
Data Informed Health Simulation Modeling

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Yang Qin

c©Yang Qin, November/2019. All rights reserved.



Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should be

addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building

110 Science Place

Saskatoon, Saskatchewan

Canada

S7N 5C9

i



Abstract

Combining reliable data with dynamic models can enhance the understanding of health-related phenom-

ena. Smartphone sensor data characterizing discrete states is often suitable for analysis with machine learning

classifiers. For dynamic models with continuous states, high-velocity data also serves an important role in

model parameterization and calibration. Particle filtering (PF), combined with dynamic models, can sup-

port accurate recurrent estimation of continuous system state. This thesis explored these and related ideas

with several case studies. The first employed multivariate Hidden Markov models (HMMs) to identify smok-

ing intervals, using time-series of smartphone-based sensor data. Findings demonstrated that multivariate

HMMs can achieve notable accuracy in classifying smoking state, with performance being strongly elevated

by appropriate data conditioning. Reflecting the advantages of dynamic simulation models, this thesis has

contributed two applications of articulated dynamic models: An agent-based model (ABM) of smoking and

E-Cigarette use and a hybrid multi-scale model of diabetes in pregnancy (DIP). The ABM of smoking and

E-Cigarette use, informed by cross-sectional data, supports investigations of smoking behavior change in light

of the influence of social networks and E-Cigarette use. The DIP model was evidenced by both longitudinal

and cross-sectional data, and is notable for its use of interwoven ABM, system dynamics (SD), and discrete

event simulation elements to explore the interaction of risk factors, coupled dynamics of glycemia regula-

tion, and intervention tradeoffs to address the growing incidence of DIP in the Australia Capital Territory.

The final study applied PF with an SD model of mosquito development to estimate the underlying Culex

mosquito population using various direct observations, including time series of weather-related factors and

mosquito trap counts. The results demonstrate the effectiveness of PF in regrounding the states and evolving

model parameters based on incoming observations. Using PF in the context of automated model calibration

allows optimization of the values of parameters to markedly reduce model discrepancy. Collectively, the

thesis demonstrates how characteristics and availability of data can influence model structure and scope, how

dynamic model structure directly affects the ways that data can be used, and how advanced analysis methods

for calibration and filtering can enhance model accuracy and versatility.
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Chapter 1

Introduction

Reflecting the heavy associated health burdens, a high amount of effort is currently expended in collect-

ing and analyzing empirical evidence in health areas such as communicable illness, obesity, tobacco-related

diseases, mental health, and health service delivery.

While traditionally conducted surveys have for a long time provided key support for collecting reliable

evidence on health behaviors and exposures in the community, such surveys suffer from practical limits

in the volume and type of information that can be gathered without overly burdening the participant; in

addition, large-scale efforts dependent on such surveys are both encountering increasing difficulty in reaching

potential respondents, and becoming increasingly expensive. At the same time, there is an increasing need

for higher-resolution understanding of health behaviours and exposures due to the growing sophistication and

diversity of analytic methods, including machine learning and other computational modeling methods such

as simulation. To address both the growing challenge in data collection with traditional instruments and the

increasing need for research evidence, a growing number of researchers seek to support health insights by

supplementing traditional tools with combinations of “Big Data” sources. The availability of rich and reliable

data provides supports for understanding public and population health and health care insights via analytic

methods drawing on data science, system science, and computational science.

As an important contemporary example of Big Data, sensor data collected from smartphones allows

less intrusive and – for many measurands – automatic data collection on participant’s behavior. Examples

of such automatically-collected smartphone data include location data via GPS and Wi-Fi signal strength,

physical activity data via processed pedometer data or lower-level motion sensors such as accelerometry

and gyroscope readings, contact network information gathered using Bluetooth beacons, digital footprint

data – such as information on whether the smartphone’s screen is on – and environmental data involving

temperature or humidity measurements. In addition to the smartphone sensor data, the high prevalence and

continuity of smartphone usage further makes attractive and lower-burden self-reporting from participants

via ecological momentary assessments. Cross-linking multiple sensor types – and sensor data to self-reported

data – allows researchers to assess behaviors, health outcomes, and elevated understanding of the dynamics

of implemented interventions.

Fine-grained data generated from underlying processes generally sheds light on the causal structure of

the dynamic and unobserved system by providing evidence regarding the dynamics of generative pathways
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underlying observed impacts. Models, by comparing model-generated with empirical data, test the consis-

tency of the behavior resulting from the hypothesized causal structure and evidence for the world. This can,

in turn, provide support for studying the dynamics and evolution of the data generating process and the

system-wide implication of the data sources. The dynamic model further provides a way to examine and

estimate the system-wide outcomes for counter-factual situations and interventions in a complex system.

While the characteristics of data inform the selection of appropriate methods for analyzing it, the dy-

namic model structure and level of sophistication directly shape the ability to effectively utilize data, and

constrain the analytic methods that can be used to exploit data with the dynamic model. Machine learning

classifiers such as Hidden Markov models (HMMs) and recurrent neural network models are suitable for infer-

ring categories, classifying the (generally latent) underlying state over time, and predicting outcomes. Such

classifiers require large volumes of data concerning the character of discrete (e.g., categorical) state. Further-

more, the noisy and sparse observations collected by smartphones are frequently individually insufficient to

conclusively identify the unobserved state at a given time, particularly in light of the continuing evolution

between states over time. Therefore, uniformly-spaced time series data from smartphone sensors in contexts

well-characterized by discrete (e.g., categorical) underlying states is often suitable for analysis with machine

learning classifiers such as HMMs. However, HMMs incorporate important limitations, including linearity,

and the assumption of memoryless transitions according to constant probabilities between discrete states in

discrete time. Models seeking to characterize memoryful states, time-varying transition probabilities, and

continuous data require recourse to other analytic approaches.

High velocity data plays an important role in grounding dynamic models offering continuous state, includ-

ing nonlinear aggregate System Dynamics (ODE) models, and agent-based models (ABM). Beyond supporting

a continuous state space, nonlinear models in general characterize a notably richer behavioural repertoire.

ABMs further allow for capturing memoryful states and richer context, such as those associated with social

networks, individual characteristics, and geography, and exploiting cross-sectional data points and statistics

from individual-level longitudinal data for model parameterization and calibration of model results. For a

dynamic model, the marked variability in model dynamics and the sophistication of the data interface further

shape the appropriate methods to be used to exploit the data. Beyond parameterization and calibration,

filtering can be used with dynamic models to estimate the distribution of system state given time-series data

for one or more measurands, and to estimate evolving parameter values.

The objective of this thesis is to use case studies to investigate different levels of sophistication by which

dynamic models can be combined with data, and further discuss the characteristics and availability of data

in shaping model structure and scope, as well as the ways in which dynamic model structure affects the data

that can be used. The case studies of this thesis that demonstrate combinations of dynamic modeling with

data, include machine learning classifiers informed by transformed time series of smartphone sensor data,

and dynamic models informed by longitudinal individual-level data via calibration and particle filtering and

calibration used to integrate an aggregate ordinary differential equation/System Dynamics model (SDM) with
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daily data representing samples from the natural environment. The paragraphs below briefly characterize

these applications.

To lend meaning to collected time series of individual-level longitudinal data, the first case study employed

multivariate HMMs to dichotomously classify smoking and non-smoking intervals, making use of binned time-

series of transformed smartphone-based Wi-Fi, GPS and accelerometer sensor data. To support supervised

learning, these data were labeled with self-reported smoking status collected with the same smartphone

data collection app. With the character of data in this study, HMMs support identifying a set of discrete

(categorical) states assumed to be memoryless according to the transitions between states, with the particular

focus here being the estimation of the most likely sequence of latent states. To evaluate the use of data in

machine learning classifiers, this work further assessed the sensitivity and specificity of univariate HMMs

when compared with that of multivariate HMMs, and investigated the influence of tailoring training and test

datasets to preserve complete smoking periods on model performance.

Individual-based dynamic models further allow for capturing memoryful states and richer context, such

as those associated with network and geography, and for utilizing longitudinal data for calibration and pa-

rameter value. In the second and third case studies, an ABM and (separately) multi-scale hybrid simulation

model were constructed to explore the potential for examining the causal structure of a system and inter-

ventions using data and dynamic models. Specifically, an ABM of smoking and E-Cigarette (ECig) use was

constructed to examine the effects of ECig use and social networks on smoking behavior change. Separately,

we further developed a multi-scale hybrid simulation model of diabetes in pregnancy (DIP). This model in-

cluded as building blocks a SDM, an ABM and a discrete event simulation model (DES). The work extensively

calibrated the model against empirical data. The SDM captured central physiological-level phenomena, by

simulating the dynamics of glycemic regulation by β-cell and insulin resistance, and the evolution of prevail-

ing insulin and glycemic levels, as well as beta cell mass and function. Continuous body mass index (BMI)

evolution, dynamics of insulin sensitivity driven by pregnancy and weight change and birth, interventions,

and diabetes classification were simulated by the ABM. Finally, DES was employed to characterize investigate

the optimization of resource use in public health service delivery.

Due to the marked variability in Saskatchewan’s mosquito population dynamics year-to-year and within

the course of a summer, the need to estimate continuous state in terms of the underlying mosquito population,

and having detailed time-series data, the final case study applied the machine learning technique of particle

filtering with a SDM of mosquito population to predict Culex mosquito adult population using various

direct observations – including weather-related factors – and mosquito-related time series. In contrast to

previous applications of particle filtering models to health-related dynamic models, this application of particle

filtering required consideration of the marked temporal variation in exogenous (here, weather-related) factors

affecting measurements of model state. As a result, the measurement model employed in the particle filtering

included a complex likelihood function dependent on time-series data regarding such exogenous factors. This

final work also made an innovative methodological contribution by extensive use of particle filtering in the
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context of automated model calibration to deal with the uncertainties associated with mosquito dynamics and

particularly the relationship between multiple weather-related factors and the per-day probability of trapping

a mosquito – factors of key importance in reasoning about estimates of the abundance of mosquitoes captured

in traps.

Levels of sophistication of model structure and by which dynamic models can be combined with data are

considered in the presentation sequence used for the models. The multivariate HMMs support classifying a

set of discrete states – whose emission probability densities are assumed to be memoryless, and with constant

and memoryless transitions between states. A relatively rudimentary level of sophistication in interfacing

between the model and the time-series data is demonstrated in this initial case study. Reflecting increasing

model sophistication, ABM and hybrid models capture memoryful, continuous states and a richer behavioral

repertoire. Reflecting these advantages, the thesis presents two case studies – an ABM of smoking and

ECigs informed by cross-sectional data, and a hybrid multi-scale model of DIP using both cross-sectional

data and longitudinal data. In both case studies, the model interfaces with the data in a relatively simple

and traditional way – via model calibration. The richer data availability for the DIP model, by providing

additional information for grounding model behavior, can considerably increase the level of sophistication of

the model that can be evidenced. While having a simpler model structure than the hybrid model of DIP,

the SDM of mosquito development employs a more sophisticated means of grounding the model in data –

via Particle Filtering – and requires a more complex way of relating the empirical data to corresponding

model outputs. The particle filtering recurrently regrounds the latent state of the dynamic model, based on

a time series of empirical data treated as incoming observations, despite highly variable and environmentally-

dependent data observation processes. The SDM notably further employs particle filtering in the context of

model calibration to deal with the uncertainties associated with the evolution of the mosquito population,

and particularly the complex and multifactorial dynamics involving use of the empirical data to estimate

mosquito abundance.

1.1 Motivation

Smoking is one of the foremost public health threats, harming nearly every organ of the body, and the

cause for many preventable diseases, e.g., lung cancer, coronary heart disease, chronic obstructive pulmonary

disease, and other cardiovascular diseases [1,2]. The detection of smoking behavior change is key to smoking

surveillance and informing effective policy making. High prevalence and continuity of smartphone usage and

mature smartphone sensor data collecting techniques make such sensor data a cheap, ubiquitous data source

for automatic human activity recognition, and make that a strong candidate for allowing viable monitoring

of smoking behavior [3]. However, an effective detection algorithm for smoking behaviors using fused sensor

data from commodity smartphones remains elusive.

As a cigarette alternative, the ECig was introduced to the market in 2003, and its usage has subsequently

4



increased dramatically, due in part to the promotion and marketing by major tobacco companies in the last

decade [4, 5]. An ECig vaporizes a liquid mixture as a substitute for tobacco leaves, and provides an aerosol

for users to inhale [4,6]. The use of ECigs amongst youth has exhibited a particularly dramatic and alarming

rise [7]. The health behaviors associated with smoking and ECig use have been studied by many researchers,

predominantly using self-reported surveys, in cohort studies and clinical trials [8, 9, 10]. Such studies are

expensive and difficult to scale, and are typically far from real-time in character, being frequently associated

with delays in obtaining results. Furthermore, such studies can be difficult to plan and execute, and their

designs often exclude some factors or patterns of importance in the complex ecological context of smoking.

Dynamic models play a key role in addressing such challenges by simulating complex social dynamics and

behaviors with considerably high resolution [7]. ABMs can serve as an effective tool for investigating the

impacts of counter-factual interventions by characterizing a high level of heterogeneity of individuals, and

can further help prioritizes data collection in a complex milieu of complex interactions of smoking and ECig

use behaviors and choices regarding nicotine-containing products.

Gestational diabetes mellitus (GDM) poses challenge for public health in the Australian Capital Territory

(ACT), particularly on account of its influence on future diabetes, elevating the risk of developing Type 2

Diabetes Mellitus (T2DM) across the population [11,12] and in offspring [13,14]. This problem is worsened by

the increasing prevalence in the ACT – and in many developed countries – of established risk factors for GDM,

including advanced maternal age [15], obesity [16], historical declines in physical activity, growing GDM risk

factors in those with family history of diabetes, and a rising number of residents whose ethnicity group has

traditionally been subject to elevated rates, which contribute to the increase in the prevalence of GDM [11,17].

While earlier diagnostic screening improves the capacity for early case discovery, supporting early treatment

and intervention, such benefits must be balanced with the increased resource demand this imposes on public

health services. The health concerns associated with GDM increases and its risk factors have been studied

in previous studies predominantly using cohort studies, administrative data or clinical trials [18,19,20]. The

SDM constructed by Osgood et al. [14] offered a dynamic perspective on the inter and intragenerational

interaction of GDM and T2DM, but was limited by the aggregate view of model, a difficulty in grounding

the model by longitudinal data, and an inability to characterize a rich portfolio of interventions – including

those depending on detailed patient risk factors, family context or history – or to address decision-making at

multiple levels of the system (e.g., clinical, health services delivery, public health). While promising and filling

some important research needs, the complex interactions among the risk factors and the underlying system

including feedback, accumulations, delays, heterogeneity impose fundamental barriers for the use of aggregate

studies in examining “what-if” questions and counter-factuals whose outcomes have not yet been observed,

in reasoning about times-to-effect, scaling and other implementation science concerns, and in providing a

timely evaluation of complex portfolios of interventions and treatments.

West Nile virus (WNv) infection is one of the leading causes of mosquito-borne disease (MBD) in

Saskatchewan, and across Canada [21]. In many Northeast regions and within Saskatchewan, mosquitoes
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in genus Culex [22] serve as a bridge vector of WNv between birds and humans, resulting in human cases

of WNv infection [23, 24]. Culex pipiens is associated with the highest number of humans cases in WNv

infection in the northeast and north-central of the United States [23, 24]. Culex pipiens and Culex restuans,

and Culex tarsalis are dominant vector in eastern Canada and in western Canada, respectively [25]. Culex

tarsalis amplify the spread of infections as feeding preferences shifts from bird to human during the Ameri-

can robins (Turdus migratorius) migration period [23]. Control of Culex mosquitoes can greatly reduce the

burden of WNv infection. Taken in isolation, current information or data about the abundance of mosquitoes

offers insufficient evident for public health entities to most efficiently control outbreaks of MBD [26]. Due

to the marked variability in mosquito population dynamics year-to-year, complex weather-based influences

on, and labour-intensive nature of trap-based estimation of mosquito abundance, and confounding effects of

mosquito control measures, we were motivated to draw on a combination of a SDM of mosquito lifecycle

with the machine learning technique of particle filtering to predict adult mosquito population. This approach

used various direct observations, including mosquito-related time series and weather-related factors critically

influencing both mosquito dynamics and the probability of mosquito detection in separate ways, to build a

model capable of predicting mosquito populations and assessing potential interventions to effectively control

the outbreaks of MBD.

1.2 Problem

To investigate use and challenges of different types of empirical data with appropriate advanced analysis

methods – such as calibration, filtering – can aid in tasks such as classifying or estimating latent state, and

predicting outcomes, the following problems need to be resolved.

• Various types of sensors from smartphones allow unobtrusive and automatic data collection on par-

ticipant’s behavior; however, when collecting data with high granularity, the data contains noise and

missing and sparse observations, e.g., the dominant invariant gravitational component in the readings

from accelerometer. Without means of effectively handling it, such noisy data may adversely influence

the accuracy of machine learning classifiers.

• Multivariate HMMs were informed by time-series observations from multiple types of smartphone sensor

in this study. To improve the performance of our Multivariate HMMs, appropriate assumptions must

be made about these multiple types of observations in terms of emission distributions associated with

particular states.

• Model calibration processes using longitudinal and (alternatively) cross-sectional data involve “tuning”

values of unknown or poorly-measured parameters to best match model outputs with observed data.

Frequently during this process, missing assumptions were required to be identified, and incorporated

new constraints or mechanisms into the model for better matching simulation results with empirical
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data.

• Dynamic simulation models commonly include some parameters with no reliable information, but where

other data is available for governing the emergent behavior of a system, e,g. cross-sectional data and

time-specific data. While calibration can be employed for point estimation, the presence of pronounced

stochastics makes it difficult to closely match observed patterns in a way that is desirable for projection

of model behaviour, particularly because the calibration cannot reground the state of the model based

on incoming observations.

• Dynamic modeling, particularly for extensive calibration, may require many realizations per parameter

combination. Therefore, it is of high importance to employ an effective model configuration to reduce

the computation cost and scale up the model for simulating large populations for a long time, e.g., in

a ABM with networks and geography, or a multi-scale hybrid model.

• The particle filtering method recurrently regrounds estimates of dynamic model state by estimating

latent state and dynamically evolving parameters based on incoming observations. The measurement

process used to relate model outputs to empirical observations can be involved, and can depend on

unfolding exogenous factors. While particle filtering can provide great value in estimating the latent

state of the model, it does not directly address the need to estimate static parameters, including

pronounced uncertainties regarding model outputs associated with bias in the measurement process;

to address such cases, there is a need to combine particle filtering with other parameter estimation

methods, such as calibration.

1.3 Contributions

The main contributions of this thesis are listed as follows:

• Classifying smoking intervals using smartphone sensor data and multivariate HMMs.

We fused various types of smartphone sensor data – including Wi-Fi, GPS, and accelerometer time

series – after transformation of the raw data, and applied multivariate HMMs to identify smoking

and non-smoking intervals. The fidelity of predictions from univariate and multivariate HMMs were

compared using an evaluation metric of Area Under the Curve (AUC) and error rate. In terms of novel

contributions, multivariate HMMs used problem-specific features to support more effective distinguish

the underlying patterns of smoking behavior. The improvements in data conditioning achieved by the

transformations and the identification of the need to tailor the analysis to entire smoking cycles serves

an important role in elevating classifier performance.

• Agent based modeling to investigate the effect of ECig use and social networks on smoking

behavior change.
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An ABM was constructed to simulate complex interactions between smoking and ECig use, and further

implemented a dynamic physical proximity network and examined its effect on smoking and ECig use

initiation. Aggregated individual outcomes were collected to demonstrate the influences of network

and ECig use. The model was calibrated against empirical data from 2013 to 2017 from the Canadian

Tobacco and Alcohol and Drugs Survey [27].

• Multi-scale simulation modeling for prevention and public health management of DIP and

sequelae.

Extending and elaborating a previously built model, an open population ABM enclosing a previously

contributed SDM module was built to represent the population dynamics, evolution of continuous BMI

as age cohorts shift, and diabetes classification. Offspring outcomes were refined based on the maternal

hyperglycemia status and modifications were made to the equations to make insulin sensitivity over time

dependent on pregnancy and weight status from other areas of the model. This work further identified

a missing assumption and elaborated the equations giving the spontaneous recovery rate of the pan-

creatic beta cells for diabetes high-risk ethnicity groups. We built a novel portfolio of population-level

interventions and clinical health service pathways in the ACT. The model was extensively calibrated

against empirical data, and incorporated missing assumptions during the calibration process. The

model was scaled up to simulate 200,000 agents over 93 years for 23.25min per realization, using 2.2

GHz Intel Core i7 and 16GB RAM, by modifying the model configuration. To enhance modularity and

flexibility, the Person agent was refactored by separating the SDM module, weight change dynamics,

and interventions as three types of agents, and encapsulating the three agents in the Person.

• Particle Filter Applied to SDM for Mosquito Population Surveillance.

We applied particle filtering to a previously built SDM of a Culex tarsalis mosquito population using

various direct observations, including weather-related factors and mosquito-related time series. Ad-

dressing key elements of model parameter uncertainty, model calibration was combined with particle

filtering for optimizing values of parameters to minimize the discrepancy following particle filtering.

For the novel contribution, the resulting SDM model used both particle filtering and automated model

calibration to deal with the uncertainties associated with the dynamics of Mosquito population and

complex and multifactorial dynamics involving the number of mosquitoes being captured by mosquito

traps used to estimate mosquito abundance, with the calibration reducing that discrepancy by more

than a factor of 3 (from 336.84 to 110.287). Furthermore, linear regression was employed as an al-

ternative approach to estimate the relationship of each type of weather factor and influences on the

dynamics of number of mosquitoes being captured.

1.4 Thesis Outline

The structure of the remainder of the thesis is as follows:
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• Chapter 2 provides background information on the methodologies employed by the models in this thesis,

including a brief introduction of simulation modeling, HMMs, and particle filtering. The final section in

this chapter consists of a literature review regarding previous studies on modeling of GDM and T2DM,

smoking identification, and ABMs of smoking or ECig use.

• Chapter 3 presents a study investigating classification of smoking and non-smoking intervals using

smartphone sensor data and multivariate HMMs. As a key enabler for this contribution, data pre-

processing methods to yield better performance of the HMM are discussed in this chapter. Furthermore,

taking advantage of the labeled data available in the supervised learning approach applied, emission

probability distributions were estimated using kernel density estimation based on empirical distribution

of three types of independent observations. Comparisons of the accuracy of multivariate HMMs and

univariate HMMs are further provided.

• Chapter 4 introduces an ABM to examine the effect of ECig use and social networks on smoking

initiation, relapse and cessation. This chapter further characterizes the use of model calibration to

adjust select model assumptions so as to best match simulation outcomes with empirical data. Results

from different scenarios and sensitivity analysis on model parameters are also presented in this chapter.

• Chapter 5 describes a multi-scale hybrid model that includes an SDM simulating an underlying physi-

ological regulation of glycemic status based on beta-cell dynamics and insulin resistance, nested in an

ABM depicting a dynamics of continuous BMI evolution, glycemic status change during pregnancy, and

diabetes classification driven by the individual-level SDM. Furthermore, public health service pathways

using DES are presented to explore the optimization of resource use during service delivery. The impact

of interventions of varying levels of the system – clinical, health service delivery and population level

– on health outcomes at the physiological, health service and population levels are further discussed.

Calibration, model scalability, and model refactoring are also discussed and explored in this chapter.

• Chapter 6 describes an application of particle filtering for an SDM of a species-specific mosquito pop-

ulation using weather-related time-series on a daily basis. The chapter further includes modeling the

effect of mosquito control on the abundance of mosquito larvae, and linear regression to estimate the

probability of capturing Culex mosquito adult per trap. The distinctive work using both model calibra-

tion and particle filtering for optimizing values of parameters is also presented in this chapter. Finally,

the results of particle filtering are presented and discussed.

• Chapter 7 includes following elements: A summary of motivation and conclusion of each chapter, the

possible solutions for the problems encountered in this work, a discussion of major insights and findings,

a brief statement of the contribution of this work, and a discussion of limitations and future work.
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1.5 Publications

• Chapter 3 includes a manuscript of "Identifying Smoking from Smartphone Sensor Data and Multi-

variate Hidden Markov Models" by Yang Qin, Weicheng Qian, Narjes Shojaati, and Nathaniel Osgood,

published in: Lee D., Lin YR., Osgood N., Thomson R. (eds) Social, Cultural, and Behavioral Modeling.

SBP-BRiMS 2017. Lecture Notes in Computer Science, vol 10354. Springer, Cham [3].

Yang Qin wrote the draft of this paper. Yang Qin obtained and processed the raw data. Yang Qin

and Weicheng Qian contributed to implementing the HMM and validating the results. Narjes Shojaati

contributed in collecting the raw data. Weicheng Qian and Nathaniel Osgood helped in editing the

manuscript. Nathaniel Osgood supervised the study and advised on feature selection and building

multivariate HMMs.

• Chapter 4 includes a manuscript of "Effect of E-cigarette Use and Social Network on Smoking Behavior

Change: An agent-based model of E-cigarette and Cigarette Interaction" by Yang Qin, Rojiemiahd

Edjoc, and Nathaniel Osgood, published in: Thomson R., Bisgin H., Dancy C., Hyder A. (eds) Social,

Cultural, and Behavioral Modeling. SBP-BRiMS 2019. Lecture Notes in Computer Science, vol 11549.

Springer, Cham [7].

Yang Qin wrote the manuscript of this paper and contributed to building the model, obtained data

from a website for model calibration. Rojiemiahd Edjoc provided empirical data and contributed the

domain knowledge in the health aspect of this model. Nathaniel Osgood supervised the study and

advised on the model building process and edited the manuscript.

• Chapter 5 includes a manuscript of "Multi-Scale Simulation Modeling for Prevention and Public Health

Management of Diabetes in Pregnancy and Sequelae" by Yang Qin, Louise Freebairn, Jo-An Atkinson,

Weicheng Qian, Anahita Safarishahrbijari, and Nathaniel Osgood, published in: Thomson R., Bisgin

H., Dancy C., Hyder A. (eds) Social, Cultural, and Behavioral Modeling. SBP-BRiMS 2019. Lecture

Notes in Computer Science, vol 11549. Springer, Cham [17].

Yang Qin drafted the manuscript. Louise Freebairn contributed by project leadership, provision of em-

pirical data, and advised on modeling and helped with drafting the manuscript. Jo-An Atkinson advised

on the modeling process. Anahita Safarishahrbijari engaged in physiological model implemenetation,

contributed to implementing a fast system dynamic solver applying Newton-Raphson numeric method

and the mechanism of insulin resistance changing with pregnancy and treatment. Yang Qin contributed

to an extensive model debugging session, model performance optimization, model calibration, model

refactoring (logic-presentation separation), and modeling continuous BMI dynamics, refining the effect

of hyperglycemia of mother on child insulin sensitivity, building DES of ACT health service path-

ways, and implementation of five population-level intervention mechanisms. Weicheng Qian advised on

modeling and led the implementation of mechanisms towards achieving model scalability. Yang Qin
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obtained and visualized the results. Nathaniel Osgood helped with the manuscript, supervised and

advised on the entire study.
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Chapter 2

Background

This chapter provides an introduction to the methodologies employed by the models in this thesis and

corresponding background knowledge. Section 2.1 and Section 2.2 describes the basics of HMMs and particle

filtering, respectively. Section 2.3 introduces the basics of simulation models, including ABM, SDM, and

DES. Section 2.4.1, Section 2.4.2, and Section 2.4.3 provide a brief introduction to GDM, smoking detection

and ABM of smoking and ECig use, respectively.

2.1 Basics of Hidden Markov Models

HMMs, initially introduced in the late 1980s, are models in which the distribution that generates some

observations depends on the state of a process satisfying the Markov property. The underlying process is

posited to transition in discrete time between categorical states that are not directly observable, but at

any given time, the probability distribution of possible observations depends on only on the state at that

time. Each observation in the univariate and multivariate time series of observations is generally individually

ambiguous, but collectively – taken in context – such observations can provide insight into the unobserved

state. This capacity to make inferences in HMMs based on a broader context of observations at nearby points

in time is limited by the fact that the system is shifting over time between the underlying states. The features

of systems addressed by HMMs make it particular suitable for signal-processing application, especially in

speech recognition, and other fields such as bioinformatics, environment, finance and biophysics [28,29].

Given an HMM, the fundamental problems for model design are the evaluation of the probability of a

sequence of observations, decoding the most likely sequence of hidden states underlying such a sequence, and

training the HMM model parameters based on those observations [28].

An HMM has a functional form with the representation of Equation 2.3 [30], and consists of following

parameters: (1) count of hidden states, m, (2) the count of types of observations, n (3) the count of successive

observation time points, T , (4) the initial distribution P (C0), where P (C0) = P (Si), 1 < i < m, (5) the

parameter related with a sequence of hidden states, transition probability distribution P (Ct|C(t−1)), and

(6) the emission probability distribution P (Xt|Ct) [30]. The hidden states and observations of a HMM are

denoted as sets S = {S1, S2, . . . , Sm} with a size of m and X = {x1, x2, . . . , xn} with a size of n, respectively.

The sequence of hidden states, C = {C1, C2, . . . , CT } where Ct = Si, 1 ≤ i ≤ m, is assumed to satisfy the
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Markov property, namely, the conditional probability distribution of state at time t of a process depends only

on the most recent state at time t − 1 and is thus (conditionally) independent of the value of that state at

times before t− 1, as specified by Equation 2.1 [28,29].

P (Ct|Ct−1, ..., C1) = P (Ct|Ct−1), t = 2, 3, ...T (2.1)

Each of the observations at time t, {Xt : t ∈ T}, is given as a vector Xt = xi, 1 ≤ i ≤ n. The HMM

formalism further assumes that the distribution of possible observations at time t ({Xt : t ∈ T}) depends

purely the current hidden state Ct, given by the Equation 2.2, and is thus conditionally independent of, for

example, both previous states of the process, and previous observations.

P (Xt|X(t−1), ..., X1, C(t−1), ..., C1) = P (Xt|Ct), 2 ≤ t ≤ T. (2.2)

The joint distribution of both a posited state sequence C and the observations X is thus given by the

following:

P (C,X) = P (C0)

T∏
t=1

P (Ct|C(t−1))

T∏
t=1

P (Xt|Ct) (2.3)

In practice, the transition probability P (Ct|C(t−1)) is an m×m square matrix of probabilities, as shown in

Equation 2.4 [28]:

A =



a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

am1 am2 · · · amm


(2.4)

where aij = P (Ct = Sj |Ct−1 = Si), 1 ≤ i, j ≤ m, and
∑m
j=1 aij = 1. The probability distribution of an

observation Xt being generated from a state Ct, P (Xt|Ct), called the emission probability, can be a custom

density function according to a specific HMM; when the possible observations for a particular observation

type are discrete, this can be expressed by a emission matrix, but for continuous such observations – such as

those employed for some measurands within this thesis – continuous distributions are employed.

2.1.1 Forward and Backward Probabilities

An given application of an HMM can be described as a sequence of hidden states C = {C1, C2, . . . , CT }, a

sequence of observations X = {X1, X2, . . . , XT }, and a set of parameters θ = (A,B, π), where A = aij is

transition probability matrix as shown in Equation 2.4, B = bSi
(Xt), bSi

(Xt) = P (Xt = xj |Ct = Si) where

1 ≤ i ≤ m, 1 ≤ j ≤ n, is the likelihood of observing Xt considering the current state Si, and π represents

P (C0), the initial distribution of states.
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Following Rabiner’s notation convention in [28,29,31], the forward propagation computes P (X1···t, Ct|θ),

the probability of observation sequence to time t by summing the probabilities of all possible sequences of

hidden states that generate the observation sequence available up to and including time t. Based on the

definitions of hidden states C, a sequence of observations X and HMM parameters θ = (A,B, π), in the

forward propagation, the probability of being in state Ct at time t having observed the observation sequence

{X1, X2, . . . , Xt}, and given the HMM parameter θ, can be represented as Equation 2.5, and calculated as

Equation 2.6.

αt(Si) = P (X1, X2, . . . , Xt, Ct = Si|θ), t = 1, 2, · · · , T (2.5)

αt(Si) =

m∑
j=1

αt−1(Sj)ajibSi(Xt), t = 2, 3, · · · , T (2.6)

where αt−1(Si) is the previous forward probability from previous time step t− 1, aji is transition probability

from state Sj to state Si. Note that with this notation system, initialization happens at t = 1, rather than

t = 0. At t = 1 hidden states are distributed according to π and immediately observation correction S1 kicks

in. The algorithm for computing the forward probabilities is as follows:

• Initialization:

α1(Si) = πSi
bSi

(X1), 1 ≤ i ≤ m (2.7)

• Recursion:

αt(Si) =

m∑
j=1

αt−1(Sj)ajibSis(Xt), 1 ≤ i ≤ m, 1 < t ≤ T (2.8)

• Termination:

P (X|θ) =
m∑
i=1

αT (Si) (2.9)

Similar to the forward procedure, the backward probability for time t is defined as the probability of

ending partial observation sequence from time t+1 to the end time T , given its presence in starting state Si

at that time t and the HMM parameter θ, as shown in Equation 2.10.

βt(Si) = P (Xt+1, Xt+2, . . . , XT |Ct = Si, θ) (2.10)

The backward probability is computed by following the steps.

• Initialization:

βT (Si) = 1 (2.11)

• Recursion:

βt(Si) =

m∑
j=1

βt+1(Sj)aijbSj
(Xt+1) , 1 ≤ i ≤ m, 1 < t ≤ T (2.12)

• Termination:

P (X|θ) =
m∑
j=1

πSj
bSj

(X1)β1(Sj) (2.13)
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2.1.2 Baum-Welch Algorithm

The Baum-Welch algorithm, a special case of expectation-maximization (EM) algorithm, is a standard algo-

rithm employed to answer the third fundamental problem in HMM, namely, training the HMM to estimate

parameters that maximize the likelihood of observation from a training set. There is no proper solution

to maximize the probability of the entire observation sequence [28], but the EM algorithm can choose the

HMM parameters which locally maximize the probability of an observation sequence [28] using forward and

backward procedures [29,32].

The Baum-Welch algorithm employs the forward and backward probabilities to compute the estimated

transition probability âij defined in Equation 2.14 and estimated emission probability b̂Si
(xk) defined in

Equation 2.15

âij =
expected count of transition from Si to Sj

count of possible transitions from Si
(2.14)

b̂Si
(xk) =

expected count of times observation xk is observed in state Si
expected count of states Si of hidden state sequence

(2.15)

To compute the numerator in Equation 2.14, the probability of being in state Xi and Xj at time t and t+1,

respectively, is defined and calculated by Equation 2.16, given the observation sequence X and θ.

ξt(Si, Sj) = P (Ct = Si, Ct+1 = Sj |X, θ) =
αt(Si)aijβt+1(Sj)bSj

(Xt+1)∑m
j=1 αt(Sj)βt(Sj)

(2.16)

Thus, the âij is computed using Equation 2.17.

âij =

∑T−1
t=1 ξt(Si, Sj)∑T−1

t=1

∑m
k=1 ξt(Si, Sk)

(2.17)

For the estimation of emission probability, the Equation 2.18 defines the probability of being in state Si

at time t, given the observation sequence X and parameter θ. And γt(Si) is calculated by Equation 2.19.

γt(Si) = P (Ct = Si|X, θ) (2.18)

γt(Si) =
P (Ct = Si, X|θ)

P (X|θ)
=
αt(Si)βt(Si)

P (X|θ)
(2.19)

Therefore, the estimated emission probability b̂Si(xk) is computed by Equation 2.20. The numerator in

Equation 2.20 represents summing the times of seeing observation xk in state Si for all time steps, and the

denominator represents the expected number of times in state Si.

b̂Si
(xk) =

∑T
t=1,Xt=xk

γt(Si)∑T
t=1 γt(Si)

(2.20)

Starting with some estimated HMM parameters θ, the Baum-Welch algorithm iteratively runs the expec-

tation step and maximization step to re-estimate the transition probability and emission probability until

some convergence criterion has been met. In expectation step, all the quantities ξt(Si, Sj) and γt(Si) are
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replaced by their conditional expectations, given observation sequence X and the current estimated parame-

ters. In the maximization step, the ξ and γ from the expectation step are employed to recompute the HMM

parameters using Equation 2.17 and Equation 2.20.

2.1.3 Viterbi Algorithm

With a trained model, the Viterbi dynamic programming algorithm is used to “decode” observations emitted

from hidden states to get an estimated sequence of the hidden states [28, 33]. The equations in this section

were derived by L.R. Rabiner [28].

To implement this method, the best estimated sequence of hidden states is denoted as C = {C1, C2, . . . , CT }.

The observation sequence which needs to be decoded is denoted as X = {X1, X2, . . . , XT }. The idea of the

Viterbi algorithm is to compute the highest probability single path along the observation sequence left to

right at time t. Therefore, given HMM parameter θ, the maximum probability of being in state Si given

the observation sequence until time t in light of the highest probability state sequence {C1, C2, . . . , Ct−1} is

defined as Equation 2.21.

δt(Si) = max
{C1,C2,...,Ct−1}

P ({C1, C2, . . . , Ct−1} , {X1, X2, . . . , Xt} , Ct = Si|θ) (2.21)

Notably, the most probable sequence is identified by taking the maximum over all possible previous state

sequences, max{C1,C2,...,Ct−1}. To decode the state sequence with the highest probability, as a dynamic

programming algorithm, the argument δt+1(Sj) in Equation 2.22, needs to be maximized at each time t

over state Sj at time t. Vector ψt(Sj) is used to keep track of the index associated with δt+1(Sj) for each

successive time t.

δt+1(Sj) =
N

max
i=1

δt(Si)aij · bSj
(Xt+1) (2.22)

Similarly, with the forward algorithm, the steps for a complete Viterbi algorithm are divided into three steps,

initialization, recursion, and termination. In addition to these three steps, the Viterbi algorithm has state

sequence backtracking steps, which makes it different from previous algorithms. The steps for the Viterbi

algorithm are demonstrated as follows:

• Initialization:

δ1(Si) = πSi
bSi

(X1), 1 ≤ i ≤ m (2.23)

ψ1(Si) = 0, 1 ≤ i ≤ m (2.24)

• Recursion:

δt(Si) =
m

max
j=1

δt−1(Sj)aijbSi
(Xt), 2 ≤ t ≤ T, 1 ≤ i ≤ N (2.25)

ψt(Si) = arg
m

max
j=1

δt−1(Sj)aijbSi
(Xt), 2 ≤ t ≤ T, 1 ≤ i ≤ N (2.26)
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• Termination:

The best probability: P ∗ = max
1≤i≤m

δT (Si) (2.27)

The state sequence backtracking: q∗T = arg max
1≤i≤m

[δT (Si)] (2.28)

The implementation of the Viterbi algorithm can be visually expressed by a trellis diagram, and the Viterbi

path is the shortest path through the trellis diagram of the states of HMM.

In Chapter 3 of this work, each state (smoking or non-smoking state) has three types of observations

corresponding to readings from Wi-Fi, accelerometer and GPS sensors. The probabilities of such observations

follow an empirical distribution, and observations within a given state are assumed to be independent of each

other, conditional on being in that state. So the customized density function of the emission probability for

the multivariate HMM is:

bSj
(Xt) = PAccel(Xt|Ct = Sj)× PWiFi(Xt|Ct = Sj)× PGPS(Xt|Ct = Sj) (2.29)

2.2 Particle Filtering

2.2.1 Basics of Particle Filtering

Particle filtering is a sequential Monte Carlo methodology recursively calculating the approximation of the

posterior probability distribution using the concepts of sequential importance sampling in the framework of a

state-space model with discrete random measures defined by weighted particles [34,35]. Both particle filtering

and HMMs assume an underlying Markov process that cannot be directly observed, and for both approaches,

observations are generally individually ambiguous to give insights to the hidden state, but collectively the

observations are able to pin down the hidden state. Particle filtering can be combined with state-space

models having continuous states, while HMMs are applied to the state-space models having a set of discrete

states. The state-space model can be non-linear in particle filtering applications, and tight distributional

assumptions about the state-space model, measurement process – such as those seen in Kalman Filtering –

are not required for generating samples represented by weighted particles from a distribution.

The basic equation and procedures for building a particle filtering model are summarized as follows [35].

In an important change of notation from the coverage of the HMMs above, for a given time t, let Xt and Yt

represent a vector of states and a vector of observations, respectively. The main task of particle filtering is

to estimate P (Xt|X0:t) given by Equation 2.30 from P (Xt−1|X0:t−1), which can be calculated recursively by

Equation 2.31. Notably, the denominator in Equation 2.31, P (Yt|Y0:(t−1)), is a constant.

P (X0:t|Y0:t) = P (X0|Y0)
t∏

k=1

P (Yk|Xk)P (Xk|Xk−1). (2.30)
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P (X0:t|Y0:t) =
P (Yt|Xt)P (Xt|Xt−1)

P (Yt|Y0:(t−1))
P (X0:(t−1)|Y0:(t−1)) (2.31)

In particle filtering, the particles and their normalized weights χ = {x(m), w(m)}Mm=1 are employed to estimate

– via sampling – the distribution of interest where x(m), w(m) and M are particle, weight assigned to the

particle and count of particles used to approximate the probability distribution P (x). P (x) is approximated

according to the principles of importance sampling by Equation 2.32, where δ is the Dirac delta function.

P (x) ≈
M∑
m=1

w(m)δ
(
x− x(m)

)
(2.32)

The principle of importance sampling plays an important role in obtaining χt. Given χt−1 and the

observation Yt, χt can be obtained by generating particles x(m)
t , and appending the x(m)

t to x
(m)
t−1, and

updating the weight w(m)
t of the particle x(m)

t . As directly sampling particles from P (x) is unattainable, using

importance sampling the particle x(m) can be sampled from a known (proposal) distribution via importance

function π(x), and the weight w(m) is calculated and normalized by Equation 2.33 and Equation 2.34,

respectively.

w∗(m) =
P (x)

π(x)
(2.33)

w(m) =
w∗(m)

M∑
i=1

w∗(i)

(2.34)

Applying the π(x) in the context of state and observation in particle filtering, the π(x) can be re-factored

according to Equation 2.37. It is worth noting that Equation 2.36 results from applying chain-rule on

Equation 2.35, and Equation 2.36 can be further simplified to Equation 2.37 in sequential update.

π(X0:t|Y0:t) = π(X0:t−1, Xt|Y0:t−1, Yt) (2.35)

= π(Xt|X0:t−1, Y0:t−1, Yt)π(X0:t−1|Y0:t−1, Yt) (2.36)

= π(Xt|X0:t−1, Y0:t)π(X0:t−1|Y0:t−1) (2.37)

The trajectory of the particle x(m) from time 0 to time t − 1, x(m)
0:t−1, and its corresponding weight at time

t− 1, w(m)
t−1 , can be expressed as Equation 2.38 and Equation 2.39, respectively.

x
(m)
0:t−1 ∼ π(X0:t−1|Y0:t−1) (2.38)

w
(m)
t−1 =

P (x
(m)
0:t−1|Y0:t−1)

π(x
(m)
0:t−1|Y0:t−1)

(2.39)

The particles and their corresponding weights can then be updated by performing the following two steps,

given by Equation 2.40 and Equation 2.41, respectively.

x
(m)
t ∼ π(Xt|x(m)

0:t−1, Y0:t) (2.40)
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w
(m)
t =

P (Yt|x(m)
t )P (x

(m)
t |x(m)

t−1)

π(x
(m)
t |x(m)

0:t−1, Y0:t)
w

(m)
t−1 (2.41)

Another important concept in particle filtering is resampling, which is used to avoid the degeneracy of the

discrete random measures in particle filtering. The resampling method operates according to the “survival

of the fittest” principle, removing the particles with small weight, replicating the particles with large weight,

and assigning the weight to the particles so replicated. To be noted, before sampling particles for the next

time step, in practice the resampling process is recommended to take place when the effective particle size

falls below a predefined threshold [35,36]

2.2.2 Application of Particle Filtering in the Proposed Model

Within this work, the particle filtering method is employed to estimate the posterior distributions of the

unobserved states in the state-space model, given that the observations depend on the current state in an

evolving process. In our model, the unobservable state sequence satisfies the Markov property, namely, the

conditional probability distribution of state at time t (Xt) of a process depends only on the most recent state

at time t− 1, as shown in Equation 2.42.

P (Xt|Xt−1, Xt−1..., X1) = P (Xt|Xt−1) (2.42)

P (Yt|Xt), the probability of making observation Yt at time t given the state variable Xt, provides insight

into the state variable Xt.

A particle and its corresponding weight are employed to estimate the distribution of interest, P (x). As

it is unable to directly sample particles from P (x), the particle filtering method utilizes the importance

sampling approach to sample particles from the proposal distribution (π(x)) to make inference on sampling

particles directly from P (x) by associating particles sampled from π(x) and weights. The particle filtering

algorithm applied in this thesis is summarized as follows [37].

1. At time t = 1, 1 ≤ m ≤M , M is the total count of particles.

(a) Assign each particles with equal weight {x(m)
1 ,

1

M
}.

(b) Sample particles x(m)
1 from a uniform distribution. The process of sampling particles is achieved

by running the simulation model forward on each particle.

(c) Compute weights w(m)
1 of the particles using w(m)

1 =
P (Yt|Xt)P (X1)

π(x
(m)
1 |Y 1)

2. At time t ≥ 2, update particle weight as follows:

(a) Sample particles x(m)
t from π(x

(m)
t |X1:t−1, Yt). The process of sampling particles is achieved by

running the simulation model forward on each particle.
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(b) Compute weights of the particles using w(m)
t =

P (Yt|x(m)
t )P (x

(m)
t |x(m)

t−1)

π(x
(m)
t |x(m)

t−1, Yt)
w

(m)
t−1 , and update particle

weight {x(m)
t , w

(m)
t } to reflect the posterior distribution of the current state. In our model, the

proposal distribution of P (Xt|Xt−1) = π(Xt|Xt−1, Yt) is employed and the particle weight update

equation is simplified to w
(m)
t = w

(m)
t−1P (Yt|x

(m)
t ); that is, for a given particle of index m, the

weight at time t is simply equal to the previous weight for that particle times the value of the

likelihood function when applied to the observation in light of the state of particle m.

(c) Normalize particle weights: w(m)
t =

w
(m)
t∑M

m=1 w
(m)
t

3. Resampling step: During the update at time t, the resampling process takes place when the effective

particle size falls below a predefined threshold k, which will occur when the model exhibits sufficiently

high variance in particle weight (
1∑N

i=1(w
(m)
t )2

< k) [38].

2.3 Introduction to Simulation Modeling

Complex systems usually behave in non-linear and thus often unexpected ways [39], consist of multiple

behaviors and interactions, and other complex sub-systems [40], making the system expensive or impractical

to experiment with interventions or study its unpredictable outcomes [41]. Simulation modeling methods

employ mathematical characterization (optionally in the form of explicit equations) to represent the operation

of a system or a process. Such models can be applied to study of the behavior of the actual system,

evaluating and optimizing the performance of a system, and experimenting with the interventions and their

corresponding impact over longer period in various scenarios [40,41]. There are three particularly prominent

simulation paradigms within the sphere of Health and Health Care: SDM, ABM, and DES, which will be

briefly sketched in the subsections below.

2.3.1 System Dynamics Models

The SDM technique is a modeling approach used to develop and design a set of differential and algebraic

equations to represent and capture complex patterns of a system by feedback and accumulation of individual

components [40, 42]. The core components of SDM consist of the elements representing state variables

and accumulations (stocks), rates of change in such state variables (flows), causal loops involving stocks

(feedbacks), and time delays (typically emerging from the accumulations) [40, 42, 43]. While SDM can be

applied at different scales [44], at any given level of analysis, the stocks – by virtue of being “well-mixed”

and memoryless – make SDM an aggregate approach at that level. Thus, instead of describing specific

characteristics of individual actors in underlying populations, SDM simulates over time the patterns in

the evolution of the system composed of groups of such individuals. The rates represented by a set of

interlocking algebraic equations are feed in and out of the stocks; such algebraic equations ultimately represent
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a convenience, and the underlying dynamics can be captured via variable substitution in the underlying stocks

and flows in order to form a set of ordinary differential equations. In some cases, the causal loops in SDM

can exhibit non-linear complex relationships between stocks and flows [40]. In general, given the dynamically

complex interaction between the stocks, flows, and feedbacks in an actual system, it is convenient to employ

aggregate SDM to explore places to intervene in a system, to answer high-level “what-if” questions related

with both clinical-level and population-level interventions whose outcomes have not yet been studied carefully,

and examine the vulnerabilities or leverage points associated with system behaviour.

2.3.2 Agent Based Modeling

By contrast to SDM, ABM is a simulation method for modeling complex dynamic systems by characterizing

the interactions between the autonomous and interacting objects – referred to as agents – within the envi-

ronment of the system [40], and where behaviour of the system as a whole is emergent from diverse such

interactions. Composing the core of an ABM, the agents determine their actions according to the defined

decision rules based on the heterogeneous characteristics of agents and their context, including the current

state of agents evolving along with multiple aspects of states and transitions, agent history, structured inter-

actions between agents [44,45] as it affects and is affected by networks, geography, and other components of

the system.

ABM is tool well-suited for studying social epidemiology [46] and noncommunicable diseases and un-

derstanding public health risk factors [47]. The outputs of an ABM model can consist of individual-level

trajectories (e.g., the simulated health outcomes) as well as aggregate level outcomes such as population

health outcome indicators, prevalence, and incidence of diseases, costs, and resource utilization [40]. The key

advantages of ABM includes its ability to take into account individual history and characteristics in deci-

sion making, probing the impacts of counter-factual interventions and health outcomes, and its capacity to

interact via multiple networks or spatial context, to capture aspects of decision making given local situation

or resources, and to scalably support heterogeneity of agent. ABM supports the nested model structure,

extending an ABM to a multi-scale model to provide an effective way to explore complex dynamics at a

fine-grained level.

2.3.3 Discrete Event Simulation

DES is a simulation paradigm used for characterizing agent resource-limited progression through structured

workflows associated with service delivery, queuing processes, networks of queues, and waiting times with

an emphasis on resource utilization [40]. Five levels of features, simple client or server, and First-in-first-

out (FIFO) queues, decision making, service scheduling, queuing and entities encompass a coherent set of

concepts about DES models [48]. Core concepts in DES modeling include of entities, attributes, queues,

events, activities, delay and resources. An entity is a representation of an object having specific attributes

and using the resources. Attributes are the specific properties of a given entity. In contrast to SDM – where
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the emphasis is traditionally placed on patterns over time rather than occurrences of specific events – events

are of central importance in DES; the occurrence of such an event can instantaneously change the state of

a system (e.g., change resource use and entity characteristics). Queues occur at the interaction of several

entities and help manage competition amongst entities for consuming limited resources.

2.4 Literature Review

2.4.1 Models of Gestational Diabetes Mellitus and Type 2 Diabetes Mellitus

Simulation models characterizing diabetes progression, the complications of diabetes at an aggregate level

have been built by many researchers [14, 49, 50, 51, 52, 53], as have models of the underlying physiology

between beta-cell, insulin, and glucose [54,55]. By contrast, very few models have examined the dynamics of

Gestational Type 2 Diabetes, with work of [14] being a notable exception.

Jones et al. developed an aggregated SDM of diabetes population [50]. The model characterized the dy-

namics of population with respect to stocks representing normoglycemia, prediabetes, uncomplicated diabetes,

and complicated diabetes. Furthermore, the model simulated the influences (e.g., high-level interventions)

over the rates of population flow. The simulation outputs addressed relationships between the dynamics in

the prevalence of diabetes, mortality and diabetes control and primary prevention efforts. Osgood et al. [14]

constructed a simulation model characterizing GDM and its contribution to T2DM. This SDM stratified by

age-, sex- and in-utero exposure status characterized the inter- and intragenerational interaction of GDM

and T2DM by specifying population flows between different possible health status. The population in the

model flows through seven compartments including aspects of aging, pregnancy, onset of GDM, weight in-

crease, and development of T2DM. The model results demonstrate the linkage between GDM and T2DM

both within a given generation and between generations, suggesting that GDM may be an important factor

for contributing to the growth of T2DM, and – by extension – that treatment of GDM may substantially

reduce the burden of developing T2DM. T2DM can lead to a series of complications. Gao et al. [51, 52]

constructed a hybrid simulation model to investigate tradeoffs between different intervention strategies for

diabetes and diabetic end stage renal disease. The model utilized SDM for simulating diabetic progression

and generated data for feeding into ABM to support some key functionality at the individual level. DES

was used in the model for investigating health care processes. The simulated output matched closely with

empirical data, and demonstrated the ability of the hybrid simulation model for forecasting outcomes under

various scenarios, and evaluate the effectiveness of different interventions.

De Gaetano et al. [56] introduced a mathematical model of the physiological-level progression of T2DM

over both rapid and longer periods of the disease, representing the physiological adaptation to developing

insulin resistance due to the interaction between pancreatic islet compensation, beta-cell mass, and glycemia

in healthy and diabetic individuals. The model formulated the pancreatic islet compensation mechanism and

solved some fundamental qualitative characteristics based on refined physiological assumptions. DeGaetano
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et al. [57] further extended the diabetes progression model, emphasizing formulation of physiological com-

pensation for worsening insulin resistance in the glucose-insulin system. Hardy et al. [58] further used the

model to simulate the trajectory of diabetes progression and characterized the mechanisms of anti-diabetic

intervention, evaluating the effectiveness of the interventions in terms of improvements in insulin sensitiv-

ity or beta-cell protection. The model was well calibrated, and simulation results concerning antidiabetic

interventions are consistent with the improvement of glycemia regulation observed in traditional treatment.

2.4.2 Smoking Detection

Approaches for smoking identification have been studied and analyzed by many researchers [59, 60, 61, 62].

Sazonov et al. [59] designed a wearable sensor system (Personal Automatic Cigarette Tracker PACT) and

applied that system in investigating the unique pattern of smoking. The study further demonstrated the

potential of using the signal received by the PACT in identifying smoking inhalation patterns and assess-

ing smoking frequency. Lopez-Meyer et al. [62] demonstrated the feasibility of monitoring smoking using

continuous breathing and hand-to-mouth gesture data collected by a wearable sensor system and the sup-

port vector machine classifier. The paper examined two classification models: a subject-independent model,

and subject-dependent model, and assessed their performance. The subject-dependent classification model

archived better average precision and recall (e.g., 90%) than the subject-independent model. Scholl and

Laerhoven [60] presented a study of the feasibility of smoking detection using gesture data collected by an

accelerometer device on the wrist.

2.4.3 Agent Based Model of Smoking or E-Cigarette Use

Cherng et al. [63] implemented an ABM to discuss the effect of ECig on the prevalence of smoking among

adults in the United States. The ABM further simulated the effects of smoking initiation, cessation, and

relapse on ECig use behavior change. The simulation results suggested that the effects of ECig use on smoking

cessation changed smoking prevalence in a more pronounced manner than that on smoking initiation. Chao

et al. [64] developed an ABM reproducing the historic smoking trends in Japan, to examine the effect of

socioeconomic disparity of different gender groups on the prevalence of smoking. The study concluded that

greater disparity in socioeconomic status among males increases the chance of reducing the prevalence of

smoking, but females show exactly the opposite pattern.
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Chapter 3

Identifying Smoking from Smartphone Sensor Data

and Multivariate Hidden Markov Models

The text presented in this chapter is from the manuscript "Identifying Smoking from Smartphone Sensor

Data and Multivariate Hidden Markov Models" by Yang Qin, Weicheng Qian, Narjes Shojaati, and Nathaniel

Osgood, published in Proceedings of the 2017 Conference on Social Computing, Behavioral-Cultural Modeling

& Prediction and Behavior Representation in Modeling and Simulation. The contribution of each author is

presented in Section 1.5 of Chapter 1 [3].

Hidden Markov models (HMMs) support identifying a set of discrete states – assumed to be memoryless

– according to the transitions between states, using the observations emitted from the latent states, with

the particular focus here being the estimation of the most likely sequence of latent states. A relatively

rudimentary level of sophistication of interfacing with between a dynamic model and the empirical data are

demonstrated in this chapter. This simplicity reflects several strong limitations of HMMs – the memoryless

character of the assumed states, the linear character of the transition process and the assumption of time-

invariant transition probabilities. This case study related the model to various types of smartphone sensor

data – including Wi-Fi, GPS, and accelerometer time series using a supervised learning approach. The raw

data was separated into smoking- and non-smoking time periods according to the “ground truth” data in the

form of self-reported smoking status collected with the same smartphone data collection app. The resulting

distributions serve as the probability distributions for observations emitted from the discrete underlying

states of HMMs, and are fused and applied in multivariate HMMs to estimate model parameters and identify

latent smoking and non-smoking intervals.

3.1 Introduction

Smoking is one of the biggest public health threats listed by the World Health Organization. Effective

tools for smoking recognition can ensure public health surveillance for policy making [65], provide early

detection before addiction [66], and aid former smokers to avoid relapse. Detection of smoking status has

long relied on biomedical assays based around the detection of substances such as cotinine, nicotine [67],

carbon monoxide [68], and respiration [69]. Application of such assays normally requires mildly to moderately

invasive measurements, from breath tests to provision of saliva to clippings of hair, and many test results are
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available only after delays measured in days or more.

Studies using wearable sensors for recognition of smoking [59, 62] have shown potentials to avoid the

invasiveness of measurements and delays of test results to perform seamless online detection. These studies

predominately based on hand-to-mouth gestures and breathing pattern and using specialized hardware to

collect data, which can be costly and hard to comply continuously, informativeness from other aspects corre-

lates of smoking have not yet been considered, such as presence outdoors (as required by regional regulations)

or designated smoking areas, activity levels, and characteristic length of dwelling period correlated to the

burning time of cigarettes.

In recent years, and paralleling their rapid penetration across diverse strata of society worldwide, the

smartphone has become an attractive platform for the sensor-based data collection on human behavior.

The use of such techniques has been enhanced by the growing maturity of data collection apps (such as

the iEpi system [70], UPenn’s DREAM project) that make smartphone sensor data a highly available and

easily accessible data source for many studies [71]. Feasibility studies on using the accelerometer sensor to

detect smoking behaviors have been initiated [60], but published studies on fusing sensor data available on

smartphones remain absent.

In this paper, we fused various types of sensor data commonly available on smartphone, after considering

data completeness, accuracy, and informativeness, examined the effects of five transformations for GPS, Wi-

Fi and accelerometer sensor data, and applied multivariate HMMs to classify periods to recognize whether

smoking was taking place. Finally, we investigated the performance of univariate HMMs and multivariate

HMMs and the impact of tailoring the training and test set to preserve entire smoking cycles.

3.2 Data Processing and Algorithm

Dataset Description

Data used in the project came from a previously conducted Behavioural Ethics Board-approved study that

collected multiple types of sensor data together with self-reported ground truth on smoking behavior by four

participants who were self-reported smokers. The dataset contains labeled data on segments of intervals of

smoking and non-smoking periods. The sensor data was continuously collected from four participants for one

month with a five-minute duty cycle [70, 72]. The position features (Wi-Fi and GPS) and a set of gesture

and orientation related features (gyroscope, and accelerometer data with three directions) were collected by

Ethica system [70, 72]. Given the potential interest in vehicular context, data from the magnetometer was

also collected. There are 36 million records, 0.3 million records, 1.9 million records and 36 million records

for gyroscope, GPS, Wi-Fi, and accelerometer, respectively. Due to limited time and resources, we have

randomly picked three participants for this study, whose data were collected from April 04, 2015 to May 12,

2015. In this dataset, GPS data included data source (GPS and network), speed, accuracy meter, longitude,

and latitude. Wi-Fi data included a basic service set identifier (BSSID), service set identifier (SSID) and
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Figure 3.1: Plot of time series sensor data, labelled smoking and non-smoking periods and autocor-
relation function (ACF)

received signal strength indicator (RSSI). Accelerometer and gyroscope data incorporated linear acceleration

and angular velocity on X, Y and Z axes, respectively.

Data Processing

Time series of sensor data, especially when collected with high granularity (with bursts every 5 minutes

in our case), is distinguished from normal features. Windowed aggregation (every 30 seconds in our case)

can effectively reduce noise as well as extracting derived features with considering time dependency, rather

than simply treat features as Markov process. Here for continuous measurements accelerometer data, GPS

data and wifi readings, we successfully extracted derived features such as average and standard deviation for

accelerometer data, count of GPS readings drawn from satellite sources, maximum RSSI and count of unique

media access control address (MAC address) from Wi-Fi data.

Each participant has an extremely long smoking period at the end of their self-labeled smoking-nonsmoking

periods, which are apparently outliers and need to be resolved. Smoking is a periodic behavior and there
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exists a normal smoking period. Therefore we preserved only a period at the head of each of those extremely

long periods, whose length equals to the average length of previous smoking periods of this very person, and

trimmed the rest smoking periods in the end, as shown in 3.1.

For accelerometer data, the norm of readings across the X, Y and Z accelerometer axes was calculated

to combine the three features of acceleration into one feature. The average norm of raw accelerometer data

across 30s timeslots exhibits an empirical cumulative distribution function (ECDF) that is almost identical

between smoking periods and nonsmoking periods. The overlap of the accelerometer norm is largely caused

by the invariant dominant gravitational acceleration component, regardless of the position of the smartphone

or smoking/non-smoking status. To separate out the dominant invariant gravitational component, we applied

a high-pass filter, using a standard deviation of norms in the 30s timeslot. ECDFs for one participant are

shown in 3.2.

For Wi-Fi data, RSSI in 30-second timeslots was considered. As shown in 3.2, the maximum RSSI in

30-second timeslots did not show a pronounced difference between the two states. Canadian laws require

people to smoke outside buildings, and there is not much Wi-Fi coverage outside buildings. So the counts

of unique MAC address during 30s timeslots were calculated for each state. In 3.2, ECDF of the counts of

unique MAC address showed a better difference between two states than that of maximum RSSI. Maximum

RSSI indicated the strongest Wi-Fi signal, and counts of unique MAC address represented the number of

accessible networks for the smartphone. So both of the features were used to train the HMMs.

The source of location data, either GPS or network (using cell tower and Wi-Fi based location), can

also help indicates whether the participant is indoor or outdoor. So the count of GPS readings across 30s

timeslots specifically drawn from satellite (as opposed to network) sources were used. Its ECDF was shown

in 3.2.

Multivariate HMMs

Using the transformed data described above, a multivariate HMMs was employed to classify smoking and

non-smoking intervals based on real-world labeled observations. In this model, each state has multiple

observations corresponding to readings from Wi-Fi, accelerometer and GPS sensors. The probabilities of

observations follow empirical distributions, and observations are assumed to be independent of each other,

conditional on being in a given state. So the likelihood of observing a given vector of observed quantities

was approximated as the product of independent probability density functions as given by kernel density

estimation (KDE).

Two-fold Cross Validation

Hidden Markov models expect sequential observations, therefore when choosing a training set and test set,

we can not simply sample at random time intervals from data sequence, but rather need to divide the data

sequence into disjoint contiguous sequences. Firstly, we made use of a two-fold cross-validation approach,
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Figure 3.2: ECDF of raw and transformed accel, wifi, and GPS data

where we cut the sequence from the head to 50%, 55%, 60%, 65%, 70% and 75% of the sequence to ensure

sequential observations (including NAs) for training, and used the balance of the observations for testing.

Second, We swapped the training set and test set in the first step to feed the HMMs.

3.3 Results

Structured learning was used in this project. This work was conducted in several phases. In phase 1,

maximum RSSI, counts of unique MAC address during 30s timeslots for Wi-Fi, average norms, a standard

deviation of norms for accelerometer and counts of GPS reading from GPS source in 30s timeslots were

considered as a single feature, respectively. Each of the five features was used to train univariate HMMs,

which were then evaluated. In phase 2, Multivariate HMMs using three features and five features were trained

and evaluated.

The HMMs were found to yield favorable results in the multivariate cases and in univariate cases con-

sidering accel sensor data as a feature. As shown below, multivariate HMMs exhibit accuracy over 0.9, and

an area under the receiver operating characteristic curve (ROC curve) (AUC) above 0.8 when collected data

is representative. The results of HMMs with a single feature are less favorable than those for multivariate

HMMs.
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3.3.1 Results with Single Feature

For using the average of the norm of the accelerometer as a feature, the AUC for the training set and test

set with different size of training set range from 0.69 to 0.94 and from 0.60 to 0.79, respectively. And the

error rates of the training set and test set range from 0.096 to 0.27 and from 0.057 to 0.357, respectively. For

using the standard deviation of the norm of the accelerometer as a feature, the AUC for the training set and

test set with different size of training set range from 0.76 to 0.92 and from 0.63 to 0.86, respectively. And

the error rates for the training set and test set range from 0.05 to 0.12 and from 0.06 to 0.2, respectively, as

shown in Figure 3.3.

For using readings from the Wi-Fi sensor as a single feature (maximum RSSI or counts of unique MAC

address), for maximum RSSI, the range of AUC for the test set is from 0.43 to 0.69, and the range of error

rate for the test set is from 0.23 to 0.65. For counts of unique MAC address, the range of AUC and error

rate for test set ranges from 0.47 to 0.82 and from 0.17 to 0.86, respectively.

In this model, using only one feature derived from the GPS sensor, the range of AUC for the training set

is from 0.52 to 0.64, for the test set is from 0.50 to 0.75. Error rates for the training set and test rate are

from 0.04 to 0.92, and from 0.015 to 0.96, respectively.

3.3.2 Results with Three Features

Counts of unique MAC address for Wi-Fi, a standard deviation of accel norm and counts of GPS sourced

signals were employed together to train the HMMs. The results offer AUC and error rates of the HMMs were

shown in 3.4. The range of AUC for the test set is from 0.5 to 0.83 with an average of 0.65, and the error

rate for test set ranged from 0.017 to 0.96 with an average of 0.23.

3.3.3 Results with Five Features

All five features derived from sensors were employed together to train HMMs. The results for AUC and

error rates of the five feature HMMs were also shown in Figure 3.4. The range of AUC for the training set

is from 0.5 to 0.98 with an average of 0.79, and for the test set, it is from 0.52 to 0.84 with an average of

0.66. The Wi-Fi and GPS data are location-based features, while the components of the accelerometer data

are associated with the body gestures and orientation features of the participant. The combination of five

features can capture a larger set of information on the current smoking activity of participants. This enlarged

information can, in turn, enhance the performance of the HMMs.
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Figure 3.4: AUC and error rate of HMMs with three features and five features

3.4 Discussion

3.4.1 Thoughts on Labeled Data

The results of HMMs using information drawn from single features alone are worse than that of multivariate

HMMs. As noted above, each different type of feature adds additional information, and the combination of

three features can best describe the current smoking activity and gestures of participants. A more accurate

description can result in better performance of HMMs. Additionally, at the data processing step, the ecdf

of the standard deviation of the accelerometer norm in 30s timeslots demonstrated significant differences

between the two states, compared to the average of the norm. So the results of HMMs with a standard

deviation of the norm as a single feature are better than the results of average norm HMMs. Similarly, the

results of HMMs using counts of unique MAC addresses, which has a distinct difference between the two

states, are better than the results of HMMs with maximum RSSI. The difference between the ecdf of two

states is crucial for the model to distinguish different states.

The AUC is varied with training set sizes used for the HMMs. Smoking is a periodic behavior, and

subdividing the training set and test set so as to include entire smoking cycles can capture smoking patterns.

For the smoking sequence, if the training set were cut in the middle of a smoking cycle, the long smoking

state or non-smoking state sequence changes the predicted results by changing the transition probabilities.

3.4.2 Emission Probability for Multi-dimensional Observations

For emission probabilities, it was hard to find joint parametric distribution for 3 or higher dimensions.

Investigation not shown here revealed that the results of using a product of univariate KDE are better than

that of a single joint multivariate KDE. The AUC for a joint KDE is 0.51. The reason for the bad results of a
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joint KDE likely reflects a high proportion of missing data. In a joint KDE, co-occurring wifi, accelerometer

and GPS data are all required for the KDE. So at a time point, if one of three variables is missing, the joint

KDE has to discard this time point. However, univariate KDEs are more robust in the context of incomplete

data, as each such KDE is affected only be missing data with respect to a single variable.

3.5 Related Work

Sazonov et al. (2013) developed a wearable sensor system based on hand-to-mouth smoking gestures and

breathing pattern [59], Lopez-Meyer et al (2013) further applied a support vector machine and achieved

87% and 80% of average user-independent precision and recall and 90% in user-independent precision and

recall [62]. Scholl and Laerhoven (2012) used a wearable accelerometer device to collect data and applied

a basic Gaussian classifier to detect smoking gestures with a precision of 51.2% and 70% of user-specific

recall [60]. We have not yet found papers about smoking detection using multivariate HMMs based on

various types of sensor data available from commodity smartphones.

3.6 Limitations and Future Work

Despite high granularity data for each participant, our study is limited by the number of participants, as

future work, we will experiment with a larger participant size. We will also seek to depict the joint distribution

of three observations using empirical 3D distribution estimated by using linear interpolated KDE. Perhaps

covariance among these three observations can provide additional information to boost the performance

of our Multivariate HMMs. Another interesting question for investigation is whether a personal empirical

distribution can be reused on other persons if so, we only need to train the model once. While room for further

improvement remains, the success of smartphone collected data in supporting the accurate classification of

smoking behavior raises prospects for proactive prediction of smoking occurrences, and may also play an

important role in smoking cessation program through behavior-triggered “nudges” that could be delivered at

times proximate to smoking.

3.7 Conclusions

The results of multivariate HMMs demonstrated the classification and detection of smoking activity with

high accuracy. Compared to single feature HMMs, the multivariate HMMs had higher accuracy, because

additional types of sensor data can help us better describe smoking gesture and activity.

This work further suggests that tailoring training set and test set close to entire smoking cycles can

improve the performance of HMMs. The large variation in results across participants further raises the

possibility that significant components of remaining error rates may be due to limitations in the accuracy of

self-reporting of ground truth data on smoking behavior.
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The work presented in this chapter demonstrates how the characteristics of data affect the dynamic model

structure. And that model structure further shapes the ability to use data. The HMM is a statistical model

in which the underlying system being modeled is assumed to be a Markov process with a set of discrete

unobservable states assumed to be memoryless according to the transitions between states. HMMs in general

assume that the emission probabilities of observations are conditional on the hidden states, and that successive

observations within a given such state are conditionally independent. The multivariate HMMs built in this

work further assume that each type of observation themselves is independent of each other. There are reasons

to use the data collected across the multiple types of sensors to infer the underlying smoking status. First, the

signals collected with multiple types of sensors are changed with smoking activity and gestures of participants,

as well as other behaviors common exhibited during smoking behaviour, such as low-vigour pacing or resting.

While the smartphone-based sensor data is individually insufficient to infer the hidden states, collectively, it

can inform the multivariate HMMs for identifying the unobserved state (smoking and non-smoking). Second,

the time-series characteristic continuously collecting the sensor data with a five-minute duty cycle makes

the data suitable for modeling discrete time process of the HMMs. In this regard, it bears noting that the

availability of bursts of data for noisy sensors such as GPS and accelerometers can be helpful for inferring the

underlying state with considerably greater reliability than would be possible using single observations from

such sensors in isolation.

As discussed in previous sections, the multivariate HMMs examined here support the classification and

detection of smoking activity with relatively high accuracy, despite the fact that observations across multiple

sensors within a given observation are assumed to be independent of each other. Perhaps data collected

with other types of sensor – e.g., heart rate and gyroscope data depicting hand movement, such as could

be gathered by wrist-based wearable technologies – and more textured model assumption regarding the

statistical dependence exhibited between these three observations can provide additional information on

smoking activity.
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Chapter 4

Effect of E-cigarette Use and Social Network on

Smoking Behavior Change: An agent-based model of

E-cigarette and Cigarette Interaction

The text presented in this chapter is from the manuscript of "Effect of E-cigarette Use and Social Network

on Smoking Behavior Change: An agent-based model of E-cigarette and Cigarette Interaction" by Yang Qin,

Rojiemiahd Edjoc, and Nathaniel Osgood, published in Proceedings of the 2019 Conference on Social Com-

puting, Behavioral-Cultural Modeling Prediction and Behavior Representation in Modeling and Simulation.

The contribution of each author is presented in Section 1.5 of Chapter 1 [7].

The work of this chapter demonstrates an ABM of conventional smoking and ECig use calibrated by

matching cross-sectional data points to model outputs. The dynamic model examined here supports a

description of rich context and captures continuous data. In contrast to the HMMs, the structure of ABM

supports the model in capturing a high level of heterogeneity at an individual level. The cross-sectional data

from 2013 to 2017 from the Canadian Tobacco and Alcohol and Drugs Survey [27] was employed in model

calibration for estimating non-measured parameters and supporting the projection of future model outputs.

The data considered here includes the prevalence of current smokers (PCS), the prevalence of former smoker

(PFS), and prevalence of current ECig user (PCEU). With the characteristic of the data, and aggregating results

across individuals, the model parameters were calibrated to match statistics from individual-level simulation

outputs with the cross-sectional data.

4.1 Introduction

Smoking and secondhand smoke harm nearly every organ of the body and contribute to many preventable

diseases, including lung cancer, coronary heart disease, chronic obstructive pulmonary disease, and other

cardiovascular diseases [1, 2]. Nicotine products come in various forms, e.g., cigarettes, nicotine gum, patch,

and ECig [73]. ECigs, vaporizing a liquid mixture which is used as a substitute for tobacco leaves and stored

inside cartridges [4, 6], were introduced to the market in 2003, promoted and marketed by major tobacco

companies in the last decade [4, 5]. The use of ECigs as a cigarette alternative has increased dramatically.

The PCEU among US adults increased from 0.3% in 2010 to 6.8% in 2013 [63]. Within recent years, there has
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been a particularly dramatic and alarming rise in the use of ECig amongst youth.

The health behaviors associated with smoking have been studied in detail. The majority of smokers

attempt to quit smoking, but fewer than 5% of them remain quit for more than three months [8]. Effective

tools for smoking cessation (SC) may help current smokers (CS) quit, and forestall an individual at risk of

smoking, e.g., former smoker (FS), struggling with avoiding relapse. ECigs also allow never smoker (NS)

seeking to experiment with nicotine as an alternative to cigarettes. The rise of ECig use is associated with

a perception that ECig is safer than cigarettes and a useful SC device. However, there remains little solid

scientific evidence confirming the effectiveness and safeness of ECig as a SC tool [9,63]. By surveying 2028 US

smokers in 2012 and 2014 and two years of follow-up, Zhuang et al. [9] concluded that long-term ECig users

had a higher rate of SC of 42.4% than short-term Ecig users and non-users (14.2% and 15.6%, respectively).

Zhu et al. [10] concluded that ECig users have a higher rate of SC, and are more likely to remain quit than

non-ECig users. Cherng et al. [63] proposed an ABM to examine the effect of ECig on the smoking prevalence

of US adults and concluded that the simulated effects of ECig on SC largely changed smoking behavior. The

ABM simulated the influences of smoking behavior on ECig use initiation and cessation, and how ECig

reversely affected SC and smoking initiation (SI).

While promising, previous studies have predominantly relied upon self-reported surveys, cohort studies

and clinical trials. Such larger studies are expensive, are associated with high delay until they show effect,

and can be difficult to plan and execute given the wide variety of patterns of behavior possible (e.g., initiation

of exclusive smoking following ECig use, initiation of exclusive ECig use following tobacco, dual-use, start of

ECig use following quitting tobacco, etc.). Clinical trials often regulate or exclude factors that play a key role

in shaping outcomes in society, such as switching of nicotine delivery modality, varying rates of compliance,

and peer influence effects.

In this paper, extending the preliminary model structure introduced by Cherng et al. [63], we build an

ABM of smoking and ECig use with modalities of initiation, cessation, and relapse to examine the effects

of ECig use on individual-level smoking behavior change and population-level smoking patterns according

to the aggregation of individual outcomes. Our model incorporates strong SN effects involving both the

selection of networks and influence over networks, age, sex and history-dependent effects regarding the rate

of initiation, cessation and relapse for both smoking and ECig use and individual decision-making effects

based on characteristics of social contacts. In particular, we use the model to investigate whether the ECig

is an effective SC device and the impact of ECigs on non-smokers with regards to SI.

4.2 Methods

4.2.1 Model Overview

ABM can simulate complex social dynamics and behaviors with considerably high resolution, and generate

population-level results by aggregating individual outcomes in different scenarios [63]. Equally notable,
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ABM is widely applied to probe the impacts of counter-factual interventions, as well as to help prioritize

data collection in a complex milieu of complex interactions of behaviors and product types. In this study, a

high level of heterogeneity characterizing both exogenous and endogenous components, specific traits at the

individual level and modularity also strongly motivated the use of ABM.

Our model was built in AnyLogic (version 8.3.3), and used four interacting statecharts for each agent,

featuring smoking states, ECig use states, birth, and mortality. The parameters, transition rates and state-

charts in the Person class serve as influences from within an agent on smoking and ECig use behavior. The

model further incorporates a distance-based network to simulate social contacts between agents.

The model simulates a population of 100,000 agents with age distribution based on the population pyramid

of Canada [74]. The model time unit is 1yr, and the length of the time horizon is 70yrs. The initial states

may misestimate the prevalence of each smoking and ECig use state, so a period of burn time (52yrs) is used

for the model to achieve equilibrium. Over the continuous time of the simulation, agents either maintain

their current state of smoking and ECig use or transit to other states based on the (hazard) rates discussed

in the next section.

4.2.2 Model Formulation

Smoking statechart describes three smoking states: NS, CS and FS. An individual can switch its presence in

each of the three states of statechart according to specified transition rates, namely the rate of SI, the rate

of SC, and the rate of smoking relapse (SR).

ECig use statechart separates the states of ECig use as never ECig user (NEU), CEU and former ECig user

(FEU). The transition of ECig use initiation (ECigUI) is fired with a hazard rate, transferring an agent from NEU

to CEU. Other transitions are message triggered transitions, which will be activated only under scenarios when

we consider: A CS who never used ECig may possibly initiate ECig use after quitting smoking, transiting

from CS∧NEU to FS∧CEU by chance; An FS who is CEU may possibly quitting ECig after relapse to smoking,

transferring from FS∧CEU to CS∧FEU by chance; And a CS who is FEU may possibly relapse to CEU after quitting

smoking, transiting from CS∧FEU to FS∧CEU by chance. For the two statecharts, agents can occupy a specific,

concrete state of one statechart at any one time, while being in any state of the other statechart.

Rate of SI, SC and SR denoted as rsi, rsc and rsr, respectively, are each the product of its corresponding

hazard rate (αsi, αsc and αsr for the calculation of rsi, rsc and rsr, respectively), a multiplier (msi, msc and

msr for the calculation of rsi, rsc and rsr, respectively) and a coefficient (esi, esc and esr for the calculation of

rsi, rsc and rsr, respectively).

The hazard rates reflect the magnitude of the effect of age, gender and smoking history on rsi, rsc and

rsr. We transformed the annual probabilities of SI and SC (psi and psc, respectively) of male and female of

1970 birth cohort, reported by Holford et al. [75], into their corresponding αsi and αsc as table functions in

AnyLogic by using p = 1 − e−α. The model assumed that αsr declines with growing time since quit; thus,

individuals who only recently quit have far higher relapse risk than an agent who has remained as FS for a
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Figure 4.1: Smoking statechart Figure 4.2: ECig use statechart

prolonged period. The value of multipliers is driven by the state of ECig use. Wills et al. [76] suggested

that NS who tried ECig is three times more likely to start smoking. Leventhal et al. [77] reported that ECig

users were four times likely to uptake cigarettes. McRobbie et al. [78] suggested that the rate for SC was

significantly higher in the presence of ECig use (RR 2.3; 95%CI: 1.05 - 4.96). Based on the linkages between

ECig use and rsi and rsc mentioned above. As ECig use can help relieve the symptoms of nicotine withdrawal

to some degree and might provide an additional avenue towards continued socialization with companions who

remain, tobacco users, CEUs are less likely to relapse in smoking, compared to non-ECig users [79]. Therefore

the model assumes msi is 4.0 for agents who are CS∧CEU [77], or is 2.87 for agents who are FEU [76], msc is 2.3

for agents who are CS∧CEU [78], msr is 0.5 for agents who are CS∧CEU [79]. If each rate is only the product of its

hazard rate and a multiplier, the rate may misestimate the projection of smoking. Therefore, the coefficients

esi, esc and esr were calibrated to match simulation outcomes against historical data.

For the rate of ECigUI, the model adapted the time-based sigmoid function and divisors introduced by

Cherng et al. [63], to characterize the increasing use of ECig after its introduction into the market and

the influence of smoking status on ECigUI. Additionally, the rate of ECigUI is strongly related to the agent’s

smoking status and demographic factors [80], suggesting that ECig is popular in smokers and young people;

thus, we assumed a hazard of ECigUI of male agents using a table function, which has an x-axis of age of the

agents and y-axis of the hazard rate and follows the same pattern as for the hazard rate of SI for male. If

an individual is female, the hazard of ECigUI of this agent is given by the corresponding point on the table

function divided by the variable divECigFemale with a value of 1.5. The overall rate of ECigUI is the product

of the hazard of ECigUI given by the time-based sigmoid function [63] and a coefficient (eECig), which was

calibrated by matching model generated incidence of ECig use against corresponding historical data.

The model assumes that the transition of ECig use cessation (ECigUC) and ECig use relapse (ECigUR) are

affected only by the smoking behavior, that is, the model assumed that individuals who are CEUs or FEUs would
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Figure 4.3: PCS and PFS of Scn1 and Scn2

Orange and blue solid line represent the PFS and PCS in Scn1, respectively. Orange and blue dashed line
represents the PFS and PCS in Scn2, respectively.

remain so unless changes occurred in their smoking behavior. Specifically, in the absence of identified evidence

with respect to the fraction of individuals whose state of ECig use will be affected by smoking behavior, the

model posited that 85% of CEUs∧FSs will quit ECig if they relapse to smoking, since their nicotine cravings

were satisfied by smoking, and 80% of agents who are FEU∧CS will transit to CEU if they quit smoking. As

ECigs may be used as cessation tools, the model further assumed that 50% of smoking quitters would uptake

ECig immediately after quitting smoking. Therefore, message dichotomous branching transitions were built

for ECigUI and ECigUC under these assumptions in addition to the rate of ECigUI discussed above.

Age-specific birth and mortality rates are drawn from Statistics Canada of 2016 [81, 82] are used in the

model. The total fertility rate in Canada in 2016 is 1.54 per woman. To maintain population replacement

(with a total fertility rate of 2.1) for successive years of the model run, we thus multiplied a coefficient (with

a value of 1.357) by the fertility rate of each age group.

Smoking is well recognized as both an individual habit and a social phenomenon [8]. The baseline model

was extended with a distance-based network to simulate the effect of social connection and peer pressure

on the SI and ECigUI. To build a localized SN for each agent, connecting with its nearby agents, the model

assumed that an agent establishes the network with the agents in proximity (50m). The SN was implemented

as a dynamic network driven by agent mobility in continuous space with width and height both equal to

250,000m. Specifically, the agent moves to a new location within the space, and disconnects from the current

network then re-establish a network based on agent layout by using a cyclic timeout event with an interval

of 2 yrs. As dynamic network, the fraction of CS and CEUs among its connected agents are modified with the

change of the SN, therefore, influence the effect of SN on SI and ECigUI.

The effect of SN was modeled using multipliers (mnet), and applied them to the baseline rsi and rECig,

respectively. The overall rate of SI and ECigUI of a particular agent were increased by mnet, relative to the

rates in the baseline scenario. Without a specific mathematical model to quantify the effects of connected

neighbors of a particular agent, the model employed a sigmoid function to describe the progression of the
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Figure 4.4: PFCS, PMCS, PFCEU and PMCEU of Scn1 and Scn2

Blue, orange, green, and black solid line represent the PFCS and PMCS of Scn1, PFCEU and PMCEU of Scn2,
respectively. Blue, orange, green, and black dashed line represent the PFCS and PMCS of Scn2, PFCEU and
PMCEU of Scn1.

influence from the connected neighbors, which increases small at the beginning then accelerates fast and

reaches the plateau. We, therefore, assumed mnet follows a sigmoid function (Equation 4.1), where f is the

fraction of CS (or, correspondingly, CEUs) among its connected agents if mnet is used to calculate the rate of

SI or ECigUI, respectively, and f0, α and γ in Equation 4.1 are 0.25, 2.0 and 1.0, respectively. Similarly, in

Equation 4.1, raverage represents the average rate of SI or rate of ECigUI of population for the calculation

of rate of SI or ECigUI of this agent, respectively. The raverages are re-calculated every year based on the

smoking and ECig use status of the population at the beginning of each year.

mnet =
α+ e−γ×(f−f0)

(1 + e−γ×(f−f0))× raverage
(4.1)

4.2.3 Model Calibration

esi, esc, esr and eECig were calibrated to match the estimated PCS, PFS and PCEU generated by the rates (rsi, rsc,

rsr and rECig) in the baseline model, against historical data of 2013-2017 from CTADS [27]. The calibrated

result of esi, esc, esr and eECig is 1.088, 2.435, 1.51 and 7.898, respectively.

4.2.4 Model Scenarios

We examine here simulated population-level smoking behaviour change and ECig use under following three

scenarios: smoking behavior in scenario one (Scn1) which is in absence of ECig use and the SN, smoking

behavior in scenario two (Scn2) which is under the use of ECig, and smoking behavior in scenario three

(Scn3) which SN exists and supports the SI and ECigUI (Scn3). The outputs from these scenarios examined the

difference in prevalence and incidence of smoking arising from considering ECigs as well as SN both separately
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Figure 4.5: SA of rate of ECigUC on PCS

Black, red, grey, yellow, and blue line represent a successively larger rate of ECigUC of 0.2, 0.4, 0.6, 0.8,
and 1.0, respectively.

Figure 4.6: SA of rate of ECigUR on PCS

Black, red, grey, yellow, blue line represent a successively larger rate of ECigUR of 0.2, 0.4, 0.6, 0.8, 1.0,
respectively.

and in combination. The simulation of Scn1 and Scn2 were run for 100 realizations, and simulation under

Scn3 were run for 40 realizations with respect to the considerably large computation of SN in AnyLogic, with

random seeds making each simulation run unique, then the means of the outputs of all runs were calculated

for the comparison. Furthermore, to examine the statistical significance between the results from Scn1 and

Scn2, we performed a Mann-Whitney-U test on the per-realization output (PCS), from the two scenarios.

4.2.5 Sensitivity Analysis

To assess the sensitivity of model parameters on model outputs, we performed sensitivity analysis (SA) on

the parameters such as the rate of ECigUC and the rate of ECigUR. The message transitions for ECigUC and

ECigUR were replaced by the rate transitions. In the SA of the rate of ECigUC, the model assumed the rate of
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Figure 4.7: Population breakdown by smoking category and fraction of CEU

Panels A, B and C depict the population breakdown by smoking category in Scn1, Scn2, and Scn3,
respectively. Panels E, F, G, H, I and J illustrate fraction of CEU among CS, among FS and among NS in
Scn2 and those fractions in Scn3, respectively.

ECigUR is 1.0, and the range of the rate of ECigUC was 0.2 to 1.0 with a step of 0.2 for each iteration. Similarly,

for the SA of the rate of ECigUR, the model assumed the rate of ECigUC is 1.0 and the rate of ECigUR had

the same range and step with the rate of ECigUC in its SA experiment. The SA experiments examined the

potential change of PCS resulting from changes in the value of the rate of ECigUC and the rate of ECigUR.

4.3 Results

4.3.1 Comparison between Scn1 and Scn2

Mean, median and standard deviation of the results for PCS, generated by the model realizations in Scn1,

are 0.1438, 0.1440 and 0.0037, respectively, and those from the model realizations in Scn2 are 0.1369, 0.1374

and 0.0074, respectively. The results of a two-sided Mann-Whitney-U test for the results of two scenarios,

p < 2.2e−16, demonstrate that the distributions in the results of two scenarios differed significantly.

The message transitions in ECig use statechart were disabled in Scn1 and Scn2, therefore, in the stacked

column chart showing the breakdown by smoking category (Figure 4.7A, B and C), the agents were divided

into four categories: CEU regardless of their smoking status, NS∧NEU, CS∧NEU, and FS∧NEU, respectively. The

portion of FS and NEU (23%) in Scn1 is slightly higher than that (21%) in Scn2, due to a large portion (6%) of

CEU, as shown in Figure 4.7 A and B. This reflects the fact that the FS in Scn1 is located within the FS∧NEU

category, whereas in Scn2 some of those individuals are located within the CEU category.

4.3.2 Comparison between Scn2 and Scn3

In Scn3, at the end of simulation, the maximum and minimum degree centrality of a given agent is 2 and 1,

respectively. With the presence of SN (in Scn3), as shown in Figure 4.7 C, the fraction of CEU in the population

increased dramatically – rising from 6% in Scn2 to 61% in Scn3. With the exposure to ECig use from connected
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Figure 4.8: Fraction of CS and others

Panels A, B and C depict the fraction of CS in S1, S2, and S3, respectively. Blue and orange labels CS

and others (including NS and FS), respectively.

individuals or neighbors, people tend to initiate ECig use. The increased portion of CEU are mostly from the

agents who were NS∧NEU. In Scn2, the fraction of CEU among CS and that among FS are similar, with value

of 15% and 14% in Figure 4.7 E and 4.7 F, respectively, which are considerably larger than fraction of CEU

among NS, as shown in Figure 4.7G. In Scn3, the SN significantly increased the fraction of CEU among CS and FS,

with the value of 86% and 65%, respectively in Figure 4.7H and Figure 4.7I, respectively, while the fraction

of CEU among NS does not show obvious increase due to SN, compared with that of Scn2.

4.3.3 Sensitivity Analysis

Results from the SA on the rate of ECigUC and the rate of ECigUR suggests that the PCEU and prevalence of

former ECig user can substantially change the PCS, as shown in Figure 4.5 and 4.6. Figure 4.5 demonstrates

that when ECR is increased from 0.2 to 1.0 – holding invariant the value of ERR – PCS are gradually increased,

and PCEU decreases. The results in Figure 4.5 suggest that although incidence of SI is reduced by the lower

PCEU, the decreased rate of SC and elevation in SR due to the decreased PCEU compensates for the decrease

in the rate of SI. Similarly, the change in the rate of ECigUR also influences PCEU. Holding constant the rate

of ECigUC, an increase in the rate of ECigUR generally increases the PCEU, but lowers the PCS, with a possible

exception at the lowest levels of the rate of ECigUR. Results in Figure 4.6, the line from the rate of ECigUR of

0.2 having the lowest PCEU, reflect that agents were more likely to remain as CS.

4.4 Discussion

From the results in the three scenarios, the model demonstrates that ECig use and SN encourage agents to

uptake ECig, therefore, shape population-level smoking behavior. Although the use of ECig increases the

rate of SI, the combined effect of the increase in the rate of SC and the decrease in the rate of SR results a

considerably large decline in PCS and increase in PFS. The results of SA further shows the PCS is sensitive to
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the ECig use behavior change. The outputs of the model largely depend on the feedback between smoking

and ECig use, and interactions between agents. First, we assumed the rate of ECigUI of CS, FS and NS are in a

declining order, specifically, the CS has highest rate of ECigUI compared with other smoking category. Second,

if an individual is CS, being a CEU increases the probability of quitting smoking and staying in FS state, which

means they have a relatively higher probability of using ECig as a SC tool. We assumed the ECig use helps

greatly in SI for NS. Given the model results, fraction of CEU among NS is considerably lower, compared with CS

and FS. Accordingly, as a combined result of the rate of SI, the rate of SC and rate of SR, the PCS is decreased

due to ECig use. Furthermore, we assumed gender effect as divisors in the rate of ECigUI. Thus, the model

behaves a relatively stronger influence from ECig use on smoking behavior. The effect of SN is modeled as a

multiplier to the rate of ECigUI, which generates more CEU during the simulation.

Despite the fine resolution of the model, there are some limitations. First, the model is highly sensitive

to the use of ECig, however, the model has no good assumption on the rate of ECigUC and the rate of ECigUR.

Second, at this resolution, the model cannot capture the smoking episodes, dynamics of nicotine metabolism,

allowing the model to analyze whether ECig use helps in relieving nicotine cravings at a fine-grained level as

SC tool. Finally, the model assumes the effect of SN in a relatively simple way.

Allowing for capturing dynamics in a richer context, such as those associated with a network and individual

characteristics, the ABM is suitable for combining the simulated population-level results with the aggregate

data considered here by aggregating individual outcomes with the cross-sectional data via model calibration

process. The cross-sectional data considered here to calibrate the model results are summary statistics

from individual-level survey data. Such relatively coarse resolution data constraints the model’s ability to

reliably capture some dynamics at a fine-grained level, including smoking episodes, and dynamics of nicotine

metabolism, and significantly limits resolution even at coarser levels – such as , with regards to broad changes

in smoking behaviour over time. Notably, social network data and data associated with the rates of smoking

and ECig use cessation and relapse would be particularly valuable to additionally incorporate for grounding

the dynamics of smoking and ECig use, and for further analyzing decision-making effects from social network

contacts.

Although with some limitations, the model outcomes can provide some explicable understanding of the

consequences of the complex feedback between smoking and ECig use at the individual level, then allow us to

analyze population-level smoking behavior. With the support of additional data sources, the model could be

extended to simulate smoking and ECig use dynamics at a finer resolution – such as capturing the build-up

of nicotine tolerance due to e-cigarette exposure – and used as a learning tool to advance health insights on

smoking and ECig use behavior. Additionally, the model is also a useful tool for examining how SN influences

smoking and ECig use, particularly among adolescents.
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Chapter 5

Multi-Scale Simulation Modeling for Prevention and

Public Health Management of Diabetes in Pregnancy

and Sequelae

This chapter is based on the manuscript of "Multi-Scale Simulation Modeling for Prevention and Public

Health Management of Diabetes in Pregnancy and Sequelae" by Yang Qin, Louise Freebairn, Jo-An Atkinson,

Weicheng Qian, Anahita Safarishahrbijari, and Nathaniel Osgood, published in Proceedings of the 2019

Conference on Social Computing, Behavioral-Cultural Modeling & Prediction and Behavior Representation

in Modeling and Simulation. The contribution of each author is presented in Section 1.5 of Chapter 1 [17].

While combining the ABM with cross-sectional data assists in grounding the model, as illustrated in

Chapter 4, richer data availability can considerably increase the level of sophistication of the model that can

be evidenced, which can extend the model resolution to advance insights into the dynamics of the underlying

complex system, and provide additional information for grounding model behavior. The multi-scale hybrid

model of DIP described in this chapter incorporates a sophisticated model structure that draws on building

blocks characterized using SDM, ABM, and DES systems simulation techniques. The model is informed by

both longitudinal individual-level data and cross-sectional data via calibration to minimize the discrepancy

between empirical data and corresponding model outputs. In addition to grounding model behavior, the

availability of the statistics from longitudinal individual-level data allows the model to extend its structure

to capture the effects of inter-generational transfer of risk for GDM and T2DM and occurrence of diabetes

amongst the the offspring.

5.1 Introduction

Gestational diabetes mellitus (GDM) is an increasing public health priority in the Australian Capital Territory

(ACT), particularly on account of its impact on the risk of Type 2 Diabetes (T2DM) across the population

[11, 12]. The increase of GDM is associated with increasing prevalence of risk factors including advanced

maternal age [15], obesity [16], and sedentary behavior, growing GDM risk factors in those with family

history of diabetes, and a growing number of residents whose ethnic background has traditionally been

subject to elevated rates [11].
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Mathematical models characterizing diabetes progression, glucose hemostasis, pancreatic physiology and

complications related to diabetes have been built by many researchers [54, 55]. De Gaetano et al. [56]

formulated a model representing the pancreatic islet compensation process, related to insulin resistance,

beta-cell mass and glycemia (G) of a diabetic individual. Hardy et al. [58] proposed a model, characterizing

mechanisms of anti-diabetic intervention and the corresponding impact on glucose homeostasis. Lehmann

and Deutsch [83] modeled the physiology underlying the interaction between insulin sensitivity (KxgI) and G

of an individual with Type 1 diabetes (T1DM).

Health simulation models commonly apply one of three types of modeling techniques: system dynamics

modeling (SDM), agent-based modeling (ABM) and discrete event simulation (DES). SDM captures and

describes complex patterns of feedback and accumulation by solving sets of differential equations. While

SDM can be applied at different scales [44], it is most commonly applied at the aggregated level, and its

core components include the accumulation of elements (stocks), rate (flows), causal loops involving stocks

(feedback), and delays [42, 43]. By contrast, ABM simulates complex social dynamics by characterizing

emergent system behavior as the result of within-environment interactions between individual elements in a

system that are referred to as agents. ABM readily captures heterogeneous characteristics of agents, includ-

ing agent history, situated decision making, structured interaction between agents typically evolving along

with multiple aspects of states and transitions and aggregation of individual outcomes [44, 45]. DES char-

acterizes individual-level, resource-limited progression through structured workflows which often associated

with service delivery, queuing processes, waiting for times and lists and resource utilization [40].

Previous studies examining the health burden of GDM and its risk factors have predominantly relied upon

cohort studies, administrative data or clinical trials [18,19,20]. While filling a key set of research needs, given

the dynamically complex nature of the interactions including feedback, accumulations, delays, heterogeneity,

and interacting factors across many levels, it is difficult to use such studies to answer “what-if” question

related with the risk factors and effects of interventions, particularly counter-factual whose outcomes have

not yet been observed. Given the long time scales involved, cost, logistics, and ethical concerns, clinical

trial studies may not be feasible for providing a timely evaluation of novel portfolios of clinical-level and

population-level interventions (PLI).

In this work, we built a multi-scale hybrid model in AnyLogic (version 8.3.3) including SDM, ABM, and

DES, to describe the dynamics of glycemic regulation (DGR), weight status and pregnancy, and to evaluate

impacts of the interventions on DGR. While leaving most aspects of examination of model health findings

to other forthcoming contributions, this paper introduces the design and structure of the model, provides

illustrations of some of the types of interventions that the model can capture and simulation outputs.

The structure of the remainder of the paper is as follows: Model overview section describes the model

structure and the simulation description. The next section briefly discusses model calibration and assumption.

The model formulation section then describes the statecharts, DGR, weight dynamics, interventions, service

delivery and offspring outcomes by hyperglycemia. Part 3 and 4 illustrate and discuss some of the model
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Figure 5.1: Illustration of hybrid model structure

outputs and limitations of the model.

5.2 Methods

5.2.1 Model Overview

Figure 5.1 describes the hybrid model structure of ABM, SDM, and DES. The Person class of the ABM

includes the individual-level characteristics such as evolving states, actions that change them, and the rules

to trigger those actions (all captured in statecharts), parameters and functions. The ABM further represents

the family structure, weight at birth and evolution over the adult life course, individual history, inter-

generational family context, pregnancy and diabetes classification, and implementation of the PLI. The SDM

describing the DGR forms a sub-model encapsulated in the Person class. By encapsulating this SDM in the

ABM structure, the model can capture side-by-side both individual characteristics and their evolution and

continuous dynamics of the glucose-insulin system. The clinical service pathway for pregnant women in the

ACT is described by a shared (global) DES, building on top of the ABM. The model will be discussed in

its essentials in the following sections. Added elements of detail, the technical description associated with

the model, are listed in the supplementary material, https://www.cs.usask.ca/faculty/ndo885/GDM-ACT, other

material will be available later.

The model simulates a population of 200,000 female agents, each an instance of Person class. During the

simulation, the agents can become pregnant, thereby experiencing the risk of GDM, and subsequently give

birth, influencing the weight status and DGR of their descendants. The second-generation agents also have

their life-course shaped thoroughly by model dynamics. The information available for the descendants is,

therefore, richer than in the initial population. Thus, the simulation requires a burn time of 60 years.
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5.2.2 Model Formulation

We discuss here several aspects of model formulation, particularly concentrating on statecharts, which en-

capsulate a discrete set of collectively exhaustive and mutually exclusive (lowest-level) states with respect to

particular concerns, the actions by which the individual transitions between such states, and the rules under

which such actions take place.

Pregnancy statechart (Figure 5.2) indicates whether an agent is pregnant or not, and their transitions

through different stages of pregnancy. Female agents with ages between 15 and 50 can transit between the

notPregnat, planPregnant, and pregnant states. Agents in the pregnant hierarchical state will be in one of

three substates, corresponding to trimesters of pregnancy. notPregnant agents will either be in the fertile

or PostPartum state. PostPartum agent will either be in the breastFeeding or notBreastFeeding state. Of these,

two of seven state transitions are memoryless transitions driven by a hazard rate (henceforth known as rate

transitions), becomePregnant and leaveBreastFeeding; the hazard rate for becomePregnant is an age-ethnicity-

specific fertility rate [84]. While the others are timeout transitions triggered after a specified residence time.

The timeout transition birthTransition is particularly notable, as it introduces a new agent into the model.

Population statechart separates the population into three categories, initial female population, female

descendant and male descendant. Agents are initialized with different ages [85], and assigned their ethnicity

according to ACT demographic information taken from the 2011 Australian Census and National Health

Survey. Type of ethnicity includes Australian Born, Australasian Diabetes in Pregnancy Society at risk

group (ADIPS) [86], Aboriginal and Torres Strait Islander (ATSI) and Other. All male descendants are

excluded during simulation, and female agents leave the model upon reaching age 50. The female agents

aged less than 50 leave the model by the age-specific death rate [87].

Dysglycemia classification statechart (Figure 5.3) divides the G of an agent into four categories: T1DM,

NormoglycemicAndIGR, T2DM and GDM states, according to clinical classification categories. Agents can occupy

one of four states, and switch states by checking whether the G of agents exceed the threshold of each state

(known as condition transition). Reflecting the fact that residence in the GDM state is only an option during

pregnancy, pregnancy status is also considered.

The GDM agents will either be in NormoglycemicAndIGR or T2DM state after pregnancy. Thresholds for T2Dm and

GDM state are denoted as GT2DM and Ggdm, which are calculated by CT2DM ×Gt and Gt ×CT2DM ×Cgdm,

respectively, where CT2DM , Cgdm and Gt are calibrated and equal to 1.636, 0.642 and 5.504, respectively.

DGR, the interaction between beta-cells, G and KxgI, is represented as an SDM based on the ordinary

differential equation models of diabetes progression by De Gaetano et al. [56, 57] and Hardy et al. [58]. To

improve model scalability, a cyclic timeout event with time interval (dt) is used to solve the compartmental

equations in SDM [56, 57, 58]. Another cyclic timeout event with a time interval of 5 and 30 days during

pregnant and non-pregnant periods, respectively, updates G and KxgI using the Newton-Raphson method

and other components in SDM. Parameter and function details are listed in the supplementary material.

To capture dynamics of KxgI in different trimesters of pregnancy, postpartum and different weight status,
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Figure 5.2: Pregnancy statechart

Figure 5.3: Dysglycemia classifica-
tion statechart

Figure 5.4: Primary care and ACT health ser-
vice statechart Figure 5.5: Population statechart

Figure 5.6: DES of the ACT health clinical service pathway
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respectively, we modified the (exogenous) equations giving KxgI over time introduced by De Gaetano et al. [56,

57], Function linearInterpInPregnancy(), InsulinSensitivityInPostPartum() and insulinSensitivityBasedWeight(),

calculate the KxgI in different trimesters of pregnancy, postpartum and different weight status, respectively.

linearInterpInPregnancy() assumes that KxgI is declining during pregnancy. By this assumption, the function

is formulated by linearly interpolating the KxgI at beginning, at three month and at the end of pregnancy

proposed by Catalano [88] using the LinearInterpolator of org.apache.commons.math3 library. The model as-

sumes the diminished KxgI in pregnancy will gradually recover during the postpartum period to the value it

would have held absent the pregnancy. Therefore, InsulinSensitivityInPostPartum() takes time after delivery,

the more the time close to τrecovery, the more it close to the KxgI whose value is equal to the point on the

KxgI trajectory as if the agent is not pregnancy. The model further assumes the KxgI of overweight and obese

agents would decline faster over age than that of agents with normal weight. Based on this assumption,

in insulinSensitivityBasedWeight(), we modified the KxgI0 and tl in the equation of De Gaetano et al, by

changing KxgI0 and tl with value of BMI and weight category, respectively. tl for overweight and obese

agents were represented as tl_overweight and tl_obese, and KxgI0 for different BMI was calculated by table

function tf_BMI2KxgI() [89]. In addition to the modification of equations giving KxgI, we modified the equation

giving the spontaneous recovery rate of the pancreas (Tη) for ADIPS. While ADIPS represents agents from a

recognized high-risk group with respect to GDM, the empirical data revealed that the ADIPS group actually

had a higher proportion of healthy weight agents than that were present in the other groups, indicating

that weight as a risk factor did not fully account for the higher risk levels. Therefore, to capture the high

incidence of GDM of ADIPS, the model assumes the Tη of ADIPS declines faster than that of other ethnic

groups. Furthermore, to investigate effects on various types of intervention on the DGR, we incorporated

the mechanism introduced by Hardy et al. [58] for the impact of lifestyle change (LC), metformin treatment

(MT) and insulin treatment (IT) on KxgI. Elements of interventions making use of the LC, IT and MT are

discussed in the next sections.

Weight dynamics are characterized as a continuous variable of BMI value, and a variable of Z-score of a

BMI distribution (BMID), representing the position of BMI within the age group (AG) specific BMID. Upon

entry to adulthood, agents are assigned a BMI value based on an AG specific BMID introduced by Hayes

et al. [90], and its corresponding Z-score calculated by the BMI and mean of the BMID. Hayes et al. [90]

reported that the BMID of the population within AG moves toward higher BMI value through their life

course. Applying an identical Z-score into the BMID of different AGs may position the agents into different

weight categories. Therefore, for simplicity, the Z-score of agents are assumed to stay the same as they age,

unless intervention or pregnancy [19] changes their BMI value and assigns a new Z-score to them. When

an agent transfers from one AG to another, the BMI value of next AG of the agent will be calculated by

applying the Z-score to the BMID of next AG in an event with a cyclic timeout of 10 years. As a continuous

variable, another cyclic timeout event with an interval of 1 year is used to make the BMI of current AG

change towards the BMI of next AG gradually. With this BMI-Z-score mechanism, we also captured BMI
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Figure 5.7: Individual trajectory of BMI change (A) and KxgI change (B) over age without PLIs and
Services. Green and red dots are the start and end of the GDM period, respectively. Orange and blue
stars are the beginning and the end of the pregnancy, respectively.

change following pregnancy; due to space considerations, the interested reader is referred to the supplemental

material. Time-Varying weight distribution is required in light of the simulation burn time. We, therefore,

employed importance sampling using an alternative BMID of female adults aged 25 to 64 years in 1980 and

2000 [91] and AG specific BMID in 1995 and 2008 [90], to estimate the AG specific BMID in 1980.

ACT clinical service pathway, Services, is modeled using DES, as shown in Figure 5.6. And in Person, a

statechart reflects type of health care that an agent is currently being delivered, which is separated as the

InPrimaryCare state reflecting that a non-pregnant woman is receiving usual health care services through a

general practitioner, and the InACTHealthService state reflecting that a pregnant woman is moving through

the Services, as shown in Figure 5.4. The DES and statechart not only models the effects of LC and IT

in reducing the risk of progression to T2DM after delivery and implemented PLIs in the InPrimaryCare,

but also leave room for investigating resource use and costs associated with service provision. The blocks

(i.e. dipAssessment, antenatalCare, dieticianReview and lifestyleOrInsulinTreatment) in the Services form a

sequence of operations, providing pregnant agents the DIP assessment test, education of LC, IT for the agents

with DIP, and further deliver postpartum checks to agents.
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Figure 5.8: Individual trajectory of BMI change (A) and KxgI change (B) over age with DRI. Color
Labels of GDM and pregnancy are the same as Figure 5.7. Yellow and brown bars are the start and
the end of the DRI, respectively.

Details of the DES are described as follows. The agents enters the Services at beginning of their pregnancy,

then receives an early pregnancy assessment test at earlyPregnancyTest block, then waits at delayBeforeTest

block for the DIP tests in dipAssessment block. The DIP test time varies with individuals. Test time is at

8-12 weeks gestation if the agent is considered as a high-risk group (e.g., obese, ADIPS or whose age is over

35), but the test time of non-high-risk agent is at 26 - 28 weeks gestation. At dipAssessment, the agent who

passed DIP test will be referred to antenatalCare6 block for standard antenatal care and remain there until

delivery. However, if the agent failed the test, the agent first moves to the DIPEducation block, then starting

1 week LC in underLifestyleAfterEducation block, then the agents are referred to dieticianReview to check G

again. In dieticianReview, if the G does not exceed the Ggdm, the agent continues LC in dietControl block for

1 week, then the agentâĂŹs G is monitored and checked in ThreeReadingWeek and glucoseLevelAssess2 blocks

every week until delivery. During this time, if the G in any week is higher than the Ggdm, the agent is referred

to lifestyleOrInsulinTreatment block, otherwise, the agent goes to delayBeforePostpartumFollowUp block for

postpartum check. If G of the agent exceeds the Ggdm in dieticianReview, the agent will directly refered to

lifestyleOrInsulinTreatment, determining whether the agent will continue LC or start IT. The model assumes
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that if the G is higher than GT2DM , the agent will start and continue IT until delivery, otherwise the agent

will go back to ThreeReadingWeek and glucoseLevelAssess2. At six week after delivery, the agent receives

postpartum follow-up DIP assessment in dipAssessAfterPregnancy block determining follow-up interventions,

then leave the Services. In the mean time, the state of agent is transferred from InACTHealthService to

InPrimaryCare. The follow-up interventions includes only LC for agents whose G is higher than Ggdm but not

yet developed into T2DM, combined LC, IT and MT for agents with T2DM or T1DM.

PLI includes consideration of a public health messaging and mobile app support intervention (PHMMASI),

health professional support intervention (HPSI), diet review intervention (DRI), and public health messaging

and support intervention (PHMSI). The difference between the Services and the PLI is that PLIs are initiated

during the non-pregnant period, while the Services is triggered during pregnancy. All PLIs share a similar

mechanism of taking optional LC and BMI reducing. Specifically, overweight and obese agents reduce their

BMI, drawing the extent of that reduction from a normal distribution, while the normal weight agents keep

their BMI invariant. The interventions are variants of each other with respect to who they are the target,

the intervention triggering time, and the length and strength of adherence of the LC. In detail, the agents

with age between 20-35 take the PHMMASI and retake it according to certain probability [92]. The HPSI

takes place at the planPregnant state, and works on women with risk factors, e.g., BMI > 28, age > 30,

ADIPS ethnicity [93]. DRI and PHMSI both take place between pregnancies and target women who had

DIP in previous pregnancies and on women who have given birth, respectively. For the HPSI and PHMSI,

the adherence and length of LC are flexible, whereas the agents who are subject to DRI take mandatory,

lifelong, strongly adherent LC.

The outcomes for baby and mother including birth weight (e.g., macrosomia), type of birth (e.g., Cae-

sarean section), NICU admission, and shoulder injury, are triggered in birthTransition of the pregnancy

statechart. The probability of occurrence of baby outcomes was calculated based on the study by The HAPO

Study Cooperative Research Group [94]. Furthermore, information of the mother is passed on to the new

child, including DIP status, age, weight status, and ethnicity. The mother’s DIP status influences the KxgI of

the child by multiplying a coefficient to the KxgI calculated by the modified equations giving KxgI over time.

5.3 Model Development Process

The multi-scale hybrid simulation model of DIP was developed in the joint sessions with domain experts

across fields. The team worked collaboratively to discussed the model scope, the risk factors for the growing

epidemic of GDM, the dynamics of diabetes progression, and the mechanisms of selected interventions. The

model development process went through three big categories: design of the concept, implementation, and

parameter calibration. The validation and calibration process made the model capable of exploring and

producing results for demonstration. The model was previously built, modified, extended, and simplified by

the supervisor and a series of students, including Ph.D. students Weicheng Qian and Allen Mclean, and M.Sc.

52



student Anahita Safarishahrbijari. Nathaniel Osgood helped with the manuscript, supervised and advised

on the entire study. Allen McLean initiated the project and collected background information and broad

structure of the model, particularly the DES representing treatment and exploring the resource allocation

of the public health service pathway, which is up to version 16 of the model. Weicheng Qian, Nathaniel

Osgood, and Geoff McDonald constructed the key system dynamic casual loop diagram depicting dynamic

relationships including beta-cell compensation and dry-out, dynamics of glycemia regulation. Weicheng Qian

overhauled and rebuilt core logic among Glucose-Insulin-Beta Cell (replacing discrete state charts to SDM)

from version 17 to version 19 of the model (due to their adoption of minor versions, they did in total 23

minor versions) and independent concept proving model (7 major versions). The key SDM was further refined

and reused until the current version of the model (version 107); Anahita Safarishahrbijari implemented fast

system dynamic solver applying Newton-Raphson numeric method, constructed the mechanism of insulin

resistance changing with pregnancy and treatment, which can be referred to version 37 of the model, and

initiated LaTeX based documentation for the model archiving the source and usage of the parameters, which

can be accessed from https://www.cs.usask.ca/faculty/ndo885/GDM-ACT. Yang Qin (myself) contributed to the

model development in the following aspects:

• I extensively debugged the fast system dynamic solver, which had numerical error under the condition

of insulin sensitivity being extremely low. With this issue, the model was unable to simulate the agents

in an overweight or obese state for a long time, and stop model running by giving not a number (NaN)

error.

• Along with Weicheng Qian, we profiled the model via JVisualVM to scale up the model performance.

Using 2.2 GHz Intel Core i7 and 16GB RAM, the un-optimized model (version 37), having a memory

consumption of 15073.28M, simulated 10000 agents over 40 years for 5676.49 seconds per realization,

and was unable to run with 40000 population. After performance optimization, the model takes 27.56

seconds to run with 10000 agents over 40 years using 1146.88M memory size. The model can simulate

200,000 agents over 93 years for 23.25min per realization.

• I calibrated the parameters of the model using AnyLogic optimizer. The calibration experiment ran

2000 iteration with 100,000 female agents to reach a minimal objective, 61.2. During model calibration,

I further identified the missing model assumption about the spontaneous recovery rate of the pancreas

for ADIPS.

• I contributed to refine and elaborate model mechanism. For modeling BMI dynamics, I added (continu-

ous) BMI evolution as age cohorts shifting, and estimated historical age-specific BMI patterns through

importance sampling. For modeling disease mechanisms, I refined the expression of offspring outcomes

based on the maternal hyperglycemia status, and modified equation of calculating insulin sensitivity

over time by dependent on weight status and interventions, and elaborated the equations giving the

spontaneous recovery rate of the pancreatic beta cells for diabetes high-risk ethnicity groups.

53

https://www.cs.usask.ca/faculty/ndo885/GDM-ACT


• I innovated and redesigned the model by separating model logic and presentation-data collection to

modularize complex hybird models using active-agent class in AnyLogic.

• Along with Louise Freebairn and Nathaniel Osgood, I implemented five population-level experiments,

including aspects of a public health messaging and mobile app support intervention, health professional

support intervention, diet review intervention, and public health messaging and support intervention.

The interventions shed light on the effect of lifestyle change and weight reduce on improving glycemia

regulation, and further supports decision making and following projects.

• Along with Louise Freebairn, I implemented an DES of ACT health service pathway.

• I am one of two co-contributors, providing aggregate population level results and individual-level tra-

jectories, towards an interactive dashboard for exploration and demonstration by the ACT Minister of

Health.

5.4 Model Calibration

To estimate poorly- or non-measured parameters and to support the projection of status quo future in-

cidence of DIP using model outputs, A baseline model without interventions was calibrated against the

following historical data: the incidence of DIP of each ethnicity in ACT from 2008-2016, the prevalence of

macrosomia by DIP status of in ACT from 2010-2016, and number of diabetes by age 30 of offspring by

their mother’s diabetic status (e.g., GDM, T2DM) and birth weight from population-wide administrative

data from Saskatchewan, Canada. Calibrating the model against the empirical data of number of diabetes of

offspring by age 30 allowed the model to capture the effects of inter-generational transfer of risk for GDM and

T2DM which has been recognized from multi-generational epidemiological studies [13, 95], and occurrence

of later-life diabetes. Birth weight (e.g., macrosomia) can serve as an important marker of control of G in

utero, and epidemiological studies suggest that it further influences the tendency towards GDM. The details

of the calibrated parameters are listed in Appendix A.

In addition to calibrating the parameters of the model, the missing model assumption about the sponta-

neous recovery rate of the pancreas (Tη) for ADIPS was identified during this process. As a high-risk group,

agents from the ADIPS group show a higher incidence of GDM than other ethnic groups. However, the

empirical data revealed that the ADIPS group had a higher proportion of healthy weight agents than the

other ethnic groups, indicating that weight as a risk factor can not fully explain the elevated incidence of

GDM. Therefore, the assumption that the Tη of ADIPS declines faster than that of other ethnic groups were

incorporated into the model for capturing the high incidence of GDM of the ADIPS group.

The objective function of the calibration is shown in Equation 5.1, where dm and dh, and n denote

the model output, empirical data and count of empirical data point. The calibration experiment ran 2000

iteration with 100,000 female agents to reach a minimal objective, 61.2. The results of the calibration are
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Figure 5.9: Model simulated incidence of DIP (red line), and empirical incidence of DIP in ACT
from 2008 to 2016 (green line)

shown in Figure 5.9.
n∑
i=1

(
dmi − dhi

(dmi + dhi)/2
)2 (5.1)

As the empirical data shown in Figure 5.9, the incidence of DIP started to increase dramatically in 2015,

due to the threshold for diagnosing DIP was modified after 2015. Instead of calibrating the diagnosing thresh-

old used before and after 2015 separately, the threshold for diagnosing DIP after 2015 was calculated using

variable incidenceOfDIPIncrease. The incidenceOfDIPIncrease represents the fraction increase was required to

make the model generated the incidence of DIP close to the empirical data. With the fraction increase of

incidence of DIP, the threshold for diagnosing GDM after 2015 can be calculated by following steps: (1) The

G of all agents were stored in a list and sorted by descending order. (2) The number of DIP cases after 2015

is equal to the production of incidenceOfDIPIncrease and incidence of DIP and the number of birth of 2013.

(3) The new diagnosis threshold after 2015 is equal to the G represented by the position index equal to the

number of DIP cases.

5.5 Performance Optimization

To scale up the hybrid multi-scale model of DIP, the following model configuration modifications were made.

The Garbage First Garbage Collector(G1GC) was switched to ParallelGC (OldParallel) given the consid-

eration that the throughput of processing simulation events is of our favor, rather than the low latency on

visualizing animation or responding to user interactions. We further made shared constant agent fields as the

statistics fields of the Java class to reduce memory footprint and class instantiation time. We further moved

the agent level event scheduler out to the main class to reduce the memory cost for the instantiation of an

EventOriginator. The agent level visualizations, e.g., plots and histograms, whose presentation are stored in

arrays, were also removed for saving memory and time for updating the visualization components. Using 2.2
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GHz Intel Core i7 and 16GB RAM, the un-optimized model, having a memory consumption of 15073.28M,

simulated 10000 agents over 40 years for 5676.49 seconds per realization, and was unable to run with 40000

population. After performance optimization, the model takes 27.56 seconds to run with 10000 agents over

40 years using 1146.88M memory size. The model can simulate 200,000 agents over 93 years for 23.25min

per realization.

5.6 Logic-Presentation Separation

Separating model logic and presentation is a key to reduce complexity, decouple, and encapsulate models

from both the classical software engineering perspective and the modern best practice of simulation model

development perspective. This section focuses on discussing a novel set of guidelines that can help modu-

larized complex hybrid models and improve logic-presentation separation rules that have been successfully

coined in well-know software architectures such as Model-View-Control (MVC) model and frontend-backend

web design. The exploratory nature of model development requires modelers to balance quick and light im-

plementation and flexibility and robustness. The active-agent based development environment as AnyLogic

has implemented, provides a tangible approach that being able to predict the potential growth of a stylized

model, to balance quick implement and flexibility and robustness.

In an active-agent based development environment, an active-agent class is a basic module of the model

encapsulates internal logic which can be reused and further inherited for an extension. The relationship

can be abstracted as containment and messaging. To coin common patterns of messaging, the concept

of environment and network is then introduce to automatically establish messaging channels (named as

connections ) among agents within the same parent environment and connected following classic patterns that

is parameterizable built-in network types, such as small-world network, scale-free network, distance-based

network, and furthermore as an overlay of GIS environment. Similarly, for DES models each module such

as Seize, Delay, Release, Process are active agents that connects to previous and next module in a pipeline

via agent-connections. As a further step for decoupling logic from visualization, rather than directly put

visualization components, such as collecting datasets, plots and collecting events, transform function inside

the agent which producing data itself. One could create a new active agent class dedicated to visualizing

a certain type of data, such that the agent who produces data can be easily paired with a group of "data

consumer".

The Person agent of previously built model includes the parameters, variables, distribution, datasets,

functions, and events related with weight dynamcis, diabetes progression dynamics and interventions. In

model refactoring process, the modules of weight dynamics, diabetes progression dynamics (SDM), and in-

terventions were separated from agent Person and placed into three agents, WeightDynamics, DiabetesDynamics

and Interventions, while the statecharts of population, pregnancy, and dysglycemia classification are kept

in agent Person. A single agent of each of the three agent type is instantiated in agent Person, as shown
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gender
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agentIndexNumber

initialAgeCategory
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motherIndexNumber
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population_Statechart
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Overweight
mother
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maternalPreviousLiveBirths
0
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0
maternalInsulinSensitivityCoefficient
1
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false
offspring_ShoulderInjuryOccurance
false
offspring_MacrosomiaOccurance
false
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false
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0
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0
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0
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false
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0
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0
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0
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0
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0
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0
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0
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0
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false
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0
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0
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root.population[0].interventions

diabetesDynamics
root.population[0].diabetesDynamics
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false
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hazardOfT1DMAmongstThoseSusceptible
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0

timeOfGotT2DM
0
timeToGDM
0
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0

glycemiaAtFirstGDM
0
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0
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0
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1
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Figure 5.10: Agent Person after model refactoring

in Figure 5.10. With this model hierarchy, agent Person is the upper level agent to agent WeightDynamics,

DiabetesDynamics and Interventions. After model refactoring, agent Person allowed flexible pulg-in of other

sub-modules, and has a clear boundary of each components based on their logic. In a similar manner,

visualization and population level statistics are also placed in separate agents and instantiated a single

agent in agent Main, e.g., aggregated results related to interventions, diabetes dynamcis, pregnancy, off-

spring and weight dynamcis were placed in agent statisticsForIntervention, statisticsForDiabetesDynamics,

statisticsForDiabetesAndPregnancy, statisticsForOffspring, and statisticsForWeightAndPopulation, respectively.

5.7 Results

5.7.1 Individual Trajectory

We show here several scenarios that demonstrate the functioning of the model at the level of an individual’s

health history. Figure 5.7 A and B show the individual trajectories of BMI changes and KxgI over age without

the PLIs and the Services, respectively. Figure 5.7 A illustrates the agent entered adulthood with a BMI of

30.75, and her BMI reduced over one BMI unit after the first and third pregnancy and three BMI units after
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the second pregnancy. Other than pregnancy, Figure 5.7 A also demonstrates continuous BMI change over

age. The KxgI remained constant under the age of 18 but declined over time according to the value of BMI

after the age of 18. The agent developed GDM at the third pregnancy, as shown by the dots in Figure 5.7.

Furthermore, Figure 5.7 B reflects the decreasing KxgI during pregnancy and recovery in postpartum. We

can see from Figure 5.7 that KxgI is declining in parallel to, and, in fact, in response to the increase in BMI.

From Figure 5.8, we can see that the agent increased over one BMI unit after the first pregnancy, and

KxgI was decreased in response to this BMI increase. In the second pregnancy, the agent developed GDM

but retained their BMI and corresponding Z-score after pregnancy. But the DRI reduced that agent’s BMI

and significantly increased KxgI from 20 to 116 at the end of BMI reduction period (6 months), following

which the KxgI continued to increase due to strong adherence in LC, as shown by the bar labels in Figure

5.8 A and B.

Figure 5.11 demonstrates the individual trajectory under PHMSI. we can see that the agent had the

PHMSI, including both BMI reduce and two years of strong adherence to LC. A second pregnancy, the agent

showed a strong increase of KxgI, due to LC and BMI decrease. Furthermore, with no BMI change after age

42.9, the KxgI decreased after the LC stopped, as shown in Figure 5.11

5.7.2 Population-Level Outcomes

In addition to the individual trajectories discussed in the previous section, population-level results generated

by the model under four scenarios, by taking the average results of 36 simulation run, are presented to

demonstrate the functioning of the model at the aggregating individual trajectories and capturing the effect

of various interventions. The scenarios are as follows : (1) In scenario 1 (Scn1), the baseline scenario, the

model assumes that no agent can receive the interventions during simulation (2) Model in scenario (Scn2)

posits that 80% of agents take PHMMASI with BMI reduces and 50% of agents who have taken PHMMASI

can retake this intervention. (3) For scenario 3 (Scn3), all agents in the model can take PHMMASI once

with BMI reduces, and a lifestyle change in addition to BMI reduces. (4) In scenario 4 (Scn4), the model

assumes that 80% of agents take HPSI with only BMI reduces. Figure 5.12 illustrates BMI reduces and

KxgI improvement of individuals via interventions can be a key driver to decrease the prevalence of DIP. The

degree of BMI reduces during interventions directly affect the prevalence of DIP, as shown in Figure 5.12,

model in Scn2 yields a lower prevalence of DIP than the model in Scn4.

As the glycemic level is driven by the SDM component in Person class, the prevalence of DIP also reflects

the average beta-cell mass, glycemic level, and KxgI, as shown in Figure 5.14, 5.15, and 5.16, respectively.

The simulated outcomes from the model in Scn1, the highest prevalence of DIP among the four scenarios,

as shown in Figure 5.12, can be substantiated by results in Figure 5.14 and 5.16 of the highest glycemia

and lowest KxgI. Notably, the model in Scn1 generating the highest level of beta-mass reflects the model

assumption about the function of increasing beta-cell mass to compensate the insulin sensitivity decrease due

to high glycemia level.
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Figure 5.11: Individual trajectory of BMI change (A) and KxgI change (B) over age under PHMSI.
Color Labels of GDM and pregnancy are same with Figure 5.7. Yellow and brown bars are the start
and the end of the PHMSI, respectively.

The model further demonstrates its potential for examining various risk factors at the individual level

and their effects on population-level outcomes. The results in Figure 5.13 compares the prevalence of DIP

generated by the model under the assumption that all children are overweight or obese and that from a

model in Scn1. Figure 5.13 shows that obese and overweight at childhood is a risk factor that can increase

the prevalence of DIP.

5.8 Discussion

This paper has described a novel multi-scale model that utilizes three types of system simulation methods

to provide a versatile, powerful and general platform for examining interventions to address the growing

epidemic of GDM and T2DM in the ACT. The model achieves such versatility by virtue of maintaining a

core underlying physiological representation that captures the common generative pathways mediating diverse

needs in the model, to capture effects of lifestyle and clinical interventions, to capture clinical categorization,

to represent the effects of each of pregnancy, aging and BMI change, and the longer term effects of one
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Figure 5.12: Prevalence of DIP generated by the model in Scn1, Scn4, Scn3, and Scn2, are labelled as
purple, blue, red, and green line, respectively
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Figure 5.13: Prevalence of DIP from the model in Scn1 and the scenario assuming all children are
either overweight or obese, are labelled as green and red line, respectively
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Figure 5.14: Average of beta-cell mass generated by the model in Scn1, Scn4, Scn3, and Scn2, are
labelled as purple, blue, red, and green line, respectively
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Figure 5.15: Average of glycemia generated by the model in Scn1, Scn4, Scn3, and Scn2, are labelled
as purple, blue, red, and green line, respectively
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Figure 5.16: Average of KxgI generated by the model in Scn1, Scn4, Scn3, and Scn2, are labelled as
purple, blue, red, and green line, respectively

pregnancy (via beta-cell mass and function) on later pregnancies and subsequent material risk of T2DM, and

outcomes of interest. Such a representation can also flexibly capture the impacts of maternal status on the

offspring.

A high level of heterogeneity at the individual level, e.g., family context, risk factors for diabetes and

life course trajectories motivated the use of ABM as the core component of this hybrid model. The ABM

permits a high-resolution representation of relevant dynamics of individual objects and further allows the

implementation of finely targeted interventions. Compared to ABM, SDM simulates a system in a more

abstract and general way. The high level of abstraction of DGR makes it a suitable candidate for SDM. The

Services can be described as a sequence of operations, DES, therefore, was selected to model the Services,

and to study the resource allocation and effect of clinical interventions.

While empirical models of necessity represent simplifications of processes in the world, the model here

includes a requisite degree of detail to capture a remarkably broad set of factors. Nonetheless, they remain
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Figure 5.17: Prevalence of DIP from the model in Scn1 showing uncertainty of model stochastics

important limitations in the model that are ripe for addressing. These notably include a lack of detail with

regards to childhood dynamics (including weight change), neglect to social network effects on behavior, and

an overly simplistic representation of changes in KxgI and behavior change. Extensions of the model to

capture such effects, and to capture cost and resource components of scenarios, remain an important priority.

The multi-scale hybrid model of DIP presented in this chapter – which interweaves ABM, SDM, and DES

elements – was informed by longitudinal and cross-sectional empirical data from the ACT and Saskatchewan

Ministry of Health. While this model is the most sophisticated dynamic model in the thesis, it is notable that

the model interfaces with the data in a relatively simple way – via model calibration. Similar to the ABM in

Chapter 4, the cross-sectional data over time considered here – the incidence of DIP in each ethnicity – allows

the model to address the growing epidemic of GDM and T2DM at a high level. The rich longitudinal empirical

data available for this model, including the prevalence of macrosomia by DIP status and number of diabetes

by age 30 of offspring according to their mother’s diabetic status (e.g., GDM, T2DM) and birth weight,

provides additional information for extending model mechanism to explore the interaction of risk factors and

simulate the inter-generational transfers of risk for GDM and T2DM and occurrence of later-life diabetes

in the offspring. A high-resolution representation of dynamics of glycemic regulation and heterogeneity at

the individual level, as a hybrid model, permits the model to effectively utilize various types of data in

grounding model behavior. The work in this chapter demonstrates that availability of rich data can support

powerfully enriching evidence-informed model structure. The resulting dynamic model with sophisticated
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structure further increases the ability of the model to utilize empirical data.

The model here simulates the interaction of risk factors, coupled dynamics of the glycemia-beta-cell-insulin

system and insulin resistance, and the impacts of a diverse portfolio of interventions at a requisite degree

of detail. There are ways this model could be used to address the growing epidemic of GDM and T2DM

in the ACT and support public health policy and decision making. The use of a hybrid model capturing

a remarkably broad set of factors provides a way to examine and estimate the system-wide outcomes for

counter-factual situations and to elevate understanding of the dynamics of implemented interventions in a

complex system. With the DES component built atop the ABM building block, the model can be employed to

investigate delays, bottlenecks in and optimization of resource use in public health service delivery – including

by addressing the greater demands imposed on public health services due to earlier diagnostic screening.
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Chapter 6

Particle Filter Applied to System Dynamics Model

for Mosquito Population Surveillance

In this chapter, the machine learning technique of particle filtering was applied to an SDM of mosquito

population dynamics to predict the adult mosquito population. The model of DIP in Chapter 5 has the

most sophisticated model structure in this thesis, but combines with empirical data in a relatively simple and

traditional way – via model calibration. While having a simpler model structure than the hybrid dynamic

model in Chapter 5, the SDM of mosquito development examined here both uses a more sophisticated

means of grounding the model in data – via the Sequential Monte Carlo approach of Particle Filtering – and

requires a more complex way of relating the empirical data to corresponding model outputs, due to the critical

mediating influence of the probability of capturing a Culex mosquito adult, a quantity dependent on time-

varying environmental factors. The empirical data – including weather-related factors and mosquito-related

time series – are used as direct observations to support the particle filtering in recurrently regrounding the

latent state of the dynamic model. The count of Culex mosquito adults being captured in mosquito traps,

the number of such traps employed, in conjunction with the estimated resulting probability of capturing a

Culex mosquito adult per trap night and model generated Culex adult mosquito population, were used in

the likelihood function of the particle filtering model.

6.1 Introduction

West Nile virus (WNv) infection is historically one of the leading causes of mosquito-borne disease (MBD) in

Saskatchewan, and across Canada [21]. WNv maintains its enzootic transmission cycle primarily through bird

biting mosquitoes andWNv infected birds, and typically spreads to humans and other mammals – importantly

and devastatingly including horses – as the feeding preference of mosquito shifts [23]. In many regions –

including Saskatchewan – the bridge vector for WNv between birds and humans consists predominantly of

mosquitoes in genus Culex [22]. Culex pipiens and Culex restuans, and Culex tarsalis are dominant vectors

in eastern Canada and in western Canada, respectively [25]. Culex tarsalis amplifies the spread of infections

as feeding preference shifts from bird to human during American robins (Turdus migratorius) migration

period [23]. Within Saskatchewan, it is believed that control of Culex mosquitoes can greatly reduce the

burden of WNv infection. Further afield, Culex pipiens is associated with the highest number of humans
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Figure 6.1: SDM of Culex mosquito development

cases in WNv infection in northeast and north-central United States [23,24]. Despite the very high burden of

WNv historically experienced in jurisdictions such as Texas and Saskatchewan, researchers have argued that

needed information or data about the abundance of mosquitoes is not currently sufficient for public health

entities to effectively control the outbreaks of MBD [26].

Previous studies estimated the dynamics of abundance of Culex mosquitoes on the basis of counting the

number of Culex mosquito adults being captured per trap set in the local environment [96, 97, 98]. While

there are two primary types of traps are employed in Saskatchewan, is the most widely used trap to capture

Culex mosquitoes [96] is the CDC light trap, which attracts mosquitoes using CO2. One important limitation

of trap-based mosquito monitoring and control is that the traps can only estimate the relative abundance of

mosquitoes after a change in the mosquito population, and delay responses to the outbreaks of MBD [21].

Furthermore, the number of mosquito adults being captured in a given trap relies heavily on the number

of nights that the traps are set, on weather conditions during that period, and the landscape of the trap

location [96].

Many researchers have investigated predictive modeling of mosquito abundance to forecast outbreaks of

MBD [26,99]. Within such contributions, weather-based factors play a notably important role in constructing

the population abundance model of mosquitoes. Peper et al. [26] constructed a statistical model of weather

variables for the detection of WNv in a mosquito pool. Specifically, the model indicated the detection of WNv

was negatively associated with wind speed, but positively related to the week of a year, visibility, humidity

and dew point. Yu et al. [99] developed a temperature-dependent dynamic model for mosquito life cycle –

development, mortality, and diapause – to predict the abundance of mosquitoes in a single season. Rosà et

al. [100] proposed a linear mixed model to simulate the dynamics of Culex pipiens population using local land
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use and environmental drivers, e.g., temperature and precipitation. In model results, the early occurrence of

warm temperatures in a year increases the length of the mosquito season and decreases mosquito population

later in the year, whereas early precipitation is associated with a shortening of the mosquito season and with

an increased magnitude of mosquito abundance. Cong [101] developed a probability generating model using

an SDM – an ancestor of that employed in this chapter – to simulate a mosquito population, and suggested

that the environmental variables were key drivers for variations of the probability that a mosquito will be

trapped. Using a synthetic datasets, the Markov Chain Monte Carlo (MCMC) method was employed to

analyze the effect of the measuring frequency of mosquito observations on model performance, with results

suggesting the value of daily measurements for accurately estimating the impact of weather-based factors,

given the timespans of data available.

Machine learning techniques have been applied by many researchers in modeling mosquito distributions or

classifying mosquito species [102,103]. Wieland et al. [102] employed a support vector machine (SVM) model

to build a relationship between the distribution of a particular mosquito species and weather data. Fruha et

al. [103] evaluated the performance of SVM, random forest, logistic regression and decision tree models in

predicting the distribution of particular mosquito species by weather data, and concluded combining models

yielded better performance than does a single model.

Due to the marked variability in mosquito population dynamics year-to-year, and the strong limitations

of trap-based estimation of mosquito abundance, in this chapter, the machine learning technique of particle

filtering was applied to an SDM of mosquitoes development to predict adult mosquito population using

various direct observations – including weather-related factors – and mosquito-related time series; in contrast

to previous applications of particle filtering models to health-related topics, this model included a likelihood

function critically dependent on time-varying factors (here, weather-related observations).

The structure of the remainder of the chapter is as follows: The methods section describes empirical data

used for model parameterization, calibration and validation, an overview of the SDM of mosquito population

dynamics, modeling for mosquito control, the use of linear regression and model calibration to estimate the

probability that a mosquito will be captured by a trap, description of the state equation model, formulation

of the particle filtering adaptation to the model, model calibration, and model scenarios. The results section

characterizes outputs of the particle filtering model. The discussion section characterizes the model findings,

outcomes, limitations, and notes prospective lines of future work for the model.

6.2 Empirical Data

Daily weather records from 2010 to 2015 from the city of Saskatoon [104] were employed as exogenous factors

driving the dynamics of the SDM of Culex mosquito development, as well as in the particle filtering model

as exogenous factors determining the estimated probability of capturing a Culex mosquito adult in a CDC

light trap. The weather data employed includes temperature, precipitation, humidity, and wind speed levels,

66



with the SDM model using just the first two of those, while the likelihood function used all four. Data from

2011 to 2015 provided by the Mosquito Control Program of the City of Saskatoon, including the number of

Culex mosquito adults being captured by the CDC light traps deployed by the city, the number of the traps

deployed for a given time period (typically day), and records of mosquito control efforts, were incorporated

in the particle filtering model. The empirical number of Culex mosquito adults being captured informed the

particle filtering model, and provided the basis for that technique to recurrently estimate (via sampling) the

latent state of the system. The number of traps, in conjunction with the estimated probability of capturing

a Culex mosquito adult and model generated Culex adult mosquito population, were used in the likelihood

function of the particle filtering model. VectoBac is an effective mosquito larvicide applied in standing water

for the control of mosquito populations [105]. Three types of VectoBac records – including the number of

sites visited for applying VectoBac, the number of sites with mosquito larvae among the visited sites, and

VectoBac amount in kilograms, are employed in the SDM to simulate the effect of VectoBac on reducing the

population of mosquito larvae.

6.3 Methods

6.3.1 Overview of the System Dynamics Model of Mosquito Population

The Culex mosquito development is formulated as an SDM previously built by the supervisor and mod-

ified, extended, and simplified by a series of students, including M.Sc. students Wenyi An [106] and

(separately) Peibo Cong [101], undergraduates Curtis Theoret, Michael Richards, Chin Wang, and stu-

dent – subsequently staff member – Karen Yee. The work described in this chapter built the particle fil-

ter upon partial particle filter structure contributed by Wang and Cong. Reflecting the need to simulate

the life cycle of Culex mosquitoes, the SDM includes the following stocks to represent distinct stages of

the mosquito lifecyle: Mosquito_Eggs (ME), Mosquito_Larvae (ML), Mosquito_Pupae (MP), Hibernating_Eggs (HE),

Hibernating_Larvae (HL), Hibernating_Pupae (HP), Mosquito_Adult (MA), Diapause_Adult (DA), as shown in Fig-

ure 6.1. Reflecting the fact that the development of Culex mosquitoes from larvae to adult is affected by

several environmental factors, the SDM consequently employs daily weather-related variables – including

temperature, humidity, wind speed, and precipitation – to allow for accurate simulation of the dynamics of

the population of Culex mosquito adults. The inflows and outflows for a given stock specify the rates of flow

increasing and decreasing the value of that stock, as quantified by the time unit of the model, respectively.

The relationship between a state variable (termed a stock in System Dynamics) stock and its corresponding

flows is represented by the series of first-order ordinary differential equations shown in Equation 6.1. The

system of equations applying this within the specific context of the SDM applied here is shown in Equation
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6.7.

S(t) =

∫ t

0

(inflow(x)− outflow(x)dx+ S0 (6.1)

Amongst many other endogenous factors, the SDM outputs the population of Culex mosquito adults in

the Saskatoon area, and the daily count of Culex mosquitoes that the model estimates to be captured by traps

across the city. This latter quantity is a product of the model generated Culex adult mosquito population and

an estimated capturing probability varying according to the environmental factors. The model time unit is 1

day, and the duration of the model time horizon is 6 years – from the beginning of 2010 to the end of 2015.

Because of uncertainty regarding the initial state, a burn-in period of 1 year is used to allow some measure

of balance in model state, so as to better estimate the value of stocks and parameters over the continuous

simulation. The subsections below discuss different regions of the model.

6.3.2 Model of Mosquito Control (VectoBac)

As shown in Figure 6.1, the mosquito larvae mature into mosquito pupae, which in turn develop into the

adult mosquito population. The application of VectoBac to standing water ponds provides effective control

of mosquito larvae [107], which can strongly reduce the population of larvae – and, in coming weeks, of adult

mosquitoes. In light of the widespread application of VectoBac within the area represented by the model, to

more precisely simulate the dynamics of the mosquito population, the SDM incorporates a representation of

the effect of larvaciding. The effect on larvae of an application VectoBac on a given day is characterized in

the SDM using the following equation (Equation 6.2):

ns
nt
×
(
1− e

−α×
Vt
ns
)

(6.2)

Specifically, equation 6.2 specifies the fraction of mosquito larvae assumed to remain after applying VectoBac,

where ns is the count of sites at which VectoBac was applied on that day, nt is the count of all possible such

sites, α is a coefficient characterizing the effectiveness of VectoBac, and Vt represents the total VectoBac (in

kg) applied on that day; by extension,
Vt
ns

represents the per-site average amount of VectoBac applied on that

day. By multiplying Equation 6.2 by the stock representing mosquito larvae, the number of larvae controlled

by the VectoBac are essentially subtracted from the stock.

6.3.3 Probability of Capturing a Mosquito by CDC Light Trap

Weather-based factors play an important role in governing the number of Culex mosquito adults being

captured by the CDC light traps. This occurs through two primary pathways: By affecting the underlying

dynamics of the mosquito population, and by affecting the probability that a given mosquito will be trapped.

Speaking with respect to both such pathways, higher temperature increases the maturation rate of Culex

– and thus eventually the abundance of mosquito adults – but also elevates the activity of existing Culex
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mosquito adults [21]. Precipitation is another important driver affecting both pathways for Culex mosquitoes.

Soverow et al. reported that precipitation is positively associated with an increase in the population of Culex

mosquitoes [108], presumably in part due to availability of egg-laying sites. However, count of mosquitoes

being trapped is not linearly associated with precipitation [96]; a higher count of mosquitoes being captured

is observed with higher precipitation prior to the week of trapping. It is also well-known that precipitation

affects the degree to which mosquitoes take wing – and, by extension, the probability that they are captured

by a trap. This model characterized the effect of precipitation on the probability that a given mosquito

would be trapped via two variables – one quantifying the precipitation level, and the other the square of

precipitation level. By contrast to the first two factors, the influence of wind speed on measured mosquito

counts is characterized by this model as operating purely through probability of entrapment. Specifically,

wind speed influences the behavior of Culex mosquito adults, e.g., host-seeking activities and flight direction,

and is negatively related to the measured abundance of Culex mosquito adults [96].

The model assumes that the weather-based factors independently influence the probability that a trap

will successfully capturing a given Culex mosquito adult in the course of the day, and that probability p for

a given day is characterized in the model by Equation 6.3:

ln(p) = β0 + βT × T + βW ×W + βP1 × P + βP2 × P 2 (6.3)

where T ,W , P and P 2 represent the weather variable for that day for temperature, wind speed, precipitation,

and square of precipitation, respectively, and β0, βT , βW , βP1 and βP2 denote the intercept term, and

coefficients for temperature, wind speed, precipitation and square of precipitation, respectively.

Linear regression based estimation of the weather coefficients

This model used two approaches to estimate the coefficients βT , βW , βP1, and βP2: Via regression and

(separately) calibration; the first approach is covered in this section. The empirical data provides the number

of Culex mosquito captured per trap Ct, which is treated for the derivation as equal to the product of the

capturing probability pt at day t and the population mt of Culex mosquitoes at day t. For the derivation

via regression, the model assumes mt and mt−1 are approximately equal, yielding Equation 6.4. On the

basis of this, the coefficients for weather variables are characterized as a linear regression model, as shown in

Equation 6.5. The results of linear regression model are shown in Appendix B.

Ct
Ct−1

≈ pt
pt−1

, (6.4)

ln(
Ct
Ct−1

) = βT × (Tt − Tt−1) + βW × (Wt −Wt−1) + βP1 × (Pt − Pt−1) + βP2 × (P 2
t − P 2

t−1) (6.5)

Model calibration based estimation of the weather coefficients

Model calibration was also employed to estimate the weather coefficients (βT , βW , βP1 and βP2) in Equation

6.3. The calibration used the values of the weather coefficients estimated via linear regression as initial

69



estimates for the βT , βW , βP1 and βP2 being calibrated. Within this process the values of βT , βW , βP1

and βP2 were tuned to search for a best combination of parameter value to yield a minimized difference

between the predicted number of Culex mosquitoes being captured and empirical data. The calibrated βT ,

βW , βP1 and βP2, denoted in calibration-related code as betaTemp, betaWindSpeed, betaPrecipitation, and

betaPrecipitationSquare, and their corresponding calibrated values are listed in Appendix C.

6.3.4 State Equation Model

The model for mosquito population dynamics consists of the following state variables: Mosquito_Eggs (E),

Mosquito_Larvae (L), Mosquito_Pupae (P), Hibernating_Eggs (HE), Hibernating_Larvae (HL), Hibernating_Pupae

(HP), Mosquito_Adult (A), and Diapause_Adult (DA). Auxiliary variables (termed dynamic variables in Any-

Logic) and parameters are incorporated to characterize the rates for inflow and outflow of the stocks. Figure

6.1 illustrates the stocks and corresponding inflows and outflows used in the SDM, and Equation 6.7 to 6.14

are the compartmental equations used to characterize their relationship. Parameters and notation used in

the SDM and thesis are listed in Appendix D.

In this model, the rate for mosquito eggs being laid (λe) of a female mosquito adult is affected by the

following three factors: The dynamic variable ce represents the count of batch of eggs that a female mosquito

adult can lay per day – with an assumption of approximately 200 eggs being laid per batch – the parameter

teg refers to the egg gestation period; and f is favourability for egg laying influenced by precipitation and

water height (the parameter waterHeightForMaxEggLaying). λe is correspondingly calculated by Equation 6.6:

λe =
ce × 200

teg
× f (6.6)

λih represents the rate for entering the diapause state, which is affected by temperature and hours of sunlight;

for simplicity, this is treated as being identical for mosquito eggs, larvae and pupae. Conversely, parameter

λoh is the rate for diapaused mosquito adults as well as eggs, larvae, and pupae, to leave diapause Parameter

teh represents the mean time for an egg to hatch. Both temperature and the density of mosquito larvae

and pupae in a particular aquatic environment influence both the mosquito larvae death rate (λad) and

the development time t of a mosquito from larvae to pupae and pupae to adult. The flows of stock A are

determined by the following parameters: Parameter tm represents the mean lifetime of mosquito adults; λd

is mosquito diapause rate based on the day of a year, and γf is the rate of mosquito adults dying due to

exposure to low temperatures.

dE

dt
=

1

2
Aλef +HEλoh −

E

teh
− Eλih (6.7)

dHE

dt
= Eλih −HEλoh −

1

100
HE (6.8)

dL

dt
=

E

teh
+HLλoh − Lλih − Lλad −

L

t
(6.9)
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dHL

dt
= Lλih −HLλoh −

1

100
HL (6.10)

dP

dt
=
L

t
+HPλoh − Pλih −

P

t
γ (6.11)

dHP

dt
= Pλih −HPλoh −

1

100
HP (6.12)

dA

dt
=
P

t
γ +DAλoh −

A

tm
−Aγf −Aλd (6.13)

DA

dt
= − 5

1000
DA−DAλoh (6.14)

6.3.5 Particle Filtering Model

The model for mosquito population dynamics at time t can be represented by the system state vectors

xt = ft(xt−1) (based on the state equations above) and observation vectors yt, where ft is a Markov process

of the model. At time t, each particle characterizes the states of the model, including E, L, P, HE, HL, HP, A, and

DA. Furthermore, dynamic parameters ce and γ, and stock minTemperatureAdultOutOfDiapause are associated

with stochastic processes put in place within the model to include the randomness over time required for

useful particle filtering. The primary objective of the particle filtering model is to obtain the discrete random

measure Xt = {x(m)
0:t , w

(m)
t−1}, given Xt−1 and the observation vector yt. Generating particles x(m)

t and

updating their corresponding weights w(m)
t are achieved by importance sampling methods. After updating

weights, the distribution of value of states across the particles Xt−1 reflects Xt. Resampling, a scheme

that eliminates particles with small weights and replicates particles with large weights, takes place when the

effective particle size falls below a predefined threshold k. The likelihood function employed in the model

posits a Poisson distributed error, around a mean value (λ) calculated as follows:

λ = nt ×MPt × pt (6.15)

where t denotes the day, nt, MPt and pt are the empirical number of traps being set, the simulated mosquito

population from the SDM, and the estimated probability of capturing a Culex mosquito adult per trap,

respectively.

6.4 Model Calibration

To estimate poorly- or non-measured parameters, the model was calibrated so as to minimize an objective

function given by the discrepancy (Equation 6.16) between the predicted number of Culex mosquitoes being

captured and empirical data. The discrepancy was computed in a calibration scenario for the model with
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800 particles. The calibration experiment was set to run 25000 iterations (each associated with a single

realization), conducted with a fixed seed value of 1. The calibration experiment yielded a starting objective

function value of 336.84 and a minimal objective value of 110.287 following parameter optimization. The

calibrated parameters and their values are listed in Appendix C. The parameters optimized within calibration

play an important role in shaping the development of Culex mosquitoes from eggs to adults, and estimating

the effects of four weather-related factors – precipitation, temperature, wind speed, and relative humidity –

on the probability of capturing a mosquito.

6.5 Model Scenarios

This work examined the performance of particle filtering under two scenarios. The model in Scenario 1

(Scn1) employed all of the calibrated parameters listed in Appendix C. By contrast, the model in Scenario

2 (Scn2) used the weather coefficients from the linear regression model shown in the Table B.1 of Appendix

B rather than the calibrated weather coefficients. As in Scn1, mosquito development related parameters

were estimated by model calibration (waterHeightForMaxEggLaying, outOfHibernationRate, AdultMeanLifeTime,

EggGestationPeriod, and MeanTimeForEggHatch, given in Appendix C). In order to assess the impacts of particle

filtering, two reference scenarios were also employed. In Scenario 3 (Scn3), the model used the all of the

calibrated parameters listed in Appendix C, but with particle filtering mechanism turned off. Finally, Scenario

4 (Scn4) was used to characterize a scenario having the same parameter setting as Scn2, but without particle

filtering.

6.6 Results

The discrepancy between the particle filtering-based predictions and corresponding empirical observations

is quantified using Equation 6.16 [38], where xPij is the output represented by the sampled particle j at

observation i, and xEi is correspondingly empirical observation. Tf and T ∗ represents the final observation

time, and the time t up to and including the final point at which the weights of particles were updated. For

the calculation of discrepancy, n (n = 10,000) particles were sampled according to their weights in accordance

with the dictates of importance sampling.

discrepancy =

∑Tf

i=T∗+1

(∑n
j=1(x

P
ij−x

E
i )

2

n

)
Tf − T ∗

(6.16)

This work also yielded a set of 2D-histograms sampling from both posterior distributions (as shown in

Figures 6.2a, 6.2b, 6.2c, 6.2d, and 6.2e), and prior distributions (Figures 6.3a, 6.3b, 6.3c, 6.3d, and 6.3e).

These figures illustrate the distribution of number of Culex mosquitoes being captured by the traps as pre-

dicted by the sampled particles regrounded by the particle filtering model in Scn1, and visually compare those

results with empirical data (as shown in red). Analogous comparisons between model generated distributions
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Table 6.1: Discrepancy between the model estimate of the count of Culex mosquitoes being captured
and the empirical data in Scn1

Year Discrepancy of prior distribu-

tion

Discrepancy of posterior distri-

bution

2011 8354.02 70.36

2012 41.82 30.51

2013 140.95 101.91

2014 249.88 232.63

2015 166.81 146.992

for Scn2 and empirical data are shown for posterior distributions in Figure 6.4a, 6.4b, 6.4c, 6.4d, and 6.4e,

and for prior distributions in Figure 6.5a, 6.5b, 6.5c, 6.5d, and 6.5e.

The results presented in the 2D-histograms were generated by an underlying model using 10,000 parti-

cles, where the plots were generated by sampling 12,500 particles from the distribution of captured Culex

mosquitoes in traps according to their weight, in accordance with the principles of importance sampling.

Figure 6.3d and Figure 6.3e shows the superposition of the value of empirical data with the corresponding

estimated prior distribution of model-estimated mosquitoes traps; these plots demonstrate that the model

generally underestimate the number of Culex mosquitoes being trapped in 2014 and 2015. The posterior

distribution of 2015 in Scn1, as shown in Figure 6.2e shows that the posterior distribution sampled from the

model somewhat underestimates the number of Culex mosquitoes being trapped around day 226 of the year

(mid-August), but the difference between the model outputs and empirical data is decreased in the posterior

distribution compared to the prior distribution. Figure 6.2d shows the posterior distribution for the model in

Scn1 is not able to effectively reground the model to adequately match the rapid escalation and the following

fast decline of the reports of Culex mosquito population occurring on around August 18 in 2014 (day 230 of

the year). However, both the prior and posterior distribution for the model of 2014, as shown in Figure 6.3d

and 6.2d, respectively, is close to the empirical data until early August. The prior distribution of the counts

of Culex mosquitoes being trapped in 2012, as shown in Figure 6.3b, can be recognized by the substantial

visible overlap between the prior distribution and empirical data. As shown in Figure 6.2c and Figure 6.3c,

the particle filtering model in Scn1 captures the peak of the empirical number of reported Culex mosquitoes

captured during the summer of 2013.

The results for Scn2 – which features linear regression estimates for the weather-related coefficients con-

tributing to the probability that a mosquito will be trapped – the model outputs of 2012, 2013, and 2015

show similar patterns with the model results of Scn1. However, in contrast to the posterior distribution for
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Table 6.2: Discrepancy between the model estimated number of Culex mosquitoes being captured
and the empirical data in Scn2

Year Discrepancy of prior distribu-

tion

Discrepancy of posterior distri-

bution

2011 11816.13 47.93

2012 45.29 30.1

2013 146.22 104.3

2014 268.92 247.43

2015 175.35 141.65

2014 in Scn1, as shown in Figure 6.5d, the model in Scn2 underestimates the rapid escalation of the reports

of the Culex mosquito population occurring on around August 18 in 2014, but captures slightly better than

Scn1 the decline of count of trapped Culex mosquitoes after that escalation. Figure 6.4b shows the particle

filtering model captures the two peaks of the empirical number of reported Culex mosquitoes captured during

the summer of 2012. As shown in Figure 6.4a, around early August, the posterior distribution for the model

in Scn2 substantially superposes the value of empirical data.

Both Table 6.1 and 6.2 demonstrate that the particle filtering method decreases the discrepancy associated

with the posterior distribution for each year after the regrounding of model states. The results further show

that the model makes the most accurate estimates the number of Culex mosquitoes being captured in 2012.

In both Scn1 and Scn2, the model suffers from its largest discrepancy in 2014, compared with the discrepancies

of other years. Furthermore, the discrepancy of 2014 in Scn2 is substantially smaller than that for Scn1. Again

focusing on the posterior distribution, the average of the discrepancy from 2011 to 2015 of Scn1 and Scn2 are

116.48 and 114.28, respectively.

In contrast to the results above – which focus on estimated counts of reported (i.e., trapped) mosquito

populations, the particle filtered model can also estimate the size of the underlying mosquito population.

Figures 6.6a, 6.6b, 6.6c, 6.6d, and 6.6e demonstrate the distribution of Culex mosquito population across all

particles for each of 2011, 2012, 2013, 2014, and 2015, respectively. Figure 6.6c shows a pattern for 2013

that the Culex mosquito population had a sharp decrease around day 230 (August 18), and then increased

dramatically in the next 10 days. This results demonstrates the particle filtering regrounds the model state

by incoming observations, and measurement bias – here, particularly associated with estimates of capturing

probability – can significantly influence the the behavior of the particle filtered model.

Figure 6.7a to Figure 6.7e and Figure 6.8a and Figure 6.7e shows the count of Culex mosquitoes estimated

as being trapped generated by the model in Scn3 and Scn4, respectively. Compared with the SDM with particle
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Table 6.3: Discrepancy between the model estimated number of Culex mosquitoes being captured
and the empirical data in Scn3 and Scn4, respectively

Year Discrepancy of model in Scn3 Discrepancy of model in Scn4

2011 4259.26 3962.13

2012 330063.85 314106.57

2013 2777842.6 2457183.64

2014 44661488.9 47712305.97

2015 23215026498.085 22089962994.27

filtering, e.g. Scn3 and Scn4, the results in Scn3 and Scn4 demonstrate that the model without particle filtering

yields a considerably larger discrepancy between the model outputs and empirical data.

6.7 Discussion

This chapter has described applying the particle filtering method to an SDM to estimate underlying states

of the model. The particle filtering method allows the SDM to simulate the population of Culex mosquitoes

with considerably more accuracy, by virtue of recurrently regrounding the states and stochastically evolving

parameters of the model based on incoming empirical observations. The 2D histograms in Section 6.6

demonstrate that by regrounding the states and stochastically evolving parameters of the SDM model by the

particle filtering method, the technique is able to capture much of the fluctuation of mosquitoes population,

despite ongoing the evolution of environmental factors that shape both mosquito population dynamics and

probability of mosquito entrapment.

The dynamics of the Culex mosquito population depend heavily on environmental factors. The warm

temperature and increased precipitation during summer play an important role in increasing the Culex

mosquito population, via increased egg-laying rate, lower diapause rate, and reductions in maturation time

for mosquitoes development from larvae to pupae to adults. The increased population of Culex mosquitoes

further contribute critically to the peak in the number of mosquitoes being captured during summer in em-

pirical data. Beyond influencing the mosquito abundance itself, because the weather factors also strongly

impact the probability that a given mosquito will be trapped, such weather factors are tied up with param-

eter uncertainties associated with the multifactorial dynamics of the number of mosquitoes being captured

by traps. Within the work laid out in this chapter, we pursued two ways of estimating weather related

coefficients (βT , βW , βP1, and βP2) capturing at a relatively high temporal resolution how weather-related

factors influence the capturing probability. Firstly, I used a linear regression model to infer such coefficients,
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Figure 6.2: Posterior distribution of the number of Culex mosquitoes being trapped in Scn1

Blue and red represents the posterior distribution of the count of Culex mosquitoes being trapped estimated by the
particle filter model in Scn1 and the empirical count of Culex mosquitoes being trapped, respectively.
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Figure 6.3: Prior distribution of the number of Culex mosquitoes being trapped in Scn1

Blue and red represents the prior distribution of the count of Culex mosquitoes being trapped estimated by the
particle filter model in Scn1 and the empirical count of Culex mosquitoes being trapped, respectively.
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Figure 6.4: Posterior distribution of the number of Culex mosquitoes being trapped in Scn2

Blue and red represents the posterior distribution of the count of Culex mosquitoes being trapped
estimated by the particle filter model in Scn2 and the empirical count of Culex mosquitoes being
trapped, respectively.
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Figure 6.5: Prior distribution of the number of Culex mosquitoes being trapped in Scn2

Blue and red represents the prior distribution of the count of Culex mosquitoes being trapped esti-
mated by the particle filter model in Scn2 and the empirical count of Culex mosquitoes being trapped,
respectively.
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Figure 6.6: Distribution of Culex adult mosquito population in Scn1
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Figure 6.7: Count of Culex mosquitoes being trapped in Scn3

Blue and red represents the number of Culex mosquitoes being trapped estimated by the SDM in Scn3

and the empirical count of Culex mosquitoes being trapped, respectively.
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Figure 6.8: Count of Culex mosquitoes being trapped in Scn4

Blue and red represents the number of Culex mosquitoes being trapped generated by the SDM in Scn4

and the empirical count of Culex mosquitoes being trapped, respectively.
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using near day-resolution resolution data. However, linear regression is insufficient to deal with other pa-

rameter uncertainties, e.g., static parameters associated with the dynamics of mosquito lifecycle. To address

key elements of model parameter uncertainty, this work made an innovative methodological contribution

by extensive use of both model calibration and particle filtering to deal with model uncertainties – here,

particularly those associated with mosquito abundance and the dynamics of the number of mosquitoes being

captured, in the context of the complex relationship between environmental factors and the probability of

trapping a given mosquito. Used in this joint fashion, dynamic model calibration can serve a powerful role

by efficiently estimating the value of static parameters and addressing the parameter uncertainties regarding

model outputs associated with bias in the measurement process – areas not addressed by particle filtering –

while particle filtering is used to estimate the latent state of the model. Kalman Filtering yields more accu-

rate estimates of the parameters of a model having noisy simulation data than does unassisted calibration,

by flexibly dealing with the system nonlinearities and measurement bias associated with the model [109].

The model parameter estimates obtained from calibration allow for effective operation of particle filtering by

using an appropriate treatment of measurement bias.

Particle filtering assumes an underlying Markov process that cannot be directly observed and is applied to

state-space models with continuous states, and recurrently regrounds the states and stochastically evolving

parameters of the model based on incoming empirical observations. The empirical data compared with

model outputs – here, count of mosquitoes being captured by traps on successive days – has obvious time-

series characteristics, and each data point is typically individually insufficient to conclusively identify the

unobserved state at a given time. But combined with particle filtering using the observations together with

the dynamic model, the data are able to give insights into the model latent state that reflects the abundance

of mosquitoes at different points of their lifecycle over continuous time. While the underlying SDM is not the

most sophisticated dynamic model structure examined in this thesis, the particle filtered model exhibits a

complex interface with data not only by virtue of its capacity to estimate model latent state, but also because

the observed data relates to model outputs in a way that is mediated by the probability of capturing a given

Culex mosquito adult, which differs dramatically between different days due to time-varying environmental

factors. Because of such variation and the fact that the SDM simulates the Culex mosquito population, the

empirical count of mosquitoes being captured by traps cannot itself be directly used to parameterize the

model, and it is necessary to reason explicitly about the probability of capturing a Culex mosquito adult per

trap to combine the model with the corresponding empirical time series.

The SDM examined here simulates the development of Culex mosquitoes with a requisite degree of detail

for the problem at hand, capturing a broad set of factors affecting the life cycle of Culex mosquitoes, such as

weather, maturation phases, and diapause. The joint use of particle filtering and model calibration allows the

SDM to simultaneously reground its underlying state and estimate parameter uncertainties, so as to more

effectively match simulation output with empirical data.

The calibration experiment employed the model with 800 particles to run 25000 iterations with a fix
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seed value of 1. Within this process, the values of model parameters were tuned to search for the best

combination of parameter value to yield a minimized discrepancy between the predicted number of Culex

mosquitoes being trapped and empirical data. The particles represent the underlying distribution of the model

states. Stochastic processes incorporated into the model via dynamic parameters and the stock provides the

randomness over time required for particle filtering. The large size of particle used in each realization can

offer notable benefit in characterizing the randomness and stochastic process associated with the underlying

states of the model, and may thus play an important role in minimizing discrepancy associated with the

posterior distribution during the model calibration.

Despite the strength of the approach taken here has yielded strong benefits, there are some important

limitations to that approach and the accompanying model. These include the fact that the representation

of mosquito diapause is overly simple, the likelihood function used in particle filtering exhibits difficulty in

providing a suitably wide distribution of the outputs represented by the particles. Importantly, the parameter

uncertainties were estimated by model calibration, which is a relatively simplistic way to deal with unknown

parameters. Extensions of the current model to address such limitations, particularly accurate inference

regarding poorly-measured static parameters by making use of more sophisticated sampling techniques such

as PMCMC, remain an important priority for future work. In addition to the number of Culex mosquitoes

being captured, the dynamics of the model can also be compared with data on mosquito larval populations so

as to better ground model states; this can offer particular benefit, given that such measurements are governed

by different values of weather-related factors than are measurements of mosquito adults – and may thus offer

effective regrounding even during weather patterns that suppress accurate measurements of mosquitoes on

the wing. As Culex mosquitoes are the predominantly bridge vector for the high-burden pathogen WNv, the

model can be further extended with a representation of spread of WNv infection. This could both provide

health insights and open up the possibility using additional data sets for grounding the model, e.g., those

involving reported counts of infected horses through clinical and lab test results, hospitalization, rates of

severe neurological outcomes and death rates in the population, and historical reporting of dead birds.
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Chapter 7

Conclusion and Future Work

Collecting reliable data through traditionally available methods is encountering increasing difficulty in

reaching potential respondents and – in some spheres – becoming increasingly expensive. Public health

researchers are increasingly aware of the need to leverage the tools of both systems and data science. While

traditionally apply separately, this thesis includes elements of an emerging discipline of Systems-Data Science

(or systems aware data science) that links dynamic models suitable for investigating counter-factual regimes,

including those involving policy and intervention questions, and investigations probing different pathways –

including by drawing on statistical modeling and machine learning techniques such as explored in this thesis.

These elements are captured in different ways within the various studies included in this thesis.

Smoking is one of the foremost public health threats, and effective surveillance tools – such as those

combining increasingly available high-velocity, high-variety data with models over time, such as HMMs – are

key to informing policy making. Smartphone sensor data is viable, yet an effective classification algorithm

and platform for broad-scale smoking identification remains elusive. ECig use has increased dramatically –

particularly in the vulnerable teen years – and has an inconclusive effect on smoking behavior change. GDM

is a challenging problem for public health in the ACT, Saskatchewan and in a growing number of jurisdic-

tions worldwide, particularly on account of its influences on future risk of diabetes. Given the interaction of

complex risk factors across many levels in ecological context that are controlled tightly for in Randomized

Clinical Trials, and the cost, logistics, and ethical challenges associated with such trials, such studies offer

incomplete – and sometimes misleading – solutions for evaluating interventions, especially those at the popu-

lation level [110]. WNv infection is one of the leading causes of MBD and maintains its transmission through

mosquitoes of the Culex genus. The estimation of the abundance of mosquitoes is of key importance in public

health messaging and for effective control of outbreaks of MBD. At the same time, effective prediction of

mosquito dynamics is complicated by the marked variability in mosquito population dynamics year-to-year,

the pronounced effects of weather-related factors on both mosquito population dynamics and the probability

of detection of a given mosquito, and the strong limitations of and labour-intensive character of trap-based

estimation of mosquito abundance.

To address such challenges, this thesis has contributed four models demonstrating different levels of sophis-

tication by which dynamic simulation models can be combined with data – with an emphasis on engagement

with big data sources, and discussing the characteristics and availability of data in shaping model structure
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and the ways in which dynamic model structure shapes the ability to utilize data. These studies show how

advanced analytics can aid dynamic model parameterization, calibration, filtering, classification and inference

concerning latent state, and temporal projection. Specifically, beyond a common use of parameterization,

the applications illustrate use of dynamics models with diverse forms of calibration and filtering techniques –

with the ABM of smoking and ECig using predominantly cross-sectional data, a hybrid model of DIP making

additional use of longitudinal data, categorical classification with HMMs being used to classify smoking inter-

vals according to categorical classification across time series of smartphone sensor data, and the particle filter

being used to estimate the evolving continuous latent state of an SDM of Culex mosquito development using

daily mosquito trap and weather data, even in the context of highly data-dependent observation functions.

Dynamic model structure affects the ways that the data can be used – for example, by supporting or

making infeasible effective use of individual-level longitudinal data in calibration or model validation. That

structure further determines the level of sophistication of the model interacting with data – for example,

by opening or restricting opportunities for use of certain machine learning algorithms. The characteristics

and availability of data also plays an important role in shaping model structure. Machine learning classifiers

such as HHMs require a large volume of data associated with categorical underlying states, and assume a

memoryless transition between the latent states according time-invariant probabilities, and independence

of successive observations emitted from a given state. Therefore, smartphone-based sensor data with self-

reported categorical smoking status can be well-suited for informing multivariate HMMs in identifying the

unobserved state sequence. In contrast to HMMs, dynamic models allow for capturing continuous states,

state-varying time transitions and richer context, and in general support use of cross-sectional data points for

the calibration of model results. Individual-level models further support memoryful states, both continuous

and discrete heterogeneity, and use of history statistics from individual-level longitudinal data in model

calibration. An ABM and (separately) multi-scale hybrid simulation model were constructed to explore the

potential for examining the causal structure of a system and interventions using data and dynamic models.

The ABM of smoking and ECig use demonstrates the use of cross-sectional data via model calibration. The

hybrid model of DIP further illustrates the capacity to exploit rich data availability – including both cross-

sectional data and longitudinal data. It further supports increasing the level of sophistication of the model

structure – including as building blocks SDM, ABM, and DES – and extending model resolution to advance

insights regarding the dynamics of a complex system. The final case study applied particle filtering with

an SDM of mosquito development using detailed time-series data. While using a simpler model structure

than the model of DIP, the use of particle filtering offers a far richer capacity to make use of data – such

as in estimating latent state across the system, and the value of time-varying parameters. This application

of particle filtering offers several distinct features. The first is a complex likelihood function to deal with

a textured relationship between empirical data and underlying latent model state, where that relationship

depends centrally on factors that vary dramatically over time. Secondly, the model extensively jointly uses

particle filtering and automated model calibration to deal with the uncertainties associated with the dynamics
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of the mosquito population and the dynamics of the number of mosquitoes being captured.

7.1 Solutions

The solutions to the problems encountered in this thesis are briefly described as follows.

• Identifying Smoking from Smartphone Sensor Data and Multivariate Hidden Markov

Models

Windowed aggregation (every 30 seconds in our case) can effectively reduce noise as well as support

extraction of derived features while considering time dependency, taking into account temporal context,

rather than simply treating the sensor data of each feature as a Markov process. Here, for high-velocity

measurements such as accelerometer data, GPS data and Wi-Fi readings, we successfully extracted

derived features such as average and standard deviation for accelerometer data, count of GPS readings

drawn from satellite sources, maximum Received Signal Strength Indicator (RSSI), and count of unique

media access control (MAC) address from Wi-Fi data, respectively.

• Multi-Scale Simulation Modeling for Prevention and Public Health Management of Dia-

betes in Pregnancy and Sequelae

To scale up the hybrid multi-scale model of DIP, the following model configuration modifications were

made. The Garbage First Garbage Collector(G1GC) was switched to ParallelGC (OldParallel) given

the consideration that the throughput of processing simulation events is in our favor, rather than the low

latency on visualizing animation or responding to user interactions. We further made shared constant

agent fields as the statistics fields of the Java class to reduce memory footprint and class instantiation

time. We further moved the agent level event scheduler out to the main class to reduce the memory cost

for the instantiation of an EventOriginator. In the process of calibrating a multi-scale model of DIP,

missing assumptions and constraints were identified. Making use of other longitudinal data in addition

to the data about the incidence of DIP of each ethnicity, we constrained the outcomes of the model with

regards to intergenerational outcomes, particularly those involving the occurrence of macrosomia and

later-life diabetes outcomes by age 30 of offspring according to their mother’s glycemic status during

pregnancy. Investigation revealed that while the risk group identified by the Australasian Diabetes in

Pregnancy Society bears the burden of higher incidence rates of diabetes in pregnancy than are seen in

the Australian Born population, these elevated rates persist despite lower levels of an important risk

factor – overweight and obesity. Based on consultation with members of the expert advisory panel,

we incorporated additional assumptions in the form of ethnic-specific differences in β-cell mass and

function and/or insulin sensitivity.

• Particle Filter Applied to System Dynamics Modeling for Mosquito Population Surveil-

lance
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Particle filtering is employed and combined with SDM to reground the state of the model and estimate

the uncertain parameters associated with stochastics, in light of incoming observations. We applied

linear regression to relate key detection-related parameters – here, related to capturing adult mosquitoes

– with weather-related factors. Model calibration was combined with particle filtering for optimizing

values of parameters for minimizing the discrepancy coming out of the particle filtering. Both calibration

and particle filtering were used to deal with the uncertainties associated with the dynamics of the

mosquito population and the dynamics of the number of mosquitoes being captured associated with

measurement bias; the use of calibration was particularly notable both in terms of likely being the first

use of automated calibration with particle filters for health, and in terms of markedly reducing the

discrepancy between model outputs and observed mosquito counts.

7.2 Summary of Findings

7.2.1 Identifying Smoking from Smartphone Sensor Data and Multivariate Hid-

den Markov Models

Multivariate HMMs informed by binned time-series of transformed smartphone sensor data were employed to

classify smoking and non-smoking intervals. In a supervised-learning approach, the smartphone-based Wi-Fi,

GPS, and accelerometer time-series sensor data with self-reported smoking periods contributed to estimation

of the parameters of multivariate HMMs. The results demonstrate that multivariate HMMs have higher

accuracy in classifying states than single feature HMMs due to the use of additional types of sensor data.

Both improving data conditioning achieved by the transformations of noisy raw data and tailoring training

set and test sets close to the entire smoking cycle serve important roles in improving classifier performance.

In light of the central use of supervised learning in this work, the accuracy of self-reporting of ground truth

data also significantly affects the predictive accuracy of the multivariate HMMs.

7.2.2 Effect of E-cigarette Use and Social Network on Smoking Behavior Change:

An Agent-Based Model of E-cigarette and Cigarette Interaction

We built an ABM of conventional smoking and ECig use to better study the impact of ECig use on smoking

behavior change in Canada. We further explored the effects of proximity-based social network influences

on smoking and ECig use initiation. Simulation outcomes suggest that ECig use results in substantially

lower prevalence of current smokers, and social network increases the prevalence of current ECig users.

With calibration of the model to longitudinal data, the ABM of smoking and ECig use demonstrates a

substantial potential for providing a deeper understanding of the complex system involved and influences of

social network. Outcomes of the simulation suggest that behaviors of ECig use, initiation, cessation, and

relapse may notably alter smoking behavior. Further extending the ABM to a multi-scale model involving
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dynamics of nicotine tolerance and craving could help to greatly deepen understanding the dynamics of

nicotine addiction. Capturing such dynamics could be of particular importance in light of the far longer

exposure intervals common in e-cigarette use in some subpopulations [111], and the diversity of nicotine

levels employed by e-cigarette users.

7.2.3 Multi-Scale Simulation Modeling for Prevention and Public Health Man-

agement of Diabetes in Pregnancy and Sequelae

A multi-scale hybrid model employing ABM, SDM, and DES was built as a versatile and general platform to

explore the interaction of risk factors, coupled dynamics of the glycemia-beta-cell-insulin and insulin resistance

system, and interventions to address the growing epidemic of GDM and T2DM, employing empirical data

from the ACT and Saskatchewan Ministry of Health. The model demonstrates ability to examine health

outcomes resulting from a complex system, and the mechanisms for and impact of interventions at the

physiological, health service and population levels.

7.2.4 Particle Filter Applied to System Dynamics Modeling for Mosquito Pop-

ulation Surveillance

The particle filtering method was applied to a previously developed SDM of Culex mosquito development

to predict Culex mosquito adult populations using various direct observations – including weather-related

factors – and mosquito-related time series from mosquito traps. Model calibration combined with particle

filtering allows the model to optimize values of parameters and markedly reduces the discrepancy coming out

of the particle filtering. The results demonstrated that particle filtering can reground the dynamic model

in light of real-time incoming observations, and support the model in accurately estimating the underlying

state and evolving parameters of that model, while calibration can work with particle filtering with high

effectiveness to markedly improve model accuracy by estimating the value of static parameters.

7.3 Contributions

The contributions made in this thesis focus on the following areas. First, the work presented in Chapter 3

serves as one of the first contributions using multivariate HMMs informed by multiple types of time-series

smartphone sensor data to identifying smoking and non-smoking intervals. In this work, we presented a novel

way of fusing various types of smartphone sensor data – including Wi-Fi, GPS, and accelerometer time series

– after critical transformations of the raw data. Second, the ABM of smoking and ECig use presented in

Chapter 4 incorporated the influence of the social network on smoking and ECig use initiation and simulated

complex interactions between smoking and ECig use. Chapter 5 proposed a cutting edge work of developing

a multi-scale hybrid model consisting of an SDM module describing the underlying physiological regulation
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of glycemia based on beta-cell dynamics and insulin resistance nested in an open population ABM enclosing

the previous SDM module representing the population dynamics – including birth, death, weight change,

and age cohort shifting – and a DES module describing the operational flow of health services. Combined

with three modules taking advantage of various modeling methods, we achieved a performant model of this

complex system via a hybrid modeling approach by linking various types of data in the context of judicious

performance optimizations. The final line of work contributed an investigation applying particle filtering

on an SDM for mosquito population surveillance using various direct observations. Furthermore, this work

contributes to the first investigation of combining both model calibration and particle filtering for optimizing

values of parameters to minimize the discrepancy coming out of the particle filtering. The combination of

model calibration and particle filtering is a novel method to deal with the uncertainties associated with the

dynamics of an SDM and measurement bias, and proved strikingly effective in improving dynamic model

accuracy.

7.4 Limitation and Future Work

In this thesis, true to the vision of Systems-Data Science we presented the combination of counterfactual-

capable dynamic simulation models with machine learning techniques and time series smartphone sensor

data, longitudinal data and daily environmental data. Despite fine granularity data and fine resolution of the

models that capture a requisite degree of detail, there are some limitations in the models and approaches.

Certain directions of future work can be conducted to enhance the performance of models presented in this

thesis.

Although the multivariate HMMs examined in Chapter 3 are informed by high granularity data for each

participant, incorporating a larger participant pool could help in investigating the influence of tailoring the

dataset to an entire smoking cycle on accurate classification of smoking interval. As future work, we will

investigate the performance of multivariate HMMs making use of joint distribution of three observations

using empirical distribution estimated by using linear interpolated Kernel-Density-Estimation. Another in-

teresting point of future work for investigation is whether the empirical distribution of one participant can be

reused on other participants; finally, this work suggests the importance of incorporating added measures to

ensure data quality in future studies (such as by asking participants to report their sense of the accuracy of

their contributed data, secure in the knowledge that such statements will not prevent receipt of participant

payments).

For the ABM of smoking and ECig use, supplementing the model with an evidenced estimate of the

rate of ECig use cessation and the rate of ECig use relapse will make the model less sensitive to the use of

ECig, which helps to elevate the accuracy of model simulation of smoking and ECig use behavior. This work

further suggests the strong value of investigating broader changes to model design, particularly to capture

the effect of smoking episodes and dynamics of nicotine metabolism at the fine-grained level. By adding these
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mechanisms, the resulting model could support analysis of the effect of ECig use on not just relieving nicotine

cravings but also on elevating nicotine tolerance as a smoking cessation tool, and smoking behavior change

from the nicotine craving satisfied by ECig instead of smoking. The results also suggest that social network

play an important role in shaping smoking and ECig use behavior; therefore, an extension of the current

model with a more theoretically grounded and evidenced social network assumptions remains an important

priority to simulate effects of social network on the behaviors.

An urgent sphere of extension for the current DIP model presented in Chapter 5 consists of connecting

the model to a rich endogenous representation of early weight change, its impact on child birth characteristics

and in-utero environment, and its impact on the underlying physiological regulation of glycemia. Especially

in light of the strong evidence base recognizing the role of social support in weight change [112], it is further

important for future work to tap the model’s capacity to support ready extension for incorporation of social

network effects on behavior – for example, social network influences on starting and maintaining lifestyle

change and other interventions. Another limitation in the model relates to the simplistic current represen-

tation of the dynamics of KxgI and the stylized manner in which it is currently affected by a pregnancy,

weight change, and interventions. By extending the current mechanism of KxgI change to a finer resolution,

the model will have the potential to simulate the DGR in a more detailed way. Furthermore, the model

leaves room for readily incorporating cost and resource utilization into DES to investigate the optimization

of resource use during service delivery, and resource- and cost-based tradeoffs between interventions.

Enhancing the sophistication of the model characterization of the probability of Culex mosquitoes being

captured in traps would be an important priority in future work. As discussed in Chapter 6, weather-

based factors directly influence the trapping success, but estimation of such parameters is challenging, due

especially to the impacts of such weather-related factors on both mosquito dynamics and detection probability.

Extension of the current particle filtering into a Particle Markov chain Monte Carlo (PMCMC) model is

an attractive means of making estimating the weather coefficients. An accurate estimate of the weather

coefficients could support the model in characterization of mosquito dynamics despite small trap counts due

to environmental conditions, reflecting the fact that mosquito activities are decreased due to windy and

rainy weather while the population of mosquitoes may remain large. Another limitation remaining in the

model is that the representation of mosquito diapause is overly simple. Extending the dynamics of mosquito

diapause may be important in estimating the population of mosquitoes, particularly in late spring and early

summer. Given the critical role of Culex mosquitoes in spreading WNv, it is important to extend the SDM

of mosquito population with a representation of spread of WNv infection, which would both provide insight

into WNv-related policy, and open up additional data sets for grounding the model – such as those associated

with human cases, dead birds, and horses.
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7.5 Conclusion

The studies in this thesis demonstrate different levels of sophistication by which dynamic models can be

combined with data, the characteristics and availability of data in shaping model structure and scope. The

dynamic model structure directly affects the way that data can be used, including by shaping the capacity

to represent the underlying data generating process, by supporting a capacity to compare against certain

types of data (e.g., longitudinal data), and by the capacity to support analytic approaches that make more

effective use of data and predictions with high accuracy. Combining dynamic model with analysis methods

such as particle filtering enable the model to be appropriately matched to highly variable data sources, and

such methods can be fruitfully and computationally tractably combined with more traditional techniques for

use of models with data, such as model calibration and parameterization. Within this study, we employed

multivariate HMMs informed by time-series smartphone sensor data with self-labeled smoking intervals to

classify smoking and non-smoking intervals. The results demonstrated that, despite their simplicity, such

multivariate HMMs can have notable accuracy in classifying such states using multiple types of smartphone

sensor data. Richer dynamic simulation models, e.g., SDM, ABM, and DES, support representation of

state-varying behaviour and richer contexts; individual-based models can be informed by longitudinal data

allowing for capturing memoryful states, and often support more accurate projections and richer investigations

of intervention tradeoffs. Particle filtering was applied on a compartmental model to support the model to

make an accurate projection, and the results demonstrated the effectiveness of particle filtering in regrounding

the states and evolving parameters of the model based on incoming empirical observations, despite highly

variable and environment dependent data observation processes. Collectively, the work demonstrates that

the appropriate use of advanced analysis methods in parameterization, calibration, and filtering can play an

important role in yielding model outcomes with high accuracy and versatility.
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Appendix A

Calibrated parameters of the hybrid multi-scale model

of diabetes in pregnancy

Parameters Value Unit Description

thresholdCoefficientToT2DM 1.636 unit Coefficient of diagnosis cri-
teria for T2DM.

coeffRatesToGDM 0.642 unit Coefficient of diagnosis
critera for GDM.

fastingBloodGlucoseThresholdBefore2015 5.504 mM Glycemia value used as di-
agnosis threshold.

tEthaEnd 0.341 mo−2 Value of pancreatic reserve
η at the end of the period
of observation

offspringKxgIGlycemiaCoefficient 0.508 unit Coefficient for offspring’s
KxgI impairment

incidenceOfDIPIncrease 1.5 unit Fraction increase of inci-
dence of DIP after diagno-
sis threshold change after
year 2015

coefficientTEthaEndADiPS 0.354 unit Coefficient for tEthaEnd of
ADiPS ethnicity group.

Table A.1: Calibrated parameters of the hybrid multi-scale model of diabetes in pregnancy
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Appendix B

Linear regression on weather-related variables for

the probability of a Culex mosquito being captured

by CDC light trap

Notation Value Description

β0 -18.421 Intercept

βt 0.055 Coefficient for temperature

βw -0.002 Coefficient wind speed

βp1 0.063 Coefficient for precipitation

βp2 -0.0012 coefficient for precipitation square

Table B.1: Coefficients of weather-related variables for the probability of a Culex mosquito being
captured by CDC light trap

Coefficients Estimate Std. Er-
ror

Pr(> |t|) 2.5%
CI

97.5%
CI

βt 0.055 0.042 0.183 -0.026 0.137

βw -0.002 0.02 0.922 -0.041 0.037

βp1 0.063 0.045 0.162 -0.026 0.152

βp2 -0.0012 0.001 0.219 -0.003 0.0007

Table B.2: Summary of the linear regression on weather-related variables for the probability of a
Culex mosquito being captured by CDC light trap
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Appendix C

Calibrated parameters of the particle filtering model

applied to the SDM of Culex mosquito development

Parameters Value Unit Description

waterHeightForMaxEggLaying 0.55 mm Water height for favorability of egg
laying

outOfHibernationRate 0.76 per day Rate for mosquito adults out of di-
apause state

AdultMeanLifeTime 13.67 day Adult mean life time

EggGestationPeriod 1.41 day Egg gestation period

MeanTimeForEggHatch 1.82 day Mean time for egg being hatched

betaTemp 0.06 unit βt, coefficient for temperature vari-
able for determining trap capture
probability

betaWindSpeed -0.004 unit βw, coefficient for temperature
variable for determining trap cap-
ture probability

betaPrecipitation 0.033 unit βp1, coefficient for temperature
variable for determining trap cap-
ture probability

betaPrecipitationSquare -0.005 unit βp2, coefficient for temperature
variable for determining trap cap-
ture probability

Table C.1: Calibrated parameters of the particle filtering model applied to SDM of Culex mosquito
population
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Appendix D

Parameters of the SDM of Culex mosquito develop-

ment

Parameter name Notation Value Unit

initialStandingWaterMm 100 mm

startingAquaticDensity 0.346 unit

initialEggDensity 0.637 unit

waterHeightForMaxEggLaying calibrated mm

minTempForOutOfDiapausePreAdult 17.834 mm

durationForLowPassPrecip 25 day

outOfHibernationRate α calibrated per day

minTempForIntoDiapausePreAdult 16.285 Co

adultMeanLifeTime tm calibrated day

minmumAcceptableEffectiveSampleSizeFraction 0.25 unit

minInitialMinTemperatureAdultOfOfDiapause 0.0 Co

maxInitialMinTemperatureAdultOfOfDiapause 15.0 Co

daylightHoursForDiapause 15.4 hour

beta0 β0 -18.421 unit

betaTemp βT calibrated unit

betaWind βW calibrated unit

betaPrecipitation βP1 calibrated unit

betaPrecipitationSquare βP2 calibrated unit

eggGestationPeriod teg calibrated day

eggLayingTempCoeffPerDegreeCMin 0.005 unit

eggLayingTempCoeffPerDegreeCMax 0.4 unit

cRandomWalkStdDev 0.5 unit

meanTimeForEggHatch teh calibrated day

maxTemperatureCoefficientForEggLayingRate 4.0 unit

pupaeToAdultRateCoeffMin 0.005 unit

pupaeToAdultRateCoeffMax 0.7 unit

stdPupaeToAdult 0.8 unit

Table D.1: Parameters of the particle filtering model applied to SDM of Culex mosquito population
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