). The classifier disparity leading to the 

anomaly detection can equally be characterized as being between strongly constrained 

(contextual) and weakly constrained (non-contextual) classifiers [2 0 ]. A similar ap­

proach can be used for model updating and acquisition within the context of tracking 

[200] and for the simultaneous learning of motion and appearance [201]. Such tracking 

systems explicitly address the loss-of-lock problem that occurs without model updating.

In this section we consider anomaly detection in the context of sporting events. What 

we propose here is a system that will detect when the rules of tennis matches change. 

We start with a system trained to follow singles matches, and then change the in­

put material to doubles matches. The system should then start to flag anomalies, in 

particular, events relating to the court area considered to be “in play” .

The system is based on an existing tennis annotation system [81, 192] (also discussed 

in Section 3.2), which is used to generate data for the anomaly detection. This system 

provides basic video analysis tools: de-interlacing, lens correction, and shot segmen­

tation and classification. It computes a background mosaic, which it uses to locate 

foreground objects and hence track the players. By locating the court lines, it com­

putes the projection between the camera and ground plane using a court model. It is 

also able to track the ball; this is described in more detail in the next section.

In the next section we describe the weak classifiers and their integration. In Section 4.3.3 

we discuss the anomaly detection mechanism. We describe some experiments to validate
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the ideas in Section 4.3.4, incorporating the results into the anomaly-adaptation/rule- 

update stage in the immediately following section. We conclude in Section 4.3.6.

4.3 .2  W eak C lassifiers 

Ball event recognition

Ball event recognition is one of the weak classifiers we employ. In the following, we 

first briefly describe the tennis ball tracker, then introduce an HMM-based ball event 

classifier.

Tennis ball tracking: To detect the key ball events that describe how the match 

progresses, e.g. the tennis ball being hit or bouncing on the ground, the tracking of the 

tennis ball in the play shots is required. This is a challenging task: small objects usually 

have fewer features to detect and are more vulnerable to distractions; the movement of 

the tennis ball is so fast that sometimes it is blurred into the background, and is also 

subject to temporary occlusion and sudden change of motion direction. Even worse, 

motion blur, occlusion, and abrupt motion change tend to happen together: when the 

ball is close to one of the players. To tackle these difficulties, we propose a ball tracker 

based on [192] with the following sequence of operations:

(i) Candidate blobs are found by background subtraction.

(ii) Blobs are then classified as ball /  not ball using their size, shape and gradient 

direction at blob boundary.

(iii) “Tracklets” are established in the form of 2nd-order (i.e. roughly parabolic) tra­

jectories. These correspond to intervals when the ball is in free flight.

(iv) A graph-theoretic data association technique is used to link tracklets into com­

plete ball tracks. Where the ball disappears off the top of the frame and reappears, 

the tracks are linked.

(v) By analyzing the ball tracks, sudden changes in velocity are detected as “ball 

events” . These events will be classified in an HMM-based classifier, to provide 

information of how the tennis game progresses.
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Figure 4.10: Two examples of the final ball tracking results with ball event detection. Yellow 

dots: detected ball positions. Black dots: interpolated ball positions. Red squares: detected 

ball events. In the left example, there is one false positive and one false negative in ball event 

detection. In the right example, there are a few false negatives.

H M M -based  ball event recognition: The key event candidates of the ball tracking 

module need to be classified into serve, bounce, hit, net, etc. The higher the accuracy 

of the event detection and classification stage the less likely it is that the high level 

interpretation module may misinterpret the event sequences. A set of continuous- 

density left-to-right first-order HMMs, i.e.;

(4.50)

are used to analyze the ball trajectory dynamics and recognize events regionally within 

the tracked ball trajectory, based on [5], but using the detected ball motion changes to 

localize events. K  is the number of event types in a tennis game, including a null event 

needed to identify false positives in event candidates. An observation, o ,̂ at time t, is 

composed of the velocity and acceleration of the ball position in the mosaic domain;

(4.51)

To classify an event at a time t, a number of observations, i.e..

O t  =  O f - W ,  O t - W + l ,  Ot-\-W (4.52)

are considered within a window of size 2W  + 1. Each HMM is characterized by three 

probability measures: the state transition probability distribution matrix 0, the obser­
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vation probability distribution 7] and the initial state distribution tt, defined for a set 

of N  states i.e.,

S  — (si, sg, . . . j  Sjv) (4.53)

and ball information observation sequence Of. Each state sj is represented by a number, 

Gj, of Gaussian mixture components. Given a set of training examples corresponding to 

a particular model, the model parameters are determined by the Baum-Welch algorithm 

[195]. Thus, provided that a sufficient number of representative examples of each event 

can be collected, an HMM can be constructed which implicitly models the sources of 

variability in the ball trajectory dynamics around events.

Once the HMMs are trained, the most likely state sequence for a new observation 

sequence is calculated for each model using the Viterbi algorithm [195]. The event is 

then classified by computing

^ =  argmax(P(Of|Afc)) (4.54)
k

For every ball trajectory, the first task is to identify when the serve takes place. The first 

few key event candidates are searched; once the serve position and time are determined, 

the subsequent key events candidates are classified into their most probable categories, 

and the null events, considered false positives, are ignored. For recognized bounce 

events, the position of the ball bounce on the court is determined in court coordinates.

This process can have some false negatives due to ball occlusion and smooth interpola­

tion etc. [192]. This happens often when there is a long time gap between two recognized 

events. To recover from such suspected false negatives, an exhaustive search is used to 

find other likely events in such gaps.

Action recognition

In tennis games the background can easily be tracked, which enables the use of heuristics 

to robustly segment player candidates, as explained in [81]. To reduce the number of
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Figure 4.11: Sample images and detected players performing each primitive action of tennis.

false positives, we extract bounding boxes of the moving blobs and merge the ones 

that are close to each other. Next, geometric and motion constraints are applied to 

further remove false positives. A map of likely player positions is built by cumulating 

player bounding boxes from the training set. A low threshold on this map disregards 

bounding boxes from the umpires and ball boys/girls. In subsequent frames, the players 

are tracked with a particle filter. Figure 4.11 shows some resulting players detected in 

this manner, performing different actions.

Given the location of each player, we extract a single spatio-temporal descriptor at 

the center of the player’s bounding box, with a spatial support equal to the maximum 

between the width and height of the box. The temporal support was set to 12 frames. 

This value was determined using the validation set of the KTH dataset. As a spatio- 

temporal descriptor, the 3DH0G (histogram of oriented gradients) method of Klaser 

et al. [83] is chosen. This method gave state-of-the-art results in recent benchmarks of 

Wang et al. [182] and has a number of advantages in terms of efficiency and stability 

over other methods. Previously, 3DH0G has only been evaluated in bag-of-visual-words 

(BoW) frameworks.

In preliminary experiments, we observed that if players are detected, a single 3DH0G 

feature extraction followed by classification with kernel LDA gives better performance
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than an approach based on BoW with key-point detection.

Three actions are classified: serve, hit and non-hit. A hit is defined by the moment a 

player hits the ball, if this is not a serve action. Non-hit refers to any other action, e.g. 

if a player swings the racket without touching the ball. Separate classifiers are trained 

for near and far players. Their location w.r.t. the court lines is easily computed given 

the estimated projection matrix. For training, we used only samples extracted when a 

change of ball velocity is detected. For the test sequences, we output results for every 

frame. Classification was done with Kernel LDA using a one-against-rest set-up.

We determine the classification results using a majority voting scheme in a temporal 

window. We also post-process them by imposing these constraints that are appropriate 

for court games:

(i) Players are only considered for action classification if they are close to the ball, 

otherwise the action is set to non-hit',

(ii) We assume that the detected hits are actually serves at the beginning of a play 

shot;

(iii) At the later moments, serves are no longer enabled, i.e., if a serve is detected later 

in a play shot, the action is classified as a hit.

This enables overhead-hits (which are visually the same as serves) to be classified as 

hits. In order to provide a confidence measure for the next steps of this work, we use 

the classification scores from KLDA (normalized distance to the decision boundary).

Bounce position uncertainty

As the ball position measurements and camera calibration are subject to errors, the 

probability values near the boundaries of parts of the court will bleed into the neigh­

boring regions. This can be modeled by a convolution between the probability function

P{bouncein\xit), (4.55)
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where xt is the ball position, and the measurement error function p{e) which is assumed 

to be Gaussian with zero mean and standard deviation a^aip

P{bouncein\xt) = / P(bouncein\'ip)p{xt — ip)d'il; (4.56)
Jip

Finally, the probability of hounccout is given by:

P{bounceout\^t) =  1 -  P(bouncein\xt) (4.57)

C om bining evidence

The sequence of events is determined by the output of the ball event recognition HMM. 

Firstly a serve is searched for. If “serve” is one of the 4 most probable HMM hypotheses 

of an event, that event is deemed to be the serve, and the search is terminated. The 

remaining events are then classified on the basis of the most probable HMM hypothesis. 

The entire ball trajectory is then searched for possible missed events: e.g. if consecutive 

events are bounces on opposite ends of the court, it is likely that a hit was missed.

Sequences of events that start with a serve are passed to the context classification 

stage. Event sequences are composed of some 17 event types (see [87]). Each event 

is assigned a confidence, based on the HMM posterior probabilities and, for hits, the 

action confidences. The combination rules are at present a set of Boolean heuristics, 

based on human experience. Bounce events are also assigned a separate confidence, 

based on the bounce position uncertainty.

4 .3 .3  C on tex t C lassification

To detect incongruence, we devise an HMM stage similar to the high-level HMM used 

to follow the evolution of a tennis match as described in [87]. Here, each sequence of 

events starting with a serve is analyzed to see if it is a failed serve or a point given to 

one of the two opponents. The aim is to find sequences of events in which the temporal 

context classifier reaches a decision about awarding a point before the end of play. 

Thus, in an anomalous situation, a number of events will still be observed after the
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Figure 4.12: Doubles tennis ball tranjectory in a complete play-shot with a highlighted 

anomaly.

decision has been taken by this awarding mechanism. However, the observed sequence 

of events will only be considered as anomalous when the confidence associated with its 

events by the weak classifier is high enough. If the reported events are correct, the only 

event that will create such anomaly is a bounce outside the play area. In the case of 

the ball is clearly out in singles tennis, the play will stop either immediately or after 

few ball events.

In the doubles tennis, however, the tram lines are part of the play area and bounces 

in the tram lines will be seen as anomalous for an automatic system that is trained on 

singles tennis. (Note that the sequence of events that goes into the context classifier 

does not have multiple hypotheses except when there is uncertainty about bounce in 

or out (Eq. 4.56)). Through direct observation of singles tennis matches, we have 

established that the number of events reported subsequent to a clear bounce occurring 

outside of the legitimate play area does not appear to exceed four events. This is 

consequently our basis for classification of context.

An example anomaly is highlighted in Figure 4.12 where a complete ball trajectory of 

a play-shot in doubles tennis with a tramline bounce is shown.

4 .3 .4  E x p e r im e n ts

Experiments were carried out on data from two singles tennis matches and one doubles 

match. Training was done using 58 play shots of Women’s final of the 2003 Australian 

Open tournament while 78 play shots of Men’s final of the same tournament were used
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Figure 4.13: Singles (validation dataset) - Confusion matrix of recognized events, K. We use 

the same labels as [5].

for validation. The test data is composed of 163 play-shots of doubles Women’s match 

of the 2008 Australian Open tournament. The data is manually annotated and 9 HMMs 

with 3 emitting states and 256 Gaussian mixture components per state modeling ball 

events were trained using the training data. The performance and parameterization of 

these HMMs was optimized on the validation data. A window size of 7 observations is 

selected (W =  3  in Sec. 4.3.2). An accuracy of 88.73% event recognition was reached 

on the validation data, see Figure 4.13. The last column of the matrix represents the 

number of deletions and the last row represents the number of insertions.

The confidence measures for the validation data were then used to find appropriate 

thresholds for rejecting sequences of events that are anomalous due to processing errors 

rather than genuine bounces out of the play area (Figure 4.15). The x-axis shows the 

minimum confidence reported on events up to the point of decision made about the 

event sequence while the y-axis shows the minimum confidence reported on bounces in



4.3. Dirac-based Anomaly Detection and the Convex Hull 73

SFR 
SFL 

SNR 
SNL 
BIF 

BOF 
BIN 

% BON 
2  HF 
g HN 
.1 BIFSR 
55 BIFSL 
^  BOFS 

BINSR 
BINSL 
BONS 

NET 
Ins

ÛC-J OC^U-LLZZLJL OC;̂ C/D I - - q5

CûCÛCÜ̂ qûDCÛ
Response

1

0.8

0.6

0.4

0.2

0

Figure 4.14: Doubles (test dataset) - Confusion matrix of recognized events, K

or out the play area up to that point. The number of event sequences where the score 

decision is taken before the play ends are shown on the z-axis.

It can be seen that a threshold of 0.8 in the bounce position confidence and 0.58 in the 

event recognition confidence lead to no false positives on sequences from singles. Ap­

plied on the doubles data, an accuracy of 83.18% event recognition was obtained using 

the parameters optimized on the singles data (Figure 4.14). The anomaly detector 

was able to detect 6  event sequences that contain anomaly, i.e. evident bounce in the 

tram lines followed by 5 or more events, out of a total of 21 anomaly sequences.

The number of detections are largely limited by the decision confidence filter set on ten­

nis singles. Most of the anomalous bounces take place very close to the inner tramlines 

triggering a low confidence in the bounce position uncertainty or are followed by very 

few further exchanges resulting in a high confidence in the context classifier. However, 

the system is still able to detect a significant number of anomalies that are able detect 

a domain change.



74 Chapter 4. Anomaly Detection and Rectîûcation for Knowledge Transfer

0.5

0.6

0.7

0.590.580.570.560.550.540.530.520.510.5
Minimum c o n f id e n c e  in e v e n ts

0.6

Figure 4.15: Number of event sequences of the validation set that contain errors with varied 

conhdence thresholds

4.3 .5  D a ta  a sso c ia tio n /ru le  up datin g

Having identified a discrete set of anomalous events in the manner indicated above, 

we proceed to an analysis of their import. A histogram of the detected anomalies 

superimposed on the court delineation obtained by extrapolation of detected horizontal 

and vertical court-line sets is given in Figure 4.16. We also assume two axes of symmetry 

around the horizontal and vertical mid lines.

The determination of changes to play area definitions via events histogram is generally 

complex, requiring stochastic evaluation across the full lattice of possibilities [76] as 

also discussed in Section 4.2. However, in the absence of false positives, and given the 

relatively complete sampling of the relevant court area it becomes possible to simplify 

the process. In particular, if we assume that only the main play area is susceptible to 

boundary redefinition, then the convex hull of the anomaly-triggering events is sufficient 

to uniquely quantify this redefinition.

In our case, this redefines the older singles play area coordinates {0,936,54,378} to a new 

play area with coordinates {0,936,0,432} shown in Figure 4.16, where rectangles are 

defined by {first row, last row, first column, last column}, in inches. This identification 

of new expanded play area means that rules associated with activity in those areas
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F igure 4.16: Detected anomaly triggering events of the test set for Tennis Doubles

now relate to the new area. Since the old area is incorporated within the novel area 

according to lattice inclusion, all of the detected anomalies disappear with the play 

area redefinition. In fact, the identified area {0,936,0,432} corresponds exactly to the 

tennis doubles play area (i.e. the area incorporating the ‘tram-lines’).

4.3 .6  C onclusions

In this section, we set out to implement an anomaly detection method in the context 

of sport video annotation, and to build upon it using the notion of learning transfer 

in order to incorporate the detected anomalies within the existing domain model in a 

conservative fashion.

In our experiments, the domain model consists of a fixed game rule structure applied 

to detected low-level events occurring within delineated areas (which vary for different
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game types). On the assumption that anomalies are due to the presence of a novel 

game domain, the problem is consequently one of determining the most appropriate 

redefinition of play areas required to eliminate the anomaly.

We thus applied an anomaly detection methodology to the problem of detecting the 

rule-incongruence involved in the transition from singles to doubles tennis videos, and 

proceeded to demonstrate how it may be extended so as to transfer learning from the 

one rule-governed structure to another via the redefinition of the main play area in terms 

of the convex hull of the detected anomalies. We thereby delineate two distinct rule 

domains or contexts within which the low-level action and event detectors and classifiers 

function. This was uniquely rendered possible by the absence of false positives in the 

anomaly detection phase; a more stochastic methods (such as that of Section 4.2) would 

be considered were this not the case.

4.4 Discussion and Summary

In this chapter, we presented methodologies for addressing the problems of anomaly 

detection and rectification for court based sports such as Tennis singles and doubles. 

We demonstrated the ability of these methodologies in the context of an adaptive and 

autonomous court based sports video annotation system.

For this purpose, we first introduced a court-model based method that uses the court 

structure in the form of a lattice for two related modalities of singles and doubles Tennis 

to tackle the problems of anomaly detection and rectification. This was achieved by 

using a novel HMM induction strategy, proposed in this context. Experimental results 

were shown using real and simulated tennis datasets to demonstrate adaptability of this 

method by identifying the change in playing area when going from singles to doubles 

Tennis.

We also introduced another anomaly detection methodology in this chapter, based on 

the disparity between the low-level vision based (weak) classifiers and the high-level con­

textual (strong) classifier. Another approach to address the problem of rule adaptation 

is also proposed that employs Convex hulling of the anomalous states. Experimen­
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tal results using the datasets extracted from the vision based annotation system and 

the ground-truth Tennis annotator were also shown, where the new playing location is 

identified for doubles tennis.

Methodologies introduced in this chapter are important in the context of an automated 

and adaptive sports video annotation system. Anomaly detection and rectification fea­

tures within the system can raise fiags when the input domain is changed, and accord­

ingly relevant changes can be made in the knowledge base thereafter to accommodate 

the new domain rules resulting in an adaptive system.

For a more general approach, a framework is required that is capable of learning the 

rules (i.e. rules of the game in sports) within the input domain by using its observa­

tions. This will enable generalization of the “high-level” contextual analysis module of 

Figure 3.1, which is originally built using hard-wired tennis game rules. Therefore, we 

introduce a generic rule induction framework in the next chapter capable of learning 

hierarchical rule structures of tennis and other domains.

In the context of anomaly detection, this means, anomaly flags could also be triggered 

in the rule structures and rectified via altering relevant sections of the learnt rule model 

to accommodate novel domains. Rule adaptation in such a scenario can also be achieved 

leveraging an already existing rule structure by allowing transfer learning. However, 

anomaly detection using rule induction is beyond the scope of this thesis.



lhapter 5
Rule Induction in the Context of 

Automated Sports Video Annotation

In this chapter, we propose four variants of a novel hierarchical HMM strategy for rule 

induction in the context of automated sports video annotation including a Multi-Level 

Chinese Takeaway Process (MLCTP) based on the Chinese Restaurant Process and 

a novel Cartesian Product Label-based Hierarchical Bottom-up Clustering (CLHBC) 

method that employs prior information contained within label structures. Our results 

show significant improvement by comparison against the flat Markov model: optimal 

performance is obtained using a hybrid method which combines the MLCTP generated 

hierarchical structures with CLHBC generated event labels. We also show that the 

methods proposed are generalizable to other rule-based environments including human 

driving behavior and human actions.

For an adaptive and automated annotation system, a generic rule induction framework 

can help in establishing a reliable anomaly detection system for knowledge transfer. 

Using the induced rule structures, measuring the knowledge shared between various 

input domains can be quantified in a robust manner reducing the need for re-training 

every time a new domain is introduced. If, at all, the new domain follows a completely 

disjoint rule model then the induction framework presented in this chapter, is able to 

infer related new rule structures.

79
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5.1 Introduction

As introduced in Chapter 1 , multimedia data production has grown exponentially in 

recent time. Sports videos have a high demand for automated annotation as there 

is considerable interest in browsing key events (such as goals in football). Complete 

annotation may also be used to extract match statistics and to construct performance 

analysis of teams. As established in Chapter 2 , it would be useful to understand 

contents of the video automatically in sports [35, 130, 196]. For this purpose, a generic 

rule induction framework can provide a robust context analysis module.

Sports videos consist of rich multimedia content, as well as contextual details. Key 

temporal event information is critical in understanding sports videos. Sports games 

in general have a rule structure, built around low level visual events which are further 

interpreted as game events and similar high level contextual information. Events can 

thus be expressed in the form of a hierarchical structure. For example, in a game of 

tennis, initial low level visual events include tennis ball transitions within the court, 

and player movements enacting game play on the court surface. These transitions can 

be interpreted in a more contextualized form such as a “hit” taking place at a particular 

location on a court box. These high-level events can then be combined to describe the 

tennis game incorporating all the rule salient temporal details as annotations.

As introduced in Chapter 2, Hidden Markov Models (HMMs) [134] are often used to 

represent stochastic processes and can effectively model temporal sequences of data 

(such as stock market [61], audio/video signals [96], and patient’s Electrocardiography 

(EGG) [91] etc.). However, as indicated, some domains such as sports games in general 

are hierarchical in nature, with a clear delineation between low-level visual representa­

tions and progressively higher levels of contextual interpretations. If a game is to be 

modeled stochastically, with various levels of progressive abstractions, this implies the 

use of the hierarchical Hidden Markov Models (hHMMs) [49] to model game transitions 

at different levels of contextual interpretations.

However, a particular disadvantage of the classical HMM framework is that it generally 

requires the number of states to be fixed a priori, and in practical applications they are 

usually fixed heuristically. Teh et al. [168] have proposed a non-parametric Bayesian
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implementation of the HMM in which the hierarchical Dirichlet process (HDP) provides 

a prior distribution over countably infinite state spaces resulting in a generalized version 

of HMM. Hierarchical Dirichlet process Hidden Markov Models (HDP-HMMs) have 

been effectively employed in tackling different problems such as visual scene recognition 

[82], and the modeling of genetic recombination [189] etc, as established in Chapter 2.

Our aim is to achieve automated stochastic rule induction for a rule-based sport game 

environment. We make use of the non-parametric Chinese Restaurant Process (CRP) 

[4] to produce hierarchical structures with states and a Stick-Breaking construction 

[153] to generate their probabilistic state transitions i.e., we systematically parametrize 

hHMMs to build a game rule model. As a variant on this approach, we also propose 

a novel label-based hierarchical method to build hHMMs and show the significance of 

having prior knowledge of a labeled system in the construction of the hierarchy.

We thus compare a number of derived hHMM models against the flat Markov Model 

which serves as the baseline for all our methodological variants;

Firstly, we propose a new label-based method in Section 5.2, that takes into account the 

actual label structure that defines a particular game play sequence in order to define an 

hHMM generation method that proceeds in a bottom-up, data driven fashion. We call 

this methodological variant, Cartesian Product Label-based Hierarchical Bottom-up 

Clustering (CLHBC).

A further variant is introduced via a novel implementation of the Chinese Restau­

rant Process called the Multi-Level Chinese Takeaway Process (MLCTP). This is a 

constrained version of the standard CRP that is more relevant to applications with 

a limited state space i.e., where the number of rule-defining events are known and a 

limited rule depth is present i.e., rule induction occurs under a certain unknown, but 

relatively limited number of levels.

MLCTP does not intrinsically exploit labeled states and we speculate that the high­

est likelihood inferred rule structure given a set of hyper-parameters representing the 

MLCTP model can be further improved via employing the label structures. Thus, we 

also propose two hybrid methods in Section 5.4, that combine the unlabeled MLCTP 

with the labeled structure from the Flat Markov model and CLHBC. The main idea is
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thus to combine the hierarchical topological structures of MLCTP with the event label 

transition probabilities.

We show comparative results of all the proposed methods in Section 5.5 using the 

following various datasets from different domains:

• Badminton Rules Domain: This dataset contains ground truth annotated events 

in Badminton (Mens Singles, Czech Vs GB, Beijing Olympics, 2008).

• Tennis Rules Domain: This dataset contains ground truth annotated events ex­

tracted from a complete Tennis match (Serena Williams VS Venus Williams, 

Final, Womens singles, Australian Open 2003).

• Tennis Rules Domain: This dataset contains labeled sequential events in Tennis 

obtained via a computer vision based annotator ([89, 108]) (Serena Williams VS 

Venus Williams, Final, Womens Singles, Australian Open 2003 and Andre Agassi 

VS Rainer Schttler, Final, Australian Open 2003).

• Highway Rules Domain: This dataset contains ground truth annotated events 

obtained from a camera-equipped car driven across a city [154].

• Website Domain: This sequential dataset contains visit counts of different pages 

for MSNBC.com on September 28, 1999 by many different users (used in [21]).

• Human Activity Dataset: This sequential dataset contains recordings of five 

sensor-tagged people performing different actions [72] such as sitting, walking, 

falling and lying etc.

Summary of this chapter is presented in Section 5.6.
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5.2 Cartesian Product Label-Based Hierarchical Bottom - 

up Clustering

5.2 .1  In trod u ction

Sports games have a specific rule structure built around temporal events that are based 

on transitions between labeled states according to structured game rules e.g.:

Football

kick, pass left, pass right etc

Tennis/Badm inton

Serve near left, hit far etc

Cricket

Square drive, straight drive, full length delivery etc.

Generally, labeled events contain not only temporal information but also spatial details, 

for instance in tennis, a Serve followed by a Bounce taking place at the Out and Far side 

of the court can be represented by a concatenated descriptor “BOFS” [8 6 ], as introduced 

in Chapter 3 (see Table 3.1). Thus, each event label is constructed by incorporating 

relevant sub-labels providing detailed spatio-temporal information related to game-play 

which are crucial for inferring rule structures.

By taking the whole sequence of event labels into account, we can thus represent 

rule-related information by using the Cartesian combinations of these sub-labels where 

they collectively constitute a lattice in which coarse-grained event labels are clustered 

bottom-up to form a hierarchical topology that can potentially represent abstract rule 

structures.

Thus, various hierarchical label clusters obtained using Cartesian products of sub-labels 

produce different, but meaningful topological structures that are potentially capable 

of modeling the underlying abstract rule structure of the game. This is autonomously 

achieved by taking all possible permutations of the label order that constitutes these
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hierarchical structures and, with a predefined selection criterion, a rule-like topological 

structure is chosen. Methodological details of this method are formulated in the next 

section and a comparative analysis against other methodologies is conducted in Section 

5.5.

5 .2.2 M eth od o logy

Sports games have a repetitive rule structure such that a particular sequence of events 

often repeats during the course of the game-play. For example, a Serve followed by a 

Bounce repeats very frequently at the start of every play-shot in tennis where a play- 

shot is defined as a sequence of events that starts with a Serve and ends with the point 

allocation to one of the players in the case of court games [8 6 ]. Additionally, game 

exchanges can also be interpreted via contextual notations such as game transitions 

between two players. In the middle of a play-shot, they can be represented as rally, or 

a bounce out of the court area can be represented as a point allocation to either of the 

players.

Such behavior, with various levels of abstractions, can be modeled using a hierarchical 

state structure i.e. hierarchical Hidden Markov Models. We propose the Cartesian 

Product Label-Based Hierarchical Bottom-up Clustering method to generate different 

hierarchical HMMs capable of producing rule structures representing sports games.

Our input to the system is a set of event labels shown in Table 5.1 for badminton 

and tennis, extracted from [8 6 ] and translated into a Cartesian Product notation. We 

argue, more generally, that in most situations complex labeling scenarios can be treated 

in this fashion (usually with the proviso that we can introduce a null value, f), where 

there exists incomplete factorizability of the labels intrinsically - see below).

Labels are thus constituted of various sub-labels which can represent event types, LLei 

distance from the camera, sides of the court area O5 , and position with respect to 

the court lines Qp etc.
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Figure 5.1: Cartesian Product Label-Based Hierarchical Bottom-up Clustering
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> ,  LId  =  \  F > ,Q s  =  * R >,  O p  =  < o

l ^ .

(5.1)

where (f> is the null value in the argument description (henceforth we shall omit this).

To train the model, we divide the stream of input event labels into groups of play-shots 

(that starts with a serve and ends with a point allocated to either player), for example:

SN(f)^ —¥ HF(})^ —> HN(f)(1) — HF(f)(t) —¥ HN(f)(f) BIF(f)

There are repeated sequences within almost every play-shot {HF(f)(f) —)• HN(f)(f) is re­

peated twice in the example above): these can potentially form hidden states repre­

senting common meta-labels, on the next hierarchical level. The method achieves this 

by combining labels in a manner similar to an explicitly hierarchical Lempel-Ziv-Welch 

(LZW) encoding [185] i.e. with common labels combined together sequentially to form 

a parent node e.g. different types of serves {SN  and SF )  can be combined to represent 

a node labeled as S  representing the Serve meta-label (see Figure 5.2). Similarly, an-
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Table 5.1: Summary of Badminton and Tennis events extracted from [8 6 ]

Event Description

SF(^,;6 Serve by Far player

S N # Serve by Near player

H F # Hit by Far player

H N # Hit by Near player

BIF<^ Bounce Inside Far player’s half court

BOF(f) Bounce Outside Far player’s half court

BIN(^ Bounce Inside Near player’s half court

BONcj) Bounce Outside Near player’s half court

BOFS (Tennis only) Bounce Out of Far player’s Serve area

BONS (Tennis only) Bounce Out of Near player’s Serve area

other combination (by changing label order) can also be formed combining the N  and 

F  meta-labels to form two separate nodes at the parent level which consequently shall 

represent game transitions between the Near and Far side of the court.

These Cartesian meta-labels form the parent level nodes, clustering sets of un-omitted 

labels beneath it. For example, the string above in terms of event type labels, Op 

(achieved via the omission of Op labels) looks like:

Play-shots can be represented in the form of other Cartesian label type subsets by 

changing the label order. Figure 5.1 shows a block diagram representing the Cartesian 

Product Label-Based Hierarchical Bottom-up Clustering method in context.

Input events sequence contains individual labels, Lt, describing an event at time t, and 

constituted of z label components drawn from 0 *, such that,
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Uj\ ' 1 ' 
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Lof , O 2 — ^ > , f i s  =  < > , . . . , fi^ — ^ >

> >

(5.2)

So, at any given time t, Lt represents the Cartesian products of all the Qz labels at 

each instant in the sequence, defining the base of a z-dimensional lattice (i.e. the lattice 

formed from differing subsets of O labels).

(5.3)

Thus, various Cartesian combinations can be formed within the lattice by progressively 

omitting 0  ̂ labels, such that, e.g.

l \ ^  Ç: { O i  X . . .  X 0 ^ - 1  X X . . .  X (5.4)

where the omitted label set k Ç {1,2,3,..., z}.

Hence, L^ , with z =  3, represents Cartesian combination of all of the three labels 

with the exception of O2  i.e..

(5.5)

is thus composed of a sequence of ordered pairs, li : i = 1 ,...  ,t, derived from the 

remaining u  labels, such that, in this form, a particular event might look like:

(5.6)

However, note that because label omission is carried out sequentially, not all of the 

hierarchies within the lattice space are sampled; in fact only a unique hierarchical 

subset is selected for a particular input label ordering.
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Topology selection criterion

Before sampling the resultant hierarchical structure, we repeat the hierarchy generation 

process above under different orderings i.e. Lt is represented via other permutations 

of Of. In the case of the example sequence above, S N  can be represented as N S  and 

so on (omitting (f) for simplicity). This results in various other hierarchies which may 

or may not approximate the domain rules. For this purpose, a selection criterion is 

introduced via counting the number of nodes with non-mono child nodes (excluding the 

leaf nodes). Resultant hierarchies are ranked according to this criterion e.g. Figure

5.2 has a rank of 4 and a differently ordered near-far model has a rank of 3. The 

hierarchical topology with the highest rank is selected for training by sampling the 

space of transition probabilities in the hierarchy i.e., by explicitly modeling hierarchical 

transitions (explained in the next section).

Note that, usually a human annotator implicitly follows a certain label order (typically 

general-to-specfic) that results in a particular form of rule structure. In case of the 

tennis/badminton games, the label order followed (see Table 5.1) contains an implicit 

rule structure that results in the topology shown in Figure 5.2. In order to generalize 

the method’s capability and assuming no prior knowledge about label order, a selection 

criterion that explores all label permutations can autonomously choose a richer rule 

structure.

M odeling hierarchical transitions

In the following analysis, we will model transitions within the lattice hierarchy (chosen 

with the criterion above) on a Markovian basis. However, this means that the model 

as a whole is not consistent with the Markov property (the higher level ‘hidden’ hierar­

chical state transitions effectively constitute a memory). It is, though, still possible to 

represent the entire hierarchy as an Implicitly Markovian Model. This differs from the 

standard ‘flat’ Markovian in which Pf represents a transition likelihood between states 

Q n-i and Qn, derived by histogramming over components of an observed sequence (or 

set of sequences), S{j ) , j  =  1 , . . .  ,T, i.e.:
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1
P /(<9n |< 9n-l) = p E  m j  -  1), S{ j ) )  (5 .7)

1 n "  1) — Qn-1,  S { j )  =  Qn .
where j = \  and Ç represents the normalization

0  otherwise
factor. In the following analysis this flat model will serve as our baseline.

We define this Implicitly Markovian Model as follows. In a ;z;-dimensional CLHBC-

generated lattice space, q levels can be formed (depending on the Cartesian combina-
c

tions) where q < z, such that a resultant augmented likelihood /\, of event transitions 

can be computed by considering transitions at all the levels of the constructed hier­

archy. The concept of augmented likelihood centres on the modification of observed 

event likelihoods in order to explicitly favour hierarchicality (i.e. by sampling events 

at all the levels of the hierarchy).

We introduce a bijective mapping of the constructed hierarchy’s leaf states to observa­

tions which we use to compute transition likelihood between observations S’x - i  to S’x 'i 

X  = 1,2,3,..., G where G is the total number of leaf nodes (Figure 5.2 has G =  8). This 

is achieved using the normalized products of all the super-lying parent state transitions 

via connected nodes resulting in augmented likelihood of state transitions i.e.,

c  q T

A(-&Kx-i) = c  II{M E g(% (« -  (5.8)
^  h=l " i=l

where g = 1 Sh{i  -  1) =  Q L l ,  % (') =  Qn— nh  c, — nh

0  otherwise

Qn is the observed state at level h of the hierarchy (i.e. under progressive label omis­

sion); Ç is a Cartesian normalization factor and is the level-based normalization 

factor. The hierarchical probability injection step computes the augmented likelihood 

(see Figure 5.1). Probabilities in the hierarchy are computed top-down and injected per 

level based on Equation 5.8 resulting in a single matrix representation of observation 

state transitions that are bijectively mapped onto the bottom level leaf nodes.

Note, the label space at the bottom level of the hHMM needs to be fully sampled 

by the data i.e. such that at least a single instance of each label has been observed
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(however, there are no such restriction higher up in the hierarchy). We have not directly 

distinguished label uncertainty from state uncertainty, since the latter is fully capable 

of modelling the former.

The Markovian model thus defined differs from the fiat model in that transition like­

lihoods for observed states are biased by progressively higher-level hidden state tran­

sitions, for which there exist better sample-statistics (due to coarser-grained transition 

likelihoods). We thus infiuence low-level, rapidly-changing, potentially more noise- 

infiuenced transitions by higher-level, more slowly-transitioning states. Consequently, 

we retain all of the advantages associated with the Markov assumption (in particu­

lar, the ability to rapidly model sequence likelihoods via transition matrices), while 

leveraging the descriptive potential of hierarchical modeling.

Worked example

Consider an example sequence of events, with z = 3 types of labels,

S ’ =  i \  —y I2 —y I3 —̂  4̂ —y I5 —y Ig

A three-dimensional lattice of labels is formed. Each event label It may look like 

After analysing the whole sequence above h  to Iq, different common com­

binations are extracted at the sub-label level. For example, in tennis or badminton, 

a sequence of “Hits” can be combined to produce a hidden state semantically equiv­

alent to a “Rally” (these sub-labels are identified and decomposed into a series of Qi 

represented in Equations 5.2and 5.3):

A  ^  ( ^ 1 5 ^ 2 5  0 )  ( ^ 1 5 ^ 2 5 ^ )  ( ^ 1 5 ^ 2 5 ^ )  ( ^ 1 5 ^ 2 5  0 )  ( ^ 1  5 ^ 2  5 ^ 3  )

The above sequence can also be represented in its {fc} =  {2,3} sub-label form (see 

Equation 5.4) as,

Wi) (^i) (^i) (^i) (^i) (^i)

Common sequential sub-labels are thus extracted as a meta-label that constitutes a

node in the next highest level. In this example, 3 nodes are formed for the sequence
c

such that the augmented likelihood f \  of event transitions (see Equation 5.8) can be
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computed with q = 3 representing the number of labels and resultant levels, G =  4, 

and T  = 6.

In applying the CLHBC model to a Badminton game we find that Cartesian labeling 

can split the labeled sequential data into various categories of play shot sequences 

demonstrating the applicability of the method with regards to the label structure of 

events e.g. we autonomously combine labels according to event types {Serves, Hits etc). 

In Figure 5.2 an example of the bottom-up labeling with colors indicating hereditary 

of states is shown. Events are delineated in accordance with the play structure by 

combining starts, rallies and ends together, in turn constituted by serve, hit and bounce 

meta-states, respectively. The two transition matrices represent non-zero transition 

probabilities at each level of the hierarchy (using badminton as an example).

5.3 M ulti Level Chinese Takeaway Process

5.3.1 In trod u ction  and M otivation

As discussed in Section 5.2.1, court-games are inherently hierarchical in nature and we 

attempt to create stochastic approximations of the game rules using hierarchical Hidden 

Markov Models (hHMM) for contextual game description covering various levels of 

abstractions, ultimately, giving rise to meaningful annotations. As explained in Section 

5.2.2, our input observations are a set of events that occur over a temporal sequence 

marked when a particular event starts happening (Table 5.1).

In a rule based environment, these events contribute meaningful attributes on a con­

textual level; thus events like Serves and Hits relate to Player’s actions while iVear and 

Far correspond to Court Locations. Events can be either described in terms of Player’s 

actions or Rule-Defined combinations such as Rallies and Game points.

To build a generic hierarchical HMM framework suitable for characterizing these en­

vironments we propose a constrained variant of the widely used Chinese Restaurant 

Process (GRP) first introduced in [4] that allows us to establish rule structures that are 

capable of describing the sports game in a compact and efficient fashion. The proposed
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S F
S N
HF
HN
BIN
BIP
BON
BOP

S e r v e

R ally

End

S e r v e  R ally End

Rally EndS e r v e

HN BOPSN HP BIN BIP BON

Figure 5.2: Three Level Cartesian Product Label-Based Hierarchical Bottom-up Clustering 
with Transition Matrices generated at each level (colored so as to indicate heredity)

method does not intrinsically exploit labeled information (unlike CLHBC of Section 

5.2) making it more suitable for applications with limited meta-data.

We refer to it as the Multi-Level Chinese Takeaway Process (MLCTP) and in the next 

section we explore the methodological details of this particular variant of the classical 

CRP and its application to rule-based environments primarily sport games (i.e. Tennis 

and Badminton).
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5.3 .2  M eth od o logy

The Chinese Restaurant Process is a non-parametric stochastic process that is naturally 

capable of representing grouped sequential data. In a rule-based environment, data can 

be grouped together in a hierarchy and thus we require a hierarchical CRP for stochastic 

approximation of rules induced via input observations. CRP s hierarchical version is 

referred to as the Chinese Restaurant Franchise (CRP) first coined by Teh et. al. in 

[168]. Due to the limited state-space hierarchy of sport rule structures evident from 

the types and number of events, it is desirable to implement a hierarchical, but also 

constrained, version of the classical Chinese Restaurant Process which we call the Multi- 

Level Chinese Takeaway Process. To understand this particular variant of the CRP, we 

step-wise explore the methodological details of MLCTP. To intuitively understand the 

process, we make use of an analogy similar to the Chinese Restaurant Process (CRP)

[4].

There are three main methodological steps in generating MLCTP-based hierarchical 

topologies (i.e. hierarchical rule structures); the state generation phase, transition 

probabilities generation phase, and the hierarchical state transition matrices injection 

phase;

State Generation Phase

This phase is similar to CRP where the number of states is defined by the process via 

the number of tables. The notion of tables in MLCTP is replaced with takeaways to 

leverage re-visits and further recommendations to other takeaways (further explained 

in Section 5.3.2). For the sake of consistency, we replace the notion of tables with 

takeaways in the first phase.

To start the process, people (tokens) enter a city with infinite number of takeaways 

and choose a particular takeaway to visit. First person visits the first takeaway in the 

city with the initial probability equal to 1. The takeaway visit probability, Vi for the 

2th person is thus defined as;
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oc if r <  ^
P{vi =  c\vi:i-i) = { Î-1+0! (5.9)

Q
i — 1 + a

otherwise c is the new takeaway

Where Oc is the number of people who have visited the takeaway c. ^  is the number of 

takeaways for which Oc > 0 i.e. visited, a  is the concentration parameter. Intuitively, 

high a  implies more visited takeaways with fewer customers.

We initialize the process of state generation assuming one top level state. We henceforth 

call the top level the first level. For the second level, we follow the takeaway visit process 

expressed in Equation 5.9, and generate this level with states defined by a. For 

each state at this level. Equation 5.9 is followed recursively to generate the third level, 

where a total number states are created and so on. The process continues until the 

maximum truncation point is reached which is defined by the number of event types 

in the training dataset. Note that, where PI represents the

total number of levels i.e. a hierarchy is formed.

At the end of this phase, we thus establish a hierarchical topology with states generated 

top-down with vertical edges (i.e., representing connections not transitions). Note, this 

phase is precisely controlled based on the number of events. As such, as soon as the 

number of states generated by CRP in the next level to be generated exceeds the 

termination criterion, the process halts and a new topology is generated. Otherwise, 

the process continues and, if matched, the process proceeds to phase 2 , the transition 

probability generation phase. An example topology is shown in Figure 5.3.

Topological State Transition M atrix Generation Phase

This second step for generating the state transition matrix involves two major sub­

steps; firstly we extract state transition probabilities, defined by Equation 5.9 for all 

the levels. We define each takeaway visit self transition probability as for state 

number %h at hth. level with h' its mother state;

^  _  Total number of visits to takeaway ih ,
 ̂ Total number of visits via h'
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The remaining probability of transition, =  (1 — from the f/jth state to

all the other states at level h is further re-distributed by executing a stick-breaking 

construction as follows. We use hyper-parameter 7  for all the states controlling the 

redistribution of the state transitions. This can be intuitively represented by replacing 

tables in CRP with takeaways where people are recommended — 1 other takeaways 

to try additionally in city h.

Note, in theory, this phase can also be represented using another implementation of 

CRP. However, the purpose of introducing SB-construction to represent MLCTP’s state 

transition matrix generation is to differentiate between the two phases so as to make 

the analogy exact (i.e., an individual’s visit and post-visit recommendations).

We start with the stick of length 1. The stick is broken (^^ — 2) times to create — 1)

partitions representing all other transitions where represents the total number of 

takeaways/states at level h. Equation 5.12 represents the stick-breaking construction 

weights:

n  (I- '" /)!" ) (5.11)
j=i

and, the final weight is defined (due to the finite number of states) as:

00 2 00

where =  1 (5.12)
C=1 1 c—1

represents kth  weight at level h for state i^.

*/';9g -B eta(l,7 ) (5.13)

Within the levels so generated, is partitioned in the manner indicated and tran­

sitions to all the other states (left to right indexed) are represented with weights:

-  etc.

For each level, fi, state transition matrix is built using self-transitions (i.e. the takeaway 

visit probability of Equation 5.9) and the remaining probability is distributed across 

all the other states at level h, using the stick-breaking construction of Equation 5.12.
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H yper-param eters: MLCTP is governed by two hyper-parameters a  and 7 . a con­

trols the number of new states at each level as employed in the classical CRP model. 

Additionally, a  also defines the self-transition probability for each state (i.e the take­

away visit probability). The second hyperparameter 7 , is employed in the Beta distri­

bution of Equation 5.13. This controls the size of the stick-break defined in Equation 

5 . 1 2  which furthermore controls the contribution of the remaining probability.

Various combinations of a  and 7  hyper-parameters are used to generate different types 

of topologies with varying transition probabilities. These parameters are selected based 

on the number of events and the number of correct-width topological structures. The 

main focus of this paper has been to infer a rule structure given a sequence of observa­

tions and as such, a large range of («,7 ) hyper-parametric pairs are sampled in order 

to generate potential rule structures.

H ierarchical S ta te  T ransition  M atr ix  In jec tion  P hase

The next step is to form a state transition matrix for the whole topological structure. 

We do that by first forming state transition matrices for each level using all the state 

transitions extracted in Section 5.3.2 and then use the notion of probability injection 

introduced in Section 5.2.2. Equation 5.8 is employed again to represent the augmented 

likelihood of transitions between all the leaf states.

Note, the bottom-level states are associated with the input number of labels i.e. we 

introduce bijective mapping (similar to Section 5.2.2 for CLHBC model) of leaf states 

to observations which we use to compute the transition likelihood between observations 

to S’ff] ^  =  1,2,3, . . . ,^  (see Figure 5.3 where =  7). This is achieved using the 

normalized products of all the super-lying parent state transitions via connected nodes 

such that.

u . 1

=  -  n  P U y  '  1)) (5-14)
^  V=H

U
where / \ ( ^ | ^ _ i )  is the augmented likelihood for MLCTP generated state transition 

between events, S’ff-i and Ç is the normalization constant and H  is the total
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number of levels. xCy represents state C, indexed by y, with its parent state x and is 

at level V, where V  = H, H  — 1, for an input observation index Ü.

All these generated topologies have a few generic properties:

Each child state has a unique parent but each parent can have one or more than

one child state. A state, represented by has only one x  for each y at level h

i.e. X is unique for all y at h.

• Transition between two child states at level h oî a single parent state represents 

self-transition at level 4 - 1  of the corresponding parent state i.e.:

(5.15)

Note, the main difference between CLHBC and MLCTP lies in the construction of 

the rule structure. As such CLHBC is label based with probabilities computed using 

observations directly whereas in MLCTP this is achieved using recursive CRPs per 

state per level until truncation is reached, and SB-construction is then used for calcu­

lating topological transition probabilities. The hierarchical probability injection step 

for calculating augmented likelihoods of state transitions for both of these methods is 

similar.

Worked Example

In this section, we initially present the topology construction process for a three-level 

(iJ =  3), topological structure i.e. where people visit takeaways in three cities. We 

also present the topological states’ transition matrices generation phase where people 

are recommended to visit takeaways in the same city including re-visiting the same 

takeaway (representing transition to other states and a self-transition, respectively).

Following is the step-wise instantiation of the process:
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Figure 5.3: Multi-Level Chinese Takeaway Process; Example topology with H =  3 and Sf = 7
(i.e. Û =  1,2,3,..., 7)

Step 1
We begin the process by assuming that the top most level (h = 1) has a single state 

and that the self-transition probability for this state is unity:

-f’ (oC iloC i) — 0^1 — 1 (5.16)
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Legend for Figure 5.3

O Initial state

■—  — Level delineationsoooo State types

Parent-child state associations

Illustrated transition probability

- - - - - - - - Unillustrated transition probability

Bijective delineation

------------► Bijective mappingo Bijectively mapped observation

Where represents state (  number y, under the mother state number x. For the top 

level, represented by Equation 5.16, z  =  0 representing no mother node, y = 1 the one 

and only state number and h = 1 (the top level index). Intuitively, this level represents 

city number, h = 1, with one take away, y = 1 and has no prior recommendations, 

a: =  0.

0 <5j represents the self-transition probability for the top most state shown in Figure

5.3. The state transition matrix for this level is a single number representing the 

self-transition.

Step 2

In this step, the first instantiation of the MLCTP takes place as formulated in Equation 

5.9 and 5.12. The number of resultant generations (takeaways) represents the number 

of states under the mother node from Step 1 . Analogically, people who have visited 

the takeaway in city, h =  1, are recommended takeaways in city, h = 2 (Note, as 

we shall see, it is not always the case that h — x  1).

representing the number of takeaways in the second city {h = 2 ) is in our example 

4 (i.e. y = [1,2,3,4]) and their self-transition probability ^ôy i.e. the probability of
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visiting the same takeaway, the next day, is extracted from Equation 5.9.

The remaining probability is broken — 2 times (i.e. 2 times in this example), so as 

to generate transitions to all the other states i.e. the probability of visiting another 

takeaway, the next day, having visited the current takeaway. This is achieved via the 

stick-breaking construction of Equation 5.12 and 5.13 and is repeated for all the 4 

takeaways.

At this level, (h = 2), we have that x = 1, representing the same mother node for all 

the states and y = [1 , 2 ,3,...,

Figure 5.3 shows all the possible transitions for the first state at the second level, i.e. 

iC? :

f  ( i C i l i ( i )  =  1(̂ 1 (5 .17)

^^(iClllCl) =  ^7Tl.(l -  l^l) = (5.18)

■^(iClliCf) =  (5.19)

PiiCÏhCi) =  (1 -  ( ^ ^ 1  +  ̂ 7r2)).iV î (5.20)

Similarly, these transition probabilities are calculated for iC |,  iC | and iC |.  The re­

sultant state transition matrix for this example is a 4 x 4 matrix with 16 possible 

transitions.

S tep  3

Similar to Step 2, we generate new states via another instantiation of the MLCTP under 

each state at level 2. We do this for all %^^-states generated in Step 2. The number 

of generations represents the number of states under each mother node. Analogically, 

people who have visited takeaways in city 2 , are recommended to visit similar type of 

takeaways in city 3.

X at this level is the total number of states indexed by y in the previous level in 

Step 2 representing the now-mother states while the length of y is determined by each 

instantiation of MLCTP for every x. The number of MLCTP instantiations is equal to 

the length of x.
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Thus, at this level, k = 3, x = [1,2,3, and y = [1,2,3, which is consti­

tuted via the vector of sets y',

{1,2,3.. - X i ]
{1,2,3,. - X 2 }

y' = {1,2,3,. - X z } (5.21)

{1,2,3,.. X v ^ }

such that, Y^=\  representing the total number of states at this level.

In our example, at the lowest level, x = [1,2,3,4], y = [1,2,3,4, 5 ,6 ,7], constituted via 

the vector of sets y ',

{1 , 2 } 

{1,2}

{1}
{1,2}

(5.22)

Similar to Step 2 , the remaining probability is broken — 2 times (i.e. 5 times in this 

example), to generate transitions to all the other states i.e. the probability of visiting 

another takeaway, the next day, having visited the current takeaway. This is achieved 

via stick-breaking construction of Equation 5.12 and is repeated for all the 7 takeaways.

Figure 5.3 shows all the possible transitions for the third state at the third level under 

the second mother state of level 2 , i.e. 2 C3 :
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Figure 5.4: Block Diagram for Multi-Level Chinese Takeaway Process
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(5.23)

(5.24)
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(5.28)

(5.29)

5.3 .3  Indu ction  P ro toco l

Figure 5.4 shows the block diagram of the experimental protocol for the Multi-Level 

Chinese Takeaway Process showing the training process. MLCTP is a stochastic process 

and to counter the issue of stochastic variations we first generate R  topologies i.e. we 

execute the process R  times given the hyper-parameters o and 7 . The total number of 

selected topologies according to the truncation parameter Sf (applied such that when 

the exact number of leaf states is achieved the process stops and emits a topological 

structure), is s, where s < R. These s topologies are represented as transition matrices 

computed via Equation 5.14 and each transition matrix goes through a selection process 

for the best fit as the rule defining topology. This is achieved via measuring the distance



5.3. Multi Level Chinese Takeaway Process 103

between the training matrix (using the count statistics of the training data) and the 

MLCTP-generated topological transition matrix.

MLCTP is a stochastic and unlabeled process, and thus a topology generated given a 

set of hyper-parameters does not necessarily correlate with the original training tran­

sition matrix. To better sample the topological state space, we generate many random 

permutations at the bijective mapping level i.e. observations indicated in Figure 5.4 (we 

employ random permutations to reduce the computation time). If b is the state-space 

defined by the number of leaf states and p is the number of random permutations then 

p < h\. Each topology, r /  ( /  =  1,2,3,..., s), is expanded to p random permutations 

within the state-space, where t\ represents the first selected topology matrix and Ts 

represents the last selected topology matrix. We thus have an array:

1 2 3
' 2  5 2 ’ 2 5 *•*’ 2

_ 2  3 P73)^3) •••5̂ 3 (5.30)

Each of these topological transition matrices (total s x p) are then compared against 

the fiat transition matrix built from the training sequence of events. This comparison 

is performed via the Jensen-Shannon Divergence.

Jensen-Shannon Divergence

We use Jensen-Shannon Divergence [121] to measure the divergence between two prob­

ability distributions i.e. the output of permutations block and the fiat Markov Model 

block in Figure 5.4. JS-Divergence is based on the Kullback-Leibler divergence and is 

defined as the average relative entropy of the source distributions to the entropy of the 

average distribution. Equation 5.31 represents the metric Y  employed in Figure 5.4 

for MLCTP’s topological transition matrices Jz  (where Z  = 1,2,3, ...,s x p) and the 

training transition matrix Jtr-
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Y(Jtr, Jz)  =  \{K L (J tr  II if )  +  K L (J z  II if)) (5.31)

where K  is the average distribution of the two sources i.e.,

K  = l{J t ,  + Jz)  (5.32)

and the KL-divergence can be defined between two vectors. Mi and M 2  as.

K L (M i  II M2 ) =  Ç M i ( i ) i n ^ | |  (5.33)

Each topological transition matrix {Jz) from the permutations block is compared 

against the training transition matrix Jtr and the closest topological structure (i.e. 

one with the smallest Y  metric against the training matrix) is taken as the learned hi­

erarchical topology with respect to the input training sequence of events. This trained 

hierarchical topology is used in the following experimental investigation (of Section 5.5) 

for predicting future events based on the input sequence.

5.4 Hybrid M odels

5.4 .1  M ulti-L evel C hin ese Takeaway P rocess w ith  R ecursive B aum - 

W elch E stim ated  H id den  S ta te  T ransitions (M L C T P -B W )

In addition to the above label-based and generative methods, we also propose a pair of 

hybridized methods suitable for stochastic inference of rule structures in sport videos. 

The first hybrid model extracts hierarchical structures using MLCTP’s topological state 

generation process shown in Section 5.3.2. The topological state transition matrix 

generation phase is ignored in this model, so the hierarchical structure output from 

MLCTP is effectively just the arrangement of nodes, connected in a hierarchy. These 

topologies are built top-down and we similarly select topologies based on MLCTP’s 

truncation parameter (defined as the number of differentiated states in the input 

sequential data).
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Figure 5.5; Multi-Level Chinese Takeaway Process with Baum-Welch Hidden State Transition 
Estimation

In order to re-calculate transition probabilities on the topological edges for the hybrid 

model, we first compute the count statistics of the sequence of event transitions i.e. the 

flat Markov Model of Equation 5.7 that calculates the observed transition probabilities. 

Leaf states are thus mapped bijectively to observations, effectively leaving the number 

of states in the higher (i.e. non-observation or hidden) levels to be defined by the 

MLCTP-generated topological rule structures. This structure is then used to estimate 

a set of state transition probabilities at each level via recursive Baum- Welch estimation 

(Figure 5.5 has the block diagram representing the training process using this method).

We can characterize the model via the following notation:

The MLCTP emitted topological structure has h = 1,..., 77 levels and for each pair of 

levels, we can specify a set of HMM parameters;

>̂h = (5.34)

where r]^{i) is the initial distribution of states for each level defined by MLCTP, e^{.) is 

the emission probability for each level i.e. the probability of state i at level h emitting 

a symbol at level h -f 1 , while the transition probability of a state transiting from i to 

j  for level h is

“ij = P(Qt = ilQiLi = *') and ^  d-ij = 1 Vj (5.35)
2 =  1

(where Qf is the current [hidden] state of a temporal sequence as represented at the 

hierarchical level h).
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The input sequence of labeled data is thus the observed sequence from which we ob­

tain the parameters of the model via Maximum Likelihood Estimation. Utilizing the 

MLCTP-generated hierarchical topology, Baum-Welch algorithm is hence employed re­

cursively to obtain the model parameters when the state path per level is unknown. 

Thus given a level-based sequence of observations for a given number of hidden

states defined by MLCTP, we compute \h  = {a^-, ej^(.), 77^(i)}. The parameters 

that maximize the likelihood of the input data are thus chosen at each individual level.

The recursive Baum-Welch state transition estimation is thus defined:

A% = Baum W elch{^’‘, Xh) (5.36)

or more specifically,

=  p (q W |a,)  Ç + l , i )  (5.37)

(i,j = l,2,...,^'‘),

Here, is the estimated state-transition probability of state i to j  at level h; F{t,i) 

represents the probability of the model emitting symbols, when in state

i at time t, obtained using the Forward algorithm, and respectively

represent the probability of transition from state i to j  and emitting the t-\- 1 st emission 

symbol at level h 4 - 1 (both arbitrarily instantiated and recursively updated). The 

Backward algorithm computes B (t-h l , j )  which is the probability of the model emitting 

the remaining sequence if the model is in state j  at time i +  1 .

Thus, in this model, estimated hidden state transitions act as the observation level for 

the estimation of the next highest level hidden state transitions in the hierarchy and 

so on. After estimating state transition probabilities, a state sequence is generated i.e. 

{Qt}  which is used as input observations for the next level of MLCTP’s hierarchy.

Finally, after computing state transition probabilities for each level, we perform the 

top-down hierarchical probability injection step (Equation 5.14) to obtain the learned
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augmented likelihood of events for MLCTP-generated topological structure with recur­

sive Baum-Welch estimated state transition probabilities (MLCTP-BW).

The MLCTP-BW hybrid could be considered as the methodology that is conceptually 

closest to the standard hHMM of [49] where the hierarchical topology is fixed based on 

the hierarchy established using MLCTP.

5.4 .2  M ulti-L evel C hinese Takeaway P rocess w ith  C artesian  P ro d ­

u ct L abel-B ased  H ierarchical B ottom -u p  C lustering C om p u ted  

S ta te  T ransitions (M L C T P -C L H B C )

The second hybrid model variant similarly extracts the hierarchical topologies from 

MLCTP’s topological state generation process. However, transition probabilities at 

the edges are then computed using the Cartesian Product Label-Based Hierarchical 

Bottom-Up Clustering (CLHBC) method.

In this model, MLCTP determines the number of levels (which in CLHBC is determined 

by the number of sub-labels defined in Section 5.2). Each labeled event is replaced by 

an arbitrary label, comprised of 2; types of labels, In this hybrid, z for CLHBC is 

determined by MLCTP. Intuitively, bigger z implies a deeper hierarchy.

Thus, the input training sequential data provides the event labels to be bijectively 

mapped into the observation level of MLCTP generated hierarchy (e.g. Qj —)■ S F  i.e. 

observation Qj is associated with event label Serve Far as shown in Figure 5.3, where 

the leaf nodes are mapped into events

Given the number of levels in the MLCTP-generated topological structure (z =  3 in 

Figure 5.3), event labels are then replaced with the Cartesian products of z arbitrary 

labels i.e. Qz where z =  1,2,3 such that the sub-label factors give rise to a hierarchy 

equivalent to that defined by MLCTP-generated topological structure. We thus reverse 

engineer Figure 5.3, where each event is re-represented with three (as z = 3) labels e.g.

with labeling associated with the observed states such that the common 

sequential factors result in the hierarchy generated using MLCTP. Following this re­

association phase, the training event sequences are re-generated using the new label-
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F igure 5.6: Multi-Level Chinese Takeaway Process - Cartesian Product Label-Based Hierar­

chical Bottom-up Clustering

structure and the CLHBC process executed resulting in state-transition probabilities 

at each level of the hierarchy generated by MLCTP.

Transition between states is thus governed by the input data at every level; however 

inter level associations are determined by MLCTP. The method thus populates the 

transition likelihoods ‘bottom up’ according to the MLCTP template. Figure 5.6 shows 

the block diagram for this hybrid model in which the input sequential data’s original 

labels are replaced with MLCTP-defined arbitrary labels. The hierarchical structure 

output from MLCTP is combined with this new label hierarchy and used to compute 

state-transition matrices for each level.

The trained augmented likelihood of events for the MLCTP-generated topological hi­

erarchy and CLHBC formulated label structure is computed in a similar fashion to 

previous methods via probability injection block of Figure 5.6. Experimental results for 

MLCTP-CLHBC are shown in Section 5.5.

5.5 Experim ental Results and Discussions

In this section, we evaluate the performance of all the four proposed variants of the 

novel hierarchical HMM strategy using six different datasets shown in Tables 5.2 and

5.4. In case of the Badminton dataset, we train the models using 77 play-shots (i.e. 

collections of sequences starting with the event serve and ending with a point-awarding 

event) and test using the remaining 20 play-shots. The number of unique events for 

Badminton is 8  (see Table 5.1). Similarly, datasets from other domains with varying
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test and training protocols are also employed, details of which are shown in Table 5.4.

For experimental evaluation of the method we measure the prediction accuracy for the 

next event given all of the previous events. It is shown in Figure 5.8 for the Tennis 

dataset (extracted using automated sports video annotation system [89] introduced 

in Chapter 3) e.g. the model CLHBC correctly predicts the next event 74.52% of the 

time, if the current event is H F  (see Table 5.1) and so on.

Figure 5.7 shows the comparative mean accuracies for the Badminton dataset using 

all of the methods employed namely, the Flat Markov Model (Flat MM), the Carte­

sian Product Label-Based Hierarchical Bottom-Up Clustering (CLHBC), the Multi- 

Level Chinese Takeaway Process (MLCTP), Hybrid I (MLCTP-BW) and Hybrid II 

(MLCTP-CLHBC). Mean prediction accuracies for all the methods applied to all of 

the datasets with individual standard deviations are shown in Table 5.5. Associated 

mean performance gains with respect to the baseline approach are also shown. It can be 

seen that all of the proposed hierarchical HMM generating methodologies demonstrate 

improvement relative to the Flat Markov Model.

Additionally, confusion matrices for the predicted events are also presented for all the 

methods applied to the Badminton dataset. Thus we see, for example, in Figure 5.9c, 

that B O N  (Bounce Out Near, see Table 5.1) is 50% of the time correctly predicted, 

while 50% of the time incorrectly predicted as H N  (Hit Near).

As may be seen in Figure 5.7 and Table 5.5 optimal performance for all of the datasets is 

achieved using the hybrid model MLCTP-CLHBC (of Section 5.4.2). MLCTP-CLHBC 

hybrid leverages MLCTP’s topological rule structure and consequently the label-based 

CLHBC to construct a rule model that is relatively more accurate. The average per­

formance gain achieved using MLCTP-CLHBC compared with the flat Markov Model 

is 11.59% resulting in a signiflcant improvement.

Relative performance gains in the context of a particular dataset vary depending upon 

the complexity of the data. It can be observed that in the case of more complex datasets 

-  such as the MSNbc.com and the tennis [8 8 ] datasets -  the average performance gains 

achieved by MLCTP-CLHBC are around 20%.

In a different setting (introduced in Chapter 3 and explained in [8 6 , 8 8 ]) high-level
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MLCTP-CLHBC

MLCTP-BW

MLCTP

CLHBC

Flat MM

88% 89% 90% 91% 92% 93% 94%

Mean Accuracy

Figure 5.7: Badminton Dataset - Comparative mean prediction with standard deviation

reasoning, in terms of correctly awarded points, is performed using the hard-wired 

HMM based on Figure 3.6. Correct point recognition rates reported using TWSA03 

and TMSA03 (see Table 5.2) were 87.5% and 73.75% respectively.

It is crucial to highlight again that HMM used in the work of [8 6 , 8 8 ] requires the 

number of states to be fixed heuristically based on the exact rule of the game. A 

different domain cannot be directly introduced without manually altering the HMM 

topology as there is no capability in this framework to learn the rule model. Our 

generalized rule induction mechanism on the other hand is intrinsically adaptive, as 

evidenced by our demonstration of the approach in domains other than tennis.

5 .6  S u m m a r y

In this chapter, we proposed four variants of the novel hierarchical Hidden Markov 

Model strategy for rule induction and applied them to the problem of automated sports 

video annotation. We firstly introduced a Cartesian Product Label-Based Hierarchical 

Bottom-Up Clustering method that employs the latent structure in the labels used 

to annotate videos. Labels are thus employed to build hierarchical structures based 

on various Cartesian Product based combinations of sub-labels such that a hierarchical
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HMM of common repeated event structures is established (and which is used to evaluate 

the predictive capability of the method). The second proposed variant, the Multi- 

Level Chinese Takeaway Process, is based on the Chinese Restaurant Process with 

tables replaced by takeaways which may be re-visited within different cities representing 

levels in the hierarchy. This is a stochastic process, with many hierarchies generated 

for a given set of hyper-parameters, such that a distance measure (JS-Divergence) is 

employed to infer the highest likelihood stochastic rule structure.

We also introduced two hybrid variants namely MLCTP-BW and MLCTP-CLHBC, 

that leverage the stochasticity of MLCTP (whereby various latent hierarchical struc­

tures are produced), in conjunction with the label sequence to give a composite ‘top- 

down’ MLCTP-driven (topologically) and ‘bottom-up’ data-driven approach to hierar­

chical HMM inference. All of these methods finally generate finite intermediate-depth 

hierarchical HMMs that are well-suited to calculating the likelihood of event transitions 

taking place within sport video sequences typically governed by analogous hierarchical 

rule structures involving e.g. matches., sets, points, etc.

We conclude that leveraging the label information contained within sequential data 

(especially sports video sequences) in conjunction with our novel Multi-Level Chinese 

Takeaway Process provides a previously unexploited opportunity for rule-induction. 

Comparative prediction results for all of the proposed methods are shown relative to 

the flat Markov Model, with all of the hierarchical methods shown to perform better 

(with the most optimal method being the MLCTP-CLHBC hybrid).

In the context of an automated video annotation system, the rule induction framework 

thus provides a robust context analysis module in which rules are inferred from obser­

vations and predictions are made that can serve as logical priors on detections. Such a 

framework can be employed for tackling various problems beside prediction generation. 

In particular, it can address the issue of anomaly detection] when a new domain is 

introduced to the system, anomalous events (as opposed to outliers and errors) can be 

detected using the rule hierarchy triggering the domain change. In the context of an 

automated video annotation system, this may require switching the knowledge base by 

abandoning continuous adaptive learning and replacing it with a new learning process.



Chapter 6
Summary and Future Work

6.1 Thesis Summary

This thesis investigated various methodologies in the context of automated sports video 

annotation specifically aimed towards the goal of developing a generalized contextual 

analysis system. We experimentally demonstrated all of the proposed novel method­

ologies for problems like Anomaly Detection and Rectification which are important 

for a generalized adaptive system with changing input domains. Additionally, we also 

proposed new methods for rule-induction i.e. a generic framework that is able to con­

textually represent the input domain in terms of a hierarchical rule structure.

We commenced our discussion in Chapter 1 with the introduction to this thesis, com­

prising the motivation of this research work (potential research applications), problem 

statement, related task complexities and the contributions. The main objective of this 

thesis was to present state-of-the-art methodologies for problems like anomaly detec­

tion, anomaly rectification and stochastic rule-induction in the context of automated 

sports video annotation. This chapter concluded with a short summary comprising a 

systematic breakdown of the principal methodological contributions.

In Chapter 2, we presented a detailed literature review of key concepts related to auto­

mated sports video annotation, as well as, techniques deemed relevant to our research 

problems of anomaly detection, rule adaptation and rule induction. This provided

117
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us with baseline knowledge and understanding to carry out a focused analysis of our 

methodologies for developing a generalized contextual analysis system and motivating 

our subsequent research problem.

We also very briefly, introduced the automated tennis video annotation system of [89] 

in Chapter 3, which constitutes a vehicle and experimental test bed for our work to 

design a generalized high-level contextual analysis system. In this chapter, we also 

presented other computer vision systems for deriving experimental datasets which we 

employ for our novel methodologies. This includes two ground-truth annotation sys­

tems for annotating tennis, badminton and human driving behavior. We also, very 

briefly, introduced two other datasets from the UCl repository i.e. website data and 

human activity localization data, which we employ for rule-induction methodologies. 

In Chapter 4 and Chapter 5, we presented our principal methodological contributions 

comprising the proposed solutions to our research problems in the context of automated 

sports video annotation.

In Chapter 4, we first introduced the problem of anomaly detection for changing do­

mains in the context of automated sports video annotation and for knowledge transfer. 

We presented a novel lattice-based HMM induction strategy for detecting anomalies 

tuned for court-game environments that maps game-play states into a court lattice 

specifically when a sport domain is switched from singles tennis to doubles tennis. Fur­

thermore, we also present the anomaly rectification strategy that changes the definition 

of events in the lattice-space for doubles tennis and hence rectifying all of the detected 

anomalies, i.e. successfully adapting to a change of rule structures going from singles 

to doubles tennis. We demonstrated the performance and ability of the methods in real 

and simulated tennis singles and doubles games.

In addition to the lattice-based anomaly detection and rectification method, we also 

presented another approach to address the problem of anomaly detection that is based 

on the disparity between the low-level vision based classifiers and the high-level contex­

tual classifiers. A convex-hulling approach is then presented to rectify anomalies in this 

chapter. We demonstrated how the concept of anomaly detection may be extended so 

as to transfer learning from an initially known rule-governed domain to another via the
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redefinition of the main play area in terms of the convex hull of the detected anomalies. 

We demonstrate experimental results using real tennis singles and doubles games.

In Chapter 5, we presented four novel methodologies that are capable of generating hi­

erarchical HMMs for rule-induction primarily in the context of automated sports video 

annotation. These novel methods include the Multi-Level Chinese Takeaway Process 

(MLCTP) based on the classical Chinese Restaurant Process and the Cartesian Prod­

uct Label-based Hierarchical Bottom-up Clustering (CLHBC) method that exploits 

information within the label structures. Furthermore, we also propose two hybrid 

methodologies, i.e. MLCTP-BW (MLCTP defined hierarchical topology with a recur­

sive Baum-Welch estimated hierarchical state transition probabilities) and MLCTP- 

CLHBC (MLCTP defined hierarchical structures with CLHBC computed label asso­

ciations). Our results showed significant improvement by comparison against the fiat 

Markov model while the optimal performance is obtained using MLCTP-CLHBC hy­

brid. We also showed that the methods proposed are generalizable to other rule-based 

environments such as badminton, human driving, website clicking behavior and human 

activity localization.

6.2 Future Work

We have proposed and experimentally demonstrated methodologies for solving various 

problems required for a generalized adaptive system that is able to autonomously an­

notate videos. In order to achieve the goal of understanding videos, the current sport 

related experimental datasets are limited by data-quality i.e. most of the videos are 

either too old and/or improperly recorded. To overcome this difficulty, novel methods 

needs to be employed to contextually cater for missing (or immeasurable) video frames.

Our rule-induction methodologies, in this thesis, have been extensively evaluated in 

terms of event predictions. They can also be used to predictively and retrospectively 

identify unobserved video frames. Following this direction of research will introduce 

various implementation and methodological issues such as the need to replace the cur­

rent Markovian structure. One method of dealing with this problem could be via 

analyzing associated rule-grammars.
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In order to expand these models for practical implementation in future generalized 

video annotation systems, the proof-of-concept evaluations will need to be expanded 

to other domains comprising other sports such as cricket, football, table tennis and 

non-sporting domains such as characterizing surveillance footage, recorded meetings 

and lectures etc.

Rule induction framework can also be employed to address the problem of transferring 

knowledge from one domain to another; this can be achieved via analyzing various levels 

of the established rule hierarchies representing different levels of abstractions such that 

in a new (and related) domain, contextual inferences are transferred i.e. minimizing 

the need for re-training.

Additionally, these methodologies could also be effective in an online annotation system 

environment with faster processing abilities. Implementing the proposed rule-induction 

methods with speedy processing priorities will help the current sport broadcast in terms 

of commentating with methodologies learning player behaviors e.g. the types of shots a 

player is expected to repeat throughout game-play. With combined annotation history 

of players, the system will be able to provide other useful information e.g. player 

behavior not only in the normal games but in the finals etc.

Our rule-induction methods were able to produce rule structures for sport games repre­

senting various types of observations in a hierarchy of a limited depth. In other games, 

this limitation must be relaxed to model a complete rule model which might be present 

in a deeper and more extensive hierarchical topology.

Furthermore, in the context of broad research, rule-induction methods could also be 

infiuenced by human psychological learning behavior with human subjects exposed for 

the first time to a certain rule-domain. This could be achieved via presenting learning- 

based questionnaires among several exposures to the test videos and based on that, 

rule-induction strategies should be tuned for realistic modeling.

Moreover, beyond annotation systems, rule-induction methods can also be employed 

in other non-video based applications. There is a massive scope for learning gene 

behaviors for disease investigations, e.g. precisely modeling the likelihood of a human 

subject carrying a particular disease, given the subject carries a certain gene which can
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help in avoiding major diseases.

Further modeling human actions (and expanding on what we show with the human 

localization data), we can explore behaviors resulting in muscle damage. Knowledge 

of a certain movement causing muscle damage may help in cases of arthritic patients 

with detectors warning the patients from carrying out risk afflicting actions.

Finally, but by no means least, rule-induction methodologies can also be employed 

across other scientific applications, such as, prosthetics, industrial and planetary ex­

ploration robots, driving safety systems, surgical tools, airline safety systems and haz­

ardous environment analyzing robots. In all of these applications, rule-induction can 

potentially be used as a warning system if a certain rule-grammar is not followed cor­

rectly.
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