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Asynchronous switching control for fuzzy Markov
jump systems with periodically varying delay and

its application to electronic circuits
Yinghong Zhao, Likui Wang, Xiangpeng Xie, Hak-Keung Lam, and Junhua Gu

Abstract—This article focuses on addressing the issue of
asynchronous H∞ control for Takagi-Sugeno (T-S) fuzzy Markov
jump systems with generally incomplete transition probabilities
(TPs). The delay is assumed to vary periodically, resulting in one
monotonically increasing interval and one monotonically decreas-
ing interval during each period. Meanwhile, a new Lyapunov-
Krasovskii functional (LKF) is devised, which depends on mem-
bership functions (MFs) and two looped functions formulated
for the monotonic intervals. Since the modes and TPs of the
original system are assumed to be unavailable, an asynchronous
switching fuzzy controller on the basis of hidden Markov model
is proposed to stabilize the fuzzy Markov jump systems (FMJSs)
with generally incomplete TPs. Consequently, a stability criterion
with improved practicality and reduced conservatism is derived,
ensuring the stochastic stability and H∞ performance of the
closed-loop system. Finally, this technique is employed to the
tunnel diode circuit system, and a comparison example is given,
which verifies the practicality and superiority of the method.

Note to Practitioners—As a category of stochastic hybrid
nonlinear systems driven by continuous time and discrete events,
FMJSs have significant applications in practical engineering such
as aircraft control systems and large-scale manufacturing system-
s. However, the real-time acquisition of system mode information
and TPs is difficult due to technological constraints and limited
resources. Moreover, the presence of periodically varying delay is
prevalent in many industrial processes, resulting in degradation
of dynamic system performance and instability. Therefore, it is
necessary to study the FMJSs with generally incomplete TPs
and periodically varying delays in asynchronous framework.
Accordingly, unlike previous work, the designed LKF relies on
system modes, MFs, and two looped functions for monotonic
intervals. This new LKF exhibits a high degree of flexibility,
fully leveraging the information of MFs and periodically varying
delays, which can significantly reduce conservatism.

Index Terms—Fuzzy Markov jump systems, membership func-
tions, asynchronous control, generally incomplete transition prob-
abilities.
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IN the field of scientific and engineering, it is widely
acknowledged that numerous physical systems exhibit non-

linear behavior, which presents considerable challenges in
their control and design compared to linear systems [1]–[6].
To tackle these difficulties, the Takagi-Sugeno (T-S) fuzzy
model emerged and proved to be an effective strategy for
approximating and representing these nonlinear systems (NSs)
[7]–[9]. Its practical applications encompass a wide range of
fields, including robotics, process control, power systems, and
autonomous vehicles. However, when dealing with NSs affect-
ed by unpredictable parameters and structural mutations, such
as environmental shifts, component maintenance, or failures,
the limitations of the T-S fuzzy model become evident. In
this context, Markov jump systems (MJSs) present a practical
and effective solution, becoming a hot topic with notable
achievements in observer design [10], [11], stability analysis
[12], sampled-data control [13], etc. Hence, it is essential to
further research fuzzy Markov jump systems (FMJSs), and
many relevant issues have been considered. For example, the
asynchronous fault detection problem for nonhomogeneous
higher-level FMJSs was considered in [14]. The problem
of dynamic-memory asynchronous event-triggered control for
singular FMJSs against multi-cyber attacks was discussed in
[15].

In the majority of research on FMJSs, a notable assumption
is that the transition probability (TP) matrices are completely
known. Nevertheless, in practical applications, obtaining the
entire transition probabilities (TPs) is a challenging task. This
is mainly due to random information missing and time delays
that occur in diverse operation cycles of various communica-
tion networks. Consequently, obtaining exhaustive samples of
the TPs is not only costly but also time-consuming. In light
of these challenges, further research on MJSs with generally
incomplete TPs becomes significant and crucial. Recently, the
importance of this research has been increasingly recognized
by scholars, and many related results have been published
in various aspects, such as observer design [16], suboptimal
control [17], reachable set estimation [18], etc.

Furthermore, for MJSs, another prevalent assumption is that
the controller must possess accurate and up-to-date informa-
tion about the current mode of the system [10]–[13]. However,
achieving precise measurements of these system modes in
actual engineering operations is difficult due to a variety of
technical and financial constraints. To tackle this issue, sub-
stantial research efforts have been dedicated to study the issue
of mode asynchrony, and a plethora of achievements have been
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achieved. For instance, the issue of asynchronous L2 control
for positive FMJSs was researched in [19]. The problem of
finite time asynchronous control for nonhomogeneous FMJSs
with multiple disturbances was investigated in [20]. Apply-
ing the asynchronous disturbance observer method, the anti-
disturbance control issue for MJSs with matched/mismatched
disturbances was considered in [21]. However, the current
research on the asynchronous control problem for FMJSs
with generally incomplete TPs is limited, which motivates the
present work.

On the other hand, time-varying delay is a pervasive factor
leading to degraded performance and instability in dynamic
systems like network control systems, chemical processes,
and power systems [22]–[25]. Similarly, FMJSs are inevitably
subjected to time-varying delays since the characteristics of the
underlying Markov process. Therefore, the stability analysis
and controller design for FMJSs with time-varying delay holds
immense importance in both theoretical research and practical
implementations. As commonly acknowledged, the Lyapunov-
Krasovskii functional (LKF) method is recognized as one of
the most efficient techniques for analyzing the stability of
time-delay systems, and a variety of LKFs have been presented
to reduce conservatism in recent years [26]–[28]. Lately, a
novel LKF based on monotone delay intervals was introduced
in [29] for the periodically varying delay, a common occur-
rence in mechanical systems. Studies indicate that this LKF
can effectively reduce conservatism by accurately capturing
the monotonic characteristics of delays. However, the study
conducted in [29] solely focuses on the stability analysis
of time-delay systems, without delving into the research on
asynchronous controller design for FMJSs. This gap presents
another motivation for this paper.

It is worth mentioning that majority of existing works on
FMJSs are founded on the utilization of LKF that are indepen-
dent of membership functions (MFs) [30]–[32]. However, as
a unique characteristic of fuzzy systems, the consideration of
MFs-independent LKF inevitably leads to conservatism. For
this problem, the MFs-dependent LKF was discussed in [33]–
[35]. Nevertheless, these approaches require the assumption
that the time derivatives of the MFs are bounded, which is
difficult to obtain in practice and imposes certain limitations.
Recently, an alternative approach known as the switching
method was proposed in [36]. This method effectively address-
es the time derivatives of MFs, thus reducing conservatism.
Consequently, designing an LKF that adequately considers the
delay monotonicity and depends on MFs is a research topic
of significance.

Inspired by the discussion mentioned above, we are motivat-
ed to investigate the issue of asynchronous switching control
for FMJSs with periodically varying delays and generally
incomplete TPs. The key contributions are highlighted as
follows:

1) The switching method is employed to design a nov-
el monotone-delay-interval-based membership function-
dependent LKF (MDI-MF-LKF). Unlike the LKF pro-
posed in [8], [26]–[28], the MDI-MF-LKF incorporates
more information about MFs, allowing for flexible han-
dling of delays across different intervals. This enhances

analysis accuracy and reduces conservatism, as demon-
strated in Example 2.

2) Different from the existing works on synchronous control
for FMJSs, the phenomenon of mode asynchronous is
considered in this paper, utilizing hidden Markov model
as its foundation. Furthermore, a more practical and
universal asynchronous switching fuzzy controller is p-
resented for the first time to stabilize the FMJSs with
generally incomplete TPs.

Notation: In this paper, matrices are assumed to possess
compatible dimensions unless explicitly specified otherwise.
The main notations are shown in Table I.

TABLE I
NOTATIONS IN THIS PAPER

Symbol Denotes
Rn n-dimensional Euclidean space

Rn×m n×m real matrices
P > 0 (< 0) symmetric positive (negative) matrix
sym(G) G+GT

diag {· · · } a block-diagonal matrix
∗ symmetric matrix
L weak infinitesimal operator

col {M1,M2, . . . ,Mn} [MT
1 , M

T
2 , . . . , M

T
n ]T

J{s}, s = 1, 2, 3
[
J1 J2 J3

]
Jr{s}, r = 1, 2, s = 1, 2, 3

[
J11 J12 J13

J21 J22 J33

]

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the FMJSs as follows:
Rule i: IF χ1(t) is Mi1, . . ., χg(t) is Mig , Then

ẋ(t) = A℘(t)ix(t) +Ad℘(t)ix(t− d(t)) +B1℘(t)iu(t)

+D℘(t)iω(t),

z(t) = C℘(t)ix(t) + Cd℘(t)ix(t− d(t)) +B2℘(t)iu(t)

+ E℘(t)iω(t),

x(t) = φ(t), t ∈ [−d2, 0],

(1)

where x(t) ∈ Rn, z(t) ∈ Rw, u(t) ∈ Rs, and ω(t) ∈ Rf

represent the system state, control output and input, and dis-
turbance, respectively. χℵ(t) is the premise variable, Miℵ(i =
1, 2, . . . , r,ℵ = 1, 2, . . . , g) denotes the fuzzy set with r rules.
The matrices in system (1) are pre-established and real. The
delay d(t) is defined in the following form [29]:

d(t) = d0 + d̄f(Ωt), (2)

where f : R → [−1, 1] denotes a periodic function, charac-
terized by a single monotonically increasing interval and a
single monotonically decreasing interval within each period.
The parameters d̄ and Ω establish the amplitude and frequency
of this variation, with d̄Ω < 1. Obviously, d(t) satisfies

0 ≤ d1 ≤ d(t) ≤ d2,
∣∣∣ḋ(t)

∣∣∣ ≤ κ < 1, (3)

in which d1 = d0 − d̄, d2 = d0 + d̄, κ = d̄Ω.
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Additionally, {℘(t),∀t ≥ 0} represents the continuous
Markov chain taking values in a finite set N = {1, 2, . . . , N},
and the TP matrix Π1 = [πlo] is presented as:

Pr {℘t+∆t = o |℘t = l} =

{
πlo∆t+ o(∆t), l 6= o,
1 + πll∆t+ o(∆t), l = o,

(4)

with ∆t > 0 and lim
∆t→0

o(∆t)
∆t = 0, πlo satisfies πlo ≥ 0 with

l 6= o and πll = −
∑N
o=1,o 6=l πlo.

Note that the TPs of the jumping process are considered
to be generally incomplete in this article, where each TP is
assumed to be either completely unknown or only partially
estimated. As an illustration, the TP matrix Π1 representing
N modes can be expressed as follows:

Π1 =


? ? ? · · · π̂1N+∆π1N

π̂21+∆π21 ? ? · · · ?
...

...
...

. . .
...

? π̂N2+∆πN2 ? · · · ?

 ,
where ? signifies the completely unknown TPs, π̂lo and
∆πlo ∈ [−flo, flo] (flo ≥ 0) represent the known estimate value
and estimate error of πlo, respectively. For the sake of brevity,
∀l ∈ N, we denote N = Nlk + Nluk with

Nlk = {o |the estimate value of πlo is known} ,

Nluk = {o |the estimate value of πlo is unknown} .

If Nlk 6= φ, it is further represented as Nlk =
{
`l1, `

l
2, . . . , `

l
u

}
,

where 1 ≤ u ≤ N and `lu denotes the uth bound-known factor
in the lth row of matrix Π1.

Remark 1: In [20], [21], the TP matrices are completely
known. However, in practical applications, accurately estimat-
ing the TPs of certain jumping processes is challenging due
to equipment limitations and the presence of uncertain factors.
Consequently, the TP matrices discussed in [16], [17] are
considered incomplete, and they can be represented as follows:

? ? ? · · · π1N

π21 ? ? · · · ?
...

...
...

. . .
...

? πN2 ? · · · ?

 .
Unlike the aforementioned studies, our research introduces a
more general form of the TP matrix, denoted as Π1. It includes
not only elements that are completely known or unknown,
but also elements that have known lower and upper bounds.
Notably, if flo = 0, the generally incomplete TP matrix Π1 will
reduce to an incomplete TP matrix; if Nluk = φ and flo = 0,
Π1 will simplify to a completely known TP matrix.

Utilizing the standard fuzzy inference, we obtain that the M-
F is hi(χ(t)) =

∏g
ℵ=1 µiℵ(χℵ(t))∑r

i=1

∏g
ℵ=1 µiℵ(χℵ(t))

, µiℵ(χℵ(t)) is the grade
of membership of χℵ(t) in µiℵ. Evidently,

∑r
i=1 hi(χ(t)) = 1,

hi(χ(t)) ≥ 0.
For brevity of presentation, with ℘(t) = l, we employ

the substitution of u for u(t). The single summations are
represented as Glh =

∑r
i=1 hiGli where hi = hi(χ(t)), then

the system (1) is formulated as
ẋ(t)=Alhx(t)+Adlhx(t− d(t))+B1lhu+Dlhω(t),

z(t)=Clhx(t)+Cdlhx(t− d(t))+B2lhu+Elhω(t),

x(t)=φ(t), t ∈ [−d2, 0].

(5)

The asynchronous fuzzy controller with periodically varying
delay is presented as follows:

u = Kϑ(t)hx(t) +Kdϑ(t)hx(t− d(t)), (6)

where ϑ(t) represents the controller mode and takes values
from another finite set F = {1, 2, . . . , F}. It is subject to the
constraints imposed by the conditional probability (CP) matrix
Π2 = [∂l†], which satisfies

Pr {ϑ(t) = † |℘(t) = l} = ∂l†, (7)

with ∂l† ∈ [0, 1], and
∑F
†=1 ∂l† = 1.

For conciseness, Kϑ(t)h, Kdϑ(t)h are denoted as K†h, Kd†h,
respectively. The two summations are represented as Gl†hh =∑r
i=1

∑r
j=1 hihjGl†ij . Substituting (6) into (5), we derive the

subsequent closed-loop system: ẋ(t) = Al†hhx(t) +Adl†hhx(t− d(t)) +Dlhω(t),
z(t) = Cl†hhx(t) + Cdl†hhx(t− d(t)) + Elhω(t),
x(t) = φ(t), t ∈ [−d2, 0],

(8)

where Al†ij = Ali + B1liK†j , Adl†ij = Adli + B1liKd†j ,
Cl†ij = Cli +B2liK†j , Cdl†ij = Cdli +B2liKd†j .

Considering an LKF V (t) = xT (t)Uhx(t) that depends on
the MFs, where Uh =

∑r
j=1 hjUj . Since

∑r
j=1 ḣj = 0, we

have

U̇h =

r∑
j=1

ḣjUj =

r−1∑
k=1

ḣk(Uk − Ur), (9)

where k = 1, 2, . . . , r−1. Similar to [36], a switching method
is applied to ensure U̇h ≤ 0:{

if ḣk < 0, then Uk−Ur>0,

if ḣk ≥ 0, then Uk−Ur≤0.
(10)

Evidently, 2r−1 potential situations exist within equation (10).
Define Hλ̄ =

{
λ̄ : The potential permutations of ḣk

}
,

Cλ̄ = {λ̄ : The potential constraints of Uj} with λ̄ =
1, 2, . . . , 2r−1, then (10) can be presented as

if Hλ̄, then Cλ̄. (11)

Furthermore, in the situation where the designed matrices
within LKF are linked to Markov chain ℘(t) (V (t) =
xT (t)Ulhx(t)), each potential case described in (11) is trans-
formed into corresponding N modes, resulting in 2r−1 cases
per mode. Therefore, (11) can be expressed as follows:

if Hλ̄, then Cλ̄l. (12)

Lemma 1: [37] Let ξ̃ ∈ Rs, and x : [σ1, σ2] → Rn be
a continuous differentiable function. For a positive definite
matrix Z ∈ Rn×n, any matrix < ∈ R3n×s, the following
inequality holds:

−
∫ σ2

σ1

ẋT (α)Zẋ(α)dα ≤ 2ξTΠT<ξ̃+(σ2−σ1)ξ̃T<T Ẑ−1<ξ̃,
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where

ξ =col {x(σ1) , x(σ2),
1

σ2 − σ1

∫ σ2

σ1

x(α)dα,

1

(σ2 − σ1)
2

∫ σ2

σ1

∫ σ2

β

x(α)dαdβ

}
,

Π =col {ẽ2 − ẽ1, ẽ2 + ẽ1 − 2ẽ3, ẽ2 − ẽ1 + 6ẽ3 − 12ẽ4} ,
Ẑ =diag {Z, 3Z, 5Z} ,
ẽk =[0n×(k−1)n In 0n×(4−k)n], k = 1, 2, 3, 4.

Lemma 2: [38] For a positive definite matrix U ∈ Rn×n,
and a continuous differentiable function x in [σ1, σ2] → Rn,
the following inequality holds:

−
∫ σ2

σ1

∫ σ2

β

ẋT (α)Uẋ(α)dαdβ ≤ −2TT1 UT1 − 4TT2 UT2,

where

T1 =x(σ2)− 1

σ2 − σ1

∫ σ2

σ1

x(α)dα,

T2 =x(σ2) +
2

σ2 − σ1

∫ σ2

σ1

x(α)dα

− 6

(σ2 − σ1)
2

∫ σ2

σ1

∫ σ2

β

x(α)dαdβ.

III. MAIN RESULTS

To facilitate convenient analysis, the notations are intro-
duced as follows:
d1(t) = d(t)− d1, d2(t) = d2 − d(t), =̇(t) = 1− ḋ(t),

ρ1(t) = col {d1(t)(e2 − e4)η(t), d2(t)(e3 − e2)η(t) ,

d1(t)e10η(t), d2(t)e9η(t)} ,
ρ2(t) = col {η1(t), d1e11η(t), e9η(t), e10η(t)} ,
ρ3(t) = col {(e3 − e2)η(t), e9η(t)} ,
ρ4(t) = col {(e2 − e4)η(t), e10η(t)} ,
ρ5(t) = col {η1(t), d1e11η(t), e9η(t), e10η(t), d1e14η(t),

d1(t)e15η(t), d2(t)e16η(t)} , ρ6(t)=col {x(t), ẋ(t)} ,
η(t) = col {η1(t), η2(t), η3(t), η4(t), ω(t)} ,
η1(t) = col {x(t), x(t− d(t)), x(t− d1), x(t− d2)} ,
η2(t) = col {ẋ(t), ẋ(t− d(t)), ẋ(t− d1), ẋ(t− d2)} ,

η3(t) = col

{∫ t−d1

t−d(t)

x(α)dα ,

∫ t−d(t)

t−d2

x(α)dα,
1

d1

∫ t

t−d1

x(α)

×dα, 1

d1(t)

∫ t−d1

t−d(t)

x(α)dα,
1

d2(t)

∫ t−d(t)

t−d2

x(α)dα

}
,

η4(t) = col

{
1

d2
1

∫ t

t−d1

∫ t

β

x(α)dαdβ ,
1

d2
1(t)

∫ t−d1

t−d(t)

∫ t−d1

β

× x(α)dαdβ,
1

d2
2(t)

∫ t−d(t)

t−d2

∫ t−d(t)

β

x(α)dαdβ

}
,

Γ̄1 = col {d1(t)(e2−e4), d2(t)(e3−e2), d1(t)e10, d2(t)e9},
Γ̄2 = col {e1, e2, e3, e4, d1e11, e9, e10} ,
Γ̄3 = col {e3 − e2, e9} , Γ̄4 = col {e2 − e4, e10} ,
Γ̄5 = col

{
Γ̄2, d1e14, d1(t)e15, d2(t)e16

}
,

Γ̄6a = col {e1, e5} , Γ̄6b = col {e3, e7} , Γ̄6c = col {e2, e6} ,

Γ̄6d = col {e4, e8} ,C1 = d1(t)e12−e9,C2 = d2(t)e13−e10,

D1 = col {e3−e2, e3+e2−2e12, e3−e2+6e12−12e15} ,
D2 = col {e2−e4, e2+e4−2e13, e2−e4+6e13−12e16} ,
D3 = col {e1 − e11, e1 + 2e11 − 6e14} ,

Γ1 = col
{
ḋ(t)(e2 − e4) + d1(t)(=̇(t)e6 − e8),−ḋ(t)

× (e3 − e2) + d2(t)(e7 − =̇(t)e6), ḋ(t)e10 + d1(t)

× (=̇(t)e2 − e4), −ḋ(t)e9 + d2(t)(e3 − =̇(t)e2)
}
,

Γ2 = col
{
e5, =̇(t)e6, e7, e8, e1 − e3, e3 − =̇(t)e2, =̇(t)e2

−e4} ,Γ3 = col
{
e7 − =̇(t)e6, e3 − =̇(t)e2

}
,

Γ4 = col
{
=̇(t)e6−e8, =̇(t)e2−e4

}
,Γ5 = col {Γ2, e1

−e11, e3−=̇(t)e12−ḋ(t)e15, =̇(t)e2−e13+ḋ(t)e16

}
,

ez =
[
0n×(z−1)n In 0n×((16−z)n+f)

]
,

e17 = [0f×16n If ] , z = 1, 2, . . . , 16.

Theorem 1: For given scalars κ ∈ [0, 1), dd ≥ 0, and
γ > 0, the system (8) with known TPs is stochastically stable
with a prescribed H∞ performance level γ, if there exist
positive definite matrices Slj ∈ R10n×10n, R1lj ∈ R2n×2n,
R2j ∈ R2n×2n, R3j ∈ R2n×2n, Mj ∈ R2n×2n, Zj ∈ Rn×n,
Uj ∈ Rn×n, and any matrices P=d ∈ R4n×7n, Q=dj ∈ Rn×n,
Jd,Pd ∈ R3n×(16n+f), Gd,Fd ∈ Rn×(16n+f), Jr{s}d ,P

r{s}
d ∈

R3n×16n, J
r{17}
d ,P

r{17}
d ∈ R3n×f , G

{s}
d ,F

{s}
d ∈ Rn×16n,

G
{17}
d ,F

{17}
d ∈ Rn×f , W1,W2,W3 ∈ Rn×n, such that (12)

and the following inequalities hold for l ∈ N, † ∈ F,
= ∈ {I,D}, d = 1, 2, r = 1, 2, 3, s = 1, 2, . . . , 16

N∑
o=1

πloR1oj −Mj ≤ 0, (13)

{
ΨI
l†ii(dd, ḋ(t))<0, ḋ(t) ∈ [0, κ],

ΨI
l†ij(dd, ḋ(t))+ΨI

l†ji(dd, ḋ(t)) < 0, ḋ(t) ∈ [0, κ],
(14)

{
ΨD
l†ii(dd, ḋ(t))<0, ḋ(t) ∈ [−κ, 0],

ΨD
l†ij(dd, ḋ(t))+ΨD

l†ji(dd, ḋ(t)) < 0, ḋ(t) ∈ [−κ, 0],
(15)

where

ΨI
l†ij(d1, ḋ(t))=

 ΞIl†ij(d1, ḋ(t))
√
d2 − d1J

T
2 ΥT

l†ij
∗ −ẐI2j(ḋ(t)) 0
∗ ∗ −I

 ,
ΨI
l†ij(d2, ḋ(t))=

 ΞIl†ij(d2, ḋ(t))
√
d2 − d1J

T
1 ΥT

l†ij
∗ −ẐI1j(ḋ(t)) 0
∗ ∗ −I

 ,
ΨD
l†ij(d1, ḋ(t))=

 ΞDl†ij(d1, ḋ(t))
√
d2 − d1P

T
2 ΥT

l†ij
∗ −ẐD2j(ḋ(t)) 0
∗ ∗ −I

 ,
ΨD
l†ij(d2, ḋ(t))=

 ΞDl†ij(d2, ḋ(t))
√
d2 − d1P

T
1 ΥT

l†ij
∗ −ẐD1j(ḋ(t)) 0
∗ ∗ −I

 ,
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ΞIl†ij(d(t), ḋ(t)) = Ξ̄Cl†ij(d(t), ḋ(t)) + Ξ̄Ij (d(t), ḋ(t)),

ΞDl†ij(d(t), ḋ(t)) = Ξ̄Cl†ij(d(t), ḋ(t)) + Ξ̄Dj (d(t), ḋ(t)),

Ξ̄Cl†ij(d(t), ḋ(t)) = sym(Γ̄T5 SljΓ5 + W0
T Āl†ij) + Γ̄T6a(R1lj

+ d1Mj)Γ̄6a + Γ̄T6b(R2j −R1lj)Γ̄6b + =̇(t)Γ̄T6c(R3j

−R2j)Γ̄6c − Γ̄T6dR3jΓ̄6d + eT5 (
1

2
d2

1Uj + (d2 − d1)Zj)

× e5 + Γ̄T5

N∑
o=1

πloSojΓ̄5 −DT
3 ÛjD3 − γ2eT17e17,

Ξ̄Ij (d(t), ḋ(t)) = sym(ΓT1 PI1Γ̄2 + Γ̄T1 PI1Γ2 + ΓT3 PI2Γ̄4

+ Γ̄T3 PI2Γ4 + JT1 D1 + JT2 D2 + GT1 C1 + GT2 C2)

+ d2(t)(eT7 QI1je7 − =̇(t)eT6 QI1je6)

+ d1(t)(=̇(t)eT6 QI2je6 − eT8 QI2je8),

Ξ̄Dj (d(t), ḋ(t)) = sym(ΓT1 PD1Γ̄2 + Γ̄T1 PD1Γ2 + ΓT3 PD2Γ̄4

+ Γ̄T3 PD2Γ4 + PT
1 D1 + PT

2 D2 + FT1 C1 + FT2 C2)

+ d2(t)(eT7 QD1je7 − =̇(t)eT6 QD1je6)

+ d1(t)(=̇(t)eT6 QD2je6 − eT8 QD2je8),

Ẑ=dj(ḋ(t))=diag
{
Z=dj(ḋ(t)), 3Z=dj(ḋ(t)), 5Z=dj(ḋ(t))

}
,

Z=1j(ḋ(t))= Zj + ḋ(t)Q=1j , Z=2j(ḋ(t)) = Zj − ḋ(t)Q=2j ,

Āl†ij =

F∑
†=1

∂l†Al†ije1 +

F∑
†=1

∂l†Adl†ije2 +Dlie17 − e5,

Al†ij = Ali +B1liK†j , Adl†ij = Adli +B1liKd†j ,

Υl†ij = col
{√

∂l1zl1ij ,
√
∂l2zl2ij , . . . ,

√
∂lF zlF ij

}
,

zl†ij = (Cli +B2liK†j)e1 + (Cdli +B2liKd†j)e2 + Elie17,

W0 = WT
1 e1 + WT

2 e2 + WT
3 e5, Ûj = diag {2Uj , 4Uj} ,

Jd = [ J
r{s}
d J

r{17}
d ],Pd = [ P

r{s}
d P

r{17}
d ],

Gd = [ G
{s}
d G

{17}
d ],Fd = [ F

{s}
d F

{17}
d ].

Proof: Similar to the approach described in [29], it is
assumed that for t2m−1 < t2m, m = {1, 2, 3, . . .}, the values
d(t2m−1) and d(t2m) represent the extreme points of the
delay function d(t). Specifically, d(t2m−1) = d1 corresponds
to the minimum value, while d(t2m) = d2 represents the
maximum value. This assumption implies that d(t) exhibit-
s a monotonically increasing behavior within the intervals
t ∈ [t2m−1, t2m] and a monotonically decreasing behavior
within the intervals t ∈ [t2m, t2m+1]. Consequently, it can
be concluded that ḋ(t) ∈ [0, κ] for t ∈ [t2m−1, t2m] and
ḋ(t) ∈ [−κ, 0] for t ∈ [t2m, t2m+1]. Then, two separate
looped functionals are constructed for these two categories
of intervals. When t ∈ [t2m−1, t2m), a looped functional is
defined as:

VI(t) =2ρT1 (t)PI1ρ2(t) + 2ρT3 (t)PI2ρ4(t) + (d(t2m)

− d(t))

∫ t−d(t2m−1)

t−d(t)

ẋT (α)QI1hẋ(α)dα+ (d(t)

− d(t2m−1))

∫ t−d(t)

t−d(t2m)

ẋT (α)QI2hẋ(α)dα.

In the other case, when t ∈ [t2m, t2m+1), a looped functional

is defined as:

VD(t) =2ρT1 (t)PD1ρ2(t) + 2ρT3 (t)PD2ρ4(t) + (d(t2m)

− d(t))

∫ t−d(t2m+1)

t−d(t)

ẋT (α)QD1hẋ(α)dα+ (d(t)

− d(t2m+1))

∫ t−d(t)

t−d(t2m)

ẋT (α)QD2hẋ(α)dα.

Utilizing the proposed looped functionals and accounting for
the characteristics of the MFs, we construct the following
MDI-MF-LKF:

V (t) =

{
VC(t) + VI(t), t ∈ [t2m−1, t2m),
VC(t) + VD(t), t ∈ [t2m, t2m+1),

(16)

where

VC(t) =ρT5 (t)Slhρ5(t) +

∫ t

t−d1

ρT6 (α)R1lhρ6(α)dα

+

∫ t−d1

t−d(t)

ρT6 (α)R2hρ6(α)dα+

∫ t−d(t)

t−d2

ρT6 (α)

×R3hρ6(α)dα+

∫ 0

−d1

∫ t

t+β

ρT6 (α)Mhρ6(α)dαdβ

+

∫ −d1

−d2

∫ t

t+β

ẋT (α)Zhẋ(α)dαdβ

+

∫ t

t−d1

∫ t

γ

∫ t

β

ẋT (α)Uhẋ(α)dαdβdγ.

It should be noted that VC(t) ≥ 0, VI(t2m−1) = VI(t2m) =
VD(t2m) = VD(t2m+1) = 0. As a result, the MDI-MF-
LKF (16) is continuous in time and satisfies V (t2m−1) ≥ 0,
V (t2m) ≥ 0.

To begin, we consider the case when t ∈ [t2m−1, t2m),
where ḋ(t) ∈ [0, κ]. Then, we have

LV (t) =

2∑
d=1

(LV d
I (t)+LV d

C (t)), t ∈ [t2m−1, t2m), (17)

where

LV 1
I (t) = ηT (t)

{
2(ΓT1 PI1Γ̄2 + Γ̄T1 PI1Γ2 + ΓT3 PI2Γ̄4

+ Γ̄T3 PI2Γ4) + d2(t)(eT7 QI1he7 − =̇(t)

× eT6 QI1he6) + d1(t)(=̇(t)eT6 QI2he6

−eT8 QI2he8)
}
η(t) + H1 + H2,

LV 2
I (t) = d2(t)

∫ t−d1

t−d(t)

ẋT (α)Q̇I1hẋ(α)dα

+ d1(t)

∫ t−d(t)

t−d2

ẋT (α)Q̇I2hẋ(α)dα,

LV 1
C(t) = ηT (t)

{
2Γ̄T5 SlhΓ5 + Γ̄T6a(R1lh + d1Mh)Γ̄6a + Γ̄T6b

× (R2h −R1lh)Γ̄6b + =̇(t)Γ̄T6c(R3h −R2h)Γ̄6c

− Γ̄T6dR3hΓ̄6d + eT5 (
1

2
d2

1Uh + (d2 − d1)Zh)e5

+Γ̄T5

N∑
o=1

πloSohΓ̄5

}
η(t) +

∫ t

t−d1

ρT6 (α)(

N∑
o=1

πlo

×R1oh −Mh)ρ6(α)dα+ H3 + H4,
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LV 2
C(t) =

r∑
j=1

ḣj(ρ
T
5 (t)Sljρ5(t) +

∫ t

t−d1

ρT6 (α)R1ljρ6(α)dα)

+

∫ t−d1

t−d(t)

ρT6 (α)Ṙ2hρ6(α)dα+

∫ t−d(t)

t−d2

ρT6 (α)

× Ṙ3hρ6(α)dα+

∫ 0

−d1

∫ t

t+β

ρT6 (α)Ṁhρ6(α)dαdβ

+

∫ −d1

−d2

∫ t

t+β

ẋT (α)Żhẋ(α)dαdβ

+

∫ t

t−d1

∫ t

γ

∫ t

β

ẋT (α)U̇hẋ(α)dαdβdγ,

with

H1 =− ḋ(t)

∫ t−d1

t−d(t)

ẋT (α)QI1hẋ(α)dα,

H2 = ḋ(t)

∫ t−d(t)

t−d2

ẋT (α)QI2hẋ(α)dα,

H3 =−
∫ t−d1

t−d2

ẋT (α)Zhẋ(α)dα,

H4 =−
∫ t

t−d1

∫ t

β

ẋT (α)Uhẋ(α)dαdβ.

According to Lemma 1 and Lemma 2, it follows that:

3∑
y=1

Hy ≤ ηT (t)
{
sym(JT1 D1 + JT2 D2) + d1(t)JT1

× Ẑ−1
I1h(ḋ(t))J1 +d2(t)JT2 Ẑ

−1
I2h(ḋ(t))J2

}
η(t),

H4 ≤− ηT (t)(DT
3 ÛhD3)η(t),

with ẐIdh(ḋ(t))=diag
{
ZIdh(ḋ(t)),3ZIdh(ḋ(t)),5ZIdh(ḋ(t))

}
,

ZI1h(ḋ(t))=Zh+ḋ(t)QI1h>0, ZI2h(ḋ(t))=Zh−ḋ(t)QI2h>
0. Additionally, for any invertible matrix Wr ∈ Rn×n,
Gd ∈ Rn×(16n+f), d = 1, 2, r = 1, 2, 3, based on system (8)
and (d1(t)e12 − e9)η(t) = 0, (d2(t)e13 − e10)η(t) = 0, it
follows

0 = ηT (t)

r∑
i=1

r∑
j=1

hihjsym(W0
T Āl†ij)η(t), (18)

0 = 2ηT (t)
{
GT1 C1 + GT2 C2

}
η(t). (19)

Combining (12), (13), (17)-(19), we can obtain

LV (t) ≤ηT (t)

r∑
i=1

r∑
j=1

hihj(Ξ
I
l†ij(d(t), ḋ(t))

+ γ2eT17e17 + d1(t)JT1 Ẑ
−1
I1j(ḋ(t))J1

+ d2(t)JT2 Ẑ
−1
I2j(ḋ(t))J2)η(t).

(20)

The following H∞ performance function J is considered:

J ≤
∫ ∞

0

ηT (t)

r∑
i=1

r∑
j=1

hihj(Zl†ij − γ2eT17e17)η(t)

+ LV (t)dt,

(21)

with Zl†ij =
∑F
†=1 ∂l†z

T
l†ijzl†ij .

By employing the Schur complement, it can be deduced
from (14) that J < 0. Further, when ω(t) = 0, it becomes
evident that LV (t) ≤ −ε1x

T (t)x(t), with ε1 > 0. Similarly,
for the case where t ∈ [t2m, t2m+1) and ḋ(t) ∈ [−κ, 0],
utilizing a comparable procedure, we can get

LV (t) ≤ηT (t)

r∑
i=1

r∑
j=1

hihj(Ξ
D
l†ij(d(t), ḋ(t))

+ γ2eT17e17 + d1(t)PT
1 Ẑ
−1
D1j(ḋ(t))P1

+ d2(t)PT
2 Ẑ
−1
D2j(ḋ(t))P2)η(t).

(22)

Similarly, it can be deduced from (15) that J < 0. Moreover,
when ω(t) = 0, we can easily obtain LV (t) ≤ −ε2x

T (t)x(t),
with ε2 > 0. Therefore, it is concluded that LV (t) ≤
−εvxT (t)x(t) for t ∈ [t0,∞), where εv = min {ε1, ε2}.
Considering that V (t2m−1) ≥ V (t) ≥ V (t2m+1) ≥ 0 for
t ∈ [t2m−1, t2m+1), we can conclude that V (t) is bounded
and satisfies V (t) ≥ 0 for t ∈ [t0,∞). This completes the
proof. �

Remark 2: The MDI-MF-LKF (16) constructed in this pa-
per introduces two distinct looped functionals to handle delays
on monotonically increasing intervals and monotonically de-
creasing intervals separately. For t ∈ [t2m−1, t2m), based on
V (t2m−1) ≥ 0, V (t2m) ≥ 0, and LV (t) ≤ −εvxT (t)x(t), it
implies that V (t2m−1) ≥ V (t) ≥ V (t2m) ≥ 0. Similarly,
for t ∈ [t2m, t2m+1), the inequality V (t2m) ≥ V (t) ≥
V (t2m+1) ≥ 0 holds. Consequently, the condition V (t) ≥ 0
can be ensured without the requirement of VI(t) ≥ 0 and
VD(t) ≥ 0, resulting in less conservatism compared to the
traditional LKF [8], [26]–[28]. In addition, the introduction of
these two separate looped functionals allows for a more flex-
ible treatment of delay on different intervals, thus enhancing
the accuracy of the analysis.

Remark 3: Unlike the LKF proposed in [29], the MDI-MF-
LKF constructed in this article depends on MFs, providing
a comprehensive framework for analyzing FMJSs. And the
switching technique based on switching rule (12) is employed
to ensure LV 2

I (t) ≤ 0, LV 2
D(t) ≤ 0, and LV 2

C(t) ≤ 0.
Theorem 2: For given scalars κ ∈ [0, 1), dd ≥ 0, and

γ > 0, the system (8) with known TPs is stochastically stable
with a prescribed H∞ performance level γ, if there exist
positive definite matrices S̃lj ∈ R10n×10n, R̃1lj ∈ R2n×2n,
R̃2j ∈ R2n×2n, R̃3j ∈ R2n×2n, M̃j ∈ R2n×2n, Z̃j ∈ Rn×n,
Ũj ∈ Rn×n, and any matrices P̃=d ∈ R4n×7n, Q̃=dj ∈ Rn×n,
J̃d, P̃d ∈ R3n×(16n+f), G̃d, F̃d ∈ Rn×(16n+f), W ∈ Rn×n,
Y†j ,Yd†j ∈ Rs×n, such that (12) and the following inequali-
ties hold for l ∈ N, † ∈ F, = ∈ {I,D}, d = 1, 2, r = 1, 2, 3,
s = 1, 2, . . . , 16

N∑
o=1

πloR̃1oj − M̃j ≤ 0, (23)

{
Ψ̃I
l†ii(dd, ḋ(t))<0, ḋ(t) ∈ [0, κ],

Ψ̃I
l†ij(dd, ḋ(t))+Ψ̃I

l†ji(dd, ḋ(t)) < 0, ḋ(t) ∈ [0, κ],
(24)

{
Ψ̃D
l†ii(dd, ḋ(t))<0, ḋ(t) ∈ [−κ, 0],

Ψ̃D
l†ij(dd, ḋ(t))+Ψ̃D

l†ji(dd, ḋ(t)) < 0, ḋ(t) ∈ [−κ, 0],
(25)
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where

Ψ̃I
l†ij(d1, ḋ(t))=

 Ξ̃Il†ij(d1, ḋ(t))
√
d2 − d1J̃

T
2 Υ̃T

l†ij
∗ −Z̄I2j(ḋ(t)) 0
∗ ∗ −I

 ,
Ψ̃I
l†ij(d2, ḋ(t))=

 Ξ̃Il†ij(d2, ḋ(t))
√
d2 − d1J̃

T
1 Υ̃T

l†ij
∗ −Z̄I1j(ḋ(t)) 0
∗ ∗ −I

 ,
Ψ̃D
l†ij(d1, ḋ(t))=

 Ξ̃Dl†ij(d1, ḋ(t))
√
d2 − d1P̃

T
2 Υ̃T

l†ij
∗ −Z̄D2j(ḋ(t)) 0
∗ ∗ −I

 ,
Ψ̃D
l†ij(d2, ḋ(t))=

 Ξ̃Dl†ij(d2, ḋ(t))
√
d2 − d1P̃

T
1 Υ̃T

l†ij
∗ −Z̄D1j(ḋ(t)) 0
∗ ∗ −I

 ,
Ξ̃Il†ij(d(t), ḋ(t)) = Ξ̂Cl†ij(d(t), ḋ(t)) + Ξ̂Ij (d(t), ḋ(t)),

Ξ̃Dl†ij(d(t), ḋ(t)) = Ξ̂Cl†ij(d(t), ḋ(t)) + Ξ̂Dj (d(t), ḋ(t)),

Ξ̂Cl†ij(d(t), ḋ(t)) = sym(Γ̄T5 S̃ljΓ5 + W̃T
0 Ãl†ij) + Γ̄T6a(R̃1lj

+ d1M̃j)Γ̄6a + Γ̄T6b(R̃2j − R̃1lj)Γ̄6b + =̇(t)Γ̄T6c(R̃3j

− R̃2j)Γ̄6c − Γ̄T6dR̃3jΓ̄6d + eT5 (
1

2
d2

1Ũj + (d2 − d1)Z̃j)

× e5 + Γ̄T5

N∑
o=1

πloS̃ojΓ̄5 −DT
3 ŪjD3 − γ2eT17e17,

Ξ̂Ij (d(t), ḋ(t)) = sym(ΓT1 P̃I1Γ̄2 + Γ̄T1 P̃I1Γ2 + ΓT3 P̃I2Γ̄4

+ Γ̄T3 P̃I2Γ4 + J̃T1 D1 + J̃T2 D2 + G̃T1 C1 + G̃T2 C2)

+ d2(t)(eT7 Q̃I1je7 − =̇(t)eT6 Q̃I1je6)

+ d1(t)(=̇(t)eT6 Q̃I2je6 − eT8 Q̃I2je8),

Ξ̂Dj (d(t), ḋ(t)) = sym(ΓT1 P̃D1Γ̄2 + Γ̄T1 P̃D1Γ2 + ΓT3 P̃D2Γ̄4

+ Γ̄T3 P̃D2Γ4 + P̃T
1 D1 + P̃T

2 D2 + F̃T1 C1 + F̃T2 C2)

+ d2(t)(eT7 Q̃D1je7 − =̇(t)eT6 Q̃D1je6)

+ d1(t)(=̇(t)eT6 Q̃D2je6 − eT8 Q̃D2je8),

Z̄=dj(ḋ(t))=diag
{
Z̃=dj(ḋ(t)), 3Z̃=dj(ḋ(t)), 5Z̃=dj(ḋ(t))

}
,

Z̃=1j(ḋ(t)) = Z̃j + ḋ(t)Q̃=1j , Z̃=2j(ḋ(t)) = Z̃j − ḋ(t)Q̃=2j ,

Υ̃l†ij = col
{√

∂l1z̃l1ij ,
√
∂l2z̃l2ij , . . . ,

√
∂lF z̃lF ij

}
,

z̃l†ij = CY
l†ije1 + CdYl†ije2 + Elie17, W̃0 = e1 + λ1e2 + λ2e5,

CY
l†ij = CliW

T +B2liY†j , C
dY
l†ij = CdliW

T +B2liYd†j ,

Ãl†ij = AY
l†ije1 +AdYl†ije2 +Dlie17 −WT e5,

AY
l†ij = AliW

T +

F∑
†=1

∂l†B1liY†j , Ūj = diag
{

2Ũj , 4Ũj

}
,

AdYl†ij = AdliW
T +

F∑
†=1

∂l†B1liYd†j , Ī = diag

F︷ ︸︸ ︷
{I, I, . . . , I},

and the controller gains are

K†j = Y†jW
−T ,Kd†j = Yd†jW

−T . (26)

Proof: To reduce the number of parameters, let W2 =

λ1W1, W3 = λ2W1, and W−1
1 = W. Furthermore, define

U1 = diag {W,W} ,U2 = diag {W,W,W} ,
U3 = diag {W,W,W,W} ,U4 = diag {U2,U3} ,
U5 = diag {U2,U4} ,U6 = diag {U1,U3,U5} ,
U7 = diag

{
U6, I,U2, Ī

}
.

Based on Schur complement, pre- and post-multiplying (13)-
(15) by U1, U7, U7 and their transpositions respectively and
defining

J̃d = [ U2J
r{s}
d UT6 U2J

r{17}
d I ],

P̃d = [ U2P
r{s}
d UT6 U2P

r{17}
d I ],

G̃d = [ WG
{s}
d UT6 WG

{17}
d I ],

F̃d = [ WF
{s}
d UT6 WF

{17}
d I ], Q̃=dj = WQ=djW

T ,

S̃lj = U5SljU
T
5 , R̃1lj = U1R1ljU

T
1 , R̃2j = U1R2jU

T
1 ,

R̃3j = U1R3jU
T
1 , M̃j = U1MjU

T
1 , Ũj = WUjW

T ,

Z̃j = WZjW
T , P̃=1 = U3P=1U

T
4 , P̃=2 = U1P=2U

T
1 ,

we have (23)-(25). �
Remark 4: To enhance expression clarity, it is assumed

that each period of the delay consists of a single monotone
increasing interval and a single monotone decreasing interval.
It is worth noting that the derived condition from the proof
process only requires the delay to exhibit repetitive variations
between extreme values, which can occur multiple times
within a period. Thus, the proposed approach can be extended
to accommodate cases where there are multiple monotonically
increasing intervals and monotonically decreasing intervals in
each period.

Remark 5: In this paper, an asynchronous switching con-
troller is proposed based on (12), which can be expressed as
follows:

u
λ̄

= K
λ̄

†hx(t) +K
λ̄

d†hx(t− d(t)), (27)

where Kλ̄

†h =
∑r
j=1hjK

λ̄

†j , Kλ̄

d†h =
∑r
j=1hjK

λ̄

d†j , λ̄ =

1, 2, . . . , 2r−1. Unlike the synchronous controller proposed
in existing works [30]–[32], the controller (27) presented
in this paper is general and can be transformed into some
special cases under specific conditions. On the other hand,
according to switching rule (12), the proposed controller can
be dynamically switched based on differentHλ̄. If the matrices
in LKF are unrelated to the MFs (i.e., QI1, QI2, QD1, QD2,
Sl, R1l, R2, R3, M , Z, U ), the controller would simplify into
the non-switching version proposed in the existing works.

Based on Theorem 2, the subsequent corollary presents a
method for designing an asynchronous controller with gener-
ally incomplete TPs.

Corollary 1: For given scalars κ ∈ [0, 1), dd ≥ 0, flo ≥ 0,
and γ > 0, the system (8) with generally incomplete TPs is s-
tochastically stable with a prescribed H∞ performance level γ,
if there exist positive definite matrices S̃lj ∈ R10n×10n, R̃1lj ∈
R2n×2n, R̃2j ∈ R2n×2n, R̃3j ∈ R2n×2n, M̃j ∈ R2n×2n,
Z̃j ∈ Rn×n, Ũj ∈ Rn×n, Flo ∈ R2n×2n, Wlo ∈ R10n×10n,
and any matrices P̃Id, P̃Dd ∈ R4n×7n, Q̃Idj , Q̃Ddj ∈ Rn×n,
J̃d, P̃d ∈ R3n×(16n+f), G̃d, F̃d ∈ Rn×(16n+f), W ∈ Rn×n,
Y†j ,Yd†j ∈ Rs×n, Ll ∈ R2n×2n, Xl ∈ R10n×10n, such that
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(12) and the following inequalities hold for l ∈ N, † ∈ F,
= ∈ {I,D}, d = 1, 2,

Θloj R̃11j − Ll · · · R̃1uj − Ll
∗ −Fl1 · · · 0

∗ ∗
. . .

...
∗ ∗ ∗ −Flu

 < 0, (28)

{
Ψ̆I
l†ii(dd, ḋ(t))<0, ḋ(t) ∈ [0, κ],

Ψ̆I
l†ij(dd, ḋ(t))+Ψ̆I

l†ji(dd, ḋ(t)) < 0, ḋ(t) ∈ [0, κ],
(29)

{
Ψ̆D
l†ii(dd, ḋ(t))<0, ḋ(t) ∈ [−κ, 0],

Ψ̆D
l†ij(dd, ḋ(t))+Ψ̆D

l†ji(dd, ḋ(t)) < 0, ḋ(t) ∈ [−κ, 0],
(30)

S̃oj − Xl < 0, R̃1oj − Ll < 0,∀o ∈ Nluk, l ∈ Nlk, (31)

S̃oj − Xl > 0, R̃1oj − Ll > 0,∀o ∈ Nluk, l ∈ Nluk, l = o,

S̃oj − Xl < 0, R̃1oj − Ll < 0,∀o ∈ Nluk, l ∈ Nluk, l 6= o,
(32)

where

Ψ̆=l†ij(d(t), ḋ(t))=


~Ψ=l†ij(d(t), ḋ(t)) X̄l1j · · · X̄luj

∗ −Wl1 · · · 0

∗ ∗
. . .

...
∗ ∗ ∗ −Wlu

,

~ΨI
l†ij(d1, ḋ(t))=

 ~ΞIl†ij(d1, ḋ(t))
√
d2 − d1J̃

T
2 Υ̃T

l†ij
∗ −Z̄I2j(ḋ(t)) 0
∗ ∗ −I

 ,
~ΨI
l†ij(d2, ḋ(t))=

 ~ΞIl†ij(d2, ḋ(t))
√
d2 − d1J̃

T
1 Υ̃T

l†ij
∗ −Z̄I1j(ḋ(t)) 0
∗ ∗ −I

 ,
~ΨD
l†ij(d1, ḋ(t))=

 ~ΞDl†ij(d1, ḋ(t))
√
d2 − d1P̃

T
2 Υ̃T

l†ij
∗ −Z̄D2j(ḋ(t)) 0
∗ ∗ −I

 ,
~ΨD
l†ij(d2, ḋ(t))=

 ~ΞDl†ij(d2, ḋ(t))
√
d2 − d1P̃

T
1 Υ̃T

l†ij
∗ −Z̄D1j(ḋ(t)) 0
∗ ∗ −I

 ,
~ΞIl†ij(d(t), ḋ(t)) = ~ΞCl†ij(d(t), ḋ(t)) + Ξ̂Ij (d(t), ḋ(t)),

~ΞDl†ij(d(t), ḋ(t)) = ~ΞCl†ij(d(t), ḋ(t)) + Ξ̂Dj (d(t), ḋ(t)),

~ΞCl†ij(d(t), ḋ(t)) = sym(Γ̄T5 S̃ljΓ5 + W̃T
0 Ãl†ij) + Γ̄T6a(R̃1lj

+ d1M̃j)Γ̄6a + Γ̄T6b(R̃2j − R̃1lj)Γ̄6b + =̇(t)Γ̄T6c(R̃3j

− R̃2j)Γ̄6c − Γ̄T6dR̃3jΓ̄6d + eT5 (
1

2
d2

1Ũj + (d2 − d1)Z̃j)

× e5 + Γ̄T5
∑
o∈Nlk

[π̂lo(S̃oj − Xl) +
1

4
(flo)

2Wlo]Γ̄5

−DT
3 ŪjD3 − γ2eT17e17,

X̄l1j =
[

(Γ̄T5 (S̃1j − Xl))
T

0 0

]T
,

X̄luj =
[

(Γ̄T5 (S̃uj − Xl))
T

0 0

]T
,

Θloj =
∑
o∈Nlk

[π̂lo(R̃1oj − Ll) +
1

4
(flo)

2Flo]− M̃j .

Proof: Rewrite
∑N
o=1 πloS̃oj in Ξ̂Cl†ij(d(t), ḋ(t)) by taking

into account the condition
∑N
o=1 πlo = 0, which yields:

N∑
o=1

πloS̃oj =
∑
o∈Nlk

πlo(S̃oj − Xl) +
∑
o∈Nluk

πlo(S̃oj − Xl).

For πlo = π̂lo + ∆πlo, applying Lemma 2 in [39], it follows

N∑
o=1

πloS̃oj ≤
∑
o∈Nluk

πlo(S̃oj − Xl) +
∑
o∈Nlk

[π̂lo

× (S̃oj − Xl) +
1

4
(flo)

2Wlo

+ (S̃oj − Xl)W−1
lo (S̃oj − Xl)

T ].

(33)

Case 1: l ∈ Nlk
It is evident that

∑
o∈Nlk

πlo ≤ 0. By using Schur complement

and based on (33), one can obtain (29)-(31).
Case 2: l ∈ Nluk
In this case, we have πll < 0, πlo > 0(∀o ∈ Nluk, o 6= l).

By using Schur complement and based on (33), we can get
(29), (30), and (32).

By employing the same method to address (23), we can
deduce (28), (31), and (32).

IV. NUMERICAL EXAMPLE

Example 1: In this example, a tunnel diode circuit system
(illustrated in Fig. 1) is considered [9], whose dynamic equa-
tion is given by{

Cv̇C(t) =− 0.01vC(t)− αiv3
C(t) + iL(t),

Li̇L(t) =− vC(t)−RiL(t) + u(t) + 0.1ω(t),

where αi is the mode-dependent characteristic parameter, with
α1 = 0.01 and α2 = 0.02. Furthermore, the TP matrix repre-
senting the relationship between the two modes is presented
as follows:

Π1 =

[
−0.4 + ∆π11 ?
0.6 + ∆π21 ?

]
,

where ∆π11 ∈ [−0.06, 0.06], ∆π21 ∈ [−0.08, 0.08]. Consider
the following controlled output:

z(t) = J

[
vC(t)
iL(t)

]
+ 0.1ω(t).

Let x1(t) = vC(t), x2(t) = iL(t). Assuming that C =
100mF, L = 1H, R = 10Ω, J = [ 1 0 ], and |x1(t)| ≤ 3,
the circuit system can be described by the FMJSs with the
following parameters:

A11 =

[
−0.1 10
−1 −10

]
, A12 =

[
−1 10
−1 −10

]
,

A21 =

[
−0.1 10
−1 −10

]
, A22 =

[
−1.9 10
−1 −10

]
,

B1li =

[
0
1

]
, Dli =

[
0

0.1

]
, Cli =

[
1 0

]
, Eli = 0.1,

h1 = 1− x2
1(t)

9
, h2 = 1− h1.
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Fig. 1. Tunnel diode circuit (Example 1).

TABLE II
CONDITIONAL PROBABILITY Π2 (EXAMPLE 1)

case I case II case III

Π2

[
1 0
0 1

] [
1 0

0.5 0.5

] [
0.3 0.7
0.5 0.5

]

TABLE III
OPTIMAL γ FOR DIFFERENT d2 AND CONDITIONAL PROBABILITIES

(EXAMPLE 1)

d2 case I case II case III
0.3 0.1000 0.1002 0.1003
0.4 0.1000 0.1004 0.1010
0.5 0.1000 0.1008 0.1015
0.6 0.1001 0.1008 0.1020

To address the problem of asynchronous control in FMJSs
(1), the delay function is defined as d(t) = d2+d1

2 +
d2−d1

2 cos 2κ
d2−d1

t. And the following additional matrices are
introduced:

Ad11 =

[
−0.1 2

1 −0.2

]
, Ad12 =

[
2 0.1

0.1 −3

]
,

Ad21 =

[
1 0.1

0.1 −2

]
, Ad22 =

[
0.1 0.1
0.2 0

]
,

Cd11 =
[

0.4 0.1
]
, Cd12 =

[
0.2 0.1

]
,

Cd21 =
[

0.2 0.1
]
, Cd22 =

[
0 0.4

]
,

B211 = B212 = B221 = B222 = 0.1.

The associated constraints are: if ḣ1 < 0, it has

T1 =

{
QId1>QId2, QDd1>QDd2, Sd1>Sd2, R1d1>R1d2,

R21>R22, R31>R32,M1>M2, Z1>Z2, U1>U2,

if ḣ1 ≥ 0, it has

T2 =

{
QId1≤QId2, QDd1≤QDd2, Sd1≤Sd2, R1d1≤R1d2,

R21≤R22, R31≤R32,M1≤M2, Z1≤Z2, U1≤U2,

with d = 1, 2.
In order to analyze the relationship between the optimal

H∞ performance, maximum delay bound, and different asyn-
chronous degrees, three distinct cases, including synchronous,
partially asynchronous, and completely asynchronous, are il-
lustrated in Table II. Letting d1 = 0.2, κ = 0.2, λ1 = λ2 = 1,

0 2 4 6 8 10
-3

-2

-1

0

1

0 2 4 6 8 10
 

0.2

0.3

0.4

0.5

0.6

Fig. 2. Trajectories of system state and periodically varying delay d(t)
(Example 1).

and keeping other parameters unchanged, the optimal index
γ for different values of d2 and CP matrices is presented in
Table III. For example, in case III, d2 = 0.6, the optimal
index is γ1 = 0.1020 under T1 and γ2 = 0.1019 under T2.
Thus, the final optimal H∞ performance index is γmin =
max {γ1, γ2} = 0.1020. From Table III, we can easily find out
that the optimal H∞ performance index γ exhibits an upward
trend with increasing values of d2 or intensifying asynchrony.
This indirectly indicates that it is necessary and reasonable to
consider the asynchronous phenomenon.

In particular, in case III, with d2 = 0.6, γ = 1, the
corresponding controller matrices are

K1
11 =

[
−3.843 −10.950

]
,K1

12 =
[
−3.397 −10.859

]
,

K1
21 =

[
−4.021 −9.795

]
,K1

22 =
[
−3.694 −9.134

]
,

K1
d11 =

[
2.163 8.552

]
,K1

d12 =
[

0.934 −6.133
]
,

K1
d21 =

[
−1.318 −2.271

]
,K1

d22 =
[
−0.092 8.699

]
,

K2
11 =

[
−3.701 −6.506

]
,K2

12 =
[
−2.765 −7.153

]
,

K2
21 =

[
−2.760 −6.133

]
,K2

22 =
[
−3.462 −6.186

]
,

K2
d11 =

[
2.207 8.718

]
,K2

d12 =
[

1.133 −6.342
]
,

K2
d21 =

[
−1.336 −2.282

]
,K2

d22 =
[
−0.199 8.561

]
.

Given d(t) = 0.4 + 0.2 cos(t), ω(t) = e−0.3t cos(t)
with bounded energy (

∫ t
0
ωT (t)ω(t)dt ≤$ = 5

3 ), under initial
conditions x(0) =

[
−2.8 1.1

]T
, the evolution of system

state and periodically varying delay d(t) is depicted in Fig.
2. Besides, the trajectories of the system mode ℘(t) and
the controller mode ϑ(t) are shown in Fig. 3. These fig-
ures collectively illustrate the effectiveness of the proposed
asynchronous controller design approach. Additionally, Fig.
4 depicts the progression of the control input u along with
dh1/dt, where S1(t = 0.600) and S2(t = 0.777) represent
the switching points. At these switching points, the values
of ḣ1(0.600) = −0.089 and ḣ1(0.777) = 3.056e − 03.
Notably, it can be observed that the controller is u2 within
the interval [0, S1], subsequently switches to u1 within the
interval [S1, S2], and finally switches back to u2 within the
interval [S2,+∞).

Example 2: When N = {1}, consider the T-S fuzzy system
under u = 0 with the parameters as follows, which is borrowed



10

0 2 4 6 8 10

1

1.2

1.4

1.6

1.8

2

Fig. 3. The trajectories of ℘(t) and ϑ(t) (Example 1).
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Fig. 4. The evolution of dh1/dt and control input u (Example 1).

TABLE IV
ALLOWABLE UPPER BOUNDS d2 FOR DIFFERENT κ (EXAMPLE 2)

Methods κ = 0.03 κ = 0.1 κ = 0.5 κ = 0.9
Th.1(α = 0.5), [8] 0.9192 0.7985 0.7630 0.7541

Th.1, [26] 1.9137 1.4354 1.3123 1.2063
Th.1(σ = 5), [27] 2.2782 1.6065 1.4819 1.3686

Th.1, [28] 2.8231 2.1807 1.9914 1.8705
Th.1 with (i) 3.2092 2.8256 2.4466 2.3088
Th.1 with (ii) 3.0603 2.7164 2.3926 2.2735
Th.1 with (iii) 2.6085 2.3435 2.2201 2.0902

from [28]:

A1 =

[
−3.2 0.6

0 −2.1

]
, A2 =

[
−1 0
1 −3

]
,

Ad1 =

[
1 0.9
0 2

]
, Ad2 =

[
0.9 0
1 1.6

]
.

In order to make a comprehensive comparison, setting d1 =
0, we consider various cases:

(i) MFs-dependent LKF V (t). PI1, PI2, PD1, PD2, QI1h,
QI2h, QD1h, QD2h, Slh, R1lh, R2h, R3h, Mh, Zh, Uh.

(ii) MFs-independent LKF V (t). PI1, PI2, PD1, PD2, QI1,
QI2, QD1, QD2, Sl, R1l, R2, R3, M , Z, U .

(iii) MFs-dependent LKF VC(t). PI1 = 0, PI2 = 0, PD1 = 0,
PD2 = 0, QI1h = 0, QI2h = 0, QD1h = 0, QD2h = 0,
Slh, R1lh, R2h, R3h, Mh, Zh, Uh.

In this example, the common brute-force algorithm [36] is
employed to search for the values of λ1 and λ2. For instance,

in case (i), κ = 0.1, a search for λ1 = 1, λ2 = 1.2
yields a maximum delay bound d2 of d1

2 = 3.2545 under
T1. Similarly, for λ1 = 0.8, λ2 = 1.4, the maximum delay
bound d2 is determined as d2

2 = 2.8256 under T2. Hence, the
final maximum delay bound for d2 is determined as dmax

2 =
min

{
d1

2, d
2
2

}
= 2.8256. Meanwhile, Table IV illustrates the

allowable upper bounds d2 obtained by different methods
under identical parameters. For example, when κ = 0.03,
the maximum delay bound d2 is 3.2092 for case (i) and
3.0603 for case (ii). Therefore, the validity of incorporating
MFs-dependent terms is substantiated through a comparison
of results between case (i) and case (ii). At the same time, the
maximum delay bound d2 obtained from case (iii) is 2.6085.
And the effectiveness of the monotone-delay-interval-based
LKF is confirmed by contrasting the results of case (i) with
those of case (iii). Moreover, it can be found that the value of
the maximum delay bound d2 obtained from case (i) is larger
than that of [8], [26]–[28], which proves that the presented
method in this article exhibits less conservatism compared to
the approaches proposed in [8], [26]–[28].

V. CONCLUSION

This paper has investigated the asynchronous switching
control issue for FMJSs. By incorporating the specific charac-
teristics of periodically varying delays and T-S fuzzy systems,
an MDI-MF-LKF has been formulated based on monotone-
delay intervals and MFs, leading to less conservative stability
conditions. In addition, an asynchronous switching fuzzy con-
troller has been developed, characterized by non-synchronous
modes and MFs time derivative information. Ultimately, two
numerical examples have been proposed to demonstrate the
effectiveness and practicality of the presented approach. In
future research, it is essential to explore new methods to reduce
conservatism, such as matrices dependent on polynomial MFs.
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